1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/GraphWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetInstrInfo.h" 32 #include <queue> 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 /// In some situations a few uninteresting nodes depend on nearly all other 53 /// nodes in the graph, provide a cutoff to hide them. 54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64 #else 65 static bool ViewMISchedDAGs = false; 66 #endif // NDEBUG 67 68 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 69 cl::desc("Enable register pressure scheduling."), cl::init(true)); 70 71 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 72 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 73 74 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 75 cl::desc("Enable load clustering."), cl::init(true)); 76 77 // Experimental heuristics 78 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 79 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 80 81 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 82 cl::desc("Verify machine instrs before and after machine scheduling")); 83 84 // DAG subtrees must have at least this many nodes. 85 static const unsigned MinSubtreeSize = 8; 86 87 // Pin the vtables to this file. 88 void MachineSchedStrategy::anchor() {} 89 void ScheduleDAGMutation::anchor() {} 90 91 //===----------------------------------------------------------------------===// 92 // Machine Instruction Scheduling Pass and Registry 93 //===----------------------------------------------------------------------===// 94 95 MachineSchedContext::MachineSchedContext(): 96 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 97 RegClassInfo = new RegisterClassInfo(); 98 } 99 100 MachineSchedContext::~MachineSchedContext() { 101 delete RegClassInfo; 102 } 103 104 namespace { 105 /// Base class for a machine scheduler class that can run at any point. 106 class MachineSchedulerBase : public MachineSchedContext, 107 public MachineFunctionPass { 108 public: 109 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 110 111 void print(raw_ostream &O, const Module* = nullptr) const override; 112 113 protected: 114 void scheduleRegions(ScheduleDAGInstrs &Scheduler); 115 }; 116 117 /// MachineScheduler runs after coalescing and before register allocation. 118 class MachineScheduler : public MachineSchedulerBase { 119 public: 120 MachineScheduler(); 121 122 void getAnalysisUsage(AnalysisUsage &AU) const override; 123 124 bool runOnMachineFunction(MachineFunction&) override; 125 126 static char ID; // Class identification, replacement for typeinfo 127 128 protected: 129 ScheduleDAGInstrs *createMachineScheduler(); 130 }; 131 132 /// PostMachineScheduler runs after shortly before code emission. 133 class PostMachineScheduler : public MachineSchedulerBase { 134 public: 135 PostMachineScheduler(); 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override; 138 139 bool runOnMachineFunction(MachineFunction&) override; 140 141 static char ID; // Class identification, replacement for typeinfo 142 143 protected: 144 ScheduleDAGInstrs *createPostMachineScheduler(); 145 }; 146 } // namespace 147 148 char MachineScheduler::ID = 0; 149 150 char &llvm::MachineSchedulerID = MachineScheduler::ID; 151 152 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 153 "Machine Instruction Scheduler", false, false) 154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 156 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 157 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 158 "Machine Instruction Scheduler", false, false) 159 160 MachineScheduler::MachineScheduler() 161 : MachineSchedulerBase(ID) { 162 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 163 } 164 165 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 166 AU.setPreservesCFG(); 167 AU.addRequiredID(MachineDominatorsID); 168 AU.addRequired<MachineLoopInfo>(); 169 AU.addRequired<AAResultsWrapperPass>(); 170 AU.addRequired<TargetPassConfig>(); 171 AU.addRequired<SlotIndexes>(); 172 AU.addPreserved<SlotIndexes>(); 173 AU.addRequired<LiveIntervals>(); 174 AU.addPreserved<LiveIntervals>(); 175 MachineFunctionPass::getAnalysisUsage(AU); 176 } 177 178 char PostMachineScheduler::ID = 0; 179 180 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 181 182 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 183 "PostRA Machine Instruction Scheduler", false, false) 184 185 PostMachineScheduler::PostMachineScheduler() 186 : MachineSchedulerBase(ID) { 187 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 188 } 189 190 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 191 AU.setPreservesCFG(); 192 AU.addRequiredID(MachineDominatorsID); 193 AU.addRequired<MachineLoopInfo>(); 194 AU.addRequired<TargetPassConfig>(); 195 MachineFunctionPass::getAnalysisUsage(AU); 196 } 197 198 MachinePassRegistry MachineSchedRegistry::Registry; 199 200 /// A dummy default scheduler factory indicates whether the scheduler 201 /// is overridden on the command line. 202 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 203 return nullptr; 204 } 205 206 /// MachineSchedOpt allows command line selection of the scheduler. 207 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 208 RegisterPassParser<MachineSchedRegistry> > 209 MachineSchedOpt("misched", 210 cl::init(&useDefaultMachineSched), cl::Hidden, 211 cl::desc("Machine instruction scheduler to use")); 212 213 static MachineSchedRegistry 214 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 215 useDefaultMachineSched); 216 217 static cl::opt<bool> EnableMachineSched( 218 "enable-misched", 219 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 220 cl::Hidden); 221 222 /// Forward declare the standard machine scheduler. This will be used as the 223 /// default scheduler if the target does not set a default. 224 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 225 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 226 227 /// Decrement this iterator until reaching the top or a non-debug instr. 228 static MachineBasicBlock::const_iterator 229 priorNonDebug(MachineBasicBlock::const_iterator I, 230 MachineBasicBlock::const_iterator Beg) { 231 assert(I != Beg && "reached the top of the region, cannot decrement"); 232 while (--I != Beg) { 233 if (!I->isDebugValue()) 234 break; 235 } 236 return I; 237 } 238 239 /// Non-const version. 240 static MachineBasicBlock::iterator 241 priorNonDebug(MachineBasicBlock::iterator I, 242 MachineBasicBlock::const_iterator Beg) { 243 return const_cast<MachineInstr*>( 244 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 245 } 246 247 /// If this iterator is a debug value, increment until reaching the End or a 248 /// non-debug instruction. 249 static MachineBasicBlock::const_iterator 250 nextIfDebug(MachineBasicBlock::const_iterator I, 251 MachineBasicBlock::const_iterator End) { 252 for(; I != End; ++I) { 253 if (!I->isDebugValue()) 254 break; 255 } 256 return I; 257 } 258 259 /// Non-const version. 260 static MachineBasicBlock::iterator 261 nextIfDebug(MachineBasicBlock::iterator I, 262 MachineBasicBlock::const_iterator End) { 263 // Cast the return value to nonconst MachineInstr, then cast to an 264 // instr_iterator, which does not check for null, finally return a 265 // bundle_iterator. 266 return MachineBasicBlock::instr_iterator( 267 const_cast<MachineInstr*>( 268 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 269 } 270 271 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 272 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 273 // Select the scheduler, or set the default. 274 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 275 if (Ctor != useDefaultMachineSched) 276 return Ctor(this); 277 278 // Get the default scheduler set by the target for this function. 279 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 280 if (Scheduler) 281 return Scheduler; 282 283 // Default to GenericScheduler. 284 return createGenericSchedLive(this); 285 } 286 287 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 288 /// the caller. We don't have a command line option to override the postRA 289 /// scheduler. The Target must configure it. 290 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 291 // Get the postRA scheduler set by the target for this function. 292 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 293 if (Scheduler) 294 return Scheduler; 295 296 // Default to GenericScheduler. 297 return createGenericSchedPostRA(this); 298 } 299 300 /// Top-level MachineScheduler pass driver. 301 /// 302 /// Visit blocks in function order. Divide each block into scheduling regions 303 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 304 /// consistent with the DAG builder, which traverses the interior of the 305 /// scheduling regions bottom-up. 306 /// 307 /// This design avoids exposing scheduling boundaries to the DAG builder, 308 /// simplifying the DAG builder's support for "special" target instructions. 309 /// At the same time the design allows target schedulers to operate across 310 /// scheduling boundaries, for example to bundle the boudary instructions 311 /// without reordering them. This creates complexity, because the target 312 /// scheduler must update the RegionBegin and RegionEnd positions cached by 313 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 314 /// design would be to split blocks at scheduling boundaries, but LLVM has a 315 /// general bias against block splitting purely for implementation simplicity. 316 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 317 if (EnableMachineSched.getNumOccurrences()) { 318 if (!EnableMachineSched) 319 return false; 320 } else if (!mf.getSubtarget().enableMachineScheduler()) 321 return false; 322 323 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 324 325 // Initialize the context of the pass. 326 MF = &mf; 327 MLI = &getAnalysis<MachineLoopInfo>(); 328 MDT = &getAnalysis<MachineDominatorTree>(); 329 PassConfig = &getAnalysis<TargetPassConfig>(); 330 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 331 332 LIS = &getAnalysis<LiveIntervals>(); 333 334 if (VerifyScheduling) { 335 DEBUG(LIS->dump()); 336 MF->verify(this, "Before machine scheduling."); 337 } 338 RegClassInfo->runOnMachineFunction(*MF); 339 340 // Instantiate the selected scheduler for this target, function, and 341 // optimization level. 342 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 343 scheduleRegions(*Scheduler); 344 345 DEBUG(LIS->dump()); 346 if (VerifyScheduling) 347 MF->verify(this, "After machine scheduling."); 348 return true; 349 } 350 351 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 352 if (skipOptnoneFunction(*mf.getFunction())) 353 return false; 354 355 if (!mf.getSubtarget().enablePostRAScheduler()) { 356 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 357 return false; 358 } 359 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 360 361 // Initialize the context of the pass. 362 MF = &mf; 363 PassConfig = &getAnalysis<TargetPassConfig>(); 364 365 if (VerifyScheduling) 366 MF->verify(this, "Before post machine scheduling."); 367 368 // Instantiate the selected scheduler for this target, function, and 369 // optimization level. 370 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 371 scheduleRegions(*Scheduler); 372 373 if (VerifyScheduling) 374 MF->verify(this, "After post machine scheduling."); 375 return true; 376 } 377 378 /// Return true of the given instruction should not be included in a scheduling 379 /// region. 380 /// 381 /// MachineScheduler does not currently support scheduling across calls. To 382 /// handle calls, the DAG builder needs to be modified to create register 383 /// anti/output dependencies on the registers clobbered by the call's regmask 384 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 385 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 386 /// the boundary, but there would be no benefit to postRA scheduling across 387 /// calls this late anyway. 388 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 389 MachineBasicBlock *MBB, 390 MachineFunction *MF, 391 const TargetInstrInfo *TII, 392 bool IsPostRA) { 393 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); 394 } 395 396 /// Main driver for both MachineScheduler and PostMachineScheduler. 397 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) { 398 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 399 bool IsPostRA = Scheduler.isPostRA(); 400 401 // Visit all machine basic blocks. 402 // 403 // TODO: Visit blocks in global postorder or postorder within the bottom-up 404 // loop tree. Then we can optionally compute global RegPressure. 405 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 406 MBB != MBBEnd; ++MBB) { 407 408 Scheduler.startBlock(MBB); 409 410 #ifndef NDEBUG 411 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 412 continue; 413 if (SchedOnlyBlock.getNumOccurrences() 414 && (int)SchedOnlyBlock != MBB->getNumber()) 415 continue; 416 #endif 417 418 // Break the block into scheduling regions [I, RegionEnd), and schedule each 419 // region as soon as it is discovered. RegionEnd points the scheduling 420 // boundary at the bottom of the region. The DAG does not include RegionEnd, 421 // but the region does (i.e. the next RegionEnd is above the previous 422 // RegionBegin). If the current block has no terminator then RegionEnd == 423 // MBB->end() for the bottom region. 424 // 425 // The Scheduler may insert instructions during either schedule() or 426 // exitRegion(), even for empty regions. So the local iterators 'I' and 427 // 'RegionEnd' are invalid across these calls. 428 // 429 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 430 // as a single instruction. 431 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); 432 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 433 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 434 435 // Avoid decrementing RegionEnd for blocks with no terminator. 436 if (RegionEnd != MBB->end() || 437 isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) { 438 --RegionEnd; 439 // Count the boundary instruction. 440 --RemainingInstrs; 441 } 442 443 // The next region starts above the previous region. Look backward in the 444 // instruction stream until we find the nearest boundary. 445 unsigned NumRegionInstrs = 0; 446 MachineBasicBlock::iterator I = RegionEnd; 447 for(;I != MBB->begin(); --I, --RemainingInstrs) { 448 if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA)) 449 break; 450 if (!I->isDebugValue()) 451 ++NumRegionInstrs; 452 } 453 // Notify the scheduler of the region, even if we may skip scheduling 454 // it. Perhaps it still needs to be bundled. 455 Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs); 456 457 // Skip empty scheduling regions (0 or 1 schedulable instructions). 458 if (I == RegionEnd || I == std::prev(RegionEnd)) { 459 // Close the current region. Bundle the terminator if needed. 460 // This invalidates 'RegionEnd' and 'I'. 461 Scheduler.exitRegion(); 462 continue; 463 } 464 DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "") 465 << "MI Scheduling **********\n"); 466 DEBUG(dbgs() << MF->getName() 467 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 468 << "\n From: " << *I << " To: "; 469 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 470 else dbgs() << "End"; 471 dbgs() << " RegionInstrs: " << NumRegionInstrs 472 << " Remaining: " << RemainingInstrs << "\n"); 473 if (DumpCriticalPathLength) { 474 errs() << MF->getName(); 475 errs() << ":BB# " << MBB->getNumber(); 476 errs() << " " << MBB->getName() << " \n"; 477 } 478 479 // Schedule a region: possibly reorder instructions. 480 // This invalidates 'RegionEnd' and 'I'. 481 Scheduler.schedule(); 482 483 // Close the current region. 484 Scheduler.exitRegion(); 485 486 // Scheduling has invalidated the current iterator 'I'. Ask the 487 // scheduler for the top of it's scheduled region. 488 RegionEnd = Scheduler.begin(); 489 } 490 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 491 Scheduler.finishBlock(); 492 if (Scheduler.isPostRA()) { 493 // FIXME: Ideally, no further passes should rely on kill flags. However, 494 // thumb2 size reduction is currently an exception. 495 Scheduler.fixupKills(MBB); 496 } 497 } 498 Scheduler.finalizeSchedule(); 499 } 500 501 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 502 // unimplemented 503 } 504 505 LLVM_DUMP_METHOD 506 void ReadyQueue::dump() { 507 dbgs() << Name << ": "; 508 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 509 dbgs() << Queue[i]->NodeNum << " "; 510 dbgs() << "\n"; 511 } 512 513 //===----------------------------------------------------------------------===// 514 // ScheduleDAGMI - Basic machine instruction scheduling. This is 515 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 516 // virtual registers. 517 // ===----------------------------------------------------------------------===/ 518 519 // Provide a vtable anchor. 520 ScheduleDAGMI::~ScheduleDAGMI() { 521 } 522 523 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 524 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 525 } 526 527 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 528 if (SuccSU != &ExitSU) { 529 // Do not use WillCreateCycle, it assumes SD scheduling. 530 // If Pred is reachable from Succ, then the edge creates a cycle. 531 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 532 return false; 533 Topo.AddPred(SuccSU, PredDep.getSUnit()); 534 } 535 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 536 // Return true regardless of whether a new edge needed to be inserted. 537 return true; 538 } 539 540 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 541 /// NumPredsLeft reaches zero, release the successor node. 542 /// 543 /// FIXME: Adjust SuccSU height based on MinLatency. 544 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 545 SUnit *SuccSU = SuccEdge->getSUnit(); 546 547 if (SuccEdge->isWeak()) { 548 --SuccSU->WeakPredsLeft; 549 if (SuccEdge->isCluster()) 550 NextClusterSucc = SuccSU; 551 return; 552 } 553 #ifndef NDEBUG 554 if (SuccSU->NumPredsLeft == 0) { 555 dbgs() << "*** Scheduling failed! ***\n"; 556 SuccSU->dump(this); 557 dbgs() << " has been released too many times!\n"; 558 llvm_unreachable(nullptr); 559 } 560 #endif 561 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 562 // CurrCycle may have advanced since then. 563 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 564 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 565 566 --SuccSU->NumPredsLeft; 567 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 568 SchedImpl->releaseTopNode(SuccSU); 569 } 570 571 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 572 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 573 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 574 I != E; ++I) { 575 releaseSucc(SU, &*I); 576 } 577 } 578 579 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 580 /// NumSuccsLeft reaches zero, release the predecessor node. 581 /// 582 /// FIXME: Adjust PredSU height based on MinLatency. 583 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 584 SUnit *PredSU = PredEdge->getSUnit(); 585 586 if (PredEdge->isWeak()) { 587 --PredSU->WeakSuccsLeft; 588 if (PredEdge->isCluster()) 589 NextClusterPred = PredSU; 590 return; 591 } 592 #ifndef NDEBUG 593 if (PredSU->NumSuccsLeft == 0) { 594 dbgs() << "*** Scheduling failed! ***\n"; 595 PredSU->dump(this); 596 dbgs() << " has been released too many times!\n"; 597 llvm_unreachable(nullptr); 598 } 599 #endif 600 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 601 // CurrCycle may have advanced since then. 602 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 603 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 604 605 --PredSU->NumSuccsLeft; 606 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 607 SchedImpl->releaseBottomNode(PredSU); 608 } 609 610 /// releasePredecessors - Call releasePred on each of SU's predecessors. 611 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 612 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 613 I != E; ++I) { 614 releasePred(SU, &*I); 615 } 616 } 617 618 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 619 /// crossing a scheduling boundary. [begin, end) includes all instructions in 620 /// the region, including the boundary itself and single-instruction regions 621 /// that don't get scheduled. 622 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 623 MachineBasicBlock::iterator begin, 624 MachineBasicBlock::iterator end, 625 unsigned regioninstrs) 626 { 627 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 628 629 SchedImpl->initPolicy(begin, end, regioninstrs); 630 } 631 632 /// This is normally called from the main scheduler loop but may also be invoked 633 /// by the scheduling strategy to perform additional code motion. 634 void ScheduleDAGMI::moveInstruction( 635 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 636 // Advance RegionBegin if the first instruction moves down. 637 if (&*RegionBegin == MI) 638 ++RegionBegin; 639 640 // Update the instruction stream. 641 BB->splice(InsertPos, BB, MI); 642 643 // Update LiveIntervals 644 if (LIS) 645 LIS->handleMove(MI, /*UpdateFlags=*/true); 646 647 // Recede RegionBegin if an instruction moves above the first. 648 if (RegionBegin == InsertPos) 649 RegionBegin = MI; 650 } 651 652 bool ScheduleDAGMI::checkSchedLimit() { 653 #ifndef NDEBUG 654 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 655 CurrentTop = CurrentBottom; 656 return false; 657 } 658 ++NumInstrsScheduled; 659 #endif 660 return true; 661 } 662 663 /// Per-region scheduling driver, called back from 664 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 665 /// does not consider liveness or register pressure. It is useful for PostRA 666 /// scheduling and potentially other custom schedulers. 667 void ScheduleDAGMI::schedule() { 668 // Build the DAG. 669 buildSchedGraph(AA); 670 671 Topo.InitDAGTopologicalSorting(); 672 673 postprocessDAG(); 674 675 SmallVector<SUnit*, 8> TopRoots, BotRoots; 676 findRootsAndBiasEdges(TopRoots, BotRoots); 677 678 // Initialize the strategy before modifying the DAG. 679 // This may initialize a DFSResult to be used for queue priority. 680 SchedImpl->initialize(this); 681 682 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 683 SUnits[su].dumpAll(this)); 684 if (ViewMISchedDAGs) viewGraph(); 685 686 // Initialize ready queues now that the DAG and priority data are finalized. 687 initQueues(TopRoots, BotRoots); 688 689 bool IsTopNode = false; 690 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 691 assert(!SU->isScheduled && "Node already scheduled"); 692 if (!checkSchedLimit()) 693 break; 694 695 MachineInstr *MI = SU->getInstr(); 696 if (IsTopNode) { 697 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 698 if (&*CurrentTop == MI) 699 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 700 else 701 moveInstruction(MI, CurrentTop); 702 } 703 else { 704 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 705 MachineBasicBlock::iterator priorII = 706 priorNonDebug(CurrentBottom, CurrentTop); 707 if (&*priorII == MI) 708 CurrentBottom = priorII; 709 else { 710 if (&*CurrentTop == MI) 711 CurrentTop = nextIfDebug(++CurrentTop, priorII); 712 moveInstruction(MI, CurrentBottom); 713 CurrentBottom = MI; 714 } 715 } 716 // Notify the scheduling strategy before updating the DAG. 717 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 718 // runs, it can then use the accurate ReadyCycle time to determine whether 719 // newly released nodes can move to the readyQ. 720 SchedImpl->schedNode(SU, IsTopNode); 721 722 updateQueues(SU, IsTopNode); 723 } 724 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 725 726 placeDebugValues(); 727 728 DEBUG({ 729 unsigned BBNum = begin()->getParent()->getNumber(); 730 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 731 dumpSchedule(); 732 dbgs() << '\n'; 733 }); 734 } 735 736 /// Apply each ScheduleDAGMutation step in order. 737 void ScheduleDAGMI::postprocessDAG() { 738 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 739 Mutations[i]->apply(this); 740 } 741 } 742 743 void ScheduleDAGMI:: 744 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 745 SmallVectorImpl<SUnit*> &BotRoots) { 746 for (std::vector<SUnit>::iterator 747 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 748 SUnit *SU = &(*I); 749 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 750 751 // Order predecessors so DFSResult follows the critical path. 752 SU->biasCriticalPath(); 753 754 // A SUnit is ready to top schedule if it has no predecessors. 755 if (!I->NumPredsLeft) 756 TopRoots.push_back(SU); 757 // A SUnit is ready to bottom schedule if it has no successors. 758 if (!I->NumSuccsLeft) 759 BotRoots.push_back(SU); 760 } 761 ExitSU.biasCriticalPath(); 762 } 763 764 /// Identify DAG roots and setup scheduler queues. 765 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 766 ArrayRef<SUnit*> BotRoots) { 767 NextClusterSucc = nullptr; 768 NextClusterPred = nullptr; 769 770 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 771 // 772 // Nodes with unreleased weak edges can still be roots. 773 // Release top roots in forward order. 774 for (SmallVectorImpl<SUnit*>::const_iterator 775 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 776 SchedImpl->releaseTopNode(*I); 777 } 778 // Release bottom roots in reverse order so the higher priority nodes appear 779 // first. This is more natural and slightly more efficient. 780 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 781 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 782 SchedImpl->releaseBottomNode(*I); 783 } 784 785 releaseSuccessors(&EntrySU); 786 releasePredecessors(&ExitSU); 787 788 SchedImpl->registerRoots(); 789 790 // Advance past initial DebugValues. 791 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 792 CurrentBottom = RegionEnd; 793 } 794 795 /// Update scheduler queues after scheduling an instruction. 796 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 797 // Release dependent instructions for scheduling. 798 if (IsTopNode) 799 releaseSuccessors(SU); 800 else 801 releasePredecessors(SU); 802 803 SU->isScheduled = true; 804 } 805 806 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 807 void ScheduleDAGMI::placeDebugValues() { 808 // If first instruction was a DBG_VALUE then put it back. 809 if (FirstDbgValue) { 810 BB->splice(RegionBegin, BB, FirstDbgValue); 811 RegionBegin = FirstDbgValue; 812 } 813 814 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 815 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 816 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 817 MachineInstr *DbgValue = P.first; 818 MachineBasicBlock::iterator OrigPrevMI = P.second; 819 if (&*RegionBegin == DbgValue) 820 ++RegionBegin; 821 BB->splice(++OrigPrevMI, BB, DbgValue); 822 if (OrigPrevMI == std::prev(RegionEnd)) 823 RegionEnd = DbgValue; 824 } 825 DbgValues.clear(); 826 FirstDbgValue = nullptr; 827 } 828 829 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 830 void ScheduleDAGMI::dumpSchedule() const { 831 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 832 if (SUnit *SU = getSUnit(&(*MI))) 833 SU->dump(this); 834 else 835 dbgs() << "Missing SUnit\n"; 836 } 837 } 838 #endif 839 840 //===----------------------------------------------------------------------===// 841 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 842 // preservation. 843 //===----------------------------------------------------------------------===// 844 845 ScheduleDAGMILive::~ScheduleDAGMILive() { 846 delete DFSResult; 847 } 848 849 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 850 /// crossing a scheduling boundary. [begin, end) includes all instructions in 851 /// the region, including the boundary itself and single-instruction regions 852 /// that don't get scheduled. 853 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 854 MachineBasicBlock::iterator begin, 855 MachineBasicBlock::iterator end, 856 unsigned regioninstrs) 857 { 858 // ScheduleDAGMI initializes SchedImpl's per-region policy. 859 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 860 861 // For convenience remember the end of the liveness region. 862 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 863 864 SUPressureDiffs.clear(); 865 866 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 867 } 868 869 // Setup the register pressure trackers for the top scheduled top and bottom 870 // scheduled regions. 871 void ScheduleDAGMILive::initRegPressure() { 872 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 873 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 874 875 // Close the RPTracker to finalize live ins. 876 RPTracker.closeRegion(); 877 878 DEBUG(RPTracker.dump()); 879 880 // Initialize the live ins and live outs. 881 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 882 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 883 884 // Close one end of the tracker so we can call 885 // getMaxUpward/DownwardPressureDelta before advancing across any 886 // instructions. This converts currently live regs into live ins/outs. 887 TopRPTracker.closeTop(); 888 BotRPTracker.closeBottom(); 889 890 BotRPTracker.initLiveThru(RPTracker); 891 if (!BotRPTracker.getLiveThru().empty()) { 892 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 893 DEBUG(dbgs() << "Live Thru: "; 894 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 895 }; 896 897 // For each live out vreg reduce the pressure change associated with other 898 // uses of the same vreg below the live-out reaching def. 899 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 900 901 // Account for liveness generated by the region boundary. 902 if (LiveRegionEnd != RegionEnd) { 903 SmallVector<unsigned, 8> LiveUses; 904 BotRPTracker.recede(&LiveUses); 905 updatePressureDiffs(LiveUses); 906 } 907 908 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 909 910 // Cache the list of excess pressure sets in this region. This will also track 911 // the max pressure in the scheduled code for these sets. 912 RegionCriticalPSets.clear(); 913 const std::vector<unsigned> &RegionPressure = 914 RPTracker.getPressure().MaxSetPressure; 915 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 916 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 917 if (RegionPressure[i] > Limit) { 918 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 919 << " Limit " << Limit 920 << " Actual " << RegionPressure[i] << "\n"); 921 RegionCriticalPSets.push_back(PressureChange(i)); 922 } 923 } 924 DEBUG(dbgs() << "Excess PSets: "; 925 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 926 dbgs() << TRI->getRegPressureSetName( 927 RegionCriticalPSets[i].getPSet()) << " "; 928 dbgs() << "\n"); 929 } 930 931 void ScheduleDAGMILive:: 932 updateScheduledPressure(const SUnit *SU, 933 const std::vector<unsigned> &NewMaxPressure) { 934 const PressureDiff &PDiff = getPressureDiff(SU); 935 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 936 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 937 I != E; ++I) { 938 if (!I->isValid()) 939 break; 940 unsigned ID = I->getPSet(); 941 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 942 ++CritIdx; 943 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 944 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 945 && NewMaxPressure[ID] <= INT16_MAX) 946 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 947 } 948 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 949 if (NewMaxPressure[ID] >= Limit - 2) { 950 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 951 << NewMaxPressure[ID] 952 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 953 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 954 } 955 } 956 } 957 958 /// Update the PressureDiff array for liveness after scheduling this 959 /// instruction. 960 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) { 961 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) { 962 /// FIXME: Currently assuming single-use physregs. 963 unsigned Reg = LiveUses[LUIdx]; 964 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 965 if (!TRI->isVirtualRegister(Reg)) 966 continue; 967 968 // This may be called before CurrentBottom has been initialized. However, 969 // BotRPTracker must have a valid position. We want the value live into the 970 // instruction or live out of the block, so ask for the previous 971 // instruction's live-out. 972 const LiveInterval &LI = LIS->getInterval(Reg); 973 VNInfo *VNI; 974 MachineBasicBlock::const_iterator I = 975 nextIfDebug(BotRPTracker.getPos(), BB->end()); 976 if (I == BB->end()) 977 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 978 else { 979 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I)); 980 VNI = LRQ.valueIn(); 981 } 982 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 983 assert(VNI && "No live value at use."); 984 for (VReg2UseMap::iterator 985 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 986 SUnit *SU = UI->SU; 987 DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 988 << *SU->getInstr()); 989 // If this use comes before the reaching def, it cannot be a last use, so 990 // descrease its pressure change. 991 if (!SU->isScheduled && SU != &ExitSU) { 992 LiveQueryResult LRQ 993 = LI.Query(LIS->getInstructionIndex(SU->getInstr())); 994 if (LRQ.valueIn() == VNI) 995 getPressureDiff(SU).addPressureChange(Reg, true, &MRI); 996 } 997 } 998 } 999 } 1000 1001 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1002 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1003 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1004 /// 1005 /// This is a skeletal driver, with all the functionality pushed into helpers, 1006 /// so that it can be easily extended by experimental schedulers. Generally, 1007 /// implementing MachineSchedStrategy should be sufficient to implement a new 1008 /// scheduling algorithm. However, if a scheduler further subclasses 1009 /// ScheduleDAGMILive then it will want to override this virtual method in order 1010 /// to update any specialized state. 1011 void ScheduleDAGMILive::schedule() { 1012 buildDAGWithRegPressure(); 1013 1014 Topo.InitDAGTopologicalSorting(); 1015 1016 postprocessDAG(); 1017 1018 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1019 findRootsAndBiasEdges(TopRoots, BotRoots); 1020 1021 // Initialize the strategy before modifying the DAG. 1022 // This may initialize a DFSResult to be used for queue priority. 1023 SchedImpl->initialize(this); 1024 1025 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 1026 SUnits[su].dumpAll(this)); 1027 if (ViewMISchedDAGs) viewGraph(); 1028 1029 // Initialize ready queues now that the DAG and priority data are finalized. 1030 initQueues(TopRoots, BotRoots); 1031 1032 if (ShouldTrackPressure) { 1033 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1034 TopRPTracker.setPos(CurrentTop); 1035 } 1036 1037 bool IsTopNode = false; 1038 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 1039 assert(!SU->isScheduled && "Node already scheduled"); 1040 if (!checkSchedLimit()) 1041 break; 1042 1043 scheduleMI(SU, IsTopNode); 1044 1045 if (DFSResult) { 1046 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1047 if (!ScheduledTrees.test(SubtreeID)) { 1048 ScheduledTrees.set(SubtreeID); 1049 DFSResult->scheduleTree(SubtreeID); 1050 SchedImpl->scheduleTree(SubtreeID); 1051 } 1052 } 1053 1054 // Notify the scheduling strategy after updating the DAG. 1055 SchedImpl->schedNode(SU, IsTopNode); 1056 1057 updateQueues(SU, IsTopNode); 1058 } 1059 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1060 1061 placeDebugValues(); 1062 1063 DEBUG({ 1064 unsigned BBNum = begin()->getParent()->getNumber(); 1065 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1066 dumpSchedule(); 1067 dbgs() << '\n'; 1068 }); 1069 } 1070 1071 /// Build the DAG and setup three register pressure trackers. 1072 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1073 if (!ShouldTrackPressure) { 1074 RPTracker.reset(); 1075 RegionCriticalPSets.clear(); 1076 buildSchedGraph(AA); 1077 return; 1078 } 1079 1080 // Initialize the register pressure tracker used by buildSchedGraph. 1081 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1082 /*TrackUntiedDefs=*/true); 1083 1084 // Account for liveness generate by the region boundary. 1085 if (LiveRegionEnd != RegionEnd) 1086 RPTracker.recede(); 1087 1088 // Build the DAG, and compute current register pressure. 1089 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); 1090 1091 // Initialize top/bottom trackers after computing region pressure. 1092 initRegPressure(); 1093 } 1094 1095 void ScheduleDAGMILive::computeDFSResult() { 1096 if (!DFSResult) 1097 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1098 DFSResult->clear(); 1099 ScheduledTrees.clear(); 1100 DFSResult->resize(SUnits.size()); 1101 DFSResult->compute(SUnits); 1102 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1103 } 1104 1105 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1106 /// only provides the critical path for single block loops. To handle loops that 1107 /// span blocks, we could use the vreg path latencies provided by 1108 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1109 /// available for use in the scheduler. 1110 /// 1111 /// The cyclic path estimation identifies a def-use pair that crosses the back 1112 /// edge and considers the depth and height of the nodes. For example, consider 1113 /// the following instruction sequence where each instruction has unit latency 1114 /// and defines an epomymous virtual register: 1115 /// 1116 /// a->b(a,c)->c(b)->d(c)->exit 1117 /// 1118 /// The cyclic critical path is a two cycles: b->c->b 1119 /// The acyclic critical path is four cycles: a->b->c->d->exit 1120 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1121 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1122 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1123 /// LiveInDepth = depth(b) = len(a->b) = 1 1124 /// 1125 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1126 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1127 /// CyclicCriticalPath = min(2, 2) = 2 1128 /// 1129 /// This could be relevant to PostRA scheduling, but is currently implemented 1130 /// assuming LiveIntervals. 1131 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1132 // This only applies to single block loop. 1133 if (!BB->isSuccessor(BB)) 1134 return 0; 1135 1136 unsigned MaxCyclicLatency = 0; 1137 // Visit each live out vreg def to find def/use pairs that cross iterations. 1138 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; 1139 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); 1140 RI != RE; ++RI) { 1141 unsigned Reg = *RI; 1142 if (!TRI->isVirtualRegister(Reg)) 1143 continue; 1144 const LiveInterval &LI = LIS->getInterval(Reg); 1145 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1146 if (!DefVNI) 1147 continue; 1148 1149 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1150 const SUnit *DefSU = getSUnit(DefMI); 1151 if (!DefSU) 1152 continue; 1153 1154 unsigned LiveOutHeight = DefSU->getHeight(); 1155 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1156 // Visit all local users of the vreg def. 1157 for (VReg2UseMap::iterator 1158 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 1159 if (UI->SU == &ExitSU) 1160 continue; 1161 1162 // Only consider uses of the phi. 1163 LiveQueryResult LRQ = 1164 LI.Query(LIS->getInstructionIndex(UI->SU->getInstr())); 1165 if (!LRQ.valueIn()->isPHIDef()) 1166 continue; 1167 1168 // Assume that a path spanning two iterations is a cycle, which could 1169 // overestimate in strange cases. This allows cyclic latency to be 1170 // estimated as the minimum slack of the vreg's depth or height. 1171 unsigned CyclicLatency = 0; 1172 if (LiveOutDepth > UI->SU->getDepth()) 1173 CyclicLatency = LiveOutDepth - UI->SU->getDepth(); 1174 1175 unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency; 1176 if (LiveInHeight > LiveOutHeight) { 1177 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1178 CyclicLatency = LiveInHeight - LiveOutHeight; 1179 } 1180 else 1181 CyclicLatency = 0; 1182 1183 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1184 << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1185 if (CyclicLatency > MaxCyclicLatency) 1186 MaxCyclicLatency = CyclicLatency; 1187 } 1188 } 1189 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1190 return MaxCyclicLatency; 1191 } 1192 1193 /// Move an instruction and update register pressure. 1194 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1195 // Move the instruction to its new location in the instruction stream. 1196 MachineInstr *MI = SU->getInstr(); 1197 1198 if (IsTopNode) { 1199 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1200 if (&*CurrentTop == MI) 1201 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1202 else { 1203 moveInstruction(MI, CurrentTop); 1204 TopRPTracker.setPos(MI); 1205 } 1206 1207 if (ShouldTrackPressure) { 1208 // Update top scheduled pressure. 1209 TopRPTracker.advance(); 1210 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1211 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1212 } 1213 } 1214 else { 1215 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1216 MachineBasicBlock::iterator priorII = 1217 priorNonDebug(CurrentBottom, CurrentTop); 1218 if (&*priorII == MI) 1219 CurrentBottom = priorII; 1220 else { 1221 if (&*CurrentTop == MI) { 1222 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1223 TopRPTracker.setPos(CurrentTop); 1224 } 1225 moveInstruction(MI, CurrentBottom); 1226 CurrentBottom = MI; 1227 } 1228 if (ShouldTrackPressure) { 1229 // Update bottom scheduled pressure. 1230 SmallVector<unsigned, 8> LiveUses; 1231 BotRPTracker.recede(&LiveUses); 1232 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1233 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1234 updatePressureDiffs(LiveUses); 1235 } 1236 } 1237 } 1238 1239 //===----------------------------------------------------------------------===// 1240 // LoadClusterMutation - DAG post-processing to cluster loads. 1241 //===----------------------------------------------------------------------===// 1242 1243 namespace { 1244 /// \brief Post-process the DAG to create cluster edges between neighboring 1245 /// loads. 1246 class LoadClusterMutation : public ScheduleDAGMutation { 1247 struct LoadInfo { 1248 SUnit *SU; 1249 unsigned BaseReg; 1250 unsigned Offset; 1251 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 1252 : SU(su), BaseReg(reg), Offset(ofs) {} 1253 1254 bool operator<(const LoadInfo &RHS) const { 1255 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1256 } 1257 }; 1258 1259 const TargetInstrInfo *TII; 1260 const TargetRegisterInfo *TRI; 1261 public: 1262 LoadClusterMutation(const TargetInstrInfo *tii, 1263 const TargetRegisterInfo *tri) 1264 : TII(tii), TRI(tri) {} 1265 1266 void apply(ScheduleDAGMI *DAG) override; 1267 protected: 1268 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 1269 }; 1270 } // anonymous 1271 1272 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 1273 ScheduleDAGMI *DAG) { 1274 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 1275 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 1276 SUnit *SU = Loads[Idx]; 1277 unsigned BaseReg; 1278 unsigned Offset; 1279 if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 1280 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 1281 } 1282 if (LoadRecords.size() < 2) 1283 return; 1284 std::sort(LoadRecords.begin(), LoadRecords.end()); 1285 unsigned ClusterLength = 1; 1286 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 1287 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 1288 ClusterLength = 1; 1289 continue; 1290 } 1291 1292 SUnit *SUa = LoadRecords[Idx].SU; 1293 SUnit *SUb = LoadRecords[Idx+1].SU; 1294 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1295 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1296 1297 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 1298 << SUb->NodeNum << ")\n"); 1299 // Copy successor edges from SUa to SUb. Interleaving computation 1300 // dependent on SUa can prevent load combining due to register reuse. 1301 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1302 // loads should have effectively the same inputs. 1303 for (SUnit::const_succ_iterator 1304 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1305 if (SI->getSUnit() == SUb) 1306 continue; 1307 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1308 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1309 } 1310 ++ClusterLength; 1311 } 1312 else 1313 ClusterLength = 1; 1314 } 1315 } 1316 1317 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1318 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 1319 // Map DAG NodeNum to store chain ID. 1320 DenseMap<unsigned, unsigned> StoreChainIDs; 1321 // Map each store chain to a set of dependent loads. 1322 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1323 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1324 SUnit *SU = &DAG->SUnits[Idx]; 1325 if (!SU->getInstr()->mayLoad()) 1326 continue; 1327 unsigned ChainPredID = DAG->SUnits.size(); 1328 for (SUnit::const_pred_iterator 1329 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1330 if (PI->isCtrl()) { 1331 ChainPredID = PI->getSUnit()->NodeNum; 1332 break; 1333 } 1334 } 1335 // Check if this chain-like pred has been seen 1336 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 1337 unsigned NumChains = StoreChainDependents.size(); 1338 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1339 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1340 if (Result.second) 1341 StoreChainDependents.resize(NumChains + 1); 1342 StoreChainDependents[Result.first->second].push_back(SU); 1343 } 1344 // Iterate over the store chains. 1345 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1346 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 1347 } 1348 1349 //===----------------------------------------------------------------------===// 1350 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1351 //===----------------------------------------------------------------------===// 1352 1353 namespace { 1354 /// \brief Post-process the DAG to create cluster edges between instructions 1355 /// that may be fused by the processor into a single operation. 1356 class MacroFusion : public ScheduleDAGMutation { 1357 const TargetInstrInfo &TII; 1358 const TargetRegisterInfo &TRI; 1359 public: 1360 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) 1361 : TII(TII), TRI(TRI) {} 1362 1363 void apply(ScheduleDAGMI *DAG) override; 1364 }; 1365 } // anonymous 1366 1367 /// Returns true if \p MI reads a register written by \p Other. 1368 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI, 1369 const MachineInstr &Other) { 1370 for (const MachineOperand &MO : MI.uses()) { 1371 if (!MO.isReg() || !MO.readsReg()) 1372 continue; 1373 1374 unsigned Reg = MO.getReg(); 1375 if (Other.modifiesRegister(Reg, &TRI)) 1376 return true; 1377 } 1378 return false; 1379 } 1380 1381 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1382 /// fused operations. 1383 void MacroFusion::apply(ScheduleDAGMI *DAG) { 1384 // For now, assume targets can only fuse with the branch. 1385 SUnit &ExitSU = DAG->ExitSU; 1386 MachineInstr *Branch = ExitSU.getInstr(); 1387 if (!Branch) 1388 return; 1389 1390 for (SUnit &SU : DAG->SUnits) { 1391 // SUnits with successors can't be schedule in front of the ExitSU. 1392 if (!SU.Succs.empty()) 1393 continue; 1394 // We only care if the node writes to a register that the branch reads. 1395 MachineInstr *Pred = SU.getInstr(); 1396 if (!HasDataDep(TRI, *Branch, *Pred)) 1397 continue; 1398 1399 if (!TII.shouldScheduleAdjacent(Pred, Branch)) 1400 continue; 1401 1402 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1403 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1404 // need to copy predecessor edges from ExitSU to SU, since top-down 1405 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1406 // of SU, we could create an artificial edge from the deepest root, but it 1407 // hasn't been needed yet. 1408 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1409 (void)Success; 1410 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1411 1412 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1413 break; 1414 } 1415 } 1416 1417 //===----------------------------------------------------------------------===// 1418 // CopyConstrain - DAG post-processing to encourage copy elimination. 1419 //===----------------------------------------------------------------------===// 1420 1421 namespace { 1422 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1423 /// the one use that defines the copy's source vreg, most likely an induction 1424 /// variable increment. 1425 class CopyConstrain : public ScheduleDAGMutation { 1426 // Transient state. 1427 SlotIndex RegionBeginIdx; 1428 // RegionEndIdx is the slot index of the last non-debug instruction in the 1429 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1430 SlotIndex RegionEndIdx; 1431 public: 1432 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1433 1434 void apply(ScheduleDAGMI *DAG) override; 1435 1436 protected: 1437 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1438 }; 1439 } // anonymous 1440 1441 /// constrainLocalCopy handles two possibilities: 1442 /// 1) Local src: 1443 /// I0: = dst 1444 /// I1: src = ... 1445 /// I2: = dst 1446 /// I3: dst = src (copy) 1447 /// (create pred->succ edges I0->I1, I2->I1) 1448 /// 1449 /// 2) Local copy: 1450 /// I0: dst = src (copy) 1451 /// I1: = dst 1452 /// I2: src = ... 1453 /// I3: = dst 1454 /// (create pred->succ edges I1->I2, I3->I2) 1455 /// 1456 /// Although the MachineScheduler is currently constrained to single blocks, 1457 /// this algorithm should handle extended blocks. An EBB is a set of 1458 /// contiguously numbered blocks such that the previous block in the EBB is 1459 /// always the single predecessor. 1460 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1461 LiveIntervals *LIS = DAG->getLIS(); 1462 MachineInstr *Copy = CopySU->getInstr(); 1463 1464 // Check for pure vreg copies. 1465 unsigned SrcReg = Copy->getOperand(1).getReg(); 1466 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1467 return; 1468 1469 unsigned DstReg = Copy->getOperand(0).getReg(); 1470 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1471 return; 1472 1473 // Check if either the dest or source is local. If it's live across a back 1474 // edge, it's not local. Note that if both vregs are live across the back 1475 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1476 // If both the copy's source and dest are local live intervals, then we 1477 // should treat the dest as the global for the purpose of adding 1478 // constraints. This adds edges from source's other uses to the copy. 1479 unsigned LocalReg = SrcReg; 1480 unsigned GlobalReg = DstReg; 1481 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1482 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1483 LocalReg = DstReg; 1484 GlobalReg = SrcReg; 1485 LocalLI = &LIS->getInterval(LocalReg); 1486 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1487 return; 1488 } 1489 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1490 1491 // Find the global segment after the start of the local LI. 1492 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1493 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1494 // local live range. We could create edges from other global uses to the local 1495 // start, but the coalescer should have already eliminated these cases, so 1496 // don't bother dealing with it. 1497 if (GlobalSegment == GlobalLI->end()) 1498 return; 1499 1500 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1501 // returned the next global segment. But if GlobalSegment overlaps with 1502 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1503 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1504 if (GlobalSegment->contains(LocalLI->beginIndex())) 1505 ++GlobalSegment; 1506 1507 if (GlobalSegment == GlobalLI->end()) 1508 return; 1509 1510 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1511 if (GlobalSegment != GlobalLI->begin()) { 1512 // Two address defs have no hole. 1513 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1514 GlobalSegment->start)) { 1515 return; 1516 } 1517 // If the prior global segment may be defined by the same two-address 1518 // instruction that also defines LocalLI, then can't make a hole here. 1519 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1520 LocalLI->beginIndex())) { 1521 return; 1522 } 1523 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1524 // it would be a disconnected component in the live range. 1525 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1526 "Disconnected LRG within the scheduling region."); 1527 } 1528 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1529 if (!GlobalDef) 1530 return; 1531 1532 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1533 if (!GlobalSU) 1534 return; 1535 1536 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1537 // constraining the uses of the last local def to precede GlobalDef. 1538 SmallVector<SUnit*,8> LocalUses; 1539 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1540 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1541 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1542 for (SUnit::const_succ_iterator 1543 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1544 I != E; ++I) { 1545 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1546 continue; 1547 if (I->getSUnit() == GlobalSU) 1548 continue; 1549 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1550 return; 1551 LocalUses.push_back(I->getSUnit()); 1552 } 1553 // Open the top of the GlobalLI hole by constraining any earlier global uses 1554 // to precede the start of LocalLI. 1555 SmallVector<SUnit*,8> GlobalUses; 1556 MachineInstr *FirstLocalDef = 1557 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1558 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1559 for (SUnit::const_pred_iterator 1560 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1561 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1562 continue; 1563 if (I->getSUnit() == FirstLocalSU) 1564 continue; 1565 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1566 return; 1567 GlobalUses.push_back(I->getSUnit()); 1568 } 1569 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1570 // Add the weak edges. 1571 for (SmallVectorImpl<SUnit*>::const_iterator 1572 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1573 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1574 << GlobalSU->NodeNum << ")\n"); 1575 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1576 } 1577 for (SmallVectorImpl<SUnit*>::const_iterator 1578 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1579 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1580 << FirstLocalSU->NodeNum << ")\n"); 1581 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1582 } 1583 } 1584 1585 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1586 /// copy elimination. 1587 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1588 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1589 1590 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1591 if (FirstPos == DAG->end()) 1592 return; 1593 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1594 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1595 &*priorNonDebug(DAG->end(), DAG->begin())); 1596 1597 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1598 SUnit *SU = &DAG->SUnits[Idx]; 1599 if (!SU->getInstr()->isCopy()) 1600 continue; 1601 1602 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1603 } 1604 } 1605 1606 //===----------------------------------------------------------------------===// 1607 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1608 // and possibly other custom schedulers. 1609 //===----------------------------------------------------------------------===// 1610 1611 static const unsigned InvalidCycle = ~0U; 1612 1613 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1614 1615 void SchedBoundary::reset() { 1616 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1617 // Destroying and reconstructing it is very expensive though. So keep 1618 // invalid, placeholder HazardRecs. 1619 if (HazardRec && HazardRec->isEnabled()) { 1620 delete HazardRec; 1621 HazardRec = nullptr; 1622 } 1623 Available.clear(); 1624 Pending.clear(); 1625 CheckPending = false; 1626 NextSUs.clear(); 1627 CurrCycle = 0; 1628 CurrMOps = 0; 1629 MinReadyCycle = UINT_MAX; 1630 ExpectedLatency = 0; 1631 DependentLatency = 0; 1632 RetiredMOps = 0; 1633 MaxExecutedResCount = 0; 1634 ZoneCritResIdx = 0; 1635 IsResourceLimited = false; 1636 ReservedCycles.clear(); 1637 #ifndef NDEBUG 1638 // Track the maximum number of stall cycles that could arise either from the 1639 // latency of a DAG edge or the number of cycles that a processor resource is 1640 // reserved (SchedBoundary::ReservedCycles). 1641 MaxObservedStall = 0; 1642 #endif 1643 // Reserve a zero-count for invalid CritResIdx. 1644 ExecutedResCounts.resize(1); 1645 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1646 } 1647 1648 void SchedRemainder:: 1649 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1650 reset(); 1651 if (!SchedModel->hasInstrSchedModel()) 1652 return; 1653 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1654 for (std::vector<SUnit>::iterator 1655 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1656 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1657 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1658 * SchedModel->getMicroOpFactor(); 1659 for (TargetSchedModel::ProcResIter 1660 PI = SchedModel->getWriteProcResBegin(SC), 1661 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1662 unsigned PIdx = PI->ProcResourceIdx; 1663 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1664 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1665 } 1666 } 1667 } 1668 1669 void SchedBoundary:: 1670 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1671 reset(); 1672 DAG = dag; 1673 SchedModel = smodel; 1674 Rem = rem; 1675 if (SchedModel->hasInstrSchedModel()) { 1676 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1677 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1678 } 1679 } 1680 1681 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1682 /// these "soft stalls" differently than the hard stall cycles based on CPU 1683 /// resources and computed by checkHazard(). A fully in-order model 1684 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1685 /// available for scheduling until they are ready. However, a weaker in-order 1686 /// model may use this for heuristics. For example, if a processor has in-order 1687 /// behavior when reading certain resources, this may come into play. 1688 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1689 if (!SU->isUnbuffered) 1690 return 0; 1691 1692 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1693 if (ReadyCycle > CurrCycle) 1694 return ReadyCycle - CurrCycle; 1695 return 0; 1696 } 1697 1698 /// Compute the next cycle at which the given processor resource can be 1699 /// scheduled. 1700 unsigned SchedBoundary:: 1701 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1702 unsigned NextUnreserved = ReservedCycles[PIdx]; 1703 // If this resource has never been used, always return cycle zero. 1704 if (NextUnreserved == InvalidCycle) 1705 return 0; 1706 // For bottom-up scheduling add the cycles needed for the current operation. 1707 if (!isTop()) 1708 NextUnreserved += Cycles; 1709 return NextUnreserved; 1710 } 1711 1712 /// Does this SU have a hazard within the current instruction group. 1713 /// 1714 /// The scheduler supports two modes of hazard recognition. The first is the 1715 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1716 /// supports highly complicated in-order reservation tables 1717 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1718 /// 1719 /// The second is a streamlined mechanism that checks for hazards based on 1720 /// simple counters that the scheduler itself maintains. It explicitly checks 1721 /// for instruction dispatch limitations, including the number of micro-ops that 1722 /// can dispatch per cycle. 1723 /// 1724 /// TODO: Also check whether the SU must start a new group. 1725 bool SchedBoundary::checkHazard(SUnit *SU) { 1726 if (HazardRec->isEnabled() 1727 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1728 return true; 1729 } 1730 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1731 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1732 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1733 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1734 return true; 1735 } 1736 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1737 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1738 for (TargetSchedModel::ProcResIter 1739 PI = SchedModel->getWriteProcResBegin(SC), 1740 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1741 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1742 if (NRCycle > CurrCycle) { 1743 #ifndef NDEBUG 1744 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1745 #endif 1746 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1747 << SchedModel->getResourceName(PI->ProcResourceIdx) 1748 << "=" << NRCycle << "c\n"); 1749 return true; 1750 } 1751 } 1752 } 1753 return false; 1754 } 1755 1756 // Find the unscheduled node in ReadySUs with the highest latency. 1757 unsigned SchedBoundary:: 1758 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1759 SUnit *LateSU = nullptr; 1760 unsigned RemLatency = 0; 1761 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1762 I != E; ++I) { 1763 unsigned L = getUnscheduledLatency(*I); 1764 if (L > RemLatency) { 1765 RemLatency = L; 1766 LateSU = *I; 1767 } 1768 } 1769 if (LateSU) { 1770 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1771 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1772 } 1773 return RemLatency; 1774 } 1775 1776 // Count resources in this zone and the remaining unscheduled 1777 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1778 // resource index, or zero if the zone is issue limited. 1779 unsigned SchedBoundary:: 1780 getOtherResourceCount(unsigned &OtherCritIdx) { 1781 OtherCritIdx = 0; 1782 if (!SchedModel->hasInstrSchedModel()) 1783 return 0; 1784 1785 unsigned OtherCritCount = Rem->RemIssueCount 1786 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1787 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1788 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1789 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1790 PIdx != PEnd; ++PIdx) { 1791 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1792 if (OtherCount > OtherCritCount) { 1793 OtherCritCount = OtherCount; 1794 OtherCritIdx = PIdx; 1795 } 1796 } 1797 if (OtherCritIdx) { 1798 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1799 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1800 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1801 } 1802 return OtherCritCount; 1803 } 1804 1805 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1806 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1807 1808 #ifndef NDEBUG 1809 // ReadyCycle was been bumped up to the CurrCycle when this node was 1810 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1811 // scheduling, so may now be greater than ReadyCycle. 1812 if (ReadyCycle > CurrCycle) 1813 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1814 #endif 1815 1816 if (ReadyCycle < MinReadyCycle) 1817 MinReadyCycle = ReadyCycle; 1818 1819 // Check for interlocks first. For the purpose of other heuristics, an 1820 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1821 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1822 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1823 Pending.push(SU); 1824 else 1825 Available.push(SU); 1826 1827 // Record this node as an immediate dependent of the scheduled node. 1828 NextSUs.insert(SU); 1829 } 1830 1831 void SchedBoundary::releaseTopNode(SUnit *SU) { 1832 if (SU->isScheduled) 1833 return; 1834 1835 releaseNode(SU, SU->TopReadyCycle); 1836 } 1837 1838 void SchedBoundary::releaseBottomNode(SUnit *SU) { 1839 if (SU->isScheduled) 1840 return; 1841 1842 releaseNode(SU, SU->BotReadyCycle); 1843 } 1844 1845 /// Move the boundary of scheduled code by one cycle. 1846 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1847 if (SchedModel->getMicroOpBufferSize() == 0) { 1848 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1849 if (MinReadyCycle > NextCycle) 1850 NextCycle = MinReadyCycle; 1851 } 1852 // Update the current micro-ops, which will issue in the next cycle. 1853 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1854 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1855 1856 // Decrement DependentLatency based on the next cycle. 1857 if ((NextCycle - CurrCycle) > DependentLatency) 1858 DependentLatency = 0; 1859 else 1860 DependentLatency -= (NextCycle - CurrCycle); 1861 1862 if (!HazardRec->isEnabled()) { 1863 // Bypass HazardRec virtual calls. 1864 CurrCycle = NextCycle; 1865 } 1866 else { 1867 // Bypass getHazardType calls in case of long latency. 1868 for (; CurrCycle != NextCycle; ++CurrCycle) { 1869 if (isTop()) 1870 HazardRec->AdvanceCycle(); 1871 else 1872 HazardRec->RecedeCycle(); 1873 } 1874 } 1875 CheckPending = true; 1876 unsigned LFactor = SchedModel->getLatencyFactor(); 1877 IsResourceLimited = 1878 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1879 > (int)LFactor; 1880 1881 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1882 } 1883 1884 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 1885 ExecutedResCounts[PIdx] += Count; 1886 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1887 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1888 } 1889 1890 /// Add the given processor resource to this scheduled zone. 1891 /// 1892 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1893 /// during which this resource is consumed. 1894 /// 1895 /// \return the next cycle at which the instruction may execute without 1896 /// oversubscribing resources. 1897 unsigned SchedBoundary:: 1898 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 1899 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1900 unsigned Count = Factor * Cycles; 1901 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 1902 << " +" << Cycles << "x" << Factor << "u\n"); 1903 1904 // Update Executed resources counts. 1905 incExecutedResources(PIdx, Count); 1906 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1907 Rem->RemainingCounts[PIdx] -= Count; 1908 1909 // Check if this resource exceeds the current critical resource. If so, it 1910 // becomes the critical resource. 1911 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 1912 ZoneCritResIdx = PIdx; 1913 DEBUG(dbgs() << " *** Critical resource " 1914 << SchedModel->getResourceName(PIdx) << ": " 1915 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 1916 } 1917 // For reserved resources, record the highest cycle using the resource. 1918 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 1919 if (NextAvailable > CurrCycle) { 1920 DEBUG(dbgs() << " Resource conflict: " 1921 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 1922 << NextAvailable << "\n"); 1923 } 1924 return NextAvailable; 1925 } 1926 1927 /// Move the boundary of scheduled code by one SUnit. 1928 void SchedBoundary::bumpNode(SUnit *SU) { 1929 // Update the reservation table. 1930 if (HazardRec->isEnabled()) { 1931 if (!isTop() && SU->isCall) { 1932 // Calls are scheduled with their preceding instructions. For bottom-up 1933 // scheduling, clear the pipeline state before emitting. 1934 HazardRec->Reset(); 1935 } 1936 HazardRec->EmitInstruction(SU); 1937 } 1938 // checkHazard should prevent scheduling multiple instructions per cycle that 1939 // exceed the issue width. 1940 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1941 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 1942 assert( 1943 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 1944 "Cannot schedule this instruction's MicroOps in the current cycle."); 1945 1946 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1947 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 1948 1949 unsigned NextCycle = CurrCycle; 1950 switch (SchedModel->getMicroOpBufferSize()) { 1951 case 0: 1952 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 1953 break; 1954 case 1: 1955 if (ReadyCycle > NextCycle) { 1956 NextCycle = ReadyCycle; 1957 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 1958 } 1959 break; 1960 default: 1961 // We don't currently model the OOO reorder buffer, so consider all 1962 // scheduled MOps to be "retired". We do loosely model in-order resource 1963 // latency. If this instruction uses an in-order resource, account for any 1964 // likely stall cycles. 1965 if (SU->isUnbuffered && ReadyCycle > NextCycle) 1966 NextCycle = ReadyCycle; 1967 break; 1968 } 1969 RetiredMOps += IncMOps; 1970 1971 // Update resource counts and critical resource. 1972 if (SchedModel->hasInstrSchedModel()) { 1973 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 1974 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 1975 Rem->RemIssueCount -= DecRemIssue; 1976 if (ZoneCritResIdx) { 1977 // Scale scheduled micro-ops for comparing with the critical resource. 1978 unsigned ScaledMOps = 1979 RetiredMOps * SchedModel->getMicroOpFactor(); 1980 1981 // If scaled micro-ops are now more than the previous critical resource by 1982 // a full cycle, then micro-ops issue becomes critical. 1983 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 1984 >= (int)SchedModel->getLatencyFactor()) { 1985 ZoneCritResIdx = 0; 1986 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 1987 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 1988 } 1989 } 1990 for (TargetSchedModel::ProcResIter 1991 PI = SchedModel->getWriteProcResBegin(SC), 1992 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1993 unsigned RCycle = 1994 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 1995 if (RCycle > NextCycle) 1996 NextCycle = RCycle; 1997 } 1998 if (SU->hasReservedResource) { 1999 // For reserved resources, record the highest cycle using the resource. 2000 // For top-down scheduling, this is the cycle in which we schedule this 2001 // instruction plus the number of cycles the operations reserves the 2002 // resource. For bottom-up is it simply the instruction's cycle. 2003 for (TargetSchedModel::ProcResIter 2004 PI = SchedModel->getWriteProcResBegin(SC), 2005 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2006 unsigned PIdx = PI->ProcResourceIdx; 2007 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2008 if (isTop()) { 2009 ReservedCycles[PIdx] = 2010 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2011 } 2012 else 2013 ReservedCycles[PIdx] = NextCycle; 2014 } 2015 } 2016 } 2017 } 2018 // Update ExpectedLatency and DependentLatency. 2019 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2020 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2021 if (SU->getDepth() > TopLatency) { 2022 TopLatency = SU->getDepth(); 2023 DEBUG(dbgs() << " " << Available.getName() 2024 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2025 } 2026 if (SU->getHeight() > BotLatency) { 2027 BotLatency = SU->getHeight(); 2028 DEBUG(dbgs() << " " << Available.getName() 2029 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2030 } 2031 // If we stall for any reason, bump the cycle. 2032 if (NextCycle > CurrCycle) { 2033 bumpCycle(NextCycle); 2034 } 2035 else { 2036 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2037 // resource limited. If a stall occurred, bumpCycle does this. 2038 unsigned LFactor = SchedModel->getLatencyFactor(); 2039 IsResourceLimited = 2040 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2041 > (int)LFactor; 2042 } 2043 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2044 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2045 // one cycle. Since we commonly reach the max MOps here, opportunistically 2046 // bump the cycle to avoid uselessly checking everything in the readyQ. 2047 CurrMOps += IncMOps; 2048 while (CurrMOps >= SchedModel->getIssueWidth()) { 2049 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2050 << " at cycle " << CurrCycle << '\n'); 2051 bumpCycle(++NextCycle); 2052 } 2053 DEBUG(dumpScheduledState()); 2054 } 2055 2056 /// Release pending ready nodes in to the available queue. This makes them 2057 /// visible to heuristics. 2058 void SchedBoundary::releasePending() { 2059 // If the available queue is empty, it is safe to reset MinReadyCycle. 2060 if (Available.empty()) 2061 MinReadyCycle = UINT_MAX; 2062 2063 // Check to see if any of the pending instructions are ready to issue. If 2064 // so, add them to the available queue. 2065 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2066 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2067 SUnit *SU = *(Pending.begin()+i); 2068 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2069 2070 if (ReadyCycle < MinReadyCycle) 2071 MinReadyCycle = ReadyCycle; 2072 2073 if (!IsBuffered && ReadyCycle > CurrCycle) 2074 continue; 2075 2076 if (checkHazard(SU)) 2077 continue; 2078 2079 Available.push(SU); 2080 Pending.remove(Pending.begin()+i); 2081 --i; --e; 2082 } 2083 DEBUG(if (!Pending.empty()) Pending.dump()); 2084 CheckPending = false; 2085 } 2086 2087 /// Remove SU from the ready set for this boundary. 2088 void SchedBoundary::removeReady(SUnit *SU) { 2089 if (Available.isInQueue(SU)) 2090 Available.remove(Available.find(SU)); 2091 else { 2092 assert(Pending.isInQueue(SU) && "bad ready count"); 2093 Pending.remove(Pending.find(SU)); 2094 } 2095 } 2096 2097 /// If this queue only has one ready candidate, return it. As a side effect, 2098 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2099 /// one node is ready. If multiple instructions are ready, return NULL. 2100 SUnit *SchedBoundary::pickOnlyChoice() { 2101 if (CheckPending) 2102 releasePending(); 2103 2104 if (CurrMOps > 0) { 2105 // Defer any ready instrs that now have a hazard. 2106 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2107 if (checkHazard(*I)) { 2108 Pending.push(*I); 2109 I = Available.remove(I); 2110 continue; 2111 } 2112 ++I; 2113 } 2114 } 2115 for (unsigned i = 0; Available.empty(); ++i) { 2116 // FIXME: Re-enable assert once PR20057 is resolved. 2117 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2118 // "permanent hazard"); 2119 (void)i; 2120 bumpCycle(CurrCycle + 1); 2121 releasePending(); 2122 } 2123 if (Available.size() == 1) 2124 return *Available.begin(); 2125 return nullptr; 2126 } 2127 2128 #ifndef NDEBUG 2129 // This is useful information to dump after bumpNode. 2130 // Note that the Queue contents are more useful before pickNodeFromQueue. 2131 void SchedBoundary::dumpScheduledState() { 2132 unsigned ResFactor; 2133 unsigned ResCount; 2134 if (ZoneCritResIdx) { 2135 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2136 ResCount = getResourceCount(ZoneCritResIdx); 2137 } 2138 else { 2139 ResFactor = SchedModel->getMicroOpFactor(); 2140 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2141 } 2142 unsigned LFactor = SchedModel->getLatencyFactor(); 2143 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2144 << " Retired: " << RetiredMOps; 2145 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2146 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2147 << ResCount / ResFactor << " " 2148 << SchedModel->getResourceName(ZoneCritResIdx) 2149 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2150 << (IsResourceLimited ? " - Resource" : " - Latency") 2151 << " limited.\n"; 2152 } 2153 #endif 2154 2155 //===----------------------------------------------------------------------===// 2156 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2157 //===----------------------------------------------------------------------===// 2158 2159 void GenericSchedulerBase::SchedCandidate:: 2160 initResourceDelta(const ScheduleDAGMI *DAG, 2161 const TargetSchedModel *SchedModel) { 2162 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2163 return; 2164 2165 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2166 for (TargetSchedModel::ProcResIter 2167 PI = SchedModel->getWriteProcResBegin(SC), 2168 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2169 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2170 ResDelta.CritResources += PI->Cycles; 2171 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2172 ResDelta.DemandedResources += PI->Cycles; 2173 } 2174 } 2175 2176 /// Set the CandPolicy given a scheduling zone given the current resources and 2177 /// latencies inside and outside the zone. 2178 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, 2179 bool IsPostRA, 2180 SchedBoundary &CurrZone, 2181 SchedBoundary *OtherZone) { 2182 // Apply preemptive heuristics based on the total latency and resources 2183 // inside and outside this zone. Potential stalls should be considered before 2184 // following this policy. 2185 2186 // Compute remaining latency. We need this both to determine whether the 2187 // overall schedule has become latency-limited and whether the instructions 2188 // outside this zone are resource or latency limited. 2189 // 2190 // The "dependent" latency is updated incrementally during scheduling as the 2191 // max height/depth of scheduled nodes minus the cycles since it was 2192 // scheduled: 2193 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2194 // 2195 // The "independent" latency is the max ready queue depth: 2196 // ILat = max N.depth for N in Available|Pending 2197 // 2198 // RemainingLatency is the greater of independent and dependent latency. 2199 unsigned RemLatency = CurrZone.getDependentLatency(); 2200 RemLatency = std::max(RemLatency, 2201 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2202 RemLatency = std::max(RemLatency, 2203 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2204 2205 // Compute the critical resource outside the zone. 2206 unsigned OtherCritIdx = 0; 2207 unsigned OtherCount = 2208 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2209 2210 bool OtherResLimited = false; 2211 if (SchedModel->hasInstrSchedModel()) { 2212 unsigned LFactor = SchedModel->getLatencyFactor(); 2213 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2214 } 2215 // Schedule aggressively for latency in PostRA mode. We don't check for 2216 // acyclic latency during PostRA, and highly out-of-order processors will 2217 // skip PostRA scheduling. 2218 if (!OtherResLimited) { 2219 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2220 Policy.ReduceLatency |= true; 2221 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2222 << " RemainingLatency " << RemLatency << " + " 2223 << CurrZone.getCurrCycle() << "c > CritPath " 2224 << Rem.CriticalPath << "\n"); 2225 } 2226 } 2227 // If the same resource is limiting inside and outside the zone, do nothing. 2228 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2229 return; 2230 2231 DEBUG( 2232 if (CurrZone.isResourceLimited()) { 2233 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2234 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2235 << "\n"; 2236 } 2237 if (OtherResLimited) 2238 dbgs() << " RemainingLimit: " 2239 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2240 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2241 dbgs() << " Latency limited both directions.\n"); 2242 2243 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2244 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2245 2246 if (OtherResLimited) 2247 Policy.DemandResIdx = OtherCritIdx; 2248 } 2249 2250 #ifndef NDEBUG 2251 const char *GenericSchedulerBase::getReasonStr( 2252 GenericSchedulerBase::CandReason Reason) { 2253 switch (Reason) { 2254 case NoCand: return "NOCAND "; 2255 case PhysRegCopy: return "PREG-COPY"; 2256 case RegExcess: return "REG-EXCESS"; 2257 case RegCritical: return "REG-CRIT "; 2258 case Stall: return "STALL "; 2259 case Cluster: return "CLUSTER "; 2260 case Weak: return "WEAK "; 2261 case RegMax: return "REG-MAX "; 2262 case ResourceReduce: return "RES-REDUCE"; 2263 case ResourceDemand: return "RES-DEMAND"; 2264 case TopDepthReduce: return "TOP-DEPTH "; 2265 case TopPathReduce: return "TOP-PATH "; 2266 case BotHeightReduce:return "BOT-HEIGHT"; 2267 case BotPathReduce: return "BOT-PATH "; 2268 case NextDefUse: return "DEF-USE "; 2269 case NodeOrder: return "ORDER "; 2270 }; 2271 llvm_unreachable("Unknown reason!"); 2272 } 2273 2274 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2275 PressureChange P; 2276 unsigned ResIdx = 0; 2277 unsigned Latency = 0; 2278 switch (Cand.Reason) { 2279 default: 2280 break; 2281 case RegExcess: 2282 P = Cand.RPDelta.Excess; 2283 break; 2284 case RegCritical: 2285 P = Cand.RPDelta.CriticalMax; 2286 break; 2287 case RegMax: 2288 P = Cand.RPDelta.CurrentMax; 2289 break; 2290 case ResourceReduce: 2291 ResIdx = Cand.Policy.ReduceResIdx; 2292 break; 2293 case ResourceDemand: 2294 ResIdx = Cand.Policy.DemandResIdx; 2295 break; 2296 case TopDepthReduce: 2297 Latency = Cand.SU->getDepth(); 2298 break; 2299 case TopPathReduce: 2300 Latency = Cand.SU->getHeight(); 2301 break; 2302 case BotHeightReduce: 2303 Latency = Cand.SU->getHeight(); 2304 break; 2305 case BotPathReduce: 2306 Latency = Cand.SU->getDepth(); 2307 break; 2308 } 2309 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2310 if (P.isValid()) 2311 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2312 << ":" << P.getUnitInc() << " "; 2313 else 2314 dbgs() << " "; 2315 if (ResIdx) 2316 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2317 else 2318 dbgs() << " "; 2319 if (Latency) 2320 dbgs() << " " << Latency << " cycles "; 2321 else 2322 dbgs() << " "; 2323 dbgs() << '\n'; 2324 } 2325 #endif 2326 2327 /// Return true if this heuristic determines order. 2328 static bool tryLess(int TryVal, int CandVal, 2329 GenericSchedulerBase::SchedCandidate &TryCand, 2330 GenericSchedulerBase::SchedCandidate &Cand, 2331 GenericSchedulerBase::CandReason Reason) { 2332 if (TryVal < CandVal) { 2333 TryCand.Reason = Reason; 2334 return true; 2335 } 2336 if (TryVal > CandVal) { 2337 if (Cand.Reason > Reason) 2338 Cand.Reason = Reason; 2339 return true; 2340 } 2341 Cand.setRepeat(Reason); 2342 return false; 2343 } 2344 2345 static bool tryGreater(int TryVal, int CandVal, 2346 GenericSchedulerBase::SchedCandidate &TryCand, 2347 GenericSchedulerBase::SchedCandidate &Cand, 2348 GenericSchedulerBase::CandReason Reason) { 2349 if (TryVal > CandVal) { 2350 TryCand.Reason = Reason; 2351 return true; 2352 } 2353 if (TryVal < CandVal) { 2354 if (Cand.Reason > Reason) 2355 Cand.Reason = Reason; 2356 return true; 2357 } 2358 Cand.setRepeat(Reason); 2359 return false; 2360 } 2361 2362 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2363 GenericSchedulerBase::SchedCandidate &Cand, 2364 SchedBoundary &Zone) { 2365 if (Zone.isTop()) { 2366 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2367 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2368 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2369 return true; 2370 } 2371 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2372 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2373 return true; 2374 } 2375 else { 2376 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2377 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2378 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2379 return true; 2380 } 2381 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2382 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2383 return true; 2384 } 2385 return false; 2386 } 2387 2388 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, 2389 bool IsTop) { 2390 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2391 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); 2392 } 2393 2394 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2395 assert(dag->hasVRegLiveness() && 2396 "(PreRA)GenericScheduler needs vreg liveness"); 2397 DAG = static_cast<ScheduleDAGMILive*>(dag); 2398 SchedModel = DAG->getSchedModel(); 2399 TRI = DAG->TRI; 2400 2401 Rem.init(DAG, SchedModel); 2402 Top.init(DAG, SchedModel, &Rem); 2403 Bot.init(DAG, SchedModel, &Rem); 2404 2405 // Initialize resource counts. 2406 2407 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2408 // are disabled, then these HazardRecs will be disabled. 2409 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2410 if (!Top.HazardRec) { 2411 Top.HazardRec = 2412 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2413 Itin, DAG); 2414 } 2415 if (!Bot.HazardRec) { 2416 Bot.HazardRec = 2417 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2418 Itin, DAG); 2419 } 2420 } 2421 2422 /// Initialize the per-region scheduling policy. 2423 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2424 MachineBasicBlock::iterator End, 2425 unsigned NumRegionInstrs) { 2426 const MachineFunction &MF = *Begin->getParent()->getParent(); 2427 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2428 2429 // Avoid setting up the register pressure tracker for small regions to save 2430 // compile time. As a rough heuristic, only track pressure when the number of 2431 // schedulable instructions exceeds half the integer register file. 2432 RegionPolicy.ShouldTrackPressure = true; 2433 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2434 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2435 if (TLI->isTypeLegal(LegalIntVT)) { 2436 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2437 TLI->getRegClassFor(LegalIntVT)); 2438 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2439 } 2440 } 2441 2442 // For generic targets, we default to bottom-up, because it's simpler and more 2443 // compile-time optimizations have been implemented in that direction. 2444 RegionPolicy.OnlyBottomUp = true; 2445 2446 // Allow the subtarget to override default policy. 2447 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End, 2448 NumRegionInstrs); 2449 2450 // After subtarget overrides, apply command line options. 2451 if (!EnableRegPressure) 2452 RegionPolicy.ShouldTrackPressure = false; 2453 2454 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2455 // e.g. -misched-bottomup=false allows scheduling in both directions. 2456 assert((!ForceTopDown || !ForceBottomUp) && 2457 "-misched-topdown incompatible with -misched-bottomup"); 2458 if (ForceBottomUp.getNumOccurrences() > 0) { 2459 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2460 if (RegionPolicy.OnlyBottomUp) 2461 RegionPolicy.OnlyTopDown = false; 2462 } 2463 if (ForceTopDown.getNumOccurrences() > 0) { 2464 RegionPolicy.OnlyTopDown = ForceTopDown; 2465 if (RegionPolicy.OnlyTopDown) 2466 RegionPolicy.OnlyBottomUp = false; 2467 } 2468 } 2469 2470 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2471 /// critical path by more cycles than it takes to drain the instruction buffer. 2472 /// We estimate an upper bounds on in-flight instructions as: 2473 /// 2474 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2475 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2476 /// InFlightResources = InFlightIterations * LoopResources 2477 /// 2478 /// TODO: Check execution resources in addition to IssueCount. 2479 void GenericScheduler::checkAcyclicLatency() { 2480 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2481 return; 2482 2483 // Scaled number of cycles per loop iteration. 2484 unsigned IterCount = 2485 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2486 Rem.RemIssueCount); 2487 // Scaled acyclic critical path. 2488 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2489 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2490 unsigned InFlightCount = 2491 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2492 unsigned BufferLimit = 2493 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2494 2495 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2496 2497 DEBUG(dbgs() << "IssueCycles=" 2498 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2499 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2500 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2501 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2502 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2503 if (Rem.IsAcyclicLatencyLimited) 2504 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2505 } 2506 2507 void GenericScheduler::registerRoots() { 2508 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2509 2510 // Some roots may not feed into ExitSU. Check all of them in case. 2511 for (std::vector<SUnit*>::const_iterator 2512 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2513 if ((*I)->getDepth() > Rem.CriticalPath) 2514 Rem.CriticalPath = (*I)->getDepth(); 2515 } 2516 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2517 if (DumpCriticalPathLength) { 2518 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2519 } 2520 2521 if (EnableCyclicPath) { 2522 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2523 checkAcyclicLatency(); 2524 } 2525 } 2526 2527 static bool tryPressure(const PressureChange &TryP, 2528 const PressureChange &CandP, 2529 GenericSchedulerBase::SchedCandidate &TryCand, 2530 GenericSchedulerBase::SchedCandidate &Cand, 2531 GenericSchedulerBase::CandReason Reason) { 2532 int TryRank = TryP.getPSetOrMax(); 2533 int CandRank = CandP.getPSetOrMax(); 2534 // If both candidates affect the same set, go with the smallest increase. 2535 if (TryRank == CandRank) { 2536 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2537 Reason); 2538 } 2539 // If one candidate decreases and the other increases, go with it. 2540 // Invalid candidates have UnitInc==0. 2541 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2542 Reason)) { 2543 return true; 2544 } 2545 // If the candidates are decreasing pressure, reverse priority. 2546 if (TryP.getUnitInc() < 0) 2547 std::swap(TryRank, CandRank); 2548 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2549 } 2550 2551 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2552 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2553 } 2554 2555 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2556 /// their physreg def/use. 2557 /// 2558 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2559 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2560 /// with the operation that produces or consumes the physreg. We'll do this when 2561 /// regalloc has support for parallel copies. 2562 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2563 const MachineInstr *MI = SU->getInstr(); 2564 if (!MI->isCopy()) 2565 return 0; 2566 2567 unsigned ScheduledOper = isTop ? 1 : 0; 2568 unsigned UnscheduledOper = isTop ? 0 : 1; 2569 // If we have already scheduled the physreg produce/consumer, immediately 2570 // schedule the copy. 2571 if (TargetRegisterInfo::isPhysicalRegister( 2572 MI->getOperand(ScheduledOper).getReg())) 2573 return 1; 2574 // If the physreg is at the boundary, defer it. Otherwise schedule it 2575 // immediately to free the dependent. We can hoist the copy later. 2576 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2577 if (TargetRegisterInfo::isPhysicalRegister( 2578 MI->getOperand(UnscheduledOper).getReg())) 2579 return AtBoundary ? -1 : 1; 2580 return 0; 2581 } 2582 2583 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2584 /// hierarchical. This may be more efficient than a graduated cost model because 2585 /// we don't need to evaluate all aspects of the model for each node in the 2586 /// queue. But it's really done to make the heuristics easier to debug and 2587 /// statistically analyze. 2588 /// 2589 /// \param Cand provides the policy and current best candidate. 2590 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2591 /// \param Zone describes the scheduled zone that we are extending. 2592 /// \param RPTracker describes reg pressure within the scheduled zone. 2593 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2594 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2595 SchedCandidate &TryCand, 2596 SchedBoundary &Zone, 2597 const RegPressureTracker &RPTracker, 2598 RegPressureTracker &TempTracker) { 2599 2600 if (DAG->isTrackingPressure()) { 2601 // Always initialize TryCand's RPDelta. 2602 if (Zone.isTop()) { 2603 TempTracker.getMaxDownwardPressureDelta( 2604 TryCand.SU->getInstr(), 2605 TryCand.RPDelta, 2606 DAG->getRegionCriticalPSets(), 2607 DAG->getRegPressure().MaxSetPressure); 2608 } 2609 else { 2610 if (VerifyScheduling) { 2611 TempTracker.getMaxUpwardPressureDelta( 2612 TryCand.SU->getInstr(), 2613 &DAG->getPressureDiff(TryCand.SU), 2614 TryCand.RPDelta, 2615 DAG->getRegionCriticalPSets(), 2616 DAG->getRegPressure().MaxSetPressure); 2617 } 2618 else { 2619 RPTracker.getUpwardPressureDelta( 2620 TryCand.SU->getInstr(), 2621 DAG->getPressureDiff(TryCand.SU), 2622 TryCand.RPDelta, 2623 DAG->getRegionCriticalPSets(), 2624 DAG->getRegPressure().MaxSetPressure); 2625 } 2626 } 2627 } 2628 DEBUG(if (TryCand.RPDelta.Excess.isValid()) 2629 dbgs() << " SU(" << TryCand.SU->NodeNum << ") " 2630 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) 2631 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); 2632 2633 // Initialize the candidate if needed. 2634 if (!Cand.isValid()) { 2635 TryCand.Reason = NodeOrder; 2636 return; 2637 } 2638 2639 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2640 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2641 TryCand, Cand, PhysRegCopy)) 2642 return; 2643 2644 // Avoid exceeding the target's limit. 2645 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2646 Cand.RPDelta.Excess, 2647 TryCand, Cand, RegExcess)) 2648 return; 2649 2650 // Avoid increasing the max critical pressure in the scheduled region. 2651 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2652 Cand.RPDelta.CriticalMax, 2653 TryCand, Cand, RegCritical)) 2654 return; 2655 2656 // For loops that are acyclic path limited, aggressively schedule for latency. 2657 // This can result in very long dependence chains scheduled in sequence, so 2658 // once every cycle (when CurrMOps == 0), switch to normal heuristics. 2659 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() 2660 && tryLatency(TryCand, Cand, Zone)) 2661 return; 2662 2663 // Prioritize instructions that read unbuffered resources by stall cycles. 2664 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), 2665 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2666 return; 2667 2668 // Keep clustered nodes together to encourage downstream peephole 2669 // optimizations which may reduce resource requirements. 2670 // 2671 // This is a best effort to set things up for a post-RA pass. Optimizations 2672 // like generating loads of multiple registers should ideally be done within 2673 // the scheduler pass by combining the loads during DAG postprocessing. 2674 const SUnit *NextClusterSU = 2675 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2676 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2677 TryCand, Cand, Cluster)) 2678 return; 2679 2680 // Weak edges are for clustering and other constraints. 2681 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2682 getWeakLeft(Cand.SU, Zone.isTop()), 2683 TryCand, Cand, Weak)) { 2684 return; 2685 } 2686 // Avoid increasing the max pressure of the entire region. 2687 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2688 Cand.RPDelta.CurrentMax, 2689 TryCand, Cand, RegMax)) 2690 return; 2691 2692 // Avoid critical resource consumption and balance the schedule. 2693 TryCand.initResourceDelta(DAG, SchedModel); 2694 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2695 TryCand, Cand, ResourceReduce)) 2696 return; 2697 if (tryGreater(TryCand.ResDelta.DemandedResources, 2698 Cand.ResDelta.DemandedResources, 2699 TryCand, Cand, ResourceDemand)) 2700 return; 2701 2702 // Avoid serializing long latency dependence chains. 2703 // For acyclic path limited loops, latency was already checked above. 2704 if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited 2705 && tryLatency(TryCand, Cand, Zone)) { 2706 return; 2707 } 2708 2709 // Prefer immediate defs/users of the last scheduled instruction. This is a 2710 // local pressure avoidance strategy that also makes the machine code 2711 // readable. 2712 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), 2713 TryCand, Cand, NextDefUse)) 2714 return; 2715 2716 // Fall through to original instruction order. 2717 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2718 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2719 TryCand.Reason = NodeOrder; 2720 } 2721 } 2722 2723 /// Pick the best candidate from the queue. 2724 /// 2725 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2726 /// DAG building. To adjust for the current scheduling location we need to 2727 /// maintain the number of vreg uses remaining to be top-scheduled. 2728 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2729 const RegPressureTracker &RPTracker, 2730 SchedCandidate &Cand) { 2731 ReadyQueue &Q = Zone.Available; 2732 2733 DEBUG(Q.dump()); 2734 2735 // getMaxPressureDelta temporarily modifies the tracker. 2736 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2737 2738 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2739 2740 SchedCandidate TryCand(Cand.Policy); 2741 TryCand.SU = *I; 2742 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2743 if (TryCand.Reason != NoCand) { 2744 // Initialize resource delta if needed in case future heuristics query it. 2745 if (TryCand.ResDelta == SchedResourceDelta()) 2746 TryCand.initResourceDelta(DAG, SchedModel); 2747 Cand.setBest(TryCand); 2748 DEBUG(traceCandidate(Cand)); 2749 } 2750 } 2751 } 2752 2753 /// Pick the best candidate node from either the top or bottom queue. 2754 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2755 // Schedule as far as possible in the direction of no choice. This is most 2756 // efficient, but also provides the best heuristics for CriticalPSets. 2757 if (SUnit *SU = Bot.pickOnlyChoice()) { 2758 IsTopNode = false; 2759 DEBUG(dbgs() << "Pick Bot NOCAND\n"); 2760 return SU; 2761 } 2762 if (SUnit *SU = Top.pickOnlyChoice()) { 2763 IsTopNode = true; 2764 DEBUG(dbgs() << "Pick Top NOCAND\n"); 2765 return SU; 2766 } 2767 CandPolicy NoPolicy; 2768 SchedCandidate BotCand(NoPolicy); 2769 SchedCandidate TopCand(NoPolicy); 2770 // Set the bottom-up policy based on the state of the current bottom zone and 2771 // the instructions outside the zone, including the top zone. 2772 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); 2773 // Set the top-down policy based on the state of the current top zone and 2774 // the instructions outside the zone, including the bottom zone. 2775 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); 2776 2777 // Prefer bottom scheduling when heuristics are silent. 2778 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2779 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2780 2781 // If either Q has a single candidate that provides the least increase in 2782 // Excess pressure, we can immediately schedule from that Q. 2783 // 2784 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2785 // affects picking from either Q. If scheduling in one direction must 2786 // increase pressure for one of the excess PSets, then schedule in that 2787 // direction first to provide more freedom in the other direction. 2788 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2789 || (BotCand.Reason == RegCritical 2790 && !BotCand.isRepeat(RegCritical))) 2791 { 2792 IsTopNode = false; 2793 tracePick(BotCand, IsTopNode); 2794 return BotCand.SU; 2795 } 2796 // Check if the top Q has a better candidate. 2797 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2798 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2799 2800 // Choose the queue with the most important (lowest enum) reason. 2801 if (TopCand.Reason < BotCand.Reason) { 2802 IsTopNode = true; 2803 tracePick(TopCand, IsTopNode); 2804 return TopCand.SU; 2805 } 2806 // Otherwise prefer the bottom candidate, in node order if all else failed. 2807 IsTopNode = false; 2808 tracePick(BotCand, IsTopNode); 2809 return BotCand.SU; 2810 } 2811 2812 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2813 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2814 if (DAG->top() == DAG->bottom()) { 2815 assert(Top.Available.empty() && Top.Pending.empty() && 2816 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2817 return nullptr; 2818 } 2819 SUnit *SU; 2820 do { 2821 if (RegionPolicy.OnlyTopDown) { 2822 SU = Top.pickOnlyChoice(); 2823 if (!SU) { 2824 CandPolicy NoPolicy; 2825 SchedCandidate TopCand(NoPolicy); 2826 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2827 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2828 tracePick(TopCand, true); 2829 SU = TopCand.SU; 2830 } 2831 IsTopNode = true; 2832 } 2833 else if (RegionPolicy.OnlyBottomUp) { 2834 SU = Bot.pickOnlyChoice(); 2835 if (!SU) { 2836 CandPolicy NoPolicy; 2837 SchedCandidate BotCand(NoPolicy); 2838 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2839 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2840 tracePick(BotCand, false); 2841 SU = BotCand.SU; 2842 } 2843 IsTopNode = false; 2844 } 2845 else { 2846 SU = pickNodeBidirectional(IsTopNode); 2847 } 2848 } while (SU->isScheduled); 2849 2850 if (SU->isTopReady()) 2851 Top.removeReady(SU); 2852 if (SU->isBottomReady()) 2853 Bot.removeReady(SU); 2854 2855 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2856 return SU; 2857 } 2858 2859 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2860 2861 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2862 if (!isTop) 2863 ++InsertPos; 2864 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2865 2866 // Find already scheduled copies with a single physreg dependence and move 2867 // them just above the scheduled instruction. 2868 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2869 I != E; ++I) { 2870 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2871 continue; 2872 SUnit *DepSU = I->getSUnit(); 2873 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2874 continue; 2875 MachineInstr *Copy = DepSU->getInstr(); 2876 if (!Copy->isCopy()) 2877 continue; 2878 DEBUG(dbgs() << " Rescheduling physreg copy "; 2879 I->getSUnit()->dump(DAG)); 2880 DAG->moveInstruction(Copy, InsertPos); 2881 } 2882 } 2883 2884 /// Update the scheduler's state after scheduling a node. This is the same node 2885 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 2886 /// update it's state based on the current cycle before MachineSchedStrategy 2887 /// does. 2888 /// 2889 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2890 /// them here. See comments in biasPhysRegCopy. 2891 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2892 if (IsTopNode) { 2893 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 2894 Top.bumpNode(SU); 2895 if (SU->hasPhysRegUses) 2896 reschedulePhysRegCopies(SU, true); 2897 } 2898 else { 2899 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 2900 Bot.bumpNode(SU); 2901 if (SU->hasPhysRegDefs) 2902 reschedulePhysRegCopies(SU, false); 2903 } 2904 } 2905 2906 /// Create the standard converging machine scheduler. This will be used as the 2907 /// default scheduler if the target does not set a default. 2908 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 2909 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 2910 // Register DAG post-processors. 2911 // 2912 // FIXME: extend the mutation API to allow earlier mutations to instantiate 2913 // data and pass it to later mutations. Have a single mutation that gathers 2914 // the interesting nodes in one pass. 2915 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); 2916 if (EnableLoadCluster && DAG->TII->enableClusterLoads()) 2917 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); 2918 if (EnableMacroFusion) 2919 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI)); 2920 return DAG; 2921 } 2922 2923 static MachineSchedRegistry 2924 GenericSchedRegistry("converge", "Standard converging scheduler.", 2925 createGenericSchedLive); 2926 2927 //===----------------------------------------------------------------------===// 2928 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 2929 //===----------------------------------------------------------------------===// 2930 2931 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 2932 DAG = Dag; 2933 SchedModel = DAG->getSchedModel(); 2934 TRI = DAG->TRI; 2935 2936 Rem.init(DAG, SchedModel); 2937 Top.init(DAG, SchedModel, &Rem); 2938 BotRoots.clear(); 2939 2940 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 2941 // or are disabled, then these HazardRecs will be disabled. 2942 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2943 if (!Top.HazardRec) { 2944 Top.HazardRec = 2945 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2946 Itin, DAG); 2947 } 2948 } 2949 2950 2951 void PostGenericScheduler::registerRoots() { 2952 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2953 2954 // Some roots may not feed into ExitSU. Check all of them in case. 2955 for (SmallVectorImpl<SUnit*>::const_iterator 2956 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 2957 if ((*I)->getDepth() > Rem.CriticalPath) 2958 Rem.CriticalPath = (*I)->getDepth(); 2959 } 2960 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 2961 if (DumpCriticalPathLength) { 2962 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 2963 } 2964 } 2965 2966 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 2967 /// 2968 /// \param Cand provides the policy and current best candidate. 2969 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2970 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 2971 SchedCandidate &TryCand) { 2972 2973 // Initialize the candidate if needed. 2974 if (!Cand.isValid()) { 2975 TryCand.Reason = NodeOrder; 2976 return; 2977 } 2978 2979 // Prioritize instructions that read unbuffered resources by stall cycles. 2980 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 2981 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2982 return; 2983 2984 // Avoid critical resource consumption and balance the schedule. 2985 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2986 TryCand, Cand, ResourceReduce)) 2987 return; 2988 if (tryGreater(TryCand.ResDelta.DemandedResources, 2989 Cand.ResDelta.DemandedResources, 2990 TryCand, Cand, ResourceDemand)) 2991 return; 2992 2993 // Avoid serializing long latency dependence chains. 2994 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 2995 return; 2996 } 2997 2998 // Fall through to original instruction order. 2999 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3000 TryCand.Reason = NodeOrder; 3001 } 3002 3003 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3004 ReadyQueue &Q = Top.Available; 3005 3006 DEBUG(Q.dump()); 3007 3008 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3009 SchedCandidate TryCand(Cand.Policy); 3010 TryCand.SU = *I; 3011 TryCand.initResourceDelta(DAG, SchedModel); 3012 tryCandidate(Cand, TryCand); 3013 if (TryCand.Reason != NoCand) { 3014 Cand.setBest(TryCand); 3015 DEBUG(traceCandidate(Cand)); 3016 } 3017 } 3018 } 3019 3020 /// Pick the next node to schedule. 3021 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3022 if (DAG->top() == DAG->bottom()) { 3023 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3024 return nullptr; 3025 } 3026 SUnit *SU; 3027 do { 3028 SU = Top.pickOnlyChoice(); 3029 if (!SU) { 3030 CandPolicy NoPolicy; 3031 SchedCandidate TopCand(NoPolicy); 3032 // Set the top-down policy based on the state of the current top zone and 3033 // the instructions outside the zone, including the bottom zone. 3034 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3035 pickNodeFromQueue(TopCand); 3036 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3037 tracePick(TopCand, true); 3038 SU = TopCand.SU; 3039 } 3040 } while (SU->isScheduled); 3041 3042 IsTopNode = true; 3043 Top.removeReady(SU); 3044 3045 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3046 return SU; 3047 } 3048 3049 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3050 /// scheduled/remaining flags in the DAG nodes. 3051 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3052 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3053 Top.bumpNode(SU); 3054 } 3055 3056 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3057 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3058 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3059 } 3060 3061 //===----------------------------------------------------------------------===// 3062 // ILP Scheduler. Currently for experimental analysis of heuristics. 3063 //===----------------------------------------------------------------------===// 3064 3065 namespace { 3066 /// \brief Order nodes by the ILP metric. 3067 struct ILPOrder { 3068 const SchedDFSResult *DFSResult; 3069 const BitVector *ScheduledTrees; 3070 bool MaximizeILP; 3071 3072 ILPOrder(bool MaxILP) 3073 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3074 3075 /// \brief Apply a less-than relation on node priority. 3076 /// 3077 /// (Return true if A comes after B in the Q.) 3078 bool operator()(const SUnit *A, const SUnit *B) const { 3079 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3080 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3081 if (SchedTreeA != SchedTreeB) { 3082 // Unscheduled trees have lower priority. 3083 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3084 return ScheduledTrees->test(SchedTreeB); 3085 3086 // Trees with shallower connections have have lower priority. 3087 if (DFSResult->getSubtreeLevel(SchedTreeA) 3088 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3089 return DFSResult->getSubtreeLevel(SchedTreeA) 3090 < DFSResult->getSubtreeLevel(SchedTreeB); 3091 } 3092 } 3093 if (MaximizeILP) 3094 return DFSResult->getILP(A) < DFSResult->getILP(B); 3095 else 3096 return DFSResult->getILP(A) > DFSResult->getILP(B); 3097 } 3098 }; 3099 3100 /// \brief Schedule based on the ILP metric. 3101 class ILPScheduler : public MachineSchedStrategy { 3102 ScheduleDAGMILive *DAG; 3103 ILPOrder Cmp; 3104 3105 std::vector<SUnit*> ReadyQ; 3106 public: 3107 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3108 3109 void initialize(ScheduleDAGMI *dag) override { 3110 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3111 DAG = static_cast<ScheduleDAGMILive*>(dag); 3112 DAG->computeDFSResult(); 3113 Cmp.DFSResult = DAG->getDFSResult(); 3114 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3115 ReadyQ.clear(); 3116 } 3117 3118 void registerRoots() override { 3119 // Restore the heap in ReadyQ with the updated DFS results. 3120 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3121 } 3122 3123 /// Implement MachineSchedStrategy interface. 3124 /// ----------------------------------------- 3125 3126 /// Callback to select the highest priority node from the ready Q. 3127 SUnit *pickNode(bool &IsTopNode) override { 3128 if (ReadyQ.empty()) return nullptr; 3129 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3130 SUnit *SU = ReadyQ.back(); 3131 ReadyQ.pop_back(); 3132 IsTopNode = false; 3133 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3134 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3135 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3136 << DAG->getDFSResult()->getSubtreeLevel( 3137 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3138 << "Scheduling " << *SU->getInstr()); 3139 return SU; 3140 } 3141 3142 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3143 void scheduleTree(unsigned SubtreeID) override { 3144 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3145 } 3146 3147 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3148 /// DFSResults, and resort the priority Q. 3149 void schedNode(SUnit *SU, bool IsTopNode) override { 3150 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3151 } 3152 3153 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3154 3155 void releaseBottomNode(SUnit *SU) override { 3156 ReadyQ.push_back(SU); 3157 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3158 } 3159 }; 3160 } // namespace 3161 3162 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3163 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3164 } 3165 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3166 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3167 } 3168 static MachineSchedRegistry ILPMaxRegistry( 3169 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3170 static MachineSchedRegistry ILPMinRegistry( 3171 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3172 3173 //===----------------------------------------------------------------------===// 3174 // Machine Instruction Shuffler for Correctness Testing 3175 //===----------------------------------------------------------------------===// 3176 3177 #ifndef NDEBUG 3178 namespace { 3179 /// Apply a less-than relation on the node order, which corresponds to the 3180 /// instruction order prior to scheduling. IsReverse implements greater-than. 3181 template<bool IsReverse> 3182 struct SUnitOrder { 3183 bool operator()(SUnit *A, SUnit *B) const { 3184 if (IsReverse) 3185 return A->NodeNum > B->NodeNum; 3186 else 3187 return A->NodeNum < B->NodeNum; 3188 } 3189 }; 3190 3191 /// Reorder instructions as much as possible. 3192 class InstructionShuffler : public MachineSchedStrategy { 3193 bool IsAlternating; 3194 bool IsTopDown; 3195 3196 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3197 // gives nodes with a higher number higher priority causing the latest 3198 // instructions to be scheduled first. 3199 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3200 TopQ; 3201 // When scheduling bottom-up, use greater-than as the queue priority. 3202 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3203 BottomQ; 3204 public: 3205 InstructionShuffler(bool alternate, bool topdown) 3206 : IsAlternating(alternate), IsTopDown(topdown) {} 3207 3208 void initialize(ScheduleDAGMI*) override { 3209 TopQ.clear(); 3210 BottomQ.clear(); 3211 } 3212 3213 /// Implement MachineSchedStrategy interface. 3214 /// ----------------------------------------- 3215 3216 SUnit *pickNode(bool &IsTopNode) override { 3217 SUnit *SU; 3218 if (IsTopDown) { 3219 do { 3220 if (TopQ.empty()) return nullptr; 3221 SU = TopQ.top(); 3222 TopQ.pop(); 3223 } while (SU->isScheduled); 3224 IsTopNode = true; 3225 } 3226 else { 3227 do { 3228 if (BottomQ.empty()) return nullptr; 3229 SU = BottomQ.top(); 3230 BottomQ.pop(); 3231 } while (SU->isScheduled); 3232 IsTopNode = false; 3233 } 3234 if (IsAlternating) 3235 IsTopDown = !IsTopDown; 3236 return SU; 3237 } 3238 3239 void schedNode(SUnit *SU, bool IsTopNode) override {} 3240 3241 void releaseTopNode(SUnit *SU) override { 3242 TopQ.push(SU); 3243 } 3244 void releaseBottomNode(SUnit *SU) override { 3245 BottomQ.push(SU); 3246 } 3247 }; 3248 } // namespace 3249 3250 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3251 bool Alternate = !ForceTopDown && !ForceBottomUp; 3252 bool TopDown = !ForceBottomUp; 3253 assert((TopDown || !ForceTopDown) && 3254 "-misched-topdown incompatible with -misched-bottomup"); 3255 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3256 } 3257 static MachineSchedRegistry ShufflerRegistry( 3258 "shuffle", "Shuffle machine instructions alternating directions", 3259 createInstructionShuffler); 3260 #endif // !NDEBUG 3261 3262 //===----------------------------------------------------------------------===// 3263 // GraphWriter support for ScheduleDAGMILive. 3264 //===----------------------------------------------------------------------===// 3265 3266 #ifndef NDEBUG 3267 namespace llvm { 3268 3269 template<> struct GraphTraits< 3270 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3271 3272 template<> 3273 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3274 3275 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3276 3277 static std::string getGraphName(const ScheduleDAG *G) { 3278 return G->MF.getName(); 3279 } 3280 3281 static bool renderGraphFromBottomUp() { 3282 return true; 3283 } 3284 3285 static bool isNodeHidden(const SUnit *Node) { 3286 if (ViewMISchedCutoff == 0) 3287 return false; 3288 return (Node->Preds.size() > ViewMISchedCutoff 3289 || Node->Succs.size() > ViewMISchedCutoff); 3290 } 3291 3292 static bool hasNodeAddressLabel(const SUnit *Node, 3293 const ScheduleDAG *Graph) { 3294 return false; 3295 } 3296 3297 /// If you want to override the dot attributes printed for a particular 3298 /// edge, override this method. 3299 static std::string getEdgeAttributes(const SUnit *Node, 3300 SUnitIterator EI, 3301 const ScheduleDAG *Graph) { 3302 if (EI.isArtificialDep()) 3303 return "color=cyan,style=dashed"; 3304 if (EI.isCtrlDep()) 3305 return "color=blue,style=dashed"; 3306 return ""; 3307 } 3308 3309 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3310 std::string Str; 3311 raw_string_ostream SS(Str); 3312 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3313 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3314 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3315 SS << "SU:" << SU->NodeNum; 3316 if (DFS) 3317 SS << " I:" << DFS->getNumInstrs(SU); 3318 return SS.str(); 3319 } 3320 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3321 return G->getGraphNodeLabel(SU); 3322 } 3323 3324 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3325 std::string Str("shape=Mrecord"); 3326 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3327 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3328 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3329 if (DFS) { 3330 Str += ",style=filled,fillcolor=\"#"; 3331 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3332 Str += '"'; 3333 } 3334 return Str; 3335 } 3336 }; 3337 } // namespace llvm 3338 #endif // NDEBUG 3339 3340 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3341 /// rendered using 'dot'. 3342 /// 3343 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3344 #ifndef NDEBUG 3345 ViewGraph(this, Name, false, Title); 3346 #else 3347 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3348 << "systems with Graphviz or gv!\n"; 3349 #endif // NDEBUG 3350 } 3351 3352 /// Out-of-line implementation with no arguments is handy for gdb. 3353 void ScheduleDAGMI::viewGraph() { 3354 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3355 } 3356