1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/GraphWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetInstrInfo.h" 32 #include <queue> 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 /// In some situations a few uninteresting nodes depend on nearly all other 53 /// nodes in the graph, provide a cutoff to hide them. 54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64 #else 65 static bool ViewMISchedDAGs = false; 66 #endif // NDEBUG 67 68 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 69 cl::desc("Enable register pressure scheduling."), cl::init(true)); 70 71 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 72 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 73 74 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 75 cl::desc("Enable load clustering."), cl::init(true)); 76 77 // Experimental heuristics 78 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 79 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 80 81 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 82 cl::desc("Verify machine instrs before and after machine scheduling")); 83 84 // DAG subtrees must have at least this many nodes. 85 static const unsigned MinSubtreeSize = 8; 86 87 // Pin the vtables to this file. 88 void MachineSchedStrategy::anchor() {} 89 void ScheduleDAGMutation::anchor() {} 90 91 //===----------------------------------------------------------------------===// 92 // Machine Instruction Scheduling Pass and Registry 93 //===----------------------------------------------------------------------===// 94 95 MachineSchedContext::MachineSchedContext(): 96 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 97 RegClassInfo = new RegisterClassInfo(); 98 } 99 100 MachineSchedContext::~MachineSchedContext() { 101 delete RegClassInfo; 102 } 103 104 namespace { 105 /// Base class for a machine scheduler class that can run at any point. 106 class MachineSchedulerBase : public MachineSchedContext, 107 public MachineFunctionPass { 108 public: 109 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 110 111 void print(raw_ostream &O, const Module* = nullptr) const override; 112 113 protected: 114 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 115 }; 116 117 /// MachineScheduler runs after coalescing and before register allocation. 118 class MachineScheduler : public MachineSchedulerBase { 119 public: 120 MachineScheduler(); 121 122 void getAnalysisUsage(AnalysisUsage &AU) const override; 123 124 bool runOnMachineFunction(MachineFunction&) override; 125 126 static char ID; // Class identification, replacement for typeinfo 127 128 protected: 129 ScheduleDAGInstrs *createMachineScheduler(); 130 }; 131 132 /// PostMachineScheduler runs after shortly before code emission. 133 class PostMachineScheduler : public MachineSchedulerBase { 134 public: 135 PostMachineScheduler(); 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override; 138 139 bool runOnMachineFunction(MachineFunction&) override; 140 141 static char ID; // Class identification, replacement for typeinfo 142 143 protected: 144 ScheduleDAGInstrs *createPostMachineScheduler(); 145 }; 146 } // namespace 147 148 char MachineScheduler::ID = 0; 149 150 char &llvm::MachineSchedulerID = MachineScheduler::ID; 151 152 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 153 "Machine Instruction Scheduler", false, false) 154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 156 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 157 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 158 "Machine Instruction Scheduler", false, false) 159 160 MachineScheduler::MachineScheduler() 161 : MachineSchedulerBase(ID) { 162 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 163 } 164 165 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 166 AU.setPreservesCFG(); 167 AU.addRequiredID(MachineDominatorsID); 168 AU.addRequired<MachineLoopInfo>(); 169 AU.addRequired<AAResultsWrapperPass>(); 170 AU.addRequired<TargetPassConfig>(); 171 AU.addRequired<SlotIndexes>(); 172 AU.addPreserved<SlotIndexes>(); 173 AU.addRequired<LiveIntervals>(); 174 AU.addPreserved<LiveIntervals>(); 175 MachineFunctionPass::getAnalysisUsage(AU); 176 } 177 178 char PostMachineScheduler::ID = 0; 179 180 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 181 182 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 183 "PostRA Machine Instruction Scheduler", false, false) 184 185 PostMachineScheduler::PostMachineScheduler() 186 : MachineSchedulerBase(ID) { 187 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 188 } 189 190 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 191 AU.setPreservesCFG(); 192 AU.addRequiredID(MachineDominatorsID); 193 AU.addRequired<MachineLoopInfo>(); 194 AU.addRequired<TargetPassConfig>(); 195 MachineFunctionPass::getAnalysisUsage(AU); 196 } 197 198 MachinePassRegistry MachineSchedRegistry::Registry; 199 200 /// A dummy default scheduler factory indicates whether the scheduler 201 /// is overridden on the command line. 202 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 203 return nullptr; 204 } 205 206 /// MachineSchedOpt allows command line selection of the scheduler. 207 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 208 RegisterPassParser<MachineSchedRegistry> > 209 MachineSchedOpt("misched", 210 cl::init(&useDefaultMachineSched), cl::Hidden, 211 cl::desc("Machine instruction scheduler to use")); 212 213 static MachineSchedRegistry 214 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 215 useDefaultMachineSched); 216 217 static cl::opt<bool> EnableMachineSched( 218 "enable-misched", 219 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 220 cl::Hidden); 221 222 /// Forward declare the standard machine scheduler. This will be used as the 223 /// default scheduler if the target does not set a default. 224 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 225 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 226 227 /// Decrement this iterator until reaching the top or a non-debug instr. 228 static MachineBasicBlock::const_iterator 229 priorNonDebug(MachineBasicBlock::const_iterator I, 230 MachineBasicBlock::const_iterator Beg) { 231 assert(I != Beg && "reached the top of the region, cannot decrement"); 232 while (--I != Beg) { 233 if (!I->isDebugValue()) 234 break; 235 } 236 return I; 237 } 238 239 /// Non-const version. 240 static MachineBasicBlock::iterator 241 priorNonDebug(MachineBasicBlock::iterator I, 242 MachineBasicBlock::const_iterator Beg) { 243 return const_cast<MachineInstr*>( 244 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 245 } 246 247 /// If this iterator is a debug value, increment until reaching the End or a 248 /// non-debug instruction. 249 static MachineBasicBlock::const_iterator 250 nextIfDebug(MachineBasicBlock::const_iterator I, 251 MachineBasicBlock::const_iterator End) { 252 for(; I != End; ++I) { 253 if (!I->isDebugValue()) 254 break; 255 } 256 return I; 257 } 258 259 /// Non-const version. 260 static MachineBasicBlock::iterator 261 nextIfDebug(MachineBasicBlock::iterator I, 262 MachineBasicBlock::const_iterator End) { 263 // Cast the return value to nonconst MachineInstr, then cast to an 264 // instr_iterator, which does not check for null, finally return a 265 // bundle_iterator. 266 return MachineBasicBlock::instr_iterator( 267 const_cast<MachineInstr*>( 268 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 269 } 270 271 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 272 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 273 // Select the scheduler, or set the default. 274 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 275 if (Ctor != useDefaultMachineSched) 276 return Ctor(this); 277 278 // Get the default scheduler set by the target for this function. 279 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 280 if (Scheduler) 281 return Scheduler; 282 283 // Default to GenericScheduler. 284 return createGenericSchedLive(this); 285 } 286 287 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 288 /// the caller. We don't have a command line option to override the postRA 289 /// scheduler. The Target must configure it. 290 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 291 // Get the postRA scheduler set by the target for this function. 292 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 293 if (Scheduler) 294 return Scheduler; 295 296 // Default to GenericScheduler. 297 return createGenericSchedPostRA(this); 298 } 299 300 /// Top-level MachineScheduler pass driver. 301 /// 302 /// Visit blocks in function order. Divide each block into scheduling regions 303 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 304 /// consistent with the DAG builder, which traverses the interior of the 305 /// scheduling regions bottom-up. 306 /// 307 /// This design avoids exposing scheduling boundaries to the DAG builder, 308 /// simplifying the DAG builder's support for "special" target instructions. 309 /// At the same time the design allows target schedulers to operate across 310 /// scheduling boundaries, for example to bundle the boudary instructions 311 /// without reordering them. This creates complexity, because the target 312 /// scheduler must update the RegionBegin and RegionEnd positions cached by 313 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 314 /// design would be to split blocks at scheduling boundaries, but LLVM has a 315 /// general bias against block splitting purely for implementation simplicity. 316 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 317 if (EnableMachineSched.getNumOccurrences()) { 318 if (!EnableMachineSched) 319 return false; 320 } else if (!mf.getSubtarget().enableMachineScheduler()) 321 return false; 322 323 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 324 325 // Initialize the context of the pass. 326 MF = &mf; 327 MLI = &getAnalysis<MachineLoopInfo>(); 328 MDT = &getAnalysis<MachineDominatorTree>(); 329 PassConfig = &getAnalysis<TargetPassConfig>(); 330 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 331 332 LIS = &getAnalysis<LiveIntervals>(); 333 334 if (VerifyScheduling) { 335 DEBUG(LIS->dump()); 336 MF->verify(this, "Before machine scheduling."); 337 } 338 RegClassInfo->runOnMachineFunction(*MF); 339 340 // Instantiate the selected scheduler for this target, function, and 341 // optimization level. 342 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 343 scheduleRegions(*Scheduler, false); 344 345 DEBUG(LIS->dump()); 346 if (VerifyScheduling) 347 MF->verify(this, "After machine scheduling."); 348 return true; 349 } 350 351 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 352 if (skipOptnoneFunction(*mf.getFunction())) 353 return false; 354 355 if (!mf.getSubtarget().enablePostRAScheduler()) { 356 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 357 return false; 358 } 359 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 360 361 // Initialize the context of the pass. 362 MF = &mf; 363 PassConfig = &getAnalysis<TargetPassConfig>(); 364 365 if (VerifyScheduling) 366 MF->verify(this, "Before post machine scheduling."); 367 368 // Instantiate the selected scheduler for this target, function, and 369 // optimization level. 370 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 371 scheduleRegions(*Scheduler, true); 372 373 if (VerifyScheduling) 374 MF->verify(this, "After post machine scheduling."); 375 return true; 376 } 377 378 /// Return true of the given instruction should not be included in a scheduling 379 /// region. 380 /// 381 /// MachineScheduler does not currently support scheduling across calls. To 382 /// handle calls, the DAG builder needs to be modified to create register 383 /// anti/output dependencies on the registers clobbered by the call's regmask 384 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 385 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 386 /// the boundary, but there would be no benefit to postRA scheduling across 387 /// calls this late anyway. 388 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 389 MachineBasicBlock *MBB, 390 MachineFunction *MF, 391 const TargetInstrInfo *TII) { 392 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); 393 } 394 395 /// Main driver for both MachineScheduler and PostMachineScheduler. 396 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 397 bool FixKillFlags) { 398 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 399 400 // Visit all machine basic blocks. 401 // 402 // TODO: Visit blocks in global postorder or postorder within the bottom-up 403 // loop tree. Then we can optionally compute global RegPressure. 404 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 405 MBB != MBBEnd; ++MBB) { 406 407 Scheduler.startBlock(&*MBB); 408 409 #ifndef NDEBUG 410 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 411 continue; 412 if (SchedOnlyBlock.getNumOccurrences() 413 && (int)SchedOnlyBlock != MBB->getNumber()) 414 continue; 415 #endif 416 417 // Break the block into scheduling regions [I, RegionEnd), and schedule each 418 // region as soon as it is discovered. RegionEnd points the scheduling 419 // boundary at the bottom of the region. The DAG does not include RegionEnd, 420 // but the region does (i.e. the next RegionEnd is above the previous 421 // RegionBegin). If the current block has no terminator then RegionEnd == 422 // MBB->end() for the bottom region. 423 // 424 // The Scheduler may insert instructions during either schedule() or 425 // exitRegion(), even for empty regions. So the local iterators 'I' and 426 // 'RegionEnd' are invalid across these calls. 427 // 428 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 429 // as a single instruction. 430 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); 431 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 432 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 433 434 // Avoid decrementing RegionEnd for blocks with no terminator. 435 if (RegionEnd != MBB->end() || 436 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 437 --RegionEnd; 438 // Count the boundary instruction. 439 --RemainingInstrs; 440 } 441 442 // The next region starts above the previous region. Look backward in the 443 // instruction stream until we find the nearest boundary. 444 unsigned NumRegionInstrs = 0; 445 MachineBasicBlock::iterator I = RegionEnd; 446 for(;I != MBB->begin(); --I, --RemainingInstrs) { 447 if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII)) 448 break; 449 if (!I->isDebugValue()) 450 ++NumRegionInstrs; 451 } 452 // Notify the scheduler of the region, even if we may skip scheduling 453 // it. Perhaps it still needs to be bundled. 454 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 455 456 // Skip empty scheduling regions (0 or 1 schedulable instructions). 457 if (I == RegionEnd || I == std::prev(RegionEnd)) { 458 // Close the current region. Bundle the terminator if needed. 459 // This invalidates 'RegionEnd' and 'I'. 