1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/GraphWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetInstrInfo.h" 32 #include <queue> 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 /// In some situations a few uninteresting nodes depend on nearly all other 53 /// nodes in the graph, provide a cutoff to hide them. 54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64 #else 65 static bool ViewMISchedDAGs = false; 66 #endif // NDEBUG 67 68 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 69 cl::desc("Enable register pressure scheduling."), cl::init(true)); 70 71 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 72 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 73 74 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 75 cl::desc("Enable load clustering."), cl::init(true)); 76 77 // Experimental heuristics 78 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 79 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 80 81 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 82 cl::desc("Verify machine instrs before and after machine scheduling")); 83 84 // DAG subtrees must have at least this many nodes. 85 static const unsigned MinSubtreeSize = 8; 86 87 // Pin the vtables to this file. 88 void MachineSchedStrategy::anchor() {} 89 void ScheduleDAGMutation::anchor() {} 90 91 //===----------------------------------------------------------------------===// 92 // Machine Instruction Scheduling Pass and Registry 93 //===----------------------------------------------------------------------===// 94 95 MachineSchedContext::MachineSchedContext(): 96 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 97 RegClassInfo = new RegisterClassInfo(); 98 } 99 100 MachineSchedContext::~MachineSchedContext() { 101 delete RegClassInfo; 102 } 103 104 namespace { 105 /// Base class for a machine scheduler class that can run at any point. 106 class MachineSchedulerBase : public MachineSchedContext, 107 public MachineFunctionPass { 108 public: 109 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 110 111 void print(raw_ostream &O, const Module* = nullptr) const override; 112 113 protected: 114 void scheduleRegions(ScheduleDAGInstrs &Scheduler); 115 }; 116 117 /// MachineScheduler runs after coalescing and before register allocation. 118 class MachineScheduler : public MachineSchedulerBase { 119 public: 120 MachineScheduler(); 121 122 void getAnalysisUsage(AnalysisUsage &AU) const override; 123 124 bool runOnMachineFunction(MachineFunction&) override; 125 126 static char ID; // Class identification, replacement for typeinfo 127 128 protected: 129 ScheduleDAGInstrs *createMachineScheduler(); 130 }; 131 132 /// PostMachineScheduler runs after shortly before code emission. 133 class PostMachineScheduler : public MachineSchedulerBase { 134 public: 135 PostMachineScheduler(); 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override; 138 139 bool runOnMachineFunction(MachineFunction&) override; 140 141 static char ID; // Class identification, replacement for typeinfo 142 143 protected: 144 ScheduleDAGInstrs *createPostMachineScheduler(); 145 }; 146 } // namespace 147 148 char MachineScheduler::ID = 0; 149 150 char &llvm::MachineSchedulerID = MachineScheduler::ID; 151 152 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 153 "Machine Instruction Scheduler", false, false) 154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 156 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 157 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 158 "Machine Instruction Scheduler", false, false) 159 160 MachineScheduler::MachineScheduler() 161 : MachineSchedulerBase(ID) { 162 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 163 } 164 165 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 166 AU.setPreservesCFG(); 167 AU.addRequiredID(MachineDominatorsID); 168 AU.addRequired<MachineLoopInfo>(); 169 AU.addRequired<AAResultsWrapperPass>(); 170 AU.addRequired<TargetPassConfig>(); 171 AU.addRequired<SlotIndexes>(); 172 AU.addPreserved<SlotIndexes>(); 173 AU.addRequired<LiveIntervals>(); 174 AU.addPreserved<LiveIntervals>(); 175 MachineFunctionPass::getAnalysisUsage(AU); 176 } 177 178 char PostMachineScheduler::ID = 0; 179 180 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 181 182 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 183 "PostRA Machine Instruction Scheduler", false, false) 184 185 PostMachineScheduler::PostMachineScheduler() 186 : MachineSchedulerBase(ID) { 187 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 188 } 189 190 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 191 AU.setPreservesCFG(); 192 AU.addRequiredID(MachineDominatorsID); 193 AU.addRequired<MachineLoopInfo>(); 194 AU.addRequired<TargetPassConfig>(); 195 MachineFunctionPass::getAnalysisUsage(AU); 196 } 197 198 MachinePassRegistry MachineSchedRegistry::Registry; 199 200 /// A dummy default scheduler factory indicates whether the scheduler 201 /// is overridden on the command line. 202 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 203 return nullptr; 204 } 205 206 /// MachineSchedOpt allows command line selection of the scheduler. 207 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 208 RegisterPassParser<MachineSchedRegistry> > 209 MachineSchedOpt("misched", 210 cl::init(&useDefaultMachineSched), cl::Hidden, 211 cl::desc("Machine instruction scheduler to use")); 212 213 static MachineSchedRegistry 214 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 215 useDefaultMachineSched); 216 217 static cl::opt<bool> EnableMachineSched( 218 "enable-misched", 219 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 220 cl::Hidden); 221 222 /// Forward declare the standard machine scheduler. This will be used as the 223 /// default scheduler if the target does not set a default. 224 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 225 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 226 227 /// Decrement this iterator until reaching the top or a non-debug instr. 228 static MachineBasicBlock::const_iterator 229 priorNonDebug(MachineBasicBlock::const_iterator I, 230 MachineBasicBlock::const_iterator Beg) { 231 assert(I != Beg && "reached the top of the region, cannot decrement"); 232 while (--I != Beg) { 233 if (!I->isDebugValue()) 234 break; 235 } 236 return I; 237 } 238 239 /// Non-const version. 240 static MachineBasicBlock::iterator 241 priorNonDebug(MachineBasicBlock::iterator I, 242 MachineBasicBlock::const_iterator Beg) { 243 return const_cast<MachineInstr*>( 244 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 245 } 246 247 /// If this iterator is a debug value, increment until reaching the End or a 248 /// non-debug instruction. 249 static MachineBasicBlock::const_iterator 250 nextIfDebug(MachineBasicBlock::const_iterator I, 251 MachineBasicBlock::const_iterator End) { 252 for(; I != End; ++I) { 253 if (!I->isDebugValue()) 254 break; 255 } 256 return I; 257 } 258 259 /// Non-const version. 260 static MachineBasicBlock::iterator 261 nextIfDebug(MachineBasicBlock::iterator I, 262 MachineBasicBlock::const_iterator End) { 263 // Cast the return value to nonconst MachineInstr, then cast to an 264 // instr_iterator, which does not check for null, finally return a 265 // bundle_iterator. 266 return MachineBasicBlock::instr_iterator( 267 const_cast<MachineInstr*>( 268 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 269 } 270 271 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 272 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 273 // Select the scheduler, or set the default. 274 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 275 if (Ctor != useDefaultMachineSched) 276 return Ctor(this); 277 278 // Get the default scheduler set by the target for this function. 279 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 280 if (Scheduler) 281 return Scheduler; 282 283 // Default to GenericScheduler. 284 return createGenericSchedLive(this); 285 } 286 287 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 288 /// the caller. We don't have a command line option to override the postRA 289 /// scheduler. The Target must configure it. 290 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 291 // Get the postRA scheduler set by the target for this function. 292 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 293 if (Scheduler) 294 return Scheduler; 295 296 // Default to GenericScheduler. 297 return createGenericSchedPostRA(this); 298 } 299 300 /// Top-level MachineScheduler pass driver. 301 /// 302 /// Visit blocks in function order. Divide each block into scheduling regions 303 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 304 /// consistent with the DAG builder, which traverses the interior of the 305 /// scheduling regions bottom-up. 306 /// 307 /// This design avoids exposing scheduling boundaries to the DAG builder, 308 /// simplifying the DAG builder's support for "special" target instructions. 309 /// At the same time the design allows target schedulers to operate across 310 /// scheduling boundaries, for example to bundle the boudary instructions 311 /// without reordering them. This creates complexity, because the target 312 /// scheduler must update the RegionBegin and RegionEnd positions cached by 313 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 314 /// design would be to split blocks at scheduling boundaries, but LLVM has a 315 /// general bias against block splitting purely for implementation simplicity. 316 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 317 if (EnableMachineSched.getNumOccurrences()) { 318 if (!EnableMachineSched) 319 return false; 320 } else if (!mf.getSubtarget().enableMachineScheduler()) 321 return false; 322 323 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 324 325 // Initialize the context of the pass. 326 MF = &mf; 327 MLI = &getAnalysis<MachineLoopInfo>(); 328 MDT = &getAnalysis<MachineDominatorTree>(); 329 PassConfig = &getAnalysis<TargetPassConfig>(); 330 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 331 332 LIS = &getAnalysis<LiveIntervals>(); 333 334 if (VerifyScheduling) { 335 DEBUG(LIS->dump()); 336 MF->verify(this, "Before machine scheduling."); 337 } 338 RegClassInfo->runOnMachineFunction(*MF); 339 340 // Instantiate the selected scheduler for this target, function, and 341 // optimization level. 342 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 343 scheduleRegions(*Scheduler); 344 345 DEBUG(LIS->dump()); 346 if (VerifyScheduling) 347 MF->verify(this, "After machine scheduling."); 348 return true; 349 } 350 351 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 352 if (skipOptnoneFunction(*mf.getFunction())) 353 return false; 354 355 if (!mf.getSubtarget().enablePostRAScheduler()) { 356 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 357 return false; 358 } 359 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 360 361 // Initialize the context of the pass. 362 MF = &mf; 363 PassConfig = &getAnalysis<TargetPassConfig>(); 364 365 if (VerifyScheduling) 366 MF->verify(this, "Before post machine scheduling."); 367 368 // Instantiate the selected scheduler for this target, function, and 369 // optimization level. 370 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 371 scheduleRegions(*Scheduler); 372 373 if (VerifyScheduling) 374 MF->verify(this, "After post machine scheduling."); 375 return true; 376 } 377 378 /// Return true of the given instruction should not be included in a scheduling 379 /// region. 380 /// 381 /// MachineScheduler does not currently support scheduling across calls. To 382 /// handle calls, the DAG builder needs to be modified to create register 383 /// anti/output dependencies on the registers clobbered by the call's regmask 384 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 385 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 386 /// the boundary, but there would be no benefit to postRA scheduling across 387 /// calls this late anyway. 