1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/iterator_range.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachinePassRegistry.h" 33 #include "llvm/CodeGen/RegisterPressure.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/MachineValueType.h" 37 #include "llvm/CodeGen/Passes.h" 38 #include "llvm/CodeGen/RegisterClassInfo.h" 39 #include "llvm/CodeGen/ScheduleDAG.h" 40 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 41 #include "llvm/CodeGen/ScheduleDAGMutation.h" 42 #include "llvm/CodeGen/ScheduleDFS.h" 43 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 44 #include "llvm/CodeGen/SlotIndexes.h" 45 #include "llvm/CodeGen/TargetPassConfig.h" 46 #include "llvm/CodeGen/TargetSchedule.h" 47 #include "llvm/MC/LaneBitmask.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/GraphWriter.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetLowering.h" 57 #include "llvm/Target/TargetRegisterInfo.h" 58 #include "llvm/Target/TargetSubtargetInfo.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <tuple> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "misched" 73 74 namespace llvm { 75 76 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 77 cl::desc("Force top-down list scheduling")); 78 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 79 cl::desc("Force bottom-up list scheduling")); 80 cl::opt<bool> 81 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 82 cl::desc("Print critical path length to stdout")); 83 84 } // end namespace llvm 85 86 #ifndef NDEBUG 87 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 88 cl::desc("Pop up a window to show MISched dags after they are processed")); 89 90 /// In some situations a few uninteresting nodes depend on nearly all other 91 /// nodes in the graph, provide a cutoff to hide them. 92 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 93 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 94 95 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 96 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 97 98 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 99 cl::desc("Only schedule this function")); 100 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 101 cl::desc("Only schedule this MBB#")); 102 #else 103 static bool ViewMISchedDAGs = false; 104 #endif // NDEBUG 105 106 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 107 /// size of the ready lists. 108 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 109 cl::desc("Limit ready list to N instructions"), cl::init(256)); 110 111 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 112 cl::desc("Enable register pressure scheduling."), cl::init(true)); 113 114 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 115 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 116 117 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 118 cl::desc("Enable memop clustering."), 119 cl::init(true)); 120 121 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 122 cl::desc("Verify machine instrs before and after machine scheduling")); 123 124 // DAG subtrees must have at least this many nodes. 125 static const unsigned MinSubtreeSize = 8; 126 127 // Pin the vtables to this file. 128 void MachineSchedStrategy::anchor() {} 129 130 void ScheduleDAGMutation::anchor() {} 131 132 //===----------------------------------------------------------------------===// 133 // Machine Instruction Scheduling Pass and Registry 134 //===----------------------------------------------------------------------===// 135 136 MachineSchedContext::MachineSchedContext() { 137 RegClassInfo = new RegisterClassInfo(); 138 } 139 140 MachineSchedContext::~MachineSchedContext() { 141 delete RegClassInfo; 142 } 143 144 namespace { 145 146 /// Base class for a machine scheduler class that can run at any point. 147 class MachineSchedulerBase : public MachineSchedContext, 148 public MachineFunctionPass { 149 public: 150 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 151 152 void print(raw_ostream &O, const Module* = nullptr) const override; 153 154 protected: 155 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 156 }; 157 158 /// MachineScheduler runs after coalescing and before register allocation. 159 class MachineScheduler : public MachineSchedulerBase { 160 public: 161 MachineScheduler(); 162 163 void getAnalysisUsage(AnalysisUsage &AU) const override; 164 165 bool runOnMachineFunction(MachineFunction&) override; 166 167 static char ID; // Class identification, replacement for typeinfo 168 169 protected: 170 ScheduleDAGInstrs *createMachineScheduler(); 171 }; 172 173 /// PostMachineScheduler runs after shortly before code emission. 174 class PostMachineScheduler : public MachineSchedulerBase { 175 public: 176 PostMachineScheduler(); 177 178 void getAnalysisUsage(AnalysisUsage &AU) const override; 179 180 bool runOnMachineFunction(MachineFunction&) override; 181 182 static char ID; // Class identification, replacement for typeinfo 183 184 protected: 185 ScheduleDAGInstrs *createPostMachineScheduler(); 186 }; 187 188 } // end anonymous namespace 189 190 char MachineScheduler::ID = 0; 191 192 char &llvm::MachineSchedulerID = MachineScheduler::ID; 193 194 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 195 "Machine Instruction Scheduler", false, false) 196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 198 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 199 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 200 "Machine Instruction Scheduler", false, false) 201 202 MachineScheduler::MachineScheduler() 203 : MachineSchedulerBase(ID) { 204 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 205 } 206 207 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 208 AU.setPreservesCFG(); 209 AU.addRequiredID(MachineDominatorsID); 210 AU.addRequired<MachineLoopInfo>(); 211 AU.addRequired<AAResultsWrapperPass>(); 212 AU.addRequired<TargetPassConfig>(); 213 AU.addRequired<SlotIndexes>(); 214 AU.addPreserved<SlotIndexes>(); 215 AU.addRequired<LiveIntervals>(); 216 AU.addPreserved<LiveIntervals>(); 217 MachineFunctionPass::getAnalysisUsage(AU); 218 } 219 220 char PostMachineScheduler::ID = 0; 221 222 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 223 224 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 225 "PostRA Machine Instruction Scheduler", false, false) 226 227 PostMachineScheduler::PostMachineScheduler() 228 : MachineSchedulerBase(ID) { 229 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 230 } 231 232 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 233 AU.setPreservesCFG(); 234 AU.addRequiredID(MachineDominatorsID); 235 AU.addRequired<MachineLoopInfo>(); 236 AU.addRequired<TargetPassConfig>(); 237 MachineFunctionPass::getAnalysisUsage(AU); 238 } 239 240 MachinePassRegistry MachineSchedRegistry::Registry; 241 242 /// A dummy default scheduler factory indicates whether the scheduler 243 /// is overridden on the command line. 244 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 245 return nullptr; 246 } 247 248 /// MachineSchedOpt allows command line selection of the scheduler. 249 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 250 RegisterPassParser<MachineSchedRegistry>> 251 MachineSchedOpt("misched", 252 cl::init(&useDefaultMachineSched), cl::Hidden, 253 cl::desc("Machine instruction scheduler to use")); 254 255 static MachineSchedRegistry 256 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 257 useDefaultMachineSched); 258 259 static cl::opt<bool> EnableMachineSched( 260 "enable-misched", 261 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 262 cl::Hidden); 263 264 static cl::opt<bool> EnablePostRAMachineSched( 265 "enable-post-misched", 266 cl::desc("Enable the post-ra machine instruction scheduling pass."), 267 cl::init(true), cl::Hidden); 268 269 /// Decrement this iterator until reaching the top or a non-debug instr. 270 static MachineBasicBlock::const_iterator 271 priorNonDebug(MachineBasicBlock::const_iterator I, 272 MachineBasicBlock::const_iterator Beg) { 273 assert(I != Beg && "reached the top of the region, cannot decrement"); 274 while (--I != Beg) { 275 if (!I->isDebugValue()) 276 break; 277 } 278 return I; 279 } 280 281 /// Non-const version. 282 static MachineBasicBlock::iterator 283 priorNonDebug(MachineBasicBlock::iterator I, 284 MachineBasicBlock::const_iterator Beg) { 285 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 286 .getNonConstIterator(); 287 } 288 289 /// If this iterator is a debug value, increment until reaching the End or a 290 /// non-debug instruction. 291 static MachineBasicBlock::const_iterator 292 nextIfDebug(MachineBasicBlock::const_iterator I, 293 MachineBasicBlock::const_iterator End) { 294 for(; I != End; ++I) { 295 if (!I->isDebugValue()) 296 break; 297 } 298 return I; 299 } 300 301 /// Non-const version. 302 static MachineBasicBlock::iterator 303 nextIfDebug(MachineBasicBlock::iterator I, 304 MachineBasicBlock::const_iterator End) { 305 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 306 .getNonConstIterator(); 307 } 308 309 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 310 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 311 // Select the scheduler, or set the default. 312 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 313 if (Ctor != useDefaultMachineSched) 314 return Ctor(this); 315 316 // Get the default scheduler set by the target for this function. 317 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 318 if (Scheduler) 319 return Scheduler; 320 321 // Default to GenericScheduler. 322 return createGenericSchedLive(this); 323 } 324 325 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 326 /// the caller. We don't have a command line option to override the postRA 327 /// scheduler. The Target must configure it. 328 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 329 // Get the postRA scheduler set by the target for this function. 330 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 331 if (Scheduler) 332 return Scheduler; 333 334 // Default to GenericScheduler. 335 return createGenericSchedPostRA(this); 336 } 337 338 /// Top-level MachineScheduler pass driver. 339 /// 340 /// Visit blocks in function order. Divide each block into scheduling regions 341 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 342 /// consistent with the DAG builder, which traverses the interior of the 343 /// scheduling regions bottom-up. 344 /// 345 /// This design avoids exposing scheduling boundaries to the DAG builder, 346 /// simplifying the DAG builder's support for "special" target instructions. 347 /// At the same time the design allows target schedulers to operate across 348 /// scheduling boundaries, for example to bundle the boudary instructions 349 /// without reordering them. This creates complexity, because the target 350 /// scheduler must update the RegionBegin and RegionEnd positions cached by 351 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 352 /// design would be to split blocks at scheduling boundaries, but LLVM has a 353 /// general bias against block splitting purely for implementation simplicity. 354 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 355 if (skipFunction(*mf.getFunction())) 356 return false; 357 358 if (EnableMachineSched.getNumOccurrences()) { 359 if (!EnableMachineSched) 360 return false; 361 } else if (!mf.getSubtarget().enableMachineScheduler()) 362 return false; 363 364 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 365 366 // Initialize the context of the pass. 367 MF = &mf; 368 MLI = &getAnalysis<MachineLoopInfo>(); 369 MDT = &getAnalysis<MachineDominatorTree>(); 370 PassConfig = &getAnalysis<TargetPassConfig>(); 371 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 372 373 LIS = &getAnalysis<LiveIntervals>(); 374 375 if (VerifyScheduling) { 376 DEBUG(LIS->dump()); 377 MF->verify(this, "Before machine scheduling."); 378 } 379 RegClassInfo->runOnMachineFunction(*MF); 380 381 // Instantiate the selected scheduler for this target, function, and 382 // optimization level. 383 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 384 scheduleRegions(*Scheduler, false); 385 386 DEBUG(LIS->dump()); 387 if (VerifyScheduling) 388 MF->verify(this, "After machine scheduling."); 389 return true; 390 } 391 392 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 393 if (skipFunction(*mf.getFunction())) 394 return false; 395 396 if (EnablePostRAMachineSched.getNumOccurrences()) { 397 if (!EnablePostRAMachineSched) 398 return false; 399 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 400 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 401 return false; 402 } 403 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 404 405 // Initialize the context of the pass. 406 MF = &mf; 407 PassConfig = &getAnalysis<TargetPassConfig>(); 408 409 if (VerifyScheduling) 410 MF->verify(this, "Before post machine scheduling."); 411 412 // Instantiate the selected scheduler for this target, function, and 413 // optimization level. 414 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 415 scheduleRegions(*Scheduler, true); 416 417 if (VerifyScheduling) 418 MF->verify(this, "After post machine scheduling."); 419 return true; 420 } 421 422 /// Return true of the given instruction should not be included in a scheduling 423 /// region. 424 /// 425 /// MachineScheduler does not currently support scheduling across calls. To 426 /// handle calls, the DAG builder needs to be modified to create register 427 /// anti/output dependencies on the registers clobbered by the call's regmask 428 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 429 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 430 /// the boundary, but there would be no benefit to postRA scheduling across 431 /// calls this late anyway. 432 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 433 MachineBasicBlock *MBB, 434 MachineFunction *MF, 435 const TargetInstrInfo *TII) { 436 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 437 } 438 439 /// Main driver for both MachineScheduler and PostMachineScheduler. 440 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 441 bool FixKillFlags) { 442 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 443 444 // Visit all machine basic blocks. 445 // 446 // TODO: Visit blocks in global postorder or postorder within the bottom-up 447 // loop tree. Then we can optionally compute global RegPressure. 448 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 449 MBB != MBBEnd; ++MBB) { 450 451 Scheduler.startBlock(&*MBB); 452 453 #ifndef NDEBUG 454 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 455 continue; 456 if (SchedOnlyBlock.getNumOccurrences() 457 && (int)SchedOnlyBlock != MBB->getNumber()) 458 continue; 459 #endif 460 461 // Break the block into scheduling regions [I, RegionEnd), and schedule each 462 // region as soon as it is discovered. RegionEnd points the scheduling 463 // boundary at the bottom of the region. The DAG does not include RegionEnd, 464 // but the region does (i.e. the next RegionEnd is above the previous 465 // RegionBegin). If the current block has no terminator then RegionEnd == 466 // MBB->end() for the bottom region. 467 // 468 // The Scheduler may insert instructions during either schedule() or 469 // exitRegion(), even for empty regions. So the local iterators 'I' and 470 // 'RegionEnd' are invalid across these calls. 471 // 472 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 473 // as a single instruction. 474 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 475 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 476 477 // Avoid decrementing RegionEnd for blocks with no terminator. 