1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/GraphWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetInstrInfo.h" 32 #include <queue> 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 /// In some situations a few uninteresting nodes depend on nearly all other 53 /// nodes in the graph, provide a cutoff to hide them. 54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64 #else 65 static bool ViewMISchedDAGs = false; 66 #endif // NDEBUG 67 68 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 69 cl::desc("Enable register pressure scheduling."), cl::init(true)); 70 71 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 72 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 73 74 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 75 cl::desc("Enable load clustering."), cl::init(true)); 76 77 // Experimental heuristics 78 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 79 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 80 81 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 82 cl::desc("Verify machine instrs before and after machine scheduling")); 83 84 // DAG subtrees must have at least this many nodes. 85 static const unsigned MinSubtreeSize = 8; 86 87 // Pin the vtables to this file. 88 void MachineSchedStrategy::anchor() {} 89 void ScheduleDAGMutation::anchor() {} 90 91 //===----------------------------------------------------------------------===// 92 // Machine Instruction Scheduling Pass and Registry 93 //===----------------------------------------------------------------------===// 94 95 MachineSchedContext::MachineSchedContext(): 96 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 97 RegClassInfo = new RegisterClassInfo(); 98 } 99 100 MachineSchedContext::~MachineSchedContext() { 101 delete RegClassInfo; 102 } 103 104 namespace { 105 /// Base class for a machine scheduler class that can run at any point. 106 class MachineSchedulerBase : public MachineSchedContext, 107 public MachineFunctionPass { 108 public: 109 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 110 111 void print(raw_ostream &O, const Module* = nullptr) const override; 112 113 protected: 114 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 115 }; 116 117 /// MachineScheduler runs after coalescing and before register allocation. 118 class MachineScheduler : public MachineSchedulerBase { 119 public: 120 MachineScheduler(); 121 122 void getAnalysisUsage(AnalysisUsage &AU) const override; 123 124 bool runOnMachineFunction(MachineFunction&) override; 125 126 static char ID; // Class identification, replacement for typeinfo 127 128 protected: 129 ScheduleDAGInstrs *createMachineScheduler(); 130 }; 131 132 /// PostMachineScheduler runs after shortly before code emission. 133 class PostMachineScheduler : public MachineSchedulerBase { 134 public: 135 PostMachineScheduler(); 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override; 138 139 bool runOnMachineFunction(MachineFunction&) override; 140 141 static char ID; // Class identification, replacement for typeinfo 142 143 protected: 144 ScheduleDAGInstrs *createPostMachineScheduler(); 145 }; 146 } // namespace 147 148 char MachineScheduler::ID = 0; 149 150 char &llvm::MachineSchedulerID = MachineScheduler::ID; 151 152 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 153 "Machine Instruction Scheduler", false, false) 154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 156 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 157 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 158 "Machine Instruction Scheduler", false, false) 159 160 MachineScheduler::MachineScheduler() 161 : MachineSchedulerBase(ID) { 162 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 163 } 164 165 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 166 AU.setPreservesCFG(); 167 AU.addRequiredID(MachineDominatorsID); 168 AU.addRequired<MachineLoopInfo>(); 169 AU.addRequired<AAResultsWrapperPass>(); 170 AU.addRequired<TargetPassConfig>(); 171 AU.addRequired<SlotIndexes>(); 172 AU.addPreserved<SlotIndexes>(); 173 AU.addRequired<LiveIntervals>(); 174 AU.addPreserved<LiveIntervals>(); 175 MachineFunctionPass::getAnalysisUsage(AU); 176 } 177 178 char PostMachineScheduler::ID = 0; 179 180 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 181 182 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 183 "PostRA Machine Instruction Scheduler", false, false) 184 185 PostMachineScheduler::PostMachineScheduler() 186 : MachineSchedulerBase(ID) { 187 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 188 } 189 190 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 191 AU.setPreservesCFG(); 192 AU.addRequiredID(MachineDominatorsID); 193 AU.addRequired<MachineLoopInfo>(); 194 AU.addRequired<TargetPassConfig>(); 195 MachineFunctionPass::getAnalysisUsage(AU); 196 } 197 198 MachinePassRegistry MachineSchedRegistry::Registry; 199 200 /// A dummy default scheduler factory indicates whether the scheduler 201 /// is overridden on the command line. 202 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 203 return nullptr; 204 } 205 206 /// MachineSchedOpt allows command line selection of the scheduler. 207 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 208 RegisterPassParser<MachineSchedRegistry> > 209 MachineSchedOpt("misched", 210 cl::init(&useDefaultMachineSched), cl::Hidden, 211 cl::desc("Machine instruction scheduler to use")); 212 213 static MachineSchedRegistry 214 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 215 useDefaultMachineSched); 216 217 static cl::opt<bool> EnableMachineSched( 218 "enable-misched", 219 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 220 cl::Hidden); 221 222 /// Forward declare the standard machine scheduler. This will be used as the 223 /// default scheduler if the target does not set a default. 224 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 225 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 226 227 /// Decrement this iterator until reaching the top or a non-debug instr. 228 static MachineBasicBlock::const_iterator 229 priorNonDebug(MachineBasicBlock::const_iterator I, 230 MachineBasicBlock::const_iterator Beg) { 231 assert(I != Beg && "reached the top of the region, cannot decrement"); 232 while (--I != Beg) { 233 if (!I->isDebugValue()) 234 break; 235 } 236 return I; 237 } 238 239 /// Non-const version. 240 static MachineBasicBlock::iterator 241 priorNonDebug(MachineBasicBlock::iterator I, 242 MachineBasicBlock::const_iterator Beg) { 243 return const_cast<MachineInstr*>( 244 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 245 } 246 247 /// If this iterator is a debug value, increment until reaching the End or a 248 /// non-debug instruction. 249 static MachineBasicBlock::const_iterator 250 nextIfDebug(MachineBasicBlock::const_iterator I, 251 MachineBasicBlock::const_iterator End) { 252 for(; I != End; ++I) { 253 if (!I->isDebugValue()) 254 break; 255 } 256 return I; 257 } 258 259 /// Non-const version. 260 static MachineBasicBlock::iterator 261 nextIfDebug(MachineBasicBlock::iterator I, 262 MachineBasicBlock::const_iterator End) { 263 // Cast the return value to nonconst MachineInstr, then cast to an 264 // instr_iterator, which does not check for null, finally return a 265 // bundle_iterator. 266 return MachineBasicBlock::instr_iterator( 267 const_cast<MachineInstr*>( 268 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 269 } 270 271 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 272 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 273 // Select the scheduler, or set the default. 274 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 275 if (Ctor != useDefaultMachineSched) 276 return Ctor(this); 277 278 // Get the default scheduler set by the target for this function. 279 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 280 if (Scheduler) 281 return Scheduler; 282 283 // Default to GenericScheduler. 284 return createGenericSchedLive(this); 285 } 286 287 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 288 /// the caller. We don't have a command line option to override the postRA 289 /// scheduler. The Target must configure it. 290 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 291 // Get the postRA scheduler set by the target for this function. 292 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 293 if (Scheduler) 294 return Scheduler; 295 296 // Default to GenericScheduler. 297 return createGenericSchedPostRA(this); 298 } 299 300 /// Top-level MachineScheduler pass driver. 301 /// 302 /// Visit blocks in function order. Divide each block into scheduling regions 303 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 304 /// consistent with the DAG builder, which traverses the interior of the 305 /// scheduling regions bottom-up. 306 /// 307 /// This design avoids exposing scheduling boundaries to the DAG builder, 308 /// simplifying the DAG builder's support for "special" target instructions. 309 /// At the same time the design allows target schedulers to operate across 310 /// scheduling boundaries, for example to bundle the boudary instructions 311 /// without reordering them. This creates complexity, because the target 312 /// scheduler must update the RegionBegin and RegionEnd positions cached by 313 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 314 /// design would be to split blocks at scheduling boundaries, but LLVM has a 315 /// general bias against block splitting purely for implementation simplicity. 316 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 317 if (EnableMachineSched.getNumOccurrences()) { 318 if (!EnableMachineSched) 319 return false; 320 } else if (!mf.getSubtarget().enableMachineScheduler()) 321 return false; 322 323 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 324 325 // Initialize the context of the pass. 326 MF = &mf; 327 MLI = &getAnalysis<MachineLoopInfo>(); 328 MDT = &getAnalysis<MachineDominatorTree>(); 329 PassConfig = &getAnalysis<TargetPassConfig>(); 330 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 331 332 LIS = &getAnalysis<LiveIntervals>(); 333 334 if (VerifyScheduling) { 335 DEBUG(LIS->dump()); 336 MF->verify(this, "Before machine scheduling."); 337 } 338 RegClassInfo->runOnMachineFunction(*MF); 339 340 // Instantiate the selected scheduler for this target, function, and 341 // optimization level. 342 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 343 scheduleRegions(*Scheduler, false); 344 345 DEBUG(LIS->dump()); 346 if (VerifyScheduling) 347 MF->verify(this, "After machine scheduling."); 348 return true; 349 } 350 351 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 352 if (skipOptnoneFunction(*mf.getFunction())) 353 return false; 354 355 if (!mf.getSubtarget().enablePostRAScheduler()) { 356 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 357 return false; 358 } 359 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 360 361 // Initialize the context of the pass. 362 MF = &mf; 363 PassConfig = &getAnalysis<TargetPassConfig>(); 364 365 if (VerifyScheduling) 366 MF->verify(this, "Before post machine scheduling."); 367 368 // Instantiate the selected scheduler for this target, function, and 369 // optimization level. 370 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 371 scheduleRegions(*Scheduler, true); 372 373 if (VerifyScheduling) 374 MF->verify(this, "After post machine scheduling."); 375 return true; 376 } 377 378 /// Return true of the given instruction should not be included in a scheduling 379 /// region. 380 /// 381 /// MachineScheduler does not currently support scheduling across calls. To 382 /// handle calls, the DAG builder needs to be modified to create register 383 /// anti/output dependencies on the registers clobbered by the call's regmask 384 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 385 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 386 /// the boundary, but there would be no benefit to postRA scheduling across 387 /// calls this late anyway. 388 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 389 MachineBasicBlock *MBB, 390 MachineFunction *MF, 391 const TargetInstrInfo *TII) { 392 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); 393 } 394 395 /// Main driver for both MachineScheduler and PostMachineScheduler. 396 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 397 bool FixKillFlags) { 398 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 399 400 // Visit all machine basic blocks. 401 // 402 // TODO: Visit blocks in global postorder or postorder within the bottom-up 403 // loop tree. Then we can optionally compute global RegPressure. 404 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 405 MBB != MBBEnd; ++MBB) { 406 407 Scheduler.startBlock(&*MBB); 408 409 #ifndef NDEBUG 410 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 411 continue; 412 if (SchedOnlyBlock.getNumOccurrences() 413 && (int)SchedOnlyBlock != MBB->getNumber()) 414 continue; 415 #endif 416 417 // Break the block into scheduling regions [I, RegionEnd), and schedule each 418 // region as soon as it is discovered. RegionEnd points the scheduling 419 // boundary at the bottom of the region. The DAG does not include RegionEnd, 420 // but the region does (i.e. the next RegionEnd is above the previous 421 // RegionBegin). If the current block has no terminator then RegionEnd == 422 // MBB->end() for the bottom region. 423 // 424 // The Scheduler may insert instructions during either schedule() or 425 // exitRegion(), even for empty regions. So the local iterators 'I' and 426 // 'RegionEnd' are invalid across these calls. 427 // 428 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 429 // as a single instruction. 430 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); 431 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 432 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 433 434 // Avoid decrementing RegionEnd for blocks with no terminator. 435 if (RegionEnd != MBB->end() || 436 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 437 --RegionEnd; 438 // Count the boundary instruction. 439 --RemainingInstrs; 440 } 441 442 // The next region starts above the previous region. Look backward in the 443 // instruction stream until we find the nearest boundary. 444 unsigned NumRegionInstrs = 0; 445 MachineBasicBlock::iterator I = RegionEnd; 446 for(;I != MBB->begin(); --I, --RemainingInstrs) { 447 if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII)) 448 break; 449 if (!I->isDebugValue()) 450 ++NumRegionInstrs; 451 } 452 // Notify the scheduler of the region, even if we may skip scheduling 453 // it. Perhaps it still needs to be bundled. 454 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 455 456 // Skip empty scheduling regions (0 or 1 schedulable instructions). 457 if (I == RegionEnd || I == std::prev(RegionEnd)) { 458 // Close the current region. Bundle the terminator if needed. 459 // This invalidates 'RegionEnd' and 'I'. 460 Scheduler.exitRegion(); 461 continue; 462 } 463 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 464 DEBUG(dbgs() << MF->getName() 465 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 466 << "\n From: " << *I << " To: "; 467 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 468 else dbgs() << "End"; 469 dbgs() << " RegionInstrs: " << NumRegionInstrs 470 << " Remaining: " << RemainingInstrs << "\n"); 471 if (DumpCriticalPathLength) { 472 errs() << MF->getName(); 473 errs() << ":BB# " << MBB->getNumber(); 474 errs() << " " << MBB->getName() << " \n"; 475 } 476 477 // Schedule a region: possibly reorder instructions. 478 // This invalidates 'RegionEnd' and 'I'. 479 Scheduler.schedule(); 480 481 // Close the current region. 482 Scheduler.exitRegion(); 483 484 // Scheduling has invalidated the current iterator 'I'. Ask the 485 // scheduler for the top of it's scheduled region. 486 RegionEnd = Scheduler.begin(); 487 } 488 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 489 Scheduler.finishBlock(); 490 // FIXME: Ideally, no further passes should rely on kill flags. However, 491 // thumb2 size reduction is currently an exception, so the PostMIScheduler 492 // needs to do this. 493 if (FixKillFlags) 494 Scheduler.fixupKills(&*MBB); 495 } 496 Scheduler.finalizeSchedule(); 497 } 498 499 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 500 // unimplemented 501 } 502 503 LLVM_DUMP_METHOD 504 void ReadyQueue::dump() { 505 dbgs() << "Queue " << Name << ": "; 506 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 507 dbgs() << Queue[i]->NodeNum << " "; 508 dbgs() << "\n"; 509 } 510 511 //===----------------------------------------------------------------------===// 512 // ScheduleDAGMI - Basic machine instruction scheduling. This is 513 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 514 // virtual registers. 515 // ===----------------------------------------------------------------------===/ 516 517 // Provide a vtable anchor. 518 ScheduleDAGMI::~ScheduleDAGMI() { 519 } 520 521 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 522 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 523 } 524 525 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 526 if (SuccSU != &ExitSU) { 527 // Do not use WillCreateCycle, it assumes SD scheduling. 528 // If Pred is reachable from Succ, then the edge creates a cycle. 529 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 530 return false; 531 Topo.AddPred(SuccSU, PredDep.getSUnit()); 532 } 533 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 534 // Return true regardless of whether a new edge needed to be inserted. 535 return true; 536 } 537 538 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 539 /// NumPredsLeft reaches zero, release the successor node. 540 /// 541 /// FIXME: Adjust SuccSU height based on MinLatency. 542 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 543 SUnit *SuccSU = SuccEdge->getSUnit(); 544 545 if (SuccEdge->isWeak()) { 546 --SuccSU->WeakPredsLeft; 547 if (SuccEdge->isCluster()) 548 NextClusterSucc = SuccSU; 549 return; 550 } 551 #ifndef NDEBUG 552 if (SuccSU->NumPredsLeft == 0) { 553 dbgs() << "*** Scheduling failed! ***\n"; 554 SuccSU->dump(this); 555 dbgs() << " has been released too many times!\n"; 556 llvm_unreachable(nullptr); 557 } 558 #endif 559 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 560 // CurrCycle may have advanced since then. 561 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 562 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 563 564 --SuccSU->NumPredsLeft; 565 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 566 SchedImpl->releaseTopNode(SuccSU); 567 } 568 569 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 570 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 571 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 572 I != E; ++I) { 573 releaseSucc(SU, &*I); 574 } 575 } 576 577 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 578 /// NumSuccsLeft reaches zero, release the predecessor node. 579 /// 580 /// FIXME: Adjust PredSU height based on MinLatency. 581 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 582 SUnit *PredSU = PredEdge->getSUnit(); 583 584 if (PredEdge->isWeak()) { 585 --PredSU->WeakSuccsLeft; 586 if (PredEdge->isCluster()) 587 NextClusterPred = PredSU; 588 return; 589 } 590 #ifndef NDEBUG 591 if (PredSU->NumSuccsLeft == 0) { 592 dbgs() << "*** Scheduling failed! ***\n"; 593 PredSU->dump(this); 594 dbgs() << " has been released too many times!\n"; 595 llvm_unreachable(nullptr); 596 } 597 #endif 598 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 599 // CurrCycle may have advanced since then. 600 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 601 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 602 603 --PredSU->NumSuccsLeft; 604 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 605 SchedImpl->releaseBottomNode(PredSU); 606 } 607 608 /// releasePredecessors - Call releasePred on each of SU's predecessors. 609 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 610 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 611 I != E; ++I) { 612 releasePred(SU, &*I); 613 } 614 } 615 616 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 617 /// crossing a scheduling boundary. [begin, end) includes all instructions in 618 /// the region, including the boundary itself and single-instruction regions 619 /// that don't get scheduled. 620 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 621 MachineBasicBlock::iterator begin, 622 MachineBasicBlock::iterator end, 623 unsigned regioninstrs) 624 { 625 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 626 627 SchedImpl->initPolicy(begin, end, regioninstrs); 628 } 629 630 /// This is normally called from the main scheduler loop but may also be invoked 631 /// by the scheduling strategy to perform additional code motion. 632 void ScheduleDAGMI::moveInstruction( 633 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 634 // Advance RegionBegin if the first instruction moves down. 635 if (&*RegionBegin == MI) 636 ++RegionBegin; 637 638 // Update the instruction stream. 639 BB->splice(InsertPos, BB, MI); 640 641 // Update LiveIntervals 642 if (LIS) 643 LIS->handleMove(MI, /*UpdateFlags=*/true); 644 645 // Recede RegionBegin if an instruction moves above the first. 646 if (RegionBegin == InsertPos) 647 RegionBegin = MI; 648 } 649 650 bool ScheduleDAGMI::checkSchedLimit() { 651 #ifndef NDEBUG 652 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 653 CurrentTop = CurrentBottom; 654 return false; 655 } 656 ++NumInstrsScheduled; 657 #endif 658 return true; 659 } 660 661 /// Per-region scheduling driver, called back from 662 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 663 /// does not consider liveness or register pressure. It is useful for PostRA 664 /// scheduling and potentially other custom schedulers. 665 void ScheduleDAGMI::schedule() { 666 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 667 DEBUG(SchedImpl->dumpPolicy()); 668 669 // Build the DAG. 670 buildSchedGraph(AA); 671 672 Topo.InitDAGTopologicalSorting(); 673 674 postprocessDAG(); 675 676 SmallVector<SUnit*, 8> TopRoots, BotRoots; 677 findRootsAndBiasEdges(TopRoots, BotRoots); 678 679 // Initialize the strategy before modifying the DAG. 680 // This may initialize a DFSResult to be used for queue priority. 681 SchedImpl->initialize(this); 682 683 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 684 SUnits[su].dumpAll(this)); 685 if (ViewMISchedDAGs) viewGraph(); 686 687 // Initialize ready queues now that the DAG and priority data are finalized. 688 initQueues(TopRoots, BotRoots); 689 690 bool IsTopNode = false; 691 while (true) { 692 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 693 SUnit *SU = SchedImpl->pickNode(IsTopNode); 694 if (!SU) break; 695 696 assert(!SU->isScheduled && "Node already scheduled"); 697 if (!checkSchedLimit()) 698 break; 699 700 MachineInstr *MI = SU->getInstr(); 701 if (IsTopNode) { 702 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 703 if (&*CurrentTop == MI) 704 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 705 else 706 moveInstruction(MI, CurrentTop); 707 } 708 else { 709 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 710 MachineBasicBlock::iterator priorII = 711 priorNonDebug(CurrentBottom, CurrentTop); 712 if (&*priorII == MI) 713 CurrentBottom = priorII; 714 else { 715 if (&*CurrentTop == MI) 716 CurrentTop = nextIfDebug(++CurrentTop, priorII); 717 moveInstruction(MI, CurrentBottom); 718 CurrentBottom = MI; 719 } 720 } 721 // Notify the scheduling strategy before updating the DAG. 722 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 723 // runs, it can then use the accurate ReadyCycle time to determine whether 724 // newly released nodes can move to the readyQ. 725 SchedImpl->schedNode(SU, IsTopNode); 726 727 updateQueues(SU, IsTopNode); 728 } 729 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 730 731 placeDebugValues(); 732 733 DEBUG({ 734 unsigned BBNum = begin()->getParent()->getNumber(); 735 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 736 dumpSchedule(); 737 dbgs() << '\n'; 738 }); 739 } 740 741 /// Apply each ScheduleDAGMutation step in order. 742 void ScheduleDAGMI::postprocessDAG() { 743 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 744 Mutations[i]->apply(this); 745 } 746 } 747 748 void ScheduleDAGMI:: 749 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 750 SmallVectorImpl<SUnit*> &BotRoots) { 751 for (std::vector<SUnit>::iterator 752 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 753 SUnit *SU = &(*I); 754 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 755 756 // Order predecessors so DFSResult follows the critical path. 757 SU->biasCriticalPath(); 758 759 // A SUnit is ready to top schedule if it has no predecessors. 760 if (!I->NumPredsLeft) 761 TopRoots.push_back(SU); 762 // A SUnit is ready to bottom schedule if it has no successors. 763 if (!I->NumSuccsLeft) 764 BotRoots.push_back(SU); 765 } 766 ExitSU.biasCriticalPath(); 767 } 768 769 /// Identify DAG roots and setup scheduler queues. 770 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 771 ArrayRef<SUnit*> BotRoots) { 772 NextClusterSucc = nullptr; 773 NextClusterPred = nullptr; 774 775 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 776 // 777 // Nodes with unreleased weak edges can still be roots. 778 // Release top roots in forward order. 779 for (SmallVectorImpl<SUnit*>::const_iterator 780 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 781 SchedImpl->releaseTopNode(*I); 782 } 783 // Release bottom roots in reverse order so the higher priority nodes appear 784 // first. This is more natural and slightly more efficient. 785 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 786 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 787 SchedImpl->releaseBottomNode(*I); 788 } 789 790 releaseSuccessors(&EntrySU); 791 releasePredecessors(&ExitSU); 792 793 SchedImpl->registerRoots(); 794 795 // Advance past initial DebugValues. 796 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 797 CurrentBottom = RegionEnd; 798 } 799 800 /// Update scheduler queues after scheduling an instruction. 801 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 802 // Release dependent instructions for scheduling. 803 if (IsTopNode) 804 releaseSuccessors(SU); 805 else 806 releasePredecessors(SU); 807 808 SU->isScheduled = true; 809 } 810 811 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 812 void ScheduleDAGMI::placeDebugValues() { 813 // If first instruction was a DBG_VALUE then put it back. 814 if (FirstDbgValue) { 815 BB->splice(RegionBegin, BB, FirstDbgValue); 816 RegionBegin = FirstDbgValue; 817 } 818 819 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 820 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 821 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 822 MachineInstr *DbgValue = P.first; 823 MachineBasicBlock::iterator OrigPrevMI = P.second; 824 if (&*RegionBegin == DbgValue) 825 ++RegionBegin; 826 BB->splice(++OrigPrevMI, BB, DbgValue); 827 if (OrigPrevMI == std::prev(RegionEnd)) 828 RegionEnd = DbgValue; 829 } 830 DbgValues.clear(); 831 FirstDbgValue = nullptr; 832 } 833 834 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 835 void ScheduleDAGMI::dumpSchedule() const { 836 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 837 if (SUnit *SU = getSUnit(&(*MI))) 838 SU->dump(this); 839 else 840 dbgs() << "Missing SUnit\n"; 841 } 842 } 843 #endif 844 845 //===----------------------------------------------------------------------===// 846 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 847 // preservation. 848 //===----------------------------------------------------------------------===// 849 850 ScheduleDAGMILive::~ScheduleDAGMILive() { 851 delete DFSResult; 852 } 853 854 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 855 /// crossing a scheduling boundary. [begin, end) includes all instructions in 856 /// the region, including the boundary itself and single-instruction regions 857 /// that don't get scheduled. 858 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 859 MachineBasicBlock::iterator begin, 860 MachineBasicBlock::iterator end, 861 unsigned regioninstrs) 862 { 863 // ScheduleDAGMI initializes SchedImpl's per-region policy. 864 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 865 866 // For convenience remember the end of the liveness region. 867 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 868 869 SUPressureDiffs.clear(); 870 871 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 872 } 873 874 // Setup the register pressure trackers for the top scheduled top and bottom 875 // scheduled regions. 876 void ScheduleDAGMILive::initRegPressure() { 877 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 878 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 879 880 // Close the RPTracker to finalize live ins. 881 RPTracker.closeRegion(); 882 883 DEBUG(RPTracker.dump()); 884 885 // Initialize the live ins and live outs. 886 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 887 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 888 889 // Close one end of the tracker so we can call 890 // getMaxUpward/DownwardPressureDelta before advancing across any 891 // instructions. This converts currently live regs into live ins/outs. 892 TopRPTracker.closeTop(); 893 BotRPTracker.closeBottom(); 894 895 BotRPTracker.initLiveThru(RPTracker); 896 if (!BotRPTracker.getLiveThru().empty()) { 897 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 898 DEBUG(dbgs() << "Live Thru: "; 899 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 900 }; 901 902 // For each live out vreg reduce the pressure change associated with other 903 // uses of the same vreg below the live-out reaching def. 904 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 905 906 // Account for liveness generated by the region boundary. 907 if (LiveRegionEnd != RegionEnd) { 908 SmallVector<unsigned, 8> LiveUses; 909 BotRPTracker.recede(&LiveUses); 910 updatePressureDiffs(LiveUses); 911 } 912 913 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 914 915 // Cache the list of excess pressure sets in this region. This will also track 916 // the max pressure in the scheduled code for these sets. 917 RegionCriticalPSets.clear(); 918 const std::vector<unsigned> &RegionPressure = 919 RPTracker.getPressure().MaxSetPressure; 920 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 921 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 922 if (RegionPressure[i] > Limit) { 923 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 924 << " Limit " << Limit 925 << " Actual " << RegionPressure[i] << "\n"); 926 RegionCriticalPSets.push_back(PressureChange(i)); 927 } 928 } 929 DEBUG(dbgs() << "Excess PSets: "; 930 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 931 dbgs() << TRI->getRegPressureSetName( 932 RegionCriticalPSets[i].getPSet()) << " "; 933 dbgs() << "\n"); 934 } 935 936 void ScheduleDAGMILive:: 937 updateScheduledPressure(const SUnit *SU, 938 const std::vector<unsigned> &NewMaxPressure) { 939 const PressureDiff &PDiff = getPressureDiff(SU); 940 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 941 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 942 I != E; ++I) { 943 if (!I->isValid()) 944 break; 945 unsigned ID = I->getPSet(); 946 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 947 ++CritIdx; 948 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 949 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 950 && NewMaxPressure[ID] <= INT16_MAX) 951 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 952 } 953 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 954 if (NewMaxPressure[ID] >= Limit - 2) { 955 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 956 << NewMaxPressure[ID] 957 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 958 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 959 } 960 } 961 } 962 963 /// Update the PressureDiff array for liveness after scheduling this 964 /// instruction. 965 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) { 966 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) { 967 /// FIXME: Currently assuming single-use physregs. 968 unsigned Reg = LiveUses[LUIdx]; 969 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 970 if (!TRI->isVirtualRegister(Reg)) 971 continue; 972 973 // This may be called before CurrentBottom has been initialized. However, 974 // BotRPTracker must have a valid position. We want the value live into the 975 // instruction or live out of the block, so ask for the previous 976 // instruction's live-out. 977 const LiveInterval &LI = LIS->getInterval(Reg); 978 VNInfo *VNI; 979 MachineBasicBlock::const_iterator I = 980 nextIfDebug(BotRPTracker.getPos(), BB->end()); 981 if (I == BB->end()) 982 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 983 else { 984 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I)); 985 VNI = LRQ.valueIn(); 986 } 987 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 988 assert(VNI && "No live value at use."); 989 for (const VReg2SUnit &V2SU 990 : make_range(VRegUses.find(Reg), VRegUses.end())) { 991 SUnit *SU = V2SU.SU; 992 DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 993 << *SU->getInstr()); 994 // If this use comes before the reaching def, it cannot be a last use, so 995 // descrease its pressure change. 996 if (!SU->isScheduled && SU != &ExitSU) { 997 LiveQueryResult LRQ 998 = LI.Query(LIS->getInstructionIndex(SU->getInstr())); 999 if (LRQ.valueIn() == VNI) 1000 getPressureDiff(SU).addPressureChange(Reg, true, &MRI); 1001 } 1002 } 1003 } 1004 } 1005 1006 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1007 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1008 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1009 /// 1010 /// This is a skeletal driver, with all the functionality pushed into helpers, 1011 /// so that it can be easily extended by experimental schedulers. Generally, 1012 /// implementing MachineSchedStrategy should be sufficient to implement a new 1013 /// scheduling algorithm. However, if a scheduler further subclasses 1014 /// ScheduleDAGMILive then it will want to override this virtual method in order 1015 /// to update any specialized state. 1016 void ScheduleDAGMILive::schedule() { 1017 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1018 DEBUG(SchedImpl->dumpPolicy()); 1019 buildDAGWithRegPressure(); 1020 1021 Topo.InitDAGTopologicalSorting(); 1022 1023 postprocessDAG(); 1024 1025 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1026 findRootsAndBiasEdges(TopRoots, BotRoots); 1027 1028 // Initialize the strategy before modifying the DAG. 1029 // This may initialize a DFSResult to be used for queue priority. 1030 SchedImpl->initialize(this); 1031 1032 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 1033 SUnits[su].dumpAll(this)); 1034 if (ViewMISchedDAGs) viewGraph(); 1035 1036 // Initialize ready queues now that the DAG and priority data are finalized. 1037 initQueues(TopRoots, BotRoots); 1038 1039 if (ShouldTrackPressure) { 1040 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1041 TopRPTracker.setPos(CurrentTop); 1042 } 1043 1044 bool IsTopNode = false; 1045 while (true) { 1046 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1047 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1048 if (!SU) break; 1049 1050 assert(!SU->isScheduled && "Node already scheduled"); 1051 if (!checkSchedLimit()) 1052 break; 1053 1054 scheduleMI(SU, IsTopNode); 1055 1056 if (DFSResult) { 1057 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1058 if (!ScheduledTrees.test(SubtreeID)) { 1059 ScheduledTrees.set(SubtreeID); 1060 DFSResult->scheduleTree(SubtreeID); 1061 SchedImpl->scheduleTree(SubtreeID); 1062 } 1063 } 1064 1065 // Notify the scheduling strategy after updating the DAG. 1066 SchedImpl->schedNode(SU, IsTopNode); 1067 1068 updateQueues(SU, IsTopNode); 1069 } 1070 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1071 1072 placeDebugValues(); 1073 1074 DEBUG({ 1075 unsigned BBNum = begin()->getParent()->getNumber(); 1076 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1077 dumpSchedule(); 1078 dbgs() << '\n'; 1079 }); 1080 } 1081 1082 /// Build the DAG and setup three register pressure trackers. 1083 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1084 if (!ShouldTrackPressure) { 1085 RPTracker.reset(); 1086 RegionCriticalPSets.clear(); 1087 buildSchedGraph(AA); 1088 return; 1089 } 1090 1091 // Initialize the register pressure tracker used by buildSchedGraph. 1092 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1093 /*TrackUntiedDefs=*/true); 1094 1095 // Account for liveness generate by the region boundary. 1096 if (LiveRegionEnd != RegionEnd) 1097 RPTracker.recede(); 1098 1099 // Build the DAG, and compute current register pressure. 1100 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); 1101 1102 // Initialize top/bottom trackers after computing region pressure. 1103 initRegPressure(); 1104 } 1105 1106 void ScheduleDAGMILive::computeDFSResult() { 1107 if (!DFSResult) 1108 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1109 DFSResult->clear(); 1110 ScheduledTrees.clear(); 1111 DFSResult->resize(SUnits.size()); 1112 DFSResult->compute(SUnits); 1113 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1114 } 1115 1116 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1117 /// only provides the critical path for single block loops. To handle loops that 1118 /// span blocks, we could use the vreg path latencies provided by 1119 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1120 /// available for use in the scheduler. 1121 /// 1122 /// The cyclic path estimation identifies a def-use pair that crosses the back 1123 /// edge and considers the depth and height of the nodes. For example, consider 1124 /// the following instruction sequence where each instruction has unit latency 1125 /// and defines an epomymous virtual register: 1126 /// 1127 /// a->b(a,c)->c(b)->d(c)->exit 1128 /// 1129 /// The cyclic critical path is a two cycles: b->c->b 1130 /// The acyclic critical path is four cycles: a->b->c->d->exit 1131 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1132 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1133 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1134 /// LiveInDepth = depth(b) = len(a->b) = 1 1135 /// 1136 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1137 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1138 /// CyclicCriticalPath = min(2, 2) = 2 1139 /// 1140 /// This could be relevant to PostRA scheduling, but is currently implemented 1141 /// assuming LiveIntervals. 1142 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1143 // This only applies to single block loop. 1144 if (!BB->isSuccessor(BB)) 1145 return 0; 1146 1147 unsigned MaxCyclicLatency = 0; 1148 // Visit each live out vreg def to find def/use pairs that cross iterations. 1149 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; 1150 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); 1151 RI != RE; ++RI) { 1152 unsigned Reg = *RI; 1153 if (!TRI->isVirtualRegister(Reg)) 1154 continue; 1155 const LiveInterval &LI = LIS->getInterval(Reg); 1156 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1157 if (!DefVNI) 1158 continue; 1159 1160 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1161 const SUnit *DefSU = getSUnit(DefMI); 1162 if (!DefSU) 1163 continue; 1164 1165 unsigned LiveOutHeight = DefSU->getHeight(); 1166 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1167 // Visit all local users of the vreg def. 1168 for (const VReg2SUnit &V2SU 1169 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1170 SUnit *SU = V2SU.SU; 1171 if (SU == &ExitSU) 1172 continue; 1173 1174 // Only consider uses of the phi. 1175 LiveQueryResult LRQ = 1176 LI.Query(LIS->getInstructionIndex(SU->getInstr())); 1177 if (!LRQ.valueIn()->isPHIDef()) 1178 continue; 1179 1180 // Assume that a path spanning two iterations is a cycle, which could 1181 // overestimate in strange cases. This allows cyclic latency to be 1182 // estimated as the minimum slack of the vreg's depth or height. 1183 unsigned CyclicLatency = 0; 1184 if (LiveOutDepth > SU->getDepth()) 1185 CyclicLatency = LiveOutDepth - SU->getDepth(); 1186 1187 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1188 if (LiveInHeight > LiveOutHeight) { 1189 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1190 CyclicLatency = LiveInHeight - LiveOutHeight; 1191 } 1192 else 1193 CyclicLatency = 0; 1194 1195 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1196 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1197 if (CyclicLatency > MaxCyclicLatency) 1198 MaxCyclicLatency = CyclicLatency; 1199 } 1200 } 1201 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1202 return MaxCyclicLatency; 1203 } 1204 1205 /// Move an instruction and update register pressure. 1206 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1207 // Move the instruction to its new location in the instruction stream. 1208 MachineInstr *MI = SU->getInstr(); 1209 1210 if (IsTopNode) { 1211 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1212 if (&*CurrentTop == MI) 1213 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1214 else { 1215 moveInstruction(MI, CurrentTop); 1216 TopRPTracker.setPos(MI); 1217 } 1218 1219 if (ShouldTrackPressure) { 1220 // Update top scheduled pressure. 1221 TopRPTracker.advance(); 1222 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1223 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1224 } 1225 } 1226 else { 1227 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1228 MachineBasicBlock::iterator priorII = 1229 priorNonDebug(CurrentBottom, CurrentTop); 1230 if (&*priorII == MI) 1231 CurrentBottom = priorII; 1232 else { 1233 if (&*CurrentTop == MI) { 1234 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1235 TopRPTracker.setPos(CurrentTop); 1236 } 1237 moveInstruction(MI, CurrentBottom); 1238 CurrentBottom = MI; 1239 } 1240 if (ShouldTrackPressure) { 1241 // Update bottom scheduled pressure. 1242 SmallVector<unsigned, 8> LiveUses; 1243 BotRPTracker.recede(&LiveUses); 1244 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1245 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1246 updatePressureDiffs(LiveUses); 1247 } 1248 } 1249 } 1250 1251 //===----------------------------------------------------------------------===// 1252 // LoadClusterMutation - DAG post-processing to cluster loads. 1253 //===----------------------------------------------------------------------===// 1254 1255 namespace { 1256 /// \brief Post-process the DAG to create cluster edges between neighboring 1257 /// loads. 1258 class LoadClusterMutation : public ScheduleDAGMutation { 1259 struct LoadInfo { 1260 SUnit *SU; 1261 unsigned BaseReg; 1262 unsigned Offset; 1263 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 1264 : SU(su), BaseReg(reg), Offset(ofs) {} 1265 1266 bool operator<(const LoadInfo &RHS) const { 1267 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1268 } 1269 }; 1270 1271 const TargetInstrInfo *TII; 1272 const TargetRegisterInfo *TRI; 1273 public: 1274 LoadClusterMutation(const TargetInstrInfo *tii, 1275 const TargetRegisterInfo *tri) 1276 : TII(tii), TRI(tri) {} 1277 1278 void apply(ScheduleDAGMI *DAG) override; 1279 protected: 1280 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 1281 }; 1282 } // anonymous 1283 1284 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 1285 ScheduleDAGMI *DAG) { 1286 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 1287 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 1288 SUnit *SU = Loads[Idx]; 1289 unsigned BaseReg; 1290 unsigned Offset; 1291 if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 1292 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 1293 } 1294 if (LoadRecords.size() < 2) 1295 return; 1296 std::sort(LoadRecords.begin(), LoadRecords.end()); 1297 unsigned ClusterLength = 1; 1298 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 1299 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 1300 ClusterLength = 1; 1301 continue; 1302 } 1303 1304 SUnit *SUa = LoadRecords[Idx].SU; 1305 SUnit *SUb = LoadRecords[Idx+1].SU; 1306 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1307 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1308 1309 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 1310 << SUb->NodeNum << ")\n"); 1311 // Copy successor edges from SUa to SUb. Interleaving computation 1312 // dependent on SUa can prevent load combining due to register reuse. 1313 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1314 // loads should have effectively the same inputs. 1315 for (SUnit::const_succ_iterator 1316 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1317 if (SI->getSUnit() == SUb) 1318 continue; 1319 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1320 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1321 } 1322 ++ClusterLength; 1323 } 1324 else 1325 ClusterLength = 1; 1326 } 1327 } 1328 1329 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1330 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 1331 // Map DAG NodeNum to store chain ID. 1332 DenseMap<unsigned, unsigned> StoreChainIDs; 1333 // Map each store chain to a set of dependent loads. 1334 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1335 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1336 SUnit *SU = &DAG->SUnits[Idx]; 1337 if (!SU->getInstr()->mayLoad()) 1338 continue; 1339 unsigned ChainPredID = DAG->SUnits.size(); 1340 for (SUnit::const_pred_iterator 1341 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1342 if (PI->isCtrl()) { 1343 ChainPredID = PI->getSUnit()->NodeNum; 1344 break; 1345 } 1346 } 1347 // Check if this chain-like pred has been seen 1348 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 1349 unsigned NumChains = StoreChainDependents.size(); 1350 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1351 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1352 if (Result.second) 1353 StoreChainDependents.resize(NumChains + 1); 1354 StoreChainDependents[Result.first->second].push_back(SU); 1355 } 1356 // Iterate over the store chains. 1357 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1358 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 1359 } 1360 1361 //===----------------------------------------------------------------------===// 1362 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1363 //===----------------------------------------------------------------------===// 1364 1365 namespace { 1366 /// \brief Post-process the DAG to create cluster edges between instructions 1367 /// that may be fused by the processor into a single operation. 1368 class MacroFusion : public ScheduleDAGMutation { 1369 const TargetInstrInfo &TII; 1370 const TargetRegisterInfo &TRI; 1371 public: 1372 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) 1373 : TII(TII), TRI(TRI) {} 1374 1375 void apply(ScheduleDAGMI *DAG) override; 1376 }; 1377 } // anonymous 1378 1379 /// Returns true if \p MI reads a register written by \p Other. 1380 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI, 1381 const MachineInstr &Other) { 1382 for (const MachineOperand &MO : MI.uses()) { 1383 if (!MO.isReg() || !MO.readsReg()) 1384 continue; 1385 1386 unsigned Reg = MO.getReg(); 1387 if (Other.modifiesRegister(Reg, &TRI)) 1388 return true; 1389 } 1390 return false; 1391 } 1392 1393 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1394 /// fused operations. 1395 void MacroFusion::apply(ScheduleDAGMI *DAG) { 1396 // For now, assume targets can only fuse with the branch. 1397 SUnit &ExitSU = DAG->ExitSU; 1398 MachineInstr *Branch = ExitSU.getInstr(); 1399 if (!Branch) 1400 return; 1401 1402 for (SUnit &SU : DAG->SUnits) { 1403 // SUnits with successors can't be schedule in front of the ExitSU. 1404 if (!SU.Succs.empty()) 1405 continue; 1406 // We only care if the node writes to a register that the branch reads. 1407 MachineInstr *Pred = SU.getInstr(); 1408 if (!HasDataDep(TRI, *Branch, *Pred)) 1409 continue; 1410 1411 if (!TII.shouldScheduleAdjacent(Pred, Branch)) 1412 continue; 1413 1414 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1415 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1416 // need to copy predecessor edges from ExitSU to SU, since top-down 1417 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1418 // of SU, we could create an artificial edge from the deepest root, but it 1419 // hasn't been needed yet. 1420 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1421 (void)Success; 1422 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1423 1424 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1425 break; 1426 } 1427 } 1428 1429 //===----------------------------------------------------------------------===// 1430 // CopyConstrain - DAG post-processing to encourage copy elimination. 1431 //===----------------------------------------------------------------------===// 1432 1433 namespace { 1434 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1435 /// the one use that defines the copy's source vreg, most likely an induction 1436 /// variable increment. 1437 class CopyConstrain : public ScheduleDAGMutation { 1438 // Transient state. 1439 SlotIndex RegionBeginIdx; 1440 // RegionEndIdx is the slot index of the last non-debug instruction in the 1441 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1442 SlotIndex RegionEndIdx; 1443 public: 1444 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1445 1446 void apply(ScheduleDAGMI *DAG) override; 1447 1448 protected: 1449 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1450 }; 1451 } // anonymous 1452 1453 /// constrainLocalCopy handles two possibilities: 1454 /// 1) Local src: 1455 /// I0: = dst 1456 /// I1: src = ... 1457 /// I2: = dst 1458 /// I3: dst = src (copy) 1459 /// (create pred->succ edges I0->I1, I2->I1) 1460 /// 1461 /// 2) Local copy: 1462 /// I0: dst = src (copy) 1463 /// I1: = dst 1464 /// I2: src = ... 1465 /// I3: = dst 1466 /// (create pred->succ edges I1->I2, I3->I2) 1467 /// 1468 /// Although the MachineScheduler is currently constrained to single blocks, 1469 /// this algorithm should handle extended blocks. An EBB is a set of 1470 /// contiguously numbered blocks such that the previous block in the EBB is 1471 /// always the single predecessor. 1472 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1473 LiveIntervals *LIS = DAG->getLIS(); 1474 MachineInstr *Copy = CopySU->getInstr(); 1475 1476 // Check for pure vreg copies. 1477 unsigned SrcReg = Copy->getOperand(1).getReg(); 1478 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1479 return; 1480 1481 unsigned DstReg = Copy->getOperand(0).getReg(); 1482 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1483 return; 1484 1485 // Check if either the dest or source is local. If it's live across a back 1486 // edge, it's not local. Note that if both vregs are live across the back 1487 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1488 // If both the copy's source and dest are local live intervals, then we 1489 // should treat the dest as the global for the purpose of adding 1490 // constraints. This adds edges from source's other uses to the copy. 1491 unsigned LocalReg = SrcReg; 1492 unsigned GlobalReg = DstReg; 1493 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1494 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1495 LocalReg = DstReg; 1496 GlobalReg = SrcReg; 1497 LocalLI = &LIS->getInterval(LocalReg); 1498 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1499 return; 1500 } 1501 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1502 1503 // Find the global segment after the start of the local LI. 1504 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1505 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1506 // local live range. We could create edges from other global uses to the local 1507 // start, but the coalescer should have already eliminated these cases, so 1508 // don't bother dealing with it. 1509 if (GlobalSegment == GlobalLI->end()) 1510 return; 1511 1512 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1513 // returned the next global segment. But if GlobalSegment overlaps with 1514 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1515 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1516 if (GlobalSegment->contains(LocalLI->beginIndex())) 1517 ++GlobalSegment; 1518 1519 if (GlobalSegment == GlobalLI->end()) 1520 return; 1521 1522 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1523 if (GlobalSegment != GlobalLI->begin()) { 1524 // Two address defs have no hole. 1525 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1526 GlobalSegment->start)) { 1527 return; 1528 } 1529 // If the prior global segment may be defined by the same two-address 1530 // instruction that also defines LocalLI, then can't make a hole here. 1531 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1532 LocalLI->beginIndex())) { 1533 return; 1534 } 1535 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1536 // it would be a disconnected component in the live range. 1537 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1538 "Disconnected LRG within the scheduling region."); 1539 } 1540 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1541 if (!GlobalDef) 1542 return; 1543 1544 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1545 if (!GlobalSU) 1546 return; 1547 1548 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1549 // constraining the uses of the last local def to precede GlobalDef. 1550 SmallVector<SUnit*,8> LocalUses; 1551 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1552 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1553 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1554 for (SUnit::const_succ_iterator 1555 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1556 I != E; ++I) { 1557 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1558 continue; 1559 if (I->getSUnit() == GlobalSU) 1560 continue; 1561 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1562 return; 1563 LocalUses.push_back(I->getSUnit()); 1564 } 1565 // Open the top of the GlobalLI hole by constraining any earlier global uses 1566 // to precede the start of LocalLI. 1567 SmallVector<SUnit*,8> GlobalUses; 1568 MachineInstr *FirstLocalDef = 1569 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1570 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1571 for (SUnit::const_pred_iterator 1572 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1573 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1574 continue; 1575 if (I->getSUnit() == FirstLocalSU) 1576 continue; 1577 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1578 return; 1579 GlobalUses.push_back(I->getSUnit()); 1580 } 1581 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1582 // Add the weak edges. 1583 for (SmallVectorImpl<SUnit*>::const_iterator 1584 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1585 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1586 << GlobalSU->NodeNum << ")\n"); 1587 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1588 } 1589 for (SmallVectorImpl<SUnit*>::const_iterator 1590 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1591 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1592 << FirstLocalSU->NodeNum << ")\n"); 1593 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1594 } 1595 } 1596 1597 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1598 /// copy elimination. 1599 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1600 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1601 1602 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1603 if (FirstPos == DAG->end()) 1604 return; 1605 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1606 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1607 &*priorNonDebug(DAG->end(), DAG->begin())); 1608 1609 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1610 SUnit *SU = &DAG->SUnits[Idx]; 1611 if (!SU->getInstr()->isCopy()) 1612 continue; 1613 1614 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1615 } 1616 } 1617 1618 //===----------------------------------------------------------------------===// 1619 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1620 // and possibly other custom schedulers. 1621 //===----------------------------------------------------------------------===// 1622 1623 static const unsigned InvalidCycle = ~0U; 1624 1625 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1626 1627 void SchedBoundary::reset() { 1628 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1629 // Destroying and reconstructing it is very expensive though. So keep 1630 // invalid, placeholder HazardRecs. 1631 if (HazardRec && HazardRec->isEnabled()) { 1632 delete HazardRec; 1633 HazardRec = nullptr; 1634 } 1635 Available.clear(); 1636 Pending.clear(); 1637 CheckPending = false; 1638 NextSUs.clear(); 1639 CurrCycle = 0; 1640 CurrMOps = 0; 1641 MinReadyCycle = UINT_MAX; 1642 ExpectedLatency = 0; 1643 DependentLatency = 0; 1644 RetiredMOps = 0; 1645 MaxExecutedResCount = 0; 1646 ZoneCritResIdx = 0; 1647 IsResourceLimited = false; 1648 ReservedCycles.clear(); 1649 #ifndef NDEBUG 1650 // Track the maximum number of stall cycles that could arise either from the 1651 // latency of a DAG edge or the number of cycles that a processor resource is 1652 // reserved (SchedBoundary::ReservedCycles). 1653 MaxObservedStall = 0; 1654 #endif 1655 // Reserve a zero-count for invalid CritResIdx. 1656 ExecutedResCounts.resize(1); 1657 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1658 } 1659 1660 void SchedRemainder:: 1661 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1662 reset(); 1663 if (!SchedModel->hasInstrSchedModel()) 1664 return; 1665 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1666 for (std::vector<SUnit>::iterator 1667 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1668 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1669 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1670 * SchedModel->getMicroOpFactor(); 1671 for (TargetSchedModel::ProcResIter 1672 PI = SchedModel->getWriteProcResBegin(SC), 1673 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1674 unsigned PIdx = PI->ProcResourceIdx; 1675 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1676 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1677 } 1678 } 1679 } 1680 1681 void SchedBoundary:: 1682 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1683 reset(); 1684 DAG = dag; 1685 SchedModel = smodel; 1686 Rem = rem; 1687 if (SchedModel->hasInstrSchedModel()) { 1688 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1689 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1690 } 1691 } 1692 1693 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1694 /// these "soft stalls" differently than the hard stall cycles based on CPU 1695 /// resources and computed by checkHazard(). A fully in-order model 1696 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1697 /// available for scheduling until they are ready. However, a weaker in-order 1698 /// model may use this for heuristics. For example, if a processor has in-order 1699 /// behavior when reading certain resources, this may come into play. 1700 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1701 if (!SU->isUnbuffered) 1702 return 0; 1703 1704 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1705 if (ReadyCycle > CurrCycle) 1706 return ReadyCycle - CurrCycle; 1707 return 0; 1708 } 1709 1710 /// Compute the next cycle at which the given processor resource can be 1711 /// scheduled. 1712 unsigned SchedBoundary:: 1713 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1714 unsigned NextUnreserved = ReservedCycles[PIdx]; 1715 // If this resource has never been used, always return cycle zero. 1716 if (NextUnreserved == InvalidCycle) 1717 return 0; 1718 // For bottom-up scheduling add the cycles needed for the current operation. 1719 if (!isTop()) 1720 NextUnreserved += Cycles; 1721 return NextUnreserved; 1722 } 1723 1724 /// Does this SU have a hazard within the current instruction group. 1725 /// 1726 /// The scheduler supports two modes of hazard recognition. The first is the 1727 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1728 /// supports highly complicated in-order reservation tables 1729 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1730 /// 1731 /// The second is a streamlined mechanism that checks for hazards based on 1732 /// simple counters that the scheduler itself maintains. It explicitly checks 1733 /// for instruction dispatch limitations, including the number of micro-ops that 1734 /// can dispatch per cycle. 1735 /// 1736 /// TODO: Also check whether the SU must start a new group. 1737 bool SchedBoundary::checkHazard(SUnit *SU) { 1738 if (HazardRec->isEnabled() 1739 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1740 return true; 1741 } 1742 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1743 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1744 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1745 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1746 return true; 1747 } 1748 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1749 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1750 for (TargetSchedModel::ProcResIter 1751 PI = SchedModel->getWriteProcResBegin(SC), 1752 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1753 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1754 if (NRCycle > CurrCycle) { 1755 #ifndef NDEBUG 1756 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1757 #endif 1758 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1759 << SchedModel->getResourceName(PI->ProcResourceIdx) 1760 << "=" << NRCycle << "c\n"); 1761 return true; 1762 } 1763 } 1764 } 1765 return false; 1766 } 1767 1768 // Find the unscheduled node in ReadySUs with the highest latency. 1769 unsigned SchedBoundary:: 1770 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1771 SUnit *LateSU = nullptr; 1772 unsigned RemLatency = 0; 1773 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1774 I != E; ++I) { 1775 unsigned L = getUnscheduledLatency(*I); 1776 if (L > RemLatency) { 1777 RemLatency = L; 1778 LateSU = *I; 1779 } 1780 } 1781 if (LateSU) { 1782 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1783 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1784 } 1785 return RemLatency; 1786 } 1787 1788 // Count resources in this zone and the remaining unscheduled 1789 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1790 // resource index, or zero if the zone is issue limited. 1791 unsigned SchedBoundary:: 1792 getOtherResourceCount(unsigned &OtherCritIdx) { 1793 OtherCritIdx = 0; 1794 if (!SchedModel->hasInstrSchedModel()) 1795 return 0; 1796 1797 unsigned OtherCritCount = Rem->RemIssueCount 1798 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1799 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1800 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1801 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1802 PIdx != PEnd; ++PIdx) { 1803 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1804 if (OtherCount > OtherCritCount) { 1805 OtherCritCount = OtherCount; 1806 OtherCritIdx = PIdx; 1807 } 1808 } 1809 if (OtherCritIdx) { 1810 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1811 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1812 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1813 } 1814 return OtherCritCount; 1815 } 1816 1817 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1818 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1819 1820 #ifndef NDEBUG 1821 // ReadyCycle was been bumped up to the CurrCycle when this node was 1822 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1823 // scheduling, so may now be greater than ReadyCycle. 1824 if (ReadyCycle > CurrCycle) 1825 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1826 #endif 1827 1828 if (ReadyCycle < MinReadyCycle) 1829 MinReadyCycle = ReadyCycle; 1830 1831 // Check for interlocks first. For the purpose of other heuristics, an 1832 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1833 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1834 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1835 Pending.push(SU); 1836 else 1837 Available.push(SU); 1838 1839 // Record this node as an immediate dependent of the scheduled node. 1840 NextSUs.insert(SU); 1841 } 1842 1843 void SchedBoundary::releaseTopNode(SUnit *SU) { 1844 if (SU->isScheduled) 1845 return; 1846 1847 releaseNode(SU, SU->TopReadyCycle); 1848 } 1849 1850 void SchedBoundary::releaseBottomNode(SUnit *SU) { 1851 if (SU->isScheduled) 1852 return; 1853 1854 releaseNode(SU, SU->BotReadyCycle); 1855 } 1856 1857 /// Move the boundary of scheduled code by one cycle. 1858 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1859 if (SchedModel->getMicroOpBufferSize() == 0) { 1860 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1861 if (MinReadyCycle > NextCycle) 1862 NextCycle = MinReadyCycle; 1863 } 1864 // Update the current micro-ops, which will issue in the next cycle. 1865 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1866 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1867 1868 // Decrement DependentLatency based on the next cycle. 1869 if ((NextCycle - CurrCycle) > DependentLatency) 1870 DependentLatency = 0; 1871 else 1872 DependentLatency -= (NextCycle - CurrCycle); 1873 1874 if (!HazardRec->isEnabled()) { 1875 // Bypass HazardRec virtual calls. 1876 CurrCycle = NextCycle; 1877 } 1878 else { 1879 // Bypass getHazardType calls in case of long latency. 1880 for (; CurrCycle != NextCycle; ++CurrCycle) { 1881 if (isTop()) 1882 HazardRec->AdvanceCycle(); 1883 else 1884 HazardRec->RecedeCycle(); 1885 } 1886 } 1887 CheckPending = true; 1888 unsigned LFactor = SchedModel->getLatencyFactor(); 1889 IsResourceLimited = 1890 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1891 > (int)LFactor; 1892 1893 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1894 } 1895 1896 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 1897 ExecutedResCounts[PIdx] += Count; 1898 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1899 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1900 } 1901 1902 /// Add the given processor resource to this scheduled zone. 1903 /// 1904 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1905 /// during which this resource is consumed. 1906 /// 1907 /// \return the next cycle at which the instruction may execute without 1908 /// oversubscribing resources. 1909 unsigned SchedBoundary:: 1910 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 1911 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1912 unsigned Count = Factor * Cycles; 1913 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 1914 << " +" << Cycles << "x" << Factor << "u\n"); 1915 1916 // Update Executed resources counts. 1917 incExecutedResources(PIdx, Count); 1918 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1919 Rem->RemainingCounts[PIdx] -= Count; 1920 1921 // Check if this resource exceeds the current critical resource. If so, it 1922 // becomes the critical resource. 1923 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 1924 ZoneCritResIdx = PIdx; 1925 DEBUG(dbgs() << " *** Critical resource " 1926 << SchedModel->getResourceName(PIdx) << ": " 1927 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 1928 } 1929 // For reserved resources, record the highest cycle using the resource. 1930 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 1931 if (NextAvailable > CurrCycle) { 1932 DEBUG(dbgs() << " Resource conflict: " 1933 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 1934 << NextAvailable << "\n"); 1935 } 1936 return NextAvailable; 1937 } 1938 1939 /// Move the boundary of scheduled code by one SUnit. 1940 void SchedBoundary::bumpNode(SUnit *SU) { 1941 // Update the reservation table. 1942 if (HazardRec->isEnabled()) { 1943 if (!isTop() && SU->isCall) { 1944 // Calls are scheduled with their preceding instructions. For bottom-up 1945 // scheduling, clear the pipeline state before emitting. 1946 HazardRec->Reset(); 1947 } 1948 HazardRec->EmitInstruction(SU); 1949 } 1950 // checkHazard should prevent scheduling multiple instructions per cycle that 1951 // exceed the issue width. 1952 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1953 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 1954 assert( 1955 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 1956 "Cannot schedule this instruction's MicroOps in the current cycle."); 1957 1958 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1959 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 1960 1961 unsigned NextCycle = CurrCycle; 1962 switch (SchedModel->getMicroOpBufferSize()) { 1963 case 0: 1964 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 1965 break; 1966 case 1: 1967 if (ReadyCycle > NextCycle) { 1968 NextCycle = ReadyCycle; 1969 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 1970 } 1971 break; 1972 default: 1973 // We don't currently model the OOO reorder buffer, so consider all 1974 // scheduled MOps to be "retired". We do loosely model in-order resource 1975 // latency. If this instruction uses an in-order resource, account for any 1976 // likely stall cycles. 1977 if (SU->isUnbuffered && ReadyCycle > NextCycle) 1978 NextCycle = ReadyCycle; 1979 break; 1980 } 1981 RetiredMOps += IncMOps; 1982 1983 // Update resource counts and critical resource. 1984 if (SchedModel->hasInstrSchedModel()) { 1985 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 1986 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 1987 Rem->RemIssueCount -= DecRemIssue; 1988 if (ZoneCritResIdx) { 1989 // Scale scheduled micro-ops for comparing with the critical resource. 1990 unsigned ScaledMOps = 1991 RetiredMOps * SchedModel->getMicroOpFactor(); 1992 1993 // If scaled micro-ops are now more than the previous critical resource by 1994 // a full cycle, then micro-ops issue becomes critical. 1995 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 1996 >= (int)SchedModel->getLatencyFactor()) { 1997 ZoneCritResIdx = 0; 1998 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 1999 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2000 } 2001 } 2002 for (TargetSchedModel::ProcResIter 2003 PI = SchedModel->getWriteProcResBegin(SC), 2004 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2005 unsigned RCycle = 2006 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2007 if (RCycle > NextCycle) 2008 NextCycle = RCycle; 2009 } 2010 if (SU->hasReservedResource) { 2011 // For reserved resources, record the highest cycle using the resource. 2012 // For top-down scheduling, this is the cycle in which we schedule this 2013 // instruction plus the number of cycles the operations reserves the 2014 // resource. For bottom-up is it simply the instruction's cycle. 2015 for (TargetSchedModel::ProcResIter 2016 PI = SchedModel->getWriteProcResBegin(SC), 2017 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2018 unsigned PIdx = PI->ProcResourceIdx; 2019 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2020 if (isTop()) { 2021 ReservedCycles[PIdx] = 2022 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2023 } 2024 else 2025 ReservedCycles[PIdx] = NextCycle; 2026 } 2027 } 2028 } 2029 } 2030 // Update ExpectedLatency and DependentLatency. 2031 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2032 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2033 if (SU->getDepth() > TopLatency) { 2034 TopLatency = SU->getDepth(); 2035 DEBUG(dbgs() << " " << Available.getName() 2036 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2037 } 2038 if (SU->getHeight() > BotLatency) { 2039 BotLatency = SU->getHeight(); 2040 DEBUG(dbgs() << " " << Available.getName() 2041 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2042 } 2043 // If we stall for any reason, bump the cycle. 2044 if (NextCycle > CurrCycle) { 2045 bumpCycle(NextCycle); 2046 } 2047 else { 2048 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2049 // resource limited. If a stall occurred, bumpCycle does this. 2050 unsigned LFactor = SchedModel->getLatencyFactor(); 2051 IsResourceLimited = 2052 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2053 > (int)LFactor; 2054 } 2055 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2056 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2057 // one cycle. Since we commonly reach the max MOps here, opportunistically 2058 // bump the cycle to avoid uselessly checking everything in the readyQ. 2059 CurrMOps += IncMOps; 2060 while (CurrMOps >= SchedModel->getIssueWidth()) { 2061 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2062 << " at cycle " << CurrCycle << '\n'); 2063 bumpCycle(++NextCycle); 2064 } 2065 DEBUG(dumpScheduledState()); 2066 } 2067 2068 /// Release pending ready nodes in to the available queue. This makes them 2069 /// visible to heuristics. 2070 void SchedBoundary::releasePending() { 2071 // If the available queue is empty, it is safe to reset MinReadyCycle. 2072 if (Available.empty()) 2073 MinReadyCycle = UINT_MAX; 2074 2075 // Check to see if any of the pending instructions are ready to issue. If 2076 // so, add them to the available queue. 2077 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2078 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2079 SUnit *SU = *(Pending.begin()+i); 2080 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2081 2082 if (ReadyCycle < MinReadyCycle) 2083 MinReadyCycle = ReadyCycle; 2084 2085 if (!IsBuffered && ReadyCycle > CurrCycle) 2086 continue; 2087 2088 if (checkHazard(SU)) 2089 continue; 2090 2091 Available.push(SU); 2092 Pending.remove(Pending.begin()+i); 2093 --i; --e; 2094 } 2095 DEBUG(if (!Pending.empty()) Pending.dump()); 2096 CheckPending = false; 2097 } 2098 2099 /// Remove SU from the ready set for this boundary. 2100 void SchedBoundary::removeReady(SUnit *SU) { 2101 if (Available.isInQueue(SU)) 2102 Available.remove(Available.find(SU)); 2103 else { 2104 assert(Pending.isInQueue(SU) && "bad ready count"); 2105 Pending.remove(Pending.find(SU)); 2106 } 2107 } 2108 2109 /// If this queue only has one ready candidate, return it. As a side effect, 2110 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2111 /// one node is ready. If multiple instructions are ready, return NULL. 2112 SUnit *SchedBoundary::pickOnlyChoice() { 2113 if (CheckPending) 2114 releasePending(); 2115 2116 if (CurrMOps > 0) { 2117 // Defer any ready instrs that now have a hazard. 2118 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2119 if (checkHazard(*I)) { 2120 Pending.push(*I); 2121 I = Available.remove(I); 2122 continue; 2123 } 2124 ++I; 2125 } 2126 } 2127 for (unsigned i = 0; Available.empty(); ++i) { 2128 // FIXME: Re-enable assert once PR20057 is resolved. 2129 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2130 // "permanent hazard"); 2131 (void)i; 2132 bumpCycle(CurrCycle + 1); 2133 releasePending(); 2134 } 2135 if (Available.size() == 1) 2136 return *Available.begin(); 2137 return nullptr; 2138 } 2139 2140 #ifndef NDEBUG 2141 // This is useful information to dump after bumpNode. 2142 // Note that the Queue contents are more useful before pickNodeFromQueue. 2143 void SchedBoundary::dumpScheduledState() { 2144 unsigned ResFactor; 2145 unsigned ResCount; 2146 if (ZoneCritResIdx) { 2147 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2148 ResCount = getResourceCount(ZoneCritResIdx); 2149 } 2150 else { 2151 ResFactor = SchedModel->getMicroOpFactor(); 2152 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2153 } 2154 unsigned LFactor = SchedModel->getLatencyFactor(); 2155 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2156 << " Retired: " << RetiredMOps; 2157 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2158 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2159 << ResCount / ResFactor << " " 2160 << SchedModel->getResourceName(ZoneCritResIdx) 2161 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2162 << (IsResourceLimited ? " - Resource" : " - Latency") 2163 << " limited.\n"; 2164 } 2165 #endif 2166 2167 //===----------------------------------------------------------------------===// 2168 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2169 //===----------------------------------------------------------------------===// 2170 2171 void GenericSchedulerBase::SchedCandidate:: 2172 initResourceDelta(const ScheduleDAGMI *DAG, 2173 const TargetSchedModel *SchedModel) { 2174 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2175 return; 2176 2177 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2178 for (TargetSchedModel::ProcResIter 2179 PI = SchedModel->getWriteProcResBegin(SC), 2180 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2181 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2182 ResDelta.CritResources += PI->Cycles; 2183 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2184 ResDelta.DemandedResources += PI->Cycles; 2185 } 2186 } 2187 2188 /// Set the CandPolicy given a scheduling zone given the current resources and 2189 /// latencies inside and outside the zone. 2190 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, 2191 bool IsPostRA, 2192 SchedBoundary &CurrZone, 2193 SchedBoundary *OtherZone) { 2194 // Apply preemptive heuristics based on the total latency and resources 2195 // inside and outside this zone. Potential stalls should be considered before 2196 // following this policy. 2197 2198 // Compute remaining latency. We need this both to determine whether the 2199 // overall schedule has become latency-limited and whether the instructions 2200 // outside this zone are resource or latency limited. 2201 // 2202 // The "dependent" latency is updated incrementally during scheduling as the 2203 // max height/depth of scheduled nodes minus the cycles since it was 2204 // scheduled: 2205 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2206 // 2207 // The "independent" latency is the max ready queue depth: 2208 // ILat = max N.depth for N in Available|Pending 2209 // 2210 // RemainingLatency is the greater of independent and dependent latency. 2211 unsigned RemLatency = CurrZone.getDependentLatency(); 2212 RemLatency = std::max(RemLatency, 2213 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2214 RemLatency = std::max(RemLatency, 2215 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2216 2217 // Compute the critical resource outside the zone. 2218 unsigned OtherCritIdx = 0; 2219 unsigned OtherCount = 2220 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2221 2222 bool OtherResLimited = false; 2223 if (SchedModel->hasInstrSchedModel()) { 2224 unsigned LFactor = SchedModel->getLatencyFactor(); 2225 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2226 } 2227 // Schedule aggressively for latency in PostRA mode. We don't check for 2228 // acyclic latency during PostRA, and highly out-of-order processors will 2229 // skip PostRA scheduling. 2230 if (!OtherResLimited) { 2231 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2232 Policy.ReduceLatency |= true; 2233 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2234 << " RemainingLatency " << RemLatency << " + " 2235 << CurrZone.getCurrCycle() << "c > CritPath " 2236 << Rem.CriticalPath << "\n"); 2237 } 2238 } 2239 // If the same resource is limiting inside and outside the zone, do nothing. 2240 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2241 return; 2242 2243 DEBUG( 2244 if (CurrZone.isResourceLimited()) { 2245 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2246 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2247 << "\n"; 2248 } 2249 if (OtherResLimited) 2250 dbgs() << " RemainingLimit: " 2251 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2252 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2253 dbgs() << " Latency limited both directions.\n"); 2254 2255 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2256 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2257 2258 if (OtherResLimited) 2259 Policy.DemandResIdx = OtherCritIdx; 2260 } 2261 2262 #ifndef NDEBUG 2263 const char *GenericSchedulerBase::getReasonStr( 2264 GenericSchedulerBase::CandReason Reason) { 2265 switch (Reason) { 2266 case NoCand: return "NOCAND "; 2267 case PhysRegCopy: return "PREG-COPY"; 2268 case RegExcess: return "REG-EXCESS"; 2269 case RegCritical: return "REG-CRIT "; 2270 case Stall: return "STALL "; 2271 case Cluster: return "CLUSTER "; 2272 case Weak: return "WEAK "; 2273 case RegMax: return "REG-MAX "; 2274 case ResourceReduce: return "RES-REDUCE"; 2275 case ResourceDemand: return "RES-DEMAND"; 2276 case TopDepthReduce: return "TOP-DEPTH "; 2277 case TopPathReduce: return "TOP-PATH "; 2278 case BotHeightReduce:return "BOT-HEIGHT"; 2279 case BotPathReduce: return "BOT-PATH "; 2280 case NextDefUse: return "DEF-USE "; 2281 case NodeOrder: return "ORDER "; 2282 }; 2283 llvm_unreachable("Unknown reason!"); 2284 } 2285 2286 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2287 PressureChange P; 2288 unsigned ResIdx = 0; 2289 unsigned Latency = 0; 2290 switch (Cand.Reason) { 2291 default: 2292 break; 2293 case RegExcess: 2294 P = Cand.RPDelta.Excess; 2295 break; 2296 case RegCritical: 2297 P = Cand.RPDelta.CriticalMax; 2298 break; 2299 case RegMax: 2300 P = Cand.RPDelta.CurrentMax; 2301 break; 2302 case ResourceReduce: 2303 ResIdx = Cand.Policy.ReduceResIdx; 2304 break; 2305 case ResourceDemand: 2306 ResIdx = Cand.Policy.DemandResIdx; 2307 break; 2308 case TopDepthReduce: 2309 Latency = Cand.SU->getDepth(); 2310 break; 2311 case TopPathReduce: 2312 Latency = Cand.SU->getHeight(); 2313 break; 2314 case BotHeightReduce: 2315 Latency = Cand.SU->getHeight(); 2316 break; 2317 case BotPathReduce: 2318 Latency = Cand.SU->getDepth(); 2319 break; 2320 } 2321 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2322 if (P.isValid()) 2323 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2324 << ":" << P.getUnitInc() << " "; 2325 else 2326 dbgs() << " "; 2327 if (ResIdx) 2328 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2329 else 2330 dbgs() << " "; 2331 if (Latency) 2332 dbgs() << " " << Latency << " cycles "; 2333 else 2334 dbgs() << " "; 2335 dbgs() << '\n'; 2336 } 2337 #endif 2338 2339 /// Return true if this heuristic determines order. 2340 static bool tryLess(int TryVal, int CandVal, 2341 GenericSchedulerBase::SchedCandidate &TryCand, 2342 GenericSchedulerBase::SchedCandidate &Cand, 2343 GenericSchedulerBase::CandReason Reason) { 2344 if (TryVal < CandVal) { 2345 TryCand.Reason = Reason; 2346 return true; 2347 } 2348 if (TryVal > CandVal) { 2349 if (Cand.Reason > Reason) 2350 Cand.Reason = Reason; 2351 return true; 2352 } 2353 Cand.setRepeat(Reason); 2354 return false; 2355 } 2356 2357 static bool tryGreater(int TryVal, int CandVal, 2358 GenericSchedulerBase::SchedCandidate &TryCand, 2359 GenericSchedulerBase::SchedCandidate &Cand, 2360 GenericSchedulerBase::CandReason Reason) { 2361 if (TryVal > CandVal) { 2362 TryCand.Reason = Reason; 2363 return true; 2364 } 2365 if (TryVal < CandVal) { 2366 if (Cand.Reason > Reason) 2367 Cand.Reason = Reason; 2368 return true; 2369 } 2370 Cand.setRepeat(Reason); 2371 return false; 2372 } 2373 2374 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2375 GenericSchedulerBase::SchedCandidate &Cand, 2376 SchedBoundary &Zone) { 2377 if (Zone.isTop()) { 2378 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2379 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2380 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2381 return true; 2382 } 2383 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2384 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2385 return true; 2386 } 2387 else { 2388 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2389 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2390 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2391 return true; 2392 } 2393 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2394 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2395 return true; 2396 } 2397 return false; 2398 } 2399 2400 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, 2401 bool IsTop) { 2402 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2403 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); 2404 } 2405 2406 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2407 assert(dag->hasVRegLiveness() && 2408 "(PreRA)GenericScheduler needs vreg liveness"); 2409 DAG = static_cast<ScheduleDAGMILive*>(dag); 2410 SchedModel = DAG->getSchedModel(); 2411 TRI = DAG->TRI; 2412 2413 Rem.init(DAG, SchedModel); 2414 Top.init(DAG, SchedModel, &Rem); 2415 Bot.init(DAG, SchedModel, &Rem); 2416 2417 // Initialize resource counts. 2418 2419 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2420 // are disabled, then these HazardRecs will be disabled. 2421 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2422 if (!Top.HazardRec) { 2423 Top.HazardRec = 2424 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2425 Itin, DAG); 2426 } 2427 if (!Bot.HazardRec) { 2428 Bot.HazardRec = 2429 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2430 Itin, DAG); 2431 } 2432 } 2433 2434 /// Initialize the per-region scheduling policy. 2435 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2436 MachineBasicBlock::iterator End, 2437 unsigned NumRegionInstrs) { 2438 const MachineFunction &MF = *Begin->getParent()->getParent(); 2439 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2440 2441 // Avoid setting up the register pressure tracker for small regions to save 2442 // compile time. As a rough heuristic, only track pressure when the number of 2443 // schedulable instructions exceeds half the integer register file. 2444 RegionPolicy.ShouldTrackPressure = true; 2445 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2446 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2447 if (TLI->isTypeLegal(LegalIntVT)) { 2448 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2449 TLI->getRegClassFor(LegalIntVT)); 2450 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2451 } 2452 } 2453 2454 // For generic targets, we default to bottom-up, because it's simpler and more 2455 // compile-time optimizations have been implemented in that direction. 2456 RegionPolicy.OnlyBottomUp = true; 2457 2458 // Allow the subtarget to override default policy. 2459 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End, 2460 NumRegionInstrs); 2461 2462 // After subtarget overrides, apply command line options. 2463 if (!EnableRegPressure) 2464 RegionPolicy.ShouldTrackPressure = false; 2465 2466 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2467 // e.g. -misched-bottomup=false allows scheduling in both directions. 2468 assert((!ForceTopDown || !ForceBottomUp) && 2469 "-misched-topdown incompatible with -misched-bottomup"); 2470 if (ForceBottomUp.getNumOccurrences() > 0) { 2471 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2472 if (RegionPolicy.OnlyBottomUp) 2473 RegionPolicy.OnlyTopDown = false; 2474 } 2475 if (ForceTopDown.getNumOccurrences() > 0) { 2476 RegionPolicy.OnlyTopDown = ForceTopDown; 2477 if (RegionPolicy.OnlyTopDown) 2478 RegionPolicy.OnlyBottomUp = false; 2479 } 2480 } 2481 2482 void GenericScheduler::dumpPolicy() { 2483 dbgs() << "GenericScheduler RegionPolicy: " 2484 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2485 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2486 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2487 << "\n"; 2488 } 2489 2490 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2491 /// critical path by more cycles than it takes to drain the instruction buffer. 2492 /// We estimate an upper bounds on in-flight instructions as: 2493 /// 2494 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2495 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2496 /// InFlightResources = InFlightIterations * LoopResources 2497 /// 2498 /// TODO: Check execution resources in addition to IssueCount. 2499 void GenericScheduler::checkAcyclicLatency() { 2500 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2501 return; 2502 2503 // Scaled number of cycles per loop iteration. 2504 unsigned IterCount = 2505 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2506 Rem.RemIssueCount); 2507 // Scaled acyclic critical path. 2508 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2509 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2510 unsigned InFlightCount = 2511 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2512 unsigned BufferLimit = 2513 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2514 2515 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2516 2517 DEBUG(dbgs() << "IssueCycles=" 2518 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2519 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2520 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2521 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2522 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2523 if (Rem.IsAcyclicLatencyLimited) 2524 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2525 } 2526 2527 void GenericScheduler::registerRoots() { 2528 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2529 2530 // Some roots may not feed into ExitSU. Check all of them in case. 2531 for (std::vector<SUnit*>::const_iterator 2532 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2533 if ((*I)->getDepth() > Rem.CriticalPath) 2534 Rem.CriticalPath = (*I)->getDepth(); 2535 } 2536 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2537 if (DumpCriticalPathLength) { 2538 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2539 } 2540 2541 if (EnableCyclicPath) { 2542 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2543 checkAcyclicLatency(); 2544 } 2545 } 2546 2547 static bool tryPressure(const PressureChange &TryP, 2548 const PressureChange &CandP, 2549 GenericSchedulerBase::SchedCandidate &TryCand, 2550 GenericSchedulerBase::SchedCandidate &Cand, 2551 GenericSchedulerBase::CandReason Reason) { 2552 int TryRank = TryP.getPSetOrMax(); 2553 int CandRank = CandP.getPSetOrMax(); 2554 // If both candidates affect the same set, go with the smallest increase. 