388 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 389 MachineBasicBlock *MBB, 390 MachineFunction *MF, 391 const TargetInstrInfo *TII, 392 bool IsPostRA) { 393 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); 394 } 395 396 /// Main driver for both MachineScheduler and PostMachineScheduler. 397 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) { 398 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 399 bool IsPostRA = Scheduler.isPostRA(); 400 401 // Visit all machine basic blocks. 402 // 403 // TODO: Visit blocks in global postorder or postorder within the bottom-up 404 // loop tree. Then we can optionally compute global RegPressure. 405 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 406 MBB != MBBEnd; ++MBB) { 407 408 Scheduler.startBlock(&*MBB); 409 410 #ifndef NDEBUG 411 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 412 continue; 413 if (SchedOnlyBlock.getNumOccurrences() 414 && (int)SchedOnlyBlock != MBB->getNumber()) 415 continue; 416 #endif 417 418 // Break the block into scheduling regions [I, RegionEnd), and schedule each 419 // region as soon as it is discovered. RegionEnd points the scheduling 420 // boundary at the bottom of the region. The DAG does not include RegionEnd, 421 // but the region does (i.e. the next RegionEnd is above the previous 422 // RegionBegin). If the current block has no terminator then RegionEnd == 423 // MBB->end() for the bottom region. 424 // 425 // The Scheduler may insert instructions during either schedule() or 426 // exitRegion(), even for empty regions. So the local iterators 'I' and 427 // 'RegionEnd' are invalid across these calls. 428 // 429 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 430 // as a single instruction. 431 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); 432 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 433 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 434 435 // Avoid decrementing RegionEnd for blocks with no terminator. 436 if (RegionEnd != MBB->end() || 437 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII, IsPostRA)) { 438 --RegionEnd; 439 // Count the boundary instruction. 440 --RemainingInstrs; 441 } 442 443 // The next region starts above the previous region. Look backward in the 444 // instruction stream until we find the nearest boundary. 445 unsigned NumRegionInstrs = 0; 446 MachineBasicBlock::iterator I = RegionEnd; 447 for(;I != MBB->begin(); --I, --RemainingInstrs) { 448 if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII, IsPostRA)) 449 break; 450 if (!I->isDebugValue()) 451 ++NumRegionInstrs; 452 } 453 // Notify the scheduler of the region, even if we may skip scheduling 454 // it. Perhaps it still needs to be bundled. 455 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 456 457 // Skip empty scheduling regions (0 or 1 schedulable instructions). 458 if (I == RegionEnd || I == std::prev(RegionEnd)) { 459 // Close the current region. Bundle the terminator if needed. 460 // This invalidates 'RegionEnd' and 'I'. 461 Scheduler.exitRegion(); 462 continue; 463 } 464 DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "") 465 << "MI Scheduling **********\n"); 466 DEBUG(dbgs() << MF->getName() 467 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 468 << "\n From: " << *I << " To: "; 469 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 470 else dbgs() << "End"; 471 dbgs() << " RegionInstrs: " << NumRegionInstrs 472 << " Remaining: " << RemainingInstrs << "\n"); 473 if (DumpCriticalPathLength) { 474 errs() << MF->getName(); 475 errs() << ":BB# " << MBB->getNumber(); 476 errs() << " " << MBB->getName() << " \n"; 477 } 478 479 // Schedule a region: possibly reorder instructions. 480 // This invalidates 'RegionEnd' and 'I'. 481 Scheduler.schedule(); 482 483 // Close the current region. 484 Scheduler.exitRegion(); 485 486 // Scheduling has invalidated the current iterator 'I'. Ask the 487 // scheduler for the top of it's scheduled region. 488 RegionEnd = Scheduler.begin(); 489 } 490 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 491 Scheduler.finishBlock(); 492 if (Scheduler.isPostRA()) { 493 // FIXME: Ideally, no further passes should rely on kill flags. However, 494 // thumb2 size reduction is currently an exception. 495 Scheduler.fixupKills(&*MBB); 496 } 497 } 498 Scheduler.finalizeSchedule(); 499 } 500 501 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 502 // unimplemented 503 } 504 505 LLVM_DUMP_METHOD 506 void ReadyQueue::dump() { 507 dbgs() << "Queue " << Name << ": "; 508 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 509 dbgs() << Queue[i]->NodeNum << " "; 510 dbgs() << "\n"; 511 } 512 513 //===----------------------------------------------------------------------===// 514 // ScheduleDAGMI - Basic machine instruction scheduling. This is 515 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 516 // virtual registers. 517 // ===----------------------------------------------------------------------===/ 518 519 // Provide a vtable anchor. 520 ScheduleDAGMI::~ScheduleDAGMI() { 521 } 522 523 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 524 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 525 } 526 527 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 528 if (SuccSU != &ExitSU) { 529 // Do not use WillCreateCycle, it assumes SD scheduling. 530 // If Pred is reachable from Succ, then the edge creates a cycle. 531 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 532 return false; 533 Topo.AddPred(SuccSU, PredDep.getSUnit()); 534 } 535 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 536 // Return true regardless of whether a new edge needed to be inserted. 537 return true; 538 } 539 540 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 541 /// NumPredsLeft reaches zero, release the successor node. 542 /// 543 /// FIXME: Adjust SuccSU height based on MinLatency. 544 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 545 SUnit *SuccSU = SuccEdge->getSUnit(); 546 547 if (SuccEdge->isWeak()) { 548 --SuccSU->WeakPredsLeft; 549 if (SuccEdge->isCluster()) 550 NextClusterSucc = SuccSU; 551 return; 552 } 553 #ifndef NDEBUG 554 if (SuccSU->NumPredsLeft == 0) { 555 dbgs() << "*** Scheduling failed! ***\n"; 556 SuccSU->dump(this); 557 dbgs() << " has been released too many times!\n"; 558 llvm_unreachable(nullptr); 559 } 560 #endif 561 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 562 // CurrCycle may have advanced since then. 563 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 564 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 565 566 --SuccSU->NumPredsLeft; 567 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 568 SchedImpl->releaseTopNode(SuccSU); 569 } 570 571 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 572 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 573 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 574 I != E; ++I) { 575 releaseSucc(SU, &*I); 576 } 577 } 578 579 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 580 /// NumSuccsLeft reaches zero, release the predecessor node. 581 /// 582 /// FIXME: Adjust PredSU height based on MinLatency. 583 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 584 SUnit *PredSU = PredEdge->getSUnit(); 585 586 if (PredEdge->isWeak()) { 587 --PredSU->WeakSuccsLeft; 588 if (PredEdge->isCluster()) 589 NextClusterPred = PredSU; 590 return; 591 } 592 #ifndef NDEBUG 593 if (PredSU->NumSuccsLeft == 0) { 594 dbgs() << "*** Scheduling failed! ***\n"; 595 PredSU->dump(this); 596 dbgs() << " has been released too many times!\n"; 597 llvm_unreachable(nullptr); 598 } 599 #endif 600 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 601 // CurrCycle may have advanced since then. 602 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 603 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 604 605 --PredSU->NumSuccsLeft; 606 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 607 SchedImpl->releaseBottomNode(PredSU); 608 } 609 610 /// releasePredecessors - Call releasePred on each of SU's predecessors. 611 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 612 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 613 I != E; ++I) { 614 releasePred(SU, &*I); 615 } 616 } 617 618 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 619 /// crossing a scheduling boundary. [begin, end) includes all instructions in 620 /// the region, including the boundary itself and single-instruction regions 621 /// that don't get scheduled. 622 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 623 MachineBasicBlock::iterator begin, 624 MachineBasicBlock::iterator end, 625 unsigned regioninstrs) 626 { 627 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 628 629 SchedImpl->initPolicy(begin, end, regioninstrs); 630 } 631 632 /// This is normally called from the main scheduler loop but may also be invoked 633 /// by the scheduling strategy to perform additional code motion. 634 void ScheduleDAGMI::moveInstruction( 635 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 636 // Advance RegionBegin if the first instruction moves down. 637 if (&*RegionBegin == MI) 638 ++RegionBegin; 639 640 // Update the instruction stream. 641 BB->splice(InsertPos, BB, MI); 642 643 // Update LiveIntervals 644 if (LIS) 645 LIS->handleMove(MI, /*UpdateFlags=*/true); 646 647 // Recede RegionBegin if an instruction moves above the first. 648 if (RegionBegin == InsertPos) 649 RegionBegin = MI; 650 } 651 652 bool ScheduleDAGMI::checkSchedLimit() { 653 #ifndef NDEBUG 654 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 655 CurrentTop = CurrentBottom; 656 return false; 657 } 658 ++NumInstrsScheduled; 659 #endif 660 return true; 661 } 662 663 /// Per-region scheduling driver, called back from 664 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 665 /// does not consider liveness or register pressure. It is useful for PostRA 666 /// scheduling and potentially other custom schedulers. 667 void ScheduleDAGMI::schedule() { 668 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 669 DEBUG(SchedImpl->dumpPolicy()); 670 671 // Build the DAG. 672 buildSchedGraph(AA); 673 674 Topo.InitDAGTopologicalSorting(); 675 676 postprocessDAG(); 677 678 SmallVector<SUnit*, 8> TopRoots, BotRoots; 679 findRootsAndBiasEdges(TopRoots, BotRoots); 680 681 // Initialize the strategy before modifying the DAG. 682 // This may initialize a DFSResult to be used for queue priority. 683 SchedImpl->initialize(this); 684 685 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 686 SUnits[su].dumpAll(this)); 687 if (ViewMISchedDAGs) viewGraph(); 688 689 // Initialize ready queues now that the DAG and priority data are finalized. 690 initQueues(TopRoots, BotRoots); 691 692 bool IsTopNode = false; 693 while (true) { 694 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 695 SUnit *SU = SchedImpl->pickNode(IsTopNode); 696 if (!SU) break; 697 698 assert(!SU->isScheduled && "Node already scheduled"); 699 if (!checkSchedLimit()) 700 break; 701 702 MachineInstr *MI = SU->getInstr(); 703 if (IsTopNode) { 704 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 705 if (&*CurrentTop == MI) 706 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 707 else 708 moveInstruction(MI, CurrentTop); 709 } 710 else { 711 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 712 MachineBasicBlock::iterator priorII = 713 priorNonDebug(CurrentBottom, CurrentTop); 714 if (&*priorII == MI) 715 CurrentBottom = priorII; 716 else { 717 if (&*CurrentTop == MI) 718 CurrentTop = nextIfDebug(++CurrentTop, priorII); 719 moveInstruction(MI, CurrentBottom); 720 CurrentBottom = MI; 721 } 722 } 723 // Notify the scheduling strategy before updating the DAG. 724 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 725 // runs, it can then use the accurate ReadyCycle time to determine whether 726 // newly released nodes can move to the readyQ. 