1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/GraphWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetInstrInfo.h" 32 #include <queue> 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 53 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 54 55 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 56 cl::desc("Only schedule this function")); 57 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 58 cl::desc("Only schedule this MBB#")); 59 #else 60 static bool ViewMISchedDAGs = false; 61 #endif // NDEBUG 62 63 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 64 cl::desc("Enable register pressure scheduling."), cl::init(true)); 65 66 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 67 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 68 69 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 70 cl::desc("Enable load clustering."), cl::init(true)); 71 72 // Experimental heuristics 73 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 74 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 75 76 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 77 cl::desc("Verify machine instrs before and after machine scheduling")); 78 79 // DAG subtrees must have at least this many nodes. 80 static const unsigned MinSubtreeSize = 8; 81 82 // Pin the vtables to this file. 83 void MachineSchedStrategy::anchor() {} 84 void ScheduleDAGMutation::anchor() {} 85 86 //===----------------------------------------------------------------------===// 87 // Machine Instruction Scheduling Pass and Registry 88 //===----------------------------------------------------------------------===// 89 90 MachineSchedContext::MachineSchedContext(): 91 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 92 RegClassInfo = new RegisterClassInfo(); 93 } 94 95 MachineSchedContext::~MachineSchedContext() { 96 delete RegClassInfo; 97 } 98 99 namespace { 100 /// Base class for a machine scheduler class that can run at any point. 101 class MachineSchedulerBase : public MachineSchedContext, 102 public MachineFunctionPass { 103 public: 104 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 105 106 void print(raw_ostream &O, const Module* = nullptr) const override; 107 108 protected: 109 void scheduleRegions(ScheduleDAGInstrs &Scheduler); 110 }; 111 112 /// MachineScheduler runs after coalescing and before register allocation. 113 class MachineScheduler : public MachineSchedulerBase { 114 public: 115 MachineScheduler(); 116 117 void getAnalysisUsage(AnalysisUsage &AU) const override; 118 119 bool runOnMachineFunction(MachineFunction&) override; 120 121 static char ID; // Class identification, replacement for typeinfo 122 123 protected: 124 ScheduleDAGInstrs *createMachineScheduler(); 125 }; 126 127 /// PostMachineScheduler runs after shortly before code emission. 128 class PostMachineScheduler : public MachineSchedulerBase { 129 public: 130 PostMachineScheduler(); 131 132 void getAnalysisUsage(AnalysisUsage &AU) const override; 133 134 bool runOnMachineFunction(MachineFunction&) override; 135 136 static char ID; // Class identification, replacement for typeinfo 137 138 protected: 139 ScheduleDAGInstrs *createPostMachineScheduler(); 140 }; 141 } // namespace 142 143 char MachineScheduler::ID = 0; 144 145 char &llvm::MachineSchedulerID = MachineScheduler::ID; 146 147 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 148 "Machine Instruction Scheduler", false, false) 149 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 150 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 151 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 152 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 153 "Machine Instruction Scheduler", false, false) 154 155 MachineScheduler::MachineScheduler() 156 : MachineSchedulerBase(ID) { 157 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 158 } 159 160 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 161 AU.setPreservesCFG(); 162 AU.addRequiredID(MachineDominatorsID); 163 AU.addRequired<MachineLoopInfo>(); 164 AU.addRequired<AAResultsWrapperPass>(); 165 AU.addRequired<TargetPassConfig>(); 166 AU.addRequired<SlotIndexes>(); 167 AU.addPreserved<SlotIndexes>(); 168 AU.addRequired<LiveIntervals>(); 169 AU.addPreserved<LiveIntervals>(); 170 MachineFunctionPass::getAnalysisUsage(AU); 171 } 172 173 char PostMachineScheduler::ID = 0; 174 175 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 176 177 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 178 "PostRA Machine Instruction Scheduler", false, false) 179 180 PostMachineScheduler::PostMachineScheduler() 181 : MachineSchedulerBase(ID) { 182 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 183 } 184 185 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 186 AU.setPreservesCFG(); 187 AU.addRequiredID(MachineDominatorsID); 188 AU.addRequired<MachineLoopInfo>(); 189 AU.addRequired<TargetPassConfig>(); 190 MachineFunctionPass::getAnalysisUsage(AU); 191 } 192 193 MachinePassRegistry MachineSchedRegistry::Registry; 194 195 /// A dummy default scheduler factory indicates whether the scheduler 196 /// is overridden on the command line. 197 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 198 return nullptr; 199 } 200 201 /// MachineSchedOpt allows command line selection of the scheduler. 202 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 203 RegisterPassParser<MachineSchedRegistry> > 204 MachineSchedOpt("misched", 205 cl::init(&useDefaultMachineSched), cl::Hidden, 206 cl::desc("Machine instruction scheduler to use")); 207 208 static MachineSchedRegistry 209 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 210 useDefaultMachineSched); 211 212 static cl::opt<bool> EnableMachineSched( 213 "enable-misched", 214 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 215 cl::Hidden); 216 217 /// Forward declare the standard machine scheduler. This will be used as the 218 /// default scheduler if the target does not set a default. 219 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 220 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 221 222 /// Decrement this iterator until reaching the top or a non-debug instr. 223 static MachineBasicBlock::const_iterator 224 priorNonDebug(MachineBasicBlock::const_iterator I, 225 MachineBasicBlock::const_iterator Beg) { 226 assert(I != Beg && "reached the top of the region, cannot decrement"); 227 while (--I != Beg) { 228 if (!I->isDebugValue()) 229 break; 230 } 231 return I; 232 } 233 234 /// Non-const version. 235 static MachineBasicBlock::iterator 236 priorNonDebug(MachineBasicBlock::iterator I, 237 MachineBasicBlock::const_iterator Beg) { 238 return const_cast<MachineInstr*>( 239 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 240 } 241 242 /// If this iterator is a debug value, increment until reaching the End or a 243 /// non-debug instruction. 244 static MachineBasicBlock::const_iterator 245 nextIfDebug(MachineBasicBlock::const_iterator I, 246 MachineBasicBlock::const_iterator End) { 247 for(; I != End; ++I) { 248 if (!I->isDebugValue()) 249 break; 250 } 251 return I; 252 } 253 254 /// Non-const version. 255 static MachineBasicBlock::iterator 256 nextIfDebug(MachineBasicBlock::iterator I, 257 MachineBasicBlock::const_iterator End) { 258 // Cast the return value to nonconst MachineInstr, then cast to an 259 // instr_iterator, which does not check for null, finally return a 260 // bundle_iterator. 261 return MachineBasicBlock::instr_iterator( 262 const_cast<MachineInstr*>( 263 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 264 } 265 266 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 267 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 268 // Select the scheduler, or set the default. 269 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 270 if (Ctor != useDefaultMachineSched) 271 return Ctor(this); 272 273 // Get the default scheduler set by the target for this function. 274 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 275 if (Scheduler) 276 return Scheduler; 277 278 // Default to GenericScheduler. 279 return createGenericSchedLive(this); 280 } 281 282 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 283 /// the caller. We don't have a command line option to override the postRA 284 /// scheduler. The Target must configure it. 285 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 286 // Get the postRA scheduler set by the target for this function. 287 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 288 if (Scheduler) 289 return Scheduler; 290 291 // Default to GenericScheduler. 292 return createGenericSchedPostRA(this); 293 } 294 295 /// Top-level MachineScheduler pass driver. 296 /// 297 /// Visit blocks in function order. Divide each block into scheduling regions 298 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 299 /// consistent with the DAG builder, which traverses the interior of the 300 /// scheduling regions bottom-up. 301 /// 302 /// This design avoids exposing scheduling boundaries to the DAG builder, 303 /// simplifying the DAG builder's support for "special" target instructions. 304 /// At the same time the design allows target schedulers to operate across 305 /// scheduling boundaries, for example to bundle the boudary instructions 306 /// without reordering them. This creates complexity, because the target 307 /// scheduler must update the RegionBegin and RegionEnd positions cached by 308 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 309 /// design would be to split blocks at scheduling boundaries, but LLVM has a 310 /// general bias against block splitting purely for implementation simplicity. 311 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 312 if (EnableMachineSched.getNumOccurrences()) { 313 if (!EnableMachineSched) 314 return false; 315 } else if (!mf.getSubtarget().enableMachineScheduler()) 316 return false; 317 318 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 319 320 // Initialize the context of the pass. 321 MF = &mf; 322 MLI = &getAnalysis<MachineLoopInfo>(); 323 MDT = &getAnalysis<MachineDominatorTree>(); 324 PassConfig = &getAnalysis<TargetPassConfig>(); 325 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 326 327 LIS = &getAnalysis<LiveIntervals>(); 328 329 if (VerifyScheduling) { 330 DEBUG(LIS->dump()); 331 MF->verify(this, "Before machine scheduling."); 332 } 333 RegClassInfo->runOnMachineFunction(*MF); 334 335 // Instantiate the selected scheduler for this target, function, and 336 // optimization level. 337 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 338 scheduleRegions(*Scheduler); 339 340 DEBUG(LIS->dump()); 341 if (VerifyScheduling) 342 MF->verify(this, "After machine scheduling."); 343 return true; 344 } 345 346 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 347 if (skipOptnoneFunction(*mf.getFunction())) 348 return false; 349 350 if (!mf.getSubtarget().enablePostRAScheduler()) { 351 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 352 return false; 353 } 354 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 355 356 // Initialize the context of the pass. 357 MF = &mf; 358 PassConfig = &getAnalysis<TargetPassConfig>(); 359 360 if (VerifyScheduling) 361 MF->verify(this, "Before post machine scheduling."); 362 363 // Instantiate the selected scheduler for this target, function, and 364 // optimization level. 365 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 366 scheduleRegions(*Scheduler); 367 368 if (VerifyScheduling) 369 MF->verify(this, "After post machine scheduling."); 370 return true; 371 } 372 373 /// Return true of the given instruction should not be included in a scheduling 374 /// region. 375 /// 376 /// MachineScheduler does not currently support scheduling across calls. To 377 /// handle calls, the DAG builder needs to be modified to create register 378 /// anti/output dependencies on the registers clobbered by the call's regmask 379 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 380 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 381 /// the boundary, but there would be no benefit to postRA scheduling across 382 /// calls this late anyway. 383 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 384 MachineBasicBlock *MBB, 385 MachineFunction *MF, 386 const TargetInstrInfo *TII, 387 bool IsPostRA) { 388 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); 389 } 390 391 /// Main driver for both MachineScheduler and PostMachineScheduler. 392 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) { 393 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 394 bool IsPostRA = Scheduler.isPostRA(); 395 396 // Visit all machine basic blocks. 397 // 398 // TODO: Visit blocks in global postorder or postorder within the bottom-up 399 // loop tree. Then we can optionally compute global RegPressure. 400 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 401 MBB != MBBEnd; ++MBB) { 402 403 Scheduler.startBlock(MBB); 404 405 #ifndef NDEBUG 406 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 407 continue; 408 if (SchedOnlyBlock.getNumOccurrences() 409 && (int)SchedOnlyBlock != MBB->getNumber()) 410 continue; 411 #endif 412 413 // Break the block into scheduling regions [I, RegionEnd), and schedule each 414 // region as soon as it is discovered. RegionEnd points the scheduling 415 // boundary at the bottom of the region. The DAG does not include RegionEnd, 416 // but the region does (i.e. the next RegionEnd is above the previous 417 // RegionBegin). If the current block has no terminator then RegionEnd == 418 // MBB->end() for the bottom region. 419 // 420 // The Scheduler may insert instructions during either schedule() or 421 // exitRegion(), even for empty regions. So the local iterators 'I' and 422 // 'RegionEnd' are invalid across these calls. 423 // 424 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 425 // as a single instruction. 426 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); 427 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 428 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 429 430 // Avoid decrementing RegionEnd for blocks with no terminator. 431 if (RegionEnd != MBB->end() || 432 isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) { 433 --RegionEnd; 434 // Count the boundary instruction. 435 --RemainingInstrs; 436 } 437 438 // The next region starts above the previous region. Look backward in the 439 // instruction stream until we find the nearest boundary. 440 unsigned NumRegionInstrs = 0; 441 MachineBasicBlock::iterator I = RegionEnd; 442 for(;I != MBB->begin(); --I, --RemainingInstrs) { 443 if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA)) 444 break; 445 if (!I->isDebugValue()) 446 ++NumRegionInstrs; 447 } 448 // Notify the scheduler of the region, even if we may skip scheduling 449 // it. Perhaps it still needs to be bundled. 450 Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs); 451 452 // Skip empty scheduling regions (0 or 1 schedulable instructions). 453 if (I == RegionEnd || I == std::prev(RegionEnd)) { 454 // Close the current region. Bundle the terminator if needed. 455 // This invalidates 'RegionEnd' and 'I'. 456 Scheduler.exitRegion(); 457 continue; 458 } 459 DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "") 460 << "MI Scheduling **********\n"); 461 DEBUG(dbgs() << MF->getName() 462 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 463 << "\n From: " << *I << " To: "; 464 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 465 else dbgs() << "End"; 466 dbgs() << " RegionInstrs: " << NumRegionInstrs 467 << " Remaining: " << RemainingInstrs << "\n"); 468 if (DumpCriticalPathLength) { 469 errs() << MF->getName(); 470 errs() << ":BB# " << MBB->getNumber(); 471 errs() << " " << MBB->getName() << " \n"; 472 } 473 474 // Schedule a region: possibly reorder instructions. 475 // This invalidates 'RegionEnd' and 'I'. 476 Scheduler.schedule(); 477 478 // Close the current region. 479 Scheduler.exitRegion(); 480 481 // Scheduling has invalidated the current iterator 'I'. Ask the 482 // scheduler for the top of it's scheduled region. 483 RegionEnd = Scheduler.begin(); 484 } 485 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 486 Scheduler.finishBlock(); 487 if (Scheduler.isPostRA()) { 488 // FIXME: Ideally, no further passes should rely on kill flags. However, 489 // thumb2 size reduction is currently an exception. 490 Scheduler.fixupKills(MBB); 491 } 492 } 493 Scheduler.finalizeSchedule(); 494 } 495 496 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 497 // unimplemented 498 } 499 500 LLVM_DUMP_METHOD 501 void ReadyQueue::dump() { 502 dbgs() << Name << ": "; 503 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 504 dbgs() << Queue[i]->NodeNum << " "; 505 dbgs() << "\n"; 506 } 507 508 //===----------------------------------------------------------------------===// 509 // ScheduleDAGMI - Basic machine instruction scheduling. This is 510 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 511 // virtual registers. 512 // ===----------------------------------------------------------------------===/ 513 514 // Provide a vtable anchor. 515 ScheduleDAGMI::~ScheduleDAGMI() { 516 } 517 518 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 519 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 520 } 521 522 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 523 if (SuccSU != &ExitSU) { 524 // Do not use WillCreateCycle, it assumes SD scheduling. 525 // If Pred is reachable from Succ, then the edge creates a cycle. 526 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 527 return false; 528 Topo.AddPred(SuccSU, PredDep.getSUnit()); 529 } 530 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 531 // Return true regardless of whether a new edge needed to be inserted. 532 return true; 533 } 534 535 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 536 /// NumPredsLeft reaches zero, release the successor node. 537 /// 538 /// FIXME: Adjust SuccSU height based on MinLatency. 539 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 540 SUnit *SuccSU = SuccEdge->getSUnit(); 541 542 if (SuccEdge->isWeak()) { 543 --SuccSU->WeakPredsLeft; 544 if (SuccEdge->isCluster()) 545 NextClusterSucc = SuccSU; 546 return; 547 } 548 #ifndef NDEBUG 549 if (SuccSU->NumPredsLeft == 0) { 550 dbgs() << "*** Scheduling failed! ***\n"; 551 SuccSU->dump(this); 552 dbgs() << " has been released too many times!\n"; 553 llvm_unreachable(nullptr); 554 } 555 #endif 556 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 557 // CurrCycle may have advanced since then. 558 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 559 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 560 561 --SuccSU->NumPredsLeft; 562 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 563 SchedImpl->releaseTopNode(SuccSU); 564 } 565 566 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 567 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 568 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 569 I != E; ++I) { 570 releaseSucc(SU, &*I); 571 } 572 } 573 574 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 575 /// NumSuccsLeft reaches zero, release the predecessor node. 576 /// 577 /// FIXME: Adjust PredSU height based on MinLatency. 578 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 579 SUnit *PredSU = PredEdge->getSUnit(); 580 581 if (PredEdge->isWeak()) { 582 --PredSU->WeakSuccsLeft; 583 if (PredEdge->isCluster()) 584 NextClusterPred = PredSU; 585 return; 586 } 587 #ifndef NDEBUG 588 if (PredSU->NumSuccsLeft == 0) { 589 dbgs() << "*** Scheduling failed! ***\n"; 590 PredSU->dump(this); 591 dbgs() << " has been released too many times!\n"; 592 llvm_unreachable(nullptr); 593 } 594 #endif 595 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 596 // CurrCycle may have advanced since then. 597 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 598 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 599 600 --PredSU->NumSuccsLeft; 601 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 602 SchedImpl->releaseBottomNode(PredSU); 603 } 604 605 /// releasePredecessors - Call releasePred on each of SU's predecessors. 606 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 607 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 608 I != E; ++I) { 609 releasePred(SU, &*I); 610 } 611 } 612 613 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 614 /// crossing a scheduling boundary. [begin, end) includes all instructions in 615 /// the region, including the boundary itself and single-instruction regions 616 /// that don't get scheduled. 617 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 618 MachineBasicBlock::iterator begin, 619 MachineBasicBlock::iterator end, 620 unsigned regioninstrs) 621 { 622 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 623 624 SchedImpl->initPolicy(begin, end, regioninstrs); 625 } 626 627 /// This is normally called from the main scheduler loop but may also be invoked 628 /// by the scheduling strategy to perform additional code motion. 629 void ScheduleDAGMI::moveInstruction( 630 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 631 // Advance RegionBegin if the first instruction moves down. 632 if (&*RegionBegin == MI) 633 ++RegionBegin; 634 635 // Update the instruction stream. 636 BB->splice(InsertPos, BB, MI); 637 638 // Update LiveIntervals 639 if (LIS) 640 LIS->handleMove(MI, /*UpdateFlags=*/true); 641 642 // Recede RegionBegin if an instruction moves above the first. 643 if (RegionBegin == InsertPos) 644 RegionBegin = MI; 645 } 646 647 bool ScheduleDAGMI::checkSchedLimit() { 648 #ifndef NDEBUG 649 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 650 CurrentTop = CurrentBottom; 651 return false; 652 } 653 ++NumInstrsScheduled; 654 #endif 655 return true; 656 } 657 658 /// Per-region scheduling driver, called back from 659 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 660 /// does not consider liveness or register pressure. It is useful for PostRA 661 /// scheduling and potentially other custom schedulers. 662 void ScheduleDAGMI::schedule() { 663 // Build the DAG. 664 buildSchedGraph(AA); 665 666 Topo.InitDAGTopologicalSorting(); 667 668 postprocessDAG(); 669 670 SmallVector<SUnit*, 8> TopRoots, BotRoots; 671 findRootsAndBiasEdges(TopRoots, BotRoots); 672 673 // Initialize the strategy before modifying the DAG. 674 // This may initialize a DFSResult to be used for queue priority. 675 SchedImpl->initialize(this); 676 677 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 678 SUnits[su].dumpAll(this)); 679 if (ViewMISchedDAGs) viewGraph(); 680 681 // Initialize ready queues now that the DAG and priority data are finalized. 682 initQueues(TopRoots, BotRoots); 683 684 bool IsTopNode = false; 685 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 686 assert(!SU->isScheduled && "Node already scheduled"); 687 if (!checkSchedLimit()) 688 break; 689 690 MachineInstr *MI = SU->getInstr(); 691 if (IsTopNode) { 692 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 693 if (&*CurrentTop == MI) 694 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 695 else 696 moveInstruction(MI, CurrentTop); 697 } 698 else { 699 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 700 MachineBasicBlock::iterator priorII = 701 priorNonDebug(CurrentBottom, CurrentTop); 702 if (&*priorII == MI) 703 CurrentBottom = priorII; 704 else { 705 if (&*CurrentTop == MI) 706 CurrentTop = nextIfDebug(++CurrentTop, priorII); 707 moveInstruction(MI, CurrentBottom); 708 CurrentBottom = MI; 709 } 710 } 711 // Notify the scheduling strategy before updating the DAG. 712 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 713 // runs, it can then use the accurate ReadyCycle time to determine whether 714 // newly released nodes can move to the readyQ. 715 SchedImpl->schedNode(SU, IsTopNode); 716 717 updateQueues(SU, IsTopNode); 718 } 719 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 720 721 placeDebugValues(); 722 723 DEBUG({ 724 unsigned BBNum = begin()->getParent()->getNumber(); 725 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 726 dumpSchedule(); 727 dbgs() << '\n'; 728 }); 729 } 730 731 /// Apply each ScheduleDAGMutation step in order. 732 void ScheduleDAGMI::postprocessDAG() { 733 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 734 Mutations[i]->apply(this); 735 } 736 } 737 738 void ScheduleDAGMI:: 739 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 740 SmallVectorImpl<SUnit*> &BotRoots) { 741 for (std::vector<SUnit>::iterator 742 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 743 SUnit *SU = &(*I); 744 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 745 746 // Order predecessors so DFSResult follows the critical path. 747 SU->biasCriticalPath(); 748 749 // A SUnit is ready to top schedule if it has no predecessors. 750 if (!I->NumPredsLeft) 751 TopRoots.push_back(SU); 752 // A SUnit is ready to bottom schedule if it has no successors. 753 if (!I->NumSuccsLeft) 754 BotRoots.push_back(SU); 755 } 756 ExitSU.biasCriticalPath(); 757 } 758 759 /// Identify DAG roots and setup scheduler queues. 760 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 761 ArrayRef<SUnit*> BotRoots) { 762 NextClusterSucc = nullptr; 763 NextClusterPred = nullptr; 764 765 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 766 // 767 // Nodes with unreleased weak edges can still be roots. 768 // Release top roots in forward order. 769 for (SmallVectorImpl<SUnit*>::const_iterator 770 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 771 SchedImpl->releaseTopNode(*I); 772 } 773 // Release bottom roots in reverse order so the higher priority nodes appear 774 // first. This is more natural and slightly more efficient. 775 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 776 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 777 SchedImpl->releaseBottomNode(*I); 778 } 779 780 releaseSuccessors(&EntrySU); 781 releasePredecessors(&ExitSU); 782 783 SchedImpl->registerRoots(); 784 785 // Advance past initial DebugValues. 786 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 787 CurrentBottom = RegionEnd; 788 } 789 790 /// Update scheduler queues after scheduling an instruction. 791 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 792 // Release dependent instructions for scheduling. 793 if (IsTopNode) 794 releaseSuccessors(SU); 795 else 796 releasePredecessors(SU); 797 798 SU->isScheduled = true; 799 } 800 801 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 802 void ScheduleDAGMI::placeDebugValues() { 803 // If first instruction was a DBG_VALUE then put it back. 804 if (FirstDbgValue) { 805 BB->splice(RegionBegin, BB, FirstDbgValue); 806 RegionBegin = FirstDbgValue; 807 } 808 809 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 810 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 811 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 812 MachineInstr *DbgValue = P.first; 813 MachineBasicBlock::iterator OrigPrevMI = P.second; 814 if (&*RegionBegin == DbgValue) 815 ++RegionBegin; 816 BB->splice(++OrigPrevMI, BB, DbgValue); 817 if (OrigPrevMI == std::prev(RegionEnd)) 818 RegionEnd = DbgValue; 819 } 820 DbgValues.clear(); 821 FirstDbgValue = nullptr; 822 } 823 824 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 825 void ScheduleDAGMI::dumpSchedule() const { 826 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 827 if (SUnit *SU = getSUnit(&(*MI))) 828 SU->dump(this); 829 else 830 dbgs() << "Missing SUnit\n"; 831 } 832 } 833 #endif 834 835 //===----------------------------------------------------------------------===// 836 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 837 // preservation. 838 //===----------------------------------------------------------------------===// 839 840 ScheduleDAGMILive::~ScheduleDAGMILive() { 841 delete DFSResult; 842 } 843 844 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 845 /// crossing a scheduling boundary. [begin, end) includes all instructions in 846 /// the region, including the boundary itself and single-instruction regions 847 /// that don't get scheduled. 848 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 849 MachineBasicBlock::iterator begin, 850 MachineBasicBlock::iterator end, 851 unsigned regioninstrs) 852 { 853 // ScheduleDAGMI initializes SchedImpl's per-region policy. 854 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 855 856 // For convenience remember the end of the liveness region. 857 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 858 859 SUPressureDiffs.clear(); 860 861 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 862 } 863 864 // Setup the register pressure trackers for the top scheduled top and bottom 865 // scheduled regions. 866 void ScheduleDAGMILive::initRegPressure() { 867 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 868 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 869 870 // Close the RPTracker to finalize live ins. 871 RPTracker.closeRegion(); 872 873 DEBUG(RPTracker.dump()); 874 875 // Initialize the live ins and live outs. 876 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 877 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 878 879 // Close one end of the tracker so we can call 880 // getMaxUpward/DownwardPressureDelta before advancing across any 881 // instructions. This converts currently live regs into live ins/outs. 882 TopRPTracker.closeTop(); 883 BotRPTracker.closeBottom(); 884 885 BotRPTracker.initLiveThru(RPTracker); 886 if (!BotRPTracker.getLiveThru().empty()) { 887 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 888 DEBUG(dbgs() << "Live Thru: "; 889 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 890 }; 891 892 // For each live out vreg reduce the pressure change associated with other 893 // uses of the same vreg below the live-out reaching def. 894 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 895 896 // Account for liveness generated by the region boundary. 897 if (LiveRegionEnd != RegionEnd) { 898 SmallVector<unsigned, 8> LiveUses; 899 BotRPTracker.recede(&LiveUses); 900 updatePressureDiffs(LiveUses); 901 } 902 903 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 904 905 // Cache the list of excess pressure sets in this region. This will also track 906 // the max pressure in the scheduled code for these sets. 907 RegionCriticalPSets.clear(); 908 const std::vector<unsigned> &RegionPressure = 909 RPTracker.getPressure().MaxSetPressure; 910 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 911 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 912 if (RegionPressure[i] > Limit) { 913 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 914 << " Limit " << Limit 915 << " Actual " << RegionPressure[i] << "\n"); 916 RegionCriticalPSets.push_back(PressureChange(i)); 917 } 918 } 919 DEBUG(dbgs() << "Excess PSets: "; 920 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 921 dbgs() << TRI->getRegPressureSetName( 922 RegionCriticalPSets[i].getPSet()) << " "; 923 dbgs() << "\n"); 924 } 925 926 void ScheduleDAGMILive:: 927 updateScheduledPressure(const SUnit *SU, 928 const std::vector<unsigned> &NewMaxPressure) { 929 const PressureDiff &PDiff = getPressureDiff(SU); 930 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 931 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 932 I != E; ++I) { 933 if (!I->isValid()) 934 break; 935 unsigned ID = I->getPSet(); 936 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 937 ++CritIdx; 938 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 939 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 940 && NewMaxPressure[ID] <= INT16_MAX) 941 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 942 } 943 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 944 if (NewMaxPressure[ID] >= Limit - 2) { 945 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 946 << NewMaxPressure[ID] 947 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 948 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 949 } 950 } 951 } 952 953 /// Update the PressureDiff array for liveness after scheduling this 954 /// instruction. 955 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) { 956 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) { 957 /// FIXME: Currently assuming single-use physregs. 958 unsigned Reg = LiveUses[LUIdx]; 959 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 960 if (!TRI->isVirtualRegister(Reg)) 961 continue; 962 963 // This may be called before CurrentBottom has been initialized. However, 964 // BotRPTracker must have a valid position. We want the value live into the 965 // instruction or live out of the block, so ask for the previous 966 // instruction's live-out. 967 const LiveInterval &LI = LIS->getInterval(Reg); 968 VNInfo *VNI; 969 MachineBasicBlock::const_iterator I = 970 nextIfDebug(BotRPTracker.getPos(), BB->end()); 971 if (I == BB->end()) 972 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 973 else { 974 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I)); 975 VNI = LRQ.valueIn(); 976 } 977 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 978 assert(VNI && "No live value at use."); 979 for (VReg2UseMap::iterator 980 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 981 SUnit *SU = UI->SU; 982 DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 983 << *SU->getInstr()); 984 // If this use comes before the reaching def, it cannot be a last use, so 985 // descrease its pressure change. 986 if (!SU->isScheduled && SU != &ExitSU) { 987 LiveQueryResult LRQ 988 = LI.Query(LIS->getInstructionIndex(SU->getInstr())); 989 if (LRQ.valueIn() == VNI) 990 getPressureDiff(SU).addPressureChange(Reg, true, &MRI); 991 } 992 } 993 } 994 } 995 996 /// schedule - Called back from MachineScheduler::runOnMachineFunction 997 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 998 /// only includes instructions that have DAG nodes, not scheduling boundaries. 999 /// 1000 /// This is a skeletal driver, with all the functionality pushed into helpers, 1001 /// so that it can be easily extended by experimental schedulers. Generally, 1002 /// implementing MachineSchedStrategy should be sufficient to implement a new 1003 /// scheduling algorithm. However, if a scheduler further subclasses 1004 /// ScheduleDAGMILive then it will want to override this virtual method in order 1005 /// to update any specialized state. 1006 void ScheduleDAGMILive::schedule() { 1007 buildDAGWithRegPressure(); 1008 1009 Topo.InitDAGTopologicalSorting(); 1010 1011 postprocessDAG(); 1012 1013 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1014 findRootsAndBiasEdges(TopRoots, BotRoots); 1015 1016 // Initialize the strategy before modifying the DAG. 1017 // This may initialize a DFSResult to be used for queue priority. 1018 SchedImpl->initialize(this); 1019 1020 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 1021 SUnits[su].dumpAll(this)); 1022 if (ViewMISchedDAGs) viewGraph(); 1023 1024 // Initialize ready queues now that the DAG and priority data are finalized. 1025 initQueues(TopRoots, BotRoots); 1026 1027 if (ShouldTrackPressure) { 1028 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1029 TopRPTracker.setPos(CurrentTop); 1030 } 1031 1032 bool IsTopNode = false; 1033 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 1034 assert(!SU->isScheduled && "Node already scheduled"); 1035 if (!checkSchedLimit()) 1036 break; 1037 1038 scheduleMI(SU, IsTopNode); 1039 1040 if (DFSResult) { 1041 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1042 if (!ScheduledTrees.test(SubtreeID)) { 1043 ScheduledTrees.set(SubtreeID); 1044 DFSResult->scheduleTree(SubtreeID); 1045 SchedImpl->scheduleTree(SubtreeID); 1046 } 1047 } 1048 1049 // Notify the scheduling strategy after updating the DAG. 1050 SchedImpl->schedNode(SU, IsTopNode); 1051 1052 updateQueues(SU, IsTopNode); 1053 } 1054 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1055 1056 placeDebugValues(); 1057 1058 DEBUG({ 1059 unsigned BBNum = begin()->getParent()->getNumber(); 1060 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1061 dumpSchedule(); 1062 dbgs() << '\n'; 1063 }); 1064 } 1065 1066 /// Build the DAG and setup three register pressure trackers. 1067 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1068 if (!ShouldTrackPressure) { 1069 RPTracker.reset(); 1070 RegionCriticalPSets.clear(); 1071 buildSchedGraph(AA); 1072 return; 1073 } 1074 1075 // Initialize the register pressure tracker used by buildSchedGraph. 1076 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1077 /*TrackUntiedDefs=*/true); 1078 1079 // Account for liveness generate by the region boundary. 1080 if (LiveRegionEnd != RegionEnd) 1081 RPTracker.recede(); 1082 1083 // Build the DAG, and compute current register pressure. 1084 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); 1085 1086 // Initialize top/bottom trackers after computing region pressure. 1087 initRegPressure(); 1088 } 1089 1090 void ScheduleDAGMILive::computeDFSResult() { 1091 if (!DFSResult) 1092 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1093 DFSResult->clear(); 1094 ScheduledTrees.clear(); 1095 DFSResult->resize(SUnits.size()); 1096 DFSResult->compute(SUnits); 1097 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1098 } 1099 1100 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1101 /// only provides the critical path for single block loops. To handle loops that 1102 /// span blocks, we could use the vreg path latencies provided by 1103 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1104 /// available for use in the scheduler. 1105 /// 1106 /// The cyclic path estimation identifies a def-use pair that crosses the back 1107 /// edge and considers the depth and height of the nodes. For example, consider 1108 /// the following instruction sequence where each instruction has unit latency 1109 /// and defines an epomymous virtual register: 1110 /// 1111 /// a->b(a,c)->c(b)->d(c)->exit 1112 /// 1113 /// The cyclic critical path is a two cycles: b->c->b 1114 /// The acyclic critical path is four cycles: a->b->c->d->exit 1115 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1116 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1117 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1118 /// LiveInDepth = depth(b) = len(a->b) = 1 1119 /// 1120 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1121 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1122 /// CyclicCriticalPath = min(2, 2) = 2 1123 /// 1124 /// This could be relevant to PostRA scheduling, but is currently implemented 1125 /// assuming LiveIntervals. 1126 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1127 // This only applies to single block loop. 1128 if (!BB->isSuccessor(BB)) 1129 return 0; 1130 1131 unsigned MaxCyclicLatency = 0; 1132 // Visit each live out vreg def to find def/use pairs that cross iterations. 1133 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; 1134 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); 1135 RI != RE; ++RI) { 1136 unsigned Reg = *RI; 1137 if (!TRI->isVirtualRegister(Reg)) 1138 continue; 1139 const LiveInterval &LI = LIS->getInterval(Reg); 1140 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1141 if (!DefVNI) 1142 continue; 1143 1144 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1145 const SUnit *DefSU = getSUnit(DefMI); 1146 if (!DefSU) 1147 continue; 1148 1149 unsigned LiveOutHeight = DefSU->getHeight(); 1150 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1151 // Visit all local users of the vreg def. 1152 for (VReg2UseMap::iterator 1153 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 1154 if (UI->SU == &ExitSU) 1155 continue; 1156 1157 // Only consider uses of the phi. 1158 LiveQueryResult LRQ = 1159 LI.Query(LIS->getInstructionIndex(UI->SU->getInstr())); 1160 if (!LRQ.valueIn()->isPHIDef()) 1161 continue; 1162 1163 // Assume that a path spanning two iterations is a cycle, which could 1164 // overestimate in strange cases. This allows cyclic latency to be 1165 // estimated as the minimum slack of the vreg's depth or height. 1166 unsigned CyclicLatency = 0; 1167 if (LiveOutDepth > UI->SU->getDepth()) 1168 CyclicLatency = LiveOutDepth - UI->SU->getDepth(); 1169 1170 unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency; 1171 if (LiveInHeight > LiveOutHeight) { 1172 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1173 CyclicLatency = LiveInHeight - LiveOutHeight; 1174 } 1175 else 1176 CyclicLatency = 0; 1177 1178 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1179 << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1180 if (CyclicLatency > MaxCyclicLatency) 1181 MaxCyclicLatency = CyclicLatency; 1182 } 1183 } 1184 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1185 return MaxCyclicLatency; 1186 } 1187 1188 /// Move an instruction and update register pressure. 1189 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1190 // Move the instruction to its new location in the instruction stream. 1191 MachineInstr *MI = SU->getInstr(); 1192 1193 if (IsTopNode) { 1194 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1195 if (&*CurrentTop == MI) 1196 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1197 else { 1198 moveInstruction(MI, CurrentTop); 1199 TopRPTracker.setPos(MI); 1200 } 1201 1202 if (ShouldTrackPressure) { 1203 // Update top scheduled pressure. 1204 TopRPTracker.advance(); 1205 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1206 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1207 } 1208 } 1209 else { 1210 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1211 MachineBasicBlock::iterator priorII = 1212 priorNonDebug(CurrentBottom, CurrentTop); 1213 if (&*priorII == MI) 1214 CurrentBottom = priorII; 1215 else { 1216 if (&*CurrentTop == MI) { 1217 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1218 TopRPTracker.setPos(CurrentTop); 1219 } 1220 moveInstruction(MI, CurrentBottom); 1221 CurrentBottom = MI; 1222 } 1223 if (ShouldTrackPressure) { 1224 // Update bottom scheduled pressure. 1225 SmallVector<unsigned, 8> LiveUses; 1226 BotRPTracker.recede(&LiveUses); 1227 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1228 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1229 updatePressureDiffs(LiveUses); 1230 } 1231 } 1232 } 1233 1234 //===----------------------------------------------------------------------===// 1235 // LoadClusterMutation - DAG post-processing to cluster loads. 1236 //===----------------------------------------------------------------------===// 1237 1238 namespace { 1239 /// \brief Post-process the DAG to create cluster edges between neighboring 1240 /// loads. 1241 class LoadClusterMutation : public ScheduleDAGMutation { 1242 struct LoadInfo { 1243 SUnit *SU; 1244 unsigned BaseReg; 1245 unsigned Offset; 1246 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 1247 : SU(su), BaseReg(reg), Offset(ofs) {} 1248 1249 bool operator<(const LoadInfo &RHS) const { 1250 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1251 } 1252 }; 1253 1254 const TargetInstrInfo *TII; 1255 const TargetRegisterInfo *TRI; 1256 public: 1257 LoadClusterMutation(const TargetInstrInfo *tii, 1258 const TargetRegisterInfo *tri) 1259 : TII(tii), TRI(tri) {} 1260 1261 void apply(ScheduleDAGMI *DAG) override; 1262 protected: 1263 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 1264 }; 1265 } // anonymous 1266 1267 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 1268 ScheduleDAGMI *DAG) { 1269 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 1270 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 1271 SUnit *SU = Loads[Idx]; 1272 unsigned BaseReg; 1273 unsigned Offset; 1274 if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 1275 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 1276 } 1277 if (LoadRecords.size() < 2) 1278 return; 1279 std::sort(LoadRecords.begin(), LoadRecords.end()); 1280 unsigned ClusterLength = 1; 1281 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 1282 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 1283 ClusterLength = 1; 1284 continue; 1285 } 1286 1287 SUnit *SUa = LoadRecords[Idx].SU; 1288 SUnit *SUb = LoadRecords[Idx+1].SU; 1289 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1290 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1291 1292 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 1293 << SUb->NodeNum << ")\n"); 1294 // Copy successor edges from SUa to SUb. Interleaving computation 1295 // dependent on SUa can prevent load combining due to register reuse. 1296 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1297 // loads should have effectively the same inputs. 1298 for (SUnit::const_succ_iterator 1299 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1300 if (SI->getSUnit() == SUb) 1301 continue; 1302 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1303 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1304 } 1305 ++ClusterLength; 1306 } 1307 else 1308 ClusterLength = 1; 1309 } 1310 } 1311 1312 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1313 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 1314 // Map DAG NodeNum to store chain ID. 1315 DenseMap<unsigned, unsigned> StoreChainIDs; 1316 // Map each store chain to a set of dependent loads. 1317 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1318 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1319 SUnit *SU = &DAG->SUnits[Idx]; 1320 if (!SU->getInstr()->mayLoad()) 1321 continue; 1322 unsigned ChainPredID = DAG->SUnits.size(); 1323 for (SUnit::const_pred_iterator 1324 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1325 if (PI->isCtrl()) { 1326 ChainPredID = PI->getSUnit()->NodeNum; 1327 break; 1328 } 1329 } 1330 // Check if this chain-like pred has been seen 1331 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 1332 unsigned NumChains = StoreChainDependents.size(); 1333 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1334 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1335 if (Result.second) 1336 StoreChainDependents.resize(NumChains + 1); 1337 StoreChainDependents[Result.first->second].push_back(SU); 1338 } 1339 // Iterate over the store chains. 1340 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1341 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 1342 } 1343 1344 //===----------------------------------------------------------------------===// 1345 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1346 //===----------------------------------------------------------------------===// 1347 1348 namespace { 1349 /// \brief Post-process the DAG to create cluster edges between instructions 1350 /// that may be fused by the processor into a single operation. 1351 class MacroFusion : public ScheduleDAGMutation { 1352 const TargetInstrInfo &TII; 1353 const TargetRegisterInfo &TRI; 1354 public: 1355 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) 1356 : TII(TII), TRI(TRI) {} 1357 1358 void apply(ScheduleDAGMI *DAG) override; 1359 }; 1360 } // anonymous 1361 1362 /// Returns true if \p MI reads a register written by \p Other. 1363 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI, 1364 const MachineInstr &Other) { 1365 for (const MachineOperand &MO : MI.uses()) { 1366 if (!MO.isReg() || !MO.readsReg()) 1367 continue; 1368 1369 unsigned Reg = MO.getReg(); 1370 if (Other.modifiesRegister(Reg, &TRI)) 1371 return true; 1372 } 1373 return false; 1374 } 1375 1376 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1377 /// fused operations. 1378 void MacroFusion::apply(ScheduleDAGMI *DAG) { 1379 // For now, assume targets can only fuse with the branch. 1380 SUnit &ExitSU = DAG->ExitSU; 1381 MachineInstr *Branch = ExitSU.getInstr(); 1382 if (!Branch) 1383 return; 1384 1385 for (SUnit &SU : DAG->SUnits) { 1386 // SUnits with successors can't be schedule in front of the ExitSU. 1387 if (!SU.Succs.empty()) 1388 continue; 1389 // We only care if the node writes to a register that the branch reads. 1390 MachineInstr *Pred = SU.getInstr(); 1391 if (!HasDataDep(TRI, *Branch, *Pred)) 1392 continue; 1393 1394 if (!TII.shouldScheduleAdjacent(Pred, Branch)) 1395 continue; 1396 1397 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1398 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1399 // need to copy predecessor edges from ExitSU to SU, since top-down 1400 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1401 // of SU, we could create an artificial edge from the deepest root, but it 1402 // hasn't been needed yet. 1403 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1404 (void)Success; 1405 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1406 1407 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1408 break; 1409 } 1410 } 1411 1412 //===----------------------------------------------------------------------===// 1413 // CopyConstrain - DAG post-processing to encourage copy elimination. 1414 //===----------------------------------------------------------------------===// 1415 1416 namespace { 1417 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1418 /// the one use that defines the copy's source vreg, most likely an induction 1419 /// variable increment. 1420 class CopyConstrain : public ScheduleDAGMutation { 1421 // Transient state. 1422 SlotIndex RegionBeginIdx; 1423 // RegionEndIdx is the slot index of the last non-debug instruction in the 1424 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1425 SlotIndex RegionEndIdx; 1426 public: 1427 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1428 1429 void apply(ScheduleDAGMI *DAG) override; 1430 1431 protected: 1432 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1433 }; 1434 } // anonymous 1435 1436 /// constrainLocalCopy handles two possibilities: 1437 /// 1) Local src: 1438 /// I0: = dst 1439 /// I1: src = ... 1440 /// I2: = dst 1441 /// I3: dst = src (copy) 1442 /// (create pred->succ edges I0->I1, I2->I1) 1443 /// 1444 /// 2) Local copy: 1445 /// I0: dst = src (copy) 1446 /// I1: = dst 1447 /// I2: src = ... 1448 /// I3: = dst 1449 /// (create pred->succ edges I1->I2, I3->I2) 1450 /// 1451 /// Although the MachineScheduler is currently constrained to single blocks, 1452 /// this algorithm should handle extended blocks. An EBB is a set of 1453 /// contiguously numbered blocks such that the previous block in the EBB is 1454 /// always the single predecessor. 1455 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1456 LiveIntervals *LIS = DAG->getLIS(); 1457 MachineInstr *Copy = CopySU->getInstr(); 1458 1459 // Check for pure vreg copies. 1460 unsigned SrcReg = Copy->getOperand(1).getReg(); 1461 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1462 return; 1463 1464 unsigned DstReg = Copy->getOperand(0).getReg(); 1465 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1466 return; 1467 1468 // Check if either the dest or source is local. If it's live across a back 1469 // edge, it's not local. Note that if both vregs are live across the back 1470 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1471 // If both the copy's source and dest are local live intervals, then we 1472 // should treat the dest as the global for the purpose of adding 1473 // constraints. This adds edges from source's other uses to the copy. 1474 unsigned LocalReg = SrcReg; 1475 unsigned GlobalReg = DstReg; 1476 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1477 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1478 LocalReg = DstReg; 1479 GlobalReg = SrcReg; 1480 LocalLI = &LIS->getInterval(LocalReg); 1481 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1482 return; 1483 } 1484 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1485 1486 // Find the global segment after the start of the local LI. 1487 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1488 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1489 // local live range. We could create edges from other global uses to the local 1490 // start, but the coalescer should have already eliminated these cases, so 1491 // don't bother dealing with it. 1492 if (GlobalSegment == GlobalLI->end()) 1493 return; 1494 1495 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1496 // returned the next global segment. But if GlobalSegment overlaps with 1497 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1498 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1499 if (GlobalSegment->contains(LocalLI->beginIndex())) 1500 ++GlobalSegment; 1501 1502 if (GlobalSegment == GlobalLI->end()) 1503 return; 1504 1505 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1506 if (GlobalSegment != GlobalLI->begin()) { 1507 // Two address defs have no hole. 1508 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1509 GlobalSegment->start)) { 1510 return; 1511 } 1512 // If the prior global segment may be defined by the same two-address 1513 // instruction that also defines LocalLI, then can't make a hole here. 1514 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1515 LocalLI->beginIndex())) { 1516 return; 1517 } 1518 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1519 // it would be a disconnected component in the live range. 1520 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1521 "Disconnected LRG within the scheduling region."); 1522 } 1523 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1524 if (!GlobalDef) 1525 return; 1526 1527 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1528 if (!GlobalSU) 1529 return; 1530 1531 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1532 // constraining the uses of the last local def to precede GlobalDef. 1533 SmallVector<SUnit*,8> LocalUses; 1534 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1535 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1536 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1537 for (SUnit::const_succ_iterator 1538 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1539 I != E; ++I) { 1540 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1541 continue; 1542 if (I->getSUnit() == GlobalSU) 1543 continue; 1544 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1545 return; 1546 LocalUses.push_back(I->getSUnit()); 1547 } 1548 // Open the top of the GlobalLI hole by constraining any earlier global uses 1549 // to precede the start of LocalLI. 1550 SmallVector<SUnit*,8> GlobalUses; 1551 MachineInstr *FirstLocalDef = 1552 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1553 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1554 for (SUnit::const_pred_iterator 1555 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1556 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1557 continue; 1558 if (I->getSUnit() == FirstLocalSU) 1559 continue; 1560 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1561 return; 1562 GlobalUses.push_back(I->getSUnit()); 1563 } 1564 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1565 // Add the weak edges. 1566 for (SmallVectorImpl<SUnit*>::const_iterator 1567 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1568 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1569 << GlobalSU->NodeNum << ")\n"); 1570 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1571 } 1572 for (SmallVectorImpl<SUnit*>::const_iterator 1573 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1574 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1575 << FirstLocalSU->NodeNum << ")\n"); 1576 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1577 } 1578 } 1579 1580 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1581 /// copy elimination. 1582 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1583 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1584 1585 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1586 if (FirstPos == DAG->end()) 1587 return; 1588 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1589 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1590 &*priorNonDebug(DAG->end(), DAG->begin())); 1591 1592 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1593 SUnit *SU = &DAG->SUnits[Idx]; 1594 if (!SU->getInstr()->isCopy()) 1595 continue; 1596 1597 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1598 } 1599 } 1600 1601 //===----------------------------------------------------------------------===// 1602 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1603 // and possibly other custom schedulers. 1604 //===----------------------------------------------------------------------===// 1605 1606 static const unsigned InvalidCycle = ~0U; 1607 1608 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1609 1610 void SchedBoundary::reset() { 1611 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1612 // Destroying and reconstructing it is very expensive though. So keep 1613 // invalid, placeholder HazardRecs. 1614 if (HazardRec && HazardRec->isEnabled()) { 1615 delete HazardRec; 1616 HazardRec = nullptr; 1617 } 1618 Available.clear(); 1619 Pending.clear(); 1620 CheckPending = false; 1621 NextSUs.clear(); 1622 CurrCycle = 0; 1623 CurrMOps = 0; 1624 MinReadyCycle = UINT_MAX; 1625 ExpectedLatency = 0; 1626 DependentLatency = 0; 1627 RetiredMOps = 0; 1628 MaxExecutedResCount = 0; 1629 ZoneCritResIdx = 0; 1630 IsResourceLimited = false; 1631 ReservedCycles.clear(); 1632 #ifndef NDEBUG 1633 // Track the maximum number of stall cycles that could arise either from the 1634 // latency of a DAG edge or the number of cycles that a processor resource is 1635 // reserved (SchedBoundary::ReservedCycles). 1636 MaxObservedStall = 0; 1637 #endif 1638 // Reserve a zero-count for invalid CritResIdx. 1639 ExecutedResCounts.resize(1); 1640 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1641 } 1642 1643 void SchedRemainder:: 1644 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1645 reset(); 1646 if (!SchedModel->hasInstrSchedModel()) 1647 return; 1648 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1649 for (std::vector<SUnit>::iterator 1650 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1651 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1652 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1653 * SchedModel->getMicroOpFactor(); 1654 for (TargetSchedModel::ProcResIter 1655 PI = SchedModel->getWriteProcResBegin(SC), 1656 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1657 unsigned PIdx = PI->ProcResourceIdx; 1658 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1659 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1660 } 1661 } 1662 } 1663 1664 void SchedBoundary:: 1665 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1666 reset(); 1667 DAG = dag; 1668 SchedModel = smodel; 1669 Rem = rem; 1670 if (SchedModel->hasInstrSchedModel()) { 1671 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1672 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1673 } 1674 } 1675 1676 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1677 /// these "soft stalls" differently than the hard stall cycles based on CPU 1678 /// resources and computed by checkHazard(). A fully in-order model 1679 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1680 /// available for scheduling until they are ready. However, a weaker in-order 1681 /// model may use this for heuristics. For example, if a processor has in-order 1682 /// behavior when reading certain resources, this may come into play. 1683 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1684 if (!SU->isUnbuffered) 1685 return 0; 1686 1687 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1688 if (ReadyCycle > CurrCycle) 1689 return ReadyCycle - CurrCycle; 1690 return 0; 1691 } 1692 1693 /// Compute the next cycle at which the given processor resource can be 1694 /// scheduled. 1695 unsigned SchedBoundary:: 1696 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1697 unsigned NextUnreserved = ReservedCycles[PIdx]; 1698 // If this resource has never been used, always return cycle zero. 1699 if (NextUnreserved == InvalidCycle) 1700 return 0; 1701 // For bottom-up scheduling add the cycles needed for the current operation. 1702 if (!isTop()) 1703 NextUnreserved += Cycles; 1704 return NextUnreserved; 1705 } 1706 1707 /// Does this SU have a hazard within the current instruction group. 1708 /// 1709 /// The scheduler supports two modes of hazard recognition. The first is the 1710 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1711 /// supports highly complicated in-order reservation tables 1712 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1713 /// 1714 /// The second is a streamlined mechanism that checks for hazards based on 1715 /// simple counters that the scheduler itself maintains. It explicitly checks 1716 /// for instruction dispatch limitations, including the number of micro-ops that 1717 /// can dispatch per cycle. 1718 /// 1719 /// TODO: Also check whether the SU must start a new group. 1720 bool SchedBoundary::checkHazard(SUnit *SU) { 1721 if (HazardRec->isEnabled() 1722 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1723 return true; 1724 } 1725 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1726 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1727 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1728 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1729 return true; 1730 } 1731 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1732 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1733 for (TargetSchedModel::ProcResIter 1734 PI = SchedModel->getWriteProcResBegin(SC), 1735 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1736 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1737 if (NRCycle > CurrCycle) { 1738 #ifndef NDEBUG 1739 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1740 #endif 1741 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1742 << SchedModel->getResourceName(PI->ProcResourceIdx) 1743 << "=" << NRCycle << "c\n"); 1744 return true; 1745 } 1746 } 1747 } 1748 return false; 1749 } 1750 1751 // Find the unscheduled node in ReadySUs with the highest latency. 1752 unsigned SchedBoundary:: 1753 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1754 SUnit *LateSU = nullptr; 1755 unsigned RemLatency = 0; 1756 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1757 I != E; ++I) { 1758 unsigned L = getUnscheduledLatency(*I); 1759 if (L > RemLatency) { 1760 RemLatency = L; 1761 LateSU = *I; 1762 } 1763 } 1764 if (LateSU) { 1765 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1766 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1767 } 1768 return RemLatency; 1769 } 1770 1771 // Count resources in this zone and the remaining unscheduled 1772 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1773 // resource index, or zero if the zone is issue limited. 1774 unsigned SchedBoundary:: 1775 getOtherResourceCount(unsigned &OtherCritIdx) { 1776 OtherCritIdx = 0; 1777 if (!SchedModel->hasInstrSchedModel()) 1778 return 0; 1779 1780 unsigned OtherCritCount = Rem->RemIssueCount 1781 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1782 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1783 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1784 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1785 PIdx != PEnd; ++PIdx) { 1786 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1787 if (OtherCount > OtherCritCount) { 1788 OtherCritCount = OtherCount; 1789 OtherCritIdx = PIdx; 1790 } 1791 } 1792 if (OtherCritIdx) { 1793 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1794 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1795 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1796 } 1797 return OtherCritCount; 1798 } 1799 1800 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1801 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1802 1803 #ifndef NDEBUG 1804 // ReadyCycle was been bumped up to the CurrCycle when this node was 1805 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1806 // scheduling, so may now be greater than ReadyCycle. 1807 if (ReadyCycle > CurrCycle) 1808 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1809 #endif 1810 1811 if (ReadyCycle < MinReadyCycle) 1812 MinReadyCycle = ReadyCycle; 1813 1814 // Check for interlocks first. For the purpose of other heuristics, an 1815 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1816 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1817 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1818 Pending.push(SU); 1819 else 1820 Available.push(SU); 1821 1822 // Record this node as an immediate dependent of the scheduled node. 1823 NextSUs.insert(SU); 1824 } 1825 1826 void SchedBoundary::releaseTopNode(SUnit *SU) { 1827 if (SU->isScheduled) 1828 return; 1829 1830 releaseNode(SU, SU->TopReadyCycle); 1831 } 1832 1833 void SchedBoundary::releaseBottomNode(SUnit *SU) { 1834 if (SU->isScheduled) 1835 return; 1836 1837 releaseNode(SU, SU->BotReadyCycle); 1838 } 1839 1840 /// Move the boundary of scheduled code by one cycle. 1841 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1842 if (SchedModel->getMicroOpBufferSize() == 0) { 1843 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1844 if (MinReadyCycle > NextCycle) 1845 NextCycle = MinReadyCycle; 1846 } 1847 // Update the current micro-ops, which will issue in the next cycle. 1848 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1849 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1850 1851 // Decrement DependentLatency based on the next cycle. 1852 if ((NextCycle - CurrCycle) > DependentLatency) 1853 DependentLatency = 0; 1854 else 1855 DependentLatency -= (NextCycle - CurrCycle); 1856 1857 if (!HazardRec->isEnabled()) { 1858 // Bypass HazardRec virtual calls. 1859 CurrCycle = NextCycle; 1860 } 1861 else { 1862 // Bypass getHazardType calls in case of long latency. 1863 for (; CurrCycle != NextCycle; ++CurrCycle) { 1864 if (isTop()) 1865 HazardRec->AdvanceCycle(); 1866 else 1867 HazardRec->RecedeCycle(); 1868 } 1869 } 1870 CheckPending = true; 1871 unsigned LFactor = SchedModel->getLatencyFactor(); 1872 IsResourceLimited = 1873 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1874 > (int)LFactor; 1875 1876 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1877 } 1878 1879 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 1880 ExecutedResCounts[PIdx] += Count; 1881 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1882 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1883 } 1884 1885 /// Add the given processor resource to this scheduled zone. 1886 /// 1887 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1888 /// during which this resource is consumed. 1889 /// 1890 /// \return the next cycle at which the instruction may execute without 1891 /// oversubscribing resources. 1892 unsigned SchedBoundary:: 1893 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 1894 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1895 unsigned Count = Factor * Cycles; 1896 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 1897 << " +" << Cycles << "x" << Factor << "u\n"); 1898 1899 // Update Executed resources counts. 1900 incExecutedResources(PIdx, Count); 1901 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1902 Rem->RemainingCounts[PIdx] -= Count; 1903 1904 // Check if this resource exceeds the current critical resource. If so, it 1905 // becomes the critical resource. 1906 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 1907 ZoneCritResIdx = PIdx; 1908 DEBUG(dbgs() << " *** Critical resource " 1909 << SchedModel->getResourceName(PIdx) << ": " 1910 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 1911 } 1912 // For reserved resources, record the highest cycle using the resource. 1913 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 1914 if (NextAvailable > CurrCycle) { 1915 DEBUG(dbgs() << " Resource conflict: " 1916 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 1917 << NextAvailable << "\n"); 1918 } 1919 return NextAvailable; 1920 } 1921 1922 /// Move the boundary of scheduled code by one SUnit. 1923 void SchedBoundary::bumpNode(SUnit *SU) { 1924 // Update the reservation table. 1925 if (HazardRec->isEnabled()) { 1926 if (!isTop() && SU->isCall) { 1927 // Calls are scheduled with their preceding instructions. For bottom-up 1928 // scheduling, clear the pipeline state before emitting. 1929 HazardRec->Reset(); 1930 } 1931 HazardRec->EmitInstruction(SU); 1932 } 1933 // checkHazard should prevent scheduling multiple instructions per cycle that 1934 // exceed the issue width. 1935 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1936 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 1937 assert( 1938 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 1939 "Cannot schedule this instruction's MicroOps in the current cycle."); 1940 1941 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1942 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 1943 1944 unsigned NextCycle = CurrCycle; 1945 switch (SchedModel->getMicroOpBufferSize()) { 1946 case 0: 1947 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 1948 break; 1949 case 1: 1950 if (ReadyCycle > NextCycle) { 1951 NextCycle = ReadyCycle; 1952 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 1953 } 1954 break; 1955 default: 1956 // We don't currently model the OOO reorder buffer, so consider all 1957 // scheduled MOps to be "retired". We do loosely model in-order resource 1958 // latency. If this instruction uses an in-order resource, account for any 1959 // likely stall cycles. 1960 if (SU->isUnbuffered && ReadyCycle > NextCycle) 1961 NextCycle = ReadyCycle; 1962 break; 1963 } 1964 RetiredMOps += IncMOps; 1965 1966 // Update resource counts and critical resource. 1967 if (SchedModel->hasInstrSchedModel()) { 1968 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 1969 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 1970 Rem->RemIssueCount -= DecRemIssue; 1971 if (ZoneCritResIdx) { 1972 // Scale scheduled micro-ops for comparing with the critical resource. 1973 unsigned ScaledMOps = 1974 RetiredMOps * SchedModel->getMicroOpFactor(); 1975 1976 // If scaled micro-ops are now more than the previous critical resource by 1977 // a full cycle, then micro-ops issue becomes critical. 1978 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 1979 >= (int)SchedModel->getLatencyFactor()) { 1980 ZoneCritResIdx = 0; 1981 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 1982 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 1983 } 1984 } 1985 for (TargetSchedModel::ProcResIter 1986 PI = SchedModel->getWriteProcResBegin(SC), 1987 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1988 unsigned RCycle = 1989 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 1990 if (RCycle > NextCycle) 1991 NextCycle = RCycle; 1992 } 1993 if (SU->hasReservedResource) { 1994 // For reserved resources, record the highest cycle using the resource. 1995 // For top-down scheduling, this is the cycle in which we schedule this 1996 // instruction plus the number of cycles the operations reserves the 1997 // resource. For bottom-up is it simply the instruction's cycle. 1998 for (TargetSchedModel::ProcResIter 1999 PI = SchedModel->getWriteProcResBegin(SC), 2000 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2001 unsigned PIdx = PI->ProcResourceIdx; 2002 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2003 if (isTop()) { 2004 ReservedCycles[PIdx] = 2005 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2006 } 2007 else 2008 ReservedCycles[PIdx] = NextCycle; 2009 } 2010 } 2011 } 2012 } 2013 // Update ExpectedLatency and DependentLatency. 2014 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2015 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2016 if (SU->getDepth() > TopLatency) { 2017 TopLatency = SU->getDepth(); 2018 DEBUG(dbgs() << " " << Available.getName() 2019 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2020 } 2021 if (SU->getHeight() > BotLatency) { 2022 BotLatency = SU->getHeight(); 2023 DEBUG(dbgs() << " " << Available.getName() 2024 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2025 } 2026 // If we stall for any reason, bump the cycle. 2027 if (NextCycle > CurrCycle) { 2028 bumpCycle(NextCycle); 2029 } 2030 else { 2031 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2032 // resource limited. If a stall occurred, bumpCycle does this. 2033 unsigned LFactor = SchedModel->getLatencyFactor(); 2034 IsResourceLimited = 2035 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2036 > (int)LFactor; 2037 } 2038 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2039 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2040 // one cycle. Since we commonly reach the max MOps here, opportunistically 2041 // bump the cycle to avoid uselessly checking everything in the readyQ. 2042 CurrMOps += IncMOps; 2043 while (CurrMOps >= SchedModel->getIssueWidth()) { 2044 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2045 << " at cycle " << CurrCycle << '\n'); 2046 bumpCycle(++NextCycle); 2047 } 2048 DEBUG(dumpScheduledState()); 2049 } 2050 2051 /// Release pending ready nodes in to the available queue. This makes them 2052 /// visible to heuristics. 2053 void SchedBoundary::releasePending() { 2054 // If the available queue is empty, it is safe to reset MinReadyCycle. 2055 if (Available.empty()) 2056 MinReadyCycle = UINT_MAX; 2057 2058 // Check to see if any of the pending instructions are ready to issue. If 2059 // so, add them to the available queue. 2060 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2061 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2062 SUnit *SU = *(Pending.begin()+i); 2063 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2064 2065 if (ReadyCycle < MinReadyCycle) 2066 MinReadyCycle = ReadyCycle; 2067 2068 if (!IsBuffered && ReadyCycle > CurrCycle) 2069 continue; 2070 2071 if (checkHazard(SU)) 2072 continue; 2073 2074 Available.push(SU); 2075 Pending.remove(Pending.begin()+i); 2076 --i; --e; 2077 } 2078 DEBUG(if (!Pending.empty()) Pending.dump()); 2079 CheckPending = false; 2080 } 2081 2082 /// Remove SU from the ready set for this boundary. 2083 void SchedBoundary::removeReady(SUnit *SU) { 2084 if (Available.isInQueue(SU)) 2085 Available.remove(Available.find(SU)); 2086 else { 2087 assert(Pending.isInQueue(SU) && "bad ready count"); 2088 Pending.remove(Pending.find(SU)); 2089 } 2090 } 2091 2092 /// If this queue only has one ready candidate, return it. As a side effect, 2093 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2094 /// one node is ready. If multiple instructions are ready, return NULL. 2095 SUnit *SchedBoundary::pickOnlyChoice() { 2096 if (CheckPending) 2097 releasePending(); 2098 2099 if (CurrMOps > 0) { 2100 // Defer any ready instrs that now have a hazard. 2101 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2102 if (checkHazard(*I)) { 2103 Pending.push(*I); 2104 I = Available.remove(I); 2105 continue; 2106 } 2107 ++I; 2108 } 2109 } 2110 for (unsigned i = 0; Available.empty(); ++i) { 2111 // FIXME: Re-enable assert once PR20057 is resolved. 2112 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2113 // "permanent hazard"); 2114 (void)i; 2115 bumpCycle(CurrCycle + 1); 2116 releasePending(); 2117 } 2118 if (Available.size() == 1) 2119 return *Available.begin(); 2120 return nullptr; 2121 } 2122 2123 #ifndef NDEBUG 2124 // This is useful information to dump after bumpNode. 2125 // Note that the Queue contents are more useful before pickNodeFromQueue. 2126 void SchedBoundary::dumpScheduledState() { 2127 unsigned ResFactor; 2128 unsigned ResCount; 2129 if (ZoneCritResIdx) { 2130 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2131 ResCount = getResourceCount(ZoneCritResIdx); 2132 } 2133 else { 2134 ResFactor = SchedModel->getMicroOpFactor(); 2135 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2136 } 2137 unsigned LFactor = SchedModel->getLatencyFactor(); 2138 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2139 << " Retired: " << RetiredMOps; 2140 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2141 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2142 << ResCount / ResFactor << " " 2143 << SchedModel->getResourceName(ZoneCritResIdx) 2144 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2145 << (IsResourceLimited ? " - Resource" : " - Latency") 2146 << " limited.\n"; 2147 } 2148 #endif 2149 2150 //===----------------------------------------------------------------------===// 2151 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2152 //===----------------------------------------------------------------------===// 2153 2154 void GenericSchedulerBase::SchedCandidate:: 2155 initResourceDelta(const ScheduleDAGMI *DAG, 2156 const TargetSchedModel *SchedModel) { 2157 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2158 return; 2159 2160 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2161 for (TargetSchedModel::ProcResIter 2162 PI = SchedModel->getWriteProcResBegin(SC), 2163 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2164 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2165 ResDelta.CritResources += PI->Cycles; 2166 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2167 ResDelta.DemandedResources += PI->Cycles; 2168 } 2169 } 2170 2171 /// Set the CandPolicy given a scheduling zone given the current resources and 2172 /// latencies inside and outside the zone. 2173 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, 2174 bool IsPostRA, 2175 SchedBoundary &CurrZone, 2176 SchedBoundary *OtherZone) { 2177 // Apply preemptive heuristics based on the total latency and resources 2178 // inside and outside this zone. Potential stalls should be considered before 2179 // following this policy. 2180 2181 // Compute remaining latency. We need this both to determine whether the 2182 // overall schedule has become latency-limited and whether the instructions 2183 // outside this zone are resource or latency limited. 2184 // 2185 // The "dependent" latency is updated incrementally during scheduling as the 2186 // max height/depth of scheduled nodes minus the cycles since it was 2187 // scheduled: 2188 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2189 // 2190 // The "independent" latency is the max ready queue depth: 2191 // ILat = max N.depth for N in Available|Pending 2192 // 2193 // RemainingLatency is the greater of independent and dependent latency. 2194 unsigned RemLatency = CurrZone.getDependentLatency(); 2195 RemLatency = std::max(RemLatency, 2196 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2197 RemLatency = std::max(RemLatency, 2198 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2199 2200 // Compute the critical resource outside the zone. 2201 unsigned OtherCritIdx = 0; 2202 unsigned OtherCount = 2203 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2204 2205 bool OtherResLimited = false; 2206 if (SchedModel->hasInstrSchedModel()) { 2207 unsigned LFactor = SchedModel->getLatencyFactor(); 2208 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2209 } 2210 // Schedule aggressively for latency in PostRA mode. We don't check for 2211 // acyclic latency during PostRA, and highly out-of-order processors will 2212 // skip PostRA scheduling. 2213 if (!OtherResLimited) { 2214 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2215 Policy.ReduceLatency |= true; 2216 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2217 << " RemainingLatency " << RemLatency << " + " 2218 << CurrZone.getCurrCycle() << "c > CritPath " 2219 << Rem.CriticalPath << "\n"); 2220 } 2221 } 2222 // If the same resource is limiting inside and outside the zone, do nothing. 2223 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2224 return; 2225 2226 DEBUG( 2227 if (CurrZone.isResourceLimited()) { 2228 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2229 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2230 << "\n"; 2231 } 2232 if (OtherResLimited) 2233 dbgs() << " RemainingLimit: " 2234 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2235 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2236 dbgs() << " Latency limited both directions.\n"); 2237 2238 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2239 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2240 2241 if (OtherResLimited) 2242 Policy.DemandResIdx = OtherCritIdx; 2243 } 2244 2245 #ifndef NDEBUG 2246 const char *GenericSchedulerBase::getReasonStr( 2247 GenericSchedulerBase::CandReason Reason) { 2248 switch (Reason) { 2249 case NoCand: return "NOCAND "; 2250 case PhysRegCopy: return "PREG-COPY"; 2251 case RegExcess: return "REG-EXCESS"; 2252 case RegCritical: return "REG-CRIT "; 2253 case Stall: return "STALL "; 2254 case Cluster: return "CLUSTER "; 2255 case Weak: return "WEAK "; 2256 case RegMax: return "REG-MAX "; 2257 case ResourceReduce: return "RES-REDUCE"; 2258 case ResourceDemand: return "RES-DEMAND"; 2259 case TopDepthReduce: return "TOP-DEPTH "; 2260 case TopPathReduce: return "TOP-PATH "; 2261 case BotHeightReduce:return "BOT-HEIGHT"; 2262 case BotPathReduce: return "BOT-PATH "; 2263 case NextDefUse: return "DEF-USE "; 2264 case NodeOrder: return "ORDER "; 2265 }; 2266 llvm_unreachable("Unknown reason!"); 2267 } 2268 2269 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2270 PressureChange P; 2271 unsigned ResIdx = 0; 2272 unsigned Latency = 0; 2273 switch (Cand.Reason) { 2274 default: 2275 break; 2276 case RegExcess: 2277 P = Cand.RPDelta.Excess; 2278 break; 2279 case RegCritical: 2280 P = Cand.RPDelta.CriticalMax; 2281 break; 2282 case RegMax: 2283 P = Cand.RPDelta.CurrentMax; 2284 break; 2285 case ResourceReduce: 2286 ResIdx = Cand.Policy.ReduceResIdx; 2287 break; 2288 case ResourceDemand: 2289 ResIdx = Cand.Policy.DemandResIdx; 2290 break; 2291 case TopDepthReduce: 2292 Latency = Cand.SU->getDepth(); 2293 break; 2294 case TopPathReduce: 2295 Latency = Cand.SU->getHeight(); 2296 break; 2297 case BotHeightReduce: 2298 Latency = Cand.SU->getHeight(); 2299 break; 2300 case BotPathReduce: 2301 Latency = Cand.SU->getDepth(); 2302 break; 2303 } 2304 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2305 if (P.isValid()) 2306 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2307 << ":" << P.getUnitInc() << " "; 2308 else 2309 dbgs() << " "; 2310 if (ResIdx) 2311 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2312 else 2313 dbgs() << " "; 2314 if (Latency) 2315 dbgs() << " " << Latency << " cycles "; 2316 else 2317 dbgs() << " "; 2318 dbgs() << '\n'; 2319 } 2320 #endif 2321 2322 /// Return true if this heuristic determines order. 2323 static bool tryLess(int TryVal, int CandVal, 2324 GenericSchedulerBase::SchedCandidate &TryCand, 2325 GenericSchedulerBase::SchedCandidate &Cand, 2326 GenericSchedulerBase::CandReason Reason) { 2327 if (TryVal < CandVal) { 2328 TryCand.Reason = Reason; 2329 return true; 2330 } 2331 if (TryVal > CandVal) { 2332 if (Cand.Reason > Reason) 2333 Cand.Reason = Reason; 2334 return true; 2335 } 2336 Cand.setRepeat(Reason); 2337 return false; 2338 } 2339 2340 static bool tryGreater(int TryVal, int CandVal, 2341 GenericSchedulerBase::SchedCandidate &TryCand, 2342 GenericSchedulerBase::SchedCandidate &Cand, 2343 GenericSchedulerBase::CandReason Reason) { 2344 if (TryVal > CandVal) { 2345 TryCand.Reason = Reason; 2346 return true; 2347 } 2348 if (TryVal < CandVal) { 2349 if (Cand.Reason > Reason) 2350 Cand.Reason = Reason; 2351 return true; 2352 } 2353 Cand.setRepeat(Reason); 2354 return false; 2355 } 2356 2357 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2358 GenericSchedulerBase::SchedCandidate &Cand, 2359 SchedBoundary &Zone) { 2360 if (Zone.isTop()) { 2361 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2362 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2363 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2364 return true; 2365 } 2366 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2367 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2368 return true; 2369 } 2370 else { 2371 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2372 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2373 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2374 return true; 2375 } 2376 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2377 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2378 return true; 2379 } 2380 return false; 2381 } 2382 2383 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, 2384 bool IsTop) { 2385 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2386 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); 2387 } 2388 2389 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2390 assert(dag->hasVRegLiveness() && 2391 "(PreRA)GenericScheduler needs vreg liveness"); 2392 DAG = static_cast<ScheduleDAGMILive*>(dag); 2393 SchedModel = DAG->getSchedModel(); 2394 TRI = DAG->TRI; 2395 2396 Rem.init(DAG, SchedModel); 2397 Top.init(DAG, SchedModel, &Rem); 2398 Bot.init(DAG, SchedModel, &Rem); 2399 2400 // Initialize resource counts. 2401 2402 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2403 // are disabled, then these HazardRecs will be disabled. 2404 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2405 if (!Top.HazardRec) { 2406 Top.HazardRec = 2407 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2408 Itin, DAG); 2409 } 2410 if (!Bot.HazardRec) { 2411 Bot.HazardRec = 2412 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2413 Itin, DAG); 2414 } 2415 } 2416 2417 /// Initialize the per-region scheduling policy. 2418 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2419 MachineBasicBlock::iterator End, 2420 unsigned NumRegionInstrs) { 2421 const MachineFunction &MF = *Begin->getParent()->getParent(); 2422 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2423 2424 // Avoid setting up the register pressure tracker for small regions to save 2425 // compile time. As a rough heuristic, only track pressure when the number of 2426 // schedulable instructions exceeds half the integer register file. 2427 RegionPolicy.ShouldTrackPressure = true; 2428 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2429 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2430 if (TLI->isTypeLegal(LegalIntVT)) { 2431 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2432 TLI->getRegClassFor(LegalIntVT)); 2433 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2434 } 2435 } 2436 2437 // For generic targets, we default to bottom-up, because it's simpler and more 2438 // compile-time optimizations have been implemented in that direction. 2439 RegionPolicy.OnlyBottomUp = true; 2440 2441 // Allow the subtarget to override default policy. 2442 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End, 2443 NumRegionInstrs); 2444 2445 // After subtarget overrides, apply command line options. 2446 if (!EnableRegPressure) 2447 RegionPolicy.ShouldTrackPressure = false; 2448 2449 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2450 // e.g. -misched-bottomup=false allows scheduling in both directions. 2451 assert((!ForceTopDown || !ForceBottomUp) && 2452 "-misched-topdown incompatible with -misched-bottomup"); 2453 if (ForceBottomUp.getNumOccurrences() > 0) { 2454 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2455 if (RegionPolicy.OnlyBottomUp) 2456 RegionPolicy.OnlyTopDown = false; 2457 } 2458 if (ForceTopDown.getNumOccurrences() > 0) { 2459 RegionPolicy.OnlyTopDown = ForceTopDown; 2460 if (RegionPolicy.OnlyTopDown) 2461 RegionPolicy.OnlyBottomUp = false; 2462 } 2463 } 2464 2465 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2466 /// critical path by more cycles than it takes to drain the instruction buffer. 2467 /// We estimate an upper bounds on in-flight instructions as: 2468 /// 2469 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2470 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2471 /// InFlightResources = InFlightIterations * LoopResources 2472 /// 2473 /// TODO: Check execution resources in addition to IssueCount. 2474 void GenericScheduler::checkAcyclicLatency() { 2475 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2476 return; 2477 2478 // Scaled number of cycles per loop iteration. 2479 unsigned IterCount = 2480 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2481 Rem.RemIssueCount); 2482 // Scaled acyclic critical path. 2483 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2484 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2485 unsigned InFlightCount = 2486 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2487 unsigned BufferLimit = 2488 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2489 2490 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2491 2492 DEBUG(dbgs() << "IssueCycles=" 2493 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2494 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2495 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2496 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2497 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2498 if (Rem.IsAcyclicLatencyLimited) 2499 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2500 } 2501 2502 void GenericScheduler::registerRoots() { 2503 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2504 2505 // Some roots may not feed into ExitSU. Check all of them in case. 2506 for (std::vector<SUnit*>::const_iterator 2507 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2508 if ((*I)->getDepth() > Rem.CriticalPath) 2509 Rem.CriticalPath = (*I)->getDepth(); 2510 } 2511 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2512 if (DumpCriticalPathLength) { 2513 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2514 } 2515 2516 if (EnableCyclicPath) { 2517 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2518 checkAcyclicLatency(); 2519 } 2520 } 2521 2522 static bool tryPressure(const PressureChange &TryP, 2523 const PressureChange &CandP, 2524 GenericSchedulerBase::SchedCandidate &TryCand, 2525 GenericSchedulerBase::SchedCandidate &Cand, 2526 GenericSchedulerBase::CandReason Reason) { 2527 int TryRank = TryP.getPSetOrMax(); 2528 int CandRank = CandP.getPSetOrMax(); 2529 // If both candidates affect the same set, go with the smallest increase. 2530 if (TryRank == CandRank) { 2531 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2532 Reason); 2533 } 2534 // If one candidate decreases and the other increases, go with it. 2535 // Invalid candidates have UnitInc==0. 2536 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2537 Reason)) { 2538 return true; 2539 } 2540 // If the candidates are decreasing pressure, reverse priority. 2541 if (TryP.getUnitInc() < 0) 2542 std::swap(TryRank, CandRank); 2543 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2544 } 2545 2546 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2547 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2548 } 2549 2550 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2551 /// their physreg def/use. 2552 /// 2553 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2554 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2555 /// with the operation that produces or consumes the physreg. We'll do this when 2556 /// regalloc has support for parallel copies. 2557 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2558 const MachineInstr *MI = SU->getInstr(); 2559 if (!MI->isCopy()) 2560 return 0; 2561 2562 unsigned ScheduledOper = isTop ? 1 : 0; 2563 unsigned UnscheduledOper = isTop ? 0 : 1; 2564 // If we have already scheduled the physreg produce/consumer, immediately 2565 // schedule the copy. 2566 if (TargetRegisterInfo::isPhysicalRegister( 2567 MI->getOperand(ScheduledOper).getReg())) 2568 return 1; 2569 // If the physreg is at the boundary, defer it. Otherwise schedule it 2570 // immediately to free the dependent. We can hoist the copy later. 2571 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2572 if (TargetRegisterInfo::isPhysicalRegister( 2573 MI->getOperand(UnscheduledOper).getReg())) 2574 return AtBoundary ? -1 : 1; 2575 return 0; 2576 } 2577 2578 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2579 /// hierarchical. This may be more efficient than a graduated cost model because 2580 /// we don't need to evaluate all aspects of the model for each node in the 2581 /// queue. But it's really done to make the heuristics easier to debug and 2582 /// statistically analyze. 2583 /// 2584 /// \param Cand provides the policy and current best candidate. 2585 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2586 /// \param Zone describes the scheduled zone that we are extending. 2587 /// \param RPTracker describes reg pressure within the scheduled zone. 2588 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2589 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2590 SchedCandidate &TryCand, 2591 SchedBoundary &Zone, 2592 const RegPressureTracker &RPTracker, 2593 RegPressureTracker &TempTracker) { 2594 2595 if (DAG->isTrackingPressure()) { 2596 // Always initialize TryCand's RPDelta. 2597 if (Zone.isTop()) { 2598 TempTracker.getMaxDownwardPressureDelta( 2599 TryCand.SU->getInstr(), 2600 TryCand.RPDelta, 2601 DAG->getRegionCriticalPSets(), 2602 DAG->getRegPressure().MaxSetPressure); 2603 } 2604 else { 2605 if (VerifyScheduling) { 2606 TempTracker.getMaxUpwardPressureDelta( 2607 TryCand.SU->getInstr(), 2608 &DAG->getPressureDiff(TryCand.SU), 2609 TryCand.RPDelta, 2610 DAG->getRegionCriticalPSets(), 2611 DAG->getRegPressure().MaxSetPressure); 2612 } 2613 else { 2614 RPTracker.getUpwardPressureDelta( 2615 TryCand.SU->getInstr(), 2616 DAG->getPressureDiff(TryCand.SU), 2617 TryCand.RPDelta, 2618 DAG->getRegionCriticalPSets(), 2619 DAG->getRegPressure().MaxSetPressure); 2620 } 2621 } 2622 } 2623 DEBUG(if (TryCand.RPDelta.Excess.isValid()) 2624 dbgs() << " SU(" << TryCand.SU->NodeNum << ") " 2625 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) 2626 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); 2627 2628 // Initialize the candidate if needed. 2629 if (!Cand.isValid()) { 2630 TryCand.Reason = NodeOrder; 2631 return; 2632 } 2633 2634 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2635 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2636 TryCand, Cand, PhysRegCopy)) 2637 return; 2638 2639 // Avoid exceeding the target's limit. 2640 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2641 Cand.RPDelta.Excess, 2642 TryCand, Cand, RegExcess)) 2643 return; 2644 2645 // Avoid increasing the max critical pressure in the scheduled region. 2646 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2647 Cand.RPDelta.CriticalMax, 2648 TryCand, Cand, RegCritical)) 2649 return; 2650 2651 // For loops that are acyclic path limited, aggressively schedule for latency. 2652 // This can result in very long dependence chains scheduled in sequence, so 2653 // once every cycle (when CurrMOps == 0), switch to normal heuristics. 2654 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() 2655 && tryLatency(TryCand, Cand, Zone)) 2656 return; 2657 2658 // Prioritize instructions that read unbuffered resources by stall cycles. 2659 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), 2660 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2661 return; 2662 2663 // Keep clustered nodes together to encourage downstream peephole 2664 // optimizations which may reduce resource requirements. 2665 // 2666 // This is a best effort to set things up for a post-RA pass. Optimizations 2667 // like generating loads of multiple registers should ideally be done within 2668 // the scheduler pass by combining the loads during DAG postprocessing. 2669 const SUnit *NextClusterSU = 2670 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2671 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2672 TryCand, Cand, Cluster)) 2673 return; 2674 2675 // Weak edges are for clustering and other constraints. 2676 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2677 getWeakLeft(Cand.SU, Zone.isTop()), 2678 TryCand, Cand, Weak)) { 2679 return; 2680 } 2681 // Avoid increasing the max pressure of the entire region. 2682 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2683 Cand.RPDelta.CurrentMax, 2684 TryCand, Cand, RegMax)) 2685 return; 2686 2687 // Avoid critical resource consumption and balance the schedule. 2688 TryCand.initResourceDelta(DAG, SchedModel); 2689 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2690 TryCand, Cand, ResourceReduce)) 2691 return; 2692 if (tryGreater(TryCand.ResDelta.DemandedResources, 2693 Cand.ResDelta.DemandedResources, 2694 TryCand, Cand, ResourceDemand)) 2695 return; 2696 2697 // Avoid serializing long latency dependence chains. 2698 // For acyclic path limited loops, latency was already checked above. 2699 if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited 2700 && tryLatency(TryCand, Cand, Zone)) { 2701 return; 2702 } 2703 2704 // Prefer immediate defs/users of the last scheduled instruction. This is a 2705 // local pressure avoidance strategy that also makes the machine code 2706 // readable. 2707 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), 2708 TryCand, Cand, NextDefUse)) 2709 return; 2710 2711 // Fall through to original instruction order. 2712 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2713 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2714 TryCand.Reason = NodeOrder; 2715 } 2716 } 2717 2718 /// Pick the best candidate from the queue. 2719 /// 2720 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2721 /// DAG building. To adjust for the current scheduling location we need to 2722 /// maintain the number of vreg uses remaining to be top-scheduled. 2723 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2724 const RegPressureTracker &RPTracker, 2725 SchedCandidate &Cand) { 2726 ReadyQueue &Q = Zone.Available; 2727 2728 DEBUG(Q.dump()); 2729 2730 // getMaxPressureDelta temporarily modifies the tracker. 2731 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2732 2733 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2734 2735 SchedCandidate TryCand(Cand.Policy); 2736 TryCand.SU = *I; 2737 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2738 if (TryCand.Reason != NoCand) { 2739 // Initialize resource delta if needed in case future heuristics query it. 2740 if (TryCand.ResDelta == SchedResourceDelta()) 2741 TryCand.initResourceDelta(DAG, SchedModel); 2742 Cand.setBest(TryCand); 2743 DEBUG(traceCandidate(Cand)); 2744 } 2745 } 2746 } 2747 2748 /// Pick the best candidate node from either the top or bottom queue. 2749 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2750 // Schedule as far as possible in the direction of no choice. This is most 2751 // efficient, but also provides the best heuristics for CriticalPSets. 2752 if (SUnit *SU = Bot.pickOnlyChoice()) { 2753 IsTopNode = false; 2754 DEBUG(dbgs() << "Pick Bot NOCAND\n"); 2755 return SU; 2756 } 2757 if (SUnit *SU = Top.pickOnlyChoice()) { 2758 IsTopNode = true; 2759 DEBUG(dbgs() << "Pick Top NOCAND\n"); 2760 return SU; 2761 } 2762 CandPolicy NoPolicy; 2763 SchedCandidate BotCand(NoPolicy); 2764 SchedCandidate TopCand(NoPolicy); 2765 // Set the bottom-up policy based on the state of the current bottom zone and 2766 // the instructions outside the zone, including the top zone. 2767 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); 2768 // Set the top-down policy based on the state of the current top zone and 2769 // the instructions outside the zone, including the bottom zone. 2770 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); 2771 2772 // Prefer bottom scheduling when heuristics are silent. 2773 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2774 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2775 2776 // If either Q has a single candidate that provides the least increase in 2777 // Excess pressure, we can immediately schedule from that Q. 2778 // 2779 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2780 // affects picking from either Q. If scheduling in one direction must 2781 // increase pressure for one of the excess PSets, then schedule in that 2782 // direction first to provide more freedom in the other direction. 2783 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2784 || (BotCand.Reason == RegCritical 2785 && !BotCand.isRepeat(RegCritical))) 2786 { 2787 IsTopNode = false; 2788 tracePick(BotCand, IsTopNode); 2789 return BotCand.SU; 2790 } 2791 // Check if the top Q has a better candidate. 2792 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2793 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2794 2795 // Choose the queue with the most important (lowest enum) reason. 2796 if (TopCand.Reason < BotCand.Reason) { 2797 IsTopNode = true; 2798 tracePick(TopCand, IsTopNode); 2799 return TopCand.SU; 2800 } 2801 // Otherwise prefer the bottom candidate, in node order if all else failed. 2802 IsTopNode = false; 2803 tracePick(BotCand, IsTopNode); 2804 return BotCand.SU; 2805 } 2806 2807 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2808 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2809 if (DAG->top() == DAG->bottom()) { 2810 assert(Top.Available.empty() && Top.Pending.empty() && 2811 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2812 return nullptr; 2813 } 2814 SUnit *SU; 2815 do { 2816 if (RegionPolicy.OnlyTopDown) { 2817 SU = Top.pickOnlyChoice(); 2818 if (!SU) { 2819 CandPolicy NoPolicy; 2820 SchedCandidate TopCand(NoPolicy); 2821 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2822 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2823 tracePick(TopCand, true); 2824 SU = TopCand.SU; 2825 } 2826 IsTopNode = true; 2827 } 2828 else if (RegionPolicy.OnlyBottomUp) { 2829 SU = Bot.pickOnlyChoice(); 2830 if (!SU) { 2831 CandPolicy NoPolicy; 2832 SchedCandidate BotCand(NoPolicy); 2833 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2834 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2835 tracePick(BotCand, false); 2836 SU = BotCand.SU; 2837 } 2838 IsTopNode = false; 2839 } 2840 else { 2841 SU = pickNodeBidirectional(IsTopNode); 2842 } 2843 } while (SU->isScheduled); 2844 2845 if (SU->isTopReady()) 2846 Top.removeReady(SU); 2847 if (SU->isBottomReady()) 2848 Bot.removeReady(SU); 2849 2850 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2851 return SU; 2852 } 2853 2854 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2855 2856 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2857 if (!isTop) 2858 ++InsertPos; 2859 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2860 2861 // Find already scheduled copies with a single physreg dependence and move 2862 // them just above the scheduled instruction. 2863 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2864 I != E; ++I) { 2865 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2866 continue; 2867 SUnit *DepSU = I->getSUnit(); 2868 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2869 continue; 2870 MachineInstr *Copy = DepSU->getInstr(); 2871 if (!Copy->isCopy()) 2872 continue; 2873 DEBUG(dbgs() << " Rescheduling physreg copy "; 2874 I->getSUnit()->dump(DAG)); 2875 DAG->moveInstruction(Copy, InsertPos); 2876 } 2877 } 2878 2879 /// Update the scheduler's state after scheduling a node. This is the same node 2880 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 2881 /// update it's state based on the current cycle before MachineSchedStrategy 2882 /// does. 2883 /// 2884 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2885 /// them here. See comments in biasPhysRegCopy. 2886 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2887 if (IsTopNode) { 2888 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 2889 Top.bumpNode(SU); 2890 if (SU->hasPhysRegUses) 2891 reschedulePhysRegCopies(SU, true); 2892 } 2893 else { 2894 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 2895 Bot.bumpNode(SU); 2896 if (SU->hasPhysRegDefs) 2897 reschedulePhysRegCopies(SU, false); 2898 } 2899 } 2900 2901 /// Create the standard converging machine scheduler. This will be used as the 2902 /// default scheduler if the target does not set a default. 2903 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 2904 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 2905 // Register DAG post-processors. 2906 // 2907 // FIXME: extend the mutation API to allow earlier mutations to instantiate 2908 // data and pass it to later mutations. Have a single mutation that gathers 2909 // the interesting nodes in one pass. 2910 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); 2911 if (EnableLoadCluster && DAG->TII->enableClusterLoads()) 2912 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); 2913 if (EnableMacroFusion) 2914 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI)); 2915 return DAG; 2916 } 2917 2918 static MachineSchedRegistry 2919 GenericSchedRegistry("converge", "Standard converging scheduler.", 2920 createGenericSchedLive); 2921 2922 //===----------------------------------------------------------------------===// 2923 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 2924 //===----------------------------------------------------------------------===// 2925 2926 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 2927 DAG = Dag; 2928 SchedModel = DAG->getSchedModel(); 2929 TRI = DAG->TRI; 2930 2931 Rem.init(DAG, SchedModel); 2932 Top.init(DAG, SchedModel, &Rem); 2933 BotRoots.clear(); 2934 2935 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 2936 // or are disabled, then these HazardRecs will be disabled. 2937 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2938 if (!Top.HazardRec) { 2939 Top.HazardRec = 2940 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2941 Itin, DAG); 2942 } 2943 } 2944 2945 2946 void PostGenericScheduler::registerRoots() { 2947 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2948 2949 // Some roots may not feed into ExitSU. Check all of them in case. 2950 for (SmallVectorImpl<SUnit*>::const_iterator 2951 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 2952 if ((*I)->getDepth() > Rem.CriticalPath) 2953 Rem.CriticalPath = (*I)->getDepth(); 2954 } 2955 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 2956 if (DumpCriticalPathLength) { 2957 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 2958 } 2959 } 2960 2961 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 2962 /// 2963 /// \param Cand provides the policy and current best candidate. 2964 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2965 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 2966 SchedCandidate &TryCand) { 2967 2968 // Initialize the candidate if needed. 2969 if (!Cand.isValid()) { 2970 TryCand.Reason = NodeOrder; 2971 return; 2972 } 2973 2974 // Prioritize instructions that read unbuffered resources by stall cycles. 2975 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 2976 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2977 return; 2978 2979 // Avoid critical resource consumption and balance the schedule. 2980 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2981 TryCand, Cand, ResourceReduce)) 2982 return; 2983 if (tryGreater(TryCand.ResDelta.DemandedResources, 2984 Cand.ResDelta.DemandedResources, 2985 TryCand, Cand, ResourceDemand)) 2986 return; 2987 2988 // Avoid serializing long latency dependence chains. 2989 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 2990 return; 2991 } 2992 2993 // Fall through to original instruction order. 2994 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 2995 TryCand.Reason = NodeOrder; 2996 } 2997 2998 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 2999 ReadyQueue &Q = Top.Available; 3000 3001 DEBUG(Q.dump()); 3002 3003 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3004 SchedCandidate TryCand(Cand.Policy); 3005 TryCand.SU = *I; 3006 TryCand.initResourceDelta(DAG, SchedModel); 3007 tryCandidate(Cand, TryCand); 3008 if (TryCand.Reason != NoCand) { 3009 Cand.setBest(TryCand); 3010 DEBUG(traceCandidate(Cand)); 3011 } 3012 } 3013 } 3014 3015 /// Pick the next node to schedule. 3016 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3017 if (DAG->top() == DAG->bottom()) { 3018 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3019 return nullptr; 3020 } 3021 SUnit *SU; 3022 do { 3023 SU = Top.pickOnlyChoice(); 3024 if (!SU) { 3025 CandPolicy NoPolicy; 3026 SchedCandidate TopCand(NoPolicy); 3027 // Set the top-down policy based on the state of the current top zone and 3028 // the instructions outside the zone, including the bottom zone. 3029 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3030 pickNodeFromQueue(TopCand); 3031 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3032 tracePick(TopCand, true); 3033 SU = TopCand.SU; 3034 } 3035 } while (SU->isScheduled); 3036 3037 IsTopNode = true; 3038 Top.removeReady(SU); 3039 3040 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3041 return SU; 3042 } 3043 3044 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3045 /// scheduled/remaining flags in the DAG nodes. 3046 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3047 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3048 Top.bumpNode(SU); 3049 } 3050 3051 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3052 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3053 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3054 } 3055 3056 //===----------------------------------------------------------------------===// 3057 // ILP Scheduler. Currently for experimental analysis of heuristics. 3058 //===----------------------------------------------------------------------===// 3059 3060 namespace { 3061 /// \brief Order nodes by the ILP metric. 3062 struct ILPOrder { 3063 const SchedDFSResult *DFSResult; 3064 const BitVector *ScheduledTrees; 3065 bool MaximizeILP; 3066 3067 ILPOrder(bool MaxILP) 3068 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3069 3070 /// \brief Apply a less-than relation on node priority. 3071 /// 3072 /// (Return true if A comes after B in the Q.) 3073 bool operator()(const SUnit *A, const SUnit *B) const { 3074 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3075 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3076 if (SchedTreeA != SchedTreeB) { 3077 // Unscheduled trees have lower priority. 3078 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3079 return ScheduledTrees->test(SchedTreeB); 3080 3081 // Trees with shallower connections have have lower priority. 3082 if (DFSResult->getSubtreeLevel(SchedTreeA) 3083 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3084 return DFSResult->getSubtreeLevel(SchedTreeA) 3085 < DFSResult->getSubtreeLevel(SchedTreeB); 3086 } 3087 } 3088 if (MaximizeILP) 3089 return DFSResult->getILP(A) < DFSResult->getILP(B); 3090 else 3091 return DFSResult->getILP(A) > DFSResult->getILP(B); 3092 } 3093 }; 3094 3095 /// \brief Schedule based on the ILP metric. 3096 class ILPScheduler : public MachineSchedStrategy { 3097 ScheduleDAGMILive *DAG; 3098 ILPOrder Cmp; 3099 3100 std::vector<SUnit*> ReadyQ; 3101 public: 3102 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3103 3104 void initialize(ScheduleDAGMI *dag) override { 3105 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3106 DAG = static_cast<ScheduleDAGMILive*>(dag); 3107 DAG->computeDFSResult(); 3108 Cmp.DFSResult = DAG->getDFSResult(); 3109 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3110 ReadyQ.clear(); 3111 } 3112 3113 void registerRoots() override { 3114 // Restore the heap in ReadyQ with the updated DFS results. 3115 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3116 } 3117 3118 /// Implement MachineSchedStrategy interface. 3119 /// ----------------------------------------- 3120 3121 /// Callback to select the highest priority node from the ready Q. 3122 SUnit *pickNode(bool &IsTopNode) override { 3123 if (ReadyQ.empty()) return nullptr; 3124 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3125 SUnit *SU = ReadyQ.back(); 3126 ReadyQ.pop_back(); 3127 IsTopNode = false; 3128 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3129 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3130 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3131 << DAG->getDFSResult()->getSubtreeLevel( 3132 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3133 << "Scheduling " << *SU->getInstr()); 3134 return SU; 3135 } 3136 3137 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3138 void scheduleTree(unsigned SubtreeID) override { 3139 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3140 } 3141 3142 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3143 /// DFSResults, and resort the priority Q. 3144 void schedNode(SUnit *SU, bool IsTopNode) override { 3145 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3146 } 3147 3148 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3149 3150 void releaseBottomNode(SUnit *SU) override { 3151 ReadyQ.push_back(SU); 3152 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3153 } 3154 }; 3155 } // namespace 3156 3157 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3158 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3159 } 3160 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3161 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3162 } 3163 static MachineSchedRegistry ILPMaxRegistry( 3164 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3165 static MachineSchedRegistry ILPMinRegistry( 3166 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3167 3168 //===----------------------------------------------------------------------===// 3169 // Machine Instruction Shuffler for Correctness Testing 3170 //===----------------------------------------------------------------------===// 3171 3172 #ifndef NDEBUG 3173 namespace { 3174 /// Apply a less-than relation on the node order, which corresponds to the 3175 /// instruction order prior to scheduling. IsReverse implements greater-than. 3176 template<bool IsReverse> 3177 struct SUnitOrder { 3178 bool operator()(SUnit *A, SUnit *B) const { 3179 if (IsReverse) 3180 return A->NodeNum > B->NodeNum; 3181 else 3182 return A->NodeNum < B->NodeNum; 3183 } 3184 }; 3185 3186 /// Reorder instructions as much as possible. 3187 class InstructionShuffler : public MachineSchedStrategy { 3188 bool IsAlternating; 3189 bool IsTopDown; 3190 3191 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3192 // gives nodes with a higher number higher priority causing the latest 3193 // instructions to be scheduled first. 3194 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3195 TopQ; 3196 // When scheduling bottom-up, use greater-than as the queue priority. 3197 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3198 BottomQ; 3199 public: 3200 InstructionShuffler(bool alternate, bool topdown) 3201 : IsAlternating(alternate), IsTopDown(topdown) {} 3202 3203 void initialize(ScheduleDAGMI*) override { 3204 TopQ.clear(); 3205 BottomQ.clear(); 3206 } 3207 3208 /// Implement MachineSchedStrategy interface. 3209 /// ----------------------------------------- 3210 3211 SUnit *pickNode(bool &IsTopNode) override { 3212 SUnit *SU; 3213 if (IsTopDown) { 3214 do { 3215 if (TopQ.empty()) return nullptr; 3216 SU = TopQ.top(); 3217 TopQ.pop(); 3218 } while (SU->isScheduled); 3219 IsTopNode = true; 3220 } 3221 else { 3222 do { 3223 if (BottomQ.empty()) return nullptr; 3224 SU = BottomQ.top(); 3225 BottomQ.pop(); 3226 } while (SU->isScheduled); 3227 IsTopNode = false; 3228 } 3229 if (IsAlternating) 3230 IsTopDown = !IsTopDown; 3231 return SU; 3232 } 3233 3234 void schedNode(SUnit *SU, bool IsTopNode) override {} 3235 3236 void releaseTopNode(SUnit *SU) override { 3237 TopQ.push(SU); 3238 } 3239 void releaseBottomNode(SUnit *SU) override { 3240 BottomQ.push(SU); 3241 } 3242 }; 3243 } // namespace 3244 3245 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3246 bool Alternate = !ForceTopDown && !ForceBottomUp; 3247 bool TopDown = !ForceBottomUp; 3248 assert((TopDown || !ForceTopDown) && 3249 "-misched-topdown incompatible with -misched-bottomup"); 3250 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3251 } 3252 static MachineSchedRegistry ShufflerRegistry( 3253 "shuffle", "Shuffle machine instructions alternating directions", 3254 createInstructionShuffler); 3255 #endif // !NDEBUG 3256 3257 //===----------------------------------------------------------------------===// 3258 // GraphWriter support for ScheduleDAGMILive. 3259 //===----------------------------------------------------------------------===// 3260 3261 #ifndef NDEBUG 3262 namespace llvm { 3263 3264 template<> struct GraphTraits< 3265 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3266 3267 template<> 3268 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3269 3270 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3271 3272 static std::string getGraphName(const ScheduleDAG *G) { 3273 return G->MF.getName(); 3274 } 3275 3276 static bool renderGraphFromBottomUp() { 3277 return true; 3278 } 3279 3280 static bool isNodeHidden(const SUnit *Node) { 3281 return (Node->Preds.size() > 10 || Node->Succs.size() > 10); 3282 } 3283 3284 static bool hasNodeAddressLabel(const SUnit *Node, 3285 const ScheduleDAG *Graph) { 3286 return false; 3287 } 3288 3289 /// If you want to override the dot attributes printed for a particular 3290 /// edge, override this method. 3291 static std::string getEdgeAttributes(const SUnit *Node, 3292 SUnitIterator EI, 3293 const ScheduleDAG *Graph) { 3294 if (EI.isArtificialDep()) 3295 return "color=cyan,style=dashed"; 3296 if (EI.isCtrlDep()) 3297 return "color=blue,style=dashed"; 3298 return ""; 3299 } 3300 3301 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3302 std::string Str; 3303 raw_string_ostream SS(Str); 3304 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3305 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3306 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3307 SS << "SU:" << SU->NodeNum; 3308 if (DFS) 3309 SS << " I:" << DFS->getNumInstrs(SU); 3310 return SS.str(); 3311 } 3312 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3313 return G->getGraphNodeLabel(SU); 3314 } 3315 3316 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3317 std::string Str("shape=Mrecord"); 3318 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3319 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3320 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3321 if (DFS) { 3322 Str += ",style=filled,fillcolor=\"#"; 3323 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3324 Str += '"'; 3325 } 3326 return Str; 3327 } 3328 }; 3329 } // namespace llvm 3330 #endif // NDEBUG 3331 3332 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3333 /// rendered using 'dot'. 3334 /// 3335 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3336 #ifndef NDEBUG 3337 ViewGraph(this, Name, false, Title); 3338 #else 3339 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3340 << "systems with Graphviz or gv!\n"; 3341 #endif // NDEBUG 3342 } 3343 3344 /// Out-of-line implementation with no arguments is handy for gdb. 3345 void ScheduleDAGMI::viewGraph() { 3346 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3347 } 3348