478 if (RegionEnd != MBB->end() || 479 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 480 --RegionEnd; 481 } 482 483 // The next region starts above the previous region. Look backward in the 484 // instruction stream until we find the nearest boundary. 485 unsigned NumRegionInstrs = 0; 486 MachineBasicBlock::iterator I = RegionEnd; 487 for (; I != MBB->begin(); --I) { 488 MachineInstr &MI = *std::prev(I); 489 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 490 break; 491 if (!MI.isDebugValue()) 492 ++NumRegionInstrs; 493 } 494 // Notify the scheduler of the region, even if we may skip scheduling 495 // it. Perhaps it still needs to be bundled. 496 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 497 498 // Skip empty scheduling regions (0 or 1 schedulable instructions). 499 if (I == RegionEnd || I == std::prev(RegionEnd)) { 500 // Close the current region. Bundle the terminator if needed. 501 // This invalidates 'RegionEnd' and 'I'. 502 Scheduler.exitRegion(); 503 continue; 504 } 505 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 506 DEBUG(dbgs() << MF->getName() 507 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 508 << "\n From: " << *I << " To: "; 509 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 510 else dbgs() << "End"; 511 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 512 if (DumpCriticalPathLength) { 513 errs() << MF->getName(); 514 errs() << ":BB# " << MBB->getNumber(); 515 errs() << " " << MBB->getName() << " \n"; 516 } 517 518 // Schedule a region: possibly reorder instructions. 519 // This invalidates 'RegionEnd' and 'I'. 520 Scheduler.schedule(); 521 522 // Close the current region. 523 Scheduler.exitRegion(); 524 525 // Scheduling has invalidated the current iterator 'I'. Ask the 526 // scheduler for the top of it's scheduled region. 527 RegionEnd = Scheduler.begin(); 528 } 529 Scheduler.finishBlock(); 530 // FIXME: Ideally, no further passes should rely on kill flags. However, 531 // thumb2 size reduction is currently an exception, so the PostMIScheduler 532 // needs to do this. 533 if (FixKillFlags) 534 Scheduler.fixupKills(&*MBB); 535 } 536 Scheduler.finalizeSchedule(); 537 } 538 539 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 540 // unimplemented 541 } 542 543 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 544 LLVM_DUMP_METHOD void ReadyQueue::dump() { 545 dbgs() << "Queue " << Name << ": "; 546 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 547 dbgs() << Queue[i]->NodeNum << " "; 548 dbgs() << "\n"; 549 } 550 #endif 551 552 //===----------------------------------------------------------------------===// 553 // ScheduleDAGMI - Basic machine instruction scheduling. This is 554 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 555 // virtual registers. 556 // ===----------------------------------------------------------------------===/ 557 558 // Provide a vtable anchor. 559 ScheduleDAGMI::~ScheduleDAGMI() = default; 560 561 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 562 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 563 } 564 565 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 566 if (SuccSU != &ExitSU) { 567 // Do not use WillCreateCycle, it assumes SD scheduling. 568 // If Pred is reachable from Succ, then the edge creates a cycle. 569 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 570 return false; 571 Topo.AddPred(SuccSU, PredDep.getSUnit()); 572 } 573 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 574 // Return true regardless of whether a new edge needed to be inserted. 575 return true; 576 } 577 578 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 579 /// NumPredsLeft reaches zero, release the successor node. 580 /// 581 /// FIXME: Adjust SuccSU height based on MinLatency. 582 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 583 SUnit *SuccSU = SuccEdge->getSUnit(); 584 585 if (SuccEdge->isWeak()) { 586 --SuccSU->WeakPredsLeft; 587 if (SuccEdge->isCluster()) 588 NextClusterSucc = SuccSU; 589 return; 590 } 591 #ifndef NDEBUG 592 if (SuccSU->NumPredsLeft == 0) { 593 dbgs() << "*** Scheduling failed! ***\n"; 594 SuccSU->dump(this); 595 dbgs() << " has been released too many times!\n"; 596 llvm_unreachable(nullptr); 597 } 598 #endif 599 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 600 // CurrCycle may have advanced since then. 601 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 602 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 603 604 --SuccSU->NumPredsLeft; 605 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 606 SchedImpl->releaseTopNode(SuccSU); 607 } 608 609 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 610 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 611 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 612 I != E; ++I) { 613 releaseSucc(SU, &*I); 614 } 615 } 616 617 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 618 /// NumSuccsLeft reaches zero, release the predecessor node. 619 /// 620 /// FIXME: Adjust PredSU height based on MinLatency. 621 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 622 SUnit *PredSU = PredEdge->getSUnit(); 623 624 if (PredEdge->isWeak()) { 625 --PredSU->WeakSuccsLeft; 626 if (PredEdge->isCluster()) 627 NextClusterPred = PredSU; 628 return; 629 } 630 #ifndef NDEBUG 631 if (PredSU->NumSuccsLeft == 0) { 632 dbgs() << "*** Scheduling failed! ***\n"; 633 PredSU->dump(this); 634 dbgs() << " has been released too many times!\n"; 635 llvm_unreachable(nullptr); 636 } 637 #endif 638 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 639 // CurrCycle may have advanced since then. 640 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 641 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 642 643 --PredSU->NumSuccsLeft; 644 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 645 SchedImpl->releaseBottomNode(PredSU); 646 } 647 648 /// releasePredecessors - Call releasePred on each of SU's predecessors. 649 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 650 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 651 I != E; ++I) { 652 releasePred(SU, &*I); 653 } 654 } 655 656 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 657 /// crossing a scheduling boundary. [begin, end) includes all instructions in 658 /// the region, including the boundary itself and single-instruction regions 659 /// that don't get scheduled. 660 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 661 MachineBasicBlock::iterator begin, 662 MachineBasicBlock::iterator end, 663 unsigned regioninstrs) 664 { 665 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 666 667 SchedImpl->initPolicy(begin, end, regioninstrs); 668 } 669 670 /// This is normally called from the main scheduler loop but may also be invoked 671 /// by the scheduling strategy to perform additional code motion. 672 void ScheduleDAGMI::moveInstruction( 673 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 674 // Advance RegionBegin if the first instruction moves down. 675 if (&*RegionBegin == MI) 676 ++RegionBegin; 677 678 // Update the instruction stream. 679 BB->splice(InsertPos, BB, MI); 680 681 // Update LiveIntervals 682 if (LIS) 683 LIS->handleMove(*MI, /*UpdateFlags=*/true); 684 685 // Recede RegionBegin if an instruction moves above the first. 686 if (RegionBegin == InsertPos) 687 RegionBegin = MI; 688 } 689 690 bool ScheduleDAGMI::checkSchedLimit() { 691 #ifndef NDEBUG 692 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 693 CurrentTop = CurrentBottom; 694 return false; 695 } 696 ++NumInstrsScheduled; 697 #endif 698 return true; 699 } 700 701 /// Per-region scheduling driver, called back from 702 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 703 /// does not consider liveness or register pressure. It is useful for PostRA 704 /// scheduling and potentially other custom schedulers. 705 void ScheduleDAGMI::schedule() { 706 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 707 DEBUG(SchedImpl->dumpPolicy()); 708 709 // Build the DAG. 710 buildSchedGraph(AA); 711 712 Topo.InitDAGTopologicalSorting(); 713 714 postprocessDAG(); 715 716 SmallVector<SUnit*, 8> TopRoots, BotRoots; 717 findRootsAndBiasEdges(TopRoots, BotRoots); 718 719 // Initialize the strategy before modifying the DAG. 720 // This may initialize a DFSResult to be used for queue priority. 721 SchedImpl->initialize(this); 722 723 DEBUG( 724 if (EntrySU.getInstr() != nullptr) 725 EntrySU.dumpAll(this); 726 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 727 SUnits[su].dumpAll(this); 728 if (ExitSU.getInstr() != nullptr) 729 ExitSU.dumpAll(this); 730 ); 731 if (ViewMISchedDAGs) viewGraph(); 732 733 // Initialize ready queues now that the DAG and priority data are finalized. 734 initQueues(TopRoots, BotRoots); 735 736 bool IsTopNode = false; 737 while (true) { 738 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 739 SUnit *SU = SchedImpl->pickNode(IsTopNode); 740 if (!SU) break; 741 742 assert(!SU->isScheduled && "Node already scheduled"); 743 if (!checkSchedLimit()) 744 break; 745 746 MachineInstr *MI = SU->getInstr(); 747 if (IsTopNode) { 748 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 749 if (&*CurrentTop == MI) 750 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 751 else 752 moveInstruction(MI, CurrentTop); 753 } else { 754 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 755 MachineBasicBlock::iterator priorII = 756 priorNonDebug(CurrentBottom, CurrentTop); 757 if (&*priorII == MI) 758 CurrentBottom = priorII; 759 else { 760 if (&*CurrentTop == MI) 761 CurrentTop = nextIfDebug(++CurrentTop, priorII); 762 moveInstruction(MI, CurrentBottom); 763 CurrentBottom = MI; 764 } 765 } 766 // Notify the scheduling strategy before updating the DAG. 767 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 768 // runs, it can then use the accurate ReadyCycle time to determine whether 769 // newly released nodes can move to the readyQ. 770 SchedImpl->schedNode(SU, IsTopNode); 771 772 updateQueues(SU, IsTopNode); 773 } 774 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 775 776 placeDebugValues(); 777 778 DEBUG({ 779 unsigned BBNum = begin()->getParent()->getNumber(); 780 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 781 dumpSchedule(); 782 dbgs() << '\n'; 783 }); 784 } 785 786 /// Apply each ScheduleDAGMutation step in order. 787 void ScheduleDAGMI::postprocessDAG() { 788 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 789 Mutations[i]->apply(this); 790 } 791 } 792 793 void ScheduleDAGMI:: 794 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 795 SmallVectorImpl<SUnit*> &BotRoots) { 796 for (std::vector<SUnit>::iterator 797 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 798 SUnit *SU = &(*I); 799 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 800 801 // Order predecessors so DFSResult follows the critical path. 802 SU->biasCriticalPath(); 803 804 // A SUnit is ready to top schedule if it has no predecessors. 805 if (!I->NumPredsLeft) 806 TopRoots.push_back(SU); 807 // A SUnit is ready to bottom schedule if it has no successors. 808 if (!I->NumSuccsLeft) 809 BotRoots.push_back(SU); 810 } 811 ExitSU.biasCriticalPath(); 812 } 813 814 /// Identify DAG roots and setup scheduler queues. 815 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 816 ArrayRef<SUnit*> BotRoots) { 817 NextClusterSucc = nullptr; 818 NextClusterPred = nullptr; 819 820 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 821 // 822 // Nodes with unreleased weak edges can still be roots. 823 // Release top roots in forward order. 824 for (SmallVectorImpl<SUnit*>::const_iterator 825 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 826 SchedImpl->releaseTopNode(*I); 827 } 828 // Release bottom roots in reverse order so the higher priority nodes appear 829 // first. This is more natural and slightly more efficient. 830 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 831 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 832 SchedImpl->releaseBottomNode(*I); 833 } 834 835 releaseSuccessors(&EntrySU); 836 releasePredecessors(&ExitSU); 837 838 SchedImpl->registerRoots(); 839 840 // Advance past initial DebugValues. 841 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 842 CurrentBottom = RegionEnd; 843 } 844 845 /// Update scheduler queues after scheduling an instruction. 846 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 847 // Release dependent instructions for scheduling. 848 if (IsTopNode) 849 releaseSuccessors(SU); 850 else 851 releasePredecessors(SU); 852 853 SU->isScheduled = true; 854 } 855 856 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 857 void ScheduleDAGMI::placeDebugValues() { 858 // If first instruction was a DBG_VALUE then put it back. 859 if (FirstDbgValue) { 860 BB->splice(RegionBegin, BB, FirstDbgValue); 861 RegionBegin = FirstDbgValue; 862 } 863 864 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 865 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 866 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 867 MachineInstr *DbgValue = P.first; 868 MachineBasicBlock::iterator OrigPrevMI = P.second; 869 if (&*RegionBegin == DbgValue) 870 ++RegionBegin; 871 BB->splice(++OrigPrevMI, BB, DbgValue); 872 if (OrigPrevMI == std::prev(RegionEnd)) 873 RegionEnd = DbgValue; 874 } 875 DbgValues.clear(); 876 FirstDbgValue = nullptr; 877 } 878 879 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 880 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 881 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 882 if (SUnit *SU = getSUnit(&(*MI))) 883 SU->dump(this); 884 else 885 dbgs() << "Missing SUnit\n"; 886 } 887 } 888 #endif 889 890 //===----------------------------------------------------------------------===// 891 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 892 // preservation. 893 //===----------------------------------------------------------------------===// 894 895 ScheduleDAGMILive::~ScheduleDAGMILive() { 896 delete DFSResult; 897 } 898 899 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 900 const MachineInstr &MI = *SU.getInstr(); 901 for (const MachineOperand &MO : MI.operands()) { 902 if (!MO.isReg()) 903 continue; 904 if (!MO.readsReg()) 905 continue; 906 if (TrackLaneMasks && !MO.isUse()) 907 continue; 908 909 unsigned Reg = MO.getReg(); 910 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 911 continue; 912 913 // Ignore re-defs. 914 if (TrackLaneMasks) { 915 bool FoundDef = false; 916 for (const MachineOperand &MO2 : MI.operands()) { 917 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 918 FoundDef = true; 919 break; 920 } 921 } 922 if (FoundDef) 923 continue; 924 } 925 926 // Record this local VReg use. 927 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 928 for (; UI != VRegUses.end(); ++UI) { 929 if (UI->SU == &SU) 930 break; 931 } 932 if (UI == VRegUses.end()) 933 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 934 } 935 } 936 937 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 938 /// crossing a scheduling boundary. [begin, end) includes all instructions in 939 /// the region, including the boundary itself and single-instruction regions 940 /// that don't get scheduled. 941 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 942 MachineBasicBlock::iterator begin, 943 MachineBasicBlock::iterator end, 944 unsigned regioninstrs) 945 { 946 // ScheduleDAGMI initializes SchedImpl's per-region policy. 947 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 948 949 // For convenience remember the end of the liveness region. 950 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 951 952 SUPressureDiffs.clear(); 953 954 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 955 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 956 957 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 958 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 959 } 960 961 // Setup the register pressure trackers for the top scheduled top and bottom 962 // scheduled regions. 