727 SchedImpl->schedNode(SU, IsTopNode); 728 729 updateQueues(SU, IsTopNode); 730 } 731 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 732 733 placeDebugValues(); 734 735 DEBUG({ 736 unsigned BBNum = begin()->getParent()->getNumber(); 737 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 738 dumpSchedule(); 739 dbgs() << '\n'; 740 }); 741 } 742 743 /// Apply each ScheduleDAGMutation step in order. 744 void ScheduleDAGMI::postprocessDAG() { 745 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 746 Mutations[i]->apply(this); 747 } 748 } 749 750 void ScheduleDAGMI:: 751 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 752 SmallVectorImpl<SUnit*> &BotRoots) { 753 for (std::vector<SUnit>::iterator 754 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 755 SUnit *SU = &(*I); 756 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 757 758 // Order predecessors so DFSResult follows the critical path. 759 SU->biasCriticalPath(); 760 761 // A SUnit is ready to top schedule if it has no predecessors. 762 if (!I->NumPredsLeft) 763 TopRoots.push_back(SU); 764 // A SUnit is ready to bottom schedule if it has no successors. 765 if (!I->NumSuccsLeft) 766 BotRoots.push_back(SU); 767 } 768 ExitSU.biasCriticalPath(); 769 } 770 771 /// Identify DAG roots and setup scheduler queues. 772 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 773 ArrayRef<SUnit*> BotRoots) { 774 NextClusterSucc = nullptr; 775 NextClusterPred = nullptr; 776 777 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 778 // 779 // Nodes with unreleased weak edges can still be roots. 780 // Release top roots in forward order. 781 for (SmallVectorImpl<SUnit*>::const_iterator 782 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 783 SchedImpl->releaseTopNode(*I); 784 } 785 // Release bottom roots in reverse order so the higher priority nodes appear 786 // first. This is more natural and slightly more efficient. 787 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 788 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 789 SchedImpl->releaseBottomNode(*I); 790 } 791 792 releaseSuccessors(&EntrySU); 793 releasePredecessors(&ExitSU); 794 795 SchedImpl->registerRoots(); 796 797 // Advance past initial DebugValues. 798 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 799 CurrentBottom = RegionEnd; 800 } 801 802 /// Update scheduler queues after scheduling an instruction. 803 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 804 // Release dependent instructions for scheduling. 805 if (IsTopNode) 806 releaseSuccessors(SU); 807 else 808 releasePredecessors(SU); 809 810 SU->isScheduled = true; 811 } 812 813 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 814 void ScheduleDAGMI::placeDebugValues() { 815 // If first instruction was a DBG_VALUE then put it back. 816 if (FirstDbgValue) { 817 BB->splice(RegionBegin, BB, FirstDbgValue); 818 RegionBegin = FirstDbgValue; 819 } 820 821 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 822 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 823 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 824 MachineInstr *DbgValue = P.first; 825 MachineBasicBlock::iterator OrigPrevMI = P.second; 826 if (&*RegionBegin == DbgValue) 827 ++RegionBegin; 828 BB->splice(++OrigPrevMI, BB, DbgValue); 829 if (OrigPrevMI == std::prev(RegionEnd)) 830 RegionEnd = DbgValue; 831 } 832 DbgValues.clear(); 833 FirstDbgValue = nullptr; 834 } 835 836 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 837 void ScheduleDAGMI::dumpSchedule() const { 838 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 839 if (SUnit *SU = getSUnit(&(*MI))) 840 SU->dump(this); 841 else 842 dbgs() << "Missing SUnit\n"; 843 } 844 } 845 #endif 846 847 //===----------------------------------------------------------------------===// 848 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 849 // preservation. 850 //===----------------------------------------------------------------------===// 851 852 ScheduleDAGMILive::~ScheduleDAGMILive() { 853 delete DFSResult; 854 } 855 856 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 857 /// crossing a scheduling boundary. [begin, end) includes all instructions in 858 /// the region, including the boundary itself and single-instruction regions 859 /// that don't get scheduled. 860 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 861 MachineBasicBlock::iterator begin, 862 MachineBasicBlock::iterator end, 863 unsigned regioninstrs) 864 { 865 // ScheduleDAGMI initializes SchedImpl's per-region policy. 866 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 867 868 // For convenience remember the end of the liveness region. 869 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 870 871 SUPressureDiffs.clear(); 872 873 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 874 } 875 876 // Setup the register pressure trackers for the top scheduled top and bottom 877 // scheduled regions. 878 void ScheduleDAGMILive::initRegPressure() { 879 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 880 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 881 882 // Close the RPTracker to finalize live ins. 883 RPTracker.closeRegion(); 884 885 DEBUG(RPTracker.dump()); 886 887 // Initialize the live ins and live outs. 888 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 889 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 890 891 // Close one end of the tracker so we can call 892 // getMaxUpward/DownwardPressureDelta before advancing across any 893 // instructions. This converts currently live regs into live ins/outs. 894 TopRPTracker.closeTop(); 895 BotRPTracker.closeBottom(); 896 897 BotRPTracker.initLiveThru(RPTracker); 898 if (!BotRPTracker.getLiveThru().empty()) { 899 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 900 DEBUG(dbgs() << "Live Thru: "; 901 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 902 }; 903 904 // For each live out vreg reduce the pressure change associated with other 905 // uses of the same vreg below the live-out reaching def. 906 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 907 908 // Account for liveness generated by the region boundary. 909 if (LiveRegionEnd != RegionEnd) { 910 SmallVector<unsigned, 8> LiveUses; 911 BotRPTracker.recede(&LiveUses); 912 updatePressureDiffs(LiveUses); 913 } 914 915 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 916 917 // Cache the list of excess pressure sets in this region. This will also track 918 // the max pressure in the scheduled code for these sets. 919 RegionCriticalPSets.clear(); 920 const std::vector<unsigned> &RegionPressure = 921 RPTracker.getPressure().MaxSetPressure; 922 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 923 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 924 if (RegionPressure[i] > Limit) { 925 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 926 << " Limit " << Limit 927 << " Actual " << RegionPressure[i] << "\n"); 928 RegionCriticalPSets.push_back(PressureChange(i)); 929 } 930 } 931 DEBUG(dbgs() << "Excess PSets: "; 932 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 933 dbgs() << TRI->getRegPressureSetName( 934 RegionCriticalPSets[i].getPSet()) << " "; 935 dbgs() << "\n"); 936 } 937 938 void ScheduleDAGMILive:: 939 updateScheduledPressure(const SUnit *SU, 940 const std::vector<unsigned> &NewMaxPressure) { 941 const PressureDiff &PDiff = getPressureDiff(SU); 942 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 943 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 944 I != E; ++I) { 945 if (!I->isValid()) 946 break; 947 unsigned ID = I->getPSet(); 948 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 949 ++CritIdx; 950 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 951 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 952 && NewMaxPressure[ID] <= INT16_MAX) 953 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 954 } 955 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 956 if (NewMaxPressure[ID] >= Limit - 2) { 957 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 958 << NewMaxPressure[ID] 959 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 960 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 961 } 962 } 963 } 964 965 /// Update the PressureDiff array for liveness after scheduling this 966 /// instruction. 967 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) { 968 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) { 969 /// FIXME: Currently assuming single-use physregs. 970 unsigned Reg = LiveUses[LUIdx]; 971 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 972 if (!TRI->isVirtualRegister(Reg)) 973 continue; 974 975 // This may be called before CurrentBottom has been initialized. However, 976 // BotRPTracker must have a valid position. We want the value live into the 977 // instruction or live out of the block, so ask for the previous 978 // instruction's live-out. 979 const LiveInterval &LI = LIS->getInterval(Reg); 980 VNInfo *VNI; 981 MachineBasicBlock::const_iterator I = 982 nextIfDebug(BotRPTracker.getPos(), BB->end()); 983 if (I == BB->end()) 984 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 985 else { 986 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I)); 987 VNI = LRQ.valueIn(); 988 } 989 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 990 assert(VNI && "No live value at use."); 991 for (VReg2UseMap::iterator 992 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 993 SUnit *SU = UI->SU; 994 DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 995 << *SU->getInstr()); 996 // If this use comes before the reaching def, it cannot be a last use, so 997 // descrease its pressure change. 998 if (!SU->isScheduled && SU != &ExitSU) { 999 LiveQueryResult LRQ 1000 = LI.Query(LIS->getInstructionIndex(SU->getInstr())); 1001 if (LRQ.valueIn() == VNI) 1002 getPressureDiff(SU).addPressureChange(Reg, true, &MRI); 1003 } 1004 } 1005 } 1006 } 1007 1008 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1009 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1010 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1011 /// 1012 /// This is a skeletal driver, with all the functionality pushed into helpers, 1013 /// so that it can be easily extended by experimental schedulers. Generally, 1014 /// implementing MachineSchedStrategy should be sufficient to implement a new 1015 /// scheduling algorithm. However, if a scheduler further subclasses 1016 /// ScheduleDAGMILive then it will want to override this virtual method in order 1017 /// to update any specialized state. 1018 void ScheduleDAGMILive::schedule() { 1019 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1020 DEBUG(SchedImpl->dumpPolicy()); 1021 buildDAGWithRegPressure(); 1022 1023 Topo.InitDAGTopologicalSorting(); 1024 1025 postprocessDAG(); 1026 1027 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1028 findRootsAndBiasEdges(TopRoots, BotRoots); 1029 1030 // Initialize the strategy before modifying the DAG. 1031 // This may initialize a DFSResult to be used for queue priority. 1032 SchedImpl->initialize(this); 1033 1034 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 1035 SUnits[su].dumpAll(this)); 1036 if (ViewMISchedDAGs) viewGraph(); 1037 1038 // Initialize ready queues now that the DAG and priority data are finalized. 