1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 17 #include "llvm/CodeGen/MachineScheduler.h" 18 #include "llvm/ADT/OwningPtr.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/CodeGen/RegisterClassInfo.h" 27 #include "llvm/CodeGen/ScheduleDFS.h" 28 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/GraphWriter.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include <queue> 36 37 using namespace llvm; 38 39 namespace llvm { 40 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 41 cl::desc("Force top-down list scheduling")); 42 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 43 cl::desc("Force bottom-up list scheduling")); 44 } 45 46 #ifndef NDEBUG 47 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 48 cl::desc("Pop up a window to show MISched dags after they are processed")); 49 50 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 51 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 52 #else 53 static bool ViewMISchedDAGs = false; 54 #endif // NDEBUG 55 56 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 57 cl::desc("Enable load clustering."), cl::init(true)); 58 59 // Experimental heuristics 60 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 61 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 62 63 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 64 cl::desc("Verify machine instrs before and after machine scheduling")); 65 66 // DAG subtrees must have at least this many nodes. 67 static const unsigned MinSubtreeSize = 8; 68 69 //===----------------------------------------------------------------------===// 70 // Machine Instruction Scheduling Pass and Registry 71 //===----------------------------------------------------------------------===// 72 73 MachineSchedContext::MachineSchedContext(): 74 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { 75 RegClassInfo = new RegisterClassInfo(); 76 } 77 78 MachineSchedContext::~MachineSchedContext() { 79 delete RegClassInfo; 80 } 81 82 namespace { 83 /// MachineScheduler runs after coalescing and before register allocation. 84 class MachineScheduler : public MachineSchedContext, 85 public MachineFunctionPass { 86 public: 87 MachineScheduler(); 88 89 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 90 91 virtual void releaseMemory() {} 92 93 virtual bool runOnMachineFunction(MachineFunction&); 94 95 virtual void print(raw_ostream &O, const Module* = 0) const; 96 97 static char ID; // Class identification, replacement for typeinfo 98 }; 99 } // namespace 100 101 char MachineScheduler::ID = 0; 102 103 char &llvm::MachineSchedulerID = MachineScheduler::ID; 104 105 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", 106 "Machine Instruction Scheduler", false, false) 107 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 108 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 109 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 110 INITIALIZE_PASS_END(MachineScheduler, "misched", 111 "Machine Instruction Scheduler", false, false) 112 113 MachineScheduler::MachineScheduler() 114 : MachineFunctionPass(ID) { 115 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 116 } 117 118 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 119 AU.setPreservesCFG(); 120 AU.addRequiredID(MachineDominatorsID); 121 AU.addRequired<MachineLoopInfo>(); 122 AU.addRequired<AliasAnalysis>(); 123 AU.addRequired<TargetPassConfig>(); 124 AU.addRequired<SlotIndexes>(); 125 AU.addPreserved<SlotIndexes>(); 126 AU.addRequired<LiveIntervals>(); 127 AU.addPreserved<LiveIntervals>(); 128 MachineFunctionPass::getAnalysisUsage(AU); 129 } 130 131 MachinePassRegistry MachineSchedRegistry::Registry; 132 133 /// A dummy default scheduler factory indicates whether the scheduler 134 /// is overridden on the command line. 135 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 136 return 0; 137 } 138 139 /// MachineSchedOpt allows command line selection of the scheduler. 140 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 141 RegisterPassParser<MachineSchedRegistry> > 142 MachineSchedOpt("misched", 143 cl::init(&useDefaultMachineSched), cl::Hidden, 144 cl::desc("Machine instruction scheduler to use")); 145 146 static MachineSchedRegistry 147 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 148 useDefaultMachineSched); 149 150 /// Forward declare the standard machine scheduler. This will be used as the 151 /// default scheduler if the target does not set a default. 152 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); 153 154 155 /// Decrement this iterator until reaching the top or a non-debug instr. 156 static MachineBasicBlock::iterator 157 priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { 158 assert(I != Beg && "reached the top of the region, cannot decrement"); 159 while (--I != Beg) { 160 if (!I->isDebugValue()) 161 break; 162 } 163 return I; 164 } 165 166 /// If this iterator is a debug value, increment until reaching the End or a 167 /// non-debug instruction. 168 static MachineBasicBlock::iterator 169 nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { 170 for(; I != End; ++I) { 171 if (!I->isDebugValue()) 172 break; 173 } 174 return I; 175 } 176 177 /// Top-level MachineScheduler pass driver. 178 /// 179 /// Visit blocks in function order. Divide each block into scheduling regions 180 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 181 /// consistent with the DAG builder, which traverses the interior of the 182 /// scheduling regions bottom-up. 183 /// 184 /// This design avoids exposing scheduling boundaries to the DAG builder, 185 /// simplifying the DAG builder's support for "special" target instructions. 186 /// At the same time the design allows target schedulers to operate across 187 /// scheduling boundaries, for example to bundle the boudary instructions 188 /// without reordering them. This creates complexity, because the target 189 /// scheduler must update the RegionBegin and RegionEnd positions cached by 190 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 191 /// design would be to split blocks at scheduling boundaries, but LLVM has a 192 /// general bias against block splitting purely for implementation simplicity. 193 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 194 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 195 196 // Initialize the context of the pass. 197 MF = &mf; 198 MLI = &getAnalysis<MachineLoopInfo>(); 199 MDT = &getAnalysis<MachineDominatorTree>(); 200 PassConfig = &getAnalysis<TargetPassConfig>(); 201 AA = &getAnalysis<AliasAnalysis>(); 202 203 LIS = &getAnalysis<LiveIntervals>(); 204 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 205 206 if (VerifyScheduling) { 207 DEBUG(LIS->dump()); 208 MF->verify(this, "Before machine scheduling."); 209 } 210 RegClassInfo->runOnMachineFunction(*MF); 211 212 // Select the scheduler, or set the default. 213 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 214 if (Ctor == useDefaultMachineSched) { 215 // Get the default scheduler set by the target. 216 Ctor = MachineSchedRegistry::getDefault(); 217 if (!Ctor) { 218 Ctor = createConvergingSched; 219 MachineSchedRegistry::setDefault(Ctor); 220 } 221 } 222 // Instantiate the selected scheduler. 223 OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this)); 224 225 // Visit all machine basic blocks. 226 // 227 // TODO: Visit blocks in global postorder or postorder within the bottom-up 228 // loop tree. Then we can optionally compute global RegPressure. 229 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 230 MBB != MBBEnd; ++MBB) { 231 232 Scheduler->startBlock(MBB); 233 234 // Break the block into scheduling regions [I, RegionEnd), and schedule each 235 // region as soon as it is discovered. RegionEnd points the scheduling 236 // boundary at the bottom of the region. The DAG does not include RegionEnd, 237 // but the region does (i.e. the next RegionEnd is above the previous 238 // RegionBegin). If the current block has no terminator then RegionEnd == 239 // MBB->end() for the bottom region. 240 // 241 // The Scheduler may insert instructions during either schedule() or 242 // exitRegion(), even for empty regions. So the local iterators 'I' and 243 // 'RegionEnd' are invalid across these calls. 244 unsigned RemainingInstrs = MBB->size(); 245 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 246 RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { 247 248 // Avoid decrementing RegionEnd for blocks with no terminator. 249 if (RegionEnd != MBB->end() 250 || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { 251 --RegionEnd; 252 // Count the boundary instruction. 253 --RemainingInstrs; 254 } 255 256 // The next region starts above the previous region. Look backward in the 257 // instruction stream until we find the nearest boundary. 258 unsigned NumRegionInstrs = 0; 259 MachineBasicBlock::iterator I = RegionEnd; 260 for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) { 261 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) 262 break; 263 } 264 // Notify the scheduler of the region, even if we may skip scheduling 265 // it. Perhaps it still needs to be bundled. 266 Scheduler->enterRegion(MBB, I, RegionEnd, NumRegionInstrs); 267 268 // Skip empty scheduling regions (0 or 1 schedulable instructions). 269 if (I == RegionEnd || I == llvm::prior(RegionEnd)) { 270 // Close the current region. Bundle the terminator if needed. 271 // This invalidates 'RegionEnd' and 'I'. 272 Scheduler->exitRegion(); 273 continue; 274 } 275 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 276 DEBUG(dbgs() << MF->getName() 277 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 278 << "\n From: " << *I << " To: "; 279 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 280 else dbgs() << "End"; 281 dbgs() << " RegionInstrs: " << NumRegionInstrs 282 << " Remaining: " << RemainingInstrs << "\n"); 283 284 // Schedule a region: possibly reorder instructions. 285 // This invalidates 'RegionEnd' and 'I'. 286 Scheduler->schedule(); 287 288 // Close the current region. 289 Scheduler->exitRegion(); 290 291 // Scheduling has invalidated the current iterator 'I'. Ask the 292 // scheduler for the top of it's scheduled region. 293 RegionEnd = Scheduler->begin(); 294 } 295 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 296 Scheduler->finishBlock(); 297 } 298 Scheduler->finalizeSchedule(); 299 DEBUG(LIS->dump()); 300 if (VerifyScheduling) 301 MF->verify(this, "After machine scheduling."); 302 return true; 303 } 304 305 void MachineScheduler::print(raw_ostream &O, const Module* m) const { 306 // unimplemented 307 } 308 309 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 310 void ReadyQueue::dump() { 311 dbgs() << Name << ": "; 312 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 313 dbgs() << Queue[i]->NodeNum << " "; 314 dbgs() << "\n"; 315 } 316 #endif 317 318 //===----------------------------------------------------------------------===// 319 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals 320 // preservation. 321 //===----------------------------------------------------------------------===// 322 323 ScheduleDAGMI::~ScheduleDAGMI() { 324 delete DFSResult; 325 DeleteContainerPointers(Mutations); 326 delete SchedImpl; 327 } 328 329 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 330 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 331 } 332 333 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 334 if (SuccSU != &ExitSU) { 335 // Do not use WillCreateCycle, it assumes SD scheduling. 336 // If Pred is reachable from Succ, then the edge creates a cycle. 337 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 338 return false; 339 Topo.AddPred(SuccSU, PredDep.getSUnit()); 340 } 341 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 342 // Return true regardless of whether a new edge needed to be inserted. 343 return true; 344 } 345 346 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 347 /// NumPredsLeft reaches zero, release the successor node. 348 /// 349 /// FIXME: Adjust SuccSU height based on MinLatency. 350 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 351 SUnit *SuccSU = SuccEdge->getSUnit(); 352 353 if (SuccEdge->isWeak()) { 354 --SuccSU->WeakPredsLeft; 355 if (SuccEdge->isCluster()) 356 NextClusterSucc = SuccSU; 357 return; 358 } 359 #ifndef NDEBUG 360 if (SuccSU->NumPredsLeft == 0) { 361 dbgs() << "*** Scheduling failed! ***\n"; 362 SuccSU->dump(this); 363 dbgs() << " has been released too many times!\n"; 364 llvm_unreachable(0); 365 } 366 #endif 367 --SuccSU->NumPredsLeft; 368 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 369 SchedImpl->releaseTopNode(SuccSU); 370 } 371 372 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 373 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 374 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 375 I != E; ++I) { 376 releaseSucc(SU, &*I); 377 } 378 } 379 380 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 381 /// NumSuccsLeft reaches zero, release the predecessor node. 382 /// 383 /// FIXME: Adjust PredSU height based on MinLatency. 384 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 385 SUnit *PredSU = PredEdge->getSUnit(); 386 387 if (PredEdge->isWeak()) { 388 --PredSU->WeakSuccsLeft; 389 if (PredEdge->isCluster()) 390 NextClusterPred = PredSU; 391 return; 392 } 393 #ifndef NDEBUG 394 if (PredSU->NumSuccsLeft == 0) { 395 dbgs() << "*** Scheduling failed! ***\n"; 396 PredSU->dump(this); 397 dbgs() << " has been released too many times!\n"; 398 llvm_unreachable(0); 399 } 400 #endif 401 --PredSU->NumSuccsLeft; 402 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 403 SchedImpl->releaseBottomNode(PredSU); 404 } 405 406 /// releasePredecessors - Call releasePred on each of SU's predecessors. 407 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 408 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 409 I != E; ++I) { 410 releasePred(SU, &*I); 411 } 412 } 413 414 /// This is normally called from the main scheduler loop but may also be invoked 415 /// by the scheduling strategy to perform additional code motion. 416 void ScheduleDAGMI::moveInstruction(MachineInstr *MI, 417 MachineBasicBlock::iterator InsertPos) { 418 // Advance RegionBegin if the first instruction moves down. 419 if (&*RegionBegin == MI) 420 ++RegionBegin; 421 422 // Update the instruction stream. 423 BB->splice(InsertPos, BB, MI); 424 425 // Update LiveIntervals 426 LIS->handleMove(MI, /*UpdateFlags=*/true); 427 428 // Recede RegionBegin if an instruction moves above the first. 429 if (RegionBegin == InsertPos) 430 RegionBegin = MI; 431 } 432 433 bool ScheduleDAGMI::checkSchedLimit() { 434 #ifndef NDEBUG 435 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 436 CurrentTop = CurrentBottom; 437 return false; 438 } 439 ++NumInstrsScheduled; 440 #endif 441 return true; 442 } 443 444 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 445 /// crossing a scheduling boundary. [begin, end) includes all instructions in 446 /// the region, including the boundary itself and single-instruction regions 447 /// that don't get scheduled. 448 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 449 MachineBasicBlock::iterator begin, 450 MachineBasicBlock::iterator end, 451 unsigned regioninstrs) 452 { 453 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 454 455 // For convenience remember the end of the liveness region. 456 LiveRegionEnd = 457 (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); 458 } 459 460 // Setup the register pressure trackers for the top scheduled top and bottom 461 // scheduled regions. 462 void ScheduleDAGMI::initRegPressure() { 463 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 464 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 465 466 // Close the RPTracker to finalize live ins. 467 RPTracker.closeRegion(); 468 469 DEBUG(RPTracker.dump()); 470 471 // Initialize the live ins and live outs. 472 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 473 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 474 475 // Close one end of the tracker so we can call 476 // getMaxUpward/DownwardPressureDelta before advancing across any 477 // instructions. This converts currently live regs into live ins/outs. 478 TopRPTracker.closeTop(); 479 BotRPTracker.closeBottom(); 480 481 BotRPTracker.initLiveThru(RPTracker); 482 if (!BotRPTracker.getLiveThru().empty()) { 483 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 484 DEBUG(dbgs() << "Live Thru: "; 485 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 486 }; 487 488 // Account for liveness generated by the region boundary. 489 if (LiveRegionEnd != RegionEnd) 490 BotRPTracker.recede(); 491 492 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 493 494 // Cache the list of excess pressure sets in this region. This will also track 495 // the max pressure in the scheduled code for these sets. 496 RegionCriticalPSets.clear(); 497 const std::vector<unsigned> &RegionPressure = 498 RPTracker.getPressure().MaxSetPressure; 499 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 500 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 501 if (RegionPressure[i] > Limit) { 502 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 503 << " Limit " << Limit 504 << " Actual " << RegionPressure[i] << "\n"); 505 RegionCriticalPSets.push_back(PressureElement(i, 0)); 506 } 507 } 508 DEBUG(dbgs() << "Excess PSets: "; 509 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 510 dbgs() << TRI->getRegPressureSetName( 511 RegionCriticalPSets[i].PSetID) << " "; 512 dbgs() << "\n"); 513 } 514 515 // FIXME: When the pressure tracker deals in pressure differences then we won't 516 // iterate over all RegionCriticalPSets[i]. 517 void ScheduleDAGMI:: 518 updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) { 519 for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { 520 unsigned ID = RegionCriticalPSets[i].PSetID; 521 int &MaxUnits = RegionCriticalPSets[i].UnitIncrease; 522 if ((int)NewMaxPressure[ID] > MaxUnits) 523 MaxUnits = NewMaxPressure[ID]; 524 } 525 DEBUG( 526 for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) { 527 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 528 if (NewMaxPressure[i] > Limit ) { 529 dbgs() << " " << TRI->getRegPressureSetName(i) << ": " 530 << NewMaxPressure[i] << " > " << Limit << "\n"; 531 } 532 }); 533 } 534 535 /// schedule - Called back from MachineScheduler::runOnMachineFunction 536 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 537 /// only includes instructions that have DAG nodes, not scheduling boundaries. 538 /// 539 /// This is a skeletal driver, with all the functionality pushed into helpers, 540 /// so that it can be easilly extended by experimental schedulers. Generally, 541 /// implementing MachineSchedStrategy should be sufficient to implement a new 542 /// scheduling algorithm. However, if a scheduler further subclasses 543 /// ScheduleDAGMI then it will want to override this virtual method in order to 544 /// update any specialized state. 545 void ScheduleDAGMI::schedule() { 546 buildDAGWithRegPressure(); 547 548 Topo.InitDAGTopologicalSorting(); 549 550 postprocessDAG(); 551 552 SmallVector<SUnit*, 8> TopRoots, BotRoots; 553 findRootsAndBiasEdges(TopRoots, BotRoots); 554 555 // Initialize the strategy before modifying the DAG. 556 // This may initialize a DFSResult to be used for queue priority. 557 SchedImpl->initialize(this); 558 559 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 560 SUnits[su].dumpAll(this)); 561 if (ViewMISchedDAGs) viewGraph(); 562 563 // Initialize ready queues now that the DAG and priority data are finalized. 564 initQueues(TopRoots, BotRoots); 565 566 bool IsTopNode = false; 567 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 568 assert(!SU->isScheduled && "Node already scheduled"); 569 if (!checkSchedLimit()) 570 break; 571 572 scheduleMI(SU, IsTopNode); 573 574 updateQueues(SU, IsTopNode); 575 } 576 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 577 578 placeDebugValues(); 579 580 DEBUG({ 581 unsigned BBNum = begin()->getParent()->getNumber(); 582 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 583 dumpSchedule(); 584 dbgs() << '\n'; 585 }); 586 } 587 588 /// Build the DAG and setup three register pressure trackers. 589 void ScheduleDAGMI::buildDAGWithRegPressure() { 590 // Initialize the register pressure tracker used by buildSchedGraph. 591 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 592 /*TrackUntiedDefs=*/true); 593 594 // Account for liveness generate by the region boundary. 595 if (LiveRegionEnd != RegionEnd) 596 RPTracker.recede(); 597 598 // Build the DAG, and compute current register pressure. 599 buildSchedGraph(AA, &RPTracker); 600 601 // Initialize top/bottom trackers after computing region pressure. 602 initRegPressure(); 603 } 604 605 /// Apply each ScheduleDAGMutation step in order. 606 void ScheduleDAGMI::postprocessDAG() { 607 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 608 Mutations[i]->apply(this); 609 } 610 } 611 612 void ScheduleDAGMI::computeDFSResult() { 613 if (!DFSResult) 614 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 615 DFSResult->clear(); 616 ScheduledTrees.clear(); 617 DFSResult->resize(SUnits.size()); 618 DFSResult->compute(SUnits); 619 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 620 } 621 622 void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 623 SmallVectorImpl<SUnit*> &BotRoots) { 624 for (std::vector<SUnit>::iterator 625 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 626 SUnit *SU = &(*I); 627 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 628 629 // Order predecessors so DFSResult follows the critical path. 630 SU->biasCriticalPath(); 631 632 // A SUnit is ready to top schedule if it has no predecessors. 633 if (!I->NumPredsLeft) 634 TopRoots.push_back(SU); 635 // A SUnit is ready to bottom schedule if it has no successors. 636 if (!I->NumSuccsLeft) 637 BotRoots.push_back(SU); 638 } 639 ExitSU.biasCriticalPath(); 640 } 641 642 /// Identify DAG roots and setup scheduler queues. 643 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 644 ArrayRef<SUnit*> BotRoots) { 645 NextClusterSucc = NULL; 646 NextClusterPred = NULL; 647 648 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 649 // 650 // Nodes with unreleased weak edges can still be roots. 651 // Release top roots in forward order. 652 for (SmallVectorImpl<SUnit*>::const_iterator 653 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 654 SchedImpl->releaseTopNode(*I); 655 } 656 // Release bottom roots in reverse order so the higher priority nodes appear 657 // first. This is more natural and slightly more efficient. 658 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 659 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 660 SchedImpl->releaseBottomNode(*I); 661 } 662 663 releaseSuccessors(&EntrySU); 664 releasePredecessors(&ExitSU); 665 666 SchedImpl->registerRoots(); 667 668 // Advance past initial DebugValues. 669 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 670 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 671 TopRPTracker.setPos(CurrentTop); 672 673 CurrentBottom = RegionEnd; 674 } 675 676 /// Move an instruction and update register pressure. 677 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { 678 // Move the instruction to its new location in the instruction stream. 679 MachineInstr *MI = SU->getInstr(); 680 681 if (IsTopNode) { 682 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 683 if (&*CurrentTop == MI) 684 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 685 else { 686 moveInstruction(MI, CurrentTop); 687 TopRPTracker.setPos(MI); 688 } 689 690 // Update top scheduled pressure. 691 TopRPTracker.advance(); 692 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 693 updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); 694 } 695 else { 696 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 697 MachineBasicBlock::iterator priorII = 698 priorNonDebug(CurrentBottom, CurrentTop); 699 if (&*priorII == MI) 700 CurrentBottom = priorII; 701 else { 702 if (&*CurrentTop == MI) { 703 CurrentTop = nextIfDebug(++CurrentTop, priorII); 704 TopRPTracker.setPos(CurrentTop); 705 } 706 moveInstruction(MI, CurrentBottom); 707 CurrentBottom = MI; 708 } 709 // Update bottom scheduled pressure. 