460 Scheduler.exitRegion(); 461 continue; 462 } 463 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 464 DEBUG(dbgs() << MF->getName() 465 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 466 << "\n From: " << *I << " To: "; 467 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 468 else dbgs() << "End"; 469 dbgs() << " RegionInstrs: " << NumRegionInstrs 470 << " Remaining: " << RemainingInstrs << "\n"); 471 if (DumpCriticalPathLength) { 472 errs() << MF->getName(); 473 errs() << ":BB# " << MBB->getNumber(); 474 errs() << " " << MBB->getName() << " \n"; 475 } 476 477 // Schedule a region: possibly reorder instructions. 478 // This invalidates 'RegionEnd' and 'I'. 479 Scheduler.schedule(); 480 481 // Close the current region. 482 Scheduler.exitRegion(); 483 484 // Scheduling has invalidated the current iterator 'I'. Ask the 485 // scheduler for the top of it's scheduled region. 486 RegionEnd = Scheduler.begin(); 487 } 488 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 489 Scheduler.finishBlock(); 490 // FIXME: Ideally, no further passes should rely on kill flags. However, 491 // thumb2 size reduction is currently an exception, so the PostMIScheduler 492 // needs to do this. 493 if (FixKillFlags) 494 Scheduler.fixupKills(&*MBB); 495 } 496 Scheduler.finalizeSchedule(); 497 } 498 499 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 500 // unimplemented 501 } 502 503 LLVM_DUMP_METHOD 504 void ReadyQueue::dump() { 505 dbgs() << "Queue " << Name << ": "; 506 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 507 dbgs() << Queue[i]->NodeNum << " "; 508 dbgs() << "\n"; 509 } 510 511 //===----------------------------------------------------------------------===// 512 // ScheduleDAGMI - Basic machine instruction scheduling. This is 513 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 514 // virtual registers. 515 // ===----------------------------------------------------------------------===/ 516 517 // Provide a vtable anchor. 518 ScheduleDAGMI::~ScheduleDAGMI() { 519 } 520 521 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 522 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 523 } 524 525 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 526 if (SuccSU != &ExitSU) { 527 // Do not use WillCreateCycle, it assumes SD scheduling. 528 // If Pred is reachable from Succ, then the edge creates a cycle. 529 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 530 return false; 531 Topo.AddPred(SuccSU, PredDep.getSUnit()); 532 } 533 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 534 // Return true regardless of whether a new edge needed to be inserted. 535 return true; 536 } 537 538 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 539 /// NumPredsLeft reaches zero, release the successor node. 540 /// 541 /// FIXME: Adjust SuccSU height based on MinLatency. 542 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 543 SUnit *SuccSU = SuccEdge->getSUnit(); 544 545 if (SuccEdge->isWeak()) { 546 --SuccSU->WeakPredsLeft; 547 if (SuccEdge->isCluster()) 548 NextClusterSucc = SuccSU; 549 return; 550 } 551 #ifndef NDEBUG 552 if (SuccSU->NumPredsLeft == 0) { 553 dbgs() << "*** Scheduling failed! ***\n"; 554 SuccSU->dump(this); 555 dbgs() << " has been released too many times!\n"; 556 llvm_unreachable(nullptr); 557 } 558 #endif 559 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 560 // CurrCycle may have advanced since then. 561 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 562 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 563 564 --SuccSU->NumPredsLeft; 565 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 566 SchedImpl->releaseTopNode(SuccSU); 567 } 568 569 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 570 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 571 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 572 I != E; ++I) { 573 releaseSucc(SU, &*I); 574 } 575 } 576 577 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 578 /// NumSuccsLeft reaches zero, release the predecessor node. 579 /// 580 /// FIXME: Adjust PredSU height based on MinLatency. 581 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 582 SUnit *PredSU = PredEdge->getSUnit(); 583 584 if (PredEdge->isWeak()) { 585 --PredSU->WeakSuccsLeft; 586 if (PredEdge->isCluster()) 587 NextClusterPred = PredSU; 588 return; 589 } 590 #ifndef NDEBUG 591 if (PredSU->NumSuccsLeft == 0) { 592 dbgs() << "*** Scheduling failed! ***\n"; 593 PredSU->dump(this); 594 dbgs() << " has been released too many times!\n"; 595 llvm_unreachable(nullptr); 596 } 597 #endif 598 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 599 // CurrCycle may have advanced since then. 600 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 601 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 602 603 --PredSU->NumSuccsLeft; 604 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 605 SchedImpl->releaseBottomNode(PredSU); 606 } 607 608 /// releasePredecessors - Call releasePred on each of SU's predecessors. 609 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 610 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 611 I != E; ++I) { 612 releasePred(SU, &*I); 613 } 614 } 615 616 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 617 /// crossing a scheduling boundary. [begin, end) includes all instructions in 618 /// the region, including the boundary itself and single-instruction regions 619 /// that don't get scheduled. 620 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 621 MachineBasicBlock::iterator begin, 622 MachineBasicBlock::iterator end, 623 unsigned regioninstrs) 624 { 625 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 626 627 SchedImpl->initPolicy(begin, end, regioninstrs); 628 } 629 630 /// This is normally called from the main scheduler loop but may also be invoked 631 /// by the scheduling strategy to perform additional code motion. 632 void ScheduleDAGMI::moveInstruction( 633 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 634 // Advance RegionBegin if the first instruction moves down. 635 if (&*RegionBegin == MI) 636 ++RegionBegin; 637 638 // Update the instruction stream. 639 BB->splice(InsertPos, BB, MI); 640 641 // Update LiveIntervals 642 if (LIS) 643 LIS->handleMove(MI, /*UpdateFlags=*/true); 644 645 // Recede RegionBegin if an instruction moves above the first. 646 if (RegionBegin == InsertPos) 647 RegionBegin = MI; 648 } 649 650 bool ScheduleDAGMI::checkSchedLimit() { 651 #ifndef NDEBUG 652 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 653 CurrentTop = CurrentBottom; 654 return false; 655 } 656 ++NumInstrsScheduled; 657 #endif 658 return true; 659 } 660 661 /// Per-region scheduling driver, called back from 662 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 663 /// does not consider liveness or register pressure. It is useful for PostRA 664 /// scheduling and potentially other custom schedulers. 665 void ScheduleDAGMI::schedule() { 666 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 667 DEBUG(SchedImpl->dumpPolicy()); 668 669 // Build the DAG. 670 buildSchedGraph(AA); 671 672 Topo.InitDAGTopologicalSorting(); 673 674 postprocessDAG(); 675 676 SmallVector<SUnit*, 8> TopRoots, BotRoots; 677 findRootsAndBiasEdges(TopRoots, BotRoots); 678 679 // Initialize the strategy before modifying the DAG. 680 // This may initialize a DFSResult to be used for queue priority. 681 SchedImpl->initialize(this); 682 683 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 684 SUnits[su].dumpAll(this)); 685 if (ViewMISchedDAGs) viewGraph(); 686 687 // Initialize ready queues now that the DAG and priority data are finalized. 688 initQueues(TopRoots, BotRoots); 689 690 bool IsTopNode = false; 691 while (true) { 692 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 693 SUnit *SU = SchedImpl->pickNode(IsTopNode); 694 if (!SU) break; 695 696 assert(!SU->isScheduled && "Node already scheduled"); 697 if (!checkSchedLimit()) 698 break; 699 700 MachineInstr *MI = SU->getInstr(); 701 if (IsTopNode) { 702 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 703 if (&*CurrentTop == MI) 704 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 705 else 706 moveInstruction(MI, CurrentTop); 707 } 708 else { 709 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 710 MachineBasicBlock::iterator priorII = 711 priorNonDebug(CurrentBottom, CurrentTop); 712 if (&*priorII == MI) 713 CurrentBottom = priorII; 714 else { 715 if (&*CurrentTop == MI) 716 CurrentTop = nextIfDebug(++CurrentTop, priorII); 717 moveInstruction(MI, CurrentBottom); 718 CurrentBottom = MI; 719 } 720 } 721 // Notify the scheduling strategy before updating the DAG. 722 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 723 // runs, it can then use the accurate ReadyCycle time to determine whether 724 // newly released nodes can move to the readyQ. 725 SchedImpl->schedNode(SU, IsTopNode); 726 727 updateQueues(SU, IsTopNode); 728 } 729 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 730 731 placeDebugValues(); 732 733 DEBUG({ 734 unsigned BBNum = begin()->getParent()->getNumber(); 735 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 736 dumpSchedule(); 737 dbgs() << '\n'; 738 }); 739 } 740 741 /// Apply each ScheduleDAGMutation step in order. 742 void ScheduleDAGMI::postprocessDAG() { 743 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 744 Mutations[i]->apply(this); 745 } 746 } 747 748 void ScheduleDAGMI:: 749 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 750 SmallVectorImpl<SUnit*> &BotRoots) { 751 for (std::vector<SUnit>::iterator 752 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 753 SUnit *SU = &(*I); 754 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 755 756 // Order predecessors so DFSResult follows the critical path. 757 SU->biasCriticalPath(); 758 759 // A SUnit is ready to top schedule if it has no predecessors. 760 if (!I->NumPredsLeft) 761 TopRoots.push_back(SU); 762 // A SUnit is ready to bottom schedule if it has no successors. 763 if (!I->NumSuccsLeft) 764 BotRoots.push_back(SU); 765 } 766 ExitSU.biasCriticalPath(); 767 } 768 769 /// Identify DAG roots and setup scheduler queues. 770 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 771 ArrayRef<SUnit*> BotRoots) { 772 NextClusterSucc = nullptr; 773 NextClusterPred = nullptr; 774 775 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 776 // 777 // Nodes with unreleased weak edges can still be roots. 778 // Release top roots in forward order. 779 for (SmallVectorImpl<SUnit*>::const_iterator 780 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 781 SchedImpl->releaseTopNode(*I); 782 } 783 // Release bottom roots in reverse order so the higher priority nodes appear 784 // first. This is more natural and slightly more efficient. 785 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 786 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 787 SchedImpl->releaseBottomNode(*I); 788 } 789 790 releaseSuccessors(&EntrySU); 791 releasePredecessors(&ExitSU); 792 793 SchedImpl->registerRoots(); 794 795 // Advance past initial DebugValues. 796 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 797 CurrentBottom = RegionEnd; 798 } 799 800 /// Update scheduler queues after scheduling an instruction. 801 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 802 // Release dependent instructions for scheduling. 803 if (IsTopNode) 804 releaseSuccessors(SU); 805 else 806 releasePredecessors(SU); 807 808 SU->isScheduled = true; 809 } 810 811 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 812 void ScheduleDAGMI::placeDebugValues() { 813 // If first instruction was a DBG_VALUE then put it back. 814 if (FirstDbgValue) { 815 BB->splice(RegionBegin, BB, FirstDbgValue); 816 RegionBegin = FirstDbgValue; 817 } 818 819 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 820 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 821 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 822 MachineInstr *DbgValue = P.first; 823 MachineBasicBlock::iterator OrigPrevMI = P.second; 824 if (&*RegionBegin == DbgValue) 825 ++RegionBegin; 826 BB->splice(++OrigPrevMI, BB, DbgValue); 827 if (OrigPrevMI == std::prev(RegionEnd)) 828 RegionEnd = DbgValue; 829 } 830 DbgValues.clear(); 831 FirstDbgValue = nullptr; 832 } 833 834 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 835 void ScheduleDAGMI::dumpSchedule() const { 836 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 837 if (SUnit *SU = getSUnit(&(*MI))) 838 SU->dump(this); 839 else 840 dbgs() << "Missing SUnit\n"; 841 } 842 } 843 #endif 844 845 //===----------------------------------------------------------------------===// 846 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 847 // preservation. 848 //===----------------------------------------------------------------------===// 849 850 ScheduleDAGMILive::~ScheduleDAGMILive() { 851 delete DFSResult; 852 } 853 854 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 855 /// crossing a scheduling boundary. [begin, end) includes all instructions in 856 /// the region, including the boundary itself and single-instruction regions 857 /// that don't get scheduled. 858 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 859 MachineBasicBlock::iterator begin, 860 MachineBasicBlock::iterator end, 861 unsigned regioninstrs) 862 { 863 // ScheduleDAGMI initializes SchedImpl's per-region policy. 864 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 865 866 // For convenience remember the end of the liveness region. 867 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 868 869 SUPressureDiffs.clear(); 870 871 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 872 } 873 874 // Setup the register pressure trackers for the top scheduled top and bottom 875 // scheduled regions. 876 void ScheduleDAGMILive::initRegPressure() { 877 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 878 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 879 880 // Close the RPTracker to finalize live ins. 881 RPTracker.closeRegion(); 882 883 DEBUG(RPTracker.dump()); 884 885 // Initialize the live ins and live outs. 886 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 887 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 888 889 // Close one end of the tracker so we can call 890 // getMaxUpward/DownwardPressureDelta before advancing across any 891 // instructions. This converts currently live regs into live ins/outs. 892 TopRPTracker.closeTop(); 893 BotRPTracker.closeBottom(); 894 895 BotRPTracker.initLiveThru(RPTracker); 896 if (!BotRPTracker.getLiveThru().empty()) { 897 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 898 DEBUG(dbgs() << "Live Thru: "; 899 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 900 }; 901 902 // For each live out vreg reduce the pressure change associated with other 903 // uses of the same vreg below the live-out reaching def. 904 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 905 906 // Account for liveness generated by the region boundary. 