1039 initQueues(TopRoots, BotRoots); 1040 1041 if (ShouldTrackPressure) { 1042 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1043 TopRPTracker.setPos(CurrentTop); 1044 } 1045 1046 bool IsTopNode = false; 1047 while (true) { 1048 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1049 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1050 if (!SU) break; 1051 1052 assert(!SU->isScheduled && "Node already scheduled"); 1053 if (!checkSchedLimit()) 1054 break; 1055 1056 scheduleMI(SU, IsTopNode); 1057 1058 if (DFSResult) { 1059 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1060 if (!ScheduledTrees.test(SubtreeID)) { 1061 ScheduledTrees.set(SubtreeID); 1062 DFSResult->scheduleTree(SubtreeID); 1063 SchedImpl->scheduleTree(SubtreeID); 1064 } 1065 } 1066 1067 // Notify the scheduling strategy after updating the DAG. 1068 SchedImpl->schedNode(SU, IsTopNode); 1069 1070 updateQueues(SU, IsTopNode); 1071 } 1072 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1073 1074 placeDebugValues(); 1075 1076 DEBUG({ 1077 unsigned BBNum = begin()->getParent()->getNumber(); 1078 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1079 dumpSchedule(); 1080 dbgs() << '\n'; 1081 }); 1082 } 1083 1084 /// Build the DAG and setup three register pressure trackers. 1085 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1086 if (!ShouldTrackPressure) { 1087 RPTracker.reset(); 1088 RegionCriticalPSets.clear(); 1089 buildSchedGraph(AA); 1090 return; 1091 } 1092 1093 // Initialize the register pressure tracker used by buildSchedGraph. 1094 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1095 /*TrackUntiedDefs=*/true); 1096 1097 // Account for liveness generate by the region boundary. 1098 if (LiveRegionEnd != RegionEnd) 1099 RPTracker.recede(); 1100 1101 // Build the DAG, and compute current register pressure. 1102 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); 1103 1104 // Initialize top/bottom trackers after computing region pressure. 1105 initRegPressure(); 1106 } 1107 1108 void ScheduleDAGMILive::computeDFSResult() { 1109 if (!DFSResult) 1110 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1111 DFSResult->clear(); 1112 ScheduledTrees.clear(); 1113 DFSResult->resize(SUnits.size()); 1114 DFSResult->compute(SUnits); 1115 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1116 } 1117 1118 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1119 /// only provides the critical path for single block loops. To handle loops that 1120 /// span blocks, we could use the vreg path latencies provided by 1121 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1122 /// available for use in the scheduler. 1123 /// 1124 /// The cyclic path estimation identifies a def-use pair that crosses the back 1125 /// edge and considers the depth and height of the nodes. For example, consider 1126 /// the following instruction sequence where each instruction has unit latency 1127 /// and defines an epomymous virtual register: 1128 /// 1129 /// a->b(a,c)->c(b)->d(c)->exit 1130 /// 1131 /// The cyclic critical path is a two cycles: b->c->b 1132 /// The acyclic critical path is four cycles: a->b->c->d->exit 1133 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1134 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1135 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1136 /// LiveInDepth = depth(b) = len(a->b) = 1 1137 /// 1138 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1139 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1140 /// CyclicCriticalPath = min(2, 2) = 2 1141 /// 1142 /// This could be relevant to PostRA scheduling, but is currently implemented 1143 /// assuming LiveIntervals. 1144 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1145 // This only applies to single block loop. 1146 if (!BB->isSuccessor(BB)) 1147 return 0; 1148 1149 unsigned MaxCyclicLatency = 0; 1150 // Visit each live out vreg def to find def/use pairs that cross iterations. 1151 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; 1152 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); 1153 RI != RE; ++RI) { 1154 unsigned Reg = *RI; 1155 if (!TRI->isVirtualRegister(Reg)) 1156 continue; 1157 const LiveInterval &LI = LIS->getInterval(Reg); 1158 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1159 if (!DefVNI) 1160 continue; 1161 1162 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1163 const SUnit *DefSU = getSUnit(DefMI); 1164 if (!DefSU) 1165 continue; 1166 1167 unsigned LiveOutHeight = DefSU->getHeight(); 1168 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1169 // Visit all local users of the vreg def. 1170 for (VReg2UseMap::iterator 1171 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 1172 if (UI->SU == &ExitSU) 1173 continue; 1174 1175 // Only consider uses of the phi. 1176 LiveQueryResult LRQ = 1177 LI.Query(LIS->getInstructionIndex(UI->SU->getInstr())); 1178 if (!LRQ.valueIn()->isPHIDef()) 1179 continue; 1180 1181 // Assume that a path spanning two iterations is a cycle, which could 1182 // overestimate in strange cases. This allows cyclic latency to be 1183 // estimated as the minimum slack of the vreg's depth or height. 1184 unsigned CyclicLatency = 0; 1185 if (LiveOutDepth > UI->SU->getDepth()) 1186 CyclicLatency = LiveOutDepth - UI->SU->getDepth(); 1187 1188 unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency; 1189 if (LiveInHeight > LiveOutHeight) { 1190 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1191 CyclicLatency = LiveInHeight - LiveOutHeight; 1192 } 1193 else 1194 CyclicLatency = 0; 1195 1196 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1197 << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1198 if (CyclicLatency > MaxCyclicLatency) 1199 MaxCyclicLatency = CyclicLatency; 1200 } 1201 } 1202 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1203 return MaxCyclicLatency; 1204 } 1205 1206 /// Move an instruction and update register pressure. 1207 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1208 // Move the instruction to its new location in the instruction stream. 1209 MachineInstr *MI = SU->getInstr(); 1210 1211 if (IsTopNode) { 1212 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1213 if (&*CurrentTop == MI) 1214 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1215 else { 1216 moveInstruction(MI, CurrentTop); 1217 TopRPTracker.setPos(MI); 1218 } 1219 1220 if (ShouldTrackPressure) { 1221 // Update top scheduled pressure. 1222 TopRPTracker.advance(); 1223 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1224 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1225 } 1226 } 1227 else { 1228 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1229 MachineBasicBlock::iterator priorII = 1230 priorNonDebug(CurrentBottom, CurrentTop); 1231 if (&*priorII == MI) 1232 CurrentBottom = priorII; 1233 else { 1234 if (&*CurrentTop == MI) { 1235 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1236 TopRPTracker.setPos(CurrentTop); 1237 } 1238 moveInstruction(MI, CurrentBottom); 1239 CurrentBottom = MI; 1240 } 1241 if (ShouldTrackPressure) { 1242 // Update bottom scheduled pressure. 1243 SmallVector<unsigned, 8> LiveUses; 1244 BotRPTracker.recede(&LiveUses); 1245 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1246 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1247 updatePressureDiffs(LiveUses); 1248 } 1249 } 1250 } 1251 1252 //===----------------------------------------------------------------------===// 1253 // LoadClusterMutation - DAG post-processing to cluster loads. 1254 //===----------------------------------------------------------------------===// 1255 1256 namespace { 1257 /// \brief Post-process the DAG to create cluster edges between neighboring 1258 /// loads. 1259 class LoadClusterMutation : public ScheduleDAGMutation { 1260 struct LoadInfo { 1261 SUnit *SU; 1262 unsigned BaseReg; 1263 unsigned Offset; 1264 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 1265 : SU(su), BaseReg(reg), Offset(ofs) {} 1266 1267 bool operator<(const LoadInfo &RHS) const { 1268 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1269 } 1270 }; 1271 1272 const TargetInstrInfo *TII; 1273 const TargetRegisterInfo *TRI; 1274 public: 1275 LoadClusterMutation(const TargetInstrInfo *tii, 1276 const TargetRegisterInfo *tri) 1277 : TII(tii), TRI(tri) {} 1278 1279 void apply(ScheduleDAGMI *DAG) override; 1280 protected: 1281 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 1282 }; 1283 } // anonymous 1284 1285 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 1286 ScheduleDAGMI *DAG) { 1287 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 1288 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 1289 SUnit *SU = Loads[Idx]; 1290 unsigned BaseReg; 1291 unsigned Offset; 1292 if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 1293 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 1294 } 1295 if (LoadRecords.size() < 2) 1296 return; 1297 std::sort(LoadRecords.begin(), LoadRecords.end()); 1298 unsigned ClusterLength = 1; 1299 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 1300 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 1301 ClusterLength = 1; 1302 continue; 1303 } 1304 1305 SUnit *SUa = LoadRecords[Idx].SU; 1306 SUnit *SUb = LoadRecords[Idx+1].SU; 1307 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1308 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1309 1310 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 1311 << SUb->NodeNum << ")\n"); 1312 // Copy successor edges from SUa to SUb. Interleaving computation 1313 // dependent on SUa can prevent load combining due to register reuse. 1314 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1315 // loads should have effectively the same inputs. 1316 for (SUnit::const_succ_iterator 1317 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1318 if (SI->getSUnit() == SUb) 1319 continue; 1320 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1321 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1322 } 1323 ++ClusterLength; 1324 } 1325 else 1326 ClusterLength = 1; 1327 } 1328 } 1329 1330 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1331 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 1332 // Map DAG NodeNum to store chain ID. 1333 DenseMap<unsigned, unsigned> StoreChainIDs; 1334 // Map each store chain to a set of dependent loads. 1335 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1336 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1337 SUnit *SU = &DAG->SUnits[Idx]; 1338 if (!SU->getInstr()->mayLoad()) 1339 continue; 1340 unsigned ChainPredID = DAG->SUnits.size(); 1341 for (SUnit::const_pred_iterator 1342 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1343 if (PI->isCtrl()) { 1344 ChainPredID = PI->getSUnit()->NodeNum; 1345 break; 1346 } 1347 } 1348 // Check if this chain-like pred has been seen 1349 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 1350 unsigned NumChains = StoreChainDependents.size(); 1351 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1352 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1353 if (Result.second) 1354 StoreChainDependents.resize(NumChains + 1); 1355 StoreChainDependents[Result.first->second].push_back(SU); 1356 } 1357 // Iterate over the store chains. 1358 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1359 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 1360 } 1361 1362 //===----------------------------------------------------------------------===// 1363 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1364 //===----------------------------------------------------------------------===// 1365 1366 namespace { 1367 /// \brief Post-process the DAG to create cluster edges between instructions 1368 /// that may be fused by the processor into a single operation. 1369 class MacroFusion : public ScheduleDAGMutation { 1370 const TargetInstrInfo &TII; 1371 const TargetRegisterInfo &TRI; 1372 public: 1373 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) 1374 : TII(TII), TRI(TRI) {} 1375 1376 void apply(ScheduleDAGMI *DAG) override; 1377 }; 1378 } // anonymous 1379 1380 /// Returns true if \p MI reads a register written by \p Other. 