710 BotRPTracker.recede(); 711 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 712 updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); 713 } 714 } 715 716 /// Update scheduler queues after scheduling an instruction. 717 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 718 // Release dependent instructions for scheduling. 719 if (IsTopNode) 720 releaseSuccessors(SU); 721 else 722 releasePredecessors(SU); 723 724 SU->isScheduled = true; 725 726 if (DFSResult) { 727 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 728 if (!ScheduledTrees.test(SubtreeID)) { 729 ScheduledTrees.set(SubtreeID); 730 DFSResult->scheduleTree(SubtreeID); 731 SchedImpl->scheduleTree(SubtreeID); 732 } 733 } 734 735 // Notify the scheduling strategy after updating the DAG. 736 SchedImpl->schedNode(SU, IsTopNode); 737 } 738 739 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 740 void ScheduleDAGMI::placeDebugValues() { 741 // If first instruction was a DBG_VALUE then put it back. 742 if (FirstDbgValue) { 743 BB->splice(RegionBegin, BB, FirstDbgValue); 744 RegionBegin = FirstDbgValue; 745 } 746 747 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 748 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 749 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); 750 MachineInstr *DbgValue = P.first; 751 MachineBasicBlock::iterator OrigPrevMI = P.second; 752 if (&*RegionBegin == DbgValue) 753 ++RegionBegin; 754 BB->splice(++OrigPrevMI, BB, DbgValue); 755 if (OrigPrevMI == llvm::prior(RegionEnd)) 756 RegionEnd = DbgValue; 757 } 758 DbgValues.clear(); 759 FirstDbgValue = NULL; 760 } 761 762 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 763 void ScheduleDAGMI::dumpSchedule() const { 764 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 765 if (SUnit *SU = getSUnit(&(*MI))) 766 SU->dump(this); 767 else 768 dbgs() << "Missing SUnit\n"; 769 } 770 } 771 #endif 772 773 //===----------------------------------------------------------------------===// 774 // LoadClusterMutation - DAG post-processing to cluster loads. 775 //===----------------------------------------------------------------------===// 776 777 namespace { 778 /// \brief Post-process the DAG to create cluster edges between neighboring 779 /// loads. 780 class LoadClusterMutation : public ScheduleDAGMutation { 781 struct LoadInfo { 782 SUnit *SU; 783 unsigned BaseReg; 784 unsigned Offset; 785 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 786 : SU(su), BaseReg(reg), Offset(ofs) {} 787 }; 788 static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, 789 const LoadClusterMutation::LoadInfo &RHS); 790 791 const TargetInstrInfo *TII; 792 const TargetRegisterInfo *TRI; 793 public: 794 LoadClusterMutation(const TargetInstrInfo *tii, 795 const TargetRegisterInfo *tri) 796 : TII(tii), TRI(tri) {} 797 798 virtual void apply(ScheduleDAGMI *DAG); 799 protected: 800 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 801 }; 802 } // anonymous 803 804 bool LoadClusterMutation::LoadInfoLess( 805 const LoadClusterMutation::LoadInfo &LHS, 806 const LoadClusterMutation::LoadInfo &RHS) { 807 if (LHS.BaseReg != RHS.BaseReg) 808 return LHS.BaseReg < RHS.BaseReg; 809 return LHS.Offset < RHS.Offset; 810 } 811 812 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 813 ScheduleDAGMI *DAG) { 814 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 815 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 816 SUnit *SU = Loads[Idx]; 817 unsigned BaseReg; 818 unsigned Offset; 819 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 820 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 821 } 822 if (LoadRecords.size() < 2) 823 return; 824 std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); 825 unsigned ClusterLength = 1; 826 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 827 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 828 ClusterLength = 1; 829 continue; 830 } 831 832 SUnit *SUa = LoadRecords[Idx].SU; 833 SUnit *SUb = LoadRecords[Idx+1].SU; 834 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 835 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 836 837 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 838 << SUb->NodeNum << ")\n"); 839 // Copy successor edges from SUa to SUb. Interleaving computation 840 // dependent on SUa can prevent load combining due to register reuse. 841 // Predecessor edges do not need to be copied from SUb to SUa since nearby 842 // loads should have effectively the same inputs. 843 for (SUnit::const_succ_iterator 844 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 845 if (SI->getSUnit() == SUb) 846 continue; 847 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 848 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 849 } 850 ++ClusterLength; 851 } 852 else 853 ClusterLength = 1; 854 } 855 } 856 857 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 858 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 859 // Map DAG NodeNum to store chain ID. 860 DenseMap<unsigned, unsigned> StoreChainIDs; 861 // Map each store chain to a set of dependent loads. 862 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 863 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 864 SUnit *SU = &DAG->SUnits[Idx]; 865 if (!SU->getInstr()->mayLoad()) 866 continue; 867 unsigned ChainPredID = DAG->SUnits.size(); 868 for (SUnit::const_pred_iterator 869 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 870 if (PI->isCtrl()) { 871 ChainPredID = PI->getSUnit()->NodeNum; 872 break; 873 } 874 } 875 // Check if this chain-like pred has been seen 876 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 877 unsigned NumChains = StoreChainDependents.size(); 878 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 879 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 880 if (Result.second) 881 StoreChainDependents.resize(NumChains + 1); 882 StoreChainDependents[Result.first->second].push_back(SU); 883 } 884 // Iterate over the store chains. 885 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 886 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 887 } 888 889 //===----------------------------------------------------------------------===// 890 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 891 //===----------------------------------------------------------------------===// 892 893 namespace { 894 /// \brief Post-process the DAG to create cluster edges between instructions 895 /// that may be fused by the processor into a single operation. 896 class MacroFusion : public ScheduleDAGMutation { 897 const TargetInstrInfo *TII; 898 public: 899 MacroFusion(const TargetInstrInfo *tii): TII(tii) {} 900 901 virtual void apply(ScheduleDAGMI *DAG); 902 }; 903 } // anonymous 904 905 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 906 /// fused operations. 907 void MacroFusion::apply(ScheduleDAGMI *DAG) { 908 // For now, assume targets can only fuse with the branch. 909 MachineInstr *Branch = DAG->ExitSU.getInstr(); 910 if (!Branch) 911 return; 912 913 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { 914 SUnit *SU = &DAG->SUnits[--Idx]; 915 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) 916 continue; 917 918 // Create a single weak edge from SU to ExitSU. The only effect is to cause 919 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 920 // need to copy predecessor edges from ExitSU to SU, since top-down 921 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 922 // of SU, we could create an artificial edge from the deepest root, but it 923 // hasn't been needed yet. 924 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); 925 (void)Success; 926 assert(Success && "No DAG nodes should be reachable from ExitSU"); 927 928 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); 929 break; 930 } 931 } 932 933 //===----------------------------------------------------------------------===// 934 // CopyConstrain - DAG post-processing to encourage copy elimination. 935 //===----------------------------------------------------------------------===// 936 937 namespace { 938 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 939 /// the one use that defines the copy's source vreg, most likely an induction 940 /// variable increment. 941 class CopyConstrain : public ScheduleDAGMutation { 942 // Transient state. 943 SlotIndex RegionBeginIdx; 944 // RegionEndIdx is the slot index of the last non-debug instruction in the 945 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 946 SlotIndex RegionEndIdx; 947 public: 948 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 949 950 virtual void apply(ScheduleDAGMI *DAG); 951 952 protected: 953 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG); 954 }; 955 } // anonymous 956 957 /// constrainLocalCopy handles two possibilities: 958 /// 1) Local src: 959 /// I0: = dst 960 /// I1: src = ... 961 /// I2: = dst 962 /// I3: dst = src (copy) 963 /// (create pred->succ edges I0->I1, I2->I1) 964 /// 965 /// 2) Local copy: 966 /// I0: dst = src (copy) 967 /// I1: = dst 968 /// I2: src = ... 969 /// I3: = dst 970 /// (create pred->succ edges I1->I2, I3->I2) 971 /// 972 /// Although the MachineScheduler is currently constrained to single blocks, 973 /// this algorithm should handle extended blocks. An EBB is a set of 974 /// contiguously numbered blocks such that the previous block in the EBB is 975 /// always the single predecessor. 976 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) { 977 LiveIntervals *LIS = DAG->getLIS(); 978 MachineInstr *Copy = CopySU->getInstr(); 979 980 // Check for pure vreg copies. 981 unsigned SrcReg = Copy->getOperand(1).getReg(); 982 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 983 return; 984 985 unsigned DstReg = Copy->getOperand(0).getReg(); 986 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 987 return; 988 989 // Check if either the dest or source is local. If it's live across a back 990 // edge, it's not local. Note that if both vregs are live across the back 991 // edge, we cannot successfully contrain the copy without cyclic scheduling. 992 unsigned LocalReg = DstReg; 993 unsigned GlobalReg = SrcReg; 994 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 995 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 996 LocalReg = SrcReg; 997 GlobalReg = DstReg; 998 LocalLI = &LIS->getInterval(LocalReg); 999 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1000 return; 1001 } 1002 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1003 1004 // Find the global segment after the start of the local LI. 1005 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1006 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1007 // local live range. We could create edges from other global uses to the local 1008 // start, but the coalescer should have already eliminated these cases, so 1009 // don't bother dealing with it. 1010 if (GlobalSegment == GlobalLI->end()) 1011 return; 1012 1013 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1014 // returned the next global segment. But if GlobalSegment overlaps with 1015 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1016 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1017 if (GlobalSegment->contains(LocalLI->beginIndex())) 1018 ++GlobalSegment; 1019 1020 if (GlobalSegment == GlobalLI->end()) 1021 return; 1022 1023 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1024 if (GlobalSegment != GlobalLI->begin()) { 1025 // Two address defs have no hole. 1026 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end, 1027 GlobalSegment->start)) { 1028 return; 1029 } 1030 // If the prior global segment may be defined by the same two-address 1031 // instruction that also defines LocalLI, then can't make a hole here. 1032 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->start, 1033 LocalLI->beginIndex())) { 1034 return; 1035 } 1036 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1037 // it would be a disconnected component in the live range. 1038 assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() && 1039 "Disconnected LRG within the scheduling region."); 1040 } 1041 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1042 if (!GlobalDef) 1043 return; 1044 1045 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1046 if (!GlobalSU) 1047 return; 1048 1049 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1050 // constraining the uses of the last local def to precede GlobalDef. 1051 SmallVector<SUnit*,8> LocalUses; 1052 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1053 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1054 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1055 for (SUnit::const_succ_iterator 1056 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1057 I != E; ++I) { 1058 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1059 continue; 1060 if (I->getSUnit() == GlobalSU) 1061 continue; 1062 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1063 return; 1064 LocalUses.push_back(I->getSUnit()); 1065 } 1066 // Open the top of the GlobalLI hole by constraining any earlier global uses 1067 // to precede the start of LocalLI. 1068 SmallVector<SUnit*,8> GlobalUses; 1069 MachineInstr *FirstLocalDef = 1070 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1071 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1072 for (SUnit::const_pred_iterator 1073 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1074 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1075 continue; 1076 if (I->getSUnit() == FirstLocalSU) 1077 continue; 1078 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1079 return; 1080 GlobalUses.push_back(I->getSUnit()); 1081 } 1082 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1083 // Add the weak edges. 1084 for (SmallVectorImpl<SUnit*>::const_iterator 1085 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1086 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1087 << GlobalSU->NodeNum << ")\n"); 1088 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1089 } 1090 for (SmallVectorImpl<SUnit*>::const_iterator 1091 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1092 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1093 << FirstLocalSU->NodeNum << ")\n"); 1094 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1095 } 1096 } 1097 1098 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1099 /// copy elimination. 1100 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1101 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1102 if (FirstPos == DAG->end()) 1103 return; 1104 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1105 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1106 &*priorNonDebug(DAG->end(), DAG->begin())); 1107 1108 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1109 SUnit *SU = &DAG->SUnits[Idx]; 1110 if (!SU->getInstr()->isCopy()) 1111 continue; 1112 1113 constrainLocalCopy(SU, DAG); 1114 } 1115 } 1116 1117 //===----------------------------------------------------------------------===// 1118 // ConvergingScheduler - Implementation of the generic MachineSchedStrategy. 1119 //===----------------------------------------------------------------------===// 1120 1121 namespace { 1122 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance 1123 /// the schedule. 1124 class ConvergingScheduler : public MachineSchedStrategy { 1125 public: 1126 /// Represent the type of SchedCandidate found within a single queue. 1127 /// pickNodeBidirectional depends on these listed by decreasing priority. 1128 enum CandReason { 1129 NoCand, PhysRegCopy, RegExcess, RegCritical, Cluster, Weak, RegMax, 1130 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, 1131 TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder}; 1132 1133 #ifndef NDEBUG 1134 static const char *getReasonStr(ConvergingScheduler::CandReason Reason); 1135 #endif 1136 1137 /// Policy for scheduling the next instruction in the candidate's zone. 1138 struct CandPolicy { 1139 bool ReduceLatency; 1140 unsigned ReduceResIdx; 1141 unsigned DemandResIdx; 1142 1143 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} 1144 }; 1145 1146 /// Status of an instruction's critical resource consumption. 1147 struct SchedResourceDelta { 1148 // Count critical resources in the scheduled region required by SU. 1149 unsigned CritResources; 1150 1151 // Count critical resources from another region consumed by SU. 1152 unsigned DemandedResources; 1153 1154 SchedResourceDelta(): CritResources(0), DemandedResources(0) {} 1155 1156 bool operator==(const SchedResourceDelta &RHS) const { 1157 return CritResources == RHS.CritResources 1158 && DemandedResources == RHS.DemandedResources; 1159 } 1160 bool operator!=(const SchedResourceDelta &RHS) const { 1161 return !operator==(RHS); 1162 } 1163 }; 1164 1165 /// Store the state used by ConvergingScheduler heuristics, required for the 1166 /// lifetime of one invocation of pickNode(). 1167 struct SchedCandidate { 1168 CandPolicy Policy; 1169 1170 // The best SUnit candidate. 1171 SUnit *SU; 1172 1173 // The reason for this candidate. 1174 CandReason Reason; 1175 1176 // Set of reasons that apply to multiple candidates. 1177 uint32_t RepeatReasonSet; 1178 1179 // Register pressure values for the best candidate. 1180 RegPressureDelta RPDelta; 1181 1182 // Critical resource consumption of the best candidate. 1183 SchedResourceDelta ResDelta; 1184 1185 SchedCandidate(const CandPolicy &policy) 1186 : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {} 1187 1188 bool isValid() const { return SU; } 1189 1190 // Copy the status of another candidate without changing policy. 1191 void setBest(SchedCandidate &Best) { 1192 assert(Best.Reason != NoCand && "uninitialized Sched candidate"); 1193 SU = Best.SU; 1194 Reason = Best.Reason; 1195 RPDelta = Best.RPDelta; 1196 ResDelta = Best.ResDelta; 1197 } 1198 1199 bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); } 1200 void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); } 1201 1202 void initResourceDelta(const ScheduleDAGMI *DAG, 1203 const TargetSchedModel *SchedModel); 1204 }; 1205 1206 /// Summarize the unscheduled region. 1207 struct SchedRemainder { 1208 // Critical path through the DAG in expected latency. 1209 unsigned CriticalPath; 1210 1211 // Scaled count of micro-ops left to schedule. 1212 unsigned RemIssueCount; 1213 1214 // Unscheduled resources 1215 SmallVector<unsigned, 16> RemainingCounts; 1216 1217 void reset() { 1218 CriticalPath = 0; 1219 RemIssueCount = 0; 1220 RemainingCounts.clear(); 1221 } 1222 1223 SchedRemainder() { reset(); } 1224 1225 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); 1226 }; 1227 1228 /// Each Scheduling boundary is associated with ready queues. It tracks the 1229 /// current cycle in the direction of movement, and maintains the state 1230 /// of "hazards" and other interlocks at the current cycle. 1231 struct SchedBoundary { 1232 ScheduleDAGMI *DAG; 1233 const TargetSchedModel *SchedModel; 1234 SchedRemainder *Rem; 1235 1236 ReadyQueue Available; 1237 ReadyQueue Pending; 1238 bool CheckPending; 1239 1240 // For heuristics, keep a list of the nodes that immediately depend on the 1241 // most recently scheduled node. 1242 SmallPtrSet<const SUnit*, 8> NextSUs; 1243 1244 ScheduleHazardRecognizer *HazardRec; 1245 1246 /// Number of cycles it takes to issue the instructions scheduled in this 1247 /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls. 1248 /// See getStalls(). 1249 unsigned CurrCycle; 1250 1251 /// Micro-ops issued in the current cycle 1252 unsigned CurrMOps; 1253 1254 /// MinReadyCycle - Cycle of the soonest available instruction. 1255 unsigned MinReadyCycle; 1256 1257 // The expected latency of the critical path in this scheduled zone. 1258 unsigned ExpectedLatency; 1259 1260 // The latency of dependence chains leading into this zone. 1261 // For each node scheduled bottom-up: DLat = max DLat, N.Depth. 1262 // For each cycle scheduled: DLat -= 1. 1263 unsigned DependentLatency; 1264 1265 /// Count the scheduled (issued) micro-ops that can be retired by 1266 /// time=CurrCycle assuming the first scheduled instr is retired at time=0. 1267 unsigned RetiredMOps; 1268 1269 // Count scheduled resources that have been executed. Resources are 1270 // considered executed if they become ready in the time that it takes to 1271 // saturate any resource including the one in question. Counts are scaled 1272 // for direct comparison with other resources. Counts can be compared with 1273 // MOps * getMicroOpFactor and Latency * getLatencyFactor. 1274 SmallVector<unsigned, 16> ExecutedResCounts; 1275 1276 /// Cache the max count for a single resource. 1277 unsigned MaxExecutedResCount; 1278 1279 // Cache the critical resources ID in this scheduled zone. 1280 unsigned ZoneCritResIdx; 1281 1282 // Is the scheduled region resource limited vs. latency limited. 1283 bool IsResourceLimited; 1284 1285 #ifndef NDEBUG 1286 // Remember the greatest operand latency as an upper bound on the number of 1287 // times we should retry the pending queue because of a hazard. 1288 unsigned MaxObservedLatency; 1289 #endif 1290 1291 void reset() { 1292 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1293 delete HazardRec; 1294 1295 Available.clear(); 1296 Pending.clear(); 1297 CheckPending = false; 1298 NextSUs.clear(); 1299 HazardRec = 0; 1300 CurrCycle = 0; 1301 CurrMOps = 0; 1302 MinReadyCycle = UINT_MAX; 1303 ExpectedLatency = 0; 1304 DependentLatency = 0; 1305 RetiredMOps = 0; 1306 MaxExecutedResCount = 0; 1307 ZoneCritResIdx = 0; 1308 IsResourceLimited = false; 1309 #ifndef NDEBUG 1310 MaxObservedLatency = 0; 1311 #endif 1312 // Reserve a zero-count for invalid CritResIdx. 1313 ExecutedResCounts.resize(1); 1314 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1315 } 1316 1317 /// Pending queues extend the ready queues with the same ID and the 1318 /// PendingFlag set. 1319 SchedBoundary(unsigned ID, const Twine &Name): 1320 DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), 1321 Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"), 1322 HazardRec(0) { 1323 reset(); 1324 } 1325 1326 ~SchedBoundary() { delete HazardRec; } 1327 1328 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, 1329 SchedRemainder *rem); 1330 1331 bool isTop() const { 1332 return Available.getID() == ConvergingScheduler::TopQID; 1333 } 1334 1335 #ifndef NDEBUG 1336 const char *getResourceName(unsigned PIdx) { 1337 if (!PIdx) 1338 return "MOps"; 1339 return SchedModel->getProcResource(PIdx)->Name; 1340 } 1341 #endif 1342 1343 /// Get the number of latency cycles "covered" by the scheduled 1344 /// instructions. This is the larger of the critical path within the zone 1345 /// and the number of cycles required to issue the instructions. 1346 unsigned getScheduledLatency() const { 1347 return std::max(ExpectedLatency, CurrCycle); 1348 } 1349 1350 unsigned getUnscheduledLatency(SUnit *SU) const { 1351 return isTop() ? SU->getHeight() : SU->getDepth(); 1352 } 1353 1354 unsigned getResourceCount(unsigned ResIdx) const { 1355 return ExecutedResCounts[ResIdx]; 1356 } 1357 1358 /// Get the scaled count of scheduled micro-ops and resources, including 1359 /// executed resources. 1360 unsigned getCriticalCount() const { 1361 if (!ZoneCritResIdx) 1362 return RetiredMOps * SchedModel->getMicroOpFactor(); 1363 return getResourceCount(ZoneCritResIdx); 1364 } 1365 1366 /// Get a scaled count for the minimum execution time of the scheduled 1367 /// micro-ops that are ready to execute by getExecutedCount. Notice the 1368 /// feedback loop. 1369 unsigned getExecutedCount() const { 1370 return std::max(CurrCycle * SchedModel->getLatencyFactor(), 1371 MaxExecutedResCount); 1372 } 1373 1374 bool checkHazard(SUnit *SU); 1375 1376 unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs); 1377 1378 unsigned getOtherResourceCount(unsigned &OtherCritIdx); 1379 1380 void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone); 1381 1382 void releaseNode(SUnit *SU, unsigned ReadyCycle); 1383 1384 void bumpCycle(unsigned NextCycle); 1385 1386 void incExecutedResources(unsigned PIdx, unsigned Count); 1387 1388 unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle); 1389 1390 void bumpNode(SUnit *SU); 1391 1392 void releasePending(); 1393 1394 void removeReady(SUnit *SU); 1395 1396 SUnit *pickOnlyChoice(); 1397 1398 #ifndef NDEBUG 1399 void dumpScheduledState(); 1400 #endif 1401 }; 1402 1403 private: 1404 ScheduleDAGMI *DAG; 1405 const TargetSchedModel *SchedModel; 1406 const TargetRegisterInfo *TRI; 1407 1408 // State of the top and bottom scheduled instruction boundaries. 