2555 if (TryRank == CandRank) { 2556 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2557 Reason); 2558 } 2559 // If one candidate decreases and the other increases, go with it. 2560 // Invalid candidates have UnitInc==0. 2561 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2562 Reason)) { 2563 return true; 2564 } 2565 // If the candidates are decreasing pressure, reverse priority. 2566 if (TryP.getUnitInc() < 0) 2567 std::swap(TryRank, CandRank); 2568 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2569 } 2570 2571 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2572 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2573 } 2574 2575 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2576 /// their physreg def/use. 2577 /// 2578 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2579 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2580 /// with the operation that produces or consumes the physreg. We'll do this when 2581 /// regalloc has support for parallel copies. 2582 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2583 const MachineInstr *MI = SU->getInstr(); 2584 if (!MI->isCopy()) 2585 return 0; 2586 2587 unsigned ScheduledOper = isTop ? 1 : 0; 2588 unsigned UnscheduledOper = isTop ? 0 : 1; 2589 // If we have already scheduled the physreg produce/consumer, immediately 2590 // schedule the copy. 2591 if (TargetRegisterInfo::isPhysicalRegister( 2592 MI->getOperand(ScheduledOper).getReg())) 2593 return 1; 2594 // If the physreg is at the boundary, defer it. Otherwise schedule it 2595 // immediately to free the dependent. We can hoist the copy later. 2596 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2597 if (TargetRegisterInfo::isPhysicalRegister( 2598 MI->getOperand(UnscheduledOper).getReg())) 2599 return AtBoundary ? -1 : 1; 2600 return 0; 2601 } 2602 2603 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2604 /// hierarchical. This may be more efficient than a graduated cost model because 2605 /// we don't need to evaluate all aspects of the model for each node in the 2606 /// queue. But it's really done to make the heuristics easier to debug and 2607 /// statistically analyze. 2608 /// 2609 /// \param Cand provides the policy and current best candidate. 2610 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2611 /// \param Zone describes the scheduled zone that we are extending. 2612 /// \param RPTracker describes reg pressure within the scheduled zone. 2613 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2614 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2615 SchedCandidate &TryCand, 2616 SchedBoundary &Zone, 2617 const RegPressureTracker &RPTracker, 2618 RegPressureTracker &TempTracker) { 2619 2620 if (DAG->isTrackingPressure()) { 2621 // Always initialize TryCand's RPDelta. 2622 if (Zone.isTop()) { 2623 TempTracker.getMaxDownwardPressureDelta( 2624 TryCand.SU->getInstr(), 2625 TryCand.RPDelta, 2626 DAG->getRegionCriticalPSets(), 2627 DAG->getRegPressure().MaxSetPressure); 2628 } 2629 else { 2630 if (VerifyScheduling) { 2631 TempTracker.getMaxUpwardPressureDelta( 2632 TryCand.SU->getInstr(), 2633 &DAG->getPressureDiff(TryCand.SU), 2634 TryCand.RPDelta, 2635 DAG->getRegionCriticalPSets(), 2636 DAG->getRegPressure().MaxSetPressure); 2637 } 2638 else { 2639 RPTracker.getUpwardPressureDelta( 2640 TryCand.SU->getInstr(), 2641 DAG->getPressureDiff(TryCand.SU), 2642 TryCand.RPDelta, 2643 DAG->getRegionCriticalPSets(), 2644 DAG->getRegPressure().MaxSetPressure); 2645 } 2646 } 2647 } 2648 DEBUG(if (TryCand.RPDelta.Excess.isValid()) 2649 dbgs() << " Try SU(" << TryCand.SU->NodeNum << ") " 2650 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) 2651 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); 2652 2653 // Initialize the candidate if needed. 2654 if (!Cand.isValid()) { 2655 TryCand.Reason = NodeOrder; 2656 return; 2657 } 2658 2659 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2660 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2661 TryCand, Cand, PhysRegCopy)) 2662 return; 2663 2664 // Avoid exceeding the target's limit. 2665 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2666 Cand.RPDelta.Excess, 2667 TryCand, Cand, RegExcess)) 2668 return; 2669 2670 // Avoid increasing the max critical pressure in the scheduled region. 2671 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2672 Cand.RPDelta.CriticalMax, 2673 TryCand, Cand, RegCritical)) 2674 return; 2675 2676 // For loops that are acyclic path limited, aggressively schedule for latency. 2677 // This can result in very long dependence chains scheduled in sequence, so 2678 // once every cycle (when CurrMOps == 0), switch to normal heuristics. 2679 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() 2680 && tryLatency(TryCand, Cand, Zone)) 2681 return; 2682 2683 // Prioritize instructions that read unbuffered resources by stall cycles. 2684 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), 2685 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2686 return; 2687 2688 // Keep clustered nodes together to encourage downstream peephole 2689 // optimizations which may reduce resource requirements. 2690 // 2691 // This is a best effort to set things up for a post-RA pass. Optimizations 2692 // like generating loads of multiple registers should ideally be done within 2693 // the scheduler pass by combining the loads during DAG postprocessing. 2694 const SUnit *NextClusterSU = 2695 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2696 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2697 TryCand, Cand, Cluster)) 2698 return; 2699 2700 // Weak edges are for clustering and other constraints. 2701 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2702 getWeakLeft(Cand.SU, Zone.isTop()), 2703 TryCand, Cand, Weak)) { 2704 return; 2705 } 2706 // Avoid increasing the max pressure of the entire region. 2707 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2708 Cand.RPDelta.CurrentMax, 2709 TryCand, Cand, RegMax)) 2710 return; 2711 2712 // Avoid critical resource consumption and balance the schedule. 2713 TryCand.initResourceDelta(DAG, SchedModel); 2714 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2715 TryCand, Cand, ResourceReduce)) 2716 return; 2717 if (tryGreater(TryCand.ResDelta.DemandedResources, 2718 Cand.ResDelta.DemandedResources, 2719 TryCand, Cand, ResourceDemand)) 2720 return; 2721 2722 // Avoid serializing long latency dependence chains. 2723 // For acyclic path limited loops, latency was already checked above. 2724 if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency && 2725 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) { 2726 return; 2727 } 2728 2729 // Prefer immediate defs/users of the last scheduled instruction. This is a 2730 // local pressure avoidance strategy that also makes the machine code 2731 // readable. 2732 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), 2733 TryCand, Cand, NextDefUse)) 2734 return; 2735 2736 // Fall through to original instruction order. 2737 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2738 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2739 TryCand.Reason = NodeOrder; 2740 } 2741 } 2742 2743 /// Pick the best candidate from the queue. 2744 /// 2745 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2746 /// DAG building. To adjust for the current scheduling location we need to 2747 /// maintain the number of vreg uses remaining to be top-scheduled. 2748 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2749 const RegPressureTracker &RPTracker, 2750 SchedCandidate &Cand) { 2751 ReadyQueue &Q = Zone.Available; 2752 2753 DEBUG(Q.dump()); 2754 2755 // getMaxPressureDelta temporarily modifies the tracker. 2756 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2757 2758 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2759 2760 SchedCandidate TryCand(Cand.Policy); 2761 TryCand.SU = *I; 2762 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2763 if (TryCand.Reason != NoCand) { 2764 // Initialize resource delta if needed in case future heuristics query it. 2765 if (TryCand.ResDelta == SchedResourceDelta()) 2766 TryCand.initResourceDelta(DAG, SchedModel); 2767 Cand.setBest(TryCand); 2768 DEBUG(traceCandidate(Cand)); 2769 } 2770 } 2771 } 2772 2773 /// Pick the best candidate node from either the top or bottom queue. 2774 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2775 // Schedule as far as possible in the direction of no choice. This is most 2776 // efficient, but also provides the best heuristics for CriticalPSets. 2777 if (SUnit *SU = Bot.pickOnlyChoice()) { 2778 IsTopNode = false; 2779 DEBUG(dbgs() << "Pick Bot NOCAND\n"); 2780 return SU; 2781 } 2782 if (SUnit *SU = Top.pickOnlyChoice()) { 2783 IsTopNode = true; 2784 DEBUG(dbgs() << "Pick Top NOCAND\n"); 2785 return SU; 2786 } 2787 CandPolicy NoPolicy; 2788 SchedCandidate BotCand(NoPolicy); 2789 SchedCandidate TopCand(NoPolicy); 2790 // Set the bottom-up policy based on the state of the current bottom zone and 2791 // the instructions outside the zone, including the top zone. 2792 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); 2793 // Set the top-down policy based on the state of the current top zone and 2794 // the instructions outside the zone, including the bottom zone. 2795 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); 2796 2797 // Prefer bottom scheduling when heuristics are silent. 2798 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2799 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2800 2801 // If either Q has a single candidate that provides the least increase in 2802 // Excess pressure, we can immediately schedule from that Q. 2803 // 2804 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2805 // affects picking from either Q. If scheduling in one direction must 2806 // increase pressure for one of the excess PSets, then schedule in that 2807 // direction first to provide more freedom in the other direction. 2808 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2809 || (BotCand.Reason == RegCritical 2810 && !BotCand.isRepeat(RegCritical))) 2811 { 2812 IsTopNode = false; 2813 tracePick(BotCand, IsTopNode); 2814 return BotCand.SU; 2815 } 2816 // Check if the top Q has a better candidate. 2817 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2818 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2819 2820 // Choose the queue with the most important (lowest enum) reason. 2821 if (TopCand.Reason < BotCand.Reason) { 2822 IsTopNode = true; 2823 tracePick(TopCand, IsTopNode); 2824 return TopCand.SU; 2825 } 2826 // Otherwise prefer the bottom candidate, in node order if all else failed. 2827 IsTopNode = false; 2828 tracePick(BotCand, IsTopNode); 2829 return BotCand.SU; 2830 } 2831 2832 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2833 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2834 if (DAG->top() == DAG->bottom()) { 2835 assert(Top.Available.empty() && Top.Pending.empty() && 2836 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2837 return nullptr; 2838 } 2839 SUnit *SU; 2840 do { 2841 if (RegionPolicy.OnlyTopDown) { 2842 SU = Top.pickOnlyChoice(); 2843 if (!SU) { 2844 CandPolicy NoPolicy; 2845 SchedCandidate TopCand(NoPolicy); 2846 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2847 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2848 tracePick(TopCand, true); 2849 SU = TopCand.SU; 2850 } 2851 IsTopNode = true; 2852 } 2853 else if (RegionPolicy.OnlyBottomUp) { 2854 SU = Bot.pickOnlyChoice(); 2855 if (!SU) { 2856 CandPolicy NoPolicy; 2857 SchedCandidate BotCand(NoPolicy); 2858 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2859 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2860 tracePick(BotCand, false); 2861 SU = BotCand.SU; 2862 } 2863 IsTopNode = false; 2864 } 2865 else { 2866 SU = pickNodeBidirectional(IsTopNode); 2867 } 2868 } while (SU->isScheduled); 2869 2870 if (SU->isTopReady()) 2871 Top.removeReady(SU); 2872 if (SU->isBottomReady()) 2873 Bot.removeReady(SU); 2874 2875 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2876 return SU; 2877 } 2878 2879 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2880 2881 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2882 if (!isTop) 2883 ++InsertPos; 2884 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2885 2886 // Find already scheduled copies with a single physreg dependence and move 2887 // them just above the scheduled instruction. 2888 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2889 I != E; ++I) { 2890 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2891 continue; 2892 SUnit *DepSU = I->getSUnit(); 2893 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2894 continue; 2895 MachineInstr *Copy = DepSU->getInstr(); 2896 if (!Copy->isCopy()) 2897 continue; 2898 DEBUG(dbgs() << " Rescheduling physreg copy "; 2899 I->getSUnit()->dump(DAG)); 2900 DAG->moveInstruction(Copy, InsertPos); 2901 } 2902 } 2903 2904 /// Update the scheduler's state after scheduling a node. This is the same node 2905 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 2906 /// update it's state based on the current cycle before MachineSchedStrategy 2907 /// does. 2908 /// 2909 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2910 /// them here. See comments in biasPhysRegCopy. 2911 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2912 if (IsTopNode) { 2913 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 2914 Top.bumpNode(SU); 2915 if (SU->hasPhysRegUses) 2916 reschedulePhysRegCopies(SU, true); 2917 } 2918 else { 2919 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 2920 Bot.bumpNode(SU); 2921 if (SU->hasPhysRegDefs) 2922 reschedulePhysRegCopies(SU, false); 2923 } 2924 } 2925 2926 /// Create the standard converging machine scheduler. This will be used as the 2927 /// default scheduler if the target does not set a default. 2928 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 2929 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 2930 // Register DAG post-processors. 