1381 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI, 1382 const MachineInstr &Other) { 1383 for (const MachineOperand &MO : MI.uses()) { 1384 if (!MO.isReg() || !MO.readsReg()) 1385 continue; 1386 1387 unsigned Reg = MO.getReg(); 1388 if (Other.modifiesRegister(Reg, &TRI)) 1389 return true; 1390 } 1391 return false; 1392 } 1393 1394 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1395 /// fused operations. 1396 void MacroFusion::apply(ScheduleDAGMI *DAG) { 1397 // For now, assume targets can only fuse with the branch. 1398 SUnit &ExitSU = DAG->ExitSU; 1399 MachineInstr *Branch = ExitSU.getInstr(); 1400 if (!Branch) 1401 return; 1402 1403 for (SUnit &SU : DAG->SUnits) { 1404 // SUnits with successors can't be schedule in front of the ExitSU. 1405 if (!SU.Succs.empty()) 1406 continue; 1407 // We only care if the node writes to a register that the branch reads. 1408 MachineInstr *Pred = SU.getInstr(); 1409 if (!HasDataDep(TRI, *Branch, *Pred)) 1410 continue; 1411 1412 if (!TII.shouldScheduleAdjacent(Pred, Branch)) 1413 continue; 1414 1415 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1416 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1417 // need to copy predecessor edges from ExitSU to SU, since top-down 1418 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1419 // of SU, we could create an artificial edge from the deepest root, but it 1420 // hasn't been needed yet. 1421 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1422 (void)Success; 1423 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1424 1425 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1426 break; 1427 } 1428 } 1429 1430 //===----------------------------------------------------------------------===// 1431 // CopyConstrain - DAG post-processing to encourage copy elimination. 1432 //===----------------------------------------------------------------------===// 1433 1434 namespace { 1435 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1436 /// the one use that defines the copy's source vreg, most likely an induction 1437 /// variable increment. 1438 class CopyConstrain : public ScheduleDAGMutation { 1439 // Transient state. 1440 SlotIndex RegionBeginIdx; 1441 // RegionEndIdx is the slot index of the last non-debug instruction in the 1442 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1443 SlotIndex RegionEndIdx; 1444 public: 1445 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1446 1447 void apply(ScheduleDAGMI *DAG) override; 1448 1449 protected: 1450 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1451 }; 1452 } // anonymous 1453 1454 /// constrainLocalCopy handles two possibilities: 1455 /// 1) Local src: 1456 /// I0: = dst 1457 /// I1: src = ... 1458 /// I2: = dst 1459 /// I3: dst = src (copy) 1460 /// (create pred->succ edges I0->I1, I2->I1) 1461 /// 1462 /// 2) Local copy: 1463 /// I0: dst = src (copy) 1464 /// I1: = dst 1465 /// I2: src = ... 1466 /// I3: = dst 1467 /// (create pred->succ edges I1->I2, I3->I2) 1468 /// 1469 /// Although the MachineScheduler is currently constrained to single blocks, 1470 /// this algorithm should handle extended blocks. An EBB is a set of 1471 /// contiguously numbered blocks such that the previous block in the EBB is 1472 /// always the single predecessor. 1473 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1474 LiveIntervals *LIS = DAG->getLIS(); 1475 MachineInstr *Copy = CopySU->getInstr(); 1476 1477 // Check for pure vreg copies. 1478 unsigned SrcReg = Copy->getOperand(1).getReg(); 1479 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1480 return; 1481 1482 unsigned DstReg = Copy->getOperand(0).getReg(); 1483 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1484 return; 1485 1486 // Check if either the dest or source is local. If it's live across a back 1487 // edge, it's not local. Note that if both vregs are live across the back 1488 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1489 // If both the copy's source and dest are local live intervals, then we 1490 // should treat the dest as the global for the purpose of adding 1491 // constraints. This adds edges from source's other uses to the copy. 1492 unsigned LocalReg = SrcReg; 1493 unsigned GlobalReg = DstReg; 1494 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1495 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1496 LocalReg = DstReg; 1497 GlobalReg = SrcReg; 1498 LocalLI = &LIS->getInterval(LocalReg); 1499 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1500 return; 1501 } 1502 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1503 1504 // Find the global segment after the start of the local LI. 1505 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1506 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1507 // local live range. We could create edges from other global uses to the local 1508 // start, but the coalescer should have already eliminated these cases, so 1509 // don't bother dealing with it. 1510 if (GlobalSegment == GlobalLI->end()) 1511 return; 1512 1513 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1514 // returned the next global segment. But if GlobalSegment overlaps with 1515 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1516 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1517 if (GlobalSegment->contains(LocalLI->beginIndex())) 1518 ++GlobalSegment; 1519 1520 if (GlobalSegment == GlobalLI->end()) 1521 return; 1522 1523 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1524 if (GlobalSegment != GlobalLI->begin()) { 1525 // Two address defs have no hole. 1526 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1527 GlobalSegment->start)) { 1528 return; 1529 } 1530 // If the prior global segment may be defined by the same two-address 1531 // instruction that also defines LocalLI, then can't make a hole here. 1532 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1533 LocalLI->beginIndex())) { 1534 return; 1535 } 1536 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1537 // it would be a disconnected component in the live range. 1538 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1539 "Disconnected LRG within the scheduling region."); 1540 } 1541 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1542 if (!GlobalDef) 1543 return; 1544 1545 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1546 if (!GlobalSU) 1547 return; 1548 1549 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1550 // constraining the uses of the last local def to precede GlobalDef. 1551 SmallVector<SUnit*,8> LocalUses; 1552 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1553 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1554 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1555 for (SUnit::const_succ_iterator 1556 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1557 I != E; ++I) { 1558 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1559 continue; 1560 if (I->getSUnit() == GlobalSU) 1561 continue; 1562 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1563 return; 1564 LocalUses.push_back(I->getSUnit()); 1565 } 1566 // Open the top of the GlobalLI hole by constraining any earlier global uses 1567 // to precede the start of LocalLI. 1568 SmallVector<SUnit*,8> GlobalUses; 1569 MachineInstr *FirstLocalDef = 1570 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1571 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1572 for (SUnit::const_pred_iterator 1573 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1574 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1575 continue; 1576 if (I->getSUnit() == FirstLocalSU) 1577 continue; 1578 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1579 return; 1580 GlobalUses.push_back(I->getSUnit()); 1581 } 1582 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1583 // Add the weak edges. 1584 for (SmallVectorImpl<SUnit*>::const_iterator 1585 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1586 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1587 << GlobalSU->NodeNum << ")\n"); 1588 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1589 } 1590 for (SmallVectorImpl<SUnit*>::const_iterator 1591 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1592 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1593 << FirstLocalSU->NodeNum << ")\n"); 1594 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1595 } 1596 } 1597 1598 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1599 /// copy elimination. 1600 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1601 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1602 1603 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1604 if (FirstPos == DAG->end()) 1605 return; 1606 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1607 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1608 &*priorNonDebug(DAG->end(), DAG->begin())); 1609 1610 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1611 SUnit *SU = &DAG->SUnits[Idx]; 1612 if (!SU->getInstr()->isCopy()) 1613 continue; 1614 1615 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1616 } 1617 } 1618 1619 //===----------------------------------------------------------------------===// 1620 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1621 // and possibly other custom schedulers. 1622 //===----------------------------------------------------------------------===// 1623 1624 static const unsigned InvalidCycle = ~0U; 1625 1626 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1627 1628 void SchedBoundary::reset() { 1629 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1630 // Destroying and reconstructing it is very expensive though. So keep 1631 // invalid, placeholder HazardRecs. 1632 if (HazardRec && HazardRec->isEnabled()) { 1633 delete HazardRec; 1634 HazardRec = nullptr; 1635 } 1636 Available.clear(); 1637 Pending.clear(); 1638 CheckPending = false; 1639 NextSUs.clear(); 1640 CurrCycle = 0; 1641 CurrMOps = 0; 1642 MinReadyCycle = UINT_MAX; 1643 ExpectedLatency = 0; 1644 DependentLatency = 0; 1645 RetiredMOps = 0; 1646 MaxExecutedResCount = 0; 1647 ZoneCritResIdx = 0; 1648 IsResourceLimited = false; 1649 ReservedCycles.clear(); 1650 #ifndef NDEBUG 1651 // Track the maximum number of stall cycles that could arise either from the 1652 // latency of a DAG edge or the number of cycles that a processor resource is 1653 // reserved (SchedBoundary::ReservedCycles). 1654 MaxObservedStall = 0; 1655 #endif 1656 // Reserve a zero-count for invalid CritResIdx. 1657 ExecutedResCounts.resize(1); 1658 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1659 } 1660 1661 void SchedRemainder:: 1662 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1663 reset(); 1664 if (!SchedModel->hasInstrSchedModel()) 1665 return; 1666 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1667 for (std::vector<SUnit>::iterator 1668 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1669 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1670 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1671 * SchedModel->getMicroOpFactor(); 1672 for (TargetSchedModel::ProcResIter 1673 PI = SchedModel->getWriteProcResBegin(SC), 1674 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1675 unsigned PIdx = PI->ProcResourceIdx; 1676 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1677 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1678 } 1679 } 1680 } 1681 1682 void SchedBoundary:: 1683 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1684 reset(); 1685 DAG = dag; 1686 SchedModel = smodel; 1687 Rem = rem; 1688 if (SchedModel->hasInstrSchedModel()) { 1689 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1690 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1691 } 1692 } 1693 1694 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1695 /// these "soft stalls" differently than the hard stall cycles based on CPU 1696 /// resources and computed by checkHazard(). A fully in-order model 1697 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1698 /// available for scheduling until they are ready. However, a weaker in-order 1699 /// model may use this for heuristics. For example, if a processor has in-order 1700 /// behavior when reading certain resources, this may come into play. 1701 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1702 if (!SU->isUnbuffered) 1703 return 0; 1704 1705 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1706 if (ReadyCycle > CurrCycle) 1707 return ReadyCycle - CurrCycle; 1708 return 0; 1709 } 1710 1711 /// Compute the next cycle at which the given processor resource can be 1712 /// scheduled. 