1409 SchedRemainder Rem; 1410 SchedBoundary Top; 1411 SchedBoundary Bot; 1412 1413 public: 1414 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) 1415 enum { 1416 TopQID = 1, 1417 BotQID = 2, 1418 LogMaxQID = 2 1419 }; 1420 1421 ConvergingScheduler(): 1422 DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} 1423 1424 virtual void initialize(ScheduleDAGMI *dag); 1425 1426 virtual SUnit *pickNode(bool &IsTopNode); 1427 1428 virtual void schedNode(SUnit *SU, bool IsTopNode); 1429 1430 virtual void releaseTopNode(SUnit *SU); 1431 1432 virtual void releaseBottomNode(SUnit *SU); 1433 1434 virtual void registerRoots(); 1435 1436 protected: 1437 void tryCandidate(SchedCandidate &Cand, 1438 SchedCandidate &TryCand, 1439 SchedBoundary &Zone, 1440 const RegPressureTracker &RPTracker, 1441 RegPressureTracker &TempTracker); 1442 1443 SUnit *pickNodeBidirectional(bool &IsTopNode); 1444 1445 void pickNodeFromQueue(SchedBoundary &Zone, 1446 const RegPressureTracker &RPTracker, 1447 SchedCandidate &Candidate); 1448 1449 void reschedulePhysRegCopies(SUnit *SU, bool isTop); 1450 1451 #ifndef NDEBUG 1452 void traceCandidate(const SchedCandidate &Cand); 1453 #endif 1454 }; 1455 } // namespace 1456 1457 void ConvergingScheduler::SchedRemainder:: 1458 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1459 reset(); 1460 if (!SchedModel->hasInstrSchedModel()) 1461 return; 1462 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1463 for (std::vector<SUnit>::iterator 1464 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1465 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1466 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1467 * SchedModel->getMicroOpFactor(); 1468 for (TargetSchedModel::ProcResIter 1469 PI = SchedModel->getWriteProcResBegin(SC), 1470 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1471 unsigned PIdx = PI->ProcResourceIdx; 1472 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1473 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1474 } 1475 } 1476 } 1477 1478 void ConvergingScheduler::SchedBoundary:: 1479 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1480 reset(); 1481 DAG = dag; 1482 SchedModel = smodel; 1483 Rem = rem; 1484 if (SchedModel->hasInstrSchedModel()) 1485 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1486 } 1487 1488 void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { 1489 DAG = dag; 1490 SchedModel = DAG->getSchedModel(); 1491 TRI = DAG->TRI; 1492 1493 Rem.init(DAG, SchedModel); 1494 Top.init(DAG, SchedModel, &Rem); 1495 Bot.init(DAG, SchedModel, &Rem); 1496 1497 // Initialize resource counts. 1498 1499 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 1500 // are disabled, then these HazardRecs will be disabled. 1501 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 1502 const TargetMachine &TM = DAG->MF.getTarget(); 1503 Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1504 Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1505 1506 assert((!ForceTopDown || !ForceBottomUp) && 1507 "-misched-topdown incompatible with -misched-bottomup"); 1508 } 1509 1510 void ConvergingScheduler::releaseTopNode(SUnit *SU) { 1511 if (SU->isScheduled) 1512 return; 1513 1514 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 1515 I != E; ++I) { 1516 if (I->isWeak()) 1517 continue; 1518 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; 1519 unsigned Latency = I->getLatency(); 1520 #ifndef NDEBUG 1521 Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency); 1522 #endif 1523 if (SU->TopReadyCycle < PredReadyCycle + Latency) 1524 SU->TopReadyCycle = PredReadyCycle + Latency; 1525 } 1526 Top.releaseNode(SU, SU->TopReadyCycle); 1527 } 1528 1529 void ConvergingScheduler::releaseBottomNode(SUnit *SU) { 1530 if (SU->isScheduled) 1531 return; 1532 1533 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1534 1535 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 1536 I != E; ++I) { 1537 if (I->isWeak()) 1538 continue; 1539 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; 1540 unsigned Latency = I->getLatency(); 1541 #ifndef NDEBUG 1542 Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency); 1543 #endif 1544 if (SU->BotReadyCycle < SuccReadyCycle + Latency) 1545 SU->BotReadyCycle = SuccReadyCycle + Latency; 1546 } 1547 Bot.releaseNode(SU, SU->BotReadyCycle); 1548 } 1549 1550 void ConvergingScheduler::registerRoots() { 1551 Rem.CriticalPath = DAG->ExitSU.getDepth(); 1552 // Some roots may not feed into ExitSU. Check all of them in case. 1553 for (std::vector<SUnit*>::const_iterator 1554 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 1555 if ((*I)->getDepth() > Rem.CriticalPath) 1556 Rem.CriticalPath = (*I)->getDepth(); 1557 } 1558 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 1559 } 1560 1561 /// Does this SU have a hazard within the current instruction group. 1562 /// 1563 /// The scheduler supports two modes of hazard recognition. The first is the 1564 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1565 /// supports highly complicated in-order reservation tables 1566 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1567 /// 1568 /// The second is a streamlined mechanism that checks for hazards based on 1569 /// simple counters that the scheduler itself maintains. It explicitly checks 1570 /// for instruction dispatch limitations, including the number of micro-ops that 1571 /// can dispatch per cycle. 1572 /// 1573 /// TODO: Also check whether the SU must start a new group. 1574 bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { 1575 if (HazardRec->isEnabled()) 1576 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; 1577 1578 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1579 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1580 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1581 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1582 return true; 1583 } 1584 return false; 1585 } 1586 1587 // Find the unscheduled node in ReadySUs with the highest latency. 1588 unsigned ConvergingScheduler::SchedBoundary:: 1589 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1590 SUnit *LateSU = 0; 1591 unsigned RemLatency = 0; 1592 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1593 I != E; ++I) { 1594 unsigned L = getUnscheduledLatency(*I); 1595 if (L > RemLatency) { 1596 RemLatency = L; 1597 LateSU = *I; 1598 } 1599 } 1600 if (LateSU) { 1601 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1602 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1603 } 1604 return RemLatency; 1605 } 1606 1607 // Count resources in this zone and the remaining unscheduled 1608 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1609 // resource index, or zero if the zone is issue limited. 1610 unsigned ConvergingScheduler::SchedBoundary:: 1611 getOtherResourceCount(unsigned &OtherCritIdx) { 1612 OtherCritIdx = 0; 1613 if (!SchedModel->hasInstrSchedModel()) 1614 return 0; 1615 1616 unsigned OtherCritCount = Rem->RemIssueCount 1617 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1618 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1619 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1620 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1621 PIdx != PEnd; ++PIdx) { 1622 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1623 if (OtherCount > OtherCritCount) { 1624 OtherCritCount = OtherCount; 1625 OtherCritIdx = PIdx; 1626 } 1627 } 1628 if (OtherCritIdx) { 1629 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1630 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1631 << " " << getResourceName(OtherCritIdx) << "\n"); 1632 } 1633 return OtherCritCount; 1634 } 1635 1636 /// Set the CandPolicy for this zone given the current resources and latencies 1637 /// inside and outside the zone. 1638 void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy, 1639 SchedBoundary &OtherZone) { 1640 // Now that potential stalls have been considered, apply preemptive heuristics 1641 // based on the the total latency and resources inside and outside this 1642 // zone. 1643 1644 // Compute remaining latency. We need this both to determine whether the 1645 // overall schedule has become latency-limited and whether the instructions 1646 // outside this zone are resource or latency limited. 1647 // 1648 // The "dependent" latency is updated incrementally during scheduling as the 1649 // max height/depth of scheduled nodes minus the cycles since it was 1650 // scheduled: 1651 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 1652 // 1653 // The "independent" latency is the max ready queue depth: 1654 // ILat = max N.depth for N in Available|Pending 1655 // 1656 // RemainingLatency is the greater of independent and dependent latency. 1657 unsigned RemLatency = DependentLatency; 1658 RemLatency = std::max(RemLatency, findMaxLatency(Available.elements())); 1659 RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements())); 1660 1661 // Compute the critical resource outside the zone. 1662 unsigned OtherCritIdx; 1663 unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx); 1664 1665 bool OtherResLimited = false; 1666 if (SchedModel->hasInstrSchedModel()) { 1667 unsigned LFactor = SchedModel->getLatencyFactor(); 1668 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 1669 } 1670 if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) { 1671 Policy.ReduceLatency |= true; 1672 DEBUG(dbgs() << " " << Available.getName() << " RemainingLatency " 1673 << RemLatency << " + " << CurrCycle << "c > CritPath " 1674 << Rem->CriticalPath << "\n"); 1675 } 1676 // If the same resource is limiting inside and outside the zone, do nothing. 1677 if (ZoneCritResIdx == OtherCritIdx) 1678 return; 1679 1680 DEBUG( 1681 if (IsResourceLimited) { 1682 dbgs() << " " << Available.getName() << " ResourceLimited: " 1683 << getResourceName(ZoneCritResIdx) << "\n"; 1684 } 1685 if (OtherResLimited) 1686 dbgs() << " RemainingLimit: " << getResourceName(OtherCritIdx) << "\n"; 1687 if (!IsResourceLimited && !OtherResLimited) 1688 dbgs() << " Latency limited both directions.\n"); 1689 1690 if (IsResourceLimited && !Policy.ReduceResIdx) 1691 Policy.ReduceResIdx = ZoneCritResIdx; 1692 1693 if (OtherResLimited) 1694 Policy.DemandResIdx = OtherCritIdx; 1695 } 1696 1697 void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, 1698 unsigned ReadyCycle) { 1699 if (ReadyCycle < MinReadyCycle) 1700 MinReadyCycle = ReadyCycle; 1701 1702 // Check for interlocks first. For the purpose of other heuristics, an 1703 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1704 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1705 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1706 Pending.push(SU); 1707 else 1708 Available.push(SU); 1709 1710 // Record this node as an immediate dependent of the scheduled node. 1711 NextSUs.insert(SU); 1712 } 1713 1714 /// Move the boundary of scheduled code by one cycle. 1715 void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) { 1716 if (SchedModel->getMicroOpBufferSize() == 0) { 1717 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1718 if (MinReadyCycle > NextCycle) 1719 NextCycle = MinReadyCycle; 1720 } 1721 // Update the current micro-ops, which will issue in the next cycle. 1722 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1723 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1724 1725 // Decrement DependentLatency based on the next cycle. 1726 if ((NextCycle - CurrCycle) > DependentLatency) 1727 DependentLatency = 0; 1728 else 1729 DependentLatency -= (NextCycle - CurrCycle); 1730 1731 if (!HazardRec->isEnabled()) { 1732 // Bypass HazardRec virtual calls. 1733 CurrCycle = NextCycle; 1734 } 1735 else { 1736 // Bypass getHazardType calls in case of long latency. 