1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDomTreeUpdater.h" 34 #include "llvm/CodeGen/MachineDominators.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachinePostDominators.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/MachineSizeOpts.h" 43 #include "llvm/CodeGen/RegisterClassInfo.h" 44 #include "llvm/CodeGen/RegisterPressure.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/BranchProbability.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <cassert> 60 #include <cstdint> 61 #include <utility> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "machine-sink" 67 68 static cl::opt<bool> 69 SplitEdges("machine-sink-split", 70 cl::desc("Split critical edges during machine sinking"), 71 cl::init(true), cl::Hidden); 72 73 static cl::opt<bool> UseBlockFreqInfo( 74 "machine-sink-bfi", 75 cl::desc("Use block frequency info to find successors to sink"), 76 cl::init(true), cl::Hidden); 77 78 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 79 "machine-sink-split-probability-threshold", 80 cl::desc( 81 "Percentage threshold for splitting single-instruction critical edge. " 82 "If the branch threshold is higher than this threshold, we allow " 83 "speculative execution of up to 1 instruction to avoid branching to " 84 "splitted critical edge"), 85 cl::init(40), cl::Hidden); 86 87 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 88 "machine-sink-load-instrs-threshold", 89 cl::desc("Do not try to find alias store for a load if there is a in-path " 90 "block whose instruction number is higher than this threshold."), 91 cl::init(2000), cl::Hidden); 92 93 static cl::opt<unsigned> SinkLoadBlocksThreshold( 94 "machine-sink-load-blocks-threshold", 95 cl::desc("Do not try to find alias store for a load if the block number in " 96 "the straight line is higher than this threshold."), 97 cl::init(20), cl::Hidden); 98 99 static cl::opt<bool> 100 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 101 cl::desc("Sink instructions into cycles to avoid " 102 "register spills"), 103 cl::init(false), cl::Hidden); 104 105 static cl::opt<unsigned> SinkIntoCycleLimit( 106 "machine-sink-cycle-limit", 107 cl::desc( 108 "The maximum number of instructions considered for cycle sinking."), 109 cl::init(50), cl::Hidden); 110 111 STATISTIC(NumSunk, "Number of machine instructions sunk"); 112 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 113 STATISTIC(NumSplit, "Number of critical edges split"); 114 STATISTIC(NumCoalesces, "Number of copies coalesced"); 115 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 116 117 using RegSubRegPair = TargetInstrInfo::RegSubRegPair; 118 119 namespace { 120 121 class MachineSinking : public MachineFunctionPass { 122 const TargetSubtargetInfo *STI = nullptr; 123 const TargetInstrInfo *TII = nullptr; 124 const TargetRegisterInfo *TRI = nullptr; 125 MachineRegisterInfo *MRI = nullptr; // Machine register information 126 MachineDominatorTree *DT = nullptr; // Machine dominator tree 127 MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree 128 MachineCycleInfo *CI = nullptr; 129 ProfileSummaryInfo *PSI = nullptr; 130 MachineBlockFrequencyInfo *MBFI = nullptr; 131 const MachineBranchProbabilityInfo *MBPI = nullptr; 132 AliasAnalysis *AA = nullptr; 133 RegisterClassInfo RegClassInfo; 134 TargetSchedModel SchedModel; 135 136 // Remember which edges have been considered for breaking. 137 SmallSet<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 8> 138 CEBCandidates; 139 // Memorize the register that also wanted to sink into the same block along 140 // a different critical edge. 141 // {register to sink, sink-to block} -> the first sink-from block. 142 // We're recording the first sink-from block because that (critical) edge 143 // was deferred until we see another register that's going to sink into the 144 // same block. 145 DenseMap<std::pair<Register, MachineBasicBlock *>, MachineBasicBlock *> 146 CEMergeCandidates; 147 // Remember which edges we are about to split. 148 // This is different from CEBCandidates since those edges 149 // will be split. 150 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 151 152 DenseSet<Register> RegsToClearKillFlags; 153 154 using AllSuccsCache = 155 SmallDenseMap<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 156 157 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 158 /// post-dominated by another DBG_VALUE of the same variable location. 159 /// This is necessary to detect sequences such as: 160 /// %0 = someinst 161 /// DBG_VALUE %0, !123, !DIExpression() 162 /// %1 = anotherinst 163 /// DBG_VALUE %1, !123, !DIExpression() 164 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 165 /// would re-order assignments. 166 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 167 168 using SinkItem = std::pair<MachineInstr *, MachineBasicBlock *>; 169 170 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 171 /// debug instructions to sink. 172 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 173 174 /// Record of debug variables that have had their locations set in the 175 /// current block. 176 DenseSet<DebugVariable> SeenDbgVars; 177 178 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 179 HasStoreCache; 180 181 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 182 SmallVector<MachineInstr *>> 183 StoreInstrCache; 184 185 /// Cached BB's register pressure. 186 DenseMap<const MachineBasicBlock *, std::vector<unsigned>> 187 CachedRegisterPressure; 188 189 bool EnableSinkAndFold; 190 191 public: 192 static char ID; // Pass identification 193 194 MachineSinking() : MachineFunctionPass(ID) { 195 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 196 } 197 198 bool runOnMachineFunction(MachineFunction &MF) override; 199 200 void getAnalysisUsage(AnalysisUsage &AU) const override { 201 MachineFunctionPass::getAnalysisUsage(AU); 202 AU.addRequired<AAResultsWrapperPass>(); 203 AU.addRequired<MachineDominatorTreeWrapperPass>(); 204 AU.addRequired<MachinePostDominatorTreeWrapperPass>(); 205 AU.addRequired<MachineCycleInfoWrapperPass>(); 206 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 207 AU.addPreserved<MachineCycleInfoWrapperPass>(); 208 AU.addPreserved<MachineLoopInfoWrapperPass>(); 209 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 210 if (UseBlockFreqInfo) 211 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 212 AU.addRequired<TargetPassConfig>(); 213 } 214 215 void releaseMemory() override { 216 CEBCandidates.clear(); 217 CEMergeCandidates.clear(); 218 } 219 220 private: 221 bool ProcessBlock(MachineBasicBlock &MBB); 222 void ProcessDbgInst(MachineInstr &MI); 223 bool isLegalToBreakCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 224 MachineBasicBlock *To, bool BreakPHIEdge); 225 bool isWorthBreakingCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 226 MachineBasicBlock *To, 227 MachineBasicBlock *&DeferredFromBlock); 228 229 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 230 MachineInstr &MI); 231 232 /// Postpone the splitting of the given critical 233 /// edge (\p From, \p To). 234 /// 235 /// We do not split the edges on the fly. Indeed, this invalidates 236 /// the dominance information and thus triggers a lot of updates 237 /// of that information underneath. 238 /// Instead, we postpone all the splits after each iteration of 239 /// the main loop. That way, the information is at least valid 240 /// for the lifetime of an iteration. 241 /// 242 /// \return True if the edge is marked as toSplit, false otherwise. 243 /// False can be returned if, for instance, this is not profitable. 244 bool PostponeSplitCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 245 MachineBasicBlock *To, bool BreakPHIEdge); 246 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 247 AllSuccsCache &AllSuccessors); 248 249 /// If we sink a COPY inst, some debug users of it's destination may no 250 /// longer be dominated by the COPY, and will eventually be dropped. 251 /// This is easily rectified by forwarding the non-dominated debug uses 252 /// to the copy source. 253 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 254 MachineBasicBlock *TargetBlock); 255 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 256 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 257 bool &LocalUse) const; 258 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 259 bool &BreakPHIEdge, 260 AllSuccsCache &AllSuccessors); 261 262 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 263 SmallVectorImpl<MachineInstr *> &Candidates); 264 265 bool 266 aggressivelySinkIntoCycle(MachineCycle *Cycle, MachineInstr &I, 267 DenseMap<SinkItem, MachineInstr *> &SunkInstrs); 268 269 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 270 MachineBasicBlock *MBB, 271 MachineBasicBlock *SuccToSinkTo, 272 AllSuccsCache &AllSuccessors); 273 274 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 275 MachineBasicBlock *MBB); 276 277 bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB); 278 279 SmallVector<MachineBasicBlock *, 4> & 280 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 281 AllSuccsCache &AllSuccessors) const; 282 283 std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB, 284 bool UseCache = true); 285 286 bool registerPressureSetExceedsLimit(unsigned NRegs, 287 const TargetRegisterClass *RC, 288 const MachineBasicBlock &MBB); 289 290 bool registerPressureExceedsLimit(const MachineBasicBlock &MBB); 291 }; 292 293 } // end anonymous namespace 294 295 char MachineSinking::ID = 0; 296 297 char &llvm::MachineSinkingID = MachineSinking::ID; 298 299 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, "Machine code sinking", false, 300 false) 301 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 302 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 303 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 304 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 305 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 306 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, "Machine code sinking", false, 307 false) 308 309 /// Return true if a target defined block prologue instruction interferes 310 /// with a sink candidate. 311 static bool blockPrologueInterferes(const MachineBasicBlock *BB, 312 MachineBasicBlock::const_iterator End, 313 const MachineInstr &MI, 314 const TargetRegisterInfo *TRI, 315 const TargetInstrInfo *TII, 316 const MachineRegisterInfo *MRI) { 317 for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End; 318 ++PI) { 319 // Only check target defined prologue instructions 320 if (!TII->isBasicBlockPrologue(*PI)) 321 continue; 322 for (auto &MO : MI.operands()) { 323 if (!MO.isReg()) 324 continue; 325 Register Reg = MO.getReg(); 326 if (!Reg) 327 continue; 328 if (MO.isUse()) { 329 if (Reg.isPhysical() && 330 (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) 331 continue; 332 if (PI->modifiesRegister(Reg, TRI)) 333 return true; 334 } else { 335 if (PI->readsRegister(Reg, TRI)) 336 return true; 337 // Check for interference with non-dead defs 338 auto *DefOp = PI->findRegisterDefOperand(Reg, TRI, false, true); 339 if (DefOp && !DefOp->isDead()) 340 return true; 341 } 342 } 343 } 344 345 return false; 346 } 347 348 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 349 MachineBasicBlock *MBB) { 350 if (!MI.isCopy()) 351 return false; 352 353 Register SrcReg = MI.getOperand(1).getReg(); 354 Register DstReg = MI.getOperand(0).getReg(); 355 if (!SrcReg.isVirtual() || !DstReg.isVirtual() || 356 !MRI->hasOneNonDBGUse(SrcReg)) 357 return false; 358 359 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 360 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 361 if (SRC != DRC) 362 return false; 363 364 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 365 if (DefMI->isCopyLike()) 366 return false; 367 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 368 LLVM_DEBUG(dbgs() << "*** to: " << MI); 369 MRI->replaceRegWith(DstReg, SrcReg); 370 MI.eraseFromParent(); 371 372 // Conservatively, clear any kill flags, since it's possible that they are no 373 // longer correct. 374 MRI->clearKillFlags(SrcReg); 375 376 ++NumCoalesces; 377 return true; 378 } 379 380 bool MachineSinking::PerformSinkAndFold(MachineInstr &MI, 381 MachineBasicBlock *MBB) { 382 if (MI.isCopy() || MI.mayLoadOrStore() || 383 MI.getOpcode() == TargetOpcode::REG_SEQUENCE) 384 return false; 385 386 // Don't sink instructions that the target prefers not to sink. 387 if (!TII->shouldSink(MI)) 388 return false; 389 390 // Check if it's safe to move the instruction. 391 bool SawStore = true; 392 if (!MI.isSafeToMove(SawStore)) 393 return false; 394 395 // Convergent operations may not be made control-dependent on additional 396 // values. 397 if (MI.isConvergent()) 398 return false; 399 400 // Don't sink defs/uses of hard registers or if the instruction defines more 401 // than one register. 402 // Don't sink more than two register uses - it'll cover most of the cases and 403 // greatly simplifies the register pressure checks. 404 Register DefReg; 405 Register UsedRegA, UsedRegB; 406 for (const MachineOperand &MO : MI.operands()) { 407 if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() || 408 MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() || 409 MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask()) 410 continue; 411 if (!MO.isReg()) 412 return false; 413 414 Register Reg = MO.getReg(); 415 if (Reg == 0) 416 continue; 417 418 if (Reg.isVirtual()) { 419 if (MO.isDef()) { 420 if (DefReg) 421 return false; 422 DefReg = Reg; 423 continue; 424 } 425 426 if (UsedRegA == 0) 427 UsedRegA = Reg; 428 else if (UsedRegB == 0) 429 UsedRegB = Reg; 430 else 431 return false; 432 continue; 433 } 434 435 if (Reg.isPhysical() && MO.isUse() && 436 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 437 continue; 438 439 return false; 440 } 441 442 // Scan uses of the destination register. Every use, except the last, must be 443 // a copy, with a chain of copies terminating with either a copy into a hard 444 // register, or a load/store instruction where the use is part of the 445 // address (*not* the stored value). 446 using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>; 447 SmallVector<SinkInfo> SinkInto; 448 SmallVector<Register> Worklist; 449 450 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 451 const TargetRegisterClass *RCA = 452 UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA); 453 const TargetRegisterClass *RCB = 454 UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB); 455 456 Worklist.push_back(DefReg); 457 while (!Worklist.empty()) { 458 Register Reg = Worklist.pop_back_val(); 459 460 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 461 ExtAddrMode MaybeAM; 462 MachineInstr &UseInst = *MO.getParent(); 463 if (UseInst.isCopy()) { 464 Register DstReg; 465 if (const MachineOperand &O = UseInst.getOperand(0); O.isReg()) 466 DstReg = O.getReg(); 467 if (DstReg == 0) 468 return false; 469 if (DstReg.isVirtual()) { 470 Worklist.push_back(DstReg); 471 continue; 472 } 473 // If we are going to replace a copy, the original instruction must be 474 // as cheap as a copy. 475 if (!TII->isAsCheapAsAMove(MI)) 476 return false; 477 // The hard register must be in the register class of the original 478 // instruction's destination register. 479 if (!RC->contains(DstReg)) 480 return false; 481 } else if (UseInst.mayLoadOrStore()) { 482 ExtAddrMode AM; 483 if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM)) 484 return false; 485 MaybeAM = AM; 486 } else { 487 return false; 488 } 489 490 if (UseInst.getParent() != MI.getParent()) { 491 // If the register class of the register we are replacing is a superset 492 // of any of the register classes of the operands of the materialized 493 // instruction don't consider that live range extended. 494 const TargetRegisterClass *RCS = MRI->getRegClass(Reg); 495 if (RCA && RCA->hasSuperClassEq(RCS)) 496 RCA = nullptr; 497 else if (RCB && RCB->hasSuperClassEq(RCS)) 498 RCB = nullptr; 499 if (RCA || RCB) { 500 if (RCA == nullptr) { 501 RCA = RCB; 502 RCB = nullptr; 503 } 504 505 unsigned NRegs = !!RCA + !!RCB; 506 if (RCA == RCB) 507 RCB = nullptr; 508 509 // Check we don't exceed register pressure at the destination. 510 const MachineBasicBlock &MBB = *UseInst.getParent(); 511 if (RCB == nullptr) { 512 if (registerPressureSetExceedsLimit(NRegs, RCA, MBB)) 513 return false; 514 } else if (registerPressureSetExceedsLimit(1, RCA, MBB) || 515 registerPressureSetExceedsLimit(1, RCB, MBB)) { 516 return false; 517 } 518 } 519 } 520 521 SinkInto.emplace_back(&UseInst, MaybeAM); 522 } 523 } 524 525 if (SinkInto.empty()) 526 return false; 527 528 // Now we know we can fold the instruction in all its users. 529 for (auto &[SinkDst, MaybeAM] : SinkInto) { 530 MachineInstr *New = nullptr; 531 LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into"; 532 SinkDst->dump()); 533 if (SinkDst->isCopy()) { 534 // TODO: After performing the sink-and-fold, the original instruction is 535 // deleted. Its value is still available (in a hard register), so if there 536 // are debug instructions which refer to the (now deleted) virtual 537 // register they could be updated to refer to the hard register, in 538 // principle. However, it's not clear how to do that, moreover in some 539 // cases the debug instructions may need to be replicated proportionally 540 // to the number of the COPY instructions replaced and in some extreme 541 // cases we can end up with quadratic increase in the number of debug 542 // instructions. 543 544 // Sink a copy of the instruction, replacing a COPY instruction. 545 MachineBasicBlock::iterator InsertPt = SinkDst->getIterator(); 546 Register DstReg = SinkDst->getOperand(0).getReg(); 547 TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI); 548 New = &*std::prev(InsertPt); 549 if (!New->getDebugLoc()) 550 New->setDebugLoc(SinkDst->getDebugLoc()); 551 552 // The operand registers of the "sunk" instruction have their live range 553 // extended and their kill flags may no longer be correct. Conservatively 554 // clear the kill flags. 555 if (UsedRegA) 556 MRI->clearKillFlags(UsedRegA); 557 if (UsedRegB) 558 MRI->clearKillFlags(UsedRegB); 559 } else { 560 // Fold instruction into the addressing mode of a memory instruction. 561 New = TII->emitLdStWithAddr(*SinkDst, MaybeAM); 562 563 // The registers of the addressing mode may have their live range extended 564 // and their kill flags may no longer be correct. Conservatively clear the 565 // kill flags. 566 if (Register R = MaybeAM.BaseReg; R.isValid() && R.isVirtual()) 567 MRI->clearKillFlags(R); 568 if (Register R = MaybeAM.ScaledReg; R.isValid() && R.isVirtual()) 569 MRI->clearKillFlags(R); 570 } 571 LLVM_DEBUG(dbgs() << "yielding"; New->dump()); 572 // Clear the StoreInstrCache, since we may invalidate it by erasing. 573 if (SinkDst->mayStore() && !SinkDst->hasOrderedMemoryRef()) 574 StoreInstrCache.clear(); 575 SinkDst->eraseFromParent(); 576 } 577 578 // Collect operands that need to be cleaned up because the registers no longer 579 // exist (in COPYs and debug instructions). We cannot delete instructions or 580 // clear operands while traversing register uses. 581 SmallVector<MachineOperand *> Cleanup; 582 Worklist.push_back(DefReg); 583 while (!Worklist.empty()) { 584 Register Reg = Worklist.pop_back_val(); 585 for (MachineOperand &MO : MRI->use_operands(Reg)) { 586 MachineInstr *U = MO.getParent(); 587 assert((U->isCopy() || U->isDebugInstr()) && 588 "Only debug uses and copies must remain"); 589 if (U->isCopy()) 590 Worklist.push_back(U->getOperand(0).getReg()); 591 Cleanup.push_back(&MO); 592 } 593 } 594 595 // Delete the dead COPYs and clear operands in debug instructions 596 for (MachineOperand *MO : Cleanup) { 597 MachineInstr *I = MO->getParent(); 598 if (I->isCopy()) { 599 I->eraseFromParent(); 600 } else { 601 MO->setReg(0); 602 MO->setSubReg(0); 603 } 604 } 605 606 MI.eraseFromParent(); 607 return true; 608 } 609 610 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 611 /// occur in blocks dominated by the specified block. If any use is in the 612 /// definition block, then return false since it is never legal to move def 613 /// after uses. 614 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 615 MachineBasicBlock *MBB, 616 MachineBasicBlock *DefMBB, 617 bool &BreakPHIEdge, 618 bool &LocalUse) const { 619 assert(Reg.isVirtual() && "Only makes sense for vregs"); 620 621 // Ignore debug uses because debug info doesn't affect the code. 622 if (MRI->use_nodbg_empty(Reg)) 623 return true; 624 625 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 626 // into and they are all PHI nodes. In this case, machine-sink must break 627 // the critical edge first. e.g. 628 // 629 // %bb.1: 630 // Predecessors according to CFG: %bb.0 631 // ... 632 // %def = DEC64_32r %x, implicit-def dead %eflags 633 // ... 634 // JE_4 <%bb.37>, implicit %eflags 635 // Successors according to CFG: %bb.37 %bb.2 636 // 637 // %bb.2: 638 // %p = PHI %y, %bb.0, %def, %bb.1 639 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 640 MachineInstr *UseInst = MO.getParent(); 641 unsigned OpNo = MO.getOperandNo(); 642 MachineBasicBlock *UseBlock = UseInst->getParent(); 643 return UseBlock == MBB && UseInst->isPHI() && 644 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 645 })) { 646 BreakPHIEdge = true; 647 return true; 648 } 649 650 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 651 // Determine the block of the use. 652 MachineInstr *UseInst = MO.getParent(); 653 unsigned OpNo = &MO - &UseInst->getOperand(0); 654 MachineBasicBlock *UseBlock = UseInst->getParent(); 655 if (UseInst->isPHI()) { 656 // PHI nodes use the operand in the predecessor block, not the block with 657 // the PHI. 658 UseBlock = UseInst->getOperand(OpNo + 1).getMBB(); 659 } else if (UseBlock == DefMBB) { 660 LocalUse = true; 661 return false; 662 } 663 664 // Check that it dominates. 665 if (!DT->dominates(MBB, UseBlock)) 666 return false; 667 } 668 669 return true; 670 } 671 672 /// Return true if this machine instruction loads from global offset table or 673 /// constant pool. 674 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 675 assert(MI.mayLoad() && "Expected MI that loads!"); 676 677 // If we lost memory operands, conservatively assume that the instruction 678 // reads from everything.. 679 if (MI.memoperands_empty()) 680 return true; 681 682 for (MachineMemOperand *MemOp : MI.memoperands()) 683 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 684 if (PSV->isGOT() || PSV->isConstantPool()) 685 return true; 686 687 return false; 688 } 689 690 void MachineSinking::FindCycleSinkCandidates( 691 MachineCycle *Cycle, MachineBasicBlock *BB, 692 SmallVectorImpl<MachineInstr *> &Candidates) { 693 for (auto &MI : *BB) { 694 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 695 if (MI.isMetaInstruction()) { 696 LLVM_DEBUG(dbgs() << "CycleSink: not sinking meta instruction\n"); 697 continue; 698 } 699 if (!TII->shouldSink(MI)) { 700 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 701 "target\n"); 702 continue; 703 } 704 if (!isCycleInvariant(Cycle, MI)) { 705 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 706 continue; 707 } 708 bool DontMoveAcrossStore = true; 709 if (!MI.isSafeToMove(DontMoveAcrossStore)) { 710 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 711 continue; 712 } 713 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 714 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 715 continue; 716 } 717 if (MI.isConvergent()) 718 continue; 719 720 const MachineOperand &MO = MI.getOperand(0); 721 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 722 continue; 723 if (!MRI->hasOneDef(MO.getReg())) 724 continue; 725 726 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 727 Candidates.push_back(&MI); 728 } 729 } 730 731 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 732 if (skipFunction(MF.getFunction())) 733 return false; 734 735 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 736 737 STI = &MF.getSubtarget(); 738 TII = STI->getInstrInfo(); 739 TRI = STI->getRegisterInfo(); 740 MRI = &MF.getRegInfo(); 741 DT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 742 PDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); 743 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 744 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 745 MBFI = UseBlockFreqInfo 746 ? &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI() 747 : nullptr; 748 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); 749 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 750 RegClassInfo.runOnMachineFunction(MF); 751 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 752 EnableSinkAndFold = PassConfig->getEnableSinkAndFold(); 753 754 bool EverMadeChange = false; 755 756 while (true) { 757 bool MadeChange = false; 758 759 // Process all basic blocks. 760 CEBCandidates.clear(); 761 CEMergeCandidates.clear(); 762 ToSplit.clear(); 763 for (auto &MBB : MF) 764 MadeChange |= ProcessBlock(MBB); 765 766 // If we have anything we marked as toSplit, split it now. 767 MachineDomTreeUpdater MDTU(DT, PDT, 768 MachineDomTreeUpdater::UpdateStrategy::Lazy); 769 for (const auto &Pair : ToSplit) { 770 auto NewSucc = 771 Pair.first->SplitCriticalEdge(Pair.second, *this, nullptr, &MDTU); 772 if (NewSucc != nullptr) { 773 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 774 << printMBBReference(*Pair.first) << " -- " 775 << printMBBReference(*NewSucc) << " -- " 776 << printMBBReference(*Pair.second) << '\n'); 777 if (MBFI) 778 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 779 780 MadeChange = true; 781 ++NumSplit; 782 CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc); 783 } else 784 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 785 } 786 // If this iteration over the code changed anything, keep iterating. 787 if (!MadeChange) 788 break; 789 EverMadeChange = true; 790 } 791 792 if (SinkInstsIntoCycle) { 793 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_cycles()); 794 SchedModel.init(STI); 795 bool HasHighPressure; 796 797 DenseMap<SinkItem, MachineInstr *> SunkInstrs; 798 799 enum CycleSinkStage { COPY, LOW_LATENCY, AGGRESSIVE, END }; 800 for (unsigned Stage = CycleSinkStage::COPY; Stage != CycleSinkStage::END; 801 ++Stage, SunkInstrs.clear()) { 802 HasHighPressure = false; 803 804 for (auto *Cycle : Cycles) { 805 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 806 if (!Preheader) { 807 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 808 continue; 809 } 810 SmallVector<MachineInstr *, 8> Candidates; 811 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 812 813 unsigned i = 0; 814 815 // Walk the candidates in reverse order so that we start with the use 816 // of a def-use chain, if there is any. 817 // TODO: Sort the candidates using a cost-model. 818 for (MachineInstr *I : llvm::reverse(Candidates)) { 819 // CycleSinkStage::COPY: Sink a limited number of copies 820 if (Stage == CycleSinkStage::COPY) { 821 if (i++ == SinkIntoCycleLimit) { 822 LLVM_DEBUG(dbgs() 823 << "CycleSink: Limit reached of instructions to " 824 "be analyzed."); 825 break; 826 } 827 828 if (!I->isCopy()) 829 continue; 830 } 831 832 // CycleSinkStage::LOW_LATENCY: sink unlimited number of instructions 833 // which the target specifies as low-latency 834 if (Stage == CycleSinkStage::LOW_LATENCY && 835 !TII->hasLowDefLatency(SchedModel, *I, 0)) 836 continue; 837 838 if (!aggressivelySinkIntoCycle(Cycle, *I, SunkInstrs)) 839 break; 840 EverMadeChange = true; 841 ++NumCycleSunk; 842 } 843 844 // Recalculate the pressure after sinking 845 if (!HasHighPressure) 846 HasHighPressure = registerPressureExceedsLimit(*Preheader); 847 } 848 if (!HasHighPressure) 849 break; 850 } 851 } 852 853 HasStoreCache.clear(); 854 StoreInstrCache.clear(); 855 856 // Now clear any kill flags for recorded registers. 857 for (auto I : RegsToClearKillFlags) 858 MRI->clearKillFlags(I); 859 RegsToClearKillFlags.clear(); 860 861 return EverMadeChange; 862 } 863 864 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 865 if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty()) 866 return false; 867 868 // Don't bother sinking code out of unreachable blocks. In addition to being 869 // unprofitable, it can also lead to infinite looping, because in an 870 // unreachable cycle there may be nowhere to stop. 871 if (!DT->isReachableFromEntry(&MBB)) 872 return false; 873 874 bool MadeChange = false; 875 876 // Cache all successors, sorted by frequency info and cycle depth. 877 AllSuccsCache AllSuccessors; 878 879 // Walk the basic block bottom-up. Remember if we saw a store. 880 MachineBasicBlock::iterator I = MBB.end(); 881 --I; 882 bool ProcessedBegin, SawStore = false; 883 do { 884 MachineInstr &MI = *I; // The instruction to sink. 885 886 // Predecrement I (if it's not begin) so that it isn't invalidated by 887 // sinking. 888 ProcessedBegin = I == MBB.begin(); 889 if (!ProcessedBegin) 890 --I; 891 892 if (MI.isDebugOrPseudoInstr() || MI.isFakeUse()) { 893 if (MI.isDebugValue()) 894 ProcessDbgInst(MI); 895 continue; 896 } 897 898 if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) { 899 MadeChange = true; 900 continue; 901 } 902 903 // Can't sink anything out of a block that has less than two successors. 904 if (MBB.succ_size() <= 1) 905 continue; 906 907 if (PerformTrivialForwardCoalescing(MI, &MBB)) { 908 MadeChange = true; 909 continue; 910 } 911 912 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 913 ++NumSunk; 914 MadeChange = true; 915 } 916 917 // If we just processed the first instruction in the block, we're done. 918 } while (!ProcessedBegin); 919 920 SeenDbgUsers.clear(); 921 SeenDbgVars.clear(); 922 // recalculate the bb register pressure after sinking one BB. 923 CachedRegisterPressure.clear(); 924 return MadeChange; 925 } 926 927 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 928 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 929 // we know what to sink if the vreg def sinks. 930 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 931 932 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 933 MI.getDebugLoc()->getInlinedAt()); 934 bool SeenBefore = SeenDbgVars.contains(Var); 935 936 for (MachineOperand &MO : MI.debug_operands()) { 937 if (MO.isReg() && MO.getReg().isVirtual()) 938 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 939 } 940 941 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 942 SeenDbgVars.insert(Var); 943 } 944 945 bool MachineSinking::isWorthBreakingCriticalEdge( 946 MachineInstr &MI, MachineBasicBlock *From, MachineBasicBlock *To, 947 MachineBasicBlock *&DeferredFromBlock) { 948 // FIXME: Need much better heuristics. 949 950 // If the pass has already considered breaking this edge (during this pass 951 // through the function), then let's go ahead and break it. This means 952 // sinking multiple "cheap" instructions into the same block. 953 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 954 return true; 955 956 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 957 return true; 958 959 // Check and record the register and the destination block we want to sink 960 // into. Note that we want to do the following before the next check on branch 961 // probability. Because we want to record the initial candidate even if it's 962 // on hot edge, so that other candidates that might not on hot edges can be 963 // sinked as well. 964 for (const auto &MO : MI.all_defs()) { 965 Register Reg = MO.getReg(); 966 if (!Reg) 967 continue; 968 Register SrcReg = Reg.isVirtual() ? TRI->lookThruCopyLike(Reg, MRI) : Reg; 969 auto Key = std::make_pair(SrcReg, To); 970 auto Res = CEMergeCandidates.try_emplace(Key, From); 971 // We wanted to sink the same register into the same block, consider it to 972 // be profitable. 973 if (!Res.second) { 974 // Return the source block that was previously held off. 975 DeferredFromBlock = Res.first->second; 976 return true; 977 } 978 } 979 980 if (From->isSuccessor(To) && 981 MBPI->getEdgeProbability(From, To) <= 982 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 983 return true; 984 985 // MI is cheap, we probably don't want to break the critical edge for it. 986 // However, if this would allow some definitions of its source operands 987 // to be sunk then it's probably worth it. 988 for (const MachineOperand &MO : MI.all_uses()) { 989 Register Reg = MO.getReg(); 990 if (Reg == 0) 991 continue; 992 993 // We don't move live definitions of physical registers, 994 // so sinking their uses won't enable any opportunities. 995 if (Reg.isPhysical()) 996 continue; 997 998 // If this instruction is the only user of a virtual register, 999 // check if breaking the edge will enable sinking 1000 // both this instruction and the defining instruction. 1001 if (MRI->hasOneNonDBGUse(Reg)) { 1002 // If the definition resides in same MBB, 1003 // claim it's likely we can sink these together. 1004 // If definition resides elsewhere, we aren't 1005 // blocking it from being sunk so don't break the edge. 1006 MachineInstr *DefMI = MRI->getVRegDef(Reg); 1007 if (DefMI->getParent() == MI.getParent()) 1008 return true; 1009 } 1010 } 1011 1012 // Let the target decide if it's worth breaking this 1013 // critical edge for a "cheap" instruction. 1014 return TII->shouldBreakCriticalEdgeToSink(MI); 1015 } 1016 1017 bool MachineSinking::isLegalToBreakCriticalEdge(MachineInstr &MI, 1018 MachineBasicBlock *FromBB, 1019 MachineBasicBlock *ToBB, 1020 bool BreakPHIEdge) { 1021 // Avoid breaking back edge. From == To means backedge for single BB cycle. 1022 if (!SplitEdges || FromBB == ToBB || !FromBB->isSuccessor(ToBB)) 1023 return false; 1024 1025 MachineCycle *FromCycle = CI->getCycle(FromBB); 1026 MachineCycle *ToCycle = CI->getCycle(ToBB); 1027 1028 // Check for backedges of more "complex" cycles. 1029 if (FromCycle == ToCycle && FromCycle && 1030 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 1031 return false; 1032 1033 // It's not always legal to break critical edges and sink the computation 1034 // to the edge. 1035 // 1036 // %bb.1: 1037 // v1024 1038 // Beq %bb.3 1039 // <fallthrough> 1040 // %bb.2: 1041 // ... no uses of v1024 1042 // <fallthrough> 1043 // %bb.3: 1044 // ... 1045 // = v1024 1046 // 1047 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 1048 // 1049 // %bb.1: 1050 // ... 1051 // Bne %bb.2 1052 // %bb.4: 1053 // v1024 = 1054 // B %bb.3 1055 // %bb.2: 1056 // ... no uses of v1024 1057 // <fallthrough> 1058 // %bb.3: 1059 // ... 1060 // = v1024 1061 // 1062 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 1063 // flow. We need to ensure the new basic block where the computation is 1064 // sunk to dominates all the uses. 1065 // It's only legal to break critical edge and sink the computation to the 1066 // new block if all the predecessors of "To", except for "From", are 1067 // not dominated by "From". Given SSA property, this means these 1068 // predecessors are dominated by "To". 1069 // 1070 // There is no need to do this check if all the uses are PHI nodes. PHI 1071 // sources are only defined on the specific predecessor edges. 1072 if (!BreakPHIEdge) { 1073 for (MachineBasicBlock *Pred : ToBB->predecessors()) 1074 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 1075 return false; 1076 } 1077 1078 return true; 1079 } 1080 1081 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 1082 MachineBasicBlock *FromBB, 1083 MachineBasicBlock *ToBB, 1084 bool BreakPHIEdge) { 1085 bool Status = false; 1086 MachineBasicBlock *DeferredFromBB = nullptr; 1087 if (isWorthBreakingCriticalEdge(MI, FromBB, ToBB, DeferredFromBB)) { 1088 // If there is a DeferredFromBB, we consider FromBB only if _both_ 1089 // of them are legal to split. 1090 if ((!DeferredFromBB || 1091 ToSplit.count(std::make_pair(DeferredFromBB, ToBB)) || 1092 isLegalToBreakCriticalEdge(MI, DeferredFromBB, ToBB, BreakPHIEdge)) && 1093 isLegalToBreakCriticalEdge(MI, FromBB, ToBB, BreakPHIEdge)) { 1094 ToSplit.insert(std::make_pair(FromBB, ToBB)); 1095 if (DeferredFromBB) 1096 ToSplit.insert(std::make_pair(DeferredFromBB, ToBB)); 1097 Status = true; 1098 } 1099 } 1100 1101 return Status; 1102 } 1103 1104 std::vector<unsigned> & 1105 MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB, 1106 bool UseCache) { 1107 // Currently to save compiling time, MBB's register pressure will not change 1108 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 1109 // register pressure is changed after sinking any instructions into it. 1110 // FIXME: need a accurate and cheap register pressure estiminate model here. 1111 1112 auto RP = CachedRegisterPressure.find(&MBB); 1113 if (UseCache && RP != CachedRegisterPressure.end()) 1114 return RP->second; 1115 1116 RegionPressure Pressure; 1117 RegPressureTracker RPTracker(Pressure); 1118 1119 // Initialize the register pressure tracker. 1120 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 1121 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 1122 1123 for (MachineBasicBlock::const_iterator MII = MBB.instr_end(), 1124 MIE = MBB.instr_begin(); 1125 MII != MIE; --MII) { 1126 const MachineInstr &MI = *std::prev(MII); 1127 if (MI.isDebugInstr() || MI.isPseudoProbe()) 1128 continue; 1129 RegisterOperands RegOpers; 1130 RegOpers.collect(MI, *TRI, *MRI, false, false); 1131 RPTracker.recedeSkipDebugValues(); 1132 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 1133 RPTracker.recede(RegOpers); 1134 } 1135 1136 RPTracker.closeRegion(); 1137 1138 if (RP != CachedRegisterPressure.end()) { 1139 CachedRegisterPressure[&MBB] = RPTracker.getPressure().MaxSetPressure; 1140 return CachedRegisterPressure[&MBB]; 1141 } 1142 1143 auto It = CachedRegisterPressure.insert( 1144 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 1145 return It.first->second; 1146 } 1147 1148 bool MachineSinking::registerPressureSetExceedsLimit( 1149 unsigned NRegs, const TargetRegisterClass *RC, 1150 const MachineBasicBlock &MBB) { 1151 unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight; 1152 const int *PS = TRI->getRegClassPressureSets(RC); 1153 std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB); 1154 for (; *PS != -1; PS++) 1155 if (Weight + BBRegisterPressure[*PS] >= 1156 RegClassInfo.getRegPressureSetLimit(*PS)) 1157 return true; 1158 return false; 1159 } 1160 1161 // Recalculate RP and check if any pressure set exceeds the set limit. 1162 bool MachineSinking::registerPressureExceedsLimit( 1163 const MachineBasicBlock &MBB) { 1164 std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB, false); 1165 1166 for (unsigned PS = 0; PS < BBRegisterPressure.size(); ++PS) { 1167 if (BBRegisterPressure[PS] >= 1168 TRI->getRegPressureSetLimit(*MBB.getParent(), PS)) { 1169 return true; 1170 } 1171 } 1172 1173 return false; 1174 } 1175 1176 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 1177 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 1178 MachineBasicBlock *MBB, 1179 MachineBasicBlock *SuccToSinkTo, 1180 AllSuccsCache &AllSuccessors) { 1181 assert(SuccToSinkTo && "Invalid SinkTo Candidate BB"); 1182 1183 if (MBB == SuccToSinkTo) 1184 return false; 1185 1186 // It is profitable if SuccToSinkTo does not post dominate current block. 1187 if (!PDT->dominates(SuccToSinkTo, MBB)) 1188 return true; 1189 1190 // It is profitable to sink an instruction from a deeper cycle to a shallower 1191 // cycle, even if the latter post-dominates the former (PR21115). 1192 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 1193 return true; 1194 1195 // Check if only use in post dominated block is PHI instruction. 1196 bool NonPHIUse = false; 1197 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 1198 MachineBasicBlock *UseBlock = UseInst.getParent(); 1199 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 1200 NonPHIUse = true; 1201 } 1202 if (!NonPHIUse) 1203 return true; 1204 1205 // If SuccToSinkTo post dominates then also it may be profitable if MI 1206 // can further profitably sinked into another block in next round. 1207 bool BreakPHIEdge = false; 1208 // FIXME - If finding successor is compile time expensive then cache results. 