1713 unsigned SchedBoundary:: 1714 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1715 unsigned NextUnreserved = ReservedCycles[PIdx]; 1716 // If this resource has never been used, always return cycle zero. 1717 if (NextUnreserved == InvalidCycle) 1718 return 0; 1719 // For bottom-up scheduling add the cycles needed for the current operation. 1720 if (!isTop()) 1721 NextUnreserved += Cycles; 1722 return NextUnreserved; 1723 } 1724 1725 /// Does this SU have a hazard within the current instruction group. 1726 /// 1727 /// The scheduler supports two modes of hazard recognition. The first is the 1728 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1729 /// supports highly complicated in-order reservation tables 1730 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1731 /// 1732 /// The second is a streamlined mechanism that checks for hazards based on 1733 /// simple counters that the scheduler itself maintains. It explicitly checks 1734 /// for instruction dispatch limitations, including the number of micro-ops that 1735 /// can dispatch per cycle. 1736 /// 1737 /// TODO: Also check whether the SU must start a new group. 1738 bool SchedBoundary::checkHazard(SUnit *SU) { 1739 if (HazardRec->isEnabled() 1740 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1741 return true; 1742 } 1743 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1744 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1745 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1746 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1747 return true; 1748 } 1749 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1750 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1751 for (TargetSchedModel::ProcResIter 1752 PI = SchedModel->getWriteProcResBegin(SC), 1753 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1754 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1755 if (NRCycle > CurrCycle) { 1756 #ifndef NDEBUG 1757 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1758 #endif 1759 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1760 << SchedModel->getResourceName(PI->ProcResourceIdx) 1761 << "=" << NRCycle << "c\n"); 1762 return true; 1763 } 1764 } 1765 } 1766 return false; 1767 } 1768 1769 // Find the unscheduled node in ReadySUs with the highest latency. 1770 unsigned SchedBoundary:: 1771 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1772 SUnit *LateSU = nullptr; 1773 unsigned RemLatency = 0; 1774 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1775 I != E; ++I) { 1776 unsigned L = getUnscheduledLatency(*I); 1777 if (L > RemLatency) { 1778 RemLatency = L; 1779 LateSU = *I; 1780 } 1781 } 1782 if (LateSU) { 1783 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1784 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1785 } 1786 return RemLatency; 1787 } 1788 1789 // Count resources in this zone and the remaining unscheduled 1790 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1791 // resource index, or zero if the zone is issue limited. 1792 unsigned SchedBoundary:: 1793 getOtherResourceCount(unsigned &OtherCritIdx) { 1794 OtherCritIdx = 0; 1795 if (!SchedModel->hasInstrSchedModel()) 1796 return 0; 1797 1798 unsigned OtherCritCount = Rem->RemIssueCount 1799 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1800 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1801 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1802 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1803 PIdx != PEnd; ++PIdx) { 1804 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1805 if (OtherCount > OtherCritCount) { 1806 OtherCritCount = OtherCount; 1807 OtherCritIdx = PIdx; 1808 } 1809 } 1810 if (OtherCritIdx) { 1811 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1812 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1813 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1814 } 1815 return OtherCritCount; 1816 } 1817 1818 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1819 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1820 1821 #ifndef NDEBUG 1822 // ReadyCycle was been bumped up to the CurrCycle when this node was 1823 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1824 // scheduling, so may now be greater than ReadyCycle. 1825 if (ReadyCycle > CurrCycle) 1826 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1827 #endif 1828 1829 if (ReadyCycle < MinReadyCycle) 1830 MinReadyCycle = ReadyCycle; 1831 1832 // Check for interlocks first. For the purpose of other heuristics, an 1833 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1834 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1835 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1836 Pending.push(SU); 1837 else 1838 Available.push(SU); 1839 1840 // Record this node as an immediate dependent of the scheduled node. 1841 NextSUs.insert(SU); 1842 } 1843 1844 void SchedBoundary::releaseTopNode(SUnit *SU) { 1845 if (SU->isScheduled) 1846 return; 1847 1848 releaseNode(SU, SU->TopReadyCycle); 1849 } 1850 1851 void SchedBoundary::releaseBottomNode(SUnit *SU) { 1852 if (SU->isScheduled) 1853 return; 1854 1855 releaseNode(SU, SU->BotReadyCycle); 1856 } 1857 1858 /// Move the boundary of scheduled code by one cycle. 1859 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1860 if (SchedModel->getMicroOpBufferSize() == 0) { 1861 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1862 if (MinReadyCycle > NextCycle) 1863 NextCycle = MinReadyCycle; 1864 } 1865 // Update the current micro-ops, which will issue in the next cycle. 1866 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1867 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1868 1869 // Decrement DependentLatency based on the next cycle. 1870 if ((NextCycle - CurrCycle) > DependentLatency) 1871 DependentLatency = 0; 1872 else 1873 DependentLatency -= (NextCycle - CurrCycle); 1874 1875 if (!HazardRec->isEnabled()) { 1876 // Bypass HazardRec virtual calls. 1877 CurrCycle = NextCycle; 1878 } 1879 else { 1880 // Bypass getHazardType calls in case of long latency. 1881 for (; CurrCycle != NextCycle; ++CurrCycle) { 1882 if (isTop()) 1883 HazardRec->AdvanceCycle(); 1884 else 1885 HazardRec->RecedeCycle(); 1886 } 1887 } 1888 CheckPending = true; 1889 unsigned LFactor = SchedModel->getLatencyFactor(); 1890 IsResourceLimited = 1891 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1892 > (int)LFactor; 1893 1894 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1895 } 1896 1897 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 1898 ExecutedResCounts[PIdx] += Count; 1899 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1900 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1901 } 1902 1903 /// Add the given processor resource to this scheduled zone. 1904 /// 1905 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1906 /// during which this resource is consumed. 1907 /// 1908 /// \return the next cycle at which the instruction may execute without 1909 /// oversubscribing resources. 1910 unsigned SchedBoundary:: 1911 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 1912 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1913 unsigned Count = Factor * Cycles; 1914 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 1915 << " +" << Cycles << "x" << Factor << "u\n"); 1916 1917 // Update Executed resources counts. 1918 incExecutedResources(PIdx, Count); 1919 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1920 Rem->RemainingCounts[PIdx] -= Count; 1921 1922 // Check if this resource exceeds the current critical resource. If so, it 1923 // becomes the critical resource. 1924 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 1925 ZoneCritResIdx = PIdx; 1926 DEBUG(dbgs() << " *** Critical resource " 1927 << SchedModel->getResourceName(PIdx) << ": " 1928 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 1929 } 1930 // For reserved resources, record the highest cycle using the resource. 1931 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 1932 if (NextAvailable > CurrCycle) { 1933 DEBUG(dbgs() << " Resource conflict: " 1934 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 1935 << NextAvailable << "\n"); 1936 } 1937 return NextAvailable; 1938 } 1939 1940 /// Move the boundary of scheduled code by one SUnit. 1941 void SchedBoundary::bumpNode(SUnit *SU) { 1942 // Update the reservation table. 1943 if (HazardRec->isEnabled()) { 1944 if (!isTop() && SU->isCall) { 1945 // Calls are scheduled with their preceding instructions. For bottom-up 1946 // scheduling, clear the pipeline state before emitting. 1947 HazardRec->Reset(); 1948 } 1949 HazardRec->EmitInstruction(SU); 1950 } 1951 // checkHazard should prevent scheduling multiple instructions per cycle that 1952 // exceed the issue width. 1953 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1954 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 1955 assert( 1956 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 1957 "Cannot schedule this instruction's MicroOps in the current cycle."); 1958 1959 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1960 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 1961 1962 unsigned NextCycle = CurrCycle; 1963 switch (SchedModel->getMicroOpBufferSize()) { 1964 case 0: 1965 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 1966 break; 1967 case 1: 1968 if (ReadyCycle > NextCycle) { 1969 NextCycle = ReadyCycle; 1970 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 1971 } 1972 break; 1973 default: 1974 // We don't currently model the OOO reorder buffer, so consider all 1975 // scheduled MOps to be "retired". We do loosely model in-order resource 1976 // latency. If this instruction uses an in-order resource, account for any 1977 // likely stall cycles. 1978 if (SU->isUnbuffered && ReadyCycle > NextCycle) 1979 NextCycle = ReadyCycle; 1980 break; 1981 } 1982 RetiredMOps += IncMOps; 1983 1984 // Update resource counts and critical resource. 1985 if (SchedModel->hasInstrSchedModel()) { 1986 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 1987 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 1988 Rem->RemIssueCount -= DecRemIssue; 1989 if (ZoneCritResIdx) { 1990 // Scale scheduled micro-ops for comparing with the critical resource. 1991 unsigned ScaledMOps = 1992 RetiredMOps * SchedModel->getMicroOpFactor(); 1993 1994 // If scaled micro-ops are now more than the previous critical resource by 1995 // a full cycle, then micro-ops issue becomes critical. 1996 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 1997 >= (int)SchedModel->getLatencyFactor()) { 1998 ZoneCritResIdx = 0; 1999 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2000 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2001 } 2002 } 2003 for (TargetSchedModel::ProcResIter 2004 PI = SchedModel->getWriteProcResBegin(SC), 2005 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2006 unsigned RCycle = 2007 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2008 if (RCycle > NextCycle) 2009 NextCycle = RCycle; 2010 } 2011 if (SU->hasReservedResource) { 2012 // For reserved resources, record the highest cycle using the resource. 