1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SparseBitVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachinePostDominators.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Target/TargetSubtargetInfo.h" 43 #include <algorithm> 44 #include <cassert> 45 #include <cstdint> 46 #include <map> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "machine-sink" 53 54 static cl::opt<bool> 55 SplitEdges("machine-sink-split", 56 cl::desc("Split critical edges during machine sinking"), 57 cl::init(true), cl::Hidden); 58 59 static cl::opt<bool> 60 UseBlockFreqInfo("machine-sink-bfi", 61 cl::desc("Use block frequency info to find successors to sink"), 62 cl::init(true), cl::Hidden); 63 64 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 65 "machine-sink-split-probability-threshold", 66 cl::desc( 67 "Percentage threshold for splitting single-instruction critical edge. " 68 "If the branch threshold is higher than this threshold, we allow " 69 "speculative execution of up to 1 instruction to avoid branching to " 70 "splitted critical edge"), 71 cl::init(40), cl::Hidden); 72 73 STATISTIC(NumSunk, "Number of machine instructions sunk"); 74 STATISTIC(NumSplit, "Number of critical edges split"); 75 STATISTIC(NumCoalesces, "Number of copies coalesced"); 76 77 namespace { 78 79 class MachineSinking : public MachineFunctionPass { 80 const TargetInstrInfo *TII; 81 const TargetRegisterInfo *TRI; 82 MachineRegisterInfo *MRI; // Machine register information 83 MachineDominatorTree *DT; // Machine dominator tree 84 MachinePostDominatorTree *PDT; // Machine post dominator tree 85 MachineLoopInfo *LI; 86 const MachineBlockFrequencyInfo *MBFI; 87 const MachineBranchProbabilityInfo *MBPI; 88 AliasAnalysis *AA; 89 90 // Remember which edges have been considered for breaking. 91 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 92 CEBCandidates; 93 // Remember which edges we are about to split. 94 // This is different from CEBCandidates since those edges 95 // will be split. 96 SetVector<std::pair<MachineBasicBlock*, MachineBasicBlock*> > ToSplit; 97 98 SparseBitVector<> RegsToClearKillFlags; 99 100 typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>> 101 AllSuccsCache; 102 103 public: 104 static char ID; // Pass identification 105 106 MachineSinking() : MachineFunctionPass(ID) { 107 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 108 } 109 110 bool runOnMachineFunction(MachineFunction &MF) override; 111 112 void getAnalysisUsage(AnalysisUsage &AU) const override { 113 AU.setPreservesCFG(); 114 MachineFunctionPass::getAnalysisUsage(AU); 115 AU.addRequired<AAResultsWrapperPass>(); 116 AU.addRequired<MachineDominatorTree>(); 117 AU.addRequired<MachinePostDominatorTree>(); 118 AU.addRequired<MachineLoopInfo>(); 119 AU.addRequired<MachineBranchProbabilityInfo>(); 120 AU.addPreserved<MachineDominatorTree>(); 121 AU.addPreserved<MachinePostDominatorTree>(); 122 AU.addPreserved<MachineLoopInfo>(); 123 if (UseBlockFreqInfo) 124 AU.addRequired<MachineBlockFrequencyInfo>(); 125 } 126 127 void releaseMemory() override { 128 CEBCandidates.clear(); 129 } 130 131 private: 132 bool ProcessBlock(MachineBasicBlock &MBB); 133 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 134 MachineBasicBlock *From, 135 MachineBasicBlock *To); 136 /// \brief Postpone the splitting of the given critical 137 /// edge (\p From, \p To). 138 /// 139 /// We do not split the edges on the fly. Indeed, this invalidates 140 /// the dominance information and thus triggers a lot of updates 141 /// of that information underneath. 142 /// Instead, we postpone all the splits after each iteration of 143 /// the main loop. That way, the information is at least valid 144 /// for the lifetime of an iteration. 145 /// 146 /// \return True if the edge is marked as toSplit, false otherwise. 147 /// False can be returned if, for instance, this is not profitable. 148 bool PostponeSplitCriticalEdge(MachineInstr &MI, 149 MachineBasicBlock *From, 150 MachineBasicBlock *To, 151 bool BreakPHIEdge); 152 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 153 AllSuccsCache &AllSuccessors); 154 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 155 MachineBasicBlock *DefMBB, 156 bool &BreakPHIEdge, bool &LocalUse) const; 157 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 158 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 159 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 160 MachineBasicBlock *MBB, 161 MachineBasicBlock *SuccToSinkTo, 162 AllSuccsCache &AllSuccessors); 163 164 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 165 MachineBasicBlock *MBB); 166 167 SmallVector<MachineBasicBlock *, 4> & 168 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 169 AllSuccsCache &AllSuccessors) const; 170 }; 171 172 } // end anonymous namespace 173 174 char MachineSinking::ID = 0; 175 char &llvm::MachineSinkingID = MachineSinking::ID; 176 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink", 177 "Machine code sinking", false, false) 178 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 179 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 180 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 181 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 182 INITIALIZE_PASS_END(MachineSinking, "machine-sink", 183 "Machine code sinking", false, false) 184 185 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 186 MachineBasicBlock *MBB) { 187 if (!MI.isCopy()) 188 return false; 189 190 unsigned SrcReg = MI.getOperand(1).getReg(); 191 unsigned DstReg = MI.getOperand(0).getReg(); 192 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || 193 !TargetRegisterInfo::isVirtualRegister(DstReg) || 194 !MRI->hasOneNonDBGUse(SrcReg)) 195 return false; 196 197 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 198 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 199 if (SRC != DRC) 200 return false; 201 202 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 203 if (DefMI->isCopyLike()) 204 return false; 205 DEBUG(dbgs() << "Coalescing: " << *DefMI); 206 DEBUG(dbgs() << "*** to: " << MI); 207 MRI->replaceRegWith(DstReg, SrcReg); 208 MI.eraseFromParent(); 209 210 // Conservatively, clear any kill flags, since it's possible that they are no 211 // longer correct. 212 MRI->clearKillFlags(SrcReg); 213 214 ++NumCoalesces; 215 return true; 216 } 217 218 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 219 /// occur in blocks dominated by the specified block. If any use is in the 220 /// definition block, then return false since it is never legal to move def 221 /// after uses. 222 bool 223 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 224 MachineBasicBlock *MBB, 225 MachineBasicBlock *DefMBB, 226 bool &BreakPHIEdge, 227 bool &LocalUse) const { 228 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 229 "Only makes sense for vregs"); 230 231 // Ignore debug uses because debug info doesn't affect the code. 232 if (MRI->use_nodbg_empty(Reg)) 233 return true; 234 235 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 236 // into and they are all PHI nodes. In this case, machine-sink must break 237 // the critical edge first. e.g. 238 // 239 // BB#1: derived from LLVM BB %bb4.preheader 240 // Predecessors according to CFG: BB#0 241 // ... 242 // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead> 243 // ... 244 // JE_4 <BB#37>, %EFLAGS<imp-use> 245 // Successors according to CFG: BB#37 BB#2 246 // 247 // BB#2: derived from LLVM BB %bb.nph 248 // Predecessors according to CFG: BB#0 BB#1 249 // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1> 250 BreakPHIEdge = true; 251 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 252 MachineInstr *UseInst = MO.getParent(); 253 unsigned OpNo = &MO - &UseInst->getOperand(0); 254 MachineBasicBlock *UseBlock = UseInst->getParent(); 255 if (!(UseBlock == MBB && UseInst->isPHI() && 256 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { 257 BreakPHIEdge = false; 258 break; 259 } 260 } 261 if (BreakPHIEdge) 262 return true; 263 264 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 265 // Determine the block of the use. 266 MachineInstr *UseInst = MO.getParent(); 267 unsigned OpNo = &MO - &UseInst->getOperand(0); 268 MachineBasicBlock *UseBlock = UseInst->getParent(); 269 if (UseInst->isPHI()) { 270 // PHI nodes use the operand in the predecessor block, not the block with 271 // the PHI. 272 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 273 } else if (UseBlock == DefMBB) { 274 LocalUse = true; 275 return false; 276 } 277 278 // Check that it dominates. 279 if (!DT->dominates(MBB, UseBlock)) 280 return false; 281 } 282 283 return true; 284 } 285 286 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 287 if (skipFunction(*MF.getFunction())) 288 return false; 289 290 DEBUG(dbgs() << "******** Machine Sinking ********\n"); 291 292 TII = MF.getSubtarget().getInstrInfo(); 293 TRI = MF.getSubtarget().getRegisterInfo(); 294 MRI = &MF.getRegInfo(); 295 DT = &getAnalysis<MachineDominatorTree>(); 296 PDT = &getAnalysis<MachinePostDominatorTree>(); 297 LI = &getAnalysis<MachineLoopInfo>(); 298 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 299 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 300 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 301 302 bool EverMadeChange = false; 303 304 while (true) { 305 bool MadeChange = false; 306 307 // Process all basic blocks. 308 CEBCandidates.clear(); 309 ToSplit.clear(); 310 for (auto &MBB: MF) 311 MadeChange |= ProcessBlock(MBB); 312 313 // If we have anything we marked as toSplit, split it now. 314 for (auto &Pair : ToSplit) { 315 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 316 if (NewSucc != nullptr) { 317 DEBUG(dbgs() << " *** Splitting critical edge:" 318 " BB#" << Pair.first->getNumber() 319 << " -- BB#" << NewSucc->getNumber() 320 << " -- BB#" << Pair.second->getNumber() << '\n'); 321 MadeChange = true; 322 ++NumSplit; 323 } else 324 DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 325 } 326 // If this iteration over the code changed anything, keep iterating. 