1209 if (MachineBasicBlock *MBB2 = 1210 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 1211 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 1212 1213 MachineCycle *MCycle = CI->getCycle(MBB); 1214 1215 // If the instruction is not inside a cycle, it is not profitable to sink MI 1216 // to a post dominate block SuccToSinkTo. 1217 if (!MCycle) 1218 return false; 1219 1220 // If this instruction is inside a Cycle and sinking this instruction can make 1221 // more registers live range shorten, it is still prifitable. 1222 for (const MachineOperand &MO : MI.operands()) { 1223 // Ignore non-register operands. 1224 if (!MO.isReg()) 1225 continue; 1226 Register Reg = MO.getReg(); 1227 if (Reg == 0) 1228 continue; 1229 1230 if (Reg.isPhysical()) { 1231 // Don't handle non-constant and non-ignorable physical register uses. 1232 if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && 1233 !TII->isIgnorableUse(MO)) 1234 return false; 1235 continue; 1236 } 1237 1238 // Users for the defs are all dominated by SuccToSinkTo. 1239 if (MO.isDef()) { 1240 // This def register's live range is shortened after sinking. 1241 bool LocalUse = false; 1242 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1243 LocalUse)) 1244 return false; 1245 } else { 1246 MachineInstr *DefMI = MRI->getVRegDef(Reg); 1247 if (!DefMI) 1248 continue; 1249 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 1250 // DefMI is defined outside of cycle. There should be no live range 1251 // impact for this operand. Defination outside of cycle means: 1252 // 1: defination is outside of cycle. 1253 // 2: defination is in this cycle, but it is a PHI in the cycle header. 1254 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 1255 Cycle->getHeader() == DefMI->getParent())) 1256 continue; 1257 // The DefMI is defined inside the cycle. 1258 // If sinking this operand makes some register pressure set exceed limit, 1259 // it is not profitable. 1260 if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg), 1261 *SuccToSinkTo)) { 1262 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 1263 return false; 1264 } 1265 } 1266 } 1267 1268 // If MI is in cycle and all its operands are alive across the whole cycle or 1269 // if no operand sinking make register pressure set exceed limit, it is 1270 // profitable to sink MI. 1271 return true; 1272 } 1273 1274 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 1275 /// computing it if it was not already cached. 1276 SmallVector<MachineBasicBlock *, 4> & 1277 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 1278 AllSuccsCache &AllSuccessors) const { 1279 // Do we have the sorted successors in cache ? 1280 auto Succs = AllSuccessors.find(MBB); 1281 if (Succs != AllSuccessors.end()) 1282 return Succs->second; 1283 1284 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 1285 1286 // Handle cases where sinking can happen but where the sink point isn't a 1287 // successor. For example: 1288 // 1289 // x = computation 1290 // if () {} else {} 1291 // use x 1292 // 1293 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 1294 // DomTree children of MBB that have MBB as immediate dominator are added. 1295 if (DTChild->getIDom()->getBlock() == MI.getParent() && 1296 // Skip MBBs already added to the AllSuccs vector above. 1297 !MBB->isSuccessor(DTChild->getBlock())) 1298 AllSuccs.push_back(DTChild->getBlock()); 1299 } 1300 1301 // Sort Successors according to their cycle depth or block frequency info. 1302 llvm::stable_sort( 1303 AllSuccs, [&](const MachineBasicBlock *L, const MachineBasicBlock *R) { 1304 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 1305 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 1306 if (llvm::shouldOptimizeForSize(MBB, PSI, MBFI) || 1307 (!LHSFreq && !RHSFreq)) 1308 return CI->getCycleDepth(L) < CI->getCycleDepth(R); 1309 return LHSFreq < RHSFreq; 1310 }); 1311 1312 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 1313 1314 return it.first->second; 1315 } 1316 1317 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 1318 MachineBasicBlock * 1319 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 1320 bool &BreakPHIEdge, 1321 AllSuccsCache &AllSuccessors) { 1322 assert(MBB && "Invalid MachineBasicBlock!"); 1323 1324 // loop over all the operands of the specified instruction. If there is 1325 // anything we can't handle, bail out. 1326 1327 // SuccToSinkTo - This is the successor to sink this instruction to, once we 1328 // decide. 1329 MachineBasicBlock *SuccToSinkTo = nullptr; 1330 for (const MachineOperand &MO : MI.operands()) { 1331 if (!MO.isReg()) 1332 continue; // Ignore non-register operands. 1333 1334 Register Reg = MO.getReg(); 1335 if (Reg == 0) 1336 continue; 1337 1338 if (Reg.isPhysical()) { 1339 if (MO.isUse()) { 1340 // If the physreg has no defs anywhere, it's just an ambient register 1341 // and we can freely move its uses. Alternatively, if it's allocatable, 1342 // it could get allocated to something with a def during allocation. 1343 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1344 return nullptr; 1345 } else if (!MO.isDead()) { 1346 // A def that isn't dead. We can't move it. 1347 return nullptr; 1348 } 1349 } else { 1350 // Virtual register uses are always safe to sink. 1351 if (MO.isUse()) 1352 continue; 1353 1354 // If it's not safe to move defs of the register class, then abort. 1355 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 1356 return nullptr; 1357 1358 // Virtual register defs can only be sunk if all their uses are in blocks 1359 // dominated by one of the successors. 1360 if (SuccToSinkTo) { 1361 // If a previous operand picked a block to sink to, then this operand 1362 // must be sinkable to the same block. 1363 bool LocalUse = false; 1364 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1365 LocalUse)) 1366 return nullptr; 1367 1368 continue; 1369 } 1370 1371 // Otherwise, we should look at all the successors and decide which one 1372 // we should sink to. If we have reliable block frequency information 1373 // (frequency != 0) available, give successors with smaller frequencies 1374 // higher priority, otherwise prioritize smaller cycle depths. 1375 for (MachineBasicBlock *SuccBlock : 1376 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 1377 bool LocalUse = false; 1378 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, BreakPHIEdge, 1379 LocalUse)) { 1380 SuccToSinkTo = SuccBlock; 1381 break; 1382 } 1383 if (LocalUse) 1384 // Def is used locally, it's never safe to move this def. 1385 return nullptr; 1386 } 1387 1388 // If we couldn't find a block to sink to, ignore this instruction. 1389 if (!SuccToSinkTo) 1390 return nullptr; 1391 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 1392 return nullptr; 1393 } 1394 } 1395 1396 // It is not possible to sink an instruction into its own block. This can 1397 // happen with cycles. 1398 if (MBB == SuccToSinkTo) 1399 return nullptr; 1400 1401 // It's not safe to sink instructions to EH landing pad. Control flow into 1402 // landing pad is implicitly defined. 1403 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 1404 return nullptr; 1405 1406 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 1407 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 1408 // the source block (which this code does not yet do). So for now, forbid 1409 // doing so. 1410 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 1411 return nullptr; 1412 1413 if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI)) 1414 return nullptr; 1415 1416 return SuccToSinkTo; 1417 } 1418 1419 /// Return true if MI is likely to be usable as a memory operation by the 1420 /// implicit null check optimization. 1421 /// 1422 /// This is a "best effort" heuristic, and should not be relied upon for 1423 /// correctness. This returning true does not guarantee that the implicit null 1424 /// check optimization is legal over MI, and this returning false does not 1425 /// guarantee MI cannot possibly be used to do a null check. 1426 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 1427 const TargetInstrInfo *TII, 1428 const TargetRegisterInfo *TRI) { 1429 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1430 1431 auto *MBB = MI.getParent(); 1432 if (MBB->pred_size() != 1) 1433 return false; 1434 1435 auto *PredMBB = *MBB->pred_begin(); 1436 auto *PredBB = PredMBB->getBasicBlock(); 1437 1438 // Frontends that don't use implicit null checks have no reason to emit 1439 // branches with make.implicit metadata, and this function should always 1440 // return false for them. 1441 if (!PredBB || 1442 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1443 return false; 1444 1445 const MachineOperand *BaseOp; 1446 int64_t Offset; 1447 bool OffsetIsScalable; 1448 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1449 return false; 1450 1451 if (!BaseOp->isReg()) 1452 return false; 1453 1454 if (!(MI.mayLoad() && !MI.isPredicable())) 1455 return false; 1456 1457 MachineBranchPredicate MBP; 1458 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1459 return false; 1460 1461 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1462 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1463 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1464 MBP.LHS.getReg() == BaseOp->getReg(); 1465 } 1466 1467 /// If the sunk instruction is a copy, try to forward the copy instead of 1468 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1469 /// there's any subregister weirdness involved. Returns true if copy 1470 /// propagation occurred. 1471 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1472 Register Reg) { 1473 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1474 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1475 1476 // Copy DBG_VALUE operand and set the original to undef. We then check to 1477 // see whether this is something that can be copy-forwarded. If it isn't, 1478 // continue around the loop. 1479 1480 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1481 auto CopyOperands = TII.isCopyInstr(SinkInst); 1482 if (!CopyOperands) 1483 return false; 1484 SrcMO = CopyOperands->Source; 1485 DstMO = CopyOperands->Destination; 1486 1487 // Check validity of forwarding this copy. 1488 bool PostRA = MRI.getNumVirtRegs() == 0; 1489 1490 // Trying to forward between physical and virtual registers is too hard. 1491 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1492 return false; 1493 1494 // Only try virtual register copy-forwarding before regalloc, and physical 1495 // register copy-forwarding after regalloc. 1496 bool arePhysRegs = !Reg.isVirtual(); 1497 if (arePhysRegs != PostRA) 1498 return false; 1499 1500 // Pre-regalloc, only forward if all subregisters agree (or there are no 1501 // subregs at all). More analysis might recover some forwardable copies. 1502 if (!PostRA) 1503 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1504 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1505 DbgMO.getSubReg() != DstMO->getSubReg()) 1506 return false; 1507 1508 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1509 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1510 // matches the copy destination. 1511 if (PostRA && Reg != DstMO->getReg()) 1512 return false; 1513 1514 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1515 DbgMO.setReg(SrcMO->getReg()); 1516 DbgMO.setSubReg(SrcMO->getSubReg()); 1517 } 1518 return true; 1519 } 1520 1521 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1522 /// Sink an instruction and its associated debug instructions. 1523 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1524 MachineBasicBlock::iterator InsertPos, 1525 ArrayRef<MIRegs> DbgValuesToSink) { 1526 // If we cannot find a location to use (merge with), then we erase the debug 1527 // location to prevent debug-info driven tools from potentially reporting 1528 // wrong location information. 1529 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1530 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1531 InsertPos->getDebugLoc())); 1532 else 1533 MI.setDebugLoc(DebugLoc()); 1534 1535 // Move the instruction. 1536 MachineBasicBlock *ParentBlock = MI.getParent(); 1537 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1538 ++MachineBasicBlock::iterator(MI)); 1539 1540 // Sink a copy of debug users to the insert position. Mark the original 1541 // DBG_VALUE location as 'undef', indicating that any earlier variable 1542 // location should be terminated as we've optimised away the value at this 1543 // point. 1544 for (const auto &DbgValueToSink : DbgValuesToSink) { 1545 MachineInstr *DbgMI = DbgValueToSink.first; 1546 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1547 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1548 1549 bool PropagatedAllSunkOps = true; 1550 for (unsigned Reg : DbgValueToSink.second) { 1551 if (DbgMI->hasDebugOperandForReg(Reg)) { 1552 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1553 PropagatedAllSunkOps = false; 1554 break; 1555 } 1556 } 1557 } 1558 if (!PropagatedAllSunkOps) 1559 DbgMI->setDebugValueUndef(); 1560 } 1561 } 1562 1563 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1564 /// and To. 1565 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1566 MachineBasicBlock *To, MachineInstr &MI) { 1567 // Make sure From and To are in straight line which means From dominates To 1568 // and To post dominates From. 1569 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1570 return true; 1571 1572 auto BlockPair = std::make_pair(From, To); 1573 1574 // Does these two blocks pair be queried before and have a definite cached 1575 // result? 1576 if (auto It = HasStoreCache.find(BlockPair); It != HasStoreCache.end()) 1577 return It->second; 1578 1579 if (auto It = StoreInstrCache.find(BlockPair); It != StoreInstrCache.end()) 1580 return llvm::any_of(It->second, [&](MachineInstr *I) { 1581 return I->mayAlias(AA, MI, false); 1582 }); 1583 1584 bool SawStore = false; 1585 bool HasAliasedStore = false; 1586 DenseSet<MachineBasicBlock *> HandledBlocks; 1587 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1588 // Go through all reachable blocks from From. 1589 for (MachineBasicBlock *BB : depth_first(From)) { 1590 // We insert the instruction at the start of block To, so no need to worry 1591 // about stores inside To. 1592 // Store in block From should be already considered when just enter function 1593 // SinkInstruction. 1594 if (BB == To || BB == From) 1595 continue; 1596 1597 // We already handle this BB in previous iteration. 1598 if (HandledBlocks.count(BB)) 1599 continue; 1600 1601 HandledBlocks.insert(BB); 1602 // To post dominates BB, it must be a path from block From. 1603 if (PDT->dominates(To, BB)) { 1604 if (!HandledDomBlocks.count(BB)) 1605 HandledDomBlocks.insert(BB); 1606 1607 // If this BB is too big or the block number in straight line between From 1608 // and To is too big, stop searching to save compiling time. 1609 if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || 1610 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1611 for (auto *DomBB : HandledDomBlocks) { 1612 if (DomBB != BB && DT->dominates(DomBB, BB)) 1613 HasStoreCache[std::make_pair(DomBB, To)] = true; 1614 else if (DomBB != BB && DT->dominates(BB, DomBB)) 1615 HasStoreCache[std::make_pair(From, DomBB)] = true; 1616 } 1617 HasStoreCache[BlockPair] = true; 1618 return true; 1619 } 1620 1621 for (MachineInstr &I : *BB) { 1622 // Treat as alias conservatively for a call or an ordered memory 1623 // operation. 1624 if (I.isCall() || I.hasOrderedMemoryRef()) { 1625 for (auto *DomBB : HandledDomBlocks) { 1626 if (DomBB != BB && DT->dominates(DomBB, BB)) 1627 HasStoreCache[std::make_pair(DomBB, To)] = true; 1628 else if (DomBB != BB && DT->dominates(BB, DomBB)) 1629 HasStoreCache[std::make_pair(From, DomBB)] = true; 1630 } 1631 HasStoreCache[BlockPair] = true; 1632 return true; 1633 } 1634 1635 if (I.mayStore()) { 1636 SawStore = true; 1637 // We still have chance to sink MI if all stores between are not 1638 // aliased to MI. 1639 // Cache all store instructions, so that we don't need to go through 1640 // all From reachable blocks for next load instruction. 1641 if (I.mayAlias(AA, MI, false)) 1642 HasAliasedStore = true; 1643 StoreInstrCache[BlockPair].push_back(&I); 1644 } 1645 } 1646 } 1647 } 1648 // If there is no store at all, cache the result. 1649 if (!SawStore) 1650 HasStoreCache[BlockPair] = false; 1651 return HasAliasedStore; 1652 } 1653 1654 /// Aggressively sink instructions into cycles. This will aggressively try to 1655 /// sink all instructions in the top-most preheaders in an attempt to reduce RP. 1656 /// In particular, it will sink into multiple successor blocks without limits 1657 /// based on the amount of sinking, or the type of ops being sunk (so long as 1658 /// they are safe to sink). 1659 bool MachineSinking::aggressivelySinkIntoCycle( 1660 MachineCycle *Cycle, MachineInstr &I, 1661 DenseMap<SinkItem, MachineInstr *> &SunkInstrs) { 1662 // TODO: support instructions with multiple defs 1663 if (I.getNumDefs() > 1) 1664 return false; 1665 1666 LLVM_DEBUG(dbgs() << "AggressiveCycleSink: Finding sink block for: " << I); 1667 assert(Cycle->getCyclePreheader() && "Cycle sink needs a preheader block"); 1668 SmallVector<std::pair<RegSubRegPair, MachineInstr *>> Uses; 1669 1670 MachineOperand &DefMO = I.getOperand(0); 1671 for (MachineInstr &MI : MRI->use_instructions(DefMO.getReg())) { 1672 Uses.push_back({{DefMO.getReg(), DefMO.getSubReg()}, &MI}); 1673 } 1674 1675 for (std::pair<RegSubRegPair, MachineInstr *> Entry : Uses) { 1676 MachineInstr *MI = Entry.second; 1677 LLVM_DEBUG(dbgs() << "AggressiveCycleSink: Analysing use: " << MI); 1678 if (MI->isPHI()) { 1679 LLVM_DEBUG( 1680 dbgs() << "AggressiveCycleSink: Not attempting to sink for PHI.\n"); 1681 continue; 1682 } 1683 // We cannot sink before the prologue 1684 if (MI->isPosition() || TII->isBasicBlockPrologue(*MI)) { 1685 LLVM_DEBUG(dbgs() << "AggressiveCycleSink: Use is BasicBlock prologue, " 1686 "can't sink.\n"); 1687 continue; 1688 } 1689 if (!Cycle->contains(MI->getParent())) { 1690 LLVM_DEBUG( 1691 dbgs() << "AggressiveCycleSink: Use not in cycle, can't sink.\n"); 1692 continue; 1693 } 1694 1695 MachineBasicBlock *SinkBlock = MI->getParent(); 1696 MachineInstr *NewMI = nullptr; 1697 SinkItem MapEntry(&I, SinkBlock); 1698 1699 auto SI = SunkInstrs.find(MapEntry); 1700 1701 // Check for the case in which we have already sunk a copy of this 1702 // instruction into the user block. 1703 if (SI != SunkInstrs.end()) { 1704 LLVM_DEBUG(dbgs() << "AggressiveCycleSink: Already sunk to block: " 1705 << printMBBReference(*SinkBlock) << "\n"); 1706 NewMI = SI->second; 1707 } 1708 1709 // Create a copy of the instruction in the use block. 1710 if (!NewMI) { 1711 LLVM_DEBUG(dbgs() << "AggressiveCycleSink: Sinking instruction to block: " 1712 << printMBBReference(*SinkBlock) << "\n"); 1713 1714 NewMI = I.getMF()->CloneMachineInstr(&I); 1715 if (DefMO.getReg().isVirtual()) { 1716 const TargetRegisterClass *TRC = MRI->getRegClass(DefMO.getReg()); 1717 Register DestReg = MRI->createVirtualRegister(TRC); 1718 NewMI->substituteRegister(DefMO.getReg(), DestReg, DefMO.getSubReg(), 1719 *TRI); 1720 } 1721 SinkBlock->insert(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), 1722 NewMI); 1723 SunkInstrs.insert({MapEntry, NewMI}); 1724 } 1725 1726 // Conservatively clear any kill flags on uses of sunk instruction 1727 for (MachineOperand &MO : NewMI->all_uses()) { 1728 assert(MO.isReg() && MO.isUse()); 1729 RegsToClearKillFlags.insert(MO.getReg()); 1730 } 1731 1732 // The instruction is moved from its basic block, so do not retain the 1733 // debug information. 1734 assert(!NewMI->isDebugInstr() && "Should not sink debug inst"); 1735 NewMI->setDebugLoc(DebugLoc()); 1736 1737 // Replace the use with the newly created virtual register. 1738 RegSubRegPair &UseReg = Entry.first; 1739 MI->substituteRegister(UseReg.Reg, NewMI->getOperand(0).getReg(), 1740 UseReg.SubReg, *TRI); 1741 } 1742 // If we have replaced all uses, then delete the dead instruction 1743 if (I.isDead(*MRI)) 1744 I.eraseFromParent(); 1745 return true; 1746 } 1747 1748 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1749 /// instruction out of its current block into a successor. 1750 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1751 AllSuccsCache &AllSuccessors) { 1752 // Don't sink instructions that the target prefers not to sink. 1753 if (!TII->shouldSink(MI)) 1754 return false; 1755 1756 // Check if it's safe to move the instruction. 1757 if (!MI.isSafeToMove(SawStore)) 1758 return false; 1759 1760 // Convergent operations may not be made control-dependent on additional 1761 // values. 1762 if (MI.isConvergent()) 1763 return false; 1764 1765 // Don't break implicit null checks. This is a performance heuristic, and not 1766 // required for correctness. 1767 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1768 return false; 1769 1770 // FIXME: This should include support for sinking instructions within the 1771 // block they are currently in to shorten the live ranges. We often get 1772 // instructions sunk into the top of a large block, but it would be better to 1773 // also sink them down before their first use in the block. This xform has to 1774 // be careful not to *increase* register pressure though, e.g. sinking 1775 // "x = y + z" down if it kills y and z would increase the live ranges of y 1776 // and z and only shrink the live range of x. 1777 1778 bool BreakPHIEdge = false; 1779 MachineBasicBlock *ParentBlock = MI.getParent(); 1780 MachineBasicBlock *SuccToSinkTo = 1781 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1782 1783 // If there are no outputs, it must have side-effects. 1784 if (!SuccToSinkTo) 1785 return false; 1786 1787 // If the instruction to move defines a dead physical register which is live 1788 // when leaving the basic block, don't move it because it could turn into a 1789 // "zombie" define of that preg. E.g., EFLAGS. 1790 for (const MachineOperand &MO : MI.all_defs()) { 1791 Register Reg = MO.getReg(); 1792 if (Reg == 0 || !Reg.isPhysical()) 1793 continue; 1794 if (SuccToSinkTo->isLiveIn(Reg)) 1795 return false; 1796 } 1797 1798 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1799 1800 // If the block has multiple predecessors, this is a critical edge. 1801 // Decide if we can sink along it or need to break the edge. 1802 if (SuccToSinkTo->pred_size() > 1) { 1803 // We cannot sink a load across a critical edge - there may be stores in 1804 // other code paths. 1805 bool TryBreak = false; 1806 bool Store = 1807 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1808 if (!MI.isSafeToMove(Store)) { 1809 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1810 TryBreak = true; 1811 } 1812 1813 // We don't want to sink across a critical edge if we don't dominate the 1814 // successor. We could be introducing calculations to new code paths. 1815 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1816 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1817 TryBreak = true; 1818 } 1819 1820 // Don't sink instructions into a cycle. 1821 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1822 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1823 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1824 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1825 TryBreak = true; 1826 } 1827 1828 // Otherwise we are OK with sinking along a critical edge. 1829 if (!TryBreak) 1830 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1831 else { 1832 // Mark this edge as to be split. 1833 // If the edge can actually be split, the next iteration of the main loop 1834 // will sink MI in the newly created block. 1835 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, 1836 BreakPHIEdge); 1837 if (!Status) 1838 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1839 "break critical edge\n"); 1840 // The instruction will not be sunk this time. 1841 return false; 1842 } 1843 } 1844 1845 if (BreakPHIEdge) { 1846 // BreakPHIEdge is true if all the uses are in the successor MBB being 1847 // sunken into and they are all PHI nodes. In this case, machine-sink must 1848 // break the critical edge first. 1849 bool Status = 1850 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1851 if (!Status) 1852 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1853 "break critical edge\n"); 1854 // The instruction will not be sunk this time. 1855 return false; 1856 } 1857 1858 // Determine where to insert into. Skip phi nodes. 1859 MachineBasicBlock::iterator InsertPos = 1860 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1861 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1862 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1863 return false; 1864 } 1865 1866 // Collect debug users of any vreg that this inst defines. 1867 SmallVector<MIRegs, 4> DbgUsersToSink; 1868 for (auto &MO : MI.all_defs()) { 1869 if (!MO.getReg().isVirtual()) 1870 continue; 1871 auto It = SeenDbgUsers.find(MO.getReg()); 1872 if (It == SeenDbgUsers.end()) 1873 continue; 1874 1875 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1876 auto &Users = It->second; 1877 for (auto &User : Users) { 1878 MachineInstr *DbgMI = User.getPointer(); 1879 if (User.getInt()) { 1880 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1881 // it, it can't be recovered. Set it undef. 1882 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1883 DbgMI->setDebugValueUndef(); 1884 } else { 1885 DbgUsersToSink.push_back( 1886 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1887 } 1888 } 1889 } 1890 1891 // After sinking, some debug users may not be dominated any more. If possible, 1892 // copy-propagate their operands. As it's expensive, don't do this if there's 1893 // no debuginfo in the program. 1894 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1895 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1896 1897 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1898 1899 // Conservatively, clear any kill flags, since it's possible that they are no 1900 // longer correct. 1901 // Note that we have to clear the kill flags for any register this instruction 1902 // uses as we may sink over another instruction which currently kills the 1903 // used registers. 1904 for (MachineOperand &MO : MI.all_uses()) 1905 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1906 1907 return true; 1908 } 1909 1910 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1911 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1912 assert(MI.isCopy()); 1913 assert(MI.getOperand(1).isReg()); 1914 1915 // Enumerate all users of vreg operands that are def'd. Skip those that will 1916 // be sunk. For the rest, if they are not dominated by the block we will sink 1917 // MI into, propagate the copy source to them. 1918 SmallVector<MachineInstr *, 4> DbgDefUsers; 1919 SmallVector<Register, 4> DbgUseRegs; 1920 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1921 for (auto &MO : MI.all_defs()) { 1922 if (!MO.getReg().isVirtual()) 1923 continue; 1924 DbgUseRegs.push_back(MO.getReg()); 1925 for (auto &User : MRI.use_instructions(MO.getReg())) { 1926 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1927 continue; 1928 1929 // If is in same block, will either sink or be use-before-def. 1930 if (User.getParent() == MI.getParent()) 1931 continue; 1932 1933 assert(User.hasDebugOperandForReg(MO.getReg()) && 1934 "DBG_VALUE user of vreg, but has no operand for it?"); 1935 DbgDefUsers.push_back(&User); 1936 } 1937 } 1938 1939 // Point the users of this copy that are no longer dominated, at the source 1940 // of the copy. 1941 for (auto *User : DbgDefUsers) { 1942 for (auto &Reg : DbgUseRegs) { 1943 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1944 DbgOp.setReg(MI.getOperand(1).getReg()); 1945 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1946 } 1947 } 1948 } 1949 } 1950 1951 //===----------------------------------------------------------------------===// 1952 // This pass is not intended to be a replacement or a complete alternative 1953 // for the pre-ra machine sink pass. It is only designed to sink COPY 1954 // instructions which should be handled after RA. 1955 // 1956 // This pass sinks COPY instructions into a successor block, if the COPY is not 1957 // used in the current block and the COPY is live-in to a single successor 1958 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1959 // copy on paths where their results aren't needed. This also exposes 1960 // additional opportunites for dead copy elimination and shrink wrapping. 1961 // 1962 // These copies were either not handled by or are inserted after the MachineSink 1963 // pass. As an example of the former case, the MachineSink pass cannot sink 1964 // COPY instructions with allocatable source registers; for AArch64 these type 1965 // of copy instructions are frequently used to move function parameters (PhyReg) 1966 // into virtual registers in the entry block. 1967 // 1968 // For the machine IR below, this pass will sink %w19 in the entry into its 1969 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1970 // %bb.0: 1971 // %wzr = SUBSWri %w1, 1 1972 // %w19 = COPY %w0 1973 // Bcc 11, %bb.2 1974 // %bb.1: 1975 // Live Ins: %w19 1976 // BL @fun 1977 // %w0 = ADDWrr %w0, %w19 1978 // RET %w0 1979 // %bb.2: 1980 // %w0 = COPY %wzr 1981 // RET %w0 1982 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1983 // able to see %bb.0 as a candidate. 1984 //===----------------------------------------------------------------------===// 1985 namespace { 1986 1987 class PostRAMachineSinking : public MachineFunctionPass { 1988 public: 1989 bool runOnMachineFunction(MachineFunction &MF) override; 1990 1991 static char ID; 1992 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1993 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1994 1995 void getAnalysisUsage(AnalysisUsage &AU) const override { 1996 AU.setPreservesCFG(); 1997 MachineFunctionPass::getAnalysisUsage(AU); 1998 } 1999 2000 MachineFunctionProperties getRequiredProperties() const override { 2001 return MachineFunctionProperties().set( 2002 MachineFunctionProperties::Property::NoVRegs); 2003 } 2004 2005 private: 2006 /// Track which register units have been modified and used. 2007 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 2008 2009 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 2010 /// entry in this map for each unit it touches. The DBG_VALUE's entry 2011 /// consists of a pointer to the instruction itself, and a vector of registers 2012 /// referred to by the instruction that overlap the key register unit. 2013 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 2014 2015 /// Sink Copy instructions unused in the same block close to their uses in 2016 /// successors. 2017 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 2018 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 2019 }; 2020 } // namespace 2021 2022 char PostRAMachineSinking::ID = 0; 2023 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 2024 2025 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 2026 "PostRA Machine Sink", false, false) 2027 2028 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 2029 const TargetRegisterInfo *TRI) { 2030 LiveRegUnits LiveInRegUnits(*TRI); 2031 LiveInRegUnits.addLiveIns(MBB); 2032 return !LiveInRegUnits.available(Reg); 2033 } 2034 2035 static MachineBasicBlock * 2036 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 2037 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 2038 unsigned Reg, const TargetRegisterInfo *TRI) { 2039 // Try to find a single sinkable successor in which Reg is live-in. 2040 MachineBasicBlock *BB = nullptr; 2041 for (auto *SI : SinkableBBs) { 2042 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 2043 // If BB is set here, Reg is live-in to at least two sinkable successors, 2044 // so quit. 2045 if (BB) 2046 return nullptr; 2047 BB = SI; 2048 } 2049 } 2050 // Reg is not live-in to any sinkable successors. 2051 if (!BB) 2052 return nullptr; 2053 2054 // Check if any register aliased with Reg is live-in in other successors. 2055 for (auto *SI : CurBB.successors()) { 2056 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 2057 return nullptr; 2058 } 2059 return BB; 2060 } 2061 2062 static MachineBasicBlock * 2063 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 2064 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 2065 ArrayRef<unsigned> DefedRegsInCopy, 2066 const TargetRegisterInfo *TRI) { 2067 MachineBasicBlock *SingleBB = nullptr; 2068 for (auto DefReg : DefedRegsInCopy) { 2069 MachineBasicBlock *BB = 2070 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 2071 if (!BB || (SingleBB && SingleBB != BB)) 2072 return nullptr; 2073 SingleBB = BB; 2074 } 2075 return SingleBB; 2076 } 2077 2078 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 2079 SmallVectorImpl<unsigned> &UsedOpsInCopy, 2080 LiveRegUnits &UsedRegUnits, 2081 const TargetRegisterInfo *TRI) { 2082 for (auto U : UsedOpsInCopy) { 2083 MachineOperand &MO = MI->getOperand(U); 2084 Register SrcReg = MO.getReg(); 2085 if (!UsedRegUnits.available(SrcReg)) { 2086 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 2087 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 2088 if (UI.killsRegister(SrcReg, TRI)) { 2089 UI.clearRegisterKills(SrcReg, TRI); 2090 MO.setIsKill(true); 2091 break; 2092 } 2093 } 2094 } 2095 } 2096 } 2097 2098 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 2099 SmallVectorImpl<unsigned> &UsedOpsInCopy, 2100 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 2101 MachineFunction &MF = *SuccBB->getParent(); 2102 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2103 for (unsigned DefReg : DefedRegsInCopy) 2104 for (MCPhysReg S : TRI->subregs_inclusive(DefReg)) 2105 SuccBB->removeLiveIn(S); 2106 for (auto U : UsedOpsInCopy) 2107 SuccBB->addLiveIn(MI->getOperand(U).getReg()); 2108 SuccBB->sortUniqueLiveIns(); 2109 } 2110 2111 static bool hasRegisterDependency(MachineInstr *MI, 2112 SmallVectorImpl<unsigned> &UsedOpsInCopy, 2113 SmallVectorImpl<unsigned> &DefedRegsInCopy, 2114 LiveRegUnits &ModifiedRegUnits, 2115 LiveRegUnits &UsedRegUnits) { 2116 bool HasRegDependency = false; 2117 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 2118 MachineOperand &MO = MI->getOperand(i); 2119 if (!MO.isReg()) 2120 continue; 2121 Register Reg = MO.getReg(); 2122 if (!Reg) 2123 continue; 2124 if (MO.isDef()) { 2125 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 2126 HasRegDependency = true; 2127 break; 2128 } 2129 DefedRegsInCopy.push_back(Reg); 2130 2131 // FIXME: instead of isUse(), readsReg() would be a better fix here, 2132 // For example, we can ignore modifications in reg with undef. However, 2133 // it's not perfectly clear if skipping the internal read is safe in all 2134 // other targets. 2135 } else if (MO.isUse()) { 2136 if (!ModifiedRegUnits.available(Reg)) { 2137 HasRegDependency = true; 2138 break; 2139 } 2140 UsedOpsInCopy.push_back(i); 2141 } 2142 } 2143 return HasRegDependency; 2144 } 2145 2146 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 2147 MachineFunction &MF, 2148 const TargetRegisterInfo *TRI, 2149 const TargetInstrInfo *TII) { 2150 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 2151 // FIXME: For now, we sink only to a successor which has a single predecessor 2152 // so that we can directly sink COPY instructions to the successor without 2153 // adding any new block or branch instruction. 2154 for (MachineBasicBlock *SI : CurBB.successors()) 2155 if (!SI->livein_empty() && SI->pred_size() == 1) 2156 SinkableBBs.insert(SI); 2157 2158 if (SinkableBBs.empty()) 2159 return false; 2160 2161 bool Changed = false; 2162 2163 // Track which registers have been modified and used between the end of the 2164 // block and the current instruction. 2165 ModifiedRegUnits.clear(); 2166 UsedRegUnits.clear(); 2167 SeenDbgInstrs.clear(); 2168 2169 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 2170 // Track the operand index for use in Copy. 2171 SmallVector<unsigned, 2> UsedOpsInCopy; 2172 // Track the register number defed in Copy. 2173 SmallVector<unsigned, 2> DefedRegsInCopy; 2174 2175 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 2176 // for DBG_VALUEs later, record them when they're encountered. 2177 if (MI.isDebugValue() && !MI.isDebugRef()) { 2178 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 2179 bool IsValid = true; 2180 for (MachineOperand &MO : MI.debug_operands()) { 2181 if (MO.isReg() && MO.getReg().isPhysical()) { 2182 // Bail if we can already tell the sink would be rejected, rather 2183 // than needlessly accumulating lots of DBG_VALUEs. 2184 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2185 ModifiedRegUnits, UsedRegUnits)) { 2186 IsValid = false; 2187 break; 2188 } 2189 2190 // Record debug use of each reg unit. 2191 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) 2192 MIUnits[Unit].push_back(MO.getReg()); 2193 } 2194 } 2195 if (IsValid) { 2196 for (auto &RegOps : MIUnits) 2197 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 2198 std::move(RegOps.second)); 2199 } 2200 continue; 2201 } 2202 2203 if (MI.isDebugOrPseudoInstr()) 2204 continue; 2205 2206 // Do not move any instruction across function call. 2207 if (MI.isCall()) 2208 return false; 2209 2210 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 2211 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2212 TRI); 2213 continue; 2214 } 2215 2216 // Don't sink the COPY if it would violate a register dependency. 2217 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2218 ModifiedRegUnits, UsedRegUnits)) { 2219 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2220 TRI); 2221 continue; 2222 } 2223 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 2224 "Unexpect SrcReg or DefReg"); 2225 MachineBasicBlock *SuccBB = 2226 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 2227 // Don't sink if we cannot find a single sinkable successor in which Reg 2228 // is live-in. 2229 if (!SuccBB) { 2230 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2231 TRI); 2232 continue; 2233 } 2234 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 2235 "Unexpected predecessor"); 2236 2237 // Collect DBG_VALUEs that must sink with this copy. We've previously 2238 // recorded which reg units that DBG_VALUEs read, if this instruction 2239 // writes any of those units then the corresponding DBG_VALUEs must sink. 2240 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 2241 for (auto &MO : MI.all_defs()) { 2242 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) { 2243 for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) { 2244 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 2245 for (unsigned Reg : MIRegs.second) 2246 Regs.push_back(Reg); 2247 } 2248 } 2249 } 2250 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 2251 2252 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 2253 2254 MachineBasicBlock::iterator InsertPos = 2255 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 2256 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 2257 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2258 TRI); 2259 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 2260 continue; 2261 } 2262 2263 // Clear the kill flag if SrcReg is killed between MI and the end of the 2264 // block. 2265 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 2266 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 2267 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 2268 2269 Changed = true; 2270 ++NumPostRACopySink; 2271 } 2272 return Changed; 2273 } 2274 2275 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 2276 if (skipFunction(MF.getFunction())) 2277 return false; 2278 2279 bool Changed = false; 2280 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2281 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2282 2283 ModifiedRegUnits.init(*TRI); 2284 UsedRegUnits.init(*TRI); 2285 for (auto &BB : MF) 2286 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 2287 2288 return Changed; 2289 } 2290