1737 for (; CurrCycle != NextCycle; ++CurrCycle) { 1738 if (isTop()) 1739 HazardRec->AdvanceCycle(); 1740 else 1741 HazardRec->RecedeCycle(); 1742 } 1743 } 1744 CheckPending = true; 1745 unsigned LFactor = SchedModel->getLatencyFactor(); 1746 IsResourceLimited = 1747 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1748 > (int)LFactor; 1749 1750 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1751 } 1752 1753 void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx, 1754 unsigned Count) { 1755 ExecutedResCounts[PIdx] += Count; 1756 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1757 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1758 } 1759 1760 /// Add the given processor resource to this scheduled zone. 1761 /// 1762 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1763 /// during which this resource is consumed. 1764 /// 1765 /// \return the next cycle at which the instruction may execute without 1766 /// oversubscribing resources. 1767 unsigned ConvergingScheduler::SchedBoundary:: 1768 countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) { 1769 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1770 unsigned Count = Factor * Cycles; 1771 DEBUG(dbgs() << " " << getResourceName(PIdx) 1772 << " +" << Cycles << "x" << Factor << "u\n"); 1773 1774 // Update Executed resources counts. 1775 incExecutedResources(PIdx, Count); 1776 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1777 Rem->RemainingCounts[PIdx] -= Count; 1778 1779 // Check if this resource exceeds the current critical resource. If so, it 1780 // becomes the critical resource. 1781 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 1782 ZoneCritResIdx = PIdx; 1783 DEBUG(dbgs() << " *** Critical resource " 1784 << getResourceName(PIdx) << ": " 1785 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 1786 } 1787 // TODO: We don't yet model reserved resources. It's not hard though. 1788 return CurrCycle; 1789 } 1790 1791 /// Move the boundary of scheduled code by one SUnit. 1792 void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { 1793 // Update the reservation table. 1794 if (HazardRec->isEnabled()) { 1795 if (!isTop() && SU->isCall) { 1796 // Calls are scheduled with their preceding instructions. For bottom-up 1797 // scheduling, clear the pipeline state before emitting. 1798 HazardRec->Reset(); 1799 } 1800 HazardRec->EmitInstruction(SU); 1801 } 1802 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1803 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 1804 CurrMOps += IncMOps; 1805 // checkHazard prevents scheduling multiple instructions per cycle that exceed 1806 // issue width. However, we commonly reach the maximum. In this case 1807 // opportunistically bump the cycle to avoid uselessly checking everything in 1808 // the readyQ. Furthermore, a single instruction may produce more than one 1809 // cycle's worth of micro-ops. 1810 // 1811 // TODO: Also check if this SU must end a dispatch group. 1812 unsigned NextCycle = CurrCycle; 1813 if (CurrMOps >= SchedModel->getIssueWidth()) { 1814 ++NextCycle; 1815 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 1816 << " at cycle " << CurrCycle << '\n'); 1817 } 1818 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1819 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 1820 1821 switch (SchedModel->getMicroOpBufferSize()) { 1822 case 0: 1823 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 1824 break; 1825 case 1: 1826 if (ReadyCycle > NextCycle) { 1827 NextCycle = ReadyCycle; 1828 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 1829 } 1830 break; 1831 default: 1832 // We don't currently model the OOO reorder buffer, so consider all 1833 // scheduled MOps to be "retired". 1834 break; 1835 } 1836 RetiredMOps += IncMOps; 1837 1838 // Update resource counts and critical resource. 1839 if (SchedModel->hasInstrSchedModel()) { 1840 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 1841 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 1842 Rem->RemIssueCount -= DecRemIssue; 1843 if (ZoneCritResIdx) { 1844 // Scale scheduled micro-ops for comparing with the critical resource. 1845 unsigned ScaledMOps = 1846 RetiredMOps * SchedModel->getMicroOpFactor(); 1847 1848 // If scaled micro-ops are now more than the previous critical resource by 1849 // a full cycle, then micro-ops issue becomes critical. 1850 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 1851 >= (int)SchedModel->getLatencyFactor()) { 1852 ZoneCritResIdx = 0; 1853 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 1854 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 1855 } 1856 } 1857 for (TargetSchedModel::ProcResIter 1858 PI = SchedModel->getWriteProcResBegin(SC), 1859 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1860 unsigned RCycle = 1861 countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle); 1862 if (RCycle > NextCycle) 1863 NextCycle = RCycle; 1864 } 1865 } 1866 // Update ExpectedLatency and DependentLatency. 1867 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 1868 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 1869 if (SU->getDepth() > TopLatency) { 1870 TopLatency = SU->getDepth(); 1871 DEBUG(dbgs() << " " << Available.getName() 1872 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 1873 } 1874 if (SU->getHeight() > BotLatency) { 1875 BotLatency = SU->getHeight(); 1876 DEBUG(dbgs() << " " << Available.getName() 1877 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 1878 } 1879 // If we stall for any reason, bump the cycle. 1880 if (NextCycle > CurrCycle) { 1881 bumpCycle(NextCycle); 1882 } 1883 else { 1884 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 1885 // resource limited. If a stall occured, bumpCycle does this. 1886 unsigned LFactor = SchedModel->getLatencyFactor(); 1887 IsResourceLimited = 1888 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1889 > (int)LFactor; 1890 } 1891 DEBUG(dumpScheduledState()); 1892 } 1893 1894 /// Release pending ready nodes in to the available queue. This makes them 1895 /// visible to heuristics. 1896 void ConvergingScheduler::SchedBoundary::releasePending() { 1897 // If the available queue is empty, it is safe to reset MinReadyCycle. 1898 if (Available.empty()) 1899 MinReadyCycle = UINT_MAX; 1900 1901 // Check to see if any of the pending instructions are ready to issue. If 1902 // so, add them to the available queue. 1903 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1904 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 1905 SUnit *SU = *(Pending.begin()+i); 1906 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 1907 1908 if (ReadyCycle < MinReadyCycle) 1909 MinReadyCycle = ReadyCycle; 1910 1911 if (!IsBuffered && ReadyCycle > CurrCycle) 1912 continue; 1913 1914 if (checkHazard(SU)) 1915 continue; 1916 1917 Available.push(SU); 1918 Pending.remove(Pending.begin()+i); 1919 --i; --e; 1920 } 1921 DEBUG(if (!Pending.empty()) Pending.dump()); 1922 CheckPending = false; 1923 } 1924 1925 /// Remove SU from the ready set for this boundary. 1926 void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { 1927 if (Available.isInQueue(SU)) 1928 Available.remove(Available.find(SU)); 1929 else { 1930 assert(Pending.isInQueue(SU) && "bad ready count"); 1931 Pending.remove(Pending.find(SU)); 1932 } 1933 } 1934 1935 /// If this queue only has one ready candidate, return it. As a side effect, 1936 /// defer any nodes that now hit a hazard, and advance the cycle until at least 1937 /// one node is ready. If multiple instructions are ready, return NULL. 1938 SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { 1939 if (CheckPending) 1940 releasePending(); 1941 1942 if (CurrMOps > 0) { 1943 // Defer any ready instrs that now have a hazard. 1944 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 1945 if (checkHazard(*I)) { 1946 Pending.push(*I); 1947 I = Available.remove(I); 1948 continue; 1949 } 1950 ++I; 1951 } 1952 } 1953 for (unsigned i = 0; Available.empty(); ++i) { 1954 assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) && 1955 "permanent hazard"); (void)i; 1956 bumpCycle(CurrCycle + 1); 1957 releasePending(); 1958 } 1959 if (Available.size() == 1) 1960 return *Available.begin(); 1961 return NULL; 1962 } 1963 1964 #ifndef NDEBUG 1965 // This is useful information to dump after bumpNode. 1966 // Note that the Queue contents are more useful before pickNodeFromQueue. 1967 void ConvergingScheduler::SchedBoundary::dumpScheduledState() { 1968 unsigned ResFactor; 1969 unsigned ResCount; 1970 if (ZoneCritResIdx) { 1971 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 1972 ResCount = getResourceCount(ZoneCritResIdx); 1973 } 1974 else { 1975 ResFactor = SchedModel->getMicroOpFactor(); 1976 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 1977 } 1978 unsigned LFactor = SchedModel->getLatencyFactor(); 1979 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 1980 << " Retired: " << RetiredMOps; 1981 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 1982 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 1983 << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx) 1984 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 1985 << (IsResourceLimited ? " - Resource" : " - Latency") 1986 << " limited.\n"; 1987 } 1988 #endif 1989 1990 void ConvergingScheduler::SchedCandidate:: 1991 initResourceDelta(const ScheduleDAGMI *DAG, 1992 const TargetSchedModel *SchedModel) { 1993 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 1994 return; 1995 1996 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1997 for (TargetSchedModel::ProcResIter 1998 PI = SchedModel->getWriteProcResBegin(SC), 1999 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2000 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2001 ResDelta.CritResources += PI->Cycles; 2002 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2003 ResDelta.DemandedResources += PI->Cycles; 2004 } 2005 } 2006 2007 2008 /// Return true if this heuristic determines order. 2009 static bool tryLess(int TryVal, int CandVal, 2010 ConvergingScheduler::SchedCandidate &TryCand, 2011 ConvergingScheduler::SchedCandidate &Cand, 2012 ConvergingScheduler::CandReason Reason) { 2013 if (TryVal < CandVal) { 2014 TryCand.Reason = Reason; 2015 return true; 2016 } 2017 if (TryVal > CandVal) { 2018 if (Cand.Reason > Reason) 2019 Cand.Reason = Reason; 2020 return true; 2021 } 2022 Cand.setRepeat(Reason); 2023 return false; 2024 } 2025 2026 static bool tryGreater(int TryVal, int CandVal, 2027 ConvergingScheduler::SchedCandidate &TryCand, 2028 ConvergingScheduler::SchedCandidate &Cand, 2029 ConvergingScheduler::CandReason Reason) { 2030 if (TryVal > CandVal) { 2031 TryCand.Reason = Reason; 2032 return true; 2033 } 2034 if (TryVal < CandVal) { 2035 if (Cand.Reason > Reason) 2036 Cand.Reason = Reason; 2037 return true; 2038 } 2039 Cand.setRepeat(Reason); 2040 return false; 2041 } 2042 2043 static bool tryPressure(const PressureElement &TryP, 2044 const PressureElement &CandP, 2045 ConvergingScheduler::SchedCandidate &TryCand, 2046 ConvergingScheduler::SchedCandidate &Cand, 2047 ConvergingScheduler::CandReason Reason) { 2048 // If both candidates affect the same set, go with the smallest increase. 2049 if (TryP.PSetID == CandP.PSetID) { 2050 return tryLess(TryP.UnitIncrease, CandP.UnitIncrease, TryCand, Cand, 2051 Reason); 2052 } 2053 // If one candidate decreases and the other increases, go with it. 2054 if (tryLess(TryP.UnitIncrease < 0, CandP.UnitIncrease < 0, TryCand, Cand, 2055 Reason)) { 2056 return true; 2057 } 2058 // If TryP has lower Rank, it has a higher priority. 2059 int TryRank = TryP.PSetRank(); 2060 int CandRank = CandP.PSetRank(); 2061 // If the candidates are decreasing pressure, reverse priority. 2062 if (TryP.UnitIncrease < 0) 2063 std::swap(TryRank, CandRank); 2064 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2065 } 2066 2067 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2068 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2069 } 2070 2071 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2072 /// their physreg def/use. 2073 /// 2074 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2075 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2076 /// with the operation that produces or consumes the physreg. We'll do this when 2077 /// regalloc has support for parallel copies. 2078 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2079 const MachineInstr *MI = SU->getInstr(); 2080 if (!MI->isCopy()) 2081 return 0; 2082 2083 unsigned ScheduledOper = isTop ? 1 : 0; 2084 unsigned UnscheduledOper = isTop ? 0 : 1; 2085 // If we have already scheduled the physreg produce/consumer, immediately 2086 // schedule the copy. 2087 if (TargetRegisterInfo::isPhysicalRegister( 2088 MI->getOperand(ScheduledOper).getReg())) 2089 return 1; 2090 // If the physreg is at the boundary, defer it. Otherwise schedule it 2091 // immediately to free the dependent. We can hoist the copy later. 2092 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2093 if (TargetRegisterInfo::isPhysicalRegister( 2094 MI->getOperand(UnscheduledOper).getReg())) 2095 return AtBoundary ? -1 : 1; 2096 return 0; 2097 } 2098 2099 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2100 /// hierarchical. This may be more efficient than a graduated cost model because 2101 /// we don't need to evaluate all aspects of the model for each node in the 2102 /// queue. But it's really done to make the heuristics easier to debug and 2103 /// statistically analyze. 2104 /// 2105 /// \param Cand provides the policy and current best candidate. 2106 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2107 /// \param Zone describes the scheduled zone that we are extending. 2108 /// \param RPTracker describes reg pressure within the scheduled zone. 2109 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2110 void ConvergingScheduler::tryCandidate(SchedCandidate &Cand, 2111 SchedCandidate &TryCand, 2112 SchedBoundary &Zone, 2113 const RegPressureTracker &RPTracker, 2114 RegPressureTracker &TempTracker) { 2115 2116 // Always initialize TryCand's RPDelta. 2117 TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta, 2118 DAG->getRegionCriticalPSets(), 2119 DAG->getRegPressure().MaxSetPressure); 2120 2121 // Initialize the candidate if needed. 2122 if (!Cand.isValid()) { 2123 TryCand.Reason = NodeOrder; 2124 return; 2125 } 2126 2127 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2128 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2129 TryCand, Cand, PhysRegCopy)) 2130 return; 2131 2132 // Avoid exceeding the target's limit. If signed PSetID is negative, it is 2133 // invalid; convert it to INT_MAX to give it lowest priority. 2134 if (tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand, 2135 RegExcess)) 2136 return; 2137 2138 // Avoid increasing the max critical pressure in the scheduled region. 2139 if (tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax, 2140 TryCand, Cand, RegCritical)) 2141 return; 2142 2143 // Keep clustered nodes together to encourage downstream peephole 2144 // optimizations which may reduce resource requirements. 2145 // 2146 // This is a best effort to set things up for a post-RA pass. Optimizations 2147 // like generating loads of multiple registers should ideally be done within 2148 // the scheduler pass by combining the loads during DAG postprocessing. 2149 const SUnit *NextClusterSU = 2150 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2151 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2152 TryCand, Cand, Cluster)) 2153 return; 2154 2155 // Weak edges are for clustering and other constraints. 2156 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2157 getWeakLeft(Cand.SU, Zone.isTop()), 2158 TryCand, Cand, Weak)) { 2159 return; 2160 } 2161 // Avoid increasing the max pressure of the entire region. 2162 if (tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax, 2163 TryCand, Cand, RegMax)) 2164 return; 2165 2166 // Avoid critical resource consumption and balance the schedule. 2167 TryCand.initResourceDelta(DAG, SchedModel); 2168 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2169 TryCand, Cand, ResourceReduce)) 2170 return; 2171 if (tryGreater(TryCand.ResDelta.DemandedResources, 2172 Cand.ResDelta.DemandedResources, 2173 TryCand, Cand, ResourceDemand)) 2174 return; 2175 2176 // Avoid serializing long latency dependence chains. 2177 if (Cand.Policy.ReduceLatency) { 2178 if (Zone.isTop()) { 2179 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2180 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2181 TryCand, Cand, TopDepthReduce)) 2182 return; 2183 } 2184 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2185 TryCand, Cand, TopPathReduce)) 2186 return; 2187 } 2188 else { 2189 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2190 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2191 TryCand, Cand, BotHeightReduce)) 2192 return; 2193 } 2194 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2195 TryCand, Cand, BotPathReduce)) 2196 return; 2197 } 2198 } 2199 2200 // Prefer immediate defs/users of the last scheduled instruction. This is a 2201 // local pressure avoidance strategy that also makes the machine code 2202 // readable. 2203 if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), 2204 TryCand, Cand, NextDefUse)) 2205 return; 2206 2207 // Fall through to original instruction order. 2208 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2209 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2210 TryCand.Reason = NodeOrder; 2211 } 2212 } 2213 2214 #ifndef NDEBUG 2215 const char *ConvergingScheduler::getReasonStr( 2216 ConvergingScheduler::CandReason Reason) { 2217 switch (Reason) { 2218 case NoCand: return "NOCAND "; 2219 case PhysRegCopy: return "PREG-COPY"; 2220 case RegExcess: return "REG-EXCESS"; 2221 case RegCritical: return "REG-CRIT "; 2222 case Cluster: return "CLUSTER "; 2223 case Weak: return "WEAK "; 2224 case RegMax: return "REG-MAX "; 2225 case ResourceReduce: return "RES-REDUCE"; 2226 case ResourceDemand: return "RES-DEMAND"; 2227 case TopDepthReduce: return "TOP-DEPTH "; 2228 case TopPathReduce: return "TOP-PATH "; 2229 case BotHeightReduce:return "BOT-HEIGHT"; 2230 case BotPathReduce: return "BOT-PATH "; 2231 case NextDefUse: return "DEF-USE "; 2232 case NodeOrder: return "ORDER "; 2233 }; 2234 llvm_unreachable("Unknown reason!"); 2235 } 2236 2237 void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) { 2238 PressureElement P; 2239 unsigned ResIdx = 0; 2240 unsigned Latency = 0; 2241 switch (Cand.Reason) { 2242 default: 2243 break; 2244 case RegExcess: 2245 P = Cand.RPDelta.Excess; 2246 break; 2247 case RegCritical: 2248 P = Cand.RPDelta.CriticalMax; 2249 break; 2250 case RegMax: 2251 P = Cand.RPDelta.CurrentMax; 2252 break; 2253 case ResourceReduce: 2254 ResIdx = Cand.Policy.ReduceResIdx; 2255 break; 2256 case ResourceDemand: 2257 ResIdx = Cand.Policy.DemandResIdx; 2258 break; 2259 case TopDepthReduce: 2260 Latency = Cand.SU->getDepth(); 2261 break; 2262 case TopPathReduce: 2263 Latency = Cand.SU->getHeight(); 2264 break; 2265 case BotHeightReduce: 2266 Latency = Cand.SU->getHeight(); 2267 break; 2268 case BotPathReduce: 2269 Latency = Cand.SU->getDepth(); 2270 break; 2271 } 2272 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2273 if (P.isValid()) 2274 dbgs() << " " << TRI->getRegPressureSetName(P.PSetID) 2275 << ":" << P.UnitIncrease << " "; 2276 else 2277 dbgs() << " "; 2278 if (ResIdx) 2279 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2280 else 2281 dbgs() << " "; 2282 if (Latency) 2283 dbgs() << " " << Latency << " cycles "; 2284 else 2285 dbgs() << " "; 2286 dbgs() << '\n'; 2287 } 2288 #endif 2289 2290 /// Pick the best candidate from the top queue. 2291 /// 2292 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2293 /// DAG building. To adjust for the current scheduling location we need to 2294 /// maintain the number of vreg uses remaining to be top-scheduled. 2295 void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2296 const RegPressureTracker &RPTracker, 2297 SchedCandidate &Cand) { 2298 ReadyQueue &Q = Zone.Available; 2299 2300 DEBUG(Q.dump()); 2301 2302 // getMaxPressureDelta temporarily modifies the tracker. 2303 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2304 2305 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2306 2307 SchedCandidate TryCand(Cand.Policy); 2308 TryCand.SU = *I; 2309 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2310 if (TryCand.Reason != NoCand) { 2311 // Initialize resource delta if needed in case future heuristics query it. 2312 if (TryCand.ResDelta == SchedResourceDelta()) 2313 TryCand.initResourceDelta(DAG, SchedModel); 2314 Cand.setBest(TryCand); 2315 DEBUG(traceCandidate(Cand)); 2316 } 2317 } 2318 } 2319 2320 static void tracePick(const ConvergingScheduler::SchedCandidate &Cand, 2321 bool IsTop) { 2322 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2323 << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n'); 2324 } 2325 2326 /// Pick the best candidate node from either the top or bottom queue. 2327 SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) { 2328 // Schedule as far as possible in the direction of no choice. This is most 2329 // efficient, but also provides the best heuristics for CriticalPSets. 2330 if (SUnit *SU = Bot.pickOnlyChoice()) { 2331 IsTopNode = false; 2332 DEBUG(dbgs() << "Pick Bot NOCAND\n"); 2333 return SU; 2334 } 2335 if (SUnit *SU = Top.pickOnlyChoice()) { 2336 IsTopNode = true; 2337 DEBUG(dbgs() << "Pick Top NOCAND\n"); 2338 return SU; 2339 } 2340 CandPolicy NoPolicy; 2341 SchedCandidate BotCand(NoPolicy); 2342 SchedCandidate TopCand(NoPolicy); 2343 Bot.setPolicy(BotCand.Policy, Top); 2344 Top.setPolicy(TopCand.Policy, Bot); 2345 2346 // Prefer bottom scheduling when heuristics are silent. 2347 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2348 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2349 2350 // If either Q has a single candidate that provides the least increase in 2351 // Excess pressure, we can immediately schedule from that Q. 2352 // 2353 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2354 // affects picking from either Q. If scheduling in one direction must 2355 // increase pressure for one of the excess PSets, then schedule in that 2356 // direction first to provide more freedom in the other direction. 2357 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2358 || (BotCand.Reason == RegCritical 2359 && !BotCand.isRepeat(RegCritical))) 2360 { 2361 IsTopNode = false; 2362 tracePick(BotCand, IsTopNode); 2363 return BotCand.SU; 2364 } 2365 // Check if the top Q has a better candidate. 2366 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2367 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2368 2369 // Choose the queue with the most important (lowest enum) reason. 2370 if (TopCand.Reason < BotCand.Reason) { 2371 IsTopNode = true; 2372 tracePick(TopCand, IsTopNode); 2373 return TopCand.SU; 2374 } 2375 // Otherwise prefer the bottom candidate, in node order if all else failed. 2376 IsTopNode = false; 2377 tracePick(BotCand, IsTopNode); 2378 return BotCand.SU; 2379 } 2380 2381 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2382 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { 2383 if (DAG->top() == DAG->bottom()) { 2384 assert(Top.Available.empty() && Top.Pending.empty() && 2385 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2386 return NULL; 2387 } 2388 SUnit *SU; 2389 do { 2390 if (ForceTopDown) { 2391 SU = Top.pickOnlyChoice(); 2392 if (!SU) { 2393 CandPolicy NoPolicy; 2394 SchedCandidate TopCand(NoPolicy); 2395 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2396 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2397 SU = TopCand.SU; 2398 } 2399 IsTopNode = true; 2400 } 2401 else if (ForceBottomUp) { 2402 SU = Bot.pickOnlyChoice(); 2403 if (!SU) { 2404 CandPolicy NoPolicy; 2405 SchedCandidate BotCand(NoPolicy); 2406 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2407 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2408 SU = BotCand.SU; 2409 } 2410 IsTopNode = false; 2411 } 2412 else { 2413 SU = pickNodeBidirectional(IsTopNode); 2414 } 2415 } while (SU->isScheduled); 2416 2417 if (SU->isTopReady()) 2418 Top.removeReady(SU); 2419 if (SU->isBottomReady()) 2420 Bot.removeReady(SU); 2421 2422 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2423 return SU; 2424 } 2425 2426 void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2427 2428 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2429 if (!isTop) 2430 ++InsertPos; 2431 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2432 2433 // Find already scheduled copies with a single physreg dependence and move 2434 // them just above the scheduled instruction. 2435 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2436 I != E; ++I) { 2437 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2438 continue; 2439 SUnit *DepSU = I->getSUnit(); 2440 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2441 continue; 2442 MachineInstr *Copy = DepSU->getInstr(); 2443 if (!Copy->isCopy()) 2444 continue; 2445 DEBUG(dbgs() << " Rescheduling physreg copy "; 2446 I->getSUnit()->dump(DAG)); 2447 DAG->moveInstruction(Copy, InsertPos); 2448 } 2449 } 2450 2451 /// Update the scheduler's state after scheduling a node. This is the same node 2452 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update 2453 /// it's state based on the current cycle before MachineSchedStrategy does. 2454 /// 2455 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2456 /// them here. See comments in biasPhysRegCopy. 2457 void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2458 if (IsTopNode) { 2459 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle); 2460 Top.bumpNode(SU); 2461 if (SU->hasPhysRegUses) 2462 reschedulePhysRegCopies(SU, true); 2463 } 2464 else { 2465 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle); 2466 Bot.bumpNode(SU); 2467 if (SU->hasPhysRegDefs) 2468 reschedulePhysRegCopies(SU, false); 2469 } 2470 } 2471 2472 /// Create the standard converging machine scheduler. This will be used as the 2473 /// default scheduler if the target does not set a default. 2474 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 2475 assert((!ForceTopDown || !ForceBottomUp) && 2476 "-misched-topdown incompatible with -misched-bottomup"); 2477 ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler()); 2478 // Register DAG post-processors. 2479 // 2480 // FIXME: extend the mutation API to allow earlier mutations to instantiate 2481 // data and pass it to later mutations. Have a single mutation that gathers 2482 // the interesting nodes in one pass. 2483 DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI)); 2484 if (EnableLoadCluster) 2485 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); 2486 if (EnableMacroFusion) 2487 DAG->addMutation(new MacroFusion(DAG->TII)); 2488 return DAG; 2489 } 2490 static MachineSchedRegistry 2491 ConvergingSchedRegistry("converge", "Standard converging scheduler.", 2492 createConvergingSched); 2493 2494 //===----------------------------------------------------------------------===// 2495 // ILP Scheduler. Currently for experimental analysis of heuristics. 2496 //===----------------------------------------------------------------------===// 2497 2498 namespace { 2499 /// \brief Order nodes by the ILP metric. 2500 struct ILPOrder { 2501 const SchedDFSResult *DFSResult; 2502 const BitVector *ScheduledTrees; 2503 bool MaximizeILP; 2504 2505 ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {} 2506 2507 /// \brief Apply a less-than relation on node priority. 2508 /// 2509 /// (Return true if A comes after B in the Q.) 2510 bool operator()(const SUnit *A, const SUnit *B) const { 2511 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 2512 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 2513 if (SchedTreeA != SchedTreeB) { 2514 // Unscheduled trees have lower priority. 2515 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 2516 return ScheduledTrees->test(SchedTreeB); 2517 2518 // Trees with shallower connections have have lower priority. 2519 if (DFSResult->getSubtreeLevel(SchedTreeA) 2520 != DFSResult->getSubtreeLevel(SchedTreeB)) { 2521 return DFSResult->getSubtreeLevel(SchedTreeA) 2522 < DFSResult->getSubtreeLevel(SchedTreeB); 2523 } 2524 } 2525 if (MaximizeILP) 2526 return DFSResult->getILP(A) < DFSResult->getILP(B); 2527 else 2528 return DFSResult->getILP(A) > DFSResult->getILP(B); 2529 } 2530 }; 2531 2532 /// \brief Schedule based on the ILP metric. 2533 class ILPScheduler : public MachineSchedStrategy { 2534 /// In case all subtrees are eventually connected to a common root through 2535 /// data dependence (e.g. reduction), place an upper limit on their size. 2536 /// 2537 /// FIXME: A subtree limit is generally good, but in the situation commented 2538 /// above, where multiple similar subtrees feed a common root, we should 2539 /// only split at a point where the resulting subtrees will be balanced. 2540 /// (a motivating test case must be found). 2541 static const unsigned SubtreeLimit = 16; 2542 2543 ScheduleDAGMI *DAG; 2544 ILPOrder Cmp; 2545 2546 std::vector<SUnit*> ReadyQ; 2547 public: 2548 ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {} 2549 2550 virtual void initialize(ScheduleDAGMI *dag) { 2551 DAG = dag; 2552 DAG->computeDFSResult(); 2553 Cmp.DFSResult = DAG->getDFSResult(); 2554 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 2555 ReadyQ.clear(); 2556 } 2557 2558 virtual void registerRoots() { 2559 // Restore the heap in ReadyQ with the updated DFS results. 2560 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2561 } 2562 2563 /// Implement MachineSchedStrategy interface. 2564 /// ----------------------------------------- 2565 2566 /// Callback to select the highest priority node from the ready Q. 2567 virtual SUnit *pickNode(bool &IsTopNode) { 2568 if (ReadyQ.empty()) return NULL; 2569 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2570 SUnit *SU = ReadyQ.back(); 2571 ReadyQ.pop_back(); 2572 IsTopNode = false; 2573 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 2574 << " ILP: " << DAG->getDFSResult()->getILP(SU) 2575 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 2576 << DAG->getDFSResult()->getSubtreeLevel( 2577 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 2578 << "Scheduling " << *SU->getInstr()); 2579 return SU; 2580 } 2581 2582 /// \brief Scheduler callback to notify that a new subtree is scheduled. 2583 virtual void scheduleTree(unsigned SubtreeID) { 2584 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2585 } 2586 2587 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 2588 /// DFSResults, and resort the priority Q. 2589 virtual void schedNode(SUnit *SU, bool IsTopNode) { 2590 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 2591 } 2592 2593 virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } 2594 2595 virtual void releaseBottomNode(SUnit *SU) { 2596 ReadyQ.push_back(SU); 2597 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2598 } 2599 }; 2600 } // namespace 2601 2602 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 2603 return new ScheduleDAGMI(C, new ILPScheduler(true)); 2604 } 2605 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 2606 return new ScheduleDAGMI(C, new ILPScheduler(false)); 2607 } 2608 static MachineSchedRegistry ILPMaxRegistry( 2609 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 2610 static MachineSchedRegistry ILPMinRegistry( 2611 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 2612 2613 //===----------------------------------------------------------------------===// 2614 // Machine Instruction Shuffler for Correctness Testing 2615 //===----------------------------------------------------------------------===// 2616 2617 #ifndef NDEBUG 2618 namespace { 2619 /// Apply a less-than relation on the node order, which corresponds to the 2620 /// instruction order prior to scheduling. IsReverse implements greater-than. 2621 template<bool IsReverse> 2622 struct SUnitOrder { 2623 bool operator()(SUnit *A, SUnit *B) const { 2624 if (IsReverse) 2625 return A->NodeNum > B->NodeNum; 2626 else 2627 return A->NodeNum < B->NodeNum; 2628 } 2629 }; 2630 2631 /// Reorder instructions as much as possible. 2632 class InstructionShuffler : public MachineSchedStrategy { 2633 bool IsAlternating; 2634 bool IsTopDown; 2635 2636 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 2637 // gives nodes with a higher number higher priority causing the latest 2638 // instructions to be scheduled first. 2639 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 2640 TopQ; 2641 // When scheduling bottom-up, use greater-than as the queue priority. 2642 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 2643 BottomQ; 2644 public: 2645 InstructionShuffler(bool alternate, bool topdown) 2646 : IsAlternating(alternate), IsTopDown(topdown) {} 2647 2648 virtual void initialize(ScheduleDAGMI *) { 2649 TopQ.clear(); 2650 BottomQ.clear(); 2651 } 2652 2653 /// Implement MachineSchedStrategy interface. 2654 /// ----------------------------------------- 2655 2656 virtual SUnit *pickNode(bool &IsTopNode) { 2657 SUnit *SU; 2658 if (IsTopDown) { 2659 do { 2660 if (TopQ.empty()) return NULL; 2661 SU = TopQ.top(); 2662 TopQ.pop(); 2663 } while (SU->isScheduled); 2664 IsTopNode = true; 2665 } 2666 else { 2667 do { 2668 if (BottomQ.empty()) return NULL; 2669 SU = BottomQ.top(); 2670 BottomQ.pop(); 2671 } while (SU->isScheduled); 2672 IsTopNode = false; 2673 } 2674 if (IsAlternating) 2675 IsTopDown = !IsTopDown; 2676 return SU; 2677 } 2678 2679 virtual void schedNode(SUnit *SU, bool IsTopNode) {} 2680 2681 virtual void releaseTopNode(SUnit *SU) { 2682 TopQ.push(SU); 2683 } 2684 virtual void releaseBottomNode(SUnit *SU) { 2685 BottomQ.push(SU); 2686 } 2687 }; 2688 } // namespace 2689 2690 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 2691 bool Alternate = !ForceTopDown && !ForceBottomUp; 2692 bool TopDown = !ForceBottomUp; 2693 assert((TopDown || !ForceTopDown) && 2694 "-misched-topdown incompatible with -misched-bottomup"); 2695 return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); 2696 } 2697 static MachineSchedRegistry ShufflerRegistry( 2698 "shuffle", "Shuffle machine instructions alternating directions", 2699 createInstructionShuffler); 2700 #endif // !NDEBUG 2701 2702 //===----------------------------------------------------------------------===// 2703 // GraphWriter support for ScheduleDAGMI. 2704 //===----------------------------------------------------------------------===// 2705 2706 #ifndef NDEBUG 2707 namespace llvm { 2708 2709 template<> struct GraphTraits< 2710 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 2711 2712 template<> 2713 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 2714 2715 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 2716 2717 static std::string getGraphName(const ScheduleDAG *G) { 2718 return G->MF.getName(); 2719 } 2720 2721 static bool renderGraphFromBottomUp() { 2722 return true; 2723 } 2724 2725 static bool isNodeHidden(const SUnit *Node) { 2726 return (Node->NumPreds > 10 || Node->NumSuccs > 10); 2727 } 2728 2729 static bool hasNodeAddressLabel(const SUnit *Node, 2730 const ScheduleDAG *Graph) { 2731 return false; 2732 } 2733 2734 /// If you want to override the dot attributes printed for a particular 2735 /// edge, override this method. 2736 static std::string getEdgeAttributes(const SUnit *Node, 2737 SUnitIterator EI, 2738 const ScheduleDAG *Graph) { 2739 if (EI.isArtificialDep()) 2740 return "color=cyan,style=dashed"; 2741 if (EI.isCtrlDep()) 2742 return "color=blue,style=dashed"; 2743 return ""; 2744 } 2745 2746 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 2747 std::string Str; 2748 raw_string_ostream SS(Str); 2749 SS << "SU(" << SU->NodeNum << ')'; 2750 return SS.str(); 2751 } 2752 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 2753 return G->getGraphNodeLabel(SU); 2754 } 2755 2756 static std::string getNodeAttributes(const SUnit *N, 2757 const ScheduleDAG *Graph) { 2758 std::string Str("shape=Mrecord"); 2759 const SchedDFSResult *DFS = 2760 static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult(); 2761 if (DFS) { 2762 Str += ",style=filled,fillcolor=\"#"; 2763 Str += DOT::getColorString(DFS->getSubtreeID(N)); 2764 Str += '"'; 2765 } 2766 return Str; 2767 } 2768 }; 2769 } // namespace llvm 2770 #endif // NDEBUG 2771 2772 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 2773 /// rendered using 'dot'. 2774 /// 2775 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 2776 #ifndef NDEBUG 2777 ViewGraph(this, Name, false, Title); 2778 #else 2779 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 2780 << "systems with Graphviz or gv!\n"; 2781 #endif // NDEBUG 2782 } 2783 2784 /// Out-of-line implementation with no arguments is handy for gdb. 2785 void ScheduleDAGMI::viewGraph() { 2786 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 2787 } 2788