327 if (!MadeChange) break; 328 EverMadeChange = true; 329 } 330 331 // Now clear any kill flags for recorded registers. 332 for (auto I : RegsToClearKillFlags) 333 MRI->clearKillFlags(I); 334 RegsToClearKillFlags.clear(); 335 336 return EverMadeChange; 337 } 338 339 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 340 // Can't sink anything out of a block that has less than two successors. 341 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 342 343 // Don't bother sinking code out of unreachable blocks. In addition to being 344 // unprofitable, it can also lead to infinite looping, because in an 345 // unreachable loop there may be nowhere to stop. 346 if (!DT->isReachableFromEntry(&MBB)) return false; 347 348 bool MadeChange = false; 349 350 // Cache all successors, sorted by frequency info and loop depth. 351 AllSuccsCache AllSuccessors; 352 353 // Walk the basic block bottom-up. Remember if we saw a store. 354 MachineBasicBlock::iterator I = MBB.end(); 355 --I; 356 bool ProcessedBegin, SawStore = false; 357 do { 358 MachineInstr &MI = *I; // The instruction to sink. 359 360 // Predecrement I (if it's not begin) so that it isn't invalidated by 361 // sinking. 362 ProcessedBegin = I == MBB.begin(); 363 if (!ProcessedBegin) 364 --I; 365 366 if (MI.isDebugValue()) 367 continue; 368 369 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 370 if (Joined) { 371 MadeChange = true; 372 continue; 373 } 374 375 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 376 ++NumSunk; 377 MadeChange = true; 378 } 379 380 // If we just processed the first instruction in the block, we're done. 381 } while (!ProcessedBegin); 382 383 return MadeChange; 384 } 385 386 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 387 MachineBasicBlock *From, 388 MachineBasicBlock *To) { 389 // FIXME: Need much better heuristics. 390 391 // If the pass has already considered breaking this edge (during this pass 392 // through the function), then let's go ahead and break it. This means 393 // sinking multiple "cheap" instructions into the same block. 394 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 395 return true; 396 397 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 398 return true; 399 400 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 401 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 402 return true; 403 404 // MI is cheap, we probably don't want to break the critical edge for it. 405 // However, if this would allow some definitions of its source operands 406 // to be sunk then it's probably worth it. 407 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 408 const MachineOperand &MO = MI.getOperand(i); 409 if (!MO.isReg() || !MO.isUse()) 410 continue; 411 unsigned Reg = MO.getReg(); 412 if (Reg == 0) 413 continue; 414 415 // We don't move live definitions of physical registers, 416 // so sinking their uses won't enable any opportunities. 417 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 418 continue; 419 420 // If this instruction is the only user of a virtual register, 421 // check if breaking the edge will enable sinking 422 // both this instruction and the defining instruction. 423 if (MRI->hasOneNonDBGUse(Reg)) { 424 // If the definition resides in same MBB, 425 // claim it's likely we can sink these together. 426 // If definition resides elsewhere, we aren't 427 // blocking it from being sunk so don't break the edge. 428 MachineInstr *DefMI = MRI->getVRegDef(Reg); 429 if (DefMI->getParent() == MI.getParent()) 430 return true; 431 } 432 } 433 434 return false; 435 } 436 437 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 438 MachineBasicBlock *FromBB, 439 MachineBasicBlock *ToBB, 440 bool BreakPHIEdge) { 441 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 442 return false; 443 444 // Avoid breaking back edge. From == To means backedge for single BB loop. 445 if (!SplitEdges || FromBB == ToBB) 446 return false; 447 448 // Check for backedges of more "complex" loops. 449 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 450 LI->isLoopHeader(ToBB)) 451 return false; 452 453 // It's not always legal to break critical edges and sink the computation 454 // to the edge. 455 // 456 // BB#1: 457 // v1024 458 // Beq BB#3 459 // <fallthrough> 460 // BB#2: 461 // ... no uses of v1024 462 // <fallthrough> 463 // BB#3: 464 // ... 465 // = v1024 466 // 467 // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted: 468 // 469 // BB#1: 470 // ... 471 // Bne BB#2 472 // BB#4: 473 // v1024 = 474 // B BB#3 475 // BB#2: 476 // ... no uses of v1024 477 // <fallthrough> 478 // BB#3: 479 // ... 480 // = v1024 481 // 482 // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3 483 // flow. We need to ensure the new basic block where the computation is 484 // sunk to dominates all the uses. 485 // It's only legal to break critical edge and sink the computation to the 486 // new block if all the predecessors of "To", except for "From", are 487 // not dominated by "From". Given SSA property, this means these 488 // predecessors are dominated by "To". 489 // 490 // There is no need to do this check if all the uses are PHI nodes. PHI 491 // sources are only defined on the specific predecessor edges. 492 if (!BreakPHIEdge) { 493 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 494 E = ToBB->pred_end(); PI != E; ++PI) { 495 if (*PI == FromBB) 496 continue; 497 if (!DT->dominates(ToBB, *PI)) 498 return false; 499 } 500 } 501 502 ToSplit.insert(std::make_pair(FromBB, ToBB)); 503 504 return true; 505 } 506 507 /// collectDebgValues - Scan instructions following MI and collect any 508 /// matching DBG_VALUEs. 509 static void collectDebugValues(MachineInstr &MI, 510 SmallVectorImpl<MachineInstr *> &DbgValues) { 511 DbgValues.clear(); 512 if (!MI.getOperand(0).isReg()) 513 return; 514 515 MachineBasicBlock::iterator DI = MI; ++DI; 516 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 517 DI != DE; ++DI) { 518 if (!DI->isDebugValue()) 519 return; 520 if (DI->getOperand(0).isReg() && 521 DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) 522 DbgValues.push_back(&*DI); 523 } 524 } 525 526 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 527 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 528 MachineBasicBlock *MBB, 529 MachineBasicBlock *SuccToSinkTo, 530 AllSuccsCache &AllSuccessors) { 531 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 532 533 if (MBB == SuccToSinkTo) 534 return false; 535 536 // It is profitable if SuccToSinkTo does not post dominate current block. 537 if (!PDT->dominates(SuccToSinkTo, MBB)) 538 return true; 539 540 // It is profitable to sink an instruction from a deeper loop to a shallower 541 // loop, even if the latter post-dominates the former (PR21115). 542 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 543 return true; 544 545 // Check if only use in post dominated block is PHI instruction. 546 bool NonPHIUse = false; 547 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 548 MachineBasicBlock *UseBlock = UseInst.getParent(); 549 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 550 NonPHIUse = true; 551 } 552 if (!NonPHIUse) 553 return true; 554 555 // If SuccToSinkTo post dominates then also it may be profitable if MI 556 // can further profitably sinked into another block in next round. 557 bool BreakPHIEdge = false; 558 // FIXME - If finding successor is compile time expensive then cache results. 559 if (MachineBasicBlock *MBB2 = 560 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 561 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 562 563 // If SuccToSinkTo is final destination and it is a post dominator of current 564 // block then it is not profitable to sink MI into SuccToSinkTo block. 565 return false; 566 } 567 568 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 569 /// computing it if it was not already cached. 570 SmallVector<MachineBasicBlock *, 4> & 571 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 572 AllSuccsCache &AllSuccessors) const { 573 574 // Do we have the sorted successors in cache ? 575 auto Succs = AllSuccessors.find(MBB); 576 if (Succs != AllSuccessors.end()) 577 return Succs->second; 578 579 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 580 MBB->succ_end()); 581 582 // Handle cases where sinking can happen but where the sink point isn't a 583 // successor. For example: 584 // 585 // x = computation 586 // if () {} else {} 587 // use x 588 // 589 const std::vector<MachineDomTreeNode *> &Children = 590 DT->getNode(MBB)->getChildren(); 591 for (const auto &DTChild : Children) 592 // DomTree children of MBB that have MBB as immediate dominator are added. 593 if (DTChild->getIDom()->getBlock() == MI.getParent() && 594 // Skip MBBs already added to the AllSuccs vector above. 595 !MBB->isSuccessor(DTChild->getBlock())) 596 AllSuccs.push_back(DTChild->getBlock()); 597 598 // Sort Successors according to their loop depth or block frequency info. 599 std::stable_sort( 600 AllSuccs.begin(), AllSuccs.end(), 601 [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 602 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 603 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 604 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 605 return HasBlockFreq ? LHSFreq < RHSFreq 606 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 607 }); 608 609 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 610 611 return it.first->second; 612 } 613 614 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 615 MachineBasicBlock * 616 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 617 bool &BreakPHIEdge, 618 AllSuccsCache &AllSuccessors) { 619 assert (MBB && "Invalid MachineBasicBlock!"); 620 621 // Loop over all the operands of the specified instruction. If there is 622 // anything we can't handle, bail out. 623 624 // SuccToSinkTo - This is the successor to sink this instruction to, once we 625 // decide. 626 MachineBasicBlock *SuccToSinkTo = nullptr; 627 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 628 const MachineOperand &MO = MI.getOperand(i); 629 if (!MO.isReg()) continue; // Ignore non-register operands. 630 631 unsigned Reg = MO.getReg(); 632 if (Reg == 0) continue; 633 634 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 635 if (MO.isUse()) { 636 // If the physreg has no defs anywhere, it's just an ambient register 637 // and we can freely move its uses. Alternatively, if it's allocatable, 638 // it could get allocated to something with a def during allocation. 639 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) 640 return nullptr; 641 } else if (!MO.isDead()) { 642 // A def that isn't dead. We can't move it. 643 return nullptr; 644 } 645 } else { 646 // Virtual register uses are always safe to sink. 647 if (MO.isUse()) continue; 648 649 // If it's not safe to move defs of the register class, then abort. 650 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 651 return nullptr; 652 653 // Virtual register defs can only be sunk if all their uses are in blocks 654 // dominated by one of the successors. 655 if (SuccToSinkTo) { 656 // If a previous operand picked a block to sink to, then this operand 657 // must be sinkable to the same block. 658 bool LocalUse = false; 659 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 660 BreakPHIEdge, LocalUse)) 661 return nullptr; 662 663 continue; 664 } 665 666 // Otherwise, we should look at all the successors and decide which one 667 // we should sink to. If we have reliable block frequency information 668 // (frequency != 0) available, give successors with smaller frequencies 669 // higher priority, otherwise prioritize smaller loop depths. 670 for (MachineBasicBlock *SuccBlock : 671 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 672 bool LocalUse = false; 673 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 674 BreakPHIEdge, LocalUse)) { 675 SuccToSinkTo = SuccBlock; 676 break; 677 } 678 if (LocalUse) 679 // Def is used locally, it's never safe to move this def. 680 return nullptr; 681 } 682 683 // If we couldn't find a block to sink to, ignore this instruction. 684 if (!SuccToSinkTo) 685 return nullptr; 686 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 687 return nullptr; 688 } 689 } 690 691 // It is not possible to sink an instruction into its own block. This can 692 // happen with loops. 693 if (MBB == SuccToSinkTo) 694 return nullptr; 695 696 // It's not safe to sink instructions to EH landing pad. Control flow into 697 // landing pad is implicitly defined. 698 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 699 return nullptr; 700 701 return SuccToSinkTo; 702 } 703 704 /// \brief Return true if MI is likely to be usable as a memory operation by the 705 /// implicit null check optimization. 706 /// 707 /// This is a "best effort" heuristic, and should not be relied upon for 708 /// correctness. This returning true does not guarantee that the implicit null 709 /// check optimization is legal over MI, and this returning false does not 710 /// guarantee MI cannot possibly be used to do a null check. 711 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 712 const TargetInstrInfo *TII, 713 const TargetRegisterInfo *TRI) { 714 typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate; 715 716 auto *MBB = MI.getParent(); 717 if (MBB->pred_size() != 1) 718 return false; 719 720 auto *PredMBB = *MBB->pred_begin(); 721 auto *PredBB = PredMBB->getBasicBlock(); 722 723 // Frontends that don't use implicit null checks have no reason to emit 724 // branches with make.implicit metadata, and this function should always 725 // return false for them. 726 if (!PredBB || 727 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 728 return false; 729 730 unsigned BaseReg; 731 int64_t Offset; 732 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 733 return false; 734 735 if (!(MI.mayLoad() && !MI.isPredicable())) 736 return false; 737 738 MachineBranchPredicate MBP; 739 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 740 return false; 741 742 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 743 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 744 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 745 MBP.LHS.getReg() == BaseReg; 746 } 747 748 /// SinkInstruction - Determine whether it is safe to sink the specified machine 749 /// instruction out of its current block into a successor. 750 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 751 AllSuccsCache &AllSuccessors) { 752 // Don't sink instructions that the target prefers not to sink. 753 if (!TII->shouldSink(MI)) 754 return false; 755 756 // Check if it's safe to move the instruction. 757 if (!MI.isSafeToMove(AA, SawStore)) 758 return false; 759 760 // Convergent operations may not be made control-dependent on additional 761 // values. 762 if (MI.isConvergent()) 763 return false; 764 765 // Don't break implicit null checks. This is a performance heuristic, and not 766 // required for correctness. 767 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 768 return false; 769 770 // FIXME: This should include support for sinking instructions within the 771 // block they are currently in to shorten the live ranges. We often get 772 // instructions sunk into the top of a large block, but it would be better to 773 // also sink them down before their first use in the block. This xform has to 774 // be careful not to *increase* register pressure though, e.g. sinking 775 // "x = y + z" down if it kills y and z would increase the live ranges of y 776 // and z and only shrink the live range of x. 777 778 bool BreakPHIEdge = false; 779 MachineBasicBlock *ParentBlock = MI.getParent(); 780 MachineBasicBlock *SuccToSinkTo = 781 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 782 783 // If there are no outputs, it must have side-effects. 784 if (!SuccToSinkTo) 785 return false; 786 787 788 // If the instruction to move defines a dead physical register which is live 789 // when leaving the basic block, don't move it because it could turn into a 790 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 791 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 792 const MachineOperand &MO = MI.getOperand(I); 793 if (!MO.isReg()) continue; 794 unsigned Reg = MO.getReg(); 795 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 796 if (SuccToSinkTo->isLiveIn(Reg)) 797 return false; 798 } 799 800 DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 801 802 // If the block has multiple predecessors, this is a critical edge. 803 // Decide if we can sink along it or need to break the edge. 804 if (SuccToSinkTo->pred_size() > 1) { 805 // We cannot sink a load across a critical edge - there may be stores in 806 // other code paths. 807 bool TryBreak = false; 808 bool store = true; 809 if (!MI.isSafeToMove(AA, store)) { 810 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 811 TryBreak = true; 812 } 813 814 // We don't want to sink across a critical edge if we don't dominate the 815 // successor. We could be introducing calculations to new code paths. 816 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 817 DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 818 TryBreak = true; 819 } 820 821 // Don't sink instructions into a loop. 822 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 823 DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 824 TryBreak = true; 825 } 826 827 // Otherwise we are OK with sinking along a critical edge. 828 if (!TryBreak) 829 DEBUG(dbgs() << "Sinking along critical edge.\n"); 830 else { 831 // Mark this edge as to be split. 832 // If the edge can actually be split, the next iteration of the main loop 833 // will sink MI in the newly created block. 834 bool Status = 835 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 836 if (!Status) 837 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 838 "break critical edge\n"); 839 // The instruction will not be sunk this time. 840 return false; 841 } 842 } 843 844 if (BreakPHIEdge) { 845 // BreakPHIEdge is true if all the uses are in the successor MBB being 846 // sunken into and they are all PHI nodes. In this case, machine-sink must 847 // break the critical edge first. 848 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 849 SuccToSinkTo, BreakPHIEdge); 850 if (!Status) 851 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 852 "break critical edge\n"); 853 // The instruction will not be sunk this time. 854 return false; 855 } 856 857 // Determine where to insert into. Skip phi nodes. 858 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 859 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 860 ++InsertPos; 861 862 // collect matching debug values. 863 SmallVector<MachineInstr *, 2> DbgValuesToSink; 864 collectDebugValues(MI, DbgValuesToSink); 865 866 // Move the instruction. 867 SuccToSinkTo->splice(InsertPos, ParentBlock, MI, 868 ++MachineBasicBlock::iterator(MI)); 869 870 // Move debug values. 871 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 872 DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { 873 MachineInstr *DbgMI = *DBI; 874 SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI, 875 ++MachineBasicBlock::iterator(DbgMI)); 876 } 877 878 // Conservatively, clear any kill flags, since it's possible that they are no 879 // longer correct. 880 // Note that we have to clear the kill flags for any register this instruction 881 // uses as we may sink over another instruction which currently kills the 882 // used registers. 883 for (MachineOperand &MO : MI.operands()) { 884 if (MO.isReg() && MO.isUse()) 885 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 886 } 887 888 return true; 889 } 890