963 void ScheduleDAGMILive::initRegPressure() { 964 VRegUses.clear(); 965 VRegUses.setUniverse(MRI.getNumVirtRegs()); 966 for (SUnit &SU : SUnits) 967 collectVRegUses(SU); 968 969 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 970 ShouldTrackLaneMasks, false); 971 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 972 ShouldTrackLaneMasks, false); 973 974 // Close the RPTracker to finalize live ins. 975 RPTracker.closeRegion(); 976 977 DEBUG(RPTracker.dump()); 978 979 // Initialize the live ins and live outs. 980 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 981 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 982 983 // Close one end of the tracker so we can call 984 // getMaxUpward/DownwardPressureDelta before advancing across any 985 // instructions. This converts currently live regs into live ins/outs. 986 TopRPTracker.closeTop(); 987 BotRPTracker.closeBottom(); 988 989 BotRPTracker.initLiveThru(RPTracker); 990 if (!BotRPTracker.getLiveThru().empty()) { 991 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 992 DEBUG(dbgs() << "Live Thru: "; 993 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 994 }; 995 996 // For each live out vreg reduce the pressure change associated with other 997 // uses of the same vreg below the live-out reaching def. 998 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 999 1000 // Account for liveness generated by the region boundary. 1001 if (LiveRegionEnd != RegionEnd) { 1002 SmallVector<RegisterMaskPair, 8> LiveUses; 1003 BotRPTracker.recede(&LiveUses); 1004 updatePressureDiffs(LiveUses); 1005 } 1006 1007 DEBUG( 1008 dbgs() << "Top Pressure:\n"; 1009 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1010 dbgs() << "Bottom Pressure:\n"; 1011 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1012 ); 1013 1014 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 1015 1016 // Cache the list of excess pressure sets in this region. This will also track 1017 // the max pressure in the scheduled code for these sets. 1018 RegionCriticalPSets.clear(); 1019 const std::vector<unsigned> &RegionPressure = 1020 RPTracker.getPressure().MaxSetPressure; 1021 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1022 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1023 if (RegionPressure[i] > Limit) { 1024 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 1025 << " Limit " << Limit 1026 << " Actual " << RegionPressure[i] << "\n"); 1027 RegionCriticalPSets.push_back(PressureChange(i)); 1028 } 1029 } 1030 DEBUG(dbgs() << "Excess PSets: "; 1031 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 1032 dbgs() << TRI->getRegPressureSetName( 1033 RegionCriticalPSets[i].getPSet()) << " "; 1034 dbgs() << "\n"); 1035 } 1036 1037 void ScheduleDAGMILive:: 1038 updateScheduledPressure(const SUnit *SU, 1039 const std::vector<unsigned> &NewMaxPressure) { 1040 const PressureDiff &PDiff = getPressureDiff(SU); 1041 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1042 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 1043 I != E; ++I) { 1044 if (!I->isValid()) 1045 break; 1046 unsigned ID = I->getPSet(); 1047 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1048 ++CritIdx; 1049 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1050 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1051 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1052 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1053 } 1054 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1055 if (NewMaxPressure[ID] >= Limit - 2) { 1056 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1057 << NewMaxPressure[ID] 1058 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 1059 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 1060 } 1061 } 1062 } 1063 1064 /// Update the PressureDiff array for liveness after scheduling this 1065 /// instruction. 1066 void ScheduleDAGMILive::updatePressureDiffs( 1067 ArrayRef<RegisterMaskPair> LiveUses) { 1068 for (const RegisterMaskPair &P : LiveUses) { 1069 unsigned Reg = P.RegUnit; 1070 /// FIXME: Currently assuming single-use physregs. 1071 if (!TRI->isVirtualRegister(Reg)) 1072 continue; 1073 1074 if (ShouldTrackLaneMasks) { 1075 // If the register has just become live then other uses won't change 1076 // this fact anymore => decrement pressure. 1077 // If the register has just become dead then other uses make it come 1078 // back to life => increment pressure. 1079 bool Decrement = P.LaneMask.any(); 1080 1081 for (const VReg2SUnit &V2SU 1082 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1083 SUnit &SU = *V2SU.SU; 1084 if (SU.isScheduled || &SU == &ExitSU) 1085 continue; 1086 1087 PressureDiff &PDiff = getPressureDiff(&SU); 1088 PDiff.addPressureChange(P, Decrement, &MRI); 1089 DEBUG( 1090 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1091 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1092 << ' ' << *SU.getInstr(); 1093 dbgs() << " to "; 1094 PDiff.dump(*TRI); 1095 ); 1096 } 1097 } else { 1098 assert(P.LaneMask.any()); 1099 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1100 // This may be called before CurrentBottom has been initialized. However, 1101 // BotRPTracker must have a valid position. We want the value live into the 1102 // instruction or live out of the block, so ask for the previous 1103 // instruction's live-out. 1104 const LiveInterval &LI = LIS->getInterval(Reg); 1105 VNInfo *VNI; 1106 MachineBasicBlock::const_iterator I = 1107 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1108 if (I == BB->end()) 1109 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1110 else { 1111 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1112 VNI = LRQ.valueIn(); 1113 } 1114 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1115 assert(VNI && "No live value at use."); 1116 for (const VReg2SUnit &V2SU 1117 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1118 SUnit *SU = V2SU.SU; 1119 // If this use comes before the reaching def, it cannot be a last use, 1120 // so decrease its pressure change. 1121 if (!SU->isScheduled && SU != &ExitSU) { 1122 LiveQueryResult LRQ = 1123 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1124 if (LRQ.valueIn() == VNI) { 1125 PressureDiff &PDiff = getPressureDiff(SU); 1126 PDiff.addPressureChange(P, true, &MRI); 1127 DEBUG( 1128 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1129 << *SU->getInstr(); 1130 dbgs() << " to "; 1131 PDiff.dump(*TRI); 1132 ); 1133 } 1134 } 1135 } 1136 } 1137 } 1138 } 1139 1140 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1141 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1142 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1143 /// 1144 /// This is a skeletal driver, with all the functionality pushed into helpers, 1145 /// so that it can be easily extended by experimental schedulers. Generally, 1146 /// implementing MachineSchedStrategy should be sufficient to implement a new 1147 /// scheduling algorithm. However, if a scheduler further subclasses 1148 /// ScheduleDAGMILive then it will want to override this virtual method in order 1149 /// to update any specialized state. 1150 void ScheduleDAGMILive::schedule() { 1151 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1152 DEBUG(SchedImpl->dumpPolicy()); 1153 buildDAGWithRegPressure(); 1154 1155 Topo.InitDAGTopologicalSorting(); 1156 1157 postprocessDAG(); 1158 1159 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1160 findRootsAndBiasEdges(TopRoots, BotRoots); 1161 1162 // Initialize the strategy before modifying the DAG. 1163 // This may initialize a DFSResult to be used for queue priority. 1164 SchedImpl->initialize(this); 1165 1166 DEBUG( 1167 if (EntrySU.getInstr() != nullptr) 1168 EntrySU.dumpAll(this); 1169 for (const SUnit &SU : SUnits) { 1170 SU.dumpAll(this); 1171 if (ShouldTrackPressure) { 1172 dbgs() << " Pressure Diff : "; 1173 getPressureDiff(&SU).dump(*TRI); 1174 } 1175 dbgs() << '\n'; 1176 } 1177 if (ExitSU.getInstr() != nullptr) 1178 ExitSU.dumpAll(this); 1179 ); 1180 if (ViewMISchedDAGs) viewGraph(); 1181 1182 // Initialize ready queues now that the DAG and priority data are finalized. 1183 initQueues(TopRoots, BotRoots); 1184 1185 bool IsTopNode = false; 1186 while (true) { 1187 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1188 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1189 if (!SU) break; 1190 1191 assert(!SU->isScheduled && "Node already scheduled"); 1192 if (!checkSchedLimit()) 1193 break; 1194 1195 scheduleMI(SU, IsTopNode); 1196 1197 if (DFSResult) { 1198 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1199 if (!ScheduledTrees.test(SubtreeID)) { 1200 ScheduledTrees.set(SubtreeID); 1201 DFSResult->scheduleTree(SubtreeID); 1202 SchedImpl->scheduleTree(SubtreeID); 1203 } 1204 } 1205 1206 // Notify the scheduling strategy after updating the DAG. 1207 SchedImpl->schedNode(SU, IsTopNode); 1208 1209 updateQueues(SU, IsTopNode); 1210 } 1211 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1212 1213 placeDebugValues(); 1214 1215 DEBUG({ 1216 unsigned BBNum = begin()->getParent()->getNumber(); 1217 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1218 dumpSchedule(); 1219 dbgs() << '\n'; 1220 }); 1221 } 1222 1223 /// Build the DAG and setup three register pressure trackers. 1224 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1225 if (!ShouldTrackPressure) { 1226 RPTracker.reset(); 1227 RegionCriticalPSets.clear(); 1228 buildSchedGraph(AA); 1229 return; 1230 } 1231 1232 // Initialize the register pressure tracker used by buildSchedGraph. 1233 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1234 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1235 1236 // Account for liveness generate by the region boundary. 1237 if (LiveRegionEnd != RegionEnd) 1238 RPTracker.recede(); 1239 1240 // Build the DAG, and compute current register pressure. 1241 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1242 1243 // Initialize top/bottom trackers after computing region pressure. 1244 initRegPressure(); 1245 } 1246 1247 void ScheduleDAGMILive::computeDFSResult() { 1248 if (!DFSResult) 1249 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1250 DFSResult->clear(); 1251 ScheduledTrees.clear(); 1252 DFSResult->resize(SUnits.size()); 1253 DFSResult->compute(SUnits); 1254 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1255 } 1256 1257 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1258 /// only provides the critical path for single block loops. To handle loops that 1259 /// span blocks, we could use the vreg path latencies provided by 1260 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1261 /// available for use in the scheduler. 1262 /// 1263 /// The cyclic path estimation identifies a def-use pair that crosses the back 1264 /// edge and considers the depth and height of the nodes. For example, consider 1265 /// the following instruction sequence where each instruction has unit latency 1266 /// and defines an epomymous virtual register: 1267 /// 1268 /// a->b(a,c)->c(b)->d(c)->exit 1269 /// 1270 /// The cyclic critical path is a two cycles: b->c->b 1271 /// The acyclic critical path is four cycles: a->b->c->d->exit 1272 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1273 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1274 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1275 /// LiveInDepth = depth(b) = len(a->b) = 1 1276 /// 1277 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1278 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1279 /// CyclicCriticalPath = min(2, 2) = 2 1280 /// 1281 /// This could be relevant to PostRA scheduling, but is currently implemented 1282 /// assuming LiveIntervals. 1283 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1284 // This only applies to single block loop. 1285 if (!BB->isSuccessor(BB)) 1286 return 0; 1287 1288 unsigned MaxCyclicLatency = 0; 1289 // Visit each live out vreg def to find def/use pairs that cross iterations. 1290 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1291 unsigned Reg = P.RegUnit; 1292 if (!TRI->isVirtualRegister(Reg)) 1293 continue; 1294 const LiveInterval &LI = LIS->getInterval(Reg); 1295 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1296 if (!DefVNI) 1297 continue; 1298 1299 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1300 const SUnit *DefSU = getSUnit(DefMI); 1301 if (!DefSU) 1302 continue; 1303 1304 unsigned LiveOutHeight = DefSU->getHeight(); 1305 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1306 // Visit all local users of the vreg def. 1307 for (const VReg2SUnit &V2SU 1308 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1309 SUnit *SU = V2SU.SU; 1310 if (SU == &ExitSU) 1311 continue; 1312 1313 // Only consider uses of the phi. 1314 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1315 if (!LRQ.valueIn()->isPHIDef()) 1316 continue; 1317 1318 // Assume that a path spanning two iterations is a cycle, which could 1319 // overestimate in strange cases. This allows cyclic latency to be 1320 // estimated as the minimum slack of the vreg's depth or height. 1321 unsigned CyclicLatency = 0; 1322 if (LiveOutDepth > SU->getDepth()) 1323 CyclicLatency = LiveOutDepth - SU->getDepth(); 1324 1325 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1326 if (LiveInHeight > LiveOutHeight) { 1327 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1328 CyclicLatency = LiveInHeight - LiveOutHeight; 1329 } else 1330 CyclicLatency = 0; 1331 1332 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1333 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1334 if (CyclicLatency > MaxCyclicLatency) 1335 MaxCyclicLatency = CyclicLatency; 1336 } 1337 } 1338 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1339 return MaxCyclicLatency; 1340 } 1341 1342 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1343 /// the Top RP tracker in case the region beginning has changed. 1344 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1345 ArrayRef<SUnit*> BotRoots) { 1346 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1347 if (ShouldTrackPressure) { 1348 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1349 TopRPTracker.setPos(CurrentTop); 1350 } 1351 } 1352 1353 /// Move an instruction and update register pressure. 1354 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1355 // Move the instruction to its new location in the instruction stream. 1356 MachineInstr *MI = SU->getInstr(); 1357 1358 if (IsTopNode) { 1359 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1360 if (&*CurrentTop == MI) 1361 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1362 else { 1363 moveInstruction(MI, CurrentTop); 1364 TopRPTracker.setPos(MI); 1365 } 1366 1367 if (ShouldTrackPressure) { 1368 // Update top scheduled pressure. 1369 RegisterOperands RegOpers; 1370 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1371 if (ShouldTrackLaneMasks) { 1372 // Adjust liveness and add missing dead+read-undef flags. 1373 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1374 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1375 } else { 1376 // Adjust for missing dead-def flags. 1377 RegOpers.detectDeadDefs(*MI, *LIS); 1378 } 1379 1380 TopRPTracker.advance(RegOpers); 1381 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1382 DEBUG( 1383 dbgs() << "Top Pressure:\n"; 1384 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1385 ); 1386 1387 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1388 } 1389 } else { 1390 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1391 MachineBasicBlock::iterator priorII = 1392 priorNonDebug(CurrentBottom, CurrentTop); 1393 if (&*priorII == MI) 1394 CurrentBottom = priorII; 1395 else { 1396 if (&*CurrentTop == MI) { 1397 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1398 TopRPTracker.setPos(CurrentTop); 1399 } 1400 moveInstruction(MI, CurrentBottom); 1401 CurrentBottom = MI; 1402 } 1403 if (ShouldTrackPressure) { 1404 RegisterOperands RegOpers; 1405 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1406 if (ShouldTrackLaneMasks) { 1407 // Adjust liveness and add missing dead+read-undef flags. 1408 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1409 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1410 } else { 1411 // Adjust for missing dead-def flags. 1412 RegOpers.detectDeadDefs(*MI, *LIS); 1413 } 1414 1415 BotRPTracker.recedeSkipDebugValues(); 1416 SmallVector<RegisterMaskPair, 8> LiveUses; 1417 BotRPTracker.recede(RegOpers, &LiveUses); 1418 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1419 DEBUG( 1420 dbgs() << "Bottom Pressure:\n"; 1421 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1422 ); 1423 1424 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1425 updatePressureDiffs(LiveUses); 1426 } 1427 } 1428 } 1429 1430 //===----------------------------------------------------------------------===// 1431 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1432 //===----------------------------------------------------------------------===// 1433 1434 namespace { 1435 1436 /// \brief Post-process the DAG to create cluster edges between neighboring 1437 /// loads or between neighboring stores. 1438 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1439 struct MemOpInfo { 1440 SUnit *SU; 1441 unsigned BaseReg; 1442 int64_t Offset; 1443 1444 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1445 : SU(su), BaseReg(reg), Offset(ofs) {} 1446 1447 bool operator<(const MemOpInfo&RHS) const { 1448 return std::tie(BaseReg, Offset, SU->NodeNum) < 1449 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1450 } 1451 }; 1452 1453 const TargetInstrInfo *TII; 1454 const TargetRegisterInfo *TRI; 1455 bool IsLoad; 1456 1457 public: 1458 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1459 const TargetRegisterInfo *tri, bool IsLoad) 1460 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1461 1462 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1463 1464 protected: 1465 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1466 }; 1467 1468 class StoreClusterMutation : public BaseMemOpClusterMutation { 1469 public: 1470 StoreClusterMutation(const TargetInstrInfo *tii, 1471 const TargetRegisterInfo *tri) 1472 : BaseMemOpClusterMutation(tii, tri, false) {} 1473 }; 1474 1475 class LoadClusterMutation : public BaseMemOpClusterMutation { 1476 public: 1477 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1478 : BaseMemOpClusterMutation(tii, tri, true) {} 1479 }; 1480 1481 } // end anonymous namespace 1482 1483 namespace llvm { 1484 1485 std::unique_ptr<ScheduleDAGMutation> 1486 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1487 const TargetRegisterInfo *TRI) { 1488 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI) 1489 : nullptr; 1490 } 1491 1492 std::unique_ptr<ScheduleDAGMutation> 1493 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1494 const TargetRegisterInfo *TRI) { 1495 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI) 1496 : nullptr; 1497 } 1498 1499 } // end namespace llvm 1500 1501 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1502 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1503 SmallVector<MemOpInfo, 32> MemOpRecords; 1504 for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) { 1505 SUnit *SU = MemOps[Idx]; 1506 unsigned BaseReg; 1507 int64_t Offset; 1508 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1509 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1510 } 1511 if (MemOpRecords.size() < 2) 1512 return; 1513 1514 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1515 unsigned ClusterLength = 1; 1516 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1517 if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) { 1518 ClusterLength = 1; 1519 continue; 1520 } 1521 1522 SUnit *SUa = MemOpRecords[Idx].SU; 1523 SUnit *SUb = MemOpRecords[Idx+1].SU; 1524 if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(), 1525 ClusterLength) && 1526 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1527 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1528 << SUb->NodeNum << ")\n"); 1529 // Copy successor edges from SUa to SUb. Interleaving computation 1530 // dependent on SUa can prevent load combining due to register reuse. 1531 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1532 // loads should have effectively the same inputs. 1533 for (SUnit::const_succ_iterator 1534 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1535 if (SI->getSUnit() == SUb) 1536 continue; 1537 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1538 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1539 } 1540 ++ClusterLength; 1541 } else 1542 ClusterLength = 1; 1543 } 1544 } 1545 1546 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1547 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1548 1549 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1550 1551 // Map DAG NodeNum to store chain ID. 1552 DenseMap<unsigned, unsigned> StoreChainIDs; 1553 // Map each store chain to a set of dependent MemOps. 1554 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1555 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1556 SUnit *SU = &DAG->SUnits[Idx]; 1557 if ((IsLoad && !SU->getInstr()->mayLoad()) || 1558 (!IsLoad && !SU->getInstr()->mayStore())) 1559 continue; 1560 1561 unsigned ChainPredID = DAG->SUnits.size(); 1562 for (SUnit::const_pred_iterator 1563 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1564 if (PI->isCtrl()) { 1565 ChainPredID = PI->getSUnit()->NodeNum; 1566 break; 1567 } 1568 } 1569 // Check if this chain-like pred has been seen 1570 // before. ChainPredID==MaxNodeID at the top of the schedule. 1571 unsigned NumChains = StoreChainDependents.size(); 1572 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1573 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1574 if (Result.second) 1575 StoreChainDependents.resize(NumChains + 1); 1576 StoreChainDependents[Result.first->second].push_back(SU); 1577 } 1578 1579 // Iterate over the store chains. 1580 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1581 clusterNeighboringMemOps(StoreChainDependents[Idx], DAG); 1582 } 1583 1584 //===----------------------------------------------------------------------===// 1585 // CopyConstrain - DAG post-processing to encourage copy elimination. 1586 //===----------------------------------------------------------------------===// 1587 1588 namespace { 1589 1590 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1591 /// the one use that defines the copy's source vreg, most likely an induction 1592 /// variable increment. 1593 class CopyConstrain : public ScheduleDAGMutation { 1594 // Transient state. 1595 SlotIndex RegionBeginIdx; 1596 // RegionEndIdx is the slot index of the last non-debug instruction in the 1597 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1598 SlotIndex RegionEndIdx; 1599 1600 public: 1601 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1602 1603 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1604 1605 protected: 1606 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1607 }; 1608 1609 } // end anonymous namespace 1610 1611 namespace llvm { 1612 1613 std::unique_ptr<ScheduleDAGMutation> 1614 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1615 const TargetRegisterInfo *TRI) { 1616 return llvm::make_unique<CopyConstrain>(TII, TRI); 1617 } 1618 1619 } // end namespace llvm 1620 1621 /// constrainLocalCopy handles two possibilities: 1622 /// 1) Local src: 1623 /// I0: = dst 1624 /// I1: src = ... 1625 /// I2: = dst 1626 /// I3: dst = src (copy) 1627 /// (create pred->succ edges I0->I1, I2->I1) 1628 /// 1629 /// 2) Local copy: 1630 /// I0: dst = src (copy) 1631 /// I1: = dst 1632 /// I2: src = ... 1633 /// I3: = dst 1634 /// (create pred->succ edges I1->I2, I3->I2) 1635 /// 1636 /// Although the MachineScheduler is currently constrained to single blocks, 1637 /// this algorithm should handle extended blocks. An EBB is a set of 1638 /// contiguously numbered blocks such that the previous block in the EBB is 1639 /// always the single predecessor. 1640 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1641 LiveIntervals *LIS = DAG->getLIS(); 1642 MachineInstr *Copy = CopySU->getInstr(); 1643 1644 // Check for pure vreg copies. 1645 const MachineOperand &SrcOp = Copy->getOperand(1); 1646 unsigned SrcReg = SrcOp.getReg(); 1647 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1648 return; 1649 1650 const MachineOperand &DstOp = Copy->getOperand(0); 1651 unsigned DstReg = DstOp.getReg(); 1652 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1653 return; 1654 1655 // Check if either the dest or source is local. If it's live across a back 1656 // edge, it's not local. Note that if both vregs are live across the back 1657 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1658 // If both the copy's source and dest are local live intervals, then we 1659 // should treat the dest as the global for the purpose of adding 1660 // constraints. This adds edges from source's other uses to the copy. 1661 unsigned LocalReg = SrcReg; 1662 unsigned GlobalReg = DstReg; 1663 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1664 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1665 LocalReg = DstReg; 1666 GlobalReg = SrcReg; 1667 LocalLI = &LIS->getInterval(LocalReg); 1668 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1669 return; 1670 } 1671 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1672 1673 // Find the global segment after the start of the local LI. 1674 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1675 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1676 // local live range. We could create edges from other global uses to the local 1677 // start, but the coalescer should have already eliminated these cases, so 1678 // don't bother dealing with it. 1679 if (GlobalSegment == GlobalLI->end()) 1680 return; 1681 1682 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1683 // returned the next global segment. But if GlobalSegment overlaps with 1684 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1685 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1686 if (GlobalSegment->contains(LocalLI->beginIndex())) 1687 ++GlobalSegment; 1688 1689 if (GlobalSegment == GlobalLI->end()) 1690 return; 1691 1692 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1693 if (GlobalSegment != GlobalLI->begin()) { 1694 // Two address defs have no hole. 1695 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1696 GlobalSegment->start)) { 1697 return; 1698 } 1699 // If the prior global segment may be defined by the same two-address 1700 // instruction that also defines LocalLI, then can't make a hole here. 1701 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1702 LocalLI->beginIndex())) { 1703 return; 1704 } 1705 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1706 // it would be a disconnected component in the live range. 1707 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1708 "Disconnected LRG within the scheduling region."); 1709 } 1710 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1711 if (!GlobalDef) 1712 return; 1713 1714 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1715 if (!GlobalSU) 1716 return; 1717 1718 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1719 // constraining the uses of the last local def to precede GlobalDef. 1720 SmallVector<SUnit*,8> LocalUses; 1721 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1722 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1723 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1724 for (SUnit::const_succ_iterator 1725 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1726 I != E; ++I) { 1727 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1728 continue; 1729 if (I->getSUnit() == GlobalSU) 1730 continue; 1731 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1732 return; 1733 LocalUses.push_back(I->getSUnit()); 1734 } 1735 // Open the top of the GlobalLI hole by constraining any earlier global uses 1736 // to precede the start of LocalLI. 1737 SmallVector<SUnit*,8> GlobalUses; 1738 MachineInstr *FirstLocalDef = 1739 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1740 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1741 for (SUnit::const_pred_iterator 1742 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1743 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1744 continue; 1745 if (I->getSUnit() == FirstLocalSU) 1746 continue; 1747 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1748 return; 1749 GlobalUses.push_back(I->getSUnit()); 1750 } 1751 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1752 // Add the weak edges. 1753 for (SmallVectorImpl<SUnit*>::const_iterator 1754 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1755 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1756 << GlobalSU->NodeNum << ")\n"); 1757 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1758 } 1759 for (SmallVectorImpl<SUnit*>::const_iterator 1760 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1761 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1762 << FirstLocalSU->NodeNum << ")\n"); 1763 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1764 } 1765 } 1766 1767 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1768 /// copy elimination. 1769 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1770 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1771 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1772 1773 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1774 if (FirstPos == DAG->end()) 1775 return; 1776 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1777 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1778 *priorNonDebug(DAG->end(), DAG->begin())); 1779 1780 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1781 SUnit *SU = &DAG->SUnits[Idx]; 1782 if (!SU->getInstr()->isCopy()) 1783 continue; 1784 1785 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1786 } 1787 } 1788 1789 //===----------------------------------------------------------------------===// 1790 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1791 // and possibly other custom schedulers. 1792 //===----------------------------------------------------------------------===// 1793 1794 static const unsigned InvalidCycle = ~0U; 1795 1796 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1797 1798 void SchedBoundary::reset() { 1799 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1800 // Destroying and reconstructing it is very expensive though. So keep 1801 // invalid, placeholder HazardRecs. 1802 if (HazardRec && HazardRec->isEnabled()) { 1803 delete HazardRec; 1804 HazardRec = nullptr; 1805 } 1806 Available.clear(); 1807 Pending.clear(); 1808 CheckPending = false; 1809 CurrCycle = 0; 1810 CurrMOps = 0; 1811 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1812 ExpectedLatency = 0; 1813 DependentLatency = 0; 1814 RetiredMOps = 0; 1815 MaxExecutedResCount = 0; 1816 ZoneCritResIdx = 0; 1817 IsResourceLimited = false; 1818 ReservedCycles.clear(); 1819 #ifndef NDEBUG 1820 // Track the maximum number of stall cycles that could arise either from the 1821 // latency of a DAG edge or the number of cycles that a processor resource is 1822 // reserved (SchedBoundary::ReservedCycles). 1823 MaxObservedStall = 0; 1824 #endif 1825 // Reserve a zero-count for invalid CritResIdx. 1826 ExecutedResCounts.resize(1); 1827 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1828 } 1829 1830 void SchedRemainder:: 1831 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1832 reset(); 1833 if (!SchedModel->hasInstrSchedModel()) 1834 return; 1835 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1836 for (std::vector<SUnit>::iterator 1837 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1838 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1839 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1840 * SchedModel->getMicroOpFactor(); 1841 for (TargetSchedModel::ProcResIter 1842 PI = SchedModel->getWriteProcResBegin(SC), 1843 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1844 unsigned PIdx = PI->ProcResourceIdx; 1845 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1846 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1847 } 1848 } 1849 } 1850 1851 void SchedBoundary:: 1852 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1853 reset(); 1854 DAG = dag; 1855 SchedModel = smodel; 1856 Rem = rem; 1857 if (SchedModel->hasInstrSchedModel()) { 1858 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1859 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1860 } 1861 } 1862 1863 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1864 /// these "soft stalls" differently than the hard stall cycles based on CPU 1865 /// resources and computed by checkHazard(). A fully in-order model 1866 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1867 /// available for scheduling until they are ready. However, a weaker in-order 1868 /// model may use this for heuristics. For example, if a processor has in-order 1869 /// behavior when reading certain resources, this may come into play. 1870 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1871 if (!SU->isUnbuffered) 1872 return 0; 1873 1874 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1875 if (ReadyCycle > CurrCycle) 1876 return ReadyCycle - CurrCycle; 1877 return 0; 1878 } 1879 1880 /// Compute the next cycle at which the given processor resource can be 1881 /// scheduled. 1882 unsigned SchedBoundary:: 1883 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1884 unsigned NextUnreserved = ReservedCycles[PIdx]; 1885 // If this resource has never been used, always return cycle zero. 1886 if (NextUnreserved == InvalidCycle) 1887 return 0; 1888 // For bottom-up scheduling add the cycles needed for the current operation. 1889 if (!isTop()) 1890 NextUnreserved += Cycles; 1891 return NextUnreserved; 1892 } 1893 1894 /// Does this SU have a hazard within the current instruction group. 1895 /// 1896 /// The scheduler supports two modes of hazard recognition. The first is the 1897 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1898 /// supports highly complicated in-order reservation tables 1899 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1900 /// 1901 /// The second is a streamlined mechanism that checks for hazards based on 1902 /// simple counters that the scheduler itself maintains. It explicitly checks 1903 /// for instruction dispatch limitations, including the number of micro-ops that 1904 /// can dispatch per cycle. 1905 /// 1906 /// TODO: Also check whether the SU must start a new group. 1907 bool SchedBoundary::checkHazard(SUnit *SU) { 1908 if (HazardRec->isEnabled() 1909 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1910 return true; 1911 } 1912 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1913 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1914 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1915 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1916 return true; 1917 } 1918 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1919 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1920 for (TargetSchedModel::ProcResIter 1921 PI = SchedModel->getWriteProcResBegin(SC), 1922 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1923 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1924 if (NRCycle > CurrCycle) { 1925 #ifndef NDEBUG 1926 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1927 #endif 1928 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1929 << SchedModel->getResourceName(PI->ProcResourceIdx) 1930 << "=" << NRCycle << "c\n"); 1931 return true; 1932 } 1933 } 1934 } 1935 return false; 1936 } 1937 1938 // Find the unscheduled node in ReadySUs with the highest latency. 1939 unsigned SchedBoundary:: 1940 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1941 SUnit *LateSU = nullptr; 1942 unsigned RemLatency = 0; 1943 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1944 I != E; ++I) { 1945 unsigned L = getUnscheduledLatency(*I); 1946 if (L > RemLatency) { 1947 RemLatency = L; 1948 LateSU = *I; 1949 } 1950 } 1951 if (LateSU) { 1952 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1953 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1954 } 1955 return RemLatency; 1956 } 1957 1958 // Count resources in this zone and the remaining unscheduled 1959 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1960 // resource index, or zero if the zone is issue limited. 1961 unsigned SchedBoundary:: 1962 getOtherResourceCount(unsigned &OtherCritIdx) { 1963 OtherCritIdx = 0; 1964 if (!SchedModel->hasInstrSchedModel()) 1965 return 0; 1966 1967 unsigned OtherCritCount = Rem->RemIssueCount 1968 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1969 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1970 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1971 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1972 PIdx != PEnd; ++PIdx) { 1973 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1974 if (OtherCount > OtherCritCount) { 1975 OtherCritCount = OtherCount; 1976 OtherCritIdx = PIdx; 1977 } 1978 } 1979 if (OtherCritIdx) { 1980 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1981 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1982 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1983 } 1984 return OtherCritCount; 1985 } 1986 1987 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1988 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1989 1990 #ifndef NDEBUG 1991 // ReadyCycle was been bumped up to the CurrCycle when this node was 1992 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1993 // scheduling, so may now be greater than ReadyCycle. 1994 if (ReadyCycle > CurrCycle) 1995 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1996 #endif 1997 1998 if (ReadyCycle < MinReadyCycle) 1999 MinReadyCycle = ReadyCycle; 2000 2001 // Check for interlocks first. For the purpose of other heuristics, an 2002 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2003 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2004 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2005 Available.size() >= ReadyListLimit) 2006 Pending.push(SU); 2007 else 2008 Available.push(SU); 2009 } 2010 2011 /// Move the boundary of scheduled code by one cycle. 2012 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2013 if (SchedModel->getMicroOpBufferSize() == 0) { 2014 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2015 "MinReadyCycle uninitialized"); 2016 if (MinReadyCycle > NextCycle) 2017 NextCycle = MinReadyCycle; 2018 } 2019 // Update the current micro-ops, which will issue in the next cycle. 2020 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2021 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2022 2023 // Decrement DependentLatency based on the next cycle. 2024 if ((NextCycle - CurrCycle) > DependentLatency) 2025 DependentLatency = 0; 2026 else 2027 DependentLatency -= (NextCycle - CurrCycle); 2028 2029 if (!HazardRec->isEnabled()) { 2030 // Bypass HazardRec virtual calls. 2031 CurrCycle = NextCycle; 2032 } else { 2033 // Bypass getHazardType calls in case of long latency. 2034 for (; CurrCycle != NextCycle; ++CurrCycle) { 2035 if (isTop()) 2036 HazardRec->AdvanceCycle(); 2037 else 2038 HazardRec->RecedeCycle(); 2039 } 2040 } 2041 CheckPending = true; 2042 unsigned LFactor = SchedModel->getLatencyFactor(); 2043 IsResourceLimited = 2044 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2045 > (int)LFactor; 2046 2047 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2048 } 2049 2050 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2051 ExecutedResCounts[PIdx] += Count; 2052 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2053 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2054 } 2055 2056 /// Add the given processor resource to this scheduled zone. 2057 /// 2058 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2059 /// during which this resource is consumed. 2060 /// 2061 /// \return the next cycle at which the instruction may execute without 2062 /// oversubscribing resources. 2063 unsigned SchedBoundary:: 2064 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2065 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2066 unsigned Count = Factor * Cycles; 2067 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2068 << " +" << Cycles << "x" << Factor << "u\n"); 2069 2070 // Update Executed resources counts. 2071 incExecutedResources(PIdx, Count); 2072 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2073 Rem->RemainingCounts[PIdx] -= Count; 2074 2075 // Check if this resource exceeds the current critical resource. If so, it 2076 // becomes the critical resource. 2077 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2078 ZoneCritResIdx = PIdx; 2079 DEBUG(dbgs() << " *** Critical resource " 2080 << SchedModel->getResourceName(PIdx) << ": " 2081 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2082 } 2083 // For reserved resources, record the highest cycle using the resource. 2084 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2085 if (NextAvailable > CurrCycle) { 2086 DEBUG(dbgs() << " Resource conflict: " 2087 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2088 << NextAvailable << "\n"); 2089 } 2090 return NextAvailable; 2091 } 2092 2093 /// Move the boundary of scheduled code by one SUnit. 2094 void SchedBoundary::bumpNode(SUnit *SU) { 2095 // Update the reservation table. 2096 if (HazardRec->isEnabled()) { 2097 if (!isTop() && SU->isCall) { 2098 // Calls are scheduled with their preceding instructions. For bottom-up 2099 // scheduling, clear the pipeline state before emitting. 2100 HazardRec->Reset(); 2101 } 2102 HazardRec->EmitInstruction(SU); 2103 } 2104 // checkHazard should prevent scheduling multiple instructions per cycle that 2105 // exceed the issue width. 2106 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2107 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2108 assert( 2109 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2110 "Cannot schedule this instruction's MicroOps in the current cycle."); 2111 2112 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2113 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2114 2115 unsigned NextCycle = CurrCycle; 2116 switch (SchedModel->getMicroOpBufferSize()) { 2117 case 0: 2118 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2119 break; 2120 case 1: 2121 if (ReadyCycle > NextCycle) { 2122 NextCycle = ReadyCycle; 2123 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2124 } 2125 break; 2126 default: 2127 // We don't currently model the OOO reorder buffer, so consider all 2128 // scheduled MOps to be "retired". We do loosely model in-order resource 2129 // latency. If this instruction uses an in-order resource, account for any 2130 // likely stall cycles. 2131 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2132 NextCycle = ReadyCycle; 2133 break; 2134 } 2135 RetiredMOps += IncMOps; 2136 2137 // Update resource counts and critical resource. 2138 if (SchedModel->hasInstrSchedModel()) { 2139 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2140 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2141 Rem->RemIssueCount -= DecRemIssue; 2142 if (ZoneCritResIdx) { 2143 // Scale scheduled micro-ops for comparing with the critical resource. 2144 unsigned ScaledMOps = 2145 RetiredMOps * SchedModel->getMicroOpFactor(); 2146 2147 // If scaled micro-ops are now more than the previous critical resource by 2148 // a full cycle, then micro-ops issue becomes critical. 2149 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2150 >= (int)SchedModel->getLatencyFactor()) { 2151 ZoneCritResIdx = 0; 2152 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2153 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2154 } 2155 } 2156 for (TargetSchedModel::ProcResIter 2157 PI = SchedModel->getWriteProcResBegin(SC), 2158 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2159 unsigned RCycle = 2160 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2161 if (RCycle > NextCycle) 2162 NextCycle = RCycle; 2163 } 2164 if (SU->hasReservedResource) { 2165 // For reserved resources, record the highest cycle using the resource. 2166 // For top-down scheduling, this is the cycle in which we schedule this 2167 // instruction plus the number of cycles the operations reserves the 2168 // resource. For bottom-up is it simply the instruction's cycle. 2169 for (TargetSchedModel::ProcResIter 2170 PI = SchedModel->getWriteProcResBegin(SC), 2171 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2172 unsigned PIdx = PI->ProcResourceIdx; 2173 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2174 if (isTop()) { 2175 ReservedCycles[PIdx] = 2176 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2177 } 2178 else 2179 ReservedCycles[PIdx] = NextCycle; 2180 } 2181 } 2182 } 2183 } 2184 // Update ExpectedLatency and DependentLatency. 2185 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2186 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2187 if (SU->getDepth() > TopLatency) { 2188 TopLatency = SU->getDepth(); 2189 DEBUG(dbgs() << " " << Available.getName() 2190 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2191 } 2192 if (SU->getHeight() > BotLatency) { 2193 BotLatency = SU->getHeight(); 2194 DEBUG(dbgs() << " " << Available.getName() 2195 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2196 } 2197 // If we stall for any reason, bump the cycle. 2198 if (NextCycle > CurrCycle) { 2199 bumpCycle(NextCycle); 2200 } else { 2201 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2202 // resource limited. If a stall occurred, bumpCycle does this. 2203 unsigned LFactor = SchedModel->getLatencyFactor(); 2204 IsResourceLimited = 2205 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2206 > (int)LFactor; 2207 } 2208 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2209 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2210 // one cycle. Since we commonly reach the max MOps here, opportunistically 2211 // bump the cycle to avoid uselessly checking everything in the readyQ. 2212 CurrMOps += IncMOps; 2213 while (CurrMOps >= SchedModel->getIssueWidth()) { 2214 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2215 << " at cycle " << CurrCycle << '\n'); 2216 bumpCycle(++NextCycle); 2217 } 2218 DEBUG(dumpScheduledState()); 2219 } 2220 2221 /// Release pending ready nodes in to the available queue. This makes them 2222 /// visible to heuristics. 2223 void SchedBoundary::releasePending() { 2224 // If the available queue is empty, it is safe to reset MinReadyCycle. 2225 if (Available.empty()) 2226 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2227 2228 // Check to see if any of the pending instructions are ready to issue. If 2229 // so, add them to the available queue. 2230 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2231 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2232 SUnit *SU = *(Pending.begin()+i); 2233 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2234 2235 if (ReadyCycle < MinReadyCycle) 2236 MinReadyCycle = ReadyCycle; 2237 2238 if (!IsBuffered && ReadyCycle > CurrCycle) 2239 continue; 2240 2241 if (checkHazard(SU)) 2242 continue; 2243 2244 if (Available.size() >= ReadyListLimit) 2245 break; 2246 2247 Available.push(SU); 2248 Pending.remove(Pending.begin()+i); 2249 --i; --e; 2250 } 2251 CheckPending = false; 2252 } 2253 2254 /// Remove SU from the ready set for this boundary. 2255 void SchedBoundary::removeReady(SUnit *SU) { 2256 if (Available.isInQueue(SU)) 2257 Available.remove(Available.find(SU)); 2258 else { 2259 assert(Pending.isInQueue(SU) && "bad ready count"); 2260 Pending.remove(Pending.find(SU)); 2261 } 2262 } 2263 2264 /// If this queue only has one ready candidate, return it. As a side effect, 2265 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2266 /// one node is ready. If multiple instructions are ready, return NULL. 2267 SUnit *SchedBoundary::pickOnlyChoice() { 2268 if (CheckPending) 2269 releasePending(); 2270 2271 if (CurrMOps > 0) { 2272 // Defer any ready instrs that now have a hazard. 2273 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2274 if (checkHazard(*I)) { 2275 Pending.push(*I); 2276 I = Available.remove(I); 2277 continue; 2278 } 2279 ++I; 2280 } 2281 } 2282 for (unsigned i = 0; Available.empty(); ++i) { 2283 // FIXME: Re-enable assert once PR20057 is resolved. 2284 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2285 // "permanent hazard"); 2286 (void)i; 2287 bumpCycle(CurrCycle + 1); 2288 releasePending(); 2289 } 2290 2291 DEBUG(Pending.dump()); 2292 DEBUG(Available.dump()); 2293 2294 if (Available.size() == 1) 2295 return *Available.begin(); 2296 return nullptr; 2297 } 2298 2299 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2300 // This is useful information to dump after bumpNode. 2301 // Note that the Queue contents are more useful before pickNodeFromQueue. 2302 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() { 2303 unsigned ResFactor; 2304 unsigned ResCount; 2305 if (ZoneCritResIdx) { 2306 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2307 ResCount = getResourceCount(ZoneCritResIdx); 2308 } else { 2309 ResFactor = SchedModel->getMicroOpFactor(); 2310 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2311 } 2312 unsigned LFactor = SchedModel->getLatencyFactor(); 2313 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2314 << " Retired: " << RetiredMOps; 2315 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2316 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2317 << ResCount / ResFactor << " " 2318 << SchedModel->getResourceName(ZoneCritResIdx) 2319 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2320 << (IsResourceLimited ? " - Resource" : " - Latency") 2321 << " limited.\n"; 2322 } 2323 #endif 2324 2325 //===----------------------------------------------------------------------===// 2326 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2327 //===----------------------------------------------------------------------===// 2328 2329 void GenericSchedulerBase::SchedCandidate:: 2330 initResourceDelta(const ScheduleDAGMI *DAG, 2331 const TargetSchedModel *SchedModel) { 2332 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2333 return; 2334 2335 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2336 for (TargetSchedModel::ProcResIter 2337 PI = SchedModel->getWriteProcResBegin(SC), 2338 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2339 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2340 ResDelta.CritResources += PI->Cycles; 2341 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2342 ResDelta.DemandedResources += PI->Cycles; 2343 } 2344 } 2345 2346 /// Set the CandPolicy given a scheduling zone given the current resources and 2347 /// latencies inside and outside the zone. 2348 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2349 SchedBoundary &CurrZone, 2350 SchedBoundary *OtherZone) { 2351 // Apply preemptive heuristics based on the total latency and resources 2352 // inside and outside this zone. Potential stalls should be considered before 2353 // following this policy. 2354 2355 // Compute remaining latency. We need this both to determine whether the 2356 // overall schedule has become latency-limited and whether the instructions 2357 // outside this zone are resource or latency limited. 2358 // 2359 // The "dependent" latency is updated incrementally during scheduling as the 2360 // max height/depth of scheduled nodes minus the cycles since it was 2361 // scheduled: 2362 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2363 // 2364 // The "independent" latency is the max ready queue depth: 2365 // ILat = max N.depth for N in Available|Pending 2366 // 2367 // RemainingLatency is the greater of independent and dependent latency. 2368 unsigned RemLatency = CurrZone.getDependentLatency(); 2369 RemLatency = std::max(RemLatency, 2370 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2371 RemLatency = std::max(RemLatency, 2372 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2373 2374 // Compute the critical resource outside the zone. 2375 unsigned OtherCritIdx = 0; 2376 unsigned OtherCount = 2377 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2378 2379 bool OtherResLimited = false; 2380 if (SchedModel->hasInstrSchedModel()) { 2381 unsigned LFactor = SchedModel->getLatencyFactor(); 2382 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2383 } 2384 // Schedule aggressively for latency in PostRA mode. We don't check for 2385 // acyclic latency during PostRA, and highly out-of-order processors will 2386 // skip PostRA scheduling. 2387 if (!OtherResLimited) { 2388 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2389 Policy.ReduceLatency |= true; 2390 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2391 << " RemainingLatency " << RemLatency << " + " 2392 << CurrZone.getCurrCycle() << "c > CritPath " 2393 << Rem.CriticalPath << "\n"); 2394 } 2395 } 2396 // If the same resource is limiting inside and outside the zone, do nothing. 2397 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2398 return; 2399 2400 DEBUG( 2401 if (CurrZone.isResourceLimited()) { 2402 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2403 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2404 << "\n"; 2405 } 2406 if (OtherResLimited) 2407 dbgs() << " RemainingLimit: " 2408 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2409 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2410 dbgs() << " Latency limited both directions.\n"); 2411 2412 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2413 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2414 2415 if (OtherResLimited) 2416 Policy.DemandResIdx = OtherCritIdx; 2417 } 2418 2419 #ifndef NDEBUG 2420 const char *GenericSchedulerBase::getReasonStr( 2421 GenericSchedulerBase::CandReason Reason) { 2422 switch (Reason) { 2423 case NoCand: return "NOCAND "; 2424 case Only1: return "ONLY1 "; 2425 case PhysRegCopy: return "PREG-COPY "; 2426 case RegExcess: return "REG-EXCESS"; 2427 case RegCritical: return "REG-CRIT "; 2428 case Stall: return "STALL "; 2429 case Cluster: return "CLUSTER "; 2430 case Weak: return "WEAK "; 2431 case RegMax: return "REG-MAX "; 2432 case ResourceReduce: return "RES-REDUCE"; 2433 case ResourceDemand: return "RES-DEMAND"; 2434 case TopDepthReduce: return "TOP-DEPTH "; 2435 case TopPathReduce: return "TOP-PATH "; 2436 case BotHeightReduce:return "BOT-HEIGHT"; 2437 case BotPathReduce: return "BOT-PATH "; 2438 case NextDefUse: return "DEF-USE "; 2439 case NodeOrder: return "ORDER "; 2440 }; 2441 llvm_unreachable("Unknown reason!"); 2442 } 2443 2444 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2445 PressureChange P; 2446 unsigned ResIdx = 0; 2447 unsigned Latency = 0; 2448 switch (Cand.Reason) { 2449 default: 2450 break; 2451 case RegExcess: 2452 P = Cand.RPDelta.Excess; 2453 break; 2454 case RegCritical: 2455 P = Cand.RPDelta.CriticalMax; 2456 break; 2457 case RegMax: 2458 P = Cand.RPDelta.CurrentMax; 2459 break; 2460 case ResourceReduce: 2461 ResIdx = Cand.Policy.ReduceResIdx; 2462 break; 2463 case ResourceDemand: 2464 ResIdx = Cand.Policy.DemandResIdx; 2465 break; 2466 case TopDepthReduce: 2467 Latency = Cand.SU->getDepth(); 2468 break; 2469 case TopPathReduce: 2470 Latency = Cand.SU->getHeight(); 2471 break; 2472 case BotHeightReduce: 2473 Latency = Cand.SU->getHeight(); 2474 break; 2475 case BotPathReduce: 2476 Latency = Cand.SU->getDepth(); 2477 break; 2478 } 2479 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2480 if (P.isValid()) 2481 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2482 << ":" << P.getUnitInc() << " "; 2483 else 2484 dbgs() << " "; 2485 if (ResIdx) 2486 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2487 else 2488 dbgs() << " "; 2489 if (Latency) 2490 dbgs() << " " << Latency << " cycles "; 2491 else 2492 dbgs() << " "; 2493 dbgs() << '\n'; 2494 } 2495 #endif 2496 2497 /// Return true if this heuristic determines order. 2498 static bool tryLess(int TryVal, int CandVal, 2499 GenericSchedulerBase::SchedCandidate &TryCand, 2500 GenericSchedulerBase::SchedCandidate &Cand, 2501 GenericSchedulerBase::CandReason Reason) { 2502 if (TryVal < CandVal) { 2503 TryCand.Reason = Reason; 2504 return true; 2505 } 2506 if (TryVal > CandVal) { 2507 if (Cand.Reason > Reason) 2508 Cand.Reason = Reason; 2509 return true; 2510 } 2511 return false; 2512 } 2513 2514 static bool tryGreater(int TryVal, int CandVal, 2515 GenericSchedulerBase::SchedCandidate &TryCand, 2516 GenericSchedulerBase::SchedCandidate &Cand, 2517 GenericSchedulerBase::CandReason Reason) { 2518 if (TryVal > CandVal) { 2519 TryCand.Reason = Reason; 2520 return true; 2521 } 2522 if (TryVal < CandVal) { 2523 if (Cand.Reason > Reason) 2524 Cand.Reason = Reason; 2525 return true; 2526 } 2527 return false; 2528 } 2529 2530 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2531 GenericSchedulerBase::SchedCandidate &Cand, 2532 SchedBoundary &Zone) { 2533 if (Zone.isTop()) { 2534 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2535 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2536 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2537 return true; 2538 } 2539 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2540 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2541 return true; 2542 } else { 2543 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2544 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2545 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2546 return true; 2547 } 2548 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2549 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2550 return true; 2551 } 2552 return false; 2553 } 2554 2555 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2556 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2557 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2558 } 2559 2560 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2561 tracePick(Cand.Reason, Cand.AtTop); 2562 } 2563 2564 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2565 assert(dag->hasVRegLiveness() && 2566 "(PreRA)GenericScheduler needs vreg liveness"); 2567 DAG = static_cast<ScheduleDAGMILive*>(dag); 2568 SchedModel = DAG->getSchedModel(); 2569 TRI = DAG->TRI; 2570 2571 Rem.init(DAG, SchedModel); 2572 Top.init(DAG, SchedModel, &Rem); 2573 Bot.init(DAG, SchedModel, &Rem); 2574 2575 // Initialize resource counts. 2576 2577 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2578 // are disabled, then these HazardRecs will be disabled. 2579 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2580 if (!Top.HazardRec) { 2581 Top.HazardRec = 2582 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2583 Itin, DAG); 2584 } 2585 if (!Bot.HazardRec) { 2586 Bot.HazardRec = 2587 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2588 Itin, DAG); 2589 } 2590 TopCand.SU = nullptr; 2591 BotCand.SU = nullptr; 2592 } 2593 2594 /// Initialize the per-region scheduling policy. 2595 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2596 MachineBasicBlock::iterator End, 2597 unsigned NumRegionInstrs) { 2598 const MachineFunction &MF = *Begin->getParent()->getParent(); 2599 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2600 2601 // Avoid setting up the register pressure tracker for small regions to save 2602 // compile time. As a rough heuristic, only track pressure when the number of 2603 // schedulable instructions exceeds half the integer register file. 2604 RegionPolicy.ShouldTrackPressure = true; 2605 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2606 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2607 if (TLI->isTypeLegal(LegalIntVT)) { 2608 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2609 TLI->getRegClassFor(LegalIntVT)); 2610 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2611 } 2612 } 2613 2614 // For generic targets, we default to bottom-up, because it's simpler and more 2615 // compile-time optimizations have been implemented in that direction. 2616 RegionPolicy.OnlyBottomUp = true; 2617 2618 // Allow the subtarget to override default policy. 2619 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2620 2621 // After subtarget overrides, apply command line options. 2622 if (!EnableRegPressure) 2623 RegionPolicy.ShouldTrackPressure = false; 2624 2625 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2626 // e.g. -misched-bottomup=false allows scheduling in both directions. 2627 assert((!ForceTopDown || !ForceBottomUp) && 2628 "-misched-topdown incompatible with -misched-bottomup"); 2629 if (ForceBottomUp.getNumOccurrences() > 0) { 2630 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2631 if (RegionPolicy.OnlyBottomUp) 2632 RegionPolicy.OnlyTopDown = false; 2633 } 2634 if (ForceTopDown.getNumOccurrences() > 0) { 2635 RegionPolicy.OnlyTopDown = ForceTopDown; 2636 if (RegionPolicy.OnlyTopDown) 2637 RegionPolicy.OnlyBottomUp = false; 2638 } 2639 } 2640 2641 void GenericScheduler::dumpPolicy() { 2642 // Cannot completely remove virtual function even in release mode. 2643 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2644 dbgs() << "GenericScheduler RegionPolicy: " 2645 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2646 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2647 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2648 << "\n"; 2649 #endif 2650 } 2651 2652 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2653 /// critical path by more cycles than it takes to drain the instruction buffer. 2654 /// We estimate an upper bounds on in-flight instructions as: 2655 /// 2656 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2657 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2658 /// InFlightResources = InFlightIterations * LoopResources 2659 /// 2660 /// TODO: Check execution resources in addition to IssueCount. 2661 void GenericScheduler::checkAcyclicLatency() { 2662 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2663 return; 2664 2665 // Scaled number of cycles per loop iteration. 2666 unsigned IterCount = 2667 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2668 Rem.RemIssueCount); 2669 // Scaled acyclic critical path. 2670 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2671 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2672 unsigned InFlightCount = 2673 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2674 unsigned BufferLimit = 2675 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2676 2677 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2678 2679 DEBUG(dbgs() << "IssueCycles=" 2680 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2681 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2682 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2683 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2684 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2685 if (Rem.IsAcyclicLatencyLimited) 2686 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2687 } 2688 2689 void GenericScheduler::registerRoots() { 2690 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2691 2692 // Some roots may not feed into ExitSU. Check all of them in case. 2693 for (std::vector<SUnit*>::const_iterator 2694 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2695 if ((*I)->getDepth() > Rem.CriticalPath) 2696 Rem.CriticalPath = (*I)->getDepth(); 2697 } 2698 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2699 if (DumpCriticalPathLength) { 2700 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2701 } 2702 2703 if (EnableCyclicPath) { 2704 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2705 checkAcyclicLatency(); 2706 } 2707 } 2708 2709 static bool tryPressure(const PressureChange &TryP, 2710 const PressureChange &CandP, 2711 GenericSchedulerBase::SchedCandidate &TryCand, 2712 GenericSchedulerBase::SchedCandidate &Cand, 2713 GenericSchedulerBase::CandReason Reason, 2714 const TargetRegisterInfo *TRI, 2715 const MachineFunction &MF) { 2716 // If one candidate decreases and the other increases, go with it. 2717 // Invalid candidates have UnitInc==0. 2718 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2719 Reason)) { 2720 return true; 2721 } 2722 // Do not compare the magnitude of pressure changes between top and bottom 2723 // boundary. 2724 if (Cand.AtTop != TryCand.AtTop) 2725 return false; 2726 2727 // If both candidates affect the same set in the same boundary, go with the 2728 // smallest increase. 2729 unsigned TryPSet = TryP.getPSetOrMax(); 2730 unsigned CandPSet = CandP.getPSetOrMax(); 2731 if (TryPSet == CandPSet) { 2732 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2733 Reason); 2734 } 2735 2736 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2737 std::numeric_limits<int>::max(); 2738 2739 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2740 std::numeric_limits<int>::max(); 2741 2742 // If the candidates are decreasing pressure, reverse priority. 2743 if (TryP.getUnitInc() < 0) 2744 std::swap(TryRank, CandRank); 2745 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2746 } 2747 2748 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2749 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2750 } 2751 2752 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2753 /// their physreg def/use. 2754 /// 2755 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2756 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2757 /// with the operation that produces or consumes the physreg. We'll do this when 2758 /// regalloc has support for parallel copies. 2759 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2760 const MachineInstr *MI = SU->getInstr(); 2761 if (!MI->isCopy()) 2762 return 0; 2763 2764 unsigned ScheduledOper = isTop ? 1 : 0; 2765 unsigned UnscheduledOper = isTop ? 0 : 1; 2766 // If we have already scheduled the physreg produce/consumer, immediately 2767 // schedule the copy. 2768 if (TargetRegisterInfo::isPhysicalRegister( 2769 MI->getOperand(ScheduledOper).getReg())) 2770 return 1; 2771 // If the physreg is at the boundary, defer it. Otherwise schedule it 2772 // immediately to free the dependent. We can hoist the copy later. 2773 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2774 if (TargetRegisterInfo::isPhysicalRegister( 2775 MI->getOperand(UnscheduledOper).getReg())) 2776 return AtBoundary ? -1 : 1; 2777 return 0; 2778 } 2779 2780 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2781 bool AtTop, 2782 const RegPressureTracker &RPTracker, 2783 RegPressureTracker &TempTracker) { 2784 Cand.SU = SU; 2785 Cand.AtTop = AtTop; 2786 if (DAG->isTrackingPressure()) { 2787 if (AtTop) { 2788 TempTracker.getMaxDownwardPressureDelta( 2789 Cand.SU->getInstr(), 2790 Cand.RPDelta, 2791 DAG->getRegionCriticalPSets(), 2792 DAG->getRegPressure().MaxSetPressure); 2793 } else { 2794 if (VerifyScheduling) { 2795 TempTracker.getMaxUpwardPressureDelta( 2796 Cand.SU->getInstr(), 2797 &DAG->getPressureDiff(Cand.SU), 2798 Cand.RPDelta, 2799 DAG->getRegionCriticalPSets(), 2800 DAG->getRegPressure().MaxSetPressure); 2801 } else { 2802 RPTracker.getUpwardPressureDelta( 2803 Cand.SU->getInstr(), 2804 DAG->getPressureDiff(Cand.SU), 2805 Cand.RPDelta, 2806 DAG->getRegionCriticalPSets(), 2807 DAG->getRegPressure().MaxSetPressure); 2808 } 2809 } 2810 } 2811 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2812 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2813 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2814 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2815 } 2816 2817 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2818 /// hierarchical. This may be more efficient than a graduated cost model because 2819 /// we don't need to evaluate all aspects of the model for each node in the 2820 /// queue. But it's really done to make the heuristics easier to debug and 2821 /// statistically analyze. 2822 /// 2823 /// \param Cand provides the policy and current best candidate. 2824 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2825 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2826 // if Cand is from a different zone than TryCand. 2827 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2828 SchedCandidate &TryCand, 2829 SchedBoundary *Zone) { 2830 // Initialize the candidate if needed. 2831 if (!Cand.isValid()) { 2832 TryCand.Reason = NodeOrder; 2833 return; 2834 } 2835 2836 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2837 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2838 TryCand, Cand, PhysRegCopy)) 2839 return; 2840 2841 // Avoid exceeding the target's limit. 2842 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2843 Cand.RPDelta.Excess, 2844 TryCand, Cand, RegExcess, TRI, 2845 DAG->MF)) 2846 return; 2847 2848 // Avoid increasing the max critical pressure in the scheduled region. 2849 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2850 Cand.RPDelta.CriticalMax, 2851 TryCand, Cand, RegCritical, TRI, 2852 DAG->MF)) 2853 return; 2854 2855 // We only compare a subset of features when comparing nodes between 2856 // Top and Bottom boundary. Some properties are simply incomparable, in many 2857 // other instances we should only override the other boundary if something 2858 // is a clear good pick on one boundary. Skip heuristics that are more 2859 // "tie-breaking" in nature. 2860 bool SameBoundary = Zone != nullptr; 2861 if (SameBoundary) { 2862 // For loops that are acyclic path limited, aggressively schedule for 2863 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2864 // heuristics to take precedence. 2865 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2866 tryLatency(TryCand, Cand, *Zone)) 2867 return; 2868 2869 // Prioritize instructions that read unbuffered resources by stall cycles. 2870 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2871 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2872 return; 2873 } 2874 2875 // Keep clustered nodes together to encourage downstream peephole 2876 // optimizations which may reduce resource requirements. 2877 // 2878 // This is a best effort to set things up for a post-RA pass. Optimizations 2879 // like generating loads of multiple registers should ideally be done within 2880 // the scheduler pass by combining the loads during DAG postprocessing. 2881 const SUnit *CandNextClusterSU = 2882 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2883 const SUnit *TryCandNextClusterSU = 2884 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2885 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2886 Cand.SU == CandNextClusterSU, 2887 TryCand, Cand, Cluster)) 2888 return; 2889 2890 if (SameBoundary) { 2891 // Weak edges are for clustering and other constraints. 2892 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2893 getWeakLeft(Cand.SU, Cand.AtTop), 2894 TryCand, Cand, Weak)) 2895 return; 2896 } 2897 2898 // Avoid increasing the max pressure of the entire region. 2899 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2900 Cand.RPDelta.CurrentMax, 2901 TryCand, Cand, RegMax, TRI, 2902 DAG->MF)) 2903 return; 2904 2905 if (SameBoundary) { 2906 // Avoid critical resource consumption and balance the schedule. 2907 TryCand.initResourceDelta(DAG, SchedModel); 2908 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2909 TryCand, Cand, ResourceReduce)) 2910 return; 2911 if (tryGreater(TryCand.ResDelta.DemandedResources, 2912 Cand.ResDelta.DemandedResources, 2913 TryCand, Cand, ResourceDemand)) 2914 return; 2915 2916 // Avoid serializing long latency dependence chains. 2917 // For acyclic path limited loops, latency was already checked above. 2918 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2919 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2920 return; 2921 2922 // Fall through to original instruction order. 2923 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2924 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2925 TryCand.Reason = NodeOrder; 2926 } 2927 } 2928 } 2929 2930 /// Pick the best candidate from the queue. 2931 /// 2932 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2933 /// DAG building. To adjust for the current scheduling location we need to 2934 /// maintain the number of vreg uses remaining to be top-scheduled. 2935 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2936 const CandPolicy &ZonePolicy, 2937 const RegPressureTracker &RPTracker, 2938 SchedCandidate &Cand) { 2939 // getMaxPressureDelta temporarily modifies the tracker. 2940 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2941 2942 ReadyQueue &Q = Zone.Available; 2943 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2944 2945 SchedCandidate TryCand(ZonePolicy); 2946 initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker); 2947 // Pass SchedBoundary only when comparing nodes from the same boundary. 2948 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 2949 tryCandidate(Cand, TryCand, ZoneArg); 2950 if (TryCand.Reason != NoCand) { 2951 // Initialize resource delta if needed in case future heuristics query it. 2952 if (TryCand.ResDelta == SchedResourceDelta()) 2953 TryCand.initResourceDelta(DAG, SchedModel); 2954 Cand.setBest(TryCand); 2955 DEBUG(traceCandidate(Cand)); 2956 } 2957 } 2958 } 2959 2960 /// Pick the best candidate node from either the top or bottom queue. 2961 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2962 // Schedule as far as possible in the direction of no choice. This is most 2963 // efficient, but also provides the best heuristics for CriticalPSets. 2964 if (SUnit *SU = Bot.pickOnlyChoice()) { 2965 IsTopNode = false; 2966 tracePick(Only1, false); 2967 return SU; 2968 } 2969 if (SUnit *SU = Top.pickOnlyChoice()) { 2970 IsTopNode = true; 2971 tracePick(Only1, true); 2972 return SU; 2973 } 2974 // Set the bottom-up policy based on the state of the current bottom zone and 2975 // the instructions outside the zone, including the top zone. 2976 CandPolicy BotPolicy; 2977 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 2978 // Set the top-down policy based on the state of the current top zone and 2979 // the instructions outside the zone, including the bottom zone. 2980 CandPolicy TopPolicy; 2981 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 2982 2983 // See if BotCand is still valid (because we previously scheduled from Top). 2984 DEBUG(dbgs() << "Picking from Bot:\n"); 2985 if (!BotCand.isValid() || BotCand.SU->isScheduled || 2986 BotCand.Policy != BotPolicy) { 2987 BotCand.reset(CandPolicy()); 2988 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 2989 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2990 } else { 2991 DEBUG(traceCandidate(BotCand)); 2992 #ifndef NDEBUG 2993 if (VerifyScheduling) { 2994 SchedCandidate TCand; 2995 TCand.reset(CandPolicy()); 2996 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 2997 assert(TCand.SU == BotCand.SU && 2998 "Last pick result should correspond to re-picking right now"); 2999 } 3000 #endif 3001 } 3002 3003 // Check if the top Q has a better candidate. 3004 DEBUG(dbgs() << "Picking from Top:\n"); 3005 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3006 TopCand.Policy != TopPolicy) { 3007 TopCand.reset(CandPolicy()); 3008 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3009 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3010 } else { 3011 DEBUG(traceCandidate(TopCand)); 3012 #ifndef NDEBUG 3013 if (VerifyScheduling) { 3014 SchedCandidate TCand; 3015 TCand.reset(CandPolicy()); 3016 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3017 assert(TCand.SU == TopCand.SU && 3018 "Last pick result should correspond to re-picking right now"); 3019 } 3020 #endif 3021 } 3022 3023 // Pick best from BotCand and TopCand. 3024 assert(BotCand.isValid()); 3025 assert(TopCand.isValid()); 3026 SchedCandidate Cand = BotCand; 3027 TopCand.Reason = NoCand; 3028 tryCandidate(Cand, TopCand, nullptr); 3029 if (TopCand.Reason != NoCand) { 3030 Cand.setBest(TopCand); 3031 DEBUG(traceCandidate(Cand)); 3032 } 3033 3034 IsTopNode = Cand.AtTop; 3035 tracePick(Cand); 3036 return Cand.SU; 3037 } 3038 3039 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3040 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3041 if (DAG->top() == DAG->bottom()) { 3042 assert(Top.Available.empty() && Top.Pending.empty() && 3043 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3044 return nullptr; 3045 } 3046 SUnit *SU; 3047 do { 3048 if (RegionPolicy.OnlyTopDown) { 3049 SU = Top.pickOnlyChoice(); 3050 if (!SU) { 3051 CandPolicy NoPolicy; 3052 TopCand.reset(NoPolicy); 3053 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3054 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3055 tracePick(TopCand); 3056 SU = TopCand.SU; 3057 } 3058 IsTopNode = true; 3059 } else if (RegionPolicy.OnlyBottomUp) { 3060 SU = Bot.pickOnlyChoice(); 3061 if (!SU) { 3062 CandPolicy NoPolicy; 3063 BotCand.reset(NoPolicy); 3064 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3065 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3066 tracePick(BotCand); 3067 SU = BotCand.SU; 3068 } 3069 IsTopNode = false; 3070 } else { 3071 SU = pickNodeBidirectional(IsTopNode); 3072 } 3073 } while (SU->isScheduled); 3074 3075 if (SU->isTopReady()) 3076 Top.removeReady(SU); 3077 if (SU->isBottomReady()) 3078 Bot.removeReady(SU); 3079 3080 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3081 return SU; 3082 } 3083 3084 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3085 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3086 if (!isTop) 3087 ++InsertPos; 3088 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3089 3090 // Find already scheduled copies with a single physreg dependence and move 3091 // them just above the scheduled instruction. 3092 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 3093 I != E; ++I) { 3094 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 3095 continue; 3096 SUnit *DepSU = I->getSUnit(); 3097 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3098 continue; 3099 MachineInstr *Copy = DepSU->getInstr(); 3100 if (!Copy->isCopy()) 3101 continue; 3102 DEBUG(dbgs() << " Rescheduling physreg copy "; 3103 I->getSUnit()->dump(DAG)); 3104 DAG->moveInstruction(Copy, InsertPos); 3105 } 3106 } 3107 3108 /// Update the scheduler's state after scheduling a node. This is the same node 3109 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3110 /// update it's state based on the current cycle before MachineSchedStrategy 3111 /// does. 3112 /// 3113 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3114 /// them here. See comments in biasPhysRegCopy. 3115 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3116 if (IsTopNode) { 3117 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3118 Top.bumpNode(SU); 3119 if (SU->hasPhysRegUses) 3120 reschedulePhysRegCopies(SU, true); 3121 } else { 3122 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3123 Bot.bumpNode(SU); 3124 if (SU->hasPhysRegDefs) 3125 reschedulePhysRegCopies(SU, false); 3126 } 3127 } 3128 3129 /// Create the standard converging machine scheduler. This will be used as the 3130 /// default scheduler if the target does not set a default. 3131 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3132 ScheduleDAGMILive *DAG = 3133 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)); 3134 // Register DAG post-processors. 3135 // 3136 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3137 // data and pass it to later mutations. Have a single mutation that gathers 3138 // the interesting nodes in one pass. 3139 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3140 return DAG; 3141 } 3142 3143 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3144 return createGenericSchedLive(C); 3145 } 3146 3147 static MachineSchedRegistry 3148 GenericSchedRegistry("converge", "Standard converging scheduler.", 3149 createConveringSched); 3150 3151 //===----------------------------------------------------------------------===// 3152 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3153 //===----------------------------------------------------------------------===// 3154 3155 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3156 DAG = Dag; 3157 SchedModel = DAG->getSchedModel(); 3158 TRI = DAG->TRI; 3159 3160 Rem.init(DAG, SchedModel); 3161 Top.init(DAG, SchedModel, &Rem); 3162 BotRoots.clear(); 3163 3164 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3165 // or are disabled, then these HazardRecs will be disabled. 3166 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3167 if (!Top.HazardRec) { 3168 Top.HazardRec = 3169 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3170 Itin, DAG); 3171 } 3172 } 3173 3174 void PostGenericScheduler::registerRoots() { 3175 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3176 3177 // Some roots may not feed into ExitSU. Check all of them in case. 3178 for (SmallVectorImpl<SUnit*>::const_iterator 3179 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3180 if ((*I)->getDepth() > Rem.CriticalPath) 3181 Rem.CriticalPath = (*I)->getDepth(); 3182 } 3183 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3184 if (DumpCriticalPathLength) { 3185 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3186 } 3187 } 3188 3189 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3190 /// 3191 /// \param Cand provides the policy and current best candidate. 3192 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3193 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3194 SchedCandidate &TryCand) { 3195 3196 // Initialize the candidate if needed. 3197 if (!Cand.isValid()) { 3198 TryCand.Reason = NodeOrder; 3199 return; 3200 } 3201 3202 // Prioritize instructions that read unbuffered resources by stall cycles. 3203 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3204 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3205 return; 3206 3207 // Avoid critical resource consumption and balance the schedule. 3208 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3209 TryCand, Cand, ResourceReduce)) 3210 return; 3211 if (tryGreater(TryCand.ResDelta.DemandedResources, 3212 Cand.ResDelta.DemandedResources, 3213 TryCand, Cand, ResourceDemand)) 3214 return; 3215 3216 // Avoid serializing long latency dependence chains. 3217 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3218 return; 3219 } 3220 3221 // Fall through to original instruction order. 3222 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3223 TryCand.Reason = NodeOrder; 3224 } 3225 3226 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3227 ReadyQueue &Q = Top.Available; 3228 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3229 SchedCandidate TryCand(Cand.Policy); 3230 TryCand.SU = *I; 3231 TryCand.AtTop = true; 3232 TryCand.initResourceDelta(DAG, SchedModel); 3233 tryCandidate(Cand, TryCand); 3234 if (TryCand.Reason != NoCand) { 3235 Cand.setBest(TryCand); 3236 DEBUG(traceCandidate(Cand)); 3237 } 3238 } 3239 } 3240 3241 /// Pick the next node to schedule. 3242 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3243 if (DAG->top() == DAG->bottom()) { 3244 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3245 return nullptr; 3246 } 3247 SUnit *SU; 3248 do { 3249 SU = Top.pickOnlyChoice(); 3250 if (SU) { 3251 tracePick(Only1, true); 3252 } else { 3253 CandPolicy NoPolicy; 3254 SchedCandidate TopCand(NoPolicy); 3255 // Set the top-down policy based on the state of the current top zone and 3256 // the instructions outside the zone, including the bottom zone. 3257 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3258 pickNodeFromQueue(TopCand); 3259 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3260 tracePick(TopCand); 3261 SU = TopCand.SU; 3262 } 3263 } while (SU->isScheduled); 3264 3265 IsTopNode = true; 3266 Top.removeReady(SU); 3267 3268 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3269 return SU; 3270 } 3271 3272 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3273 /// scheduled/remaining flags in the DAG nodes. 3274 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3275 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3276 Top.bumpNode(SU); 3277 } 3278 3279 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3280 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C), 3281 /*RemoveKillFlags=*/true); 3282 } 3283 3284 //===----------------------------------------------------------------------===// 3285 // ILP Scheduler. Currently for experimental analysis of heuristics. 3286 //===----------------------------------------------------------------------===// 3287 3288 namespace { 3289 3290 /// \brief Order nodes by the ILP metric. 3291 struct ILPOrder { 3292 const SchedDFSResult *DFSResult = nullptr; 3293 const BitVector *ScheduledTrees = nullptr; 3294 bool MaximizeILP; 3295 3296 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3297 3298 /// \brief Apply a less-than relation on node priority. 3299 /// 3300 /// (Return true if A comes after B in the Q.) 3301 bool operator()(const SUnit *A, const SUnit *B) const { 3302 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3303 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3304 if (SchedTreeA != SchedTreeB) { 3305 // Unscheduled trees have lower priority. 3306 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3307 return ScheduledTrees->test(SchedTreeB); 3308 3309 // Trees with shallower connections have have lower priority. 3310 if (DFSResult->getSubtreeLevel(SchedTreeA) 3311 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3312 return DFSResult->getSubtreeLevel(SchedTreeA) 3313 < DFSResult->getSubtreeLevel(SchedTreeB); 3314 } 3315 } 3316 if (MaximizeILP) 3317 return DFSResult->getILP(A) < DFSResult->getILP(B); 3318 else 3319 return DFSResult->getILP(A) > DFSResult->getILP(B); 3320 } 3321 }; 3322 3323 /// \brief Schedule based on the ILP metric. 3324 class ILPScheduler : public MachineSchedStrategy { 3325 ScheduleDAGMILive *DAG = nullptr; 3326 ILPOrder Cmp; 3327 3328 std::vector<SUnit*> ReadyQ; 3329 3330 public: 3331 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3332 3333 void initialize(ScheduleDAGMI *dag) override { 3334 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3335 DAG = static_cast<ScheduleDAGMILive*>(dag); 3336 DAG->computeDFSResult(); 3337 Cmp.DFSResult = DAG->getDFSResult(); 3338 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3339 ReadyQ.clear(); 3340 } 3341 3342 void registerRoots() override { 3343 // Restore the heap in ReadyQ with the updated DFS results. 3344 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3345 } 3346 3347 /// Implement MachineSchedStrategy interface. 3348 /// ----------------------------------------- 3349 3350 /// Callback to select the highest priority node from the ready Q. 3351 SUnit *pickNode(bool &IsTopNode) override { 3352 if (ReadyQ.empty()) return nullptr; 3353 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3354 SUnit *SU = ReadyQ.back(); 3355 ReadyQ.pop_back(); 3356 IsTopNode = false; 3357 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3358 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3359 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3360 << DAG->getDFSResult()->getSubtreeLevel( 3361 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3362 << "Scheduling " << *SU->getInstr()); 3363 return SU; 3364 } 3365 3366 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3367 void scheduleTree(unsigned SubtreeID) override { 3368 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3369 } 3370 3371 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3372 /// DFSResults, and resort the priority Q. 3373 void schedNode(SUnit *SU, bool IsTopNode) override { 3374 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3375 } 3376 3377 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3378 3379 void releaseBottomNode(SUnit *SU) override { 3380 ReadyQ.push_back(SU); 3381 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3382 } 3383 }; 3384 3385 } // end anonymous namespace 3386 3387 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3388 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true)); 3389 } 3390 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3391 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false)); 3392 } 3393 3394 static MachineSchedRegistry ILPMaxRegistry( 3395 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3396 static MachineSchedRegistry ILPMinRegistry( 3397 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3398 3399 //===----------------------------------------------------------------------===// 3400 // Machine Instruction Shuffler for Correctness Testing 3401 //===----------------------------------------------------------------------===// 3402 3403 #ifndef NDEBUG 3404 namespace { 3405 3406 /// Apply a less-than relation on the node order, which corresponds to the 3407 /// instruction order prior to scheduling. IsReverse implements greater-than. 3408 template<bool IsReverse> 3409 struct SUnitOrder { 3410 bool operator()(SUnit *A, SUnit *B) const { 3411 if (IsReverse) 3412 return A->NodeNum > B->NodeNum; 3413 else 3414 return A->NodeNum < B->NodeNum; 3415 } 3416 }; 3417 3418 /// Reorder instructions as much as possible. 3419 class InstructionShuffler : public MachineSchedStrategy { 3420 bool IsAlternating; 3421 bool IsTopDown; 3422 3423 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3424 // gives nodes with a higher number higher priority causing the latest 3425 // instructions to be scheduled first. 3426 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3427 TopQ; 3428 // When scheduling bottom-up, use greater-than as the queue priority. 3429 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3430 BottomQ; 3431 3432 public: 3433 InstructionShuffler(bool alternate, bool topdown) 3434 : IsAlternating(alternate), IsTopDown(topdown) {} 3435 3436 void initialize(ScheduleDAGMI*) override { 3437 TopQ.clear(); 3438 BottomQ.clear(); 3439 } 3440 3441 /// Implement MachineSchedStrategy interface. 3442 /// ----------------------------------------- 3443 3444 SUnit *pickNode(bool &IsTopNode) override { 3445 SUnit *SU; 3446 if (IsTopDown) { 3447 do { 3448 if (TopQ.empty()) return nullptr; 3449 SU = TopQ.top(); 3450 TopQ.pop(); 3451 } while (SU->isScheduled); 3452 IsTopNode = true; 3453 } else { 3454 do { 3455 if (BottomQ.empty()) return nullptr; 3456 SU = BottomQ.top(); 3457 BottomQ.pop(); 3458 } while (SU->isScheduled); 3459 IsTopNode = false; 3460 } 3461 if (IsAlternating) 3462 IsTopDown = !IsTopDown; 3463 return SU; 3464 } 3465 3466 void schedNode(SUnit *SU, bool IsTopNode) override {} 3467 3468 void releaseTopNode(SUnit *SU) override { 3469 TopQ.push(SU); 3470 } 3471 void releaseBottomNode(SUnit *SU) override { 3472 BottomQ.push(SU); 3473 } 3474 }; 3475 3476 } // end anonymous namespace 3477 3478 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3479 bool Alternate = !ForceTopDown && !ForceBottomUp; 3480 bool TopDown = !ForceBottomUp; 3481 assert((TopDown || !ForceTopDown) && 3482 "-misched-topdown incompatible with -misched-bottomup"); 3483 return new ScheduleDAGMILive( 3484 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown)); 3485 } 3486 3487 static MachineSchedRegistry ShufflerRegistry( 3488 "shuffle", "Shuffle machine instructions alternating directions", 3489 createInstructionShuffler); 3490 #endif // !NDEBUG 3491 3492 //===----------------------------------------------------------------------===// 3493 // GraphWriter support for ScheduleDAGMILive. 3494 //===----------------------------------------------------------------------===// 3495 3496 #ifndef NDEBUG 3497 namespace llvm { 3498 3499 template<> struct GraphTraits< 3500 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3501 3502 template<> 3503 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3504 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3505 3506 static std::string getGraphName(const ScheduleDAG *G) { 3507 return G->MF.getName(); 3508 } 3509 3510 static bool renderGraphFromBottomUp() { 3511 return true; 3512 } 3513 3514 static bool isNodeHidden(const SUnit *Node) { 3515 if (ViewMISchedCutoff == 0) 3516 return false; 3517 return (Node->Preds.size() > ViewMISchedCutoff 3518 || Node->Succs.size() > ViewMISchedCutoff); 3519 } 3520 3521 /// If you want to override the dot attributes printed for a particular 3522 /// edge, override this method. 3523 static std::string getEdgeAttributes(const SUnit *Node, 3524 SUnitIterator EI, 3525 const ScheduleDAG *Graph) { 3526 if (EI.isArtificialDep()) 3527 return "color=cyan,style=dashed"; 3528 if (EI.isCtrlDep()) 3529 return "color=blue,style=dashed"; 3530 return ""; 3531 } 3532 3533 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3534 std::string Str; 3535 raw_string_ostream SS(Str); 3536 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3537 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3538 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3539 SS << "SU:" << SU->NodeNum; 3540 if (DFS) 3541 SS << " I:" << DFS->getNumInstrs(SU); 3542 return SS.str(); 3543 } 3544 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3545 return G->getGraphNodeLabel(SU); 3546 } 3547 3548 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3549 std::string Str("shape=Mrecord"); 3550 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3551 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3552 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3553 if (DFS) { 3554 Str += ",style=filled,fillcolor=\"#"; 3555 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3556 Str += '"'; 3557 } 3558 return Str; 3559 } 3560 }; 3561 3562 } // end namespace llvm 3563 #endif // NDEBUG 3564 3565 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3566 /// rendered using 'dot'. 3567 /// 3568 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3569 #ifndef NDEBUG 3570 ViewGraph(this, Name, false, Title); 3571 #else 3572 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3573 << "systems with Graphviz or gv!\n"; 3574 #endif // NDEBUG 3575 } 3576 3577 /// Out-of-line implementation with no arguments is handy for gdb. 3578 void ScheduleDAGMI::viewGraph() { 3579 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3580 } 3581