907 if (LiveRegionEnd != RegionEnd) { 908 SmallVector<unsigned, 8> LiveUses; 909 BotRPTracker.recede(&LiveUses); 910 updatePressureDiffs(LiveUses); 911 } 912 913 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 914 915 // Cache the list of excess pressure sets in this region. This will also track 916 // the max pressure in the scheduled code for these sets. 917 RegionCriticalPSets.clear(); 918 const std::vector<unsigned> &RegionPressure = 919 RPTracker.getPressure().MaxSetPressure; 920 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 921 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 922 if (RegionPressure[i] > Limit) { 923 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 924 << " Limit " << Limit 925 << " Actual " << RegionPressure[i] << "\n"); 926 RegionCriticalPSets.push_back(PressureChange(i)); 927 } 928 } 929 DEBUG(dbgs() << "Excess PSets: "; 930 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 931 dbgs() << TRI->getRegPressureSetName( 932 RegionCriticalPSets[i].getPSet()) << " "; 933 dbgs() << "\n"); 934 } 935 936 void ScheduleDAGMILive:: 937 updateScheduledPressure(const SUnit *SU, 938 const std::vector<unsigned> &NewMaxPressure) { 939 const PressureDiff &PDiff = getPressureDiff(SU); 940 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 941 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 942 I != E; ++I) { 943 if (!I->isValid()) 944 break; 945 unsigned ID = I->getPSet(); 946 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 947 ++CritIdx; 948 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 949 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 950 && NewMaxPressure[ID] <= INT16_MAX) 951 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 952 } 953 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 954 if (NewMaxPressure[ID] >= Limit - 2) { 955 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 956 << NewMaxPressure[ID] 957 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 958 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 959 } 960 } 961 } 962 963 /// Update the PressureDiff array for liveness after scheduling this 964 /// instruction. 965 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) { 966 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) { 967 /// FIXME: Currently assuming single-use physregs. 968 unsigned Reg = LiveUses[LUIdx]; 969 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 970 if (!TRI->isVirtualRegister(Reg)) 971 continue; 972 973 // This may be called before CurrentBottom has been initialized. However, 974 // BotRPTracker must have a valid position. We want the value live into the 975 // instruction or live out of the block, so ask for the previous 976 // instruction's live-out. 977 const LiveInterval &LI = LIS->getInterval(Reg); 978 VNInfo *VNI; 979 MachineBasicBlock::const_iterator I = 980 nextIfDebug(BotRPTracker.getPos(), BB->end()); 981 if (I == BB->end()) 982 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 983 else { 984 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I)); 985 VNI = LRQ.valueIn(); 986 } 987 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 988 assert(VNI && "No live value at use."); 989 for (const VReg2SUnit &V2SU 990 : make_range(VRegUses.find(Reg), VRegUses.end())) { 991 SUnit *SU = V2SU.SU; 992 // If this use comes before the reaching def, it cannot be a last use, so 993 // descrease its pressure change. 994 if (!SU->isScheduled && SU != &ExitSU) { 995 LiveQueryResult LRQ 996 = LI.Query(LIS->getInstructionIndex(SU->getInstr())); 997 if (LRQ.valueIn() == VNI) { 998 PressureDiff &PDiff = getPressureDiff(SU); 999 PDiff.addPressureChange(Reg, true, &MRI); 1000 DEBUG( 1001 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1002 << *SU->getInstr(); 1003 dbgs() << " to "; 1004 PDiff.dump(*TRI); 1005 ); 1006 } 1007 } 1008 } 1009 } 1010 } 1011 1012 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1013 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1014 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1015 /// 1016 /// This is a skeletal driver, with all the functionality pushed into helpers, 1017 /// so that it can be easily extended by experimental schedulers. Generally, 1018 /// implementing MachineSchedStrategy should be sufficient to implement a new 1019 /// scheduling algorithm. However, if a scheduler further subclasses 1020 /// ScheduleDAGMILive then it will want to override this virtual method in order 1021 /// to update any specialized state. 1022 void ScheduleDAGMILive::schedule() { 1023 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1024 DEBUG(SchedImpl->dumpPolicy()); 1025 buildDAGWithRegPressure(); 1026 1027 Topo.InitDAGTopologicalSorting(); 1028 1029 postprocessDAG(); 1030 1031 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1032 findRootsAndBiasEdges(TopRoots, BotRoots); 1033 1034 // Initialize the strategy before modifying the DAG. 1035 // This may initialize a DFSResult to be used for queue priority. 1036 SchedImpl->initialize(this); 1037 1038 DEBUG( 1039 for (const SUnit &SU : SUnits) { 1040 SU.dumpAll(this); 1041 if (ShouldTrackPressure) { 1042 dbgs() << " Pressure Diff : "; 1043 getPressureDiff(&SU).dump(*TRI); 1044 } 1045 dbgs() << '\n'; 1046 } 1047 ); 1048 if (ViewMISchedDAGs) viewGraph(); 1049 1050 // Initialize ready queues now that the DAG and priority data are finalized. 1051 initQueues(TopRoots, BotRoots); 1052 1053 if (ShouldTrackPressure) { 1054 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1055 TopRPTracker.setPos(CurrentTop); 1056 } 1057 1058 bool IsTopNode = false; 1059 while (true) { 1060 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1061 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1062 if (!SU) break; 1063 1064 assert(!SU->isScheduled && "Node already scheduled"); 1065 if (!checkSchedLimit()) 1066 break; 1067 1068 scheduleMI(SU, IsTopNode); 1069 1070 if (DFSResult) { 1071 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1072 if (!ScheduledTrees.test(SubtreeID)) { 1073 ScheduledTrees.set(SubtreeID); 1074 DFSResult->scheduleTree(SubtreeID); 1075 SchedImpl->scheduleTree(SubtreeID); 1076 } 1077 } 1078 1079 // Notify the scheduling strategy after updating the DAG. 1080 SchedImpl->schedNode(SU, IsTopNode); 1081 1082 updateQueues(SU, IsTopNode); 1083 } 1084 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1085 1086 placeDebugValues(); 1087 1088 DEBUG({ 1089 unsigned BBNum = begin()->getParent()->getNumber(); 1090 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1091 dumpSchedule(); 1092 dbgs() << '\n'; 1093 }); 1094 } 1095 1096 /// Build the DAG and setup three register pressure trackers. 1097 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1098 if (!ShouldTrackPressure) { 1099 RPTracker.reset(); 1100 RegionCriticalPSets.clear(); 1101 buildSchedGraph(AA); 1102 return; 1103 } 1104 1105 // Initialize the register pressure tracker used by buildSchedGraph. 1106 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1107 /*TrackUntiedDefs=*/true); 1108 1109 // Account for liveness generate by the region boundary. 1110 if (LiveRegionEnd != RegionEnd) 1111 RPTracker.recede(); 1112 1113 // Build the DAG, and compute current register pressure. 1114 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); 1115 1116 // Initialize top/bottom trackers after computing region pressure. 1117 initRegPressure(); 1118 } 1119 1120 void ScheduleDAGMILive::computeDFSResult() { 1121 if (!DFSResult) 1122 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1123 DFSResult->clear(); 1124 ScheduledTrees.clear(); 1125 DFSResult->resize(SUnits.size()); 1126 DFSResult->compute(SUnits); 1127 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1128 } 1129 1130 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1131 /// only provides the critical path for single block loops. To handle loops that 1132 /// span blocks, we could use the vreg path latencies provided by 1133 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1134 /// available for use in the scheduler. 1135 /// 1136 /// The cyclic path estimation identifies a def-use pair that crosses the back 1137 /// edge and considers the depth and height of the nodes. For example, consider 1138 /// the following instruction sequence where each instruction has unit latency 1139 /// and defines an epomymous virtual register: 1140 /// 1141 /// a->b(a,c)->c(b)->d(c)->exit 1142 /// 1143 /// The cyclic critical path is a two cycles: b->c->b 1144 /// The acyclic critical path is four cycles: a->b->c->d->exit 1145 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1146 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1147 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1148 /// LiveInDepth = depth(b) = len(a->b) = 1 1149 /// 1150 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1151 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1152 /// CyclicCriticalPath = min(2, 2) = 2 1153 /// 1154 /// This could be relevant to PostRA scheduling, but is currently implemented 1155 /// assuming LiveIntervals. 1156 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1157 // This only applies to single block loop. 1158 if (!BB->isSuccessor(BB)) 1159 return 0; 1160 1161 unsigned MaxCyclicLatency = 0; 1162 // Visit each live out vreg def to find def/use pairs that cross iterations. 1163 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; 1164 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); 1165 RI != RE; ++RI) { 1166 unsigned Reg = *RI; 1167 if (!TRI->isVirtualRegister(Reg)) 1168 continue; 1169 const LiveInterval &LI = LIS->getInterval(Reg); 1170 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1171 if (!DefVNI) 1172 continue; 1173 1174 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1175 const SUnit *DefSU = getSUnit(DefMI); 1176 if (!DefSU) 1177 continue; 1178 1179 unsigned LiveOutHeight = DefSU->getHeight(); 1180 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1181 // Visit all local users of the vreg def. 1182 for (const VReg2SUnit &V2SU 1183 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1184 SUnit *SU = V2SU.SU; 1185 if (SU == &ExitSU) 1186 continue; 1187 1188 // Only consider uses of the phi. 1189 LiveQueryResult LRQ = 1190 LI.Query(LIS->getInstructionIndex(SU->getInstr())); 1191 if (!LRQ.valueIn()->isPHIDef()) 1192 continue; 1193 1194 // Assume that a path spanning two iterations is a cycle, which could 1195 // overestimate in strange cases. This allows cyclic latency to be 1196 // estimated as the minimum slack of the vreg's depth or height. 1197 unsigned CyclicLatency = 0; 1198 if (LiveOutDepth > SU->getDepth()) 1199 CyclicLatency = LiveOutDepth - SU->getDepth(); 1200 1201 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1202 if (LiveInHeight > LiveOutHeight) { 1203 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1204 CyclicLatency = LiveInHeight - LiveOutHeight; 1205 } 1206 else 1207 CyclicLatency = 0; 1208 1209 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1210 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1211 if (CyclicLatency > MaxCyclicLatency) 1212 MaxCyclicLatency = CyclicLatency; 1213 } 1214 } 1215 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1216 return MaxCyclicLatency; 1217 } 1218 1219 /// Move an instruction and update register pressure. 1220 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1221 // Move the instruction to its new location in the instruction stream. 1222 MachineInstr *MI = SU->getInstr(); 1223 1224 if (IsTopNode) { 1225 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1226 if (&*CurrentTop == MI) 1227 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1228 else { 1229 moveInstruction(MI, CurrentTop); 1230 TopRPTracker.setPos(MI); 1231 } 1232 1233 if (ShouldTrackPressure) { 1234 // Update top scheduled pressure. 1235 TopRPTracker.advance(); 1236 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1237 DEBUG( 1238 dbgs() << "Top Pressure:\n"; 1239 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1240 ); 1241 1242 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1243 } 1244 } 1245 else { 1246 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1247 MachineBasicBlock::iterator priorII = 1248 priorNonDebug(CurrentBottom, CurrentTop); 1249 if (&*priorII == MI) 1250 CurrentBottom = priorII; 1251 else { 1252 if (&*CurrentTop == MI) { 1253 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1254 TopRPTracker.setPos(CurrentTop); 1255 } 1256 moveInstruction(MI, CurrentBottom); 1257 CurrentBottom = MI; 1258 } 1259 if (ShouldTrackPressure) { 1260 // Update bottom scheduled pressure. 1261 SmallVector<unsigned, 8> LiveUses; 1262 BotRPTracker.recede(&LiveUses); 1263 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1264 DEBUG( 1265 dbgs() << "Bottom Pressure:\n"; 1266 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1267 ); 1268 1269 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1270 updatePressureDiffs(LiveUses); 1271 } 1272 } 1273 } 1274 1275 //===----------------------------------------------------------------------===// 1276 // LoadClusterMutation - DAG post-processing to cluster loads. 1277 //===----------------------------------------------------------------------===// 1278 1279 namespace { 1280 /// \brief Post-process the DAG to create cluster edges between neighboring 1281 /// loads. 1282 class LoadClusterMutation : public ScheduleDAGMutation { 1283 struct LoadInfo { 1284 SUnit *SU; 1285 unsigned BaseReg; 1286 unsigned Offset; 1287 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 1288 : SU(su), BaseReg(reg), Offset(ofs) {} 1289 1290 bool operator<(const LoadInfo &RHS) const { 1291 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1292 } 1293 }; 1294 1295 const TargetInstrInfo *TII; 1296 const TargetRegisterInfo *TRI; 1297 public: 1298 LoadClusterMutation(const TargetInstrInfo *tii, 1299 const TargetRegisterInfo *tri) 1300 : TII(tii), TRI(tri) {} 1301 1302 void apply(ScheduleDAGMI *DAG) override; 1303 protected: 1304 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 1305 }; 1306 } // anonymous 1307 1308 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 1309 ScheduleDAGMI *DAG) { 1310 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 1311 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 1312 SUnit *SU = Loads[Idx]; 1313 unsigned BaseReg; 1314 unsigned Offset; 1315 if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 1316 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 1317 } 1318 if (LoadRecords.size() < 2) 1319 return; 1320 std::sort(LoadRecords.begin(), LoadRecords.end()); 1321 unsigned ClusterLength = 1; 1322 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 1323 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 1324 ClusterLength = 1; 1325 continue; 1326 } 1327 1328 SUnit *SUa = LoadRecords[Idx].SU; 1329 SUnit *SUb = LoadRecords[Idx+1].SU; 1330 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1331 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1332 1333 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 1334 << SUb->NodeNum << ")\n"); 1335 // Copy successor edges from SUa to SUb. Interleaving computation 1336 // dependent on SUa can prevent load combining due to register reuse. 1337 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1338 // loads should have effectively the same inputs. 1339 for (SUnit::const_succ_iterator 1340 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1341 if (SI->getSUnit() == SUb) 1342 continue; 1343 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1344 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1345 } 1346 ++ClusterLength; 1347 } 1348 else 1349 ClusterLength = 1; 1350 } 1351 } 1352 1353 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1354 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 1355 // Map DAG NodeNum to store chain ID. 1356 DenseMap<unsigned, unsigned> StoreChainIDs; 1357 // Map each store chain to a set of dependent loads. 1358 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1359 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1360 SUnit *SU = &DAG->SUnits[Idx]; 1361 if (!SU->getInstr()->mayLoad()) 1362 continue; 1363 unsigned ChainPredID = DAG->SUnits.size(); 1364 for (SUnit::const_pred_iterator 1365 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1366 if (PI->isCtrl()) { 1367 ChainPredID = PI->getSUnit()->NodeNum; 1368 break; 1369 } 1370 } 1371 // Check if this chain-like pred has been seen 1372 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 1373 unsigned NumChains = StoreChainDependents.size(); 1374 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1375 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1376 if (Result.second) 1377 StoreChainDependents.resize(NumChains + 1); 1378 StoreChainDependents[Result.first->second].push_back(SU); 1379 } 1380 // Iterate over the store chains. 1381 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1382 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 1383 } 1384 1385 //===----------------------------------------------------------------------===// 1386 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1387 //===----------------------------------------------------------------------===// 1388 1389 namespace { 1390 /// \brief Post-process the DAG to create cluster edges between instructions 1391 /// that may be fused by the processor into a single operation. 1392 class MacroFusion : public ScheduleDAGMutation { 1393 const TargetInstrInfo &TII; 1394 const TargetRegisterInfo &TRI; 1395 public: 1396 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) 1397 : TII(TII), TRI(TRI) {} 1398 1399 void apply(ScheduleDAGMI *DAG) override; 1400 }; 1401 } // anonymous 1402 1403 /// Returns true if \p MI reads a register written by \p Other. 1404 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI, 1405 const MachineInstr &Other) { 1406 for (const MachineOperand &MO : MI.uses()) { 1407 if (!MO.isReg() || !MO.readsReg()) 1408 continue; 1409 1410 unsigned Reg = MO.getReg(); 1411 if (Other.modifiesRegister(Reg, &TRI)) 1412 return true; 1413 } 1414 return false; 1415 } 1416 1417 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1418 /// fused operations. 1419 void MacroFusion::apply(ScheduleDAGMI *DAG) { 1420 // For now, assume targets can only fuse with the branch. 1421 SUnit &ExitSU = DAG->ExitSU; 1422 MachineInstr *Branch = ExitSU.getInstr(); 1423 if (!Branch) 1424 return; 1425 1426 for (SUnit &SU : DAG->SUnits) { 1427 // SUnits with successors can't be schedule in front of the ExitSU. 1428 if (!SU.Succs.empty()) 1429 continue; 1430 // We only care if the node writes to a register that the branch reads. 1431 MachineInstr *Pred = SU.getInstr(); 1432 if (!HasDataDep(TRI, *Branch, *Pred)) 1433 continue; 1434 1435 if (!TII.shouldScheduleAdjacent(Pred, Branch)) 1436 continue; 1437 1438 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1439 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1440 // need to copy predecessor edges from ExitSU to SU, since top-down 1441 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1442 // of SU, we could create an artificial edge from the deepest root, but it 1443 // hasn't been needed yet. 1444 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1445 (void)Success; 1446 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1447 1448 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1449 break; 1450 } 1451 } 1452 1453 //===----------------------------------------------------------------------===// 1454 // CopyConstrain - DAG post-processing to encourage copy elimination. 1455 //===----------------------------------------------------------------------===// 1456 1457 namespace { 1458 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1459 /// the one use that defines the copy's source vreg, most likely an induction 1460 /// variable increment. 1461 class CopyConstrain : public ScheduleDAGMutation { 1462 // Transient state. 1463 SlotIndex RegionBeginIdx; 1464 // RegionEndIdx is the slot index of the last non-debug instruction in the 1465 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1466 SlotIndex RegionEndIdx; 1467 public: 1468 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1469 1470 void apply(ScheduleDAGMI *DAG) override; 1471 1472 protected: 1473 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1474 }; 1475 } // anonymous 1476 1477 /// constrainLocalCopy handles two possibilities: 1478 /// 1) Local src: 1479 /// I0: = dst 1480 /// I1: src = ... 1481 /// I2: = dst 1482 /// I3: dst = src (copy) 1483 /// (create pred->succ edges I0->I1, I2->I1) 1484 /// 1485 /// 2) Local copy: 1486 /// I0: dst = src (copy) 1487 /// I1: = dst 1488 /// I2: src = ... 1489 /// I3: = dst 1490 /// (create pred->succ edges I1->I2, I3->I2) 1491 /// 1492 /// Although the MachineScheduler is currently constrained to single blocks, 1493 /// this algorithm should handle extended blocks. An EBB is a set of 1494 /// contiguously numbered blocks such that the previous block in the EBB is 1495 /// always the single predecessor. 1496 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1497 LiveIntervals *LIS = DAG->getLIS(); 1498 MachineInstr *Copy = CopySU->getInstr(); 1499 1500 // Check for pure vreg copies. 1501 unsigned SrcReg = Copy->getOperand(1).getReg(); 1502 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1503 return; 1504 1505 unsigned DstReg = Copy->getOperand(0).getReg(); 1506 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1507 return; 1508 1509 // Check if either the dest or source is local. If it's live across a back 1510 // edge, it's not local. Note that if both vregs are live across the back 1511 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1512 // If both the copy's source and dest are local live intervals, then we 1513 // should treat the dest as the global for the purpose of adding 1514 // constraints. This adds edges from source's other uses to the copy. 1515 unsigned LocalReg = SrcReg; 1516 unsigned GlobalReg = DstReg; 1517 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1518 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1519 LocalReg = DstReg; 1520 GlobalReg = SrcReg; 1521 LocalLI = &LIS->getInterval(LocalReg); 1522 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1523 return; 1524 } 1525 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1526 1527 // Find the global segment after the start of the local LI. 1528 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1529 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1530 // local live range. We could create edges from other global uses to the local 1531 // start, but the coalescer should have already eliminated these cases, so 1532 // don't bother dealing with it. 1533 if (GlobalSegment == GlobalLI->end()) 1534 return; 1535 1536 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1537 // returned the next global segment. But if GlobalSegment overlaps with 1538 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1539 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1540 if (GlobalSegment->contains(LocalLI->beginIndex())) 1541 ++GlobalSegment; 1542 1543 if (GlobalSegment == GlobalLI->end()) 1544 return; 1545 1546 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1547 if (GlobalSegment != GlobalLI->begin()) { 1548 // Two address defs have no hole. 1549 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1550 GlobalSegment->start)) { 1551 return; 1552 } 1553 // If the prior global segment may be defined by the same two-address 1554 // instruction that also defines LocalLI, then can't make a hole here. 1555 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1556 LocalLI->beginIndex())) { 1557 return; 1558 } 1559 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1560 // it would be a disconnected component in the live range. 1561 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1562 "Disconnected LRG within the scheduling region."); 1563 } 1564 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1565 if (!GlobalDef) 1566 return; 1567 1568 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1569 if (!GlobalSU) 1570 return; 1571 1572 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1573 // constraining the uses of the last local def to precede GlobalDef. 1574 SmallVector<SUnit*,8> LocalUses; 1575 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1576 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1577 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1578 for (SUnit::const_succ_iterator 1579 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1580 I != E; ++I) { 1581 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1582 continue; 1583 if (I->getSUnit() == GlobalSU) 1584 continue; 1585 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1586 return; 1587 LocalUses.push_back(I->getSUnit()); 1588 } 1589 // Open the top of the GlobalLI hole by constraining any earlier global uses 1590 // to precede the start of LocalLI. 1591 SmallVector<SUnit*,8> GlobalUses; 1592 MachineInstr *FirstLocalDef = 1593 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1594 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1595 for (SUnit::const_pred_iterator 1596 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1597 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1598 continue; 1599 if (I->getSUnit() == FirstLocalSU) 1600 continue; 1601 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1602 return; 1603 GlobalUses.push_back(I->getSUnit()); 1604 } 1605 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1606 // Add the weak edges. 1607 for (SmallVectorImpl<SUnit*>::const_iterator 1608 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1609 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1610 << GlobalSU->NodeNum << ")\n"); 1611 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1612 } 1613 for (SmallVectorImpl<SUnit*>::const_iterator 1614 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1615 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1616 << FirstLocalSU->NodeNum << ")\n"); 1617 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1618 } 1619 } 1620 1621 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1622 /// copy elimination. 1623 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1624 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1625 1626 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1627 if (FirstPos == DAG->end()) 1628 return; 1629 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1630 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1631 &*priorNonDebug(DAG->end(), DAG->begin())); 1632 1633 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1634 SUnit *SU = &DAG->SUnits[Idx]; 1635 if (!SU->getInstr()->isCopy()) 1636 continue; 1637 1638 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1639 } 1640 } 1641 1642 //===----------------------------------------------------------------------===// 1643 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1644 // and possibly other custom schedulers. 1645 //===----------------------------------------------------------------------===// 1646 1647 static const unsigned InvalidCycle = ~0U; 1648 1649 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1650 1651 void SchedBoundary::reset() { 1652 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1653 // Destroying and reconstructing it is very expensive though. So keep 1654 // invalid, placeholder HazardRecs. 1655 if (HazardRec && HazardRec->isEnabled()) { 1656 delete HazardRec; 1657 HazardRec = nullptr; 1658 } 1659 Available.clear(); 1660 Pending.clear(); 1661 CheckPending = false; 1662 NextSUs.clear(); 1663 CurrCycle = 0; 1664 CurrMOps = 0; 1665 MinReadyCycle = UINT_MAX; 1666 ExpectedLatency = 0; 1667 DependentLatency = 0; 1668 RetiredMOps = 0; 1669 MaxExecutedResCount = 0; 1670 ZoneCritResIdx = 0; 1671 IsResourceLimited = false; 1672 ReservedCycles.clear(); 1673 #ifndef NDEBUG 1674 // Track the maximum number of stall cycles that could arise either from the 1675 // latency of a DAG edge or the number of cycles that a processor resource is 1676 // reserved (SchedBoundary::ReservedCycles). 1677 MaxObservedStall = 0; 1678 #endif 1679 // Reserve a zero-count for invalid CritResIdx. 1680 ExecutedResCounts.resize(1); 1681 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1682 } 1683 1684 void SchedRemainder:: 1685 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1686 reset(); 1687 if (!SchedModel->hasInstrSchedModel()) 1688 return; 1689 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1690 for (std::vector<SUnit>::iterator 1691 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1692 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1693 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1694 * SchedModel->getMicroOpFactor(); 1695 for (TargetSchedModel::ProcResIter 1696 PI = SchedModel->getWriteProcResBegin(SC), 1697 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1698 unsigned PIdx = PI->ProcResourceIdx; 1699 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1700 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1701 } 1702 } 1703 } 1704 1705 void SchedBoundary:: 1706 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1707 reset(); 1708 DAG = dag; 1709 SchedModel = smodel; 1710 Rem = rem; 1711 if (SchedModel->hasInstrSchedModel()) { 1712 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1713 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1714 } 1715 } 1716 1717 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1718 /// these "soft stalls" differently than the hard stall cycles based on CPU 1719 /// resources and computed by checkHazard(). A fully in-order model 1720 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1721 /// available for scheduling until they are ready. However, a weaker in-order 1722 /// model may use this for heuristics. For example, if a processor has in-order 1723 /// behavior when reading certain resources, this may come into play. 1724 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1725 if (!SU->isUnbuffered) 1726 return 0; 1727 1728 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1729 if (ReadyCycle > CurrCycle) 1730 return ReadyCycle - CurrCycle; 1731 return 0; 1732 } 1733 1734 /// Compute the next cycle at which the given processor resource can be 1735 /// scheduled. 1736 unsigned SchedBoundary:: 1737 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1738 unsigned NextUnreserved = ReservedCycles[PIdx]; 1739 // If this resource has never been used, always return cycle zero. 1740 if (NextUnreserved == InvalidCycle) 1741 return 0; 1742 // For bottom-up scheduling add the cycles needed for the current operation. 1743 if (!isTop()) 1744 NextUnreserved += Cycles; 1745 return NextUnreserved; 1746 } 1747 1748 /// Does this SU have a hazard within the current instruction group. 1749 /// 1750 /// The scheduler supports two modes of hazard recognition. The first is the 1751 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1752 /// supports highly complicated in-order reservation tables 1753 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1754 /// 1755 /// The second is a streamlined mechanism that checks for hazards based on 1756 /// simple counters that the scheduler itself maintains. It explicitly checks 1757 /// for instruction dispatch limitations, including the number of micro-ops that 1758 /// can dispatch per cycle. 1759 /// 1760 /// TODO: Also check whether the SU must start a new group. 1761 bool SchedBoundary::checkHazard(SUnit *SU) { 1762 if (HazardRec->isEnabled() 1763 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1764 return true; 1765 } 1766 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1767 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1768 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1769 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1770 return true; 1771 } 1772 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1773 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1774 for (TargetSchedModel::ProcResIter 1775 PI = SchedModel->getWriteProcResBegin(SC), 1776 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1777 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1778 if (NRCycle > CurrCycle) { 1779 #ifndef NDEBUG 1780 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1781 #endif 1782 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1783 << SchedModel->getResourceName(PI->ProcResourceIdx) 1784 << "=" << NRCycle << "c\n"); 1785 return true; 1786 } 1787 } 1788 } 1789 return false; 1790 } 1791 1792 // Find the unscheduled node in ReadySUs with the highest latency. 1793 unsigned SchedBoundary:: 1794 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1795 SUnit *LateSU = nullptr; 1796 unsigned RemLatency = 0; 1797 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1798 I != E; ++I) { 1799 unsigned L = getUnscheduledLatency(*I); 1800 if (L > RemLatency) { 1801 RemLatency = L; 1802 LateSU = *I; 1803 } 1804 } 1805 if (LateSU) { 1806 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1807 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1808 } 1809 return RemLatency; 1810 } 1811 1812 // Count resources in this zone and the remaining unscheduled 1813 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1814 // resource index, or zero if the zone is issue limited. 1815 unsigned SchedBoundary:: 1816 getOtherResourceCount(unsigned &OtherCritIdx) { 1817 OtherCritIdx = 0; 1818 if (!SchedModel->hasInstrSchedModel()) 1819 return 0; 1820 1821 unsigned OtherCritCount = Rem->RemIssueCount 1822 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1823 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1824 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1825 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1826 PIdx != PEnd; ++PIdx) { 1827 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1828 if (OtherCount > OtherCritCount) { 1829 OtherCritCount = OtherCount; 1830 OtherCritIdx = PIdx; 1831 } 1832 } 1833 if (OtherCritIdx) { 1834 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1835 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1836 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1837 } 1838 return OtherCritCount; 1839 } 1840 1841 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1842 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1843 1844 #ifndef NDEBUG 1845 // ReadyCycle was been bumped up to the CurrCycle when this node was 1846 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1847 // scheduling, so may now be greater than ReadyCycle. 1848 if (ReadyCycle > CurrCycle) 1849 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1850 #endif 1851 1852 if (ReadyCycle < MinReadyCycle) 1853 MinReadyCycle = ReadyCycle; 1854 1855 // Check for interlocks first. For the purpose of other heuristics, an 1856 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1857 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1858 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1859 Pending.push(SU); 1860 else 1861 Available.push(SU); 1862 1863 // Record this node as an immediate dependent of the scheduled node. 1864 NextSUs.insert(SU); 1865 } 1866 1867 void SchedBoundary::releaseTopNode(SUnit *SU) { 1868 if (SU->isScheduled) 1869 return; 1870 1871 releaseNode(SU, SU->TopReadyCycle); 1872 } 1873 1874 void SchedBoundary::releaseBottomNode(SUnit *SU) { 1875 if (SU->isScheduled) 1876 return; 1877 1878 releaseNode(SU, SU->BotReadyCycle); 1879 } 1880 1881 /// Move the boundary of scheduled code by one cycle. 1882 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1883 if (SchedModel->getMicroOpBufferSize() == 0) { 1884 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1885 if (MinReadyCycle > NextCycle) 1886 NextCycle = MinReadyCycle; 1887 } 1888 // Update the current micro-ops, which will issue in the next cycle. 1889 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1890 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1891 1892 // Decrement DependentLatency based on the next cycle. 1893 if ((NextCycle - CurrCycle) > DependentLatency) 1894 DependentLatency = 0; 1895 else 1896 DependentLatency -= (NextCycle - CurrCycle); 1897 1898 if (!HazardRec->isEnabled()) { 1899 // Bypass HazardRec virtual calls. 1900 CurrCycle = NextCycle; 1901 } 1902 else { 1903 // Bypass getHazardType calls in case of long latency. 1904 for (; CurrCycle != NextCycle; ++CurrCycle) { 1905 if (isTop()) 1906 HazardRec->AdvanceCycle(); 1907 else 1908 HazardRec->RecedeCycle(); 1909 } 1910 } 1911 CheckPending = true; 1912 unsigned LFactor = SchedModel->getLatencyFactor(); 1913 IsResourceLimited = 1914 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1915 > (int)LFactor; 1916 1917 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1918 } 1919 1920 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 1921 ExecutedResCounts[PIdx] += Count; 1922 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1923 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1924 } 1925 1926 /// Add the given processor resource to this scheduled zone. 1927 /// 1928 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1929 /// during which this resource is consumed. 1930 /// 1931 /// \return the next cycle at which the instruction may execute without 1932 /// oversubscribing resources. 1933 unsigned SchedBoundary:: 1934 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 1935 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1936 unsigned Count = Factor * Cycles; 1937 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 1938 << " +" << Cycles << "x" << Factor << "u\n"); 1939 1940 // Update Executed resources counts. 1941 incExecutedResources(PIdx, Count); 1942 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1943 Rem->RemainingCounts[PIdx] -= Count; 1944 1945 // Check if this resource exceeds the current critical resource. If so, it 1946 // becomes the critical resource. 1947 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 1948 ZoneCritResIdx = PIdx; 1949 DEBUG(dbgs() << " *** Critical resource " 1950 << SchedModel->getResourceName(PIdx) << ": " 1951 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 1952 } 1953 // For reserved resources, record the highest cycle using the resource. 1954 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 1955 if (NextAvailable > CurrCycle) { 1956 DEBUG(dbgs() << " Resource conflict: " 1957 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 1958 << NextAvailable << "\n"); 1959 } 1960 return NextAvailable; 1961 } 1962 1963 /// Move the boundary of scheduled code by one SUnit. 1964 void SchedBoundary::bumpNode(SUnit *SU) { 1965 // Update the reservation table. 1966 if (HazardRec->isEnabled()) { 1967 if (!isTop() && SU->isCall) { 1968 // Calls are scheduled with their preceding instructions. For bottom-up 1969 // scheduling, clear the pipeline state before emitting. 1970 HazardRec->Reset(); 1971 } 1972 HazardRec->EmitInstruction(SU); 1973 } 1974 // checkHazard should prevent scheduling multiple instructions per cycle that 1975 // exceed the issue width. 1976 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1977 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 1978 assert( 1979 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 1980 "Cannot schedule this instruction's MicroOps in the current cycle."); 1981 1982 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1983 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 1984 1985 unsigned NextCycle = CurrCycle; 1986 switch (SchedModel->getMicroOpBufferSize()) { 1987 case 0: 1988 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 1989 break; 1990 case 1: 1991 if (ReadyCycle > NextCycle) { 1992 NextCycle = ReadyCycle; 1993 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 1994 } 1995 break; 1996 default: 1997 // We don't currently model the OOO reorder buffer, so consider all 1998 // scheduled MOps to be "retired". We do loosely model in-order resource 1999 // latency. If this instruction uses an in-order resource, account for any 2000 // likely stall cycles. 2001 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2002 NextCycle = ReadyCycle; 2003 break; 2004 } 2005 RetiredMOps += IncMOps; 2006 2007 // Update resource counts and critical resource. 2008 if (SchedModel->hasInstrSchedModel()) { 2009 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2010 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2011 Rem->RemIssueCount -= DecRemIssue; 2012 if (ZoneCritResIdx) { 2013 // Scale scheduled micro-ops for comparing with the critical resource. 2014 unsigned ScaledMOps = 2015 RetiredMOps * SchedModel->getMicroOpFactor(); 2016 2017 // If scaled micro-ops are now more than the previous critical resource by 2018 // a full cycle, then micro-ops issue becomes critical. 2019 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2020 >= (int)SchedModel->getLatencyFactor()) { 2021 ZoneCritResIdx = 0; 2022 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2023 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2024 } 2025 } 2026 for (TargetSchedModel::ProcResIter 2027 PI = SchedModel->getWriteProcResBegin(SC), 2028 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2029 unsigned RCycle = 2030 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2031 if (RCycle > NextCycle) 2032 NextCycle = RCycle; 2033 } 2034 if (SU->hasReservedResource) { 2035 // For reserved resources, record the highest cycle using the resource. 2036 // For top-down scheduling, this is the cycle in which we schedule this 2037 // instruction plus the number of cycles the operations reserves the 2038 // resource. For bottom-up is it simply the instruction's cycle. 2039 for (TargetSchedModel::ProcResIter 2040 PI = SchedModel->getWriteProcResBegin(SC), 2041 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2042 unsigned PIdx = PI->ProcResourceIdx; 2043 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2044 if (isTop()) { 2045 ReservedCycles[PIdx] = 2046 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2047 } 2048 else 2049 ReservedCycles[PIdx] = NextCycle; 2050 } 2051 } 2052 } 2053 } 2054 // Update ExpectedLatency and DependentLatency. 2055 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2056 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2057 if (SU->getDepth() > TopLatency) { 2058 TopLatency = SU->getDepth(); 2059 DEBUG(dbgs() << " " << Available.getName() 2060 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2061 } 2062 if (SU->getHeight() > BotLatency) { 2063 BotLatency = SU->getHeight(); 2064 DEBUG(dbgs() << " " << Available.getName() 2065 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2066 } 2067 // If we stall for any reason, bump the cycle. 2068 if (NextCycle > CurrCycle) { 2069 bumpCycle(NextCycle); 2070 } 2071 else { 2072 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2073 // resource limited. If a stall occurred, bumpCycle does this. 2074 unsigned LFactor = SchedModel->getLatencyFactor(); 2075 IsResourceLimited = 2076 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2077 > (int)LFactor; 2078 } 2079 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2080 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2081 // one cycle. Since we commonly reach the max MOps here, opportunistically 2082 // bump the cycle to avoid uselessly checking everything in the readyQ. 2083 CurrMOps += IncMOps; 2084 while (CurrMOps >= SchedModel->getIssueWidth()) { 2085 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2086 << " at cycle " << CurrCycle << '\n'); 2087 bumpCycle(++NextCycle); 2088 } 2089 DEBUG(dumpScheduledState()); 2090 } 2091 2092 /// Release pending ready nodes in to the available queue. This makes them 2093 /// visible to heuristics. 2094 void SchedBoundary::releasePending() { 2095 // If the available queue is empty, it is safe to reset MinReadyCycle. 2096 if (Available.empty()) 2097 MinReadyCycle = UINT_MAX; 2098 2099 // Check to see if any of the pending instructions are ready to issue. If 2100 // so, add them to the available queue. 2101 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2102 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2103 SUnit *SU = *(Pending.begin()+i); 2104 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2105 2106 if (ReadyCycle < MinReadyCycle) 2107 MinReadyCycle = ReadyCycle; 2108 2109 if (!IsBuffered && ReadyCycle > CurrCycle) 2110 continue; 2111 2112 if (checkHazard(SU)) 2113 continue; 2114 2115 Available.push(SU); 2116 Pending.remove(Pending.begin()+i); 2117 --i; --e; 2118 } 2119 DEBUG(if (!Pending.empty()) Pending.dump()); 2120 CheckPending = false; 2121 } 2122 2123 /// Remove SU from the ready set for this boundary. 2124 void SchedBoundary::removeReady(SUnit *SU) { 2125 if (Available.isInQueue(SU)) 2126 Available.remove(Available.find(SU)); 2127 else { 2128 assert(Pending.isInQueue(SU) && "bad ready count"); 2129 Pending.remove(Pending.find(SU)); 2130 } 2131 } 2132 2133 /// If this queue only has one ready candidate, return it. As a side effect, 2134 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2135 /// one node is ready. If multiple instructions are ready, return NULL. 2136 SUnit *SchedBoundary::pickOnlyChoice() { 2137 if (CheckPending) 2138 releasePending(); 2139 2140 if (CurrMOps > 0) { 2141 // Defer any ready instrs that now have a hazard. 2142 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2143 if (checkHazard(*I)) { 2144 Pending.push(*I); 2145 I = Available.remove(I); 2146 continue; 2147 } 2148 ++I; 2149 } 2150 } 2151 for (unsigned i = 0; Available.empty(); ++i) { 2152 // FIXME: Re-enable assert once PR20057 is resolved. 2153 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2154 // "permanent hazard"); 2155 (void)i; 2156 bumpCycle(CurrCycle + 1); 2157 releasePending(); 2158 } 2159 if (Available.size() == 1) 2160 return *Available.begin(); 2161 return nullptr; 2162 } 2163 2164 #ifndef NDEBUG 2165 // This is useful information to dump after bumpNode. 2166 // Note that the Queue contents are more useful before pickNodeFromQueue. 2167 void SchedBoundary::dumpScheduledState() { 2168 unsigned ResFactor; 2169 unsigned ResCount; 2170 if (ZoneCritResIdx) { 2171 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2172 ResCount = getResourceCount(ZoneCritResIdx); 2173 } 2174 else { 2175 ResFactor = SchedModel->getMicroOpFactor(); 2176 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2177 } 2178 unsigned LFactor = SchedModel->getLatencyFactor(); 2179 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2180 << " Retired: " << RetiredMOps; 2181 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2182 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2183 << ResCount / ResFactor << " " 2184 << SchedModel->getResourceName(ZoneCritResIdx) 2185 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2186 << (IsResourceLimited ? " - Resource" : " - Latency") 2187 << " limited.\n"; 2188 } 2189 #endif 2190 2191 //===----------------------------------------------------------------------===// 2192 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2193 //===----------------------------------------------------------------------===// 2194 2195 void GenericSchedulerBase::SchedCandidate:: 2196 initResourceDelta(const ScheduleDAGMI *DAG, 2197 const TargetSchedModel *SchedModel) { 2198 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2199 return; 2200 2201 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2202 for (TargetSchedModel::ProcResIter 2203 PI = SchedModel->getWriteProcResBegin(SC), 2204 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2205 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2206 ResDelta.CritResources += PI->Cycles; 2207 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2208 ResDelta.DemandedResources += PI->Cycles; 2209 } 2210 } 2211 2212 /// Set the CandPolicy given a scheduling zone given the current resources and 2213 /// latencies inside and outside the zone. 2214 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, 2215 bool IsPostRA, 2216 SchedBoundary &CurrZone, 2217 SchedBoundary *OtherZone) { 2218 // Apply preemptive heuristics based on the total latency and resources 2219 // inside and outside this zone. Potential stalls should be considered before 2220 // following this policy. 2221 2222 // Compute remaining latency. We need this both to determine whether the 2223 // overall schedule has become latency-limited and whether the instructions 2224 // outside this zone are resource or latency limited. 2225 // 2226 // The "dependent" latency is updated incrementally during scheduling as the 2227 // max height/depth of scheduled nodes minus the cycles since it was 2228 // scheduled: 2229 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2230 // 2231 // The "independent" latency is the max ready queue depth: 2232 // ILat = max N.depth for N in Available|Pending 2233 // 2234 // RemainingLatency is the greater of independent and dependent latency. 2235 unsigned RemLatency = CurrZone.getDependentLatency(); 2236 RemLatency = std::max(RemLatency, 2237 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2238 RemLatency = std::max(RemLatency, 2239 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2240 2241 // Compute the critical resource outside the zone. 2242 unsigned OtherCritIdx = 0; 2243 unsigned OtherCount = 2244 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2245 2246 bool OtherResLimited = false; 2247 if (SchedModel->hasInstrSchedModel()) { 2248 unsigned LFactor = SchedModel->getLatencyFactor(); 2249 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2250 } 2251 // Schedule aggressively for latency in PostRA mode. We don't check for 2252 // acyclic latency during PostRA, and highly out-of-order processors will 2253 // skip PostRA scheduling. 2254 if (!OtherResLimited) { 2255 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2256 Policy.ReduceLatency |= true; 2257 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2258 << " RemainingLatency " << RemLatency << " + " 2259 << CurrZone.getCurrCycle() << "c > CritPath " 2260 << Rem.CriticalPath << "\n"); 2261 } 2262 } 2263 // If the same resource is limiting inside and outside the zone, do nothing. 2264 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2265 return; 2266 2267 DEBUG( 2268 if (CurrZone.isResourceLimited()) { 2269 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2270 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2271 << "\n"; 2272 } 2273 if (OtherResLimited) 2274 dbgs() << " RemainingLimit: " 2275 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2276 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2277 dbgs() << " Latency limited both directions.\n"); 2278 2279 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2280 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2281 2282 if (OtherResLimited) 2283 Policy.DemandResIdx = OtherCritIdx; 2284 } 2285 2286 #ifndef NDEBUG 2287 const char *GenericSchedulerBase::getReasonStr( 2288 GenericSchedulerBase::CandReason Reason) { 2289 switch (Reason) { 2290 case NoCand: return "NOCAND "; 2291 case PhysRegCopy: return "PREG-COPY"; 2292 case RegExcess: return "REG-EXCESS"; 2293 case RegCritical: return "REG-CRIT "; 2294 case Stall: return "STALL "; 2295 case Cluster: return "CLUSTER "; 2296 case Weak: return "WEAK "; 2297 case RegMax: return "REG-MAX "; 2298 case ResourceReduce: return "RES-REDUCE"; 2299 case ResourceDemand: return "RES-DEMAND"; 2300 case TopDepthReduce: return "TOP-DEPTH "; 2301 case TopPathReduce: return "TOP-PATH "; 2302 case BotHeightReduce:return "BOT-HEIGHT"; 2303 case BotPathReduce: return "BOT-PATH "; 2304 case NextDefUse: return "DEF-USE "; 2305 case NodeOrder: return "ORDER "; 2306 }; 2307 llvm_unreachable("Unknown reason!"); 2308 } 2309 2310 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2311 PressureChange P; 2312 unsigned ResIdx = 0; 2313 unsigned Latency = 0; 2314 switch (Cand.Reason) { 2315 default: 2316 break; 2317 case RegExcess: 2318 P = Cand.RPDelta.Excess; 2319 break; 2320 case RegCritical: 2321 P = Cand.RPDelta.CriticalMax; 2322 break; 2323 case RegMax: 2324 P = Cand.RPDelta.CurrentMax; 2325 break; 2326 case ResourceReduce: 2327 ResIdx = Cand.Policy.ReduceResIdx; 2328 break; 2329 case ResourceDemand: 2330 ResIdx = Cand.Policy.DemandResIdx; 2331 break; 2332 case TopDepthReduce: 2333 Latency = Cand.SU->getDepth(); 2334 break; 2335 case TopPathReduce: 2336 Latency = Cand.SU->getHeight(); 2337 break; 2338 case BotHeightReduce: 2339 Latency = Cand.SU->getHeight(); 2340 break; 2341 case BotPathReduce: 2342 Latency = Cand.SU->getDepth(); 2343 break; 2344 } 2345 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2346 if (P.isValid()) 2347 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2348 << ":" << P.getUnitInc() << " "; 2349 else 2350 dbgs() << " "; 2351 if (ResIdx) 2352 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2353 else 2354 dbgs() << " "; 2355 if (Latency) 2356 dbgs() << " " << Latency << " cycles "; 2357 else 2358 dbgs() << " "; 2359 dbgs() << '\n'; 2360 } 2361 #endif 2362 2363 /// Return true if this heuristic determines order. 2364 static bool tryLess(int TryVal, int CandVal, 2365 GenericSchedulerBase::SchedCandidate &TryCand, 2366 GenericSchedulerBase::SchedCandidate &Cand, 2367 GenericSchedulerBase::CandReason Reason) { 2368 if (TryVal < CandVal) { 2369 TryCand.Reason = Reason; 2370 return true; 2371 } 2372 if (TryVal > CandVal) { 2373 if (Cand.Reason > Reason) 2374 Cand.Reason = Reason; 2375 return true; 2376 } 2377 Cand.setRepeat(Reason); 2378 return false; 2379 } 2380 2381 static bool tryGreater(int TryVal, int CandVal, 2382 GenericSchedulerBase::SchedCandidate &TryCand, 2383 GenericSchedulerBase::SchedCandidate &Cand, 2384 GenericSchedulerBase::CandReason Reason) { 2385 if (TryVal > CandVal) { 2386 TryCand.Reason = Reason; 2387 return true; 2388 } 2389 if (TryVal < CandVal) { 2390 if (Cand.Reason > Reason) 2391 Cand.Reason = Reason; 2392 return true; 2393 } 2394 Cand.setRepeat(Reason); 2395 return false; 2396 } 2397 2398 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2399 GenericSchedulerBase::SchedCandidate &Cand, 2400 SchedBoundary &Zone) { 2401 if (Zone.isTop()) { 2402 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2403 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2404 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2405 return true; 2406 } 2407 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2408 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2409 return true; 2410 } 2411 else { 2412 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2413 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2414 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2415 return true; 2416 } 2417 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2418 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2419 return true; 2420 } 2421 return false; 2422 } 2423 2424 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, 2425 bool IsTop) { 2426 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2427 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); 2428 } 2429 2430 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2431 assert(dag->hasVRegLiveness() && 2432 "(PreRA)GenericScheduler needs vreg liveness"); 2433 DAG = static_cast<ScheduleDAGMILive*>(dag); 2434 SchedModel = DAG->getSchedModel(); 2435 TRI = DAG->TRI; 2436 2437 Rem.init(DAG, SchedModel); 2438 Top.init(DAG, SchedModel, &Rem); 2439 Bot.init(DAG, SchedModel, &Rem); 2440 2441 // Initialize resource counts. 2442 2443 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2444 // are disabled, then these HazardRecs will be disabled. 2445 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2446 if (!Top.HazardRec) { 2447 Top.HazardRec = 2448 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2449 Itin, DAG); 2450 } 2451 if (!Bot.HazardRec) { 2452 Bot.HazardRec = 2453 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2454 Itin, DAG); 2455 } 2456 } 2457 2458 /// Initialize the per-region scheduling policy. 2459 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2460 MachineBasicBlock::iterator End, 2461 unsigned NumRegionInstrs) { 2462 const MachineFunction &MF = *Begin->getParent()->getParent(); 2463 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2464 2465 // Avoid setting up the register pressure tracker for small regions to save 2466 // compile time. As a rough heuristic, only track pressure when the number of 2467 // schedulable instructions exceeds half the integer register file. 2468 RegionPolicy.ShouldTrackPressure = true; 2469 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2470 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2471 if (TLI->isTypeLegal(LegalIntVT)) { 2472 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2473 TLI->getRegClassFor(LegalIntVT)); 2474 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2475 } 2476 } 2477 2478 // For generic targets, we default to bottom-up, because it's simpler and more 2479 // compile-time optimizations have been implemented in that direction. 2480 RegionPolicy.OnlyBottomUp = true; 2481 2482 // Allow the subtarget to override default policy. 2483 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End, 2484 NumRegionInstrs); 2485 2486 // After subtarget overrides, apply command line options. 2487 if (!EnableRegPressure) 2488 RegionPolicy.ShouldTrackPressure = false; 2489 2490 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2491 // e.g. -misched-bottomup=false allows scheduling in both directions. 2492 assert((!ForceTopDown || !ForceBottomUp) && 2493 "-misched-topdown incompatible with -misched-bottomup"); 2494 if (ForceBottomUp.getNumOccurrences() > 0) { 2495 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2496 if (RegionPolicy.OnlyBottomUp) 2497 RegionPolicy.OnlyTopDown = false; 2498 } 2499 if (ForceTopDown.getNumOccurrences() > 0) { 2500 RegionPolicy.OnlyTopDown = ForceTopDown; 2501 if (RegionPolicy.OnlyTopDown) 2502 RegionPolicy.OnlyBottomUp = false; 2503 } 2504 } 2505 2506 void GenericScheduler::dumpPolicy() { 2507 dbgs() << "GenericScheduler RegionPolicy: " 2508 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2509 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2510 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2511 << "\n"; 2512 } 2513 2514 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2515 /// critical path by more cycles than it takes to drain the instruction buffer. 2516 /// We estimate an upper bounds on in-flight instructions as: 2517 /// 2518 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2519 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2520 /// InFlightResources = InFlightIterations * LoopResources 2521 /// 2522 /// TODO: Check execution resources in addition to IssueCount. 2523 void GenericScheduler::checkAcyclicLatency() { 2524 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2525 return; 2526 2527 // Scaled number of cycles per loop iteration. 2528 unsigned IterCount = 2529 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2530 Rem.RemIssueCount); 2531 // Scaled acyclic critical path. 2532 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2533 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2534 unsigned InFlightCount = 2535 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2536 unsigned BufferLimit = 2537 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2538 2539 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2540 2541 DEBUG(dbgs() << "IssueCycles=" 2542 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2543 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2544 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2545 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2546 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2547 if (Rem.IsAcyclicLatencyLimited) 2548 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2549 } 2550 2551 void GenericScheduler::registerRoots() { 2552 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2553 2554 // Some roots may not feed into ExitSU. Check all of them in case. 2555 for (std::vector<SUnit*>::const_iterator 2556 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2557 if ((*I)->getDepth() > Rem.CriticalPath) 2558 Rem.CriticalPath = (*I)->getDepth(); 2559 } 2560 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2561 if (DumpCriticalPathLength) { 2562 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2563 } 2564 2565 if (EnableCyclicPath) { 2566 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2567 checkAcyclicLatency(); 2568 } 2569 } 2570 2571 static bool tryPressure(const PressureChange &TryP, 2572 const PressureChange &CandP, 2573 GenericSchedulerBase::SchedCandidate &TryCand, 2574 GenericSchedulerBase::SchedCandidate &Cand, 2575 GenericSchedulerBase::CandReason Reason) { 2576 int TryRank = TryP.getPSetOrMax(); 2577 int CandRank = CandP.getPSetOrMax(); 2578 // If both candidates affect the same set, go with the smallest increase. 2579 if (TryRank == CandRank) { 2580 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2581 Reason); 2582 } 2583 // If one candidate decreases and the other increases, go with it. 2584 // Invalid candidates have UnitInc==0. 2585 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2586 Reason)) { 2587 return true; 2588 } 2589 // If the candidates are decreasing pressure, reverse priority. 2590 if (TryP.getUnitInc() < 0) 2591 std::swap(TryRank, CandRank); 2592 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2593 } 2594 2595 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2596 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2597 } 2598 2599 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2600 /// their physreg def/use. 2601 /// 2602 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2603 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2604 /// with the operation that produces or consumes the physreg. We'll do this when 2605 /// regalloc has support for parallel copies. 2606 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2607 const MachineInstr *MI = SU->getInstr(); 2608 if (!MI->isCopy()) 2609 return 0; 2610 2611 unsigned ScheduledOper = isTop ? 1 : 0; 2612 unsigned UnscheduledOper = isTop ? 0 : 1; 2613 // If we have already scheduled the physreg produce/consumer, immediately 2614 // schedule the copy. 2615 if (TargetRegisterInfo::isPhysicalRegister( 2616 MI->getOperand(ScheduledOper).getReg())) 2617 return 1; 2618 // If the physreg is at the boundary, defer it. Otherwise schedule it 2619 // immediately to free the dependent. We can hoist the copy later. 2620 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2621 if (TargetRegisterInfo::isPhysicalRegister( 2622 MI->getOperand(UnscheduledOper).getReg())) 2623 return AtBoundary ? -1 : 1; 2624 return 0; 2625 } 2626 2627 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2628 /// hierarchical. This may be more efficient than a graduated cost model because 2629 /// we don't need to evaluate all aspects of the model for each node in the 2630 /// queue. But it's really done to make the heuristics easier to debug and 2631 /// statistically analyze. 2632 /// 2633 /// \param Cand provides the policy and current best candidate. 2634 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2635 /// \param Zone describes the scheduled zone that we are extending. 2636 /// \param RPTracker describes reg pressure within the scheduled zone. 2637 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2638 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2639 SchedCandidate &TryCand, 2640 SchedBoundary &Zone, 2641 const RegPressureTracker &RPTracker, 2642 RegPressureTracker &TempTracker) { 2643 2644 if (DAG->isTrackingPressure()) { 2645 // Always initialize TryCand's RPDelta. 2646 if (Zone.isTop()) { 2647 TempTracker.getMaxDownwardPressureDelta( 2648 TryCand.SU->getInstr(), 2649 TryCand.RPDelta, 2650 DAG->getRegionCriticalPSets(), 2651 DAG->getRegPressure().MaxSetPressure); 2652 } 2653 else { 2654 if (VerifyScheduling) { 2655 TempTracker.getMaxUpwardPressureDelta( 2656 TryCand.SU->getInstr(), 2657 &DAG->getPressureDiff(TryCand.SU), 2658 TryCand.RPDelta, 2659 DAG->getRegionCriticalPSets(), 2660 DAG->getRegPressure().MaxSetPressure); 2661 } 2662 else { 2663 RPTracker.getUpwardPressureDelta( 2664 TryCand.SU->getInstr(), 2665 DAG->getPressureDiff(TryCand.SU), 2666 TryCand.RPDelta, 2667 DAG->getRegionCriticalPSets(), 2668 DAG->getRegPressure().MaxSetPressure); 2669 } 2670 } 2671 } 2672 DEBUG(if (TryCand.RPDelta.Excess.isValid()) 2673 dbgs() << " Try SU(" << TryCand.SU->NodeNum << ") " 2674 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) 2675 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); 2676 2677 // Initialize the candidate if needed. 2678 if (!Cand.isValid()) { 2679 TryCand.Reason = NodeOrder; 2680 return; 2681 } 2682 2683 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2684 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2685 TryCand, Cand, PhysRegCopy)) 2686 return; 2687 2688 // Avoid exceeding the target's limit. 2689 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2690 Cand.RPDelta.Excess, 2691 TryCand, Cand, RegExcess)) 2692 return; 2693 2694 // Avoid increasing the max critical pressure in the scheduled region. 2695 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2696 Cand.RPDelta.CriticalMax, 2697 TryCand, Cand, RegCritical)) 2698 return; 2699 2700 // For loops that are acyclic path limited, aggressively schedule for latency. 2701 // This can result in very long dependence chains scheduled in sequence, so 2702 // once every cycle (when CurrMOps == 0), switch to normal heuristics. 2703 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() 2704 && tryLatency(TryCand, Cand, Zone)) 2705 return; 2706 2707 // Prioritize instructions that read unbuffered resources by stall cycles. 2708 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), 2709 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2710 return; 2711 2712 // Keep clustered nodes together to encourage downstream peephole 2713 // optimizations which may reduce resource requirements. 2714 // 2715 // This is a best effort to set things up for a post-RA pass. Optimizations 2716 // like generating loads of multiple registers should ideally be done within 2717 // the scheduler pass by combining the loads during DAG postprocessing. 2718 const SUnit *NextClusterSU = 2719 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2720 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2721 TryCand, Cand, Cluster)) 2722 return; 2723 2724 // Weak edges are for clustering and other constraints. 2725 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2726 getWeakLeft(Cand.SU, Zone.isTop()), 2727 TryCand, Cand, Weak)) { 2728 return; 2729 } 2730 // Avoid increasing the max pressure of the entire region. 2731 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2732 Cand.RPDelta.CurrentMax, 2733 TryCand, Cand, RegMax)) 2734 return; 2735 2736 // Avoid critical resource consumption and balance the schedule. 2737 TryCand.initResourceDelta(DAG, SchedModel); 2738 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2739 TryCand, Cand, ResourceReduce)) 2740 return; 2741 if (tryGreater(TryCand.ResDelta.DemandedResources, 2742 Cand.ResDelta.DemandedResources, 2743 TryCand, Cand, ResourceDemand)) 2744 return; 2745 2746 // Avoid serializing long latency dependence chains. 2747 // For acyclic path limited loops, latency was already checked above. 2748 if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency && 2749 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) { 2750 return; 2751 } 2752 2753 // Prefer immediate defs/users of the last scheduled instruction. This is a 2754 // local pressure avoidance strategy that also makes the machine code 2755 // readable. 2756 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), 2757 TryCand, Cand, NextDefUse)) 2758 return; 2759 2760 // Fall through to original instruction order. 2761 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2762 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2763 TryCand.Reason = NodeOrder; 2764 } 2765 } 2766 2767 /// Pick the best candidate from the queue. 2768 /// 2769 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2770 /// DAG building. To adjust for the current scheduling location we need to 2771 /// maintain the number of vreg uses remaining to be top-scheduled. 2772 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2773 const RegPressureTracker &RPTracker, 2774 SchedCandidate &Cand) { 2775 ReadyQueue &Q = Zone.Available; 2776 2777 DEBUG(Q.dump()); 2778 2779 // getMaxPressureDelta temporarily modifies the tracker. 2780 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2781 2782 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2783 2784 SchedCandidate TryCand(Cand.Policy); 2785 TryCand.SU = *I; 2786 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2787 if (TryCand.Reason != NoCand) { 2788 // Initialize resource delta if needed in case future heuristics query it. 2789 if (TryCand.ResDelta == SchedResourceDelta()) 2790 TryCand.initResourceDelta(DAG, SchedModel); 2791 Cand.setBest(TryCand); 2792 DEBUG(traceCandidate(Cand)); 2793 } 2794 } 2795 } 2796 2797 /// Pick the best candidate node from either the top or bottom queue. 2798 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2799 // Schedule as far as possible in the direction of no choice. This is most 2800 // efficient, but also provides the best heuristics for CriticalPSets. 2801 if (SUnit *SU = Bot.pickOnlyChoice()) { 2802 IsTopNode = false; 2803 DEBUG(dbgs() << "Pick Bot ONLY1\n"); 2804 return SU; 2805 } 2806 if (SUnit *SU = Top.pickOnlyChoice()) { 2807 IsTopNode = true; 2808 DEBUG(dbgs() << "Pick Top ONLY1\n"); 2809 return SU; 2810 } 2811 CandPolicy NoPolicy; 2812 SchedCandidate BotCand(NoPolicy); 2813 SchedCandidate TopCand(NoPolicy); 2814 // Set the bottom-up policy based on the state of the current bottom zone and 2815 // the instructions outside the zone, including the top zone. 2816 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); 2817 // Set the top-down policy based on the state of the current top zone and 2818 // the instructions outside the zone, including the bottom zone. 2819 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); 2820 2821 // Prefer bottom scheduling when heuristics are silent. 2822 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2823 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2824 2825 // If either Q has a single candidate that provides the least increase in 2826 // Excess pressure, we can immediately schedule from that Q. 2827 // 2828 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2829 // affects picking from either Q. If scheduling in one direction must 2830 // increase pressure for one of the excess PSets, then schedule in that 2831 // direction first to provide more freedom in the other direction. 2832 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2833 || (BotCand.Reason == RegCritical 2834 && !BotCand.isRepeat(RegCritical))) 2835 { 2836 IsTopNode = false; 2837 tracePick(BotCand, IsTopNode); 2838 return BotCand.SU; 2839 } 2840 // Check if the top Q has a better candidate. 2841 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2842 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2843 2844 // Choose the queue with the most important (lowest enum) reason. 2845 if (TopCand.Reason < BotCand.Reason) { 2846 IsTopNode = true; 2847 tracePick(TopCand, IsTopNode); 2848 return TopCand.SU; 2849 } 2850 // Otherwise prefer the bottom candidate, in node order if all else failed. 2851 IsTopNode = false; 2852 tracePick(BotCand, IsTopNode); 2853 return BotCand.SU; 2854 } 2855 2856 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2857 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2858 if (DAG->top() == DAG->bottom()) { 2859 assert(Top.Available.empty() && Top.Pending.empty() && 2860 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2861 return nullptr; 2862 } 2863 SUnit *SU; 2864 do { 2865 if (RegionPolicy.OnlyTopDown) { 2866 SU = Top.pickOnlyChoice(); 2867 if (!SU) { 2868 CandPolicy NoPolicy; 2869 SchedCandidate TopCand(NoPolicy); 2870 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2871 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2872 tracePick(TopCand, true); 2873 SU = TopCand.SU; 2874 } 2875 IsTopNode = true; 2876 } 2877 else if (RegionPolicy.OnlyBottomUp) { 2878 SU = Bot.pickOnlyChoice(); 2879 if (!SU) { 2880 CandPolicy NoPolicy; 2881 SchedCandidate BotCand(NoPolicy); 2882 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2883 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2884 tracePick(BotCand, false); 2885 SU = BotCand.SU; 2886 } 2887 IsTopNode = false; 2888 } 2889 else { 2890 SU = pickNodeBidirectional(IsTopNode); 2891 } 2892 } while (SU->isScheduled); 2893 2894 if (SU->isTopReady()) 2895 Top.removeReady(SU); 2896 if (SU->isBottomReady()) 2897 Bot.removeReady(SU); 2898 2899 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2900 return SU; 2901 } 2902 2903 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2904 2905 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2906 if (!isTop) 2907 ++InsertPos; 2908 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2909 2910 // Find already scheduled copies with a single physreg dependence and move 2911 // them just above the scheduled instruction. 2912 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2913 I != E; ++I) { 2914 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2915 continue; 2916 SUnit *DepSU = I->getSUnit(); 2917 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2918 continue; 2919 MachineInstr *Copy = DepSU->getInstr(); 2920 if (!Copy->isCopy()) 2921 continue; 2922 DEBUG(dbgs() << " Rescheduling physreg copy "; 2923 I->getSUnit()->dump(DAG)); 2924 DAG->moveInstruction(Copy, InsertPos); 2925 } 2926 } 2927 2928 /// Update the scheduler's state after scheduling a node. This is the same node 2929 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 2930 /// update it's state based on the current cycle before MachineSchedStrategy 2931 /// does. 2932 /// 2933 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2934 /// them here. See comments in biasPhysRegCopy. 2935 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2936 if (IsTopNode) { 2937 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 2938 Top.bumpNode(SU); 2939 if (SU->hasPhysRegUses) 2940 reschedulePhysRegCopies(SU, true); 2941 } 2942 else { 2943 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 2944 Bot.bumpNode(SU); 2945 if (SU->hasPhysRegDefs) 2946 reschedulePhysRegCopies(SU, false); 2947 } 2948 } 2949 2950 /// Create the standard converging machine scheduler. This will be used as the 2951 /// default scheduler if the target does not set a default. 2952 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 2953 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 2954 // Register DAG post-processors. 2955 // 2956 // FIXME: extend the mutation API to allow earlier mutations to instantiate 2957 // data and pass it to later mutations. Have a single mutation that gathers 2958 // the interesting nodes in one pass. 2959 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); 2960 if (EnableLoadCluster && DAG->TII->enableClusterLoads()) 2961 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); 2962 if (EnableMacroFusion) 2963 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI)); 2964 return DAG; 2965 } 2966 2967 static MachineSchedRegistry 2968 GenericSchedRegistry("converge", "Standard converging scheduler.", 2969 createGenericSchedLive); 2970 2971 //===----------------------------------------------------------------------===// 2972 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 2973 //===----------------------------------------------------------------------===// 2974 2975 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 2976 DAG = Dag; 2977 SchedModel = DAG->getSchedModel(); 2978 TRI = DAG->TRI; 2979 2980 Rem.init(DAG, SchedModel); 2981 Top.init(DAG, SchedModel, &Rem); 2982 BotRoots.clear(); 2983 2984 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 2985 // or are disabled, then these HazardRecs will be disabled. 2986 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2987 if (!Top.HazardRec) { 2988 Top.HazardRec = 2989 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2990 Itin, DAG); 2991 } 2992 } 2993 2994 2995 void PostGenericScheduler::registerRoots() { 2996 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2997 2998 // Some roots may not feed into ExitSU. Check all of them in case. 2999 for (SmallVectorImpl<SUnit*>::const_iterator 3000 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3001 if ((*I)->getDepth() > Rem.CriticalPath) 3002 Rem.CriticalPath = (*I)->getDepth(); 3003 } 3004 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3005 if (DumpCriticalPathLength) { 3006 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3007 } 3008 } 3009 3010 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3011 /// 3012 /// \param Cand provides the policy and current best candidate. 3013 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3014 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3015 SchedCandidate &TryCand) { 3016 3017 // Initialize the candidate if needed. 3018 if (!Cand.isValid()) { 3019 TryCand.Reason = NodeOrder; 3020 return; 3021 } 3022 3023 // Prioritize instructions that read unbuffered resources by stall cycles. 3024 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3025 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3026 return; 3027 3028 // Avoid critical resource consumption and balance the schedule. 3029 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3030 TryCand, Cand, ResourceReduce)) 3031 return; 3032 if (tryGreater(TryCand.ResDelta.DemandedResources, 3033 Cand.ResDelta.DemandedResources, 3034 TryCand, Cand, ResourceDemand)) 3035 return; 3036 3037 // Avoid serializing long latency dependence chains. 3038 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3039 return; 3040 } 3041 3042 // Fall through to original instruction order. 3043 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3044 TryCand.Reason = NodeOrder; 3045 } 3046 3047 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3048 ReadyQueue &Q = Top.Available; 3049 3050 DEBUG(Q.dump()); 3051 3052 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3053 SchedCandidate TryCand(Cand.Policy); 3054 TryCand.SU = *I; 3055 TryCand.initResourceDelta(DAG, SchedModel); 3056 tryCandidate(Cand, TryCand); 3057 if (TryCand.Reason != NoCand) { 3058 Cand.setBest(TryCand); 3059 DEBUG(traceCandidate(Cand)); 3060 } 3061 } 3062 } 3063 3064 /// Pick the next node to schedule. 3065 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3066 if (DAG->top() == DAG->bottom()) { 3067 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3068 return nullptr; 3069 } 3070 SUnit *SU; 3071 do { 3072 SU = Top.pickOnlyChoice(); 3073 if (!SU) { 3074 CandPolicy NoPolicy; 3075 SchedCandidate TopCand(NoPolicy); 3076 // Set the top-down policy based on the state of the current top zone and 3077 // the instructions outside the zone, including the bottom zone. 3078 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3079 pickNodeFromQueue(TopCand); 3080 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3081 tracePick(TopCand, true); 3082 SU = TopCand.SU; 3083 } 3084 } while (SU->isScheduled); 3085 3086 IsTopNode = true; 3087 Top.removeReady(SU); 3088 3089 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3090 return SU; 3091 } 3092 3093 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3094 /// scheduled/remaining flags in the DAG nodes. 3095 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3096 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3097 Top.bumpNode(SU); 3098 } 3099 3100 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3101 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3102 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3103 } 3104 3105 //===----------------------------------------------------------------------===// 3106 // ILP Scheduler. Currently for experimental analysis of heuristics. 3107 //===----------------------------------------------------------------------===// 3108 3109 namespace { 3110 /// \brief Order nodes by the ILP metric. 3111 struct ILPOrder { 3112 const SchedDFSResult *DFSResult; 3113 const BitVector *ScheduledTrees; 3114 bool MaximizeILP; 3115 3116 ILPOrder(bool MaxILP) 3117 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3118 3119 /// \brief Apply a less-than relation on node priority. 3120 /// 3121 /// (Return true if A comes after B in the Q.) 3122 bool operator()(const SUnit *A, const SUnit *B) const { 3123 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3124 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3125 if (SchedTreeA != SchedTreeB) { 3126 // Unscheduled trees have lower priority. 3127 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3128 return ScheduledTrees->test(SchedTreeB); 3129 3130 // Trees with shallower connections have have lower priority. 3131 if (DFSResult->getSubtreeLevel(SchedTreeA) 3132 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3133 return DFSResult->getSubtreeLevel(SchedTreeA) 3134 < DFSResult->getSubtreeLevel(SchedTreeB); 3135 } 3136 } 3137 if (MaximizeILP) 3138 return DFSResult->getILP(A) < DFSResult->getILP(B); 3139 else 3140 return DFSResult->getILP(A) > DFSResult->getILP(B); 3141 } 3142 }; 3143 3144 /// \brief Schedule based on the ILP metric. 3145 class ILPScheduler : public MachineSchedStrategy { 3146 ScheduleDAGMILive *DAG; 3147 ILPOrder Cmp; 3148 3149 std::vector<SUnit*> ReadyQ; 3150 public: 3151 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3152 3153 void initialize(ScheduleDAGMI *dag) override { 3154 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3155 DAG = static_cast<ScheduleDAGMILive*>(dag); 3156 DAG->computeDFSResult(); 3157 Cmp.DFSResult = DAG->getDFSResult(); 3158 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3159 ReadyQ.clear(); 3160 } 3161 3162 void registerRoots() override { 3163 // Restore the heap in ReadyQ with the updated DFS results. 3164 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3165 } 3166 3167 /// Implement MachineSchedStrategy interface. 3168 /// ----------------------------------------- 3169 3170 /// Callback to select the highest priority node from the ready Q. 3171 SUnit *pickNode(bool &IsTopNode) override { 3172 if (ReadyQ.empty()) return nullptr; 3173 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3174 SUnit *SU = ReadyQ.back(); 3175 ReadyQ.pop_back(); 3176 IsTopNode = false; 3177 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3178 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3179 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3180 << DAG->getDFSResult()->getSubtreeLevel( 3181 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3182 << "Scheduling " << *SU->getInstr()); 3183 return SU; 3184 } 3185 3186 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3187 void scheduleTree(unsigned SubtreeID) override { 3188 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3189 } 3190 3191 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3192 /// DFSResults, and resort the priority Q. 3193 void schedNode(SUnit *SU, bool IsTopNode) override { 3194 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3195 } 3196 3197 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3198 3199 void releaseBottomNode(SUnit *SU) override { 3200 ReadyQ.push_back(SU); 3201 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3202 } 3203 }; 3204 } // namespace 3205 3206 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3207 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3208 } 3209 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3210 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3211 } 3212 static MachineSchedRegistry ILPMaxRegistry( 3213 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3214 static MachineSchedRegistry ILPMinRegistry( 3215 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3216 3217 //===----------------------------------------------------------------------===// 3218 // Machine Instruction Shuffler for Correctness Testing 3219 //===----------------------------------------------------------------------===// 3220 3221 #ifndef NDEBUG 3222 namespace { 3223 /// Apply a less-than relation on the node order, which corresponds to the 3224 /// instruction order prior to scheduling. IsReverse implements greater-than. 3225 template<bool IsReverse> 3226 struct SUnitOrder { 3227 bool operator()(SUnit *A, SUnit *B) const { 3228 if (IsReverse) 3229 return A->NodeNum > B->NodeNum; 3230 else 3231 return A->NodeNum < B->NodeNum; 3232 } 3233 }; 3234 3235 /// Reorder instructions as much as possible. 3236 class InstructionShuffler : public MachineSchedStrategy { 3237 bool IsAlternating; 3238 bool IsTopDown; 3239 3240 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3241 // gives nodes with a higher number higher priority causing the latest 3242 // instructions to be scheduled first. 3243 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3244 TopQ; 3245 // When scheduling bottom-up, use greater-than as the queue priority. 3246 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3247 BottomQ; 3248 public: 3249 InstructionShuffler(bool alternate, bool topdown) 3250 : IsAlternating(alternate), IsTopDown(topdown) {} 3251 3252 void initialize(ScheduleDAGMI*) override { 3253 TopQ.clear(); 3254 BottomQ.clear(); 3255 } 3256 3257 /// Implement MachineSchedStrategy interface. 3258 /// ----------------------------------------- 3259 3260 SUnit *pickNode(bool &IsTopNode) override { 3261 SUnit *SU; 3262 if (IsTopDown) { 3263 do { 3264 if (TopQ.empty()) return nullptr; 3265 SU = TopQ.top(); 3266 TopQ.pop(); 3267 } while (SU->isScheduled); 3268 IsTopNode = true; 3269 } 3270 else { 3271 do { 3272 if (BottomQ.empty()) return nullptr; 3273 SU = BottomQ.top(); 3274 BottomQ.pop(); 3275 } while (SU->isScheduled); 3276 IsTopNode = false; 3277 } 3278 if (IsAlternating) 3279 IsTopDown = !IsTopDown; 3280 return SU; 3281 } 3282 3283 void schedNode(SUnit *SU, bool IsTopNode) override {} 3284 3285 void releaseTopNode(SUnit *SU) override { 3286 TopQ.push(SU); 3287 } 3288 void releaseBottomNode(SUnit *SU) override { 3289 BottomQ.push(SU); 3290 } 3291 }; 3292 } // namespace 3293 3294 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3295 bool Alternate = !ForceTopDown && !ForceBottomUp; 3296 bool TopDown = !ForceBottomUp; 3297 assert((TopDown || !ForceTopDown) && 3298 "-misched-topdown incompatible with -misched-bottomup"); 3299 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3300 } 3301 static MachineSchedRegistry ShufflerRegistry( 3302 "shuffle", "Shuffle machine instructions alternating directions", 3303 createInstructionShuffler); 3304 #endif // !NDEBUG 3305 3306 //===----------------------------------------------------------------------===// 3307 // GraphWriter support for ScheduleDAGMILive. 3308 //===----------------------------------------------------------------------===// 3309 3310 #ifndef NDEBUG 3311 namespace llvm { 3312 3313 template<> struct GraphTraits< 3314 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3315 3316 template<> 3317 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3318 3319 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3320 3321 static std::string getGraphName(const ScheduleDAG *G) { 3322 return G->MF.getName(); 3323 } 3324 3325 static bool renderGraphFromBottomUp() { 3326 return true; 3327 } 3328 3329 static bool isNodeHidden(const SUnit *Node) { 3330 if (ViewMISchedCutoff == 0) 3331 return false; 3332 return (Node->Preds.size() > ViewMISchedCutoff 3333 || Node->Succs.size() > ViewMISchedCutoff); 3334 } 3335 3336 /// If you want to override the dot attributes printed for a particular 3337 /// edge, override this method. 3338 static std::string getEdgeAttributes(const SUnit *Node, 3339 SUnitIterator EI, 3340 const ScheduleDAG *Graph) { 3341 if (EI.isArtificialDep()) 3342 return "color=cyan,style=dashed"; 3343 if (EI.isCtrlDep()) 3344 return "color=blue,style=dashed"; 3345 return ""; 3346 } 3347 3348 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3349 std::string Str; 3350 raw_string_ostream SS(Str); 3351 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3352 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3353 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3354 SS << "SU:" << SU->NodeNum; 3355 if (DFS) 3356 SS << " I:" << DFS->getNumInstrs(SU); 3357 return SS.str(); 3358 } 3359 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3360 return G->getGraphNodeLabel(SU); 3361 } 3362 3363 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3364 std::string Str("shape=Mrecord"); 3365 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3366 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3367 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3368 if (DFS) { 3369 Str += ",style=filled,fillcolor=\"#"; 3370 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3371 Str += '"'; 3372 } 3373 return Str; 3374 } 3375 }; 3376 } // namespace llvm 3377 #endif // NDEBUG 3378 3379 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3380 /// rendered using 'dot'. 3381 /// 3382 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3383 #ifndef NDEBUG 3384 ViewGraph(this, Name, false, Title); 3385 #else 3386 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3387 << "systems with Graphviz or gv!\n"; 3388 #endif // NDEBUG 3389 } 3390 3391 /// Out-of-line implementation with no arguments is handy for gdb. 3392 void ScheduleDAGMI::viewGraph() { 3393 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3394 } 3395