2931 // 2932 // FIXME: extend the mutation API to allow earlier mutations to instantiate 2933 // data and pass it to later mutations. Have a single mutation that gathers 2934 // the interesting nodes in one pass. 2935 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); 2936 if (EnableLoadCluster && DAG->TII->enableClusterLoads()) 2937 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); 2938 if (EnableMacroFusion) 2939 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI)); 2940 return DAG; 2941 } 2942 2943 static MachineSchedRegistry 2944 GenericSchedRegistry("converge", "Standard converging scheduler.", 2945 createGenericSchedLive); 2946 2947 //===----------------------------------------------------------------------===// 2948 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 2949 //===----------------------------------------------------------------------===// 2950 2951 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 2952 DAG = Dag; 2953 SchedModel = DAG->getSchedModel(); 2954 TRI = DAG->TRI; 2955 2956 Rem.init(DAG, SchedModel); 2957 Top.init(DAG, SchedModel, &Rem); 2958 BotRoots.clear(); 2959 2960 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 2961 // or are disabled, then these HazardRecs will be disabled. 2962 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2963 if (!Top.HazardRec) { 2964 Top.HazardRec = 2965 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2966 Itin, DAG); 2967 } 2968 } 2969 2970 2971 void PostGenericScheduler::registerRoots() { 2972 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2973 2974 // Some roots may not feed into ExitSU. Check all of them in case. 2975 for (SmallVectorImpl<SUnit*>::const_iterator 2976 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 2977 if ((*I)->getDepth() > Rem.CriticalPath) 2978 Rem.CriticalPath = (*I)->getDepth(); 2979 } 2980 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 2981 if (DumpCriticalPathLength) { 2982 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 2983 } 2984 } 2985 2986 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 2987 /// 2988 /// \param Cand provides the policy and current best candidate. 2989 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2990 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 2991 SchedCandidate &TryCand) { 2992 2993 // Initialize the candidate if needed. 2994 if (!Cand.isValid()) { 2995 TryCand.Reason = NodeOrder; 2996 return; 2997 } 2998 2999 // Prioritize instructions that read unbuffered resources by stall cycles. 3000 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3001 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3002 return; 3003 3004 // Avoid critical resource consumption and balance the schedule. 3005 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3006 TryCand, Cand, ResourceReduce)) 3007 return; 3008 if (tryGreater(TryCand.ResDelta.DemandedResources, 3009 Cand.ResDelta.DemandedResources, 3010 TryCand, Cand, ResourceDemand)) 3011 return; 3012 3013 // Avoid serializing long latency dependence chains. 3014 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3015 return; 3016 } 3017 3018 // Fall through to original instruction order. 3019 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3020 TryCand.Reason = NodeOrder; 3021 } 3022 3023 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3024 ReadyQueue &Q = Top.Available; 3025 3026 DEBUG(Q.dump()); 3027 3028 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3029 SchedCandidate TryCand(Cand.Policy); 3030 TryCand.SU = *I; 3031 TryCand.initResourceDelta(DAG, SchedModel); 3032 tryCandidate(Cand, TryCand); 3033 if (TryCand.Reason != NoCand) { 3034 Cand.setBest(TryCand); 3035 DEBUG(traceCandidate(Cand)); 3036 } 3037 } 3038 } 3039 3040 /// Pick the next node to schedule. 3041 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3042 if (DAG->top() == DAG->bottom()) { 3043 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3044 return nullptr; 3045 } 3046 SUnit *SU; 3047 do { 3048 SU = Top.pickOnlyChoice(); 3049 if (!SU) { 3050 CandPolicy NoPolicy; 3051 SchedCandidate TopCand(NoPolicy); 3052 // Set the top-down policy based on the state of the current top zone and 3053 // the instructions outside the zone, including the bottom zone. 3054 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3055 pickNodeFromQueue(TopCand); 3056 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3057 tracePick(TopCand, true); 3058 SU = TopCand.SU; 3059 } 3060 } while (SU->isScheduled); 3061 3062 IsTopNode = true; 3063 Top.removeReady(SU); 3064 3065 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3066 return SU; 3067 } 3068 3069 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3070 /// scheduled/remaining flags in the DAG nodes. 3071 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3072 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3073 Top.bumpNode(SU); 3074 } 3075 3076 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3077 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3078 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3079 } 3080 3081 //===----------------------------------------------------------------------===// 3082 // ILP Scheduler. Currently for experimental analysis of heuristics. 3083 //===----------------------------------------------------------------------===// 3084 3085 namespace { 3086 /// \brief Order nodes by the ILP metric. 3087 struct ILPOrder { 3088 const SchedDFSResult *DFSResult; 3089 const BitVector *ScheduledTrees; 3090 bool MaximizeILP; 3091 3092 ILPOrder(bool MaxILP) 3093 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3094 3095 /// \brief Apply a less-than relation on node priority. 3096 /// 3097 /// (Return true if A comes after B in the Q.) 3098 bool operator()(const SUnit *A, const SUnit *B) const { 3099 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3100 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3101 if (SchedTreeA != SchedTreeB) { 3102 // Unscheduled trees have lower priority. 3103 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3104 return ScheduledTrees->test(SchedTreeB); 3105 3106 // Trees with shallower connections have have lower priority. 3107 if (DFSResult->getSubtreeLevel(SchedTreeA) 3108 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3109 return DFSResult->getSubtreeLevel(SchedTreeA) 3110 < DFSResult->getSubtreeLevel(SchedTreeB); 3111 } 3112 } 3113 if (MaximizeILP) 3114 return DFSResult->getILP(A) < DFSResult->getILP(B); 3115 else 3116 return DFSResult->getILP(A) > DFSResult->getILP(B); 3117 } 3118 }; 3119 3120 /// \brief Schedule based on the ILP metric. 3121 class ILPScheduler : public MachineSchedStrategy { 3122 ScheduleDAGMILive *DAG; 3123 ILPOrder Cmp; 3124 3125 std::vector<SUnit*> ReadyQ; 3126 public: 3127 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3128 3129 void initialize(ScheduleDAGMI *dag) override { 3130 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3131 DAG = static_cast<ScheduleDAGMILive*>(dag); 3132 DAG->computeDFSResult(); 3133 Cmp.DFSResult = DAG->getDFSResult(); 3134 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3135 ReadyQ.clear(); 3136 } 3137 3138 void registerRoots() override { 3139 // Restore the heap in ReadyQ with the updated DFS results. 3140 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3141 } 3142 3143 /// Implement MachineSchedStrategy interface. 3144 /// ----------------------------------------- 3145 3146 /// Callback to select the highest priority node from the ready Q. 3147 SUnit *pickNode(bool &IsTopNode) override { 3148 if (ReadyQ.empty()) return nullptr; 3149 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3150 SUnit *SU = ReadyQ.back(); 3151 ReadyQ.pop_back(); 3152 IsTopNode = false; 3153 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3154 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3155 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3156 << DAG->getDFSResult()->getSubtreeLevel( 3157 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3158 << "Scheduling " << *SU->getInstr()); 3159 return SU; 3160 } 3161 3162 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3163 void scheduleTree(unsigned SubtreeID) override { 3164 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3165 } 3166 3167 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3168 /// DFSResults, and resort the priority Q. 3169 void schedNode(SUnit *SU, bool IsTopNode) override { 3170 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3171 } 3172 3173 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3174 3175 void releaseBottomNode(SUnit *SU) override { 3176 ReadyQ.push_back(SU); 3177 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3178 } 3179 }; 3180 } // namespace 3181 3182 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3183 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3184 } 3185 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3186 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3187 } 3188 static MachineSchedRegistry ILPMaxRegistry( 3189 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3190 static MachineSchedRegistry ILPMinRegistry( 3191 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3192 3193 //===----------------------------------------------------------------------===// 3194 // Machine Instruction Shuffler for Correctness Testing 3195 //===----------------------------------------------------------------------===// 3196 3197 #ifndef NDEBUG 3198 namespace { 3199 /// Apply a less-than relation on the node order, which corresponds to the 3200 /// instruction order prior to scheduling. IsReverse implements greater-than. 3201 template<bool IsReverse> 3202 struct SUnitOrder { 3203 bool operator()(SUnit *A, SUnit *B) const { 3204 if (IsReverse) 3205 return A->NodeNum > B->NodeNum; 3206 else 3207 return A->NodeNum < B->NodeNum; 3208 } 3209 }; 3210 3211 /// Reorder instructions as much as possible. 3212 class InstructionShuffler : public MachineSchedStrategy { 3213 bool IsAlternating; 3214 bool IsTopDown; 3215 3216 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3217 // gives nodes with a higher number higher priority causing the latest 3218 // instructions to be scheduled first. 3219 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3220 TopQ; 3221 // When scheduling bottom-up, use greater-than as the queue priority. 3222 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3223 BottomQ; 3224 public: 3225 InstructionShuffler(bool alternate, bool topdown) 3226 : IsAlternating(alternate), IsTopDown(topdown) {} 3227 3228 void initialize(ScheduleDAGMI*) override { 3229 TopQ.clear(); 3230 BottomQ.clear(); 3231 } 3232 3233 /// Implement MachineSchedStrategy interface. 3234 /// ----------------------------------------- 3235 3236 SUnit *pickNode(bool &IsTopNode) override { 3237 SUnit *SU; 3238 if (IsTopDown) { 3239 do { 3240 if (TopQ.empty()) return nullptr; 3241 SU = TopQ.top(); 3242 TopQ.pop(); 3243 } while (SU->isScheduled); 3244 IsTopNode = true; 3245 } 3246 else { 3247 do { 3248 if (BottomQ.empty()) return nullptr; 3249 SU = BottomQ.top(); 3250 BottomQ.pop(); 3251 } while (SU->isScheduled); 3252 IsTopNode = false; 3253 } 3254 if (IsAlternating) 3255 IsTopDown = !IsTopDown; 3256 return SU; 3257 } 3258 3259 void schedNode(SUnit *SU, bool IsTopNode) override {} 3260 3261 void releaseTopNode(SUnit *SU) override { 3262 TopQ.push(SU); 3263 } 3264 void releaseBottomNode(SUnit *SU) override { 3265 BottomQ.push(SU); 3266 } 3267 }; 3268 } // namespace 3269 3270 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3271 bool Alternate = !ForceTopDown && !ForceBottomUp; 3272 bool TopDown = !ForceBottomUp; 3273 assert((TopDown || !ForceTopDown) && 3274 "-misched-topdown incompatible with -misched-bottomup"); 3275 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3276 } 3277 static MachineSchedRegistry ShufflerRegistry( 3278 "shuffle", "Shuffle machine instructions alternating directions", 3279 createInstructionShuffler); 3280 #endif // !NDEBUG 3281 3282 //===----------------------------------------------------------------------===// 3283 // GraphWriter support for ScheduleDAGMILive. 3284 //===----------------------------------------------------------------------===// 3285 3286 #ifndef NDEBUG 3287 namespace llvm { 3288 3289 template<> struct GraphTraits< 3290 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3291 3292 template<> 3293 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3294 3295 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3296 3297 static std::string getGraphName(const ScheduleDAG *G) { 3298 return G->MF.getName(); 3299 } 3300 3301 static bool renderGraphFromBottomUp() { 3302 return true; 3303 } 3304 3305 static bool isNodeHidden(const SUnit *Node) { 3306 if (ViewMISchedCutoff == 0) 3307 return false; 3308 return (Node->Preds.size() > ViewMISchedCutoff 3309 || Node->Succs.size() > ViewMISchedCutoff); 3310 } 3311 3312 /// If you want to override the dot attributes printed for a particular 3313 /// edge, override this method. 3314 static std::string getEdgeAttributes(const SUnit *Node, 3315 SUnitIterator EI, 3316 const ScheduleDAG *Graph) { 3317 if (EI.isArtificialDep()) 3318 return "color=cyan,style=dashed"; 3319 if (EI.isCtrlDep()) 3320 return "color=blue,style=dashed"; 3321 return ""; 3322 } 3323 3324 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3325 std::string Str; 3326 raw_string_ostream SS(Str); 3327 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3328 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3329 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3330 SS << "SU:" << SU->NodeNum; 3331 if (DFS) 3332 SS << " I:" << DFS->getNumInstrs(SU); 3333 return SS.str(); 3334 } 3335 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3336 return G->getGraphNodeLabel(SU); 3337 } 3338 3339 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3340 std::string Str("shape=Mrecord"); 3341 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3342 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3343 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3344 if (DFS) { 3345 Str += ",style=filled,fillcolor=\"#"; 3346 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3347 Str += '"'; 3348 } 3349 return Str; 3350 } 3351 }; 3352 } // namespace llvm 3353 #endif // NDEBUG 3354 3355 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3356 /// rendered using 'dot'. 3357 /// 3358 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3359 #ifndef NDEBUG 3360 ViewGraph(this, Name, false, Title); 3361 #else 3362 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3363 << "systems with Graphviz or gv!\n"; 3364 #endif // NDEBUG 3365 } 3366 3367 /// Out-of-line implementation with no arguments is handy for gdb. 3368 void ScheduleDAGMI::viewGraph() { 3369 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3370 } 3371