2013 // For top-down scheduling, this is the cycle in which we schedule this 2014 // instruction plus the number of cycles the operations reserves the 2015 // resource. For bottom-up is it simply the instruction's cycle. 2016 for (TargetSchedModel::ProcResIter 2017 PI = SchedModel->getWriteProcResBegin(SC), 2018 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2019 unsigned PIdx = PI->ProcResourceIdx; 2020 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2021 if (isTop()) { 2022 ReservedCycles[PIdx] = 2023 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2024 } 2025 else 2026 ReservedCycles[PIdx] = NextCycle; 2027 } 2028 } 2029 } 2030 } 2031 // Update ExpectedLatency and DependentLatency. 2032 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2033 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2034 if (SU->getDepth() > TopLatency) { 2035 TopLatency = SU->getDepth(); 2036 DEBUG(dbgs() << " " << Available.getName() 2037 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2038 } 2039 if (SU->getHeight() > BotLatency) { 2040 BotLatency = SU->getHeight(); 2041 DEBUG(dbgs() << " " << Available.getName() 2042 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2043 } 2044 // If we stall for any reason, bump the cycle. 2045 if (NextCycle > CurrCycle) { 2046 bumpCycle(NextCycle); 2047 } 2048 else { 2049 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2050 // resource limited. If a stall occurred, bumpCycle does this. 2051 unsigned LFactor = SchedModel->getLatencyFactor(); 2052 IsResourceLimited = 2053 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2054 > (int)LFactor; 2055 } 2056 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2057 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2058 // one cycle. Since we commonly reach the max MOps here, opportunistically 2059 // bump the cycle to avoid uselessly checking everything in the readyQ. 2060 CurrMOps += IncMOps; 2061 while (CurrMOps >= SchedModel->getIssueWidth()) { 2062 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2063 << " at cycle " << CurrCycle << '\n'); 2064 bumpCycle(++NextCycle); 2065 } 2066 DEBUG(dumpScheduledState()); 2067 } 2068 2069 /// Release pending ready nodes in to the available queue. This makes them 2070 /// visible to heuristics. 2071 void SchedBoundary::releasePending() { 2072 // If the available queue is empty, it is safe to reset MinReadyCycle. 2073 if (Available.empty()) 2074 MinReadyCycle = UINT_MAX; 2075 2076 // Check to see if any of the pending instructions are ready to issue. If 2077 // so, add them to the available queue. 2078 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2079 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2080 SUnit *SU = *(Pending.begin()+i); 2081 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2082 2083 if (ReadyCycle < MinReadyCycle) 2084 MinReadyCycle = ReadyCycle; 2085 2086 if (!IsBuffered && ReadyCycle > CurrCycle) 2087 continue; 2088 2089 if (checkHazard(SU)) 2090 continue; 2091 2092 Available.push(SU); 2093 Pending.remove(Pending.begin()+i); 2094 --i; --e; 2095 } 2096 DEBUG(if (!Pending.empty()) Pending.dump()); 2097 CheckPending = false; 2098 } 2099 2100 /// Remove SU from the ready set for this boundary. 2101 void SchedBoundary::removeReady(SUnit *SU) { 2102 if (Available.isInQueue(SU)) 2103 Available.remove(Available.find(SU)); 2104 else { 2105 assert(Pending.isInQueue(SU) && "bad ready count"); 2106 Pending.remove(Pending.find(SU)); 2107 } 2108 } 2109 2110 /// If this queue only has one ready candidate, return it. As a side effect, 2111 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2112 /// one node is ready. If multiple instructions are ready, return NULL. 2113 SUnit *SchedBoundary::pickOnlyChoice() { 2114 if (CheckPending) 2115 releasePending(); 2116 2117 if (CurrMOps > 0) { 2118 // Defer any ready instrs that now have a hazard. 2119 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2120 if (checkHazard(*I)) { 2121 Pending.push(*I); 2122 I = Available.remove(I); 2123 continue; 2124 } 2125 ++I; 2126 } 2127 } 2128 for (unsigned i = 0; Available.empty(); ++i) { 2129 // FIXME: Re-enable assert once PR20057 is resolved. 2130 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2131 // "permanent hazard"); 2132 (void)i; 2133 bumpCycle(CurrCycle + 1); 2134 releasePending(); 2135 } 2136 if (Available.size() == 1) 2137 return *Available.begin(); 2138 return nullptr; 2139 } 2140 2141 #ifndef NDEBUG 2142 // This is useful information to dump after bumpNode. 2143 // Note that the Queue contents are more useful before pickNodeFromQueue. 2144 void SchedBoundary::dumpScheduledState() { 2145 unsigned ResFactor; 2146 unsigned ResCount; 2147 if (ZoneCritResIdx) { 2148 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2149 ResCount = getResourceCount(ZoneCritResIdx); 2150 } 2151 else { 2152 ResFactor = SchedModel->getMicroOpFactor(); 2153 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2154 } 2155 unsigned LFactor = SchedModel->getLatencyFactor(); 2156 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2157 << " Retired: " << RetiredMOps; 2158 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2159 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2160 << ResCount / ResFactor << " " 2161 << SchedModel->getResourceName(ZoneCritResIdx) 2162 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2163 << (IsResourceLimited ? " - Resource" : " - Latency") 2164 << " limited.\n"; 2165 } 2166 #endif 2167 2168 //===----------------------------------------------------------------------===// 2169 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2170 //===----------------------------------------------------------------------===// 2171 2172 void GenericSchedulerBase::SchedCandidate:: 2173 initResourceDelta(const ScheduleDAGMI *DAG, 2174 const TargetSchedModel *SchedModel) { 2175 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2176 return; 2177 2178 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2179 for (TargetSchedModel::ProcResIter 2180 PI = SchedModel->getWriteProcResBegin(SC), 2181 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2182 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2183 ResDelta.CritResources += PI->Cycles; 2184 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2185 ResDelta.DemandedResources += PI->Cycles; 2186 } 2187 } 2188 2189 /// Set the CandPolicy given a scheduling zone given the current resources and 2190 /// latencies inside and outside the zone. 2191 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, 2192 bool IsPostRA, 2193 SchedBoundary &CurrZone, 2194 SchedBoundary *OtherZone) { 2195 // Apply preemptive heuristics based on the total latency and resources 2196 // inside and outside this zone. Potential stalls should be considered before 2197 // following this policy. 2198 2199 // Compute remaining latency. We need this both to determine whether the 2200 // overall schedule has become latency-limited and whether the instructions 2201 // outside this zone are resource or latency limited. 2202 // 2203 // The "dependent" latency is updated incrementally during scheduling as the 2204 // max height/depth of scheduled nodes minus the cycles since it was 2205 // scheduled: 2206 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2207 // 2208 // The "independent" latency is the max ready queue depth: 2209 // ILat = max N.depth for N in Available|Pending 2210 // 2211 // RemainingLatency is the greater of independent and dependent latency. 2212 unsigned RemLatency = CurrZone.getDependentLatency(); 2213 RemLatency = std::max(RemLatency, 2214 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2215 RemLatency = std::max(RemLatency, 2216 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2217 2218 // Compute the critical resource outside the zone. 2219 unsigned OtherCritIdx = 0; 2220 unsigned OtherCount = 2221 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2222 2223 bool OtherResLimited = false; 2224 if (SchedModel->hasInstrSchedModel()) { 2225 unsigned LFactor = SchedModel->getLatencyFactor(); 2226 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2227 } 2228 // Schedule aggressively for latency in PostRA mode. We don't check for 2229 // acyclic latency during PostRA, and highly out-of-order processors will 2230 // skip PostRA scheduling. 2231 if (!OtherResLimited) { 2232 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2233 Policy.ReduceLatency |= true; 2234 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2235 << " RemainingLatency " << RemLatency << " + " 2236 << CurrZone.getCurrCycle() << "c > CritPath " 2237 << Rem.CriticalPath << "\n"); 2238 } 2239 } 2240 // If the same resource is limiting inside and outside the zone, do nothing. 2241 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2242 return; 2243 2244 DEBUG( 2245 if (CurrZone.isResourceLimited()) { 2246 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2247 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2248 << "\n"; 2249 } 2250 if (OtherResLimited) 2251 dbgs() << " RemainingLimit: " 2252 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2253 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2254 dbgs() << " Latency limited both directions.\n"); 2255 2256 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2257 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2258 2259 if (OtherResLimited) 2260 Policy.DemandResIdx = OtherCritIdx; 2261 } 2262 2263 #ifndef NDEBUG 2264 const char *GenericSchedulerBase::getReasonStr( 2265 GenericSchedulerBase::CandReason Reason) { 2266 switch (Reason) { 2267 case NoCand: return "NOCAND "; 2268 case PhysRegCopy: return "PREG-COPY"; 2269 case RegExcess: return "REG-EXCESS"; 2270 case RegCritical: return "REG-CRIT "; 2271 case Stall: return "STALL "; 2272 case Cluster: return "CLUSTER "; 2273 case Weak: return "WEAK "; 2274 case RegMax: return "REG-MAX "; 2275 case ResourceReduce: return "RES-REDUCE"; 2276 case ResourceDemand: return "RES-DEMAND"; 2277 case TopDepthReduce: return "TOP-DEPTH "; 2278 case TopPathReduce: return "TOP-PATH "; 2279 case BotHeightReduce:return "BOT-HEIGHT"; 2280 case BotPathReduce: return "BOT-PATH "; 2281 case NextDefUse: return "DEF-USE "; 2282 case NodeOrder: return "ORDER "; 2283 }; 2284 llvm_unreachable("Unknown reason!"); 2285 } 2286 2287 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2288 PressureChange P; 2289 unsigned ResIdx = 0; 2290 unsigned Latency = 0; 2291 switch (Cand.Reason) { 2292 default: 2293 break; 2294 case RegExcess: 2295 P = Cand.RPDelta.Excess; 2296 break; 2297 case RegCritical: 2298 P = Cand.RPDelta.CriticalMax; 2299 break; 2300 case RegMax: 2301 P = Cand.RPDelta.CurrentMax; 2302 break; 2303 case ResourceReduce: 2304 ResIdx = Cand.Policy.ReduceResIdx; 2305 break; 2306 case ResourceDemand: 2307 ResIdx = Cand.Policy.DemandResIdx; 2308 break; 2309 case TopDepthReduce: 2310 Latency = Cand.SU->getDepth(); 2311 break; 2312 case TopPathReduce: 2313 Latency = Cand.SU->getHeight(); 2314 break; 2315 case BotHeightReduce: 2316 Latency = Cand.SU->getHeight(); 2317 break; 2318 case BotPathReduce: 2319 Latency = Cand.SU->getDepth(); 2320 break; 2321 } 2322 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2323 if (P.isValid()) 2324 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2325 << ":" << P.getUnitInc() << " "; 2326 else 2327 dbgs() << " "; 2328 if (ResIdx) 2329 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2330 else 2331 dbgs() << " "; 2332 if (Latency) 2333 dbgs() << " " << Latency << " cycles "; 2334 else 2335 dbgs() << " "; 2336 dbgs() << '\n'; 2337 } 2338 #endif 2339 2340 /// Return true if this heuristic determines order. 2341 static bool tryLess(int TryVal, int CandVal, 2342 GenericSchedulerBase::SchedCandidate &TryCand, 2343 GenericSchedulerBase::SchedCandidate &Cand, 2344 GenericSchedulerBase::CandReason Reason) { 2345 if (TryVal < CandVal) { 2346 TryCand.Reason = Reason; 2347 return true; 2348 } 2349 if (TryVal > CandVal) { 2350 if (Cand.Reason > Reason) 2351 Cand.Reason = Reason; 2352 return true; 2353 } 2354 Cand.setRepeat(Reason); 2355 return false; 2356 } 2357 2358 static bool tryGreater(int TryVal, int CandVal, 2359 GenericSchedulerBase::SchedCandidate &TryCand, 2360 GenericSchedulerBase::SchedCandidate &Cand, 2361 GenericSchedulerBase::CandReason Reason) { 2362 if (TryVal > CandVal) { 2363 TryCand.Reason = Reason; 2364 return true; 2365 } 2366 if (TryVal < CandVal) { 2367 if (Cand.Reason > Reason) 2368 Cand.Reason = Reason; 2369 return true; 2370 } 2371 Cand.setRepeat(Reason); 2372 return false; 2373 } 2374 2375 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2376 GenericSchedulerBase::SchedCandidate &Cand, 2377 SchedBoundary &Zone) { 2378 if (Zone.isTop()) { 2379 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2380 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2381 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2382 return true; 2383 } 2384 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2385 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2386 return true; 2387 } 2388 else { 2389 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2390 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2391 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2392 return true; 2393 } 2394 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2395 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2396 return true; 2397 } 2398 return false; 2399 } 2400 2401 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, 2402 bool IsTop) { 2403 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2404 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); 2405 } 2406 2407 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2408 assert(dag->hasVRegLiveness() && 2409 "(PreRA)GenericScheduler needs vreg liveness"); 2410 DAG = static_cast<ScheduleDAGMILive*>(dag); 2411 SchedModel = DAG->getSchedModel(); 2412 TRI = DAG->TRI; 2413 2414 Rem.init(DAG, SchedModel); 2415 Top.init(DAG, SchedModel, &Rem); 2416 Bot.init(DAG, SchedModel, &Rem); 2417 2418 // Initialize resource counts. 2419 2420 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2421 // are disabled, then these HazardRecs will be disabled. 2422 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2423 if (!Top.HazardRec) { 2424 Top.HazardRec = 2425 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2426 Itin, DAG); 2427 } 2428 if (!Bot.HazardRec) { 2429 Bot.HazardRec = 2430 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2431 Itin, DAG); 2432 } 2433 } 2434 2435 /// Initialize the per-region scheduling policy. 2436 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2437 MachineBasicBlock::iterator End, 2438 unsigned NumRegionInstrs) { 2439 const MachineFunction &MF = *Begin->getParent()->getParent(); 2440 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2441 2442 // Avoid setting up the register pressure tracker for small regions to save 2443 // compile time. As a rough heuristic, only track pressure when the number of 2444 // schedulable instructions exceeds half the integer register file. 2445 RegionPolicy.ShouldTrackPressure = true; 2446 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2447 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2448 if (TLI->isTypeLegal(LegalIntVT)) { 2449 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2450 TLI->getRegClassFor(LegalIntVT)); 2451 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2452 } 2453 } 2454 2455 // For generic targets, we default to bottom-up, because it's simpler and more 2456 // compile-time optimizations have been implemented in that direction. 2457 RegionPolicy.OnlyBottomUp = true; 2458 2459 // Allow the subtarget to override default policy. 2460 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End, 2461 NumRegionInstrs); 2462 2463 // After subtarget overrides, apply command line options. 2464 if (!EnableRegPressure) 2465 RegionPolicy.ShouldTrackPressure = false; 2466 2467 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2468 // e.g. -misched-bottomup=false allows scheduling in both directions. 2469 assert((!ForceTopDown || !ForceBottomUp) && 2470 "-misched-topdown incompatible with -misched-bottomup"); 2471 if (ForceBottomUp.getNumOccurrences() > 0) { 2472 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2473 if (RegionPolicy.OnlyBottomUp) 2474 RegionPolicy.OnlyTopDown = false; 2475 } 2476 if (ForceTopDown.getNumOccurrences() > 0) { 2477 RegionPolicy.OnlyTopDown = ForceTopDown; 2478 if (RegionPolicy.OnlyTopDown) 2479 RegionPolicy.OnlyBottomUp = false; 2480 } 2481 } 2482 2483 void GenericScheduler::dumpPolicy() { 2484 dbgs() << "GenericScheduler RegionPolicy: " 2485 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2486 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2487 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2488 << "\n"; 2489 } 2490 2491 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2492 /// critical path by more cycles than it takes to drain the instruction buffer. 2493 /// We estimate an upper bounds on in-flight instructions as: 2494 /// 2495 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2496 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2497 /// InFlightResources = InFlightIterations * LoopResources 2498 /// 2499 /// TODO: Check execution resources in addition to IssueCount. 2500 void GenericScheduler::checkAcyclicLatency() { 2501 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2502 return; 2503 2504 // Scaled number of cycles per loop iteration. 2505 unsigned IterCount = 2506 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2507 Rem.RemIssueCount); 2508 // Scaled acyclic critical path. 2509 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2510 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2511 unsigned InFlightCount = 2512 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2513 unsigned BufferLimit = 2514 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2515 2516 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2517 2518 DEBUG(dbgs() << "IssueCycles=" 2519 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2520 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2521 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2522 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2523 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2524 if (Rem.IsAcyclicLatencyLimited) 2525 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2526 } 2527 2528 void GenericScheduler::registerRoots() { 2529 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2530 2531 // Some roots may not feed into ExitSU. Check all of them in case. 2532 for (std::vector<SUnit*>::const_iterator 2533 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2534 if ((*I)->getDepth() > Rem.CriticalPath) 2535 Rem.CriticalPath = (*I)->getDepth(); 2536 } 2537 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2538 if (DumpCriticalPathLength) { 2539 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2540 } 2541 2542 if (EnableCyclicPath) { 2543 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2544 checkAcyclicLatency(); 2545 } 2546 } 2547 2548 static bool tryPressure(const PressureChange &TryP, 2549 const PressureChange &CandP, 2550 GenericSchedulerBase::SchedCandidate &TryCand, 2551 GenericSchedulerBase::SchedCandidate &Cand, 2552 GenericSchedulerBase::CandReason Reason) { 2553 int TryRank = TryP.getPSetOrMax(); 2554 int CandRank = CandP.getPSetOrMax(); 2555 // If both candidates affect the same set, go with the smallest increase. 2556 if (TryRank == CandRank) { 2557 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2558 Reason); 2559 } 2560 // If one candidate decreases and the other increases, go with it. 2561 // Invalid candidates have UnitInc==0. 2562 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2563 Reason)) { 2564 return true; 2565 } 2566 // If the candidates are decreasing pressure, reverse priority. 2567 if (TryP.getUnitInc() < 0) 2568 std::swap(TryRank, CandRank); 2569 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2570 } 2571 2572 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2573 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2574 } 2575 2576 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2577 /// their physreg def/use. 2578 /// 2579 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2580 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2581 /// with the operation that produces or consumes the physreg. We'll do this when 2582 /// regalloc has support for parallel copies. 2583 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2584 const MachineInstr *MI = SU->getInstr(); 2585 if (!MI->isCopy()) 2586 return 0; 2587 2588 unsigned ScheduledOper = isTop ? 1 : 0; 2589 unsigned UnscheduledOper = isTop ? 0 : 1; 2590 // If we have already scheduled the physreg produce/consumer, immediately 2591 // schedule the copy. 2592 if (TargetRegisterInfo::isPhysicalRegister( 2593 MI->getOperand(ScheduledOper).getReg())) 2594 return 1; 2595 // If the physreg is at the boundary, defer it. Otherwise schedule it 2596 // immediately to free the dependent. We can hoist the copy later. 2597 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2598 if (TargetRegisterInfo::isPhysicalRegister( 2599 MI->getOperand(UnscheduledOper).getReg())) 2600 return AtBoundary ? -1 : 1; 2601 return 0; 2602 } 2603 2604 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2605 /// hierarchical. This may be more efficient than a graduated cost model because 2606 /// we don't need to evaluate all aspects of the model for each node in the 2607 /// queue. But it's really done to make the heuristics easier to debug and 2608 /// statistically analyze. 2609 /// 2610 /// \param Cand provides the policy and current best candidate. 2611 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2612 /// \param Zone describes the scheduled zone that we are extending. 2613 /// \param RPTracker describes reg pressure within the scheduled zone. 2614 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2615 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2616 SchedCandidate &TryCand, 2617 SchedBoundary &Zone, 2618 const RegPressureTracker &RPTracker, 2619 RegPressureTracker &TempTracker) { 2620 2621 if (DAG->isTrackingPressure()) { 2622 // Always initialize TryCand's RPDelta. 2623 if (Zone.isTop()) { 2624 TempTracker.getMaxDownwardPressureDelta( 2625 TryCand.SU->getInstr(), 2626 TryCand.RPDelta, 2627 DAG->getRegionCriticalPSets(), 2628 DAG->getRegPressure().MaxSetPressure); 2629 } 2630 else { 2631 if (VerifyScheduling) { 2632 TempTracker.getMaxUpwardPressureDelta( 2633 TryCand.SU->getInstr(), 2634 &DAG->getPressureDiff(TryCand.SU), 2635 TryCand.RPDelta, 2636 DAG->getRegionCriticalPSets(), 2637 DAG->getRegPressure().MaxSetPressure); 2638 } 2639 else { 2640 RPTracker.getUpwardPressureDelta( 2641 TryCand.SU->getInstr(), 2642 DAG->getPressureDiff(TryCand.SU), 2643 TryCand.RPDelta, 2644 DAG->getRegionCriticalPSets(), 2645 DAG->getRegPressure().MaxSetPressure); 2646 } 2647 } 2648 } 2649 DEBUG(if (TryCand.RPDelta.Excess.isValid()) 2650 dbgs() << " Try SU(" << TryCand.SU->NodeNum << ") " 2651 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) 2652 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); 2653 2654 // Initialize the candidate if needed. 2655 if (!Cand.isValid()) { 2656 TryCand.Reason = NodeOrder; 2657 return; 2658 } 2659 2660 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2661 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2662 TryCand, Cand, PhysRegCopy)) 2663 return; 2664 2665 // Avoid exceeding the target's limit. 2666 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2667 Cand.RPDelta.Excess, 2668 TryCand, Cand, RegExcess)) 2669 return; 2670 2671 // Avoid increