1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/RegisterClassInfo.h" 36 #include "llvm/CodeGen/RegisterPressure.h" 37 #include "llvm/CodeGen/ScheduleDAG.h" 38 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 39 #include "llvm/CodeGen/ScheduleDAGMutation.h" 40 #include "llvm/CodeGen/ScheduleDFS.h" 41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/CodeGenTypes/MachineValueType.h" 51 #include "llvm/Config/llvm-config.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/LaneBitmask.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/GraphWriter.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <limits> 66 #include <memory> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "machine-scheduler" 75 76 STATISTIC(NumClustered, "Number of load/store pairs clustered"); 77 78 namespace llvm { 79 80 cl::opt<MISched::Direction> PreRADirection( 81 "misched-prera-direction", cl::Hidden, 82 cl::desc("Pre reg-alloc list scheduling direction"), 83 cl::init(MISched::Unspecified), 84 cl::values( 85 clEnumValN(MISched::TopDown, "topdown", 86 "Force top-down pre reg-alloc list scheduling"), 87 clEnumValN(MISched::BottomUp, "bottomup", 88 "Force bottom-up pre reg-alloc list scheduling"), 89 clEnumValN(MISched::Bidirectional, "bidirectional", 90 "Force bidirectional pre reg-alloc list scheduling"))); 91 92 cl::opt<MISched::Direction> PostRADirection( 93 "misched-postra-direction", cl::Hidden, 94 cl::desc("Post reg-alloc list scheduling direction"), 95 cl::init(MISched::Unspecified), 96 cl::values( 97 clEnumValN(MISched::TopDown, "topdown", 98 "Force top-down post reg-alloc list scheduling"), 99 clEnumValN(MISched::BottomUp, "bottomup", 100 "Force bottom-up post reg-alloc list scheduling"), 101 clEnumValN(MISched::Bidirectional, "bidirectional", 102 "Force bidirectional post reg-alloc list scheduling"))); 103 104 cl::opt<bool> 105 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 106 cl::desc("Print critical path length to stdout")); 107 108 cl::opt<bool> VerifyScheduling( 109 "verify-misched", cl::Hidden, 110 cl::desc("Verify machine instrs before and after machine scheduling")); 111 112 #ifndef NDEBUG 113 cl::opt<bool> ViewMISchedDAGs( 114 "view-misched-dags", cl::Hidden, 115 cl::desc("Pop up a window to show MISched dags after they are processed")); 116 cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 117 cl::desc("Print schedule DAGs")); 118 cl::opt<bool> MISchedDumpReservedCycles( 119 "misched-dump-reserved-cycles", cl::Hidden, cl::init(false), 120 cl::desc("Dump resource usage at schedule boundary.")); 121 cl::opt<bool> MischedDetailResourceBooking( 122 "misched-detail-resource-booking", cl::Hidden, cl::init(false), 123 cl::desc("Show details of invoking getNextResoufceCycle.")); 124 #else 125 const bool ViewMISchedDAGs = false; 126 const bool PrintDAGs = false; 127 const bool MischedDetailResourceBooking = false; 128 #ifdef LLVM_ENABLE_DUMP 129 const bool MISchedDumpReservedCycles = false; 130 #endif // LLVM_ENABLE_DUMP 131 #endif // NDEBUG 132 133 } // end namespace llvm 134 135 #ifndef NDEBUG 136 /// In some situations a few uninteresting nodes depend on nearly all other 137 /// nodes in the graph, provide a cutoff to hide them. 138 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 139 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 140 141 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 142 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 143 144 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 145 cl::desc("Only schedule this function")); 146 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 147 cl::desc("Only schedule this MBB#")); 148 #endif // NDEBUG 149 150 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 151 /// size of the ready lists. 152 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 153 cl::desc("Limit ready list to N instructions"), cl::init(256)); 154 155 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 156 cl::desc("Enable register pressure scheduling."), cl::init(true)); 157 158 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 159 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 160 161 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 162 cl::desc("Enable memop clustering."), 163 cl::init(true)); 164 static cl::opt<bool> 165 ForceFastCluster("force-fast-cluster", cl::Hidden, 166 cl::desc("Switch to fast cluster algorithm with the lost " 167 "of some fusion opportunities"), 168 cl::init(false)); 169 static cl::opt<unsigned> 170 FastClusterThreshold("fast-cluster-threshold", cl::Hidden, 171 cl::desc("The threshold for fast cluster"), 172 cl::init(1000)); 173 174 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 175 static cl::opt<bool> MISchedDumpScheduleTrace( 176 "misched-dump-schedule-trace", cl::Hidden, cl::init(false), 177 cl::desc("Dump resource usage at schedule boundary.")); 178 static cl::opt<unsigned> 179 HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden, 180 cl::desc("Set width of the columns with " 181 "the resources and schedule units"), 182 cl::init(19)); 183 static cl::opt<unsigned> 184 ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden, 185 cl::desc("Set width of the columns showing resource booking."), 186 cl::init(5)); 187 static cl::opt<bool> MISchedSortResourcesInTrace( 188 "misched-sort-resources-in-trace", cl::Hidden, cl::init(true), 189 cl::desc("Sort the resources printed in the dump trace")); 190 #endif 191 192 static cl::opt<unsigned> 193 MIResourceCutOff("misched-resource-cutoff", cl::Hidden, 194 cl::desc("Number of intervals to track"), cl::init(10)); 195 196 // DAG subtrees must have at least this many nodes. 197 static const unsigned MinSubtreeSize = 8; 198 199 // Pin the vtables to this file. 200 void MachineSchedStrategy::anchor() {} 201 202 void ScheduleDAGMutation::anchor() {} 203 204 //===----------------------------------------------------------------------===// 205 // Machine Instruction Scheduling Pass and Registry 206 //===----------------------------------------------------------------------===// 207 208 MachineSchedContext::MachineSchedContext() { 209 RegClassInfo = new RegisterClassInfo(); 210 } 211 212 MachineSchedContext::~MachineSchedContext() { 213 delete RegClassInfo; 214 } 215 216 namespace { 217 218 /// Base class for a machine scheduler class that can run at any point. 219 class MachineSchedulerBase : public MachineSchedContext, 220 public MachineFunctionPass { 221 public: 222 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 223 224 void print(raw_ostream &O, const Module* = nullptr) const override; 225 226 protected: 227 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 228 }; 229 230 /// MachineScheduler runs after coalescing and before register allocation. 231 class MachineScheduler : public MachineSchedulerBase { 232 public: 233 MachineScheduler(); 234 235 void getAnalysisUsage(AnalysisUsage &AU) const override; 236 237 bool runOnMachineFunction(MachineFunction&) override; 238 239 static char ID; // Class identification, replacement for typeinfo 240 241 protected: 242 ScheduleDAGInstrs *createMachineScheduler(); 243 }; 244 245 /// PostMachineScheduler runs after shortly before code emission. 246 class PostMachineScheduler : public MachineSchedulerBase { 247 public: 248 PostMachineScheduler(); 249 250 void getAnalysisUsage(AnalysisUsage &AU) const override; 251 252 bool runOnMachineFunction(MachineFunction&) override; 253 254 static char ID; // Class identification, replacement for typeinfo 255 256 protected: 257 ScheduleDAGInstrs *createPostMachineScheduler(); 258 }; 259 260 } // end anonymous namespace 261 262 char MachineScheduler::ID = 0; 263 264 char &llvm::MachineSchedulerID = MachineScheduler::ID; 265 266 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 267 "Machine Instruction Scheduler", false, false) 268 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 269 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 270 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 271 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) 272 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 273 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 274 "Machine Instruction Scheduler", false, false) 275 276 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 277 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 278 } 279 280 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 281 AU.setPreservesCFG(); 282 AU.addRequired<MachineDominatorTreeWrapperPass>(); 283 AU.addRequired<MachineLoopInfoWrapperPass>(); 284 AU.addRequired<AAResultsWrapperPass>(); 285 AU.addRequired<TargetPassConfig>(); 286 AU.addRequired<SlotIndexesWrapperPass>(); 287 AU.addPreserved<SlotIndexesWrapperPass>(); 288 AU.addRequired<LiveIntervalsWrapperPass>(); 289 AU.addPreserved<LiveIntervalsWrapperPass>(); 290 MachineFunctionPass::getAnalysisUsage(AU); 291 } 292 293 char PostMachineScheduler::ID = 0; 294 295 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 296 297 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched", 298 "PostRA Machine Instruction Scheduler", false, false) 299 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 300 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 301 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 302 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched", 303 "PostRA Machine Instruction Scheduler", false, false) 304 305 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 306 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 307 } 308 309 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 310 AU.setPreservesCFG(); 311 AU.addRequired<MachineDominatorTreeWrapperPass>(); 312 AU.addRequired<MachineLoopInfoWrapperPass>(); 313 AU.addRequired<AAResultsWrapperPass>(); 314 AU.addRequired<TargetPassConfig>(); 315 MachineFunctionPass::getAnalysisUsage(AU); 316 } 317 318 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 319 MachineSchedRegistry::Registry; 320 321 /// A dummy default scheduler factory indicates whether the scheduler 322 /// is overridden on the command line. 323 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 324 return nullptr; 325 } 326 327 /// MachineSchedOpt allows command line selection of the scheduler. 328 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 329 RegisterPassParser<MachineSchedRegistry>> 330 MachineSchedOpt("misched", 331 cl::init(&useDefaultMachineSched), cl::Hidden, 332 cl::desc("Machine instruction scheduler to use")); 333 334 static MachineSchedRegistry 335 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 336 useDefaultMachineSched); 337 338 static cl::opt<bool> EnableMachineSched( 339 "enable-misched", 340 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 341 cl::Hidden); 342 343 static cl::opt<bool> EnablePostRAMachineSched( 344 "enable-post-misched", 345 cl::desc("Enable the post-ra machine instruction scheduling pass."), 346 cl::init(true), cl::Hidden); 347 348 /// Decrement this iterator until reaching the top or a non-debug instr. 349 static MachineBasicBlock::const_iterator 350 priorNonDebug(MachineBasicBlock::const_iterator I, 351 MachineBasicBlock::const_iterator Beg) { 352 assert(I != Beg && "reached the top of the region, cannot decrement"); 353 while (--I != Beg) { 354 if (!I->isDebugOrPseudoInstr()) 355 break; 356 } 357 return I; 358 } 359 360 /// Non-const version. 361 static MachineBasicBlock::iterator 362 priorNonDebug(MachineBasicBlock::iterator I, 363 MachineBasicBlock::const_iterator Beg) { 364 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 365 .getNonConstIterator(); 366 } 367 368 /// If this iterator is a debug value, increment until reaching the End or a 369 /// non-debug instruction. 370 static MachineBasicBlock::const_iterator 371 nextIfDebug(MachineBasicBlock::const_iterator I, 372 MachineBasicBlock::const_iterator End) { 373 for(; I != End; ++I) { 374 if (!I->isDebugOrPseudoInstr()) 375 break; 376 } 377 return I; 378 } 379 380 /// Non-const version. 381 static MachineBasicBlock::iterator 382 nextIfDebug(MachineBasicBlock::iterator I, 383 MachineBasicBlock::const_iterator End) { 384 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 385 .getNonConstIterator(); 386 } 387 388 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 389 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 390 // Select the scheduler, or set the default. 391 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 392 if (Ctor != useDefaultMachineSched) 393 return Ctor(this); 394 395 // Get the default scheduler set by the target for this function. 396 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 397 if (Scheduler) 398 return Scheduler; 399 400 // Default to GenericScheduler. 401 return createGenericSchedLive(this); 402 } 403 404 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 405 /// the caller. We don't have a command line option to override the postRA 406 /// scheduler. The Target must configure it. 407 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 408 // Get the postRA scheduler set by the target for this function. 409 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 410 if (Scheduler) 411 return Scheduler; 412 413 // Default to GenericScheduler. 414 return createGenericSchedPostRA(this); 415 } 416 417 /// Top-level MachineScheduler pass driver. 418 /// 419 /// Visit blocks in function order. Divide each block into scheduling regions 420 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 421 /// consistent with the DAG builder, which traverses the interior of the 422 /// scheduling regions bottom-up. 423 /// 424 /// This design avoids exposing scheduling boundaries to the DAG builder, 425 /// simplifying the DAG builder's support for "special" target instructions. 426 /// At the same time the design allows target schedulers to operate across 427 /// scheduling boundaries, for example to bundle the boundary instructions 428 /// without reordering them. This creates complexity, because the target 429 /// scheduler must update the RegionBegin and RegionEnd positions cached by 430 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 431 /// design would be to split blocks at scheduling boundaries, but LLVM has a 432 /// general bias against block splitting purely for implementation simplicity. 433 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 434 if (skipFunction(mf.getFunction())) 435 return false; 436 437 if (EnableMachineSched.getNumOccurrences()) { 438 if (!EnableMachineSched) 439 return false; 440 } else if (!mf.getSubtarget().enableMachineScheduler()) 441 return false; 442 443 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 444 445 // Initialize the context of the pass. 446 MF = &mf; 447 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 448 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 449 PassConfig = &getAnalysis<TargetPassConfig>(); 450 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 451 452 LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 453 454 if (VerifyScheduling) { 455 LLVM_DEBUG(LIS->dump()); 456 MF->verify(this, "Before machine scheduling.", &errs()); 457 } 458 RegClassInfo->runOnMachineFunction(*MF); 459 460 // Instantiate the selected scheduler for this target, function, and 461 // optimization level. 462 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 463 scheduleRegions(*Scheduler, false); 464 465 LLVM_DEBUG(LIS->dump()); 466 if (VerifyScheduling) 467 MF->verify(this, "After machine scheduling.", &errs()); 468 return true; 469 } 470 471 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 472 if (skipFunction(mf.getFunction())) 473 return false; 474 475 if (EnablePostRAMachineSched.getNumOccurrences()) { 476 if (!EnablePostRAMachineSched) 477 return false; 478 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { 479 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 480 return false; 481 } 482 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 483 484 // Initialize the context of the pass. 485 MF = &mf; 486 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 487 PassConfig = &getAnalysis<TargetPassConfig>(); 488 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 489 490 if (VerifyScheduling) 491 MF->verify(this, "Before post machine scheduling.", &errs()); 492 493 // Instantiate the selected scheduler for this target, function, and 494 // optimization level. 495 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 496 scheduleRegions(*Scheduler, true); 497 498 if (VerifyScheduling) 499 MF->verify(this, "After post machine scheduling.", &errs()); 500 return true; 501 } 502 503 /// Return true of the given instruction should not be included in a scheduling 504 /// region. 505 /// 506 /// MachineScheduler does not currently support scheduling across calls. To 507 /// handle calls, the DAG builder needs to be modified to create register 508 /// anti/output dependencies on the registers clobbered by the call's regmask 509 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 510 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 511 /// the boundary, but there would be no benefit to postRA scheduling across 512 /// calls this late anyway. 513 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 514 MachineBasicBlock *MBB, 515 MachineFunction *MF, 516 const TargetInstrInfo *TII) { 517 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF) || 518 MI->isFakeUse(); 519 } 520 521 /// A region of an MBB for scheduling. 522 namespace { 523 struct SchedRegion { 524 /// RegionBegin is the first instruction in the scheduling region, and 525 /// RegionEnd is either MBB->end() or the scheduling boundary after the 526 /// last instruction in the scheduling region. These iterators cannot refer 527 /// to instructions outside of the identified scheduling region because 528 /// those may be reordered before scheduling this region. 529 MachineBasicBlock::iterator RegionBegin; 530 MachineBasicBlock::iterator RegionEnd; 531 unsigned NumRegionInstrs; 532 533 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 534 unsigned N) : 535 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 536 }; 537 } // end anonymous namespace 538 539 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 540 541 static void 542 getSchedRegions(MachineBasicBlock *MBB, 543 MBBRegionsVector &Regions, 544 bool RegionsTopDown) { 545 MachineFunction *MF = MBB->getParent(); 546 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 547 548 MachineBasicBlock::iterator I = nullptr; 549 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 550 RegionEnd != MBB->begin(); RegionEnd = I) { 551 552 // Avoid decrementing RegionEnd for blocks with no terminator. 553 if (RegionEnd != MBB->end() || 554 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 555 --RegionEnd; 556 } 557 558 // The next region starts above the previous region. Look backward in the 559 // instruction stream until we find the nearest boundary. 560 unsigned NumRegionInstrs = 0; 561 I = RegionEnd; 562 for (;I != MBB->begin(); --I) { 563 MachineInstr &MI = *std::prev(I); 564 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 565 break; 566 if (!MI.isDebugOrPseudoInstr()) { 567 // MBB::size() uses instr_iterator to count. Here we need a bundle to 568 // count as a single instruction. 569 ++NumRegionInstrs; 570 } 571 } 572 573 // It's possible we found a scheduling region that only has debug 574 // instructions. Don't bother scheduling these. 575 if (NumRegionInstrs != 0) 576 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 577 } 578 579 if (RegionsTopDown) 580 std::reverse(Regions.begin(), Regions.end()); 581 } 582 583 /// Main driver for both MachineScheduler and PostMachineScheduler. 584 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 585 bool FixKillFlags) { 586 // Visit all machine basic blocks. 587 // 588 // TODO: Visit blocks in global postorder or postorder within the bottom-up 589 // loop tree. Then we can optionally compute global RegPressure. 590 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 591 MBB != MBBEnd; ++MBB) { 592 593 Scheduler.startBlock(&*MBB); 594 595 #ifndef NDEBUG 596 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 597 continue; 598 if (SchedOnlyBlock.getNumOccurrences() 599 && (int)SchedOnlyBlock != MBB->getNumber()) 600 continue; 601 #endif 602 603 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 604 // points to the scheduling boundary at the bottom of the region. The DAG 605 // does not include RegionEnd, but the region does (i.e. the next 606 // RegionEnd is above the previous RegionBegin). If the current block has 607 // no terminator then RegionEnd == MBB->end() for the bottom region. 608 // 609 // All the regions of MBB are first found and stored in MBBRegions, which 610 // will be processed (MBB) top-down if initialized with true. 611 // 612 // The Scheduler may insert instructions during either schedule() or 613 // exitRegion(), even for empty regions. So the local iterators 'I' and 614 // 'RegionEnd' are invalid across these calls. Instructions must not be 615 // added to other regions than the current one without updating MBBRegions. 616 617 MBBRegionsVector MBBRegions; 618 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 619 for (const SchedRegion &R : MBBRegions) { 620 MachineBasicBlock::iterator I = R.RegionBegin; 621 MachineBasicBlock::iterator RegionEnd = R.RegionEnd; 622 unsigned NumRegionInstrs = R.NumRegionInstrs; 623 624 // Notify the scheduler of the region, even if we may skip scheduling 625 // it. Perhaps it still needs to be bundled. 626 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 627 628 // Skip empty scheduling regions (0 or 1 schedulable instructions). 629 if (I == RegionEnd || I == std::prev(RegionEnd)) { 630 // Close the current region. Bundle the terminator if needed. 631 // This invalidates 'RegionEnd' and 'I'. 632 Scheduler.exitRegion(); 633 continue; 634 } 635 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 636 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 637 << " " << MBB->getName() << "\n From: " << *I 638 << " To: "; 639 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 640 else dbgs() << "End\n"; 641 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 642 if (DumpCriticalPathLength) { 643 errs() << MF->getName(); 644 errs() << ":%bb. " << MBB->getNumber(); 645 errs() << " " << MBB->getName() << " \n"; 646 } 647 648 // Schedule a region: possibly reorder instructions. 649 // This invalidates the original region iterators. 650 Scheduler.schedule(); 651 652 // Close the current region. 653 Scheduler.exitRegion(); 654 } 655 Scheduler.finishBlock(); 656 // FIXME: Ideally, no further passes should rely on kill flags. However, 657 // thumb2 size reduction is currently an exception, so the PostMIScheduler 658 // needs to do this. 659 if (FixKillFlags) 660 Scheduler.fixupKills(*MBB); 661 } 662 Scheduler.finalizeSchedule(); 663 } 664 665 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 666 // unimplemented 667 } 668 669 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 670 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 671 dbgs() << "Queue " << Name << ": "; 672 for (const SUnit *SU : Queue) 673 dbgs() << SU->NodeNum << " "; 674 dbgs() << "\n"; 675 } 676 #endif 677 678 //===----------------------------------------------------------------------===// 679 // ScheduleDAGMI - Basic machine instruction scheduling. This is 680 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 681 // virtual registers. 682 // ===----------------------------------------------------------------------===/ 683 684 // Provide a vtable anchor. 685 ScheduleDAGMI::~ScheduleDAGMI() = default; 686 687 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 688 /// NumPredsLeft reaches zero, release the successor node. 689 /// 690 /// FIXME: Adjust SuccSU height based on MinLatency. 691 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 692 SUnit *SuccSU = SuccEdge->getSUnit(); 693 694 if (SuccEdge->isWeak()) { 695 --SuccSU->WeakPredsLeft; 696 if (SuccEdge->isCluster()) 697 NextClusterSucc = SuccSU; 698 return; 699 } 700 #ifndef NDEBUG 701 if (SuccSU->NumPredsLeft == 0) { 702 dbgs() << "*** Scheduling failed! ***\n"; 703 dumpNode(*SuccSU); 704 dbgs() << " has been released too many times!\n"; 705 llvm_unreachable(nullptr); 706 } 707 #endif 708 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 709 // CurrCycle may have advanced since then. 710 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 711 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 712 713 --SuccSU->NumPredsLeft; 714 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 715 SchedImpl->releaseTopNode(SuccSU); 716 } 717 718 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 719 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 720 for (SDep &Succ : SU->Succs) 721 releaseSucc(SU, &Succ); 722 } 723 724 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 725 /// NumSuccsLeft reaches zero, release the predecessor node. 726 /// 727 /// FIXME: Adjust PredSU height based on MinLatency. 728 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 729 SUnit *PredSU = PredEdge->getSUnit(); 730 731 if (PredEdge->isWeak()) { 732 --PredSU->WeakSuccsLeft; 733 if (PredEdge->isCluster()) 734 NextClusterPred = PredSU; 735 return; 736 } 737 #ifndef NDEBUG 738 if (PredSU->NumSuccsLeft == 0) { 739 dbgs() << "*** Scheduling failed! ***\n"; 740 dumpNode(*PredSU); 741 dbgs() << " has been released too many times!\n"; 742 llvm_unreachable(nullptr); 743 } 744 #endif 745 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 746 // CurrCycle may have advanced since then. 747 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 748 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 749 750 --PredSU->NumSuccsLeft; 751 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 752 SchedImpl->releaseBottomNode(PredSU); 753 } 754 755 /// releasePredecessors - Call releasePred on each of SU's predecessors. 756 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 757 for (SDep &Pred : SU->Preds) 758 releasePred(SU, &Pred); 759 } 760 761 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 762 ScheduleDAGInstrs::startBlock(bb); 763 SchedImpl->enterMBB(bb); 764 } 765 766 void ScheduleDAGMI::finishBlock() { 767 SchedImpl->leaveMBB(); 768 ScheduleDAGInstrs::finishBlock(); 769 } 770 771 /// enterRegion - Called back from PostMachineScheduler::runOnMachineFunction 772 /// after crossing a scheduling boundary. [begin, end) includes all instructions 773 /// in the region, including the boundary itself and single-instruction regions 774 /// that don't get scheduled. 775 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 776 MachineBasicBlock::iterator begin, 777 MachineBasicBlock::iterator end, 778 unsigned regioninstrs) 779 { 780 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 781 782 SchedImpl->initPolicy(begin, end, regioninstrs); 783 784 // Set dump direction after initializing sched policy. 785 ScheduleDAGMI::DumpDirection D; 786 if (SchedImpl->getPolicy().OnlyTopDown) 787 D = ScheduleDAGMI::DumpDirection::TopDown; 788 else if (SchedImpl->getPolicy().OnlyBottomUp) 789 D = ScheduleDAGMI::DumpDirection::BottomUp; 790 else 791 D = ScheduleDAGMI::DumpDirection::Bidirectional; 792 setDumpDirection(D); 793 } 794 795 /// This is normally called from the main scheduler loop but may also be invoked 796 /// by the scheduling strategy to perform additional code motion. 797 void ScheduleDAGMI::moveInstruction( 798 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 799 // Advance RegionBegin if the first instruction moves down. 800 if (&*RegionBegin == MI) 801 ++RegionBegin; 802 803 // Update the instruction stream. 804 BB->splice(InsertPos, BB, MI); 805 806 // Update LiveIntervals 807 if (LIS) 808 LIS->handleMove(*MI, /*UpdateFlags=*/true); 809 810 // Recede RegionBegin if an instruction moves above the first. 811 if (RegionBegin == InsertPos) 812 RegionBegin = MI; 813 } 814 815 bool ScheduleDAGMI::checkSchedLimit() { 816 #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG) 817 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 818 CurrentTop = CurrentBottom; 819 return false; 820 } 821 ++NumInstrsScheduled; 822 #endif 823 return true; 824 } 825 826 /// Per-region scheduling driver, called back from 827 /// PostMachineScheduler::runOnMachineFunction. This is a simplified driver 828 /// that does not consider liveness or register pressure. It is useful for 829 /// PostRA scheduling and potentially other custom schedulers. 830 void ScheduleDAGMI::schedule() { 831 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 832 LLVM_DEBUG(SchedImpl->dumpPolicy()); 833 834 // Build the DAG. 835 buildSchedGraph(AA); 836 837 postProcessDAG(); 838 839 SmallVector<SUnit*, 8> TopRoots, BotRoots; 840 findRootsAndBiasEdges(TopRoots, BotRoots); 841 842 LLVM_DEBUG(dump()); 843 if (PrintDAGs) dump(); 844 if (ViewMISchedDAGs) viewGraph(); 845 846 // Initialize the strategy before modifying the DAG. 847 // This may initialize a DFSResult to be used for queue priority. 848 SchedImpl->initialize(this); 849 850 // Initialize ready queues now that the DAG and priority data are finalized. 851 initQueues(TopRoots, BotRoots); 852 853 bool IsTopNode = false; 854 while (true) { 855 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 856 SUnit *SU = SchedImpl->pickNode(IsTopNode); 857 if (!SU) break; 858 859 assert(!SU->isScheduled && "Node already scheduled"); 860 if (!checkSchedLimit()) 861 break; 862 863 MachineInstr *MI = SU->getInstr(); 864 if (IsTopNode) { 865 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 866 if (&*CurrentTop == MI) 867 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 868 else 869 moveInstruction(MI, CurrentTop); 870 } else { 871 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 872 MachineBasicBlock::iterator priorII = 873 priorNonDebug(CurrentBottom, CurrentTop); 874 if (&*priorII == MI) 875 CurrentBottom = priorII; 876 else { 877 if (&*CurrentTop == MI) 878 CurrentTop = nextIfDebug(++CurrentTop, priorII); 879 moveInstruction(MI, CurrentBottom); 880 CurrentBottom = MI; 881 } 882 } 883 // Notify the scheduling strategy before updating the DAG. 884 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 885 // runs, it can then use the accurate ReadyCycle time to determine whether 886 // newly released nodes can move to the readyQ. 887 SchedImpl->schedNode(SU, IsTopNode); 888 889 updateQueues(SU, IsTopNode); 890 } 891 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 892 893 placeDebugValues(); 894 895 LLVM_DEBUG({ 896 dbgs() << "*** Final schedule for " 897 << printMBBReference(*begin()->getParent()) << " ***\n"; 898 dumpSchedule(); 899 dbgs() << '\n'; 900 }); 901 } 902 903 /// Apply each ScheduleDAGMutation step in order. 904 void ScheduleDAGMI::postProcessDAG() { 905 for (auto &m : Mutations) 906 m->apply(this); 907 } 908 909 void ScheduleDAGMI:: 910 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 911 SmallVectorImpl<SUnit*> &BotRoots) { 912 for (SUnit &SU : SUnits) { 913 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 914 915 // Order predecessors so DFSResult follows the critical path. 916 SU.biasCriticalPath(); 917 918 // A SUnit is ready to top schedule if it has no predecessors. 919 if (!SU.NumPredsLeft) 920 TopRoots.push_back(&SU); 921 // A SUnit is ready to bottom schedule if it has no successors. 922 if (!SU.NumSuccsLeft) 923 BotRoots.push_back(&SU); 924 } 925 ExitSU.biasCriticalPath(); 926 } 927 928 /// Identify DAG roots and setup scheduler queues. 929 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 930 ArrayRef<SUnit*> BotRoots) { 931 NextClusterSucc = nullptr; 932 NextClusterPred = nullptr; 933 934 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 935 // 936 // Nodes with unreleased weak edges can still be roots. 937 // Release top roots in forward order. 938 for (SUnit *SU : TopRoots) 939 SchedImpl->releaseTopNode(SU); 940 941 // Release bottom roots in reverse order so the higher priority nodes appear 942 // first. This is more natural and slightly more efficient. 943 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 944 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 945 SchedImpl->releaseBottomNode(*I); 946 } 947 948 releaseSuccessors(&EntrySU); 949 releasePredecessors(&ExitSU); 950 951 SchedImpl->registerRoots(); 952 953 // Advance past initial DebugValues. 954 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 955 CurrentBottom = RegionEnd; 956 } 957 958 /// Update scheduler queues after scheduling an instruction. 959 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 960 // Release dependent instructions for scheduling. 961 if (IsTopNode) 962 releaseSuccessors(SU); 963 else 964 releasePredecessors(SU); 965 966 SU->isScheduled = true; 967 } 968 969 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 970 void ScheduleDAGMI::placeDebugValues() { 971 // If first instruction was a DBG_VALUE then put it back. 972 if (FirstDbgValue) { 973 BB->splice(RegionBegin, BB, FirstDbgValue); 974 RegionBegin = FirstDbgValue; 975 } 976 977 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 978 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 979 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 980 MachineInstr *DbgValue = P.first; 981 MachineBasicBlock::iterator OrigPrevMI = P.second; 982 if (&*RegionBegin == DbgValue) 983 ++RegionBegin; 984 BB->splice(std::next(OrigPrevMI), BB, DbgValue); 985 if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd) 986 RegionEnd = DbgValue; 987 } 988 } 989 990 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 991 static const char *scheduleTableLegend = " i: issue\n x: resource booked"; 992 993 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceTopDown() const { 994 // Bail off when there is no schedule model to query. 995 if (!SchedModel.hasInstrSchedModel()) 996 return; 997 998 // Nothing to show if there is no or just one instruction. 999 if (BB->size() < 2) 1000 return; 1001 1002 dbgs() << " * Schedule table (TopDown):\n"; 1003 dbgs() << scheduleTableLegend << "\n"; 1004 const unsigned FirstCycle = getSUnit(&*(std::begin(*this)))->TopReadyCycle; 1005 unsigned LastCycle = getSUnit(&*(std::prev(std::end(*this))))->TopReadyCycle; 1006 for (MachineInstr &MI : *this) { 1007 SUnit *SU = getSUnit(&MI); 1008 if (!SU) 1009 continue; 1010 const MCSchedClassDesc *SC = getSchedClass(SU); 1011 for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC), 1012 PE = SchedModel.getWriteProcResEnd(SC); 1013 PI != PE; ++PI) { 1014 if (SU->TopReadyCycle + PI->ReleaseAtCycle - 1 > LastCycle) 1015 LastCycle = SU->TopReadyCycle + PI->ReleaseAtCycle - 1; 1016 } 1017 } 1018 // Print the header with the cycles 1019 dbgs() << llvm::left_justify("Cycle", HeaderColWidth); 1020 for (unsigned C = FirstCycle; C <= LastCycle; ++C) 1021 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth); 1022 dbgs() << "|\n"; 1023 1024 for (MachineInstr &MI : *this) { 1025 SUnit *SU = getSUnit(&MI); 1026 if (!SU) { 1027 dbgs() << "Missing SUnit\n"; 1028 continue; 1029 } 1030 std::string NodeName("SU("); 1031 NodeName += std::to_string(SU->NodeNum) + ")"; 1032 dbgs() << llvm::left_justify(NodeName, HeaderColWidth); 1033 unsigned C = FirstCycle; 1034 for (; C <= LastCycle; ++C) { 1035 if (C == SU->TopReadyCycle) 1036 dbgs() << llvm::left_justify("| i", ColWidth); 1037 else 1038 dbgs() << llvm::left_justify("|", ColWidth); 1039 } 1040 dbgs() << "|\n"; 1041 const MCSchedClassDesc *SC = getSchedClass(SU); 1042 1043 SmallVector<MCWriteProcResEntry, 4> ResourcesIt( 1044 make_range(SchedModel.getWriteProcResBegin(SC), 1045 SchedModel.getWriteProcResEnd(SC))); 1046 1047 if (MISchedSortResourcesInTrace) 1048 llvm::stable_sort(ResourcesIt, 1049 [](const MCWriteProcResEntry &LHS, 1050 const MCWriteProcResEntry &RHS) -> bool { 1051 return LHS.AcquireAtCycle < RHS.AcquireAtCycle || 1052 (LHS.AcquireAtCycle == RHS.AcquireAtCycle && 1053 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle); 1054 }); 1055 for (const MCWriteProcResEntry &PI : ResourcesIt) { 1056 C = FirstCycle; 1057 const std::string ResName = 1058 SchedModel.getResourceName(PI.ProcResourceIdx); 1059 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth); 1060 for (; C < SU->TopReadyCycle + PI.AcquireAtCycle; ++C) { 1061 dbgs() << llvm::left_justify("|", ColWidth); 1062 } 1063 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E; 1064 ++I, ++C) 1065 dbgs() << llvm::left_justify("| x", ColWidth); 1066 while (C++ <= LastCycle) 1067 dbgs() << llvm::left_justify("|", ColWidth); 1068 // Place end char 1069 dbgs() << "| \n"; 1070 } 1071 } 1072 } 1073 1074 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceBottomUp() const { 1075 // Bail off when there is no schedule model to query. 1076 if (!SchedModel.hasInstrSchedModel()) 1077 return; 1078 1079 // Nothing to show if there is no or just one instruction. 1080 if (BB->size() < 2) 1081 return; 1082 1083 dbgs() << " * Schedule table (BottomUp):\n"; 1084 dbgs() << scheduleTableLegend << "\n"; 1085 1086 const int FirstCycle = getSUnit(&*(std::begin(*this)))->BotReadyCycle; 1087 int LastCycle = getSUnit(&*(std::prev(std::end(*this))))->BotReadyCycle; 1088 for (MachineInstr &MI : *this) { 1089 SUnit *SU = getSUnit(&MI); 1090 if (!SU) 1091 continue; 1092 const MCSchedClassDesc *SC = getSchedClass(SU); 1093 for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC), 1094 PE = SchedModel.getWriteProcResEnd(SC); 1095 PI != PE; ++PI) { 1096 if ((int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1 < LastCycle) 1097 LastCycle = (int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1; 1098 } 1099 } 1100 // Print the header with the cycles 1101 dbgs() << llvm::left_justify("Cycle", HeaderColWidth); 1102 for (int C = FirstCycle; C >= LastCycle; --C) 1103 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth); 1104 dbgs() << "|\n"; 1105 1106 for (MachineInstr &MI : *this) { 1107 SUnit *SU = getSUnit(&MI); 1108 if (!SU) { 1109 dbgs() << "Missing SUnit\n"; 1110 continue; 1111 } 1112 std::string NodeName("SU("); 1113 NodeName += std::to_string(SU->NodeNum) + ")"; 1114 dbgs() << llvm::left_justify(NodeName, HeaderColWidth); 1115 int C = FirstCycle; 1116 for (; C >= LastCycle; --C) { 1117 if (C == (int)SU->BotReadyCycle) 1118 dbgs() << llvm::left_justify("| i", ColWidth); 1119 else 1120 dbgs() << llvm::left_justify("|", ColWidth); 1121 } 1122 dbgs() << "|\n"; 1123 const MCSchedClassDesc *SC = getSchedClass(SU); 1124 SmallVector<MCWriteProcResEntry, 4> ResourcesIt( 1125 make_range(SchedModel.getWriteProcResBegin(SC), 1126 SchedModel.getWriteProcResEnd(SC))); 1127 1128 if (MISchedSortResourcesInTrace) 1129 llvm::stable_sort(ResourcesIt, 1130 [](const MCWriteProcResEntry &LHS, 1131 const MCWriteProcResEntry &RHS) -> bool { 1132 return LHS.AcquireAtCycle < RHS.AcquireAtCycle || 1133 (LHS.AcquireAtCycle == RHS.AcquireAtCycle && 1134 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle); 1135 }); 1136 for (const MCWriteProcResEntry &PI : ResourcesIt) { 1137 C = FirstCycle; 1138 const std::string ResName = 1139 SchedModel.getResourceName(PI.ProcResourceIdx); 1140 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth); 1141 for (; C > ((int)SU->BotReadyCycle - (int)PI.AcquireAtCycle); --C) { 1142 dbgs() << llvm::left_justify("|", ColWidth); 1143 } 1144 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E; 1145 ++I, --C) 1146 dbgs() << llvm::left_justify("| x", ColWidth); 1147 while (C-- >= LastCycle) 1148 dbgs() << llvm::left_justify("|", ColWidth); 1149 // Place end char 1150 dbgs() << "| \n"; 1151 } 1152 } 1153 } 1154 #endif 1155 1156 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1157 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 1158 if (MISchedDumpScheduleTrace) { 1159 if (DumpDir == DumpDirection::TopDown) 1160 dumpScheduleTraceTopDown(); 1161 else if (DumpDir == DumpDirection::BottomUp) 1162 dumpScheduleTraceBottomUp(); 1163 else if (DumpDir == DumpDirection::Bidirectional) { 1164 dbgs() << "* Schedule table (Bidirectional): not implemented\n"; 1165 } else { 1166 dbgs() << "* Schedule table: DumpDirection not set.\n"; 1167 } 1168 } 1169 1170 for (MachineInstr &MI : *this) { 1171 if (SUnit *SU = getSUnit(&MI)) 1172 dumpNode(*SU); 1173 else 1174 dbgs() << "Missing SUnit\n"; 1175 } 1176 } 1177 #endif 1178 1179 //===----------------------------------------------------------------------===// 1180 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 1181 // preservation. 1182 //===----------------------------------------------------------------------===// 1183 1184 ScheduleDAGMILive::~ScheduleDAGMILive() { 1185 delete DFSResult; 1186 } 1187 1188 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 1189 const MachineInstr &MI = *SU.getInstr(); 1190 for (const MachineOperand &MO : MI.operands()) { 1191 if (!MO.isReg()) 1192 continue; 1193 if (!MO.readsReg()) 1194 continue; 1195 if (TrackLaneMasks && !MO.isUse()) 1196 continue; 1197 1198 Register Reg = MO.getReg(); 1199 if (!Reg.isVirtual()) 1200 continue; 1201 1202 // Ignore re-defs. 1203 if (TrackLaneMasks) { 1204 bool FoundDef = false; 1205 for (const MachineOperand &MO2 : MI.all_defs()) { 1206 if (MO2.getReg() == Reg && !MO2.isDead()) { 1207 FoundDef = true; 1208 break; 1209 } 1210 } 1211 if (FoundDef) 1212 continue; 1213 } 1214 1215 // Record this local VReg use. 1216 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 1217 for (; UI != VRegUses.end(); ++UI) { 1218 if (UI->SU == &SU) 1219 break; 1220 } 1221 if (UI == VRegUses.end()) 1222 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 1223 } 1224 } 1225 1226 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 1227 /// crossing a scheduling boundary. [begin, end) includes all instructions in 1228 /// the region, including the boundary itself and single-instruction regions 1229 /// that don't get scheduled. 1230 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 1231 MachineBasicBlock::iterator begin, 1232 MachineBasicBlock::iterator end, 1233 unsigned regioninstrs) 1234 { 1235 // ScheduleDAGMI initializes SchedImpl's per-region policy. 1236 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 1237 1238 // For convenience remember the end of the liveness region. 1239 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 1240 1241 SUPressureDiffs.clear(); 1242 1243 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 1244 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 1245 1246 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1247 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1248 } 1249 1250 // Setup the register pressure trackers for the top scheduled and bottom 1251 // scheduled regions. 1252 void ScheduleDAGMILive::initRegPressure() { 1253 VRegUses.clear(); 1254 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1255 for (SUnit &SU : SUnits) 1256 collectVRegUses(SU); 1257 1258 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1259 ShouldTrackLaneMasks, false); 1260 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1261 ShouldTrackLaneMasks, false); 1262 1263 // Close the RPTracker to finalize live ins. 1264 RPTracker.closeRegion(); 1265 1266 LLVM_DEBUG(RPTracker.dump()); 1267 1268 // Initialize the live ins and live outs. 1269 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1270 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1271 1272 // Close one end of the tracker so we can call 1273 // getMaxUpward/DownwardPressureDelta before advancing across any 1274 // instructions. This converts currently live regs into live ins/outs. 1275 TopRPTracker.closeTop(); 1276 BotRPTracker.closeBottom(); 1277 1278 BotRPTracker.initLiveThru(RPTracker); 1279 if (!BotRPTracker.getLiveThru().empty()) { 1280 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1281 LLVM_DEBUG(dbgs() << "Live Thru: "; 1282 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1283 }; 1284 1285 // For each live out vreg reduce the pressure change associated with other 1286 // uses of the same vreg below the live-out reaching def. 1287 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1288 1289 // Account for liveness generated by the region boundary. 1290 if (LiveRegionEnd != RegionEnd) { 1291 SmallVector<VRegMaskOrUnit, 8> LiveUses; 1292 BotRPTracker.recede(&LiveUses); 1293 updatePressureDiffs(LiveUses); 1294 } 1295 1296 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1297 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1298 dbgs() << "Bottom Pressure:\n"; 1299 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1300 1301 assert((BotRPTracker.getPos() == RegionEnd || 1302 (RegionEnd->isDebugInstr() && 1303 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1304 "Can't find the region bottom"); 1305 1306 // Cache the list of excess pressure sets in this region. This will also track 1307 // the max pressure in the scheduled code for these sets. 1308 RegionCriticalPSets.clear(); 1309 const std::vector<unsigned> &RegionPressure = 1310 RPTracker.getPressure().MaxSetPressure; 1311 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1312 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1313 if (RegionPressure[i] > Limit) { 1314 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1315 << " Actual " << RegionPressure[i] << "\n"); 1316 RegionCriticalPSets.push_back(PressureChange(i)); 1317 } 1318 } 1319 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1320 for (const PressureChange &RCPS 1321 : RegionCriticalPSets) dbgs() 1322 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1323 dbgs() << "\n"); 1324 } 1325 1326 void ScheduleDAGMILive:: 1327 updateScheduledPressure(const SUnit *SU, 1328 const std::vector<unsigned> &NewMaxPressure) { 1329 const PressureDiff &PDiff = getPressureDiff(SU); 1330 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1331 for (const PressureChange &PC : PDiff) { 1332 if (!PC.isValid()) 1333 break; 1334 unsigned ID = PC.getPSet(); 1335 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1336 ++CritIdx; 1337 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1338 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1339 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1340 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1341 } 1342 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1343 if (NewMaxPressure[ID] >= Limit - 2) { 1344 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1345 << NewMaxPressure[ID] 1346 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1347 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1348 << " livethru)\n"); 1349 } 1350 } 1351 } 1352 1353 /// Update the PressureDiff array for liveness after scheduling this 1354 /// instruction. 1355 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<VRegMaskOrUnit> LiveUses) { 1356 for (const VRegMaskOrUnit &P : LiveUses) { 1357 Register Reg = P.RegUnit; 1358 /// FIXME: Currently assuming single-use physregs. 1359 if (!Reg.isVirtual()) 1360 continue; 1361 1362 if (ShouldTrackLaneMasks) { 1363 // If the register has just become live then other uses won't change 1364 // this fact anymore => decrement pressure. 1365 // If the register has just become dead then other uses make it come 1366 // back to life => increment pressure. 1367 bool Decrement = P.LaneMask.any(); 1368 1369 for (const VReg2SUnit &V2SU 1370 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1371 SUnit &SU = *V2SU.SU; 1372 if (SU.isScheduled || &SU == &ExitSU) 1373 continue; 1374 1375 PressureDiff &PDiff = getPressureDiff(&SU); 1376 PDiff.addPressureChange(Reg, Decrement, &MRI); 1377 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1378 << printReg(Reg, TRI) << ':' 1379 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1380 dbgs() << " to "; PDiff.dump(*TRI);); 1381 } 1382 } else { 1383 assert(P.LaneMask.any()); 1384 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1385 // This may be called before CurrentBottom has been initialized. However, 1386 // BotRPTracker must have a valid position. We want the value live into the 1387 // instruction or live out of the block, so ask for the previous 1388 // instruction's live-out. 1389 const LiveInterval &LI = LIS->getInterval(Reg); 1390 VNInfo *VNI; 1391 MachineBasicBlock::const_iterator I = 1392 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1393 if (I == BB->end()) 1394 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1395 else { 1396 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1397 VNI = LRQ.valueIn(); 1398 } 1399 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1400 assert(VNI && "No live value at use."); 1401 for (const VReg2SUnit &V2SU 1402 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1403 SUnit *SU = V2SU.SU; 1404 // If this use comes before the reaching def, it cannot be a last use, 1405 // so decrease its pressure change. 1406 if (!SU->isScheduled && SU != &ExitSU) { 1407 LiveQueryResult LRQ = 1408 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1409 if (LRQ.valueIn() == VNI) { 1410 PressureDiff &PDiff = getPressureDiff(SU); 1411 PDiff.addPressureChange(Reg, true, &MRI); 1412 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1413 << *SU->getInstr(); 1414 dbgs() << " to "; PDiff.dump(*TRI);); 1415 } 1416 } 1417 } 1418 } 1419 } 1420 } 1421 1422 void ScheduleDAGMILive::dump() const { 1423 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1424 if (EntrySU.getInstr() != nullptr) 1425 dumpNodeAll(EntrySU); 1426 for (const SUnit &SU : SUnits) { 1427 dumpNodeAll(SU); 1428 if (ShouldTrackPressure) { 1429 dbgs() << " Pressure Diff : "; 1430 getPressureDiff(&SU).dump(*TRI); 1431 } 1432 dbgs() << " Single Issue : "; 1433 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1434 SchedModel.mustEndGroup(SU.getInstr())) 1435 dbgs() << "true;"; 1436 else 1437 dbgs() << "false;"; 1438 dbgs() << '\n'; 1439 } 1440 if (ExitSU.getInstr() != nullptr) 1441 dumpNodeAll(ExitSU); 1442 #endif 1443 } 1444 1445 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1446 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1447 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1448 /// 1449 /// This is a skeletal driver, with all the functionality pushed into helpers, 1450 /// so that it can be easily extended by experimental schedulers. Generally, 1451 /// implementing MachineSchedStrategy should be sufficient to implement a new 1452 /// scheduling algorithm. However, if a scheduler further subclasses 1453 /// ScheduleDAGMILive then it will want to override this virtual method in order 1454 /// to update any specialized state. 1455 void ScheduleDAGMILive::schedule() { 1456 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1457 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1458 buildDAGWithRegPressure(); 1459 1460 postProcessDAG(); 1461 1462 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1463 findRootsAndBiasEdges(TopRoots, BotRoots); 1464 1465 // Initialize the strategy before modifying the DAG. 1466 // This may initialize a DFSResult to be used for queue priority. 1467 SchedImpl->initialize(this); 1468 1469 LLVM_DEBUG(dump()); 1470 if (PrintDAGs) dump(); 1471 if (ViewMISchedDAGs) viewGraph(); 1472 1473 // Initialize ready queues now that the DAG and priority data are finalized. 1474 initQueues(TopRoots, BotRoots); 1475 1476 bool IsTopNode = false; 1477 while (true) { 1478 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1479 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1480 if (!SU) break; 1481 1482 assert(!SU->isScheduled && "Node already scheduled"); 1483 if (!checkSchedLimit()) 1484 break; 1485 1486 scheduleMI(SU, IsTopNode); 1487 1488 if (DFSResult) { 1489 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1490 if (!ScheduledTrees.test(SubtreeID)) { 1491 ScheduledTrees.set(SubtreeID); 1492 DFSResult->scheduleTree(SubtreeID); 1493 SchedImpl->scheduleTree(SubtreeID); 1494 } 1495 } 1496 1497 // Notify the scheduling strategy after updating the DAG. 1498 SchedImpl->schedNode(SU, IsTopNode); 1499 1500 updateQueues(SU, IsTopNode); 1501 } 1502 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1503 1504 placeDebugValues(); 1505 1506 LLVM_DEBUG({ 1507 dbgs() << "*** Final schedule for " 1508 << printMBBReference(*begin()->getParent()) << " ***\n"; 1509 dumpSchedule(); 1510 dbgs() << '\n'; 1511 }); 1512 } 1513 1514 /// Build the DAG and setup three register pressure trackers. 1515 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1516 if (!ShouldTrackPressure) { 1517 RPTracker.reset(); 1518 RegionCriticalPSets.clear(); 1519 buildSchedGraph(AA); 1520 return; 1521 } 1522 1523 // Initialize the register pressure tracker used by buildSchedGraph. 1524 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1525 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1526 1527 // Account for liveness generate by the region boundary. 1528 if (LiveRegionEnd != RegionEnd) 1529 RPTracker.recede(); 1530 1531 // Build the DAG, and compute current register pressure. 1532 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1533 1534 // Initialize top/bottom trackers after computing region pressure. 1535 initRegPressure(); 1536 } 1537 1538 void ScheduleDAGMILive::computeDFSResult() { 1539 if (!DFSResult) 1540 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1541 DFSResult->clear(); 1542 ScheduledTrees.clear(); 1543 DFSResult->resize(SUnits.size()); 1544 DFSResult->compute(SUnits); 1545 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1546 } 1547 1548 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1549 /// only provides the critical path for single block loops. To handle loops that 1550 /// span blocks, we could use the vreg path latencies provided by 1551 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1552 /// available for use in the scheduler. 1553 /// 1554 /// The cyclic path estimation identifies a def-use pair that crosses the back 1555 /// edge and considers the depth and height of the nodes. For example, consider 1556 /// the following instruction sequence where each instruction has unit latency 1557 /// and defines an eponymous virtual register: 1558 /// 1559 /// a->b(a,c)->c(b)->d(c)->exit 1560 /// 1561 /// The cyclic critical path is a two cycles: b->c->b 1562 /// The acyclic critical path is four cycles: a->b->c->d->exit 1563 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1564 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1565 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1566 /// LiveInDepth = depth(b) = len(a->b) = 1 1567 /// 1568 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1569 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1570 /// CyclicCriticalPath = min(2, 2) = 2 1571 /// 1572 /// This could be relevant to PostRA scheduling, but is currently implemented 1573 /// assuming LiveIntervals. 1574 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1575 // This only applies to single block loop. 1576 if (!BB->isSuccessor(BB)) 1577 return 0; 1578 1579 unsigned MaxCyclicLatency = 0; 1580 // Visit each live out vreg def to find def/use pairs that cross iterations. 1581 for (const VRegMaskOrUnit &P : RPTracker.getPressure().LiveOutRegs) { 1582 Register Reg = P.RegUnit; 1583 if (!Reg.isVirtual()) 1584 continue; 1585 const LiveInterval &LI = LIS->getInterval(Reg); 1586 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1587 if (!DefVNI) 1588 continue; 1589 1590 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1591 const SUnit *DefSU = getSUnit(DefMI); 1592 if (!DefSU) 1593 continue; 1594 1595 unsigned LiveOutHeight = DefSU->getHeight(); 1596 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1597 // Visit all local users of the vreg def. 1598 for (const VReg2SUnit &V2SU 1599 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1600 SUnit *SU = V2SU.SU; 1601 if (SU == &ExitSU) 1602 continue; 1603 1604 // Only consider uses of the phi. 1605 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1606 if (!LRQ.valueIn()->isPHIDef()) 1607 continue; 1608 1609 // Assume that a path spanning two iterations is a cycle, which could 1610 // overestimate in strange cases. This allows cyclic latency to be 1611 // estimated as the minimum slack of the vreg's depth or height. 1612 unsigned CyclicLatency = 0; 1613 if (LiveOutDepth > SU->getDepth()) 1614 CyclicLatency = LiveOutDepth - SU->getDepth(); 1615 1616 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1617 if (LiveInHeight > LiveOutHeight) { 1618 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1619 CyclicLatency = LiveInHeight - LiveOutHeight; 1620 } else 1621 CyclicLatency = 0; 1622 1623 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1624 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1625 if (CyclicLatency > MaxCyclicLatency) 1626 MaxCyclicLatency = CyclicLatency; 1627 } 1628 } 1629 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1630 return MaxCyclicLatency; 1631 } 1632 1633 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1634 /// the Top RP tracker in case the region beginning has changed. 1635 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1636 ArrayRef<SUnit*> BotRoots) { 1637 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1638 if (ShouldTrackPressure) { 1639 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1640 TopRPTracker.setPos(CurrentTop); 1641 } 1642 } 1643 1644 /// Move an instruction and update register pressure. 1645 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1646 // Move the instruction to its new location in the instruction stream. 1647 MachineInstr *MI = SU->getInstr(); 1648 1649 if (IsTopNode) { 1650 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1651 if (&*CurrentTop == MI) 1652 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1653 else { 1654 moveInstruction(MI, CurrentTop); 1655 TopRPTracker.setPos(MI); 1656 } 1657 1658 if (ShouldTrackPressure) { 1659 // Update top scheduled pressure. 1660 RegisterOperands RegOpers; 1661 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, 1662 /*IgnoreDead=*/false); 1663 if (ShouldTrackLaneMasks) { 1664 // Adjust liveness and add missing dead+read-undef flags. 1665 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1666 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1667 } else { 1668 // Adjust for missing dead-def flags. 1669 RegOpers.detectDeadDefs(*MI, *LIS); 1670 } 1671 1672 TopRPTracker.advance(RegOpers); 1673 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1674 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1675 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1676 1677 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1678 } 1679 } else { 1680 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1681 MachineBasicBlock::iterator priorII = 1682 priorNonDebug(CurrentBottom, CurrentTop); 1683 if (&*priorII == MI) 1684 CurrentBottom = priorII; 1685 else { 1686 if (&*CurrentTop == MI) { 1687 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1688 TopRPTracker.setPos(CurrentTop); 1689 } 1690 moveInstruction(MI, CurrentBottom); 1691 CurrentBottom = MI; 1692 BotRPTracker.setPos(CurrentBottom); 1693 } 1694 if (ShouldTrackPressure) { 1695 RegisterOperands RegOpers; 1696 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, 1697 /*IgnoreDead=*/false); 1698 if (ShouldTrackLaneMasks) { 1699 // Adjust liveness and add missing dead+read-undef flags. 1700 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1701 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1702 } else { 1703 // Adjust for missing dead-def flags. 1704 RegOpers.detectDeadDefs(*MI, *LIS); 1705 } 1706 1707 if (BotRPTracker.getPos() != CurrentBottom) 1708 BotRPTracker.recedeSkipDebugValues(); 1709 SmallVector<VRegMaskOrUnit, 8> LiveUses; 1710 BotRPTracker.recede(RegOpers, &LiveUses); 1711 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1712 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1713 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1714 1715 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1716 updatePressureDiffs(LiveUses); 1717 } 1718 } 1719 } 1720 1721 //===----------------------------------------------------------------------===// 1722 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1723 //===----------------------------------------------------------------------===// 1724 1725 namespace { 1726 1727 /// Post-process the DAG to create cluster edges between neighboring 1728 /// loads or between neighboring stores. 1729 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1730 struct MemOpInfo { 1731 SUnit *SU; 1732 SmallVector<const MachineOperand *, 4> BaseOps; 1733 int64_t Offset; 1734 LocationSize Width; 1735 bool OffsetIsScalable; 1736 1737 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps, 1738 int64_t Offset, bool OffsetIsScalable, LocationSize Width) 1739 : SU(SU), BaseOps(BaseOps), Offset(Offset), Width(Width), 1740 OffsetIsScalable(OffsetIsScalable) {} 1741 1742 static bool Compare(const MachineOperand *const &A, 1743 const MachineOperand *const &B) { 1744 if (A->getType() != B->getType()) 1745 return A->getType() < B->getType(); 1746 if (A->isReg()) 1747 return A->getReg() < B->getReg(); 1748 if (A->isFI()) { 1749 const MachineFunction &MF = *A->getParent()->getParent()->getParent(); 1750 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1751 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1752 TargetFrameLowering::StackGrowsDown; 1753 return StackGrowsDown ? A->getIndex() > B->getIndex() 1754 : A->getIndex() < B->getIndex(); 1755 } 1756 1757 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1758 "index bases."); 1759 } 1760 1761 bool operator<(const MemOpInfo &RHS) const { 1762 // FIXME: Don't compare everything twice. Maybe use C++20 three way 1763 // comparison instead when it's available. 1764 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(), 1765 RHS.BaseOps.begin(), RHS.BaseOps.end(), 1766 Compare)) 1767 return true; 1768 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(), 1769 BaseOps.begin(), BaseOps.end(), Compare)) 1770 return false; 1771 if (Offset != RHS.Offset) 1772 return Offset < RHS.Offset; 1773 return SU->NodeNum < RHS.SU->NodeNum; 1774 } 1775 }; 1776 1777 const TargetInstrInfo *TII; 1778 const TargetRegisterInfo *TRI; 1779 bool IsLoad; 1780 bool ReorderWhileClustering; 1781 1782 public: 1783 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1784 const TargetRegisterInfo *tri, bool IsLoad, 1785 bool ReorderWhileClustering) 1786 : TII(tii), TRI(tri), IsLoad(IsLoad), 1787 ReorderWhileClustering(ReorderWhileClustering) {} 1788 1789 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1790 1791 protected: 1792 void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster, 1793 ScheduleDAGInstrs *DAG); 1794 void collectMemOpRecords(std::vector<SUnit> &SUnits, 1795 SmallVectorImpl<MemOpInfo> &MemOpRecords); 1796 bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1797 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups); 1798 }; 1799 1800 class StoreClusterMutation : public BaseMemOpClusterMutation { 1801 public: 1802 StoreClusterMutation(const TargetInstrInfo *tii, 1803 const TargetRegisterInfo *tri, 1804 bool ReorderWhileClustering) 1805 : BaseMemOpClusterMutation(tii, tri, false, ReorderWhileClustering) {} 1806 }; 1807 1808 class LoadClusterMutation : public BaseMemOpClusterMutation { 1809 public: 1810 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri, 1811 bool ReorderWhileClustering) 1812 : BaseMemOpClusterMutation(tii, tri, true, ReorderWhileClustering) {} 1813 }; 1814 1815 } // end anonymous namespace 1816 1817 namespace llvm { 1818 1819 std::unique_ptr<ScheduleDAGMutation> 1820 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1821 const TargetRegisterInfo *TRI, 1822 bool ReorderWhileClustering) { 1823 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>( 1824 TII, TRI, ReorderWhileClustering) 1825 : nullptr; 1826 } 1827 1828 std::unique_ptr<ScheduleDAGMutation> 1829 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1830 const TargetRegisterInfo *TRI, 1831 bool ReorderWhileClustering) { 1832 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>( 1833 TII, TRI, ReorderWhileClustering) 1834 : nullptr; 1835 } 1836 1837 } // end namespace llvm 1838 1839 // Sorting all the loads/stores first, then for each load/store, checking the 1840 // following load/store one by one, until reach the first non-dependent one and 1841 // call target hook to see if they can cluster. 1842 // If FastCluster is enabled, we assume that, all the loads/stores have been 1843 // preprocessed and now, they didn't have dependencies on each other. 1844 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1845 ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster, 1846 ScheduleDAGInstrs *DAG) { 1847 // Keep track of the current cluster length and bytes for each SUnit. 1848 DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo; 1849 1850 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to 1851 // cluster mem ops collected within `MemOpRecords` array. 1852 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1853 // Decision to cluster mem ops is taken based on target dependent logic 1854 auto MemOpa = MemOpRecords[Idx]; 1855 1856 // Seek for the next load/store to do the cluster. 1857 unsigned NextIdx = Idx + 1; 1858 for (; NextIdx < End; ++NextIdx) 1859 // Skip if MemOpb has been clustered already or has dependency with 1860 // MemOpa. 1861 if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) && 1862 (FastCluster || 1863 (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) && 1864 !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU)))) 1865 break; 1866 if (NextIdx == End) 1867 continue; 1868 1869 auto MemOpb = MemOpRecords[NextIdx]; 1870 unsigned ClusterLength = 2; 1871 unsigned CurrentClusterBytes = MemOpa.Width.getValue().getKnownMinValue() + 1872 MemOpb.Width.getValue().getKnownMinValue(); 1873 if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) { 1874 ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1; 1875 CurrentClusterBytes = SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + 1876 MemOpb.Width.getValue().getKnownMinValue(); 1877 } 1878 1879 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpa.Offset, 1880 MemOpa.OffsetIsScalable, MemOpb.BaseOps, 1881 MemOpb.Offset, MemOpb.OffsetIsScalable, 1882 ClusterLength, CurrentClusterBytes)) 1883 continue; 1884 1885 SUnit *SUa = MemOpa.SU; 1886 SUnit *SUb = MemOpb.SU; 1887 if (!ReorderWhileClustering && SUa->NodeNum > SUb->NodeNum) 1888 std::swap(SUa, SUb); 1889 1890 // FIXME: Is this check really required? 1891 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) 1892 continue; 1893 1894 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1895 << SUb->NodeNum << ")\n"); 1896 ++NumClustered; 1897 1898 if (IsLoad) { 1899 // Copy successor edges from SUa to SUb. Interleaving computation 1900 // dependent on SUa can prevent load combining due to register reuse. 1901 // Predecessor edges do not need to be copied from SUb to SUa since 1902 // nearby loads should have effectively the same inputs. 1903 for (const SDep &Succ : SUa->Succs) { 1904 if (Succ.getSUnit() == SUb) 1905 continue; 1906 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1907 << ")\n"); 1908 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1909 } 1910 } else { 1911 // Copy predecessor edges from SUb to SUa to avoid the SUnits that 1912 // SUb dependent on scheduled in-between SUb and SUa. Successor edges 1913 // do not need to be copied from SUa to SUb since no one will depend 1914 // on stores. 1915 // Notice that, we don't need to care about the memory dependency as 1916 // we won't try to cluster them if they have any memory dependency. 1917 for (const SDep &Pred : SUb->Preds) { 1918 if (Pred.getSUnit() == SUa) 1919 continue; 1920 LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNum 1921 << ")\n"); 1922 DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial)); 1923 } 1924 } 1925 1926 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength, 1927 CurrentClusterBytes}; 1928 1929 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength 1930 << ", Curr cluster bytes: " << CurrentClusterBytes 1931 << "\n"); 1932 } 1933 } 1934 1935 void BaseMemOpClusterMutation::collectMemOpRecords( 1936 std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) { 1937 for (auto &SU : SUnits) { 1938 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1939 (!IsLoad && !SU.getInstr()->mayStore())) 1940 continue; 1941 1942 const MachineInstr &MI = *SU.getInstr(); 1943 SmallVector<const MachineOperand *, 4> BaseOps; 1944 int64_t Offset; 1945 bool OffsetIsScalable; 1946 LocationSize Width = 0; 1947 if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, 1948 OffsetIsScalable, Width, TRI)) { 1949 if (!Width.hasValue()) 1950 continue; 1951 1952 MemOpRecords.push_back( 1953 MemOpInfo(&SU, BaseOps, Offset, OffsetIsScalable, Width)); 1954 1955 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: " 1956 << Offset << ", OffsetIsScalable: " << OffsetIsScalable 1957 << ", Width: " << Width << "\n"); 1958 } 1959 #ifndef NDEBUG 1960 for (const auto *Op : BaseOps) 1961 assert(Op); 1962 #endif 1963 } 1964 } 1965 1966 bool BaseMemOpClusterMutation::groupMemOps( 1967 ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1968 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) { 1969 bool FastCluster = 1970 ForceFastCluster || 1971 MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold; 1972 1973 for (const auto &MemOp : MemOps) { 1974 unsigned ChainPredID = DAG->SUnits.size(); 1975 if (FastCluster) { 1976 for (const SDep &Pred : MemOp.SU->Preds) { 1977 // We only want to cluster the mem ops that have the same ctrl(non-data) 1978 // pred so that they didn't have ctrl dependency for each other. But for 1979 // store instrs, we can still cluster them if the pred is load instr. 1980 if ((Pred.isCtrl() && 1981 (IsLoad || 1982 (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) && 1983 !Pred.isArtificial()) { 1984 ChainPredID = Pred.getSUnit()->NodeNum; 1985 break; 1986 } 1987 } 1988 } else 1989 ChainPredID = 0; 1990 1991 Groups[ChainPredID].push_back(MemOp); 1992 } 1993 return FastCluster; 1994 } 1995 1996 /// Callback from DAG postProcessing to create cluster edges for loads/stores. 1997 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 1998 // Collect all the clusterable loads/stores 1999 SmallVector<MemOpInfo, 32> MemOpRecords; 2000 collectMemOpRecords(DAG->SUnits, MemOpRecords); 2001 2002 if (MemOpRecords.size() < 2) 2003 return; 2004 2005 // Put the loads/stores without dependency into the same group with some 2006 // heuristic if the DAG is too complex to avoid compiling time blow up. 2007 // Notice that, some fusion pair could be lost with this. 2008 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups; 2009 bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups); 2010 2011 for (auto &Group : Groups) { 2012 // Sorting the loads/stores, so that, we can stop the cluster as early as 2013 // possible. 2014 llvm::sort(Group.second); 2015 2016 // Trying to cluster all the neighboring loads/stores. 2017 clusterNeighboringMemOps(Group.second, FastCluster, DAG); 2018 } 2019 } 2020 2021 //===----------------------------------------------------------------------===// 2022 // CopyConstrain - DAG post-processing to encourage copy elimination. 2023 //===----------------------------------------------------------------------===// 2024 2025 namespace { 2026 2027 /// Post-process the DAG to create weak edges from all uses of a copy to 2028 /// the one use that defines the copy's source vreg, most likely an induction 2029 /// variable increment. 2030 class CopyConstrain : public ScheduleDAGMutation { 2031 // Transient state. 2032 SlotIndex RegionBeginIdx; 2033 2034 // RegionEndIdx is the slot index of the last non-debug instruction in the 2035 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 2036 SlotIndex RegionEndIdx; 2037 2038 public: 2039 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 2040 2041 void apply(ScheduleDAGInstrs *DAGInstrs) override; 2042 2043 protected: 2044 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 2045 }; 2046 2047 } // end anonymous namespace 2048 2049 namespace llvm { 2050 2051 std::unique_ptr<ScheduleDAGMutation> 2052 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 2053 const TargetRegisterInfo *TRI) { 2054 return std::make_unique<CopyConstrain>(TII, TRI); 2055 } 2056 2057 } // end namespace llvm 2058 2059 /// constrainLocalCopy handles two possibilities: 2060 /// 1) Local src: 2061 /// I0: = dst 2062 /// I1: src = ... 2063 /// I2: = dst 2064 /// I3: dst = src (copy) 2065 /// (create pred->succ edges I0->I1, I2->I1) 2066 /// 2067 /// 2) Local copy: 2068 /// I0: dst = src (copy) 2069 /// I1: = dst 2070 /// I2: src = ... 2071 /// I3: = dst 2072 /// (create pred->succ edges I1->I2, I3->I2) 2073 /// 2074 /// Although the MachineScheduler is currently constrained to single blocks, 2075 /// this algorithm should handle extended blocks. An EBB is a set of 2076 /// contiguously numbered blocks such that the previous block in the EBB is 2077 /// always the single predecessor. 2078 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 2079 LiveIntervals *LIS = DAG->getLIS(); 2080 MachineInstr *Copy = CopySU->getInstr(); 2081 2082 // Check for pure vreg copies. 2083 const MachineOperand &SrcOp = Copy->getOperand(1); 2084 Register SrcReg = SrcOp.getReg(); 2085 if (!SrcReg.isVirtual() || !SrcOp.readsReg()) 2086 return; 2087 2088 const MachineOperand &DstOp = Copy->getOperand(0); 2089 Register DstReg = DstOp.getReg(); 2090 if (!DstReg.isVirtual() || DstOp.isDead()) 2091 return; 2092 2093 // Check if either the dest or source is local. If it's live across a back 2094 // edge, it's not local. Note that if both vregs are live across the back 2095 // edge, we cannot successfully contrain the copy without cyclic scheduling. 2096 // If both the copy's source and dest are local live intervals, then we 2097 // should treat the dest as the global for the purpose of adding 2098 // constraints. This adds edges from source's other uses to the copy. 2099 unsigned LocalReg = SrcReg; 2100 unsigned GlobalReg = DstReg; 2101 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 2102 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 2103 LocalReg = DstReg; 2104 GlobalReg = SrcReg; 2105 LocalLI = &LIS->getInterval(LocalReg); 2106 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 2107 return; 2108 } 2109 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 2110 2111 // Find the global segment after the start of the local LI. 2112 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 2113 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 2114 // local live range. We could create edges from other global uses to the local 2115 // start, but the coalescer should have already eliminated these cases, so 2116 // don't bother dealing with it. 2117 if (GlobalSegment == GlobalLI->end()) 2118 return; 2119 2120 // If GlobalSegment is killed at the LocalLI->start, the call to find() 2121 // returned the next global segment. But if GlobalSegment overlaps with 2122 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 2123 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 2124 if (GlobalSegment->contains(LocalLI->beginIndex())) 2125 ++GlobalSegment; 2126 2127 if (GlobalSegment == GlobalLI->end()) 2128 return; 2129 2130 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 2131 if (GlobalSegment != GlobalLI->begin()) { 2132 // Two address defs have no hole. 2133 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 2134 GlobalSegment->start)) { 2135 return; 2136 } 2137 // If the prior global segment may be defined by the same two-address 2138 // instruction that also defines LocalLI, then can't make a hole here. 2139 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 2140 LocalLI->beginIndex())) { 2141 return; 2142 } 2143 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 2144 // it would be a disconnected component in the live range. 2145 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 2146 "Disconnected LRG within the scheduling region."); 2147 } 2148 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 2149 if (!GlobalDef) 2150 return; 2151 2152 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 2153 if (!GlobalSU) 2154 return; 2155 2156 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 2157 // constraining the uses of the last local def to precede GlobalDef. 2158 SmallVector<SUnit*,8> LocalUses; 2159 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 2160 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 2161 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 2162 for (const SDep &Succ : LastLocalSU->Succs) { 2163 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 2164 continue; 2165 if (Succ.getSUnit() == GlobalSU) 2166 continue; 2167 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 2168 return; 2169 LocalUses.push_back(Succ.getSUnit()); 2170 } 2171 // Open the top of the GlobalLI hole by constraining any earlier global uses 2172 // to precede the start of LocalLI. 2173 SmallVector<SUnit*,8> GlobalUses; 2174 MachineInstr *FirstLocalDef = 2175 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 2176 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 2177 for (const SDep &Pred : GlobalSU->Preds) { 2178 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 2179 continue; 2180 if (Pred.getSUnit() == FirstLocalSU) 2181 continue; 2182 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 2183 return; 2184 GlobalUses.push_back(Pred.getSUnit()); 2185 } 2186 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 2187 // Add the weak edges. 2188 for (SUnit *LU : LocalUses) { 2189 LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU(" 2190 << GlobalSU->NodeNum << ")\n"); 2191 DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak)); 2192 } 2193 for (SUnit *GU : GlobalUses) { 2194 LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU(" 2195 << FirstLocalSU->NodeNum << ")\n"); 2196 DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak)); 2197 } 2198 } 2199 2200 /// Callback from DAG postProcessing to create weak edges to encourage 2201 /// copy elimination. 2202 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 2203 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 2204 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 2205 2206 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 2207 if (FirstPos == DAG->end()) 2208 return; 2209 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 2210 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 2211 *priorNonDebug(DAG->end(), DAG->begin())); 2212 2213 for (SUnit &SU : DAG->SUnits) { 2214 if (!SU.getInstr()->isCopy()) 2215 continue; 2216 2217 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 2218 } 2219 } 2220 2221 //===----------------------------------------------------------------------===// 2222 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 2223 // and possibly other custom schedulers. 2224 //===----------------------------------------------------------------------===// 2225 2226 static const unsigned InvalidCycle = ~0U; 2227 2228 SchedBoundary::~SchedBoundary() { delete HazardRec; } 2229 2230 /// Given a Count of resource usage and a Latency value, return true if a 2231 /// SchedBoundary becomes resource limited. 2232 /// If we are checking after scheduling a node, we should return true when 2233 /// we just reach the resource limit. 2234 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 2235 unsigned Latency, bool AfterSchedNode) { 2236 int ResCntFactor = (int)(Count - (Latency * LFactor)); 2237 if (AfterSchedNode) 2238 return ResCntFactor >= (int)LFactor; 2239 else 2240 return ResCntFactor > (int)LFactor; 2241 } 2242 2243 void SchedBoundary::reset() { 2244 // A new HazardRec is created for each DAG and owned by SchedBoundary. 2245 // Destroying and reconstructing it is very expensive though. So keep 2246 // invalid, placeholder HazardRecs. 2247 if (HazardRec && HazardRec->isEnabled()) { 2248 delete HazardRec; 2249 HazardRec = nullptr; 2250 } 2251 Available.clear(); 2252 Pending.clear(); 2253 CheckPending = false; 2254 CurrCycle = 0; 2255 CurrMOps = 0; 2256 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2257 ExpectedLatency = 0; 2258 DependentLatency = 0; 2259 RetiredMOps = 0; 2260 MaxExecutedResCount = 0; 2261 ZoneCritResIdx = 0; 2262 IsResourceLimited = false; 2263 ReservedCycles.clear(); 2264 ReservedResourceSegments.clear(); 2265 ReservedCyclesIndex.clear(); 2266 ResourceGroupSubUnitMasks.clear(); 2267 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2268 // Track the maximum number of stall cycles that could arise either from the 2269 // latency of a DAG edge or the number of cycles that a processor resource is 2270 // reserved (SchedBoundary::ReservedCycles). 2271 MaxObservedStall = 0; 2272 #endif 2273 // Reserve a zero-count for invalid CritResIdx. 2274 ExecutedResCounts.resize(1); 2275 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 2276 } 2277 2278 void SchedRemainder:: 2279 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 2280 reset(); 2281 if (!SchedModel->hasInstrSchedModel()) 2282 return; 2283 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 2284 for (SUnit &SU : DAG->SUnits) { 2285 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 2286 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 2287 * SchedModel->getMicroOpFactor(); 2288 for (TargetSchedModel::ProcResIter 2289 PI = SchedModel->getWriteProcResBegin(SC), 2290 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2291 unsigned PIdx = PI->ProcResourceIdx; 2292 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2293 assert(PI->ReleaseAtCycle >= PI->AcquireAtCycle); 2294 RemainingCounts[PIdx] += 2295 (Factor * (PI->ReleaseAtCycle - PI->AcquireAtCycle)); 2296 } 2297 } 2298 } 2299 2300 void SchedBoundary:: 2301 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 2302 reset(); 2303 DAG = dag; 2304 SchedModel = smodel; 2305 Rem = rem; 2306 if (SchedModel->hasInstrSchedModel()) { 2307 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2308 ReservedCyclesIndex.resize(ResourceCount); 2309 ExecutedResCounts.resize(ResourceCount); 2310 ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0)); 2311 unsigned NumUnits = 0; 2312 2313 for (unsigned i = 0; i < ResourceCount; ++i) { 2314 ReservedCyclesIndex[i] = NumUnits; 2315 NumUnits += SchedModel->getProcResource(i)->NumUnits; 2316 if (isUnbufferedGroup(i)) { 2317 auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin; 2318 for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits; 2319 U != UE; ++U) 2320 ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]); 2321 } 2322 } 2323 2324 ReservedCycles.resize(NumUnits, InvalidCycle); 2325 } 2326 } 2327 2328 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 2329 /// these "soft stalls" differently than the hard stall cycles based on CPU 2330 /// resources and computed by checkHazard(). A fully in-order model 2331 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 2332 /// available for scheduling until they are ready. However, a weaker in-order 2333 /// model may use this for heuristics. For example, if a processor has in-order 2334 /// behavior when reading certain resources, this may come into play. 2335 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 2336 if (!SU->isUnbuffered) 2337 return 0; 2338 2339 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2340 if (ReadyCycle > CurrCycle) 2341 return ReadyCycle - CurrCycle; 2342 return 0; 2343 } 2344 2345 /// Compute the next cycle at which the given processor resource unit 2346 /// can be scheduled. 2347 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 2348 unsigned ReleaseAtCycle, 2349 unsigned AcquireAtCycle) { 2350 if (SchedModel && SchedModel->enableIntervals()) { 2351 if (isTop()) 2352 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromTop( 2353 CurrCycle, AcquireAtCycle, ReleaseAtCycle); 2354 2355 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromBottom( 2356 CurrCycle, AcquireAtCycle, ReleaseAtCycle); 2357 } 2358 2359 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 2360 // If this resource has never been used, always return cycle zero. 2361 if (NextUnreserved == InvalidCycle) 2362 return CurrCycle; 2363 // For bottom-up scheduling add the cycles needed for the current operation. 2364 if (!isTop()) 2365 NextUnreserved = std::max(CurrCycle, NextUnreserved + ReleaseAtCycle); 2366 return NextUnreserved; 2367 } 2368 2369 /// Compute the next cycle at which the given processor resource can be 2370 /// scheduled. Returns the next cycle and the index of the processor resource 2371 /// instance in the reserved cycles vector. 2372 std::pair<unsigned, unsigned> 2373 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx, 2374 unsigned ReleaseAtCycle, 2375 unsigned AcquireAtCycle) { 2376 if (MischedDetailResourceBooking) { 2377 LLVM_DEBUG(dbgs() << " Resource booking (@" << CurrCycle << "c): \n"); 2378 LLVM_DEBUG(dumpReservedCycles()); 2379 LLVM_DEBUG(dbgs() << " getNextResourceCycle (@" << CurrCycle << "c): \n"); 2380 } 2381 unsigned MinNextUnreserved = InvalidCycle; 2382 unsigned InstanceIdx = 0; 2383 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 2384 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 2385 assert(NumberOfInstances > 0 && 2386 "Cannot have zero instances of a ProcResource"); 2387 2388 if (isUnbufferedGroup(PIdx)) { 2389 // If any subunits are used by the instruction, report that the 2390 // subunits of the resource group are available at the first cycle 2391 // in which the unit is available, effectively removing the group 2392 // record from hazarding and basing the hazarding decisions on the 2393 // subunit records. Otherwise, choose the first available instance 2394 // from among the subunits. Specifications which assign cycles to 2395 // both the subunits and the group or which use an unbuffered 2396 // group with buffered subunits will appear to schedule 2397 // strangely. In the first case, the additional cycles for the 2398 // group will be ignored. In the second, the group will be 2399 // ignored entirely. 2400 for (const MCWriteProcResEntry &PE : 2401 make_range(SchedModel->getWriteProcResBegin(SC), 2402 SchedModel->getWriteProcResEnd(SC))) 2403 if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx]) 2404 return std::make_pair(getNextResourceCycleByInstance( 2405 StartIndex, ReleaseAtCycle, AcquireAtCycle), 2406 StartIndex); 2407 2408 auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin; 2409 for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) { 2410 unsigned NextUnreserved, NextInstanceIdx; 2411 std::tie(NextUnreserved, NextInstanceIdx) = 2412 getNextResourceCycle(SC, SubUnits[I], ReleaseAtCycle, AcquireAtCycle); 2413 if (MinNextUnreserved > NextUnreserved) { 2414 InstanceIdx = NextInstanceIdx; 2415 MinNextUnreserved = NextUnreserved; 2416 } 2417 } 2418 return std::make_pair(MinNextUnreserved, InstanceIdx); 2419 } 2420 2421 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 2422 ++I) { 2423 unsigned NextUnreserved = 2424 getNextResourceCycleByInstance(I, ReleaseAtCycle, AcquireAtCycle); 2425 if (MischedDetailResourceBooking) 2426 LLVM_DEBUG(dbgs() << " Instance " << I - StartIndex << " available @" 2427 << NextUnreserved << "c\n"); 2428 if (MinNextUnreserved > NextUnreserved) { 2429 InstanceIdx = I; 2430 MinNextUnreserved = NextUnreserved; 2431 } 2432 } 2433 if (MischedDetailResourceBooking) 2434 LLVM_DEBUG(dbgs() << " selecting " << SchedModel->getResourceName(PIdx) 2435 << "[" << InstanceIdx - StartIndex << "]" 2436 << " available @" << MinNextUnreserved << "c" 2437 << "\n"); 2438 return std::make_pair(MinNextUnreserved, InstanceIdx); 2439 } 2440 2441 /// Does this SU have a hazard within the current instruction group. 2442 /// 2443 /// The scheduler supports two modes of hazard recognition. The first is the 2444 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 2445 /// supports highly complicated in-order reservation tables 2446 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 2447 /// 2448 /// The second is a streamlined mechanism that checks for hazards based on 2449 /// simple counters that the scheduler itself maintains. It explicitly checks 2450 /// for instruction dispatch limitations, including the number of micro-ops that 2451 /// can dispatch per cycle. 2452 /// 2453 /// TODO: Also check whether the SU must start a new group. 2454 bool SchedBoundary::checkHazard(SUnit *SU) { 2455 if (HazardRec->isEnabled() 2456 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 2457 return true; 2458 } 2459 2460 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 2461 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2462 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2463 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2464 return true; 2465 } 2466 2467 if (CurrMOps > 0 && 2468 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2469 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2470 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2471 << (isTop() ? "begin" : "end") << " group\n"); 2472 return true; 2473 } 2474 2475 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2476 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2477 for (const MCWriteProcResEntry &PE : 2478 make_range(SchedModel->getWriteProcResBegin(SC), 2479 SchedModel->getWriteProcResEnd(SC))) { 2480 unsigned ResIdx = PE.ProcResourceIdx; 2481 unsigned ReleaseAtCycle = PE.ReleaseAtCycle; 2482 unsigned AcquireAtCycle = PE.AcquireAtCycle; 2483 unsigned NRCycle, InstanceIdx; 2484 std::tie(NRCycle, InstanceIdx) = 2485 getNextResourceCycle(SC, ResIdx, ReleaseAtCycle, AcquireAtCycle); 2486 if (NRCycle > CurrCycle) { 2487 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2488 MaxObservedStall = std::max(ReleaseAtCycle, MaxObservedStall); 2489 #endif 2490 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2491 << SchedModel->getResourceName(ResIdx) 2492 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2493 << "=" << NRCycle << "c\n"); 2494 return true; 2495 } 2496 } 2497 } 2498 return false; 2499 } 2500 2501 // Find the unscheduled node in ReadySUs with the highest latency. 2502 unsigned SchedBoundary:: 2503 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2504 SUnit *LateSU = nullptr; 2505 unsigned RemLatency = 0; 2506 for (SUnit *SU : ReadySUs) { 2507 unsigned L = getUnscheduledLatency(SU); 2508 if (L > RemLatency) { 2509 RemLatency = L; 2510 LateSU = SU; 2511 } 2512 } 2513 if (LateSU) { 2514 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2515 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2516 } 2517 return RemLatency; 2518 } 2519 2520 // Count resources in this zone and the remaining unscheduled 2521 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2522 // resource index, or zero if the zone is issue limited. 2523 unsigned SchedBoundary:: 2524 getOtherResourceCount(unsigned &OtherCritIdx) { 2525 OtherCritIdx = 0; 2526 if (!SchedModel->hasInstrSchedModel()) 2527 return 0; 2528 2529 unsigned OtherCritCount = Rem->RemIssueCount 2530 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2531 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2532 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2533 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2534 PIdx != PEnd; ++PIdx) { 2535 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2536 if (OtherCount > OtherCritCount) { 2537 OtherCritCount = OtherCount; 2538 OtherCritIdx = PIdx; 2539 } 2540 } 2541 if (OtherCritIdx) { 2542 LLVM_DEBUG( 2543 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2544 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2545 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2546 } 2547 return OtherCritCount; 2548 } 2549 2550 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, 2551 unsigned Idx) { 2552 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2553 2554 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2555 // ReadyCycle was been bumped up to the CurrCycle when this node was 2556 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2557 // scheduling, so may now be greater than ReadyCycle. 2558 if (ReadyCycle > CurrCycle) 2559 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2560 #endif 2561 2562 if (ReadyCycle < MinReadyCycle) 2563 MinReadyCycle = ReadyCycle; 2564 2565 // Check for interlocks first. For the purpose of other heuristics, an 2566 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2567 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2568 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || 2569 checkHazard(SU) || (Available.size() >= ReadyListLimit); 2570 2571 if (!HazardDetected) { 2572 Available.push(SU); 2573 2574 if (InPQueue) 2575 Pending.remove(Pending.begin() + Idx); 2576 return; 2577 } 2578 2579 if (!InPQueue) 2580 Pending.push(SU); 2581 } 2582 2583 /// Move the boundary of scheduled code by one cycle. 2584 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2585 if (SchedModel->getMicroOpBufferSize() == 0) { 2586 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2587 "MinReadyCycle uninitialized"); 2588 if (MinReadyCycle > NextCycle) 2589 NextCycle = MinReadyCycle; 2590 } 2591 // Update the current micro-ops, which will issue in the next cycle. 2592 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2593 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2594 2595 // Decrement DependentLatency based on the next cycle. 2596 if ((NextCycle - CurrCycle) > DependentLatency) 2597 DependentLatency = 0; 2598 else 2599 DependentLatency -= (NextCycle - CurrCycle); 2600 2601 if (!HazardRec->isEnabled()) { 2602 // Bypass HazardRec virtual calls. 2603 CurrCycle = NextCycle; 2604 } else { 2605 // Bypass getHazardType calls in case of long latency. 2606 for (; CurrCycle != NextCycle; ++CurrCycle) { 2607 if (isTop()) 2608 HazardRec->AdvanceCycle(); 2609 else 2610 HazardRec->RecedeCycle(); 2611 } 2612 } 2613 CheckPending = true; 2614 IsResourceLimited = 2615 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2616 getScheduledLatency(), true); 2617 2618 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2619 << '\n'); 2620 } 2621 2622 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2623 ExecutedResCounts[PIdx] += Count; 2624 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2625 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2626 } 2627 2628 /// Add the given processor resource to this scheduled zone. 2629 /// 2630 /// \param ReleaseAtCycle indicates the number of consecutive (non-pipelined) 2631 /// cycles during which this resource is released. 2632 /// 2633 /// \param AcquireAtCycle indicates the number of consecutive (non-pipelined) 2634 /// cycles at which the resource is aquired after issue (assuming no stalls). 2635 /// 2636 /// \return the next cycle at which the instruction may execute without 2637 /// oversubscribing resources. 2638 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx, 2639 unsigned ReleaseAtCycle, 2640 unsigned NextCycle, 2641 unsigned AcquireAtCycle) { 2642 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2643 unsigned Count = Factor * (ReleaseAtCycle- AcquireAtCycle); 2644 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2645 << ReleaseAtCycle << "x" << Factor << "u\n"); 2646 2647 // Update Executed resources counts. 2648 incExecutedResources(PIdx, Count); 2649 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2650 Rem->RemainingCounts[PIdx] -= Count; 2651 2652 // Check if this resource exceeds the current critical resource. If so, it 2653 // becomes the critical resource. 2654 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2655 ZoneCritResIdx = PIdx; 2656 LLVM_DEBUG(dbgs() << " *** Critical resource " 2657 << SchedModel->getResourceName(PIdx) << ": " 2658 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2659 << "c\n"); 2660 } 2661 // For reserved resources, record the highest cycle using the resource. 2662 unsigned NextAvailable, InstanceIdx; 2663 std::tie(NextAvailable, InstanceIdx) = 2664 getNextResourceCycle(SC, PIdx, ReleaseAtCycle, AcquireAtCycle); 2665 if (NextAvailable > CurrCycle) { 2666 LLVM_DEBUG(dbgs() << " Resource conflict: " 2667 << SchedModel->getResourceName(PIdx) 2668 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2669 << " reserved until @" << NextAvailable << "\n"); 2670 } 2671 return NextAvailable; 2672 } 2673 2674 /// Move the boundary of scheduled code by one SUnit. 2675 void SchedBoundary::bumpNode(SUnit *SU) { 2676 // Update the reservation table. 2677 if (HazardRec->isEnabled()) { 2678 if (!isTop() && SU->isCall) { 2679 // Calls are scheduled with their preceding instructions. For bottom-up 2680 // scheduling, clear the pipeline state before emitting. 2681 HazardRec->Reset(); 2682 } 2683 HazardRec->EmitInstruction(SU); 2684 // Scheduling an instruction may have made pending instructions available. 2685 CheckPending = true; 2686 } 2687 // checkHazard should prevent scheduling multiple instructions per cycle that 2688 // exceed the issue width. 2689 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2690 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2691 assert( 2692 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2693 "Cannot schedule this instruction's MicroOps in the current cycle."); 2694 2695 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2696 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2697 2698 unsigned NextCycle = CurrCycle; 2699 switch (SchedModel->getMicroOpBufferSize()) { 2700 case 0: 2701 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2702 break; 2703 case 1: 2704 if (ReadyCycle > NextCycle) { 2705 NextCycle = ReadyCycle; 2706 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2707 } 2708 break; 2709 default: 2710 // We don't currently model the OOO reorder buffer, so consider all 2711 // scheduled MOps to be "retired". We do loosely model in-order resource 2712 // latency. If this instruction uses an in-order resource, account for any 2713 // likely stall cycles. 2714 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2715 NextCycle = ReadyCycle; 2716 break; 2717 } 2718 RetiredMOps += IncMOps; 2719 2720 // Update resource counts and critical resource. 2721 if (SchedModel->hasInstrSchedModel()) { 2722 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2723 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2724 Rem->RemIssueCount -= DecRemIssue; 2725 if (ZoneCritResIdx) { 2726 // Scale scheduled micro-ops for comparing with the critical resource. 2727 unsigned ScaledMOps = 2728 RetiredMOps * SchedModel->getMicroOpFactor(); 2729 2730 // If scaled micro-ops are now more than the previous critical resource by 2731 // a full cycle, then micro-ops issue becomes critical. 2732 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2733 >= (int)SchedModel->getLatencyFactor()) { 2734 ZoneCritResIdx = 0; 2735 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2736 << ScaledMOps / SchedModel->getLatencyFactor() 2737 << "c\n"); 2738 } 2739 } 2740 for (TargetSchedModel::ProcResIter 2741 PI = SchedModel->getWriteProcResBegin(SC), 2742 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2743 unsigned RCycle = 2744 countResource(SC, PI->ProcResourceIdx, PI->ReleaseAtCycle, NextCycle, 2745 PI->AcquireAtCycle); 2746 if (RCycle > NextCycle) 2747 NextCycle = RCycle; 2748 } 2749 if (SU->hasReservedResource) { 2750 // For reserved resources, record the highest cycle using the resource. 2751 // For top-down scheduling, this is the cycle in which we schedule this 2752 // instruction plus the number of cycles the operations reserves the 2753 // resource. For bottom-up is it simply the instruction's cycle. 2754 for (TargetSchedModel::ProcResIter 2755 PI = SchedModel->getWriteProcResBegin(SC), 2756 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2757 unsigned PIdx = PI->ProcResourceIdx; 2758 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2759 2760 if (SchedModel && SchedModel->enableIntervals()) { 2761 unsigned ReservedUntil, InstanceIdx; 2762 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle( 2763 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle); 2764 if (isTop()) { 2765 ReservedResourceSegments[InstanceIdx].add( 2766 ResourceSegments::getResourceIntervalTop( 2767 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle), 2768 MIResourceCutOff); 2769 } else { 2770 ReservedResourceSegments[InstanceIdx].add( 2771 ResourceSegments::getResourceIntervalBottom( 2772 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle), 2773 MIResourceCutOff); 2774 } 2775 } else { 2776 2777 unsigned ReservedUntil, InstanceIdx; 2778 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle( 2779 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle); 2780 if (isTop()) { 2781 ReservedCycles[InstanceIdx] = 2782 std::max(ReservedUntil, NextCycle + PI->ReleaseAtCycle); 2783 } else 2784 ReservedCycles[InstanceIdx] = NextCycle; 2785 } 2786 } 2787 } 2788 } 2789 } 2790 // Update ExpectedLatency and DependentLatency. 2791 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2792 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2793 if (SU->getDepth() > TopLatency) { 2794 TopLatency = SU->getDepth(); 2795 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2796 << SU->NodeNum << ") " << TopLatency << "c\n"); 2797 } 2798 if (SU->getHeight() > BotLatency) { 2799 BotLatency = SU->getHeight(); 2800 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2801 << SU->NodeNum << ") " << BotLatency << "c\n"); 2802 } 2803 // If we stall for any reason, bump the cycle. 2804 if (NextCycle > CurrCycle) 2805 bumpCycle(NextCycle); 2806 else 2807 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2808 // resource limited. If a stall occurred, bumpCycle does this. 2809 IsResourceLimited = 2810 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2811 getScheduledLatency(), true); 2812 2813 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2814 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2815 // one cycle. Since we commonly reach the max MOps here, opportunistically 2816 // bump the cycle to avoid uselessly checking everything in the readyQ. 2817 CurrMOps += IncMOps; 2818 2819 // Bump the cycle count for issue group constraints. 2820 // This must be done after NextCycle has been adjust for all other stalls. 2821 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2822 // currCycle to X. 2823 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2824 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2825 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2826 << " group\n"); 2827 bumpCycle(++NextCycle); 2828 } 2829 2830 while (CurrMOps >= SchedModel->getIssueWidth()) { 2831 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2832 << CurrCycle << '\n'); 2833 bumpCycle(++NextCycle); 2834 } 2835 LLVM_DEBUG(dumpScheduledState()); 2836 } 2837 2838 /// Release pending ready nodes in to the available queue. This makes them 2839 /// visible to heuristics. 2840 void SchedBoundary::releasePending() { 2841 // If the available queue is empty, it is safe to reset MinReadyCycle. 2842 if (Available.empty()) 2843 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2844 2845 // Check to see if any of the pending instructions are ready to issue. If 2846 // so, add them to the available queue. 2847 for (unsigned I = 0, E = Pending.size(); I < E; ++I) { 2848 SUnit *SU = *(Pending.begin() + I); 2849 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2850 2851 if (ReadyCycle < MinReadyCycle) 2852 MinReadyCycle = ReadyCycle; 2853 2854 if (Available.size() >= ReadyListLimit) 2855 break; 2856 2857 releaseNode(SU, ReadyCycle, true, I); 2858 if (E != Pending.size()) { 2859 --I; 2860 --E; 2861 } 2862 } 2863 CheckPending = false; 2864 } 2865 2866 /// Remove SU from the ready set for this boundary. 2867 void SchedBoundary::removeReady(SUnit *SU) { 2868 if (Available.isInQueue(SU)) 2869 Available.remove(Available.find(SU)); 2870 else { 2871 assert(Pending.isInQueue(SU) && "bad ready count"); 2872 Pending.remove(Pending.find(SU)); 2873 } 2874 } 2875 2876 /// If this queue only has one ready candidate, return it. As a side effect, 2877 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2878 /// one node is ready. If multiple instructions are ready, return NULL. 2879 SUnit *SchedBoundary::pickOnlyChoice() { 2880 if (CheckPending) 2881 releasePending(); 2882 2883 // Defer any ready instrs that now have a hazard. 2884 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2885 if (checkHazard(*I)) { 2886 Pending.push(*I); 2887 I = Available.remove(I); 2888 continue; 2889 } 2890 ++I; 2891 } 2892 for (unsigned i = 0; Available.empty(); ++i) { 2893 // FIXME: Re-enable assert once PR20057 is resolved. 2894 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2895 // "permanent hazard"); 2896 (void)i; 2897 bumpCycle(CurrCycle + 1); 2898 releasePending(); 2899 } 2900 2901 LLVM_DEBUG(Pending.dump()); 2902 LLVM_DEBUG(Available.dump()); 2903 2904 if (Available.size() == 1) 2905 return *Available.begin(); 2906 return nullptr; 2907 } 2908 2909 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2910 2911 /// Dump the content of the \ref ReservedCycles vector for the 2912 /// resources that are used in the basic block. 2913 /// 2914 LLVM_DUMP_METHOD void SchedBoundary::dumpReservedCycles() const { 2915 if (!SchedModel->hasInstrSchedModel()) 2916 return; 2917 2918 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2919 unsigned StartIdx = 0; 2920 2921 for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) { 2922 const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits; 2923 std::string ResName = SchedModel->getResourceName(ResIdx); 2924 for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) { 2925 dbgs() << ResName << "(" << UnitIdx << ") = "; 2926 if (SchedModel && SchedModel->enableIntervals()) { 2927 if (ReservedResourceSegments.count(StartIdx + UnitIdx)) 2928 dbgs() << ReservedResourceSegments.at(StartIdx + UnitIdx); 2929 else 2930 dbgs() << "{ }\n"; 2931 } else 2932 dbgs() << ReservedCycles[StartIdx + UnitIdx] << "\n"; 2933 } 2934 StartIdx += NumUnits; 2935 } 2936 } 2937 2938 // This is useful information to dump after bumpNode. 2939 // Note that the Queue contents are more useful before pickNodeFromQueue. 2940 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2941 unsigned ResFactor; 2942 unsigned ResCount; 2943 if (ZoneCritResIdx) { 2944 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2945 ResCount = getResourceCount(ZoneCritResIdx); 2946 } else { 2947 ResFactor = SchedModel->getMicroOpFactor(); 2948 ResCount = RetiredMOps * ResFactor; 2949 } 2950 unsigned LFactor = SchedModel->getLatencyFactor(); 2951 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2952 << " Retired: " << RetiredMOps; 2953 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2954 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2955 << ResCount / ResFactor << " " 2956 << SchedModel->getResourceName(ZoneCritResIdx) 2957 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2958 << (IsResourceLimited ? " - Resource" : " - Latency") 2959 << " limited.\n"; 2960 if (MISchedDumpReservedCycles) 2961 dumpReservedCycles(); 2962 } 2963 #endif 2964 2965 //===----------------------------------------------------------------------===// 2966 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2967 //===----------------------------------------------------------------------===// 2968 2969 void GenericSchedulerBase::SchedCandidate:: 2970 initResourceDelta(const ScheduleDAGMI *DAG, 2971 const TargetSchedModel *SchedModel) { 2972 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2973 return; 2974 2975 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2976 for (TargetSchedModel::ProcResIter 2977 PI = SchedModel->getWriteProcResBegin(SC), 2978 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2979 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2980 ResDelta.CritResources += PI->ReleaseAtCycle; 2981 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2982 ResDelta.DemandedResources += PI->ReleaseAtCycle; 2983 } 2984 } 2985 2986 /// Compute remaining latency. We need this both to determine whether the 2987 /// overall schedule has become latency-limited and whether the instructions 2988 /// outside this zone are resource or latency limited. 2989 /// 2990 /// The "dependent" latency is updated incrementally during scheduling as the 2991 /// max height/depth of scheduled nodes minus the cycles since it was 2992 /// scheduled: 2993 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2994 /// 2995 /// The "independent" latency is the max ready queue depth: 2996 /// ILat = max N.depth for N in Available|Pending 2997 /// 2998 /// RemainingLatency is the greater of independent and dependent latency. 2999 /// 3000 /// These computations are expensive, especially in DAGs with many edges, so 3001 /// only do them if necessary. 3002 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 3003 unsigned RemLatency = CurrZone.getDependentLatency(); 3004 RemLatency = std::max(RemLatency, 3005 CurrZone.findMaxLatency(CurrZone.Available.elements())); 3006 RemLatency = std::max(RemLatency, 3007 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 3008 return RemLatency; 3009 } 3010 3011 /// Returns true if the current cycle plus remaning latency is greater than 3012 /// the critical path in the scheduling region. 3013 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 3014 SchedBoundary &CurrZone, 3015 bool ComputeRemLatency, 3016 unsigned &RemLatency) const { 3017 // The current cycle is already greater than the critical path, so we are 3018 // already latency limited and don't need to compute the remaining latency. 3019 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 3020 return true; 3021 3022 // If we haven't scheduled anything yet, then we aren't latency limited. 3023 if (CurrZone.getCurrCycle() == 0) 3024 return false; 3025 3026 if (ComputeRemLatency) 3027 RemLatency = computeRemLatency(CurrZone); 3028 3029 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 3030 } 3031 3032 /// Set the CandPolicy given a scheduling zone given the current resources and 3033 /// latencies inside and outside the zone. 3034 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 3035 SchedBoundary &CurrZone, 3036 SchedBoundary *OtherZone) { 3037 // Apply preemptive heuristics based on the total latency and resources 3038 // inside and outside this zone. Potential stalls should be considered before 3039 // following this policy. 3040 3041 // Compute the critical resource outside the zone. 3042 unsigned OtherCritIdx = 0; 3043 unsigned OtherCount = 3044 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 3045 3046 bool OtherResLimited = false; 3047 unsigned RemLatency = 0; 3048 bool RemLatencyComputed = false; 3049 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 3050 RemLatency = computeRemLatency(CurrZone); 3051 RemLatencyComputed = true; 3052 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 3053 OtherCount, RemLatency, false); 3054 } 3055 3056 // Schedule aggressively for latency in PostRA mode. We don't check for 3057 // acyclic latency during PostRA, and highly out-of-order processors will 3058 // skip PostRA scheduling. 3059 if (!OtherResLimited && 3060 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 3061 RemLatency))) { 3062 Policy.ReduceLatency |= true; 3063 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 3064 << " RemainingLatency " << RemLatency << " + " 3065 << CurrZone.getCurrCycle() << "c > CritPath " 3066 << Rem.CriticalPath << "\n"); 3067 } 3068 // If the same resource is limiting inside and outside the zone, do nothing. 3069 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 3070 return; 3071 3072 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 3073 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 3074 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 3075 } if (OtherResLimited) dbgs() 3076 << " RemainingLimit: " 3077 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 3078 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 3079 << " Latency limited both directions.\n"); 3080 3081 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 3082 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 3083 3084 if (OtherResLimited) 3085 Policy.DemandResIdx = OtherCritIdx; 3086 } 3087 3088 #ifndef NDEBUG 3089 const char *GenericSchedulerBase::getReasonStr( 3090 GenericSchedulerBase::CandReason Reason) { 3091 switch (Reason) { 3092 case NoCand: return "NOCAND "; 3093 case Only1: return "ONLY1 "; 3094 case PhysReg: return "PHYS-REG "; 3095 case RegExcess: return "REG-EXCESS"; 3096 case RegCritical: return "REG-CRIT "; 3097 case Stall: return "STALL "; 3098 case Cluster: return "CLUSTER "; 3099 case Weak: return "WEAK "; 3100 case RegMax: return "REG-MAX "; 3101 case ResourceReduce: return "RES-REDUCE"; 3102 case ResourceDemand: return "RES-DEMAND"; 3103 case TopDepthReduce: return "TOP-DEPTH "; 3104 case TopPathReduce: return "TOP-PATH "; 3105 case BotHeightReduce:return "BOT-HEIGHT"; 3106 case BotPathReduce: return "BOT-PATH "; 3107 case NextDefUse: return "DEF-USE "; 3108 case NodeOrder: return "ORDER "; 3109 }; 3110 llvm_unreachable("Unknown reason!"); 3111 } 3112 3113 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 3114 PressureChange P; 3115 unsigned ResIdx = 0; 3116 unsigned Latency = 0; 3117 switch (Cand.Reason) { 3118 default: 3119 break; 3120 case RegExcess: 3121 P = Cand.RPDelta.Excess; 3122 break; 3123 case RegCritical: 3124 P = Cand.RPDelta.CriticalMax; 3125 break; 3126 case RegMax: 3127 P = Cand.RPDelta.CurrentMax; 3128 break; 3129 case ResourceReduce: 3130 ResIdx = Cand.Policy.ReduceResIdx; 3131 break; 3132 case ResourceDemand: 3133 ResIdx = Cand.Policy.DemandResIdx; 3134 break; 3135 case TopDepthReduce: 3136 Latency = Cand.SU->getDepth(); 3137 break; 3138 case TopPathReduce: 3139 Latency = Cand.SU->getHeight(); 3140 break; 3141 case BotHeightReduce: 3142 Latency = Cand.SU->getHeight(); 3143 break; 3144 case BotPathReduce: 3145 Latency = Cand.SU->getDepth(); 3146 break; 3147 } 3148 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 3149 if (P.isValid()) 3150 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 3151 << ":" << P.getUnitInc() << " "; 3152 else 3153 dbgs() << " "; 3154 if (ResIdx) 3155 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 3156 else 3157 dbgs() << " "; 3158 if (Latency) 3159 dbgs() << " " << Latency << " cycles "; 3160 else 3161 dbgs() << " "; 3162 dbgs() << '\n'; 3163 } 3164 #endif 3165 3166 namespace llvm { 3167 /// Return true if this heuristic determines order. 3168 /// TODO: Consider refactor return type of these functions as integer or enum, 3169 /// as we may need to differentiate whether TryCand is better than Cand. 3170 bool tryLess(int TryVal, int CandVal, 3171 GenericSchedulerBase::SchedCandidate &TryCand, 3172 GenericSchedulerBase::SchedCandidate &Cand, 3173 GenericSchedulerBase::CandReason Reason) { 3174 if (TryVal < CandVal) { 3175 TryCand.Reason = Reason; 3176 return true; 3177 } 3178 if (TryVal > CandVal) { 3179 if (Cand.Reason > Reason) 3180 Cand.Reason = Reason; 3181 return true; 3182 } 3183 return false; 3184 } 3185 3186 bool tryGreater(int TryVal, int CandVal, 3187 GenericSchedulerBase::SchedCandidate &TryCand, 3188 GenericSchedulerBase::SchedCandidate &Cand, 3189 GenericSchedulerBase::CandReason Reason) { 3190 if (TryVal > CandVal) { 3191 TryCand.Reason = Reason; 3192 return true; 3193 } 3194 if (TryVal < CandVal) { 3195 if (Cand.Reason > Reason) 3196 Cand.Reason = Reason; 3197 return true; 3198 } 3199 return false; 3200 } 3201 3202 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 3203 GenericSchedulerBase::SchedCandidate &Cand, 3204 SchedBoundary &Zone) { 3205 if (Zone.isTop()) { 3206 // Prefer the candidate with the lesser depth, but only if one of them has 3207 // depth greater than the total latency scheduled so far, otherwise either 3208 // of them could be scheduled now with no stall. 3209 if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) > 3210 Zone.getScheduledLatency()) { 3211 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 3212 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 3213 return true; 3214 } 3215 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 3216 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 3217 return true; 3218 } else { 3219 // Prefer the candidate with the lesser height, but only if one of them has 3220 // height greater than the total latency scheduled so far, otherwise either 3221 // of them could be scheduled now with no stall. 3222 if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) > 3223 Zone.getScheduledLatency()) { 3224 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 3225 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 3226 return true; 3227 } 3228 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 3229 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 3230 return true; 3231 } 3232 return false; 3233 } 3234 } // end namespace llvm 3235 3236 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 3237 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 3238 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 3239 } 3240 3241 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 3242 tracePick(Cand.Reason, Cand.AtTop); 3243 } 3244 3245 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 3246 assert(dag->hasVRegLiveness() && 3247 "(PreRA)GenericScheduler needs vreg liveness"); 3248 DAG = static_cast<ScheduleDAGMILive*>(dag); 3249 SchedModel = DAG->getSchedModel(); 3250 TRI = DAG->TRI; 3251 3252 if (RegionPolicy.ComputeDFSResult) 3253 DAG->computeDFSResult(); 3254 3255 Rem.init(DAG, SchedModel); 3256 Top.init(DAG, SchedModel, &Rem); 3257 Bot.init(DAG, SchedModel, &Rem); 3258 3259 // Initialize resource counts. 3260 3261 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 3262 // are disabled, then these HazardRecs will be disabled. 3263 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3264 if (!Top.HazardRec) { 3265 Top.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3266 } 3267 if (!Bot.HazardRec) { 3268 Bot.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3269 } 3270 TopCand.SU = nullptr; 3271 BotCand.SU = nullptr; 3272 } 3273 3274 /// Initialize the per-region scheduling policy. 3275 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 3276 MachineBasicBlock::iterator End, 3277 unsigned NumRegionInstrs) { 3278 const MachineFunction &MF = *Begin->getMF(); 3279 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 3280 3281 // Avoid setting up the register pressure tracker for small regions to save 3282 // compile time. As a rough heuristic, only track pressure when the number of 3283 // schedulable instructions exceeds half the allocatable integer register file 3284 // that is the largest legal integer regiser type. 3285 RegionPolicy.ShouldTrackPressure = true; 3286 for (unsigned VT = MVT::i64; VT > (unsigned)MVT::i1; --VT) { 3287 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 3288 if (TLI->isTypeLegal(LegalIntVT)) { 3289 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 3290 TLI->getRegClassFor(LegalIntVT)); 3291 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 3292 break; 3293 } 3294 } 3295 3296 // For generic targets, we default to bottom-up, because it's simpler and more 3297 // compile-time optimizations have been implemented in that direction. 3298 RegionPolicy.OnlyBottomUp = true; 3299 3300 // Allow the subtarget to override default policy. 3301 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 3302 3303 // After subtarget overrides, apply command line options. 3304 if (!EnableRegPressure) { 3305 RegionPolicy.ShouldTrackPressure = false; 3306 RegionPolicy.ShouldTrackLaneMasks = false; 3307 } 3308 3309 if (PreRADirection == MISched::TopDown) { 3310 RegionPolicy.OnlyTopDown = true; 3311 RegionPolicy.OnlyBottomUp = false; 3312 } else if (PreRADirection == MISched::BottomUp) { 3313 RegionPolicy.OnlyTopDown = false; 3314 RegionPolicy.OnlyBottomUp = true; 3315 } else if (PreRADirection == MISched::Bidirectional) { 3316 RegionPolicy.OnlyBottomUp = false; 3317 RegionPolicy.OnlyTopDown = false; 3318 } 3319 } 3320 3321 void GenericScheduler::dumpPolicy() const { 3322 // Cannot completely remove virtual function even in release mode. 3323 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3324 dbgs() << "GenericScheduler RegionPolicy: " 3325 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 3326 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 3327 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 3328 << "\n"; 3329 #endif 3330 } 3331 3332 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 3333 /// critical path by more cycles than it takes to drain the instruction buffer. 3334 /// We estimate an upper bounds on in-flight instructions as: 3335 /// 3336 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 3337 /// InFlightIterations = AcyclicPath / CyclesPerIteration 3338 /// InFlightResources = InFlightIterations * LoopResources 3339 /// 3340 /// TODO: Check execution resources in addition to IssueCount. 3341 void GenericScheduler::checkAcyclicLatency() { 3342 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 3343 return; 3344 3345 // Scaled number of cycles per loop iteration. 3346 unsigned IterCount = 3347 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 3348 Rem.RemIssueCount); 3349 // Scaled acyclic critical path. 3350 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 3351 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 3352 unsigned InFlightCount = 3353 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 3354 unsigned BufferLimit = 3355 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 3356 3357 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 3358 3359 LLVM_DEBUG( 3360 dbgs() << "IssueCycles=" 3361 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 3362 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 3363 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 3364 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 3365 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 3366 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 3367 } 3368 3369 void GenericScheduler::registerRoots() { 3370 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3371 3372 // Some roots may not feed into ExitSU. Check all of them in case. 3373 for (const SUnit *SU : Bot.Available) { 3374 if (SU->getDepth() > Rem.CriticalPath) 3375 Rem.CriticalPath = SU->getDepth(); 3376 } 3377 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 3378 if (DumpCriticalPathLength) { 3379 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 3380 } 3381 3382 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 3383 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 3384 checkAcyclicLatency(); 3385 } 3386 } 3387 3388 namespace llvm { 3389 bool tryPressure(const PressureChange &TryP, 3390 const PressureChange &CandP, 3391 GenericSchedulerBase::SchedCandidate &TryCand, 3392 GenericSchedulerBase::SchedCandidate &Cand, 3393 GenericSchedulerBase::CandReason Reason, 3394 const TargetRegisterInfo *TRI, 3395 const MachineFunction &MF) { 3396 // If one candidate decreases and the other increases, go with it. 3397 // Invalid candidates have UnitInc==0. 3398 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 3399 Reason)) { 3400 return true; 3401 } 3402 // Do not compare the magnitude of pressure changes between top and bottom 3403 // boundary. 3404 if (Cand.AtTop != TryCand.AtTop) 3405 return false; 3406 3407 // If both candidates affect the same set in the same boundary, go with the 3408 // smallest increase. 3409 unsigned TryPSet = TryP.getPSetOrMax(); 3410 unsigned CandPSet = CandP.getPSetOrMax(); 3411 if (TryPSet == CandPSet) { 3412 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 3413 Reason); 3414 } 3415 3416 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 3417 std::numeric_limits<int>::max(); 3418 3419 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 3420 std::numeric_limits<int>::max(); 3421 3422 // If the candidates are decreasing pressure, reverse priority. 3423 if (TryP.getUnitInc() < 0) 3424 std::swap(TryRank, CandRank); 3425 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 3426 } 3427 3428 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 3429 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 3430 } 3431 3432 /// Minimize physical register live ranges. Regalloc wants them adjacent to 3433 /// their physreg def/use. 3434 /// 3435 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 3436 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 3437 /// with the operation that produces or consumes the physreg. We'll do this when 3438 /// regalloc has support for parallel copies. 3439 int biasPhysReg(const SUnit *SU, bool isTop) { 3440 const MachineInstr *MI = SU->getInstr(); 3441 3442 if (MI->isCopy()) { 3443 unsigned ScheduledOper = isTop ? 1 : 0; 3444 unsigned UnscheduledOper = isTop ? 0 : 1; 3445 // If we have already scheduled the physreg produce/consumer, immediately 3446 // schedule the copy. 3447 if (MI->getOperand(ScheduledOper).getReg().isPhysical()) 3448 return 1; 3449 // If the physreg is at the boundary, defer it. Otherwise schedule it 3450 // immediately to free the dependent. We can hoist the copy later. 3451 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 3452 if (MI->getOperand(UnscheduledOper).getReg().isPhysical()) 3453 return AtBoundary ? -1 : 1; 3454 } 3455 3456 if (MI->isMoveImmediate()) { 3457 // If we have a move immediate and all successors have been assigned, bias 3458 // towards scheduling this later. Make sure all register defs are to 3459 // physical registers. 3460 bool DoBias = true; 3461 for (const MachineOperand &Op : MI->defs()) { 3462 if (Op.isReg() && !Op.getReg().isPhysical()) { 3463 DoBias = false; 3464 break; 3465 } 3466 } 3467 3468 if (DoBias) 3469 return isTop ? -1 : 1; 3470 } 3471 3472 return 0; 3473 } 3474 } // end namespace llvm 3475 3476 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 3477 bool AtTop, 3478 const RegPressureTracker &RPTracker, 3479 RegPressureTracker &TempTracker) { 3480 Cand.SU = SU; 3481 Cand.AtTop = AtTop; 3482 if (DAG->isTrackingPressure()) { 3483 if (AtTop) { 3484 TempTracker.getMaxDownwardPressureDelta( 3485 Cand.SU->getInstr(), 3486 Cand.RPDelta, 3487 DAG->getRegionCriticalPSets(), 3488 DAG->getRegPressure().MaxSetPressure); 3489 } else { 3490 if (VerifyScheduling) { 3491 TempTracker.getMaxUpwardPressureDelta( 3492 Cand.SU->getInstr(), 3493 &DAG->getPressureDiff(Cand.SU), 3494 Cand.RPDelta, 3495 DAG->getRegionCriticalPSets(), 3496 DAG->getRegPressure().MaxSetPressure); 3497 } else { 3498 RPTracker.getUpwardPressureDelta( 3499 Cand.SU->getInstr(), 3500 DAG->getPressureDiff(Cand.SU), 3501 Cand.RPDelta, 3502 DAG->getRegionCriticalPSets(), 3503 DAG->getRegPressure().MaxSetPressure); 3504 } 3505 } 3506 } 3507 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 3508 << " Try SU(" << Cand.SU->NodeNum << ") " 3509 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 3510 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 3511 } 3512 3513 /// Apply a set of heuristics to a new candidate. Heuristics are currently 3514 /// hierarchical. This may be more efficient than a graduated cost model because 3515 /// we don't need to evaluate all aspects of the model for each node in the 3516 /// queue. But it's really done to make the heuristics easier to debug and 3517 /// statistically analyze. 3518 /// 3519 /// \param Cand provides the policy and current best candidate. 3520 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3521 /// \param Zone describes the scheduled zone that we are extending, or nullptr 3522 /// if Cand is from a different zone than TryCand. 3523 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3524 bool GenericScheduler::tryCandidate(SchedCandidate &Cand, 3525 SchedCandidate &TryCand, 3526 SchedBoundary *Zone) const { 3527 // Initialize the candidate if needed. 3528 if (!Cand.isValid()) { 3529 TryCand.Reason = NodeOrder; 3530 return true; 3531 } 3532 3533 // Bias PhysReg Defs and copies to their uses and defined respectively. 3534 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3535 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3536 return TryCand.Reason != NoCand; 3537 3538 // Avoid exceeding the target's limit. 3539 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3540 Cand.RPDelta.Excess, 3541 TryCand, Cand, RegExcess, TRI, 3542 DAG->MF)) 3543 return TryCand.Reason != NoCand; 3544 3545 // Avoid increasing the max critical pressure in the scheduled region. 3546 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3547 Cand.RPDelta.CriticalMax, 3548 TryCand, Cand, RegCritical, TRI, 3549 DAG->MF)) 3550 return TryCand.Reason != NoCand; 3551 3552 // We only compare a subset of features when comparing nodes between 3553 // Top and Bottom boundary. Some properties are simply incomparable, in many 3554 // other instances we should only override the other boundary if something 3555 // is a clear good pick on one boundary. Skip heuristics that are more 3556 // "tie-breaking" in nature. 3557 bool SameBoundary = Zone != nullptr; 3558 if (SameBoundary) { 3559 // For loops that are acyclic path limited, aggressively schedule for 3560 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3561 // heuristics to take precedence. 3562 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3563 tryLatency(TryCand, Cand, *Zone)) 3564 return TryCand.Reason != NoCand; 3565 3566 // Prioritize instructions that read unbuffered resources by stall cycles. 3567 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3568 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3569 return TryCand.Reason != NoCand; 3570 } 3571 3572 // Keep clustered nodes together to encourage downstream peephole 3573 // optimizations which may reduce resource requirements. 3574 // 3575 // This is a best effort to set things up for a post-RA pass. Optimizations 3576 // like generating loads of multiple registers should ideally be done within 3577 // the scheduler pass by combining the loads during DAG postprocessing. 3578 const SUnit *CandNextClusterSU = 3579 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3580 const SUnit *TryCandNextClusterSU = 3581 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3582 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3583 Cand.SU == CandNextClusterSU, 3584 TryCand, Cand, Cluster)) 3585 return TryCand.Reason != NoCand; 3586 3587 if (SameBoundary) { 3588 // Weak edges are for clustering and other constraints. 3589 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3590 getWeakLeft(Cand.SU, Cand.AtTop), 3591 TryCand, Cand, Weak)) 3592 return TryCand.Reason != NoCand; 3593 } 3594 3595 // Avoid increasing the max pressure of the entire region. 3596 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3597 Cand.RPDelta.CurrentMax, 3598 TryCand, Cand, RegMax, TRI, 3599 DAG->MF)) 3600 return TryCand.Reason != NoCand; 3601 3602 if (SameBoundary) { 3603 // Avoid critical resource consumption and balance the schedule. 3604 TryCand.initResourceDelta(DAG, SchedModel); 3605 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3606 TryCand, Cand, ResourceReduce)) 3607 return TryCand.Reason != NoCand; 3608 if (tryGreater(TryCand.ResDelta.DemandedResources, 3609 Cand.ResDelta.DemandedResources, 3610 TryCand, Cand, ResourceDemand)) 3611 return TryCand.Reason != NoCand; 3612 3613 // Avoid serializing long latency dependence chains. 3614 // For acyclic path limited loops, latency was already checked above. 3615 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3616 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3617 return TryCand.Reason != NoCand; 3618 3619 // Fall through to original instruction order. 3620 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3621 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3622 TryCand.Reason = NodeOrder; 3623 return true; 3624 } 3625 } 3626 3627 return false; 3628 } 3629 3630 /// Pick the best candidate from the queue. 3631 /// 3632 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3633 /// DAG building. To adjust for the current scheduling location we need to 3634 /// maintain the number of vreg uses remaining to be top-scheduled. 3635 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3636 const CandPolicy &ZonePolicy, 3637 const RegPressureTracker &RPTracker, 3638 SchedCandidate &Cand) { 3639 // getMaxPressureDelta temporarily modifies the tracker. 3640 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3641 3642 ReadyQueue &Q = Zone.Available; 3643 for (SUnit *SU : Q) { 3644 3645 SchedCandidate TryCand(ZonePolicy); 3646 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3647 // Pass SchedBoundary only when comparing nodes from the same boundary. 3648 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3649 if (tryCandidate(Cand, TryCand, ZoneArg)) { 3650 // Initialize resource delta if needed in case future heuristics query it. 3651 if (TryCand.ResDelta == SchedResourceDelta()) 3652 TryCand.initResourceDelta(DAG, SchedModel); 3653 Cand.setBest(TryCand); 3654 LLVM_DEBUG(traceCandidate(Cand)); 3655 } 3656 } 3657 } 3658 3659 /// Pick the best candidate node from either the top or bottom queue. 3660 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3661 // Schedule as far as possible in the direction of no choice. This is most 3662 // efficient, but also provides the best heuristics for CriticalPSets. 3663 if (SUnit *SU = Bot.pickOnlyChoice()) { 3664 IsTopNode = false; 3665 tracePick(Only1, false); 3666 return SU; 3667 } 3668 if (SUnit *SU = Top.pickOnlyChoice()) { 3669 IsTopNode = true; 3670 tracePick(Only1, true); 3671 return SU; 3672 } 3673 // Set the bottom-up policy based on the state of the current bottom zone and 3674 // the instructions outside the zone, including the top zone. 3675 CandPolicy BotPolicy; 3676 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3677 // Set the top-down policy based on the state of the current top zone and 3678 // the instructions outside the zone, including the bottom zone. 3679 CandPolicy TopPolicy; 3680 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3681 3682 // See if BotCand is still valid (because we previously scheduled from Top). 3683 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3684 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3685 BotCand.Policy != BotPolicy) { 3686 BotCand.reset(CandPolicy()); 3687 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3688 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3689 } else { 3690 LLVM_DEBUG(traceCandidate(BotCand)); 3691 #ifndef NDEBUG 3692 if (VerifyScheduling) { 3693 SchedCandidate TCand; 3694 TCand.reset(CandPolicy()); 3695 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3696 assert(TCand.SU == BotCand.SU && 3697 "Last pick result should correspond to re-picking right now"); 3698 } 3699 #endif 3700 } 3701 3702 // Check if the top Q has a better candidate. 3703 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3704 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3705 TopCand.Policy != TopPolicy) { 3706 TopCand.reset(CandPolicy()); 3707 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3708 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3709 } else { 3710 LLVM_DEBUG(traceCandidate(TopCand)); 3711 #ifndef NDEBUG 3712 if (VerifyScheduling) { 3713 SchedCandidate TCand; 3714 TCand.reset(CandPolicy()); 3715 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3716 assert(TCand.SU == TopCand.SU && 3717 "Last pick result should correspond to re-picking right now"); 3718 } 3719 #endif 3720 } 3721 3722 // Pick best from BotCand and TopCand. 3723 assert(BotCand.isValid()); 3724 assert(TopCand.isValid()); 3725 SchedCandidate Cand = BotCand; 3726 TopCand.Reason = NoCand; 3727 if (tryCandidate(Cand, TopCand, nullptr)) { 3728 Cand.setBest(TopCand); 3729 LLVM_DEBUG(traceCandidate(Cand)); 3730 } 3731 3732 IsTopNode = Cand.AtTop; 3733 tracePick(Cand); 3734 return Cand.SU; 3735 } 3736 3737 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3738 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3739 if (DAG->top() == DAG->bottom()) { 3740 assert(Top.Available.empty() && Top.Pending.empty() && 3741 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3742 return nullptr; 3743 } 3744 SUnit *SU; 3745 do { 3746 if (RegionPolicy.OnlyTopDown) { 3747 SU = Top.pickOnlyChoice(); 3748 if (!SU) { 3749 CandPolicy NoPolicy; 3750 TopCand.reset(NoPolicy); 3751 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3752 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3753 tracePick(TopCand); 3754 SU = TopCand.SU; 3755 } 3756 IsTopNode = true; 3757 } else if (RegionPolicy.OnlyBottomUp) { 3758 SU = Bot.pickOnlyChoice(); 3759 if (!SU) { 3760 CandPolicy NoPolicy; 3761 BotCand.reset(NoPolicy); 3762 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3763 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3764 tracePick(BotCand); 3765 SU = BotCand.SU; 3766 } 3767 IsTopNode = false; 3768 } else { 3769 SU = pickNodeBidirectional(IsTopNode); 3770 } 3771 } while (SU->isScheduled); 3772 3773 // If IsTopNode, then SU is in Top.Available and must be removed. Otherwise, 3774 // if isTopReady(), then SU is in either Top.Available or Top.Pending. 3775 // If !IsTopNode, then SU is in Bot.Available and must be removed. Otherwise, 3776 // if isBottomReady(), then SU is in either Bot.Available or Bot.Pending. 3777 // 3778 // It is coincidental when !IsTopNode && isTopReady or when IsTopNode && 3779 // isBottomReady. That is, it didn't factor into the decision to choose SU 3780 // because it isTopReady or isBottomReady, respectively. In fact, if the 3781 // RegionPolicy is OnlyTopDown or OnlyBottomUp, then the Bot queues and Top 3782 // queues respectivley contain the original roots and don't get updated when 3783 // picking a node. So if SU isTopReady on a OnlyBottomUp pick, then it was 3784 // because we schduled everything but the top roots. Conversley, if SU 3785 // isBottomReady on OnlyTopDown, then it was because we scheduled everything 3786 // but the bottom roots. If its in a queue even coincidentally, it should be 3787 // removed so it does not get re-picked in a subsequent pickNode call. 3788 if (SU->isTopReady()) 3789 Top.removeReady(SU); 3790 if (SU->isBottomReady()) 3791 Bot.removeReady(SU); 3792 3793 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3794 << *SU->getInstr()); 3795 return SU; 3796 } 3797 3798 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3799 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3800 if (!isTop) 3801 ++InsertPos; 3802 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3803 3804 // Find already scheduled copies with a single physreg dependence and move 3805 // them just above the scheduled instruction. 3806 for (SDep &Dep : Deps) { 3807 if (Dep.getKind() != SDep::Data || 3808 !Register::isPhysicalRegister(Dep.getReg())) 3809 continue; 3810 SUnit *DepSU = Dep.getSUnit(); 3811 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3812 continue; 3813 MachineInstr *Copy = DepSU->getInstr(); 3814 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3815 continue; 3816 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3817 DAG->dumpNode(*Dep.getSUnit())); 3818 DAG->moveInstruction(Copy, InsertPos); 3819 } 3820 } 3821 3822 /// Update the scheduler's state after scheduling a node. This is the same node 3823 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3824 /// update it's state based on the current cycle before MachineSchedStrategy 3825 /// does. 3826 /// 3827 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3828 /// them here. See comments in biasPhysReg. 3829 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3830 if (IsTopNode) { 3831 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3832 Top.bumpNode(SU); 3833 if (SU->hasPhysRegUses) 3834 reschedulePhysReg(SU, true); 3835 } else { 3836 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3837 Bot.bumpNode(SU); 3838 if (SU->hasPhysRegDefs) 3839 reschedulePhysReg(SU, false); 3840 } 3841 } 3842 3843 /// Create the standard converging machine scheduler. This will be used as the 3844 /// default scheduler if the target does not set a default. 3845 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3846 ScheduleDAGMILive *DAG = 3847 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); 3848 // Register DAG post-processors. 3849 // 3850 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3851 // data and pass it to later mutations. Have a single mutation that gathers 3852 // the interesting nodes in one pass. 3853 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3854 3855 const TargetSubtargetInfo &STI = C->MF->getSubtarget(); 3856 // Add MacroFusion mutation if fusions are not empty. 3857 const auto &MacroFusions = STI.getMacroFusions(); 3858 if (!MacroFusions.empty()) 3859 DAG->addMutation(createMacroFusionDAGMutation(MacroFusions)); 3860 return DAG; 3861 } 3862 3863 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 3864 return createGenericSchedLive(C); 3865 } 3866 3867 static MachineSchedRegistry 3868 GenericSchedRegistry("converge", "Standard converging scheduler.", 3869 createConvergingSched); 3870 3871 //===----------------------------------------------------------------------===// 3872 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3873 //===----------------------------------------------------------------------===// 3874 3875 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3876 DAG = Dag; 3877 SchedModel = DAG->getSchedModel(); 3878 TRI = DAG->TRI; 3879 3880 Rem.init(DAG, SchedModel); 3881 Top.init(DAG, SchedModel, &Rem); 3882 Bot.init(DAG, SchedModel, &Rem); 3883 3884 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3885 // or are disabled, then these HazardRecs will be disabled. 3886 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3887 if (!Top.HazardRec) { 3888 Top.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3889 } 3890 if (!Bot.HazardRec) { 3891 Bot.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3892 } 3893 } 3894 3895 void PostGenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 3896 MachineBasicBlock::iterator End, 3897 unsigned NumRegionInstrs) { 3898 const MachineFunction &MF = *Begin->getMF(); 3899 3900 // Default to top-down because it was implemented first and existing targets 3901 // expect that behavior by default. 3902 RegionPolicy.OnlyTopDown = true; 3903 RegionPolicy.OnlyBottomUp = false; 3904 3905 // Allow the subtarget to override default policy. 3906 MF.getSubtarget().overridePostRASchedPolicy(RegionPolicy, NumRegionInstrs); 3907 3908 // After subtarget overrides, apply command line options. 3909 if (PostRADirection == MISched::TopDown) { 3910 RegionPolicy.OnlyTopDown = true; 3911 RegionPolicy.OnlyBottomUp = false; 3912 } else if (PostRADirection == MISched::BottomUp) { 3913 RegionPolicy.OnlyTopDown = false; 3914 RegionPolicy.OnlyBottomUp = true; 3915 } else if (PostRADirection == MISched::Bidirectional) { 3916 RegionPolicy.OnlyBottomUp = false; 3917 RegionPolicy.OnlyTopDown = false; 3918 } 3919 } 3920 3921 void PostGenericScheduler::registerRoots() { 3922 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3923 3924 // Some roots may not feed into ExitSU. Check all of them in case. 3925 for (const SUnit *SU : Bot.Available) { 3926 if (SU->getDepth() > Rem.CriticalPath) 3927 Rem.CriticalPath = SU->getDepth(); 3928 } 3929 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3930 if (DumpCriticalPathLength) { 3931 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3932 } 3933 } 3934 3935 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3936 /// 3937 /// \param Cand provides the policy and current best candidate. 3938 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3939 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3940 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3941 SchedCandidate &TryCand) { 3942 // Initialize the candidate if needed. 3943 if (!Cand.isValid()) { 3944 TryCand.Reason = NodeOrder; 3945 return true; 3946 } 3947 3948 // Prioritize instructions that read unbuffered resources by stall cycles. 3949 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3950 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3951 return TryCand.Reason != NoCand; 3952 3953 // Keep clustered nodes together. 3954 const SUnit *CandNextClusterSU = 3955 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3956 const SUnit *TryCandNextClusterSU = 3957 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3958 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3959 Cand.SU == CandNextClusterSU, TryCand, Cand, Cluster)) 3960 return TryCand.Reason != NoCand; 3961 3962 // Avoid critical resource consumption and balance the schedule. 3963 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3964 TryCand, Cand, ResourceReduce)) 3965 return TryCand.Reason != NoCand; 3966 if (tryGreater(TryCand.ResDelta.DemandedResources, 3967 Cand.ResDelta.DemandedResources, 3968 TryCand, Cand, ResourceDemand)) 3969 return TryCand.Reason != NoCand; 3970 3971 // We only compare a subset of features when comparing nodes between 3972 // Top and Bottom boundary. 3973 if (Cand.AtTop == TryCand.AtTop) { 3974 // Avoid serializing long latency dependence chains. 3975 if (Cand.Policy.ReduceLatency && 3976 tryLatency(TryCand, Cand, Cand.AtTop ? Top : Bot)) 3977 return TryCand.Reason != NoCand; 3978 } 3979 3980 // Fall through to original instruction order. 3981 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { 3982 TryCand.Reason = NodeOrder; 3983 return true; 3984 } 3985 3986 return false; 3987 } 3988 3989 void PostGenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3990 SchedCandidate &Cand) { 3991 ReadyQueue &Q = Zone.Available; 3992 for (SUnit *SU : Q) { 3993 SchedCandidate TryCand(Cand.Policy); 3994 TryCand.SU = SU; 3995 TryCand.AtTop = Zone.isTop(); 3996 TryCand.initResourceDelta(DAG, SchedModel); 3997 if (tryCandidate(Cand, TryCand)) { 3998 Cand.setBest(TryCand); 3999 LLVM_DEBUG(traceCandidate(Cand)); 4000 } 4001 } 4002 } 4003 4004 /// Pick the best candidate node from either the top or bottom queue. 4005 SUnit *PostGenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 4006 // FIXME: This is similiar to GenericScheduler::pickNodeBidirectional. Factor 4007 // out common parts. 4008 4009 // Schedule as far as possible in the direction of no choice. This is most 4010 // efficient, but also provides the best heuristics for CriticalPSets. 4011 if (SUnit *SU = Bot.pickOnlyChoice()) { 4012 IsTopNode = false; 4013 tracePick(Only1, false); 4014 return SU; 4015 } 4016 if (SUnit *SU = Top.pickOnlyChoice()) { 4017 IsTopNode = true; 4018 tracePick(Only1, true); 4019 return SU; 4020 } 4021 // Set the bottom-up policy based on the state of the current bottom zone and 4022 // the instructions outside the zone, including the top zone. 4023 CandPolicy BotPolicy; 4024 setPolicy(BotPolicy, /*IsPostRA=*/true, Bot, &Top); 4025 // Set the top-down policy based on the state of the current top zone and 4026 // the instructions outside the zone, including the bottom zone. 4027 CandPolicy TopPolicy; 4028 setPolicy(TopPolicy, /*IsPostRA=*/true, Top, &Bot); 4029 4030 // See if BotCand is still valid (because we previously scheduled from Top). 4031 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 4032 if (!BotCand.isValid() || BotCand.SU->isScheduled || 4033 BotCand.Policy != BotPolicy) { 4034 BotCand.reset(CandPolicy()); 4035 pickNodeFromQueue(Bot, BotCand); 4036 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 4037 } else { 4038 LLVM_DEBUG(traceCandidate(BotCand)); 4039 #ifndef NDEBUG 4040 if (VerifyScheduling) { 4041 SchedCandidate TCand; 4042 TCand.reset(CandPolicy()); 4043 pickNodeFromQueue(Bot, BotCand); 4044 assert(TCand.SU == BotCand.SU && 4045 "Last pick result should correspond to re-picking right now"); 4046 } 4047 #endif 4048 } 4049 4050 // Check if the top Q has a better candidate. 4051 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 4052 if (!TopCand.isValid() || TopCand.SU->isScheduled || 4053 TopCand.Policy != TopPolicy) { 4054 TopCand.reset(CandPolicy()); 4055 pickNodeFromQueue(Top, TopCand); 4056 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 4057 } else { 4058 LLVM_DEBUG(traceCandidate(TopCand)); 4059 #ifndef NDEBUG 4060 if (VerifyScheduling) { 4061 SchedCandidate TCand; 4062 TCand.reset(CandPolicy()); 4063 pickNodeFromQueue(Top, TopCand); 4064 assert(TCand.SU == TopCand.SU && 4065 "Last pick result should correspond to re-picking right now"); 4066 } 4067 #endif 4068 } 4069 4070 // Pick best from BotCand and TopCand. 4071 assert(BotCand.isValid()); 4072 assert(TopCand.isValid()); 4073 SchedCandidate Cand = BotCand; 4074 TopCand.Reason = NoCand; 4075 if (tryCandidate(Cand, TopCand)) { 4076 Cand.setBest(TopCand); 4077 LLVM_DEBUG(traceCandidate(Cand)); 4078 } 4079 4080 IsTopNode = Cand.AtTop; 4081 tracePick(Cand); 4082 return Cand.SU; 4083 } 4084 4085 /// Pick the next node to schedule. 4086 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 4087 if (DAG->top() == DAG->bottom()) { 4088 assert(Top.Available.empty() && Top.Pending.empty() && 4089 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 4090 return nullptr; 4091 } 4092 SUnit *SU; 4093 do { 4094 if (RegionPolicy.OnlyBottomUp) { 4095 SU = Bot.pickOnlyChoice(); 4096 if (SU) { 4097 tracePick(Only1, true); 4098 } else { 4099 CandPolicy NoPolicy; 4100 BotCand.reset(NoPolicy); 4101 // Set the bottom-up policy based on the state of the current bottom 4102 // zone and the instructions outside the zone, including the top zone. 4103 setPolicy(BotCand.Policy, /*IsPostRA=*/true, Bot, nullptr); 4104 pickNodeFromQueue(Bot, BotCand); 4105 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 4106 tracePick(BotCand); 4107 SU = BotCand.SU; 4108 } 4109 IsTopNode = false; 4110 } else if (RegionPolicy.OnlyTopDown) { 4111 SU = Top.pickOnlyChoice(); 4112 if (SU) { 4113 tracePick(Only1, true); 4114 } else { 4115 CandPolicy NoPolicy; 4116 TopCand.reset(NoPolicy); 4117 // Set the top-down policy based on the state of the current top zone 4118 // and the instructions outside the zone, including the bottom zone. 4119 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 4120 pickNodeFromQueue(Top, TopCand); 4121 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 4122 tracePick(TopCand); 4123 SU = TopCand.SU; 4124 } 4125 IsTopNode = true; 4126 } else { 4127 SU = pickNodeBidirectional(IsTopNode); 4128 } 4129 } while (SU->isScheduled); 4130 4131 if (SU->isTopReady()) 4132 Top.removeReady(SU); 4133 if (SU->isBottomReady()) 4134 Bot.removeReady(SU); 4135 4136 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 4137 << *SU->getInstr()); 4138 return SU; 4139 } 4140 4141 /// Called after ScheduleDAGMI has scheduled an instruction and updated 4142 /// scheduled/remaining flags in the DAG nodes. 4143 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 4144 if (IsTopNode) { 4145 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 4146 Top.bumpNode(SU); 4147 } else { 4148 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 4149 Bot.bumpNode(SU); 4150 } 4151 } 4152 4153 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 4154 ScheduleDAGMI *DAG = 4155 new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), 4156 /*RemoveKillFlags=*/true); 4157 const TargetSubtargetInfo &STI = C->MF->getSubtarget(); 4158 // Add MacroFusion mutation if fusions are not empty. 4159 const auto &MacroFusions = STI.getMacroFusions(); 4160 if (!MacroFusions.empty()) 4161 DAG->addMutation(createMacroFusionDAGMutation(MacroFusions)); 4162 return DAG; 4163 } 4164 4165 //===----------------------------------------------------------------------===// 4166 // ILP Scheduler. Currently for experimental analysis of heuristics. 4167 //===----------------------------------------------------------------------===// 4168 4169 namespace { 4170 4171 /// Order nodes by the ILP metric. 4172 struct ILPOrder { 4173 const SchedDFSResult *DFSResult = nullptr; 4174 const BitVector *ScheduledTrees = nullptr; 4175 bool MaximizeILP; 4176 4177 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 4178 4179 /// Apply a less-than relation on node priority. 4180 /// 4181 /// (Return true if A comes after B in the Q.) 4182 bool operator()(const SUnit *A, const SUnit *B) const { 4183 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 4184 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 4185 if (SchedTreeA != SchedTreeB) { 4186 // Unscheduled trees have lower priority. 4187 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 4188 return ScheduledTrees->test(SchedTreeB); 4189 4190 // Trees with shallower connections have lower priority. 4191 if (DFSResult->getSubtreeLevel(SchedTreeA) 4192 != DFSResult->getSubtreeLevel(SchedTreeB)) { 4193 return DFSResult->getSubtreeLevel(SchedTreeA) 4194 < DFSResult->getSubtreeLevel(SchedTreeB); 4195 } 4196 } 4197 if (MaximizeILP) 4198 return DFSResult->getILP(A) < DFSResult->getILP(B); 4199 else 4200 return DFSResult->getILP(A) > DFSResult->getILP(B); 4201 } 4202 }; 4203 4204 /// Schedule based on the ILP metric. 4205 class ILPScheduler : public MachineSchedStrategy { 4206 ScheduleDAGMILive *DAG = nullptr; 4207 ILPOrder Cmp; 4208 4209 std::vector<SUnit*> ReadyQ; 4210 4211 public: 4212 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 4213 4214 void initialize(ScheduleDAGMI *dag) override { 4215 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 4216 DAG = static_cast<ScheduleDAGMILive*>(dag); 4217 DAG->computeDFSResult(); 4218 Cmp.DFSResult = DAG->getDFSResult(); 4219 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 4220 ReadyQ.clear(); 4221 } 4222 4223 void registerRoots() override { 4224 // Restore the heap in ReadyQ with the updated DFS results. 4225 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4226 } 4227 4228 /// Implement MachineSchedStrategy interface. 4229 /// ----------------------------------------- 4230 4231 /// Callback to select the highest priority node from the ready Q. 4232 SUnit *pickNode(bool &IsTopNode) override { 4233 if (ReadyQ.empty()) return nullptr; 4234 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4235 SUnit *SU = ReadyQ.back(); 4236 ReadyQ.pop_back(); 4237 IsTopNode = false; 4238 LLVM_DEBUG(dbgs() << "Pick node " 4239 << "SU(" << SU->NodeNum << ") " 4240 << " ILP: " << DAG->getDFSResult()->getILP(SU) 4241 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 4242 << " @" 4243 << DAG->getDFSResult()->getSubtreeLevel( 4244 DAG->getDFSResult()->getSubtreeID(SU)) 4245 << '\n' 4246 << "Scheduling " << *SU->getInstr()); 4247 return SU; 4248 } 4249 4250 /// Scheduler callback to notify that a new subtree is scheduled. 4251 void scheduleTree(unsigned SubtreeID) override { 4252 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4253 } 4254 4255 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 4256 /// DFSResults, and resort the priority Q. 4257 void schedNode(SUnit *SU, bool IsTopNode) override { 4258 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 4259 } 4260 4261 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 4262 4263 void releaseBottomNode(SUnit *SU) override { 4264 ReadyQ.push_back(SU); 4265 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4266 } 4267 }; 4268 4269 } // end anonymous namespace 4270 4271 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 4272 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); 4273 } 4274 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 4275 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); 4276 } 4277 4278 static MachineSchedRegistry ILPMaxRegistry( 4279 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 4280 static MachineSchedRegistry ILPMinRegistry( 4281 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 4282 4283 //===----------------------------------------------------------------------===// 4284 // Machine Instruction Shuffler for Correctness Testing 4285 //===----------------------------------------------------------------------===// 4286 4287 #ifndef NDEBUG 4288 namespace { 4289 4290 /// Apply a less-than relation on the node order, which corresponds to the 4291 /// instruction order prior to scheduling. IsReverse implements greater-than. 4292 template<bool IsReverse> 4293 struct SUnitOrder { 4294 bool operator()(SUnit *A, SUnit *B) const { 4295 if (IsReverse) 4296 return A->NodeNum > B->NodeNum; 4297 else 4298 return A->NodeNum < B->NodeNum; 4299 } 4300 }; 4301 4302 /// Reorder instructions as much as possible. 4303 class InstructionShuffler : public MachineSchedStrategy { 4304 bool IsAlternating; 4305 bool IsTopDown; 4306 4307 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 4308 // gives nodes with a higher number higher priority causing the latest 4309 // instructions to be scheduled first. 4310 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 4311 TopQ; 4312 4313 // When scheduling bottom-up, use greater-than as the queue priority. 4314 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 4315 BottomQ; 4316 4317 public: 4318 InstructionShuffler(bool alternate, bool topdown) 4319 : IsAlternating(alternate), IsTopDown(topdown) {} 4320 4321 void initialize(ScheduleDAGMI*) override { 4322 TopQ.clear(); 4323 BottomQ.clear(); 4324 } 4325 4326 /// Implement MachineSchedStrategy interface. 4327 /// ----------------------------------------- 4328 4329 SUnit *pickNode(bool &IsTopNode) override { 4330 SUnit *SU; 4331 if (IsTopDown) { 4332 do { 4333 if (TopQ.empty()) return nullptr; 4334 SU = TopQ.top(); 4335 TopQ.pop(); 4336 } while (SU->isScheduled); 4337 IsTopNode = true; 4338 } else { 4339 do { 4340 if (BottomQ.empty()) return nullptr; 4341 SU = BottomQ.top(); 4342 BottomQ.pop(); 4343 } while (SU->isScheduled); 4344 IsTopNode = false; 4345 } 4346 if (IsAlternating) 4347 IsTopDown = !IsTopDown; 4348 return SU; 4349 } 4350 4351 void schedNode(SUnit *SU, bool IsTopNode) override {} 4352 4353 void releaseTopNode(SUnit *SU) override { 4354 TopQ.push(SU); 4355 } 4356 void releaseBottomNode(SUnit *SU) override { 4357 BottomQ.push(SU); 4358 } 4359 }; 4360 4361 } // end anonymous namespace 4362 4363 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 4364 bool Alternate = 4365 PreRADirection != MISched::TopDown && PreRADirection != MISched::BottomUp; 4366 bool TopDown = PreRADirection != MISched::BottomUp; 4367 return new ScheduleDAGMILive( 4368 C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); 4369 } 4370 4371 static MachineSchedRegistry ShufflerRegistry( 4372 "shuffle", "Shuffle machine instructions alternating directions", 4373 createInstructionShuffler); 4374 #endif // !NDEBUG 4375 4376 //===----------------------------------------------------------------------===// 4377 // GraphWriter support for ScheduleDAGMILive. 4378 //===----------------------------------------------------------------------===// 4379 4380 #ifndef NDEBUG 4381 namespace llvm { 4382 4383 template<> struct GraphTraits< 4384 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 4385 4386 template<> 4387 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 4388 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 4389 4390 static std::string getGraphName(const ScheduleDAG *G) { 4391 return std::string(G->MF.getName()); 4392 } 4393 4394 static bool renderGraphFromBottomUp() { 4395 return true; 4396 } 4397 4398 static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) { 4399 if (ViewMISchedCutoff == 0) 4400 return false; 4401 return (Node->Preds.size() > ViewMISchedCutoff 4402 || Node->Succs.size() > ViewMISchedCutoff); 4403 } 4404 4405 /// If you want to override the dot attributes printed for a particular 4406 /// edge, override this method. 4407 static std::string getEdgeAttributes(const SUnit *Node, 4408 SUnitIterator EI, 4409 const ScheduleDAG *Graph) { 4410 if (EI.isArtificialDep()) 4411 return "color=cyan,style=dashed"; 4412 if (EI.isCtrlDep()) 4413 return "color=blue,style=dashed"; 4414 return ""; 4415 } 4416 4417 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 4418 std::string Str; 4419 raw_string_ostream SS(Str); 4420 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 4421 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 4422 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 4423 SS << "SU:" << SU->NodeNum; 4424 if (DFS) 4425 SS << " I:" << DFS->getNumInstrs(SU); 4426 return Str; 4427 } 4428 4429 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 4430 return G->getGraphNodeLabel(SU); 4431 } 4432 4433 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 4434 std::string Str("shape=Mrecord"); 4435 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 4436 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 4437 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 4438 if (DFS) { 4439 Str += ",style=filled,fillcolor=\"#"; 4440 Str += DOT::getColorString(DFS->getSubtreeID(N)); 4441 Str += '"'; 4442 } 4443 return Str; 4444 } 4445 }; 4446 4447 } // end namespace llvm 4448 #endif // NDEBUG 4449 4450 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 4451 /// rendered using 'dot'. 4452 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 4453 #ifndef NDEBUG 4454 ViewGraph(this, Name, false, Title); 4455 #else 4456 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 4457 << "systems with Graphviz or gv!\n"; 4458 #endif // NDEBUG 4459 } 4460 4461 /// Out-of-line implementation with no arguments is handy for gdb. 4462 void ScheduleDAGMI::viewGraph() { 4463 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 4464 } 4465 4466 /// Sort predicate for the intervals stored in an instance of 4467 /// ResourceSegments. Intervals are always disjoint (no intersection 4468 /// for any pairs of intervals), therefore we can sort the totality of 4469 /// the intervals by looking only at the left boundary. 4470 static bool sortIntervals(const ResourceSegments::IntervalTy &A, 4471 const ResourceSegments::IntervalTy &B) { 4472 return A.first < B.first; 4473 } 4474 4475 unsigned ResourceSegments::getFirstAvailableAt( 4476 unsigned CurrCycle, unsigned AcquireAtCycle, unsigned ReleaseAtCycle, 4477 std::function<ResourceSegments::IntervalTy(unsigned, unsigned, unsigned)> 4478 IntervalBuilder) const { 4479 assert(std::is_sorted(std::begin(_Intervals), std::end(_Intervals), 4480 sortIntervals) && 4481 "Cannot execute on an un-sorted set of intervals."); 4482 4483 // Zero resource usage is allowed by TargetSchedule.td but we do not construct 4484 // a ResourceSegment interval for that situation. 4485 if (AcquireAtCycle == ReleaseAtCycle) 4486 return CurrCycle; 4487 4488 unsigned RetCycle = CurrCycle; 4489 ResourceSegments::IntervalTy NewInterval = 4490 IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle); 4491 for (auto &Interval : _Intervals) { 4492 if (!intersects(NewInterval, Interval)) 4493 continue; 4494 4495 // Move the interval right next to the top of the one it 4496 // intersects. 4497 assert(Interval.second > NewInterval.first && 4498 "Invalid intervals configuration."); 4499 RetCycle += (unsigned)Interval.second - (unsigned)NewInterval.first; 4500 NewInterval = IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle); 4501 } 4502 return RetCycle; 4503 } 4504 4505 void ResourceSegments::add(ResourceSegments::IntervalTy A, 4506 const unsigned CutOff) { 4507 assert(A.first <= A.second && "Cannot add negative resource usage"); 4508 assert(CutOff > 0 && "0-size interval history has no use."); 4509 // Zero resource usage is allowed by TargetSchedule.td, in the case that the 4510 // instruction needed the resource to be available but does not use it. 4511 // However, ResourceSegment represents an interval that is closed on the left 4512 // and open on the right. It is impossible to represent an empty interval when 4513 // the left is closed. Do not add it to Intervals. 4514 if (A.first == A.second) 4515 return; 4516 4517 assert(all_of(_Intervals, 4518 [&A](const ResourceSegments::IntervalTy &Interval) -> bool { 4519 return !intersects(A, Interval); 4520 }) && 4521 "A resource is being overwritten"); 4522 _Intervals.push_back(A); 4523 4524 sortAndMerge(); 4525 4526 // Do not keep the full history of the intervals, just the 4527 // latest #CutOff. 4528 while (_Intervals.size() > CutOff) 4529 _Intervals.pop_front(); 4530 } 4531 4532 bool ResourceSegments::intersects(ResourceSegments::IntervalTy A, 4533 ResourceSegments::IntervalTy B) { 4534 assert(A.first <= A.second && "Invalid interval"); 4535 assert(B.first <= B.second && "Invalid interval"); 4536 4537 // Share one boundary. 4538 if ((A.first == B.first) || (A.second == B.second)) 4539 return true; 4540 4541 // full intersersect: [ *** ) B 4542 // [***) A 4543 if ((A.first > B.first) && (A.second < B.second)) 4544 return true; 4545 4546 // right intersect: [ ***) B 4547 // [*** ) A 4548 if ((A.first > B.first) && (A.first < B.second) && (A.second > B.second)) 4549 return true; 4550 4551 // left intersect: [*** ) B 4552 // [ ***) A 4553 if ((A.first < B.first) && (B.first < A.second) && (B.second > B.first)) 4554 return true; 4555 4556 return false; 4557 } 4558 4559 void ResourceSegments::sortAndMerge() { 4560 if (_Intervals.size() <= 1) 4561 return; 4562 4563 // First sort the collection. 4564 _Intervals.sort(sortIntervals); 4565 4566 // can use next because I have at least 2 elements in the list 4567 auto next = std::next(std::begin(_Intervals)); 4568 auto E = std::end(_Intervals); 4569 for (; next != E; ++next) { 4570 if (std::prev(next)->second >= next->first) { 4571 next->first = std::prev(next)->first; 4572 _Intervals.erase(std::prev(next)); 4573 continue; 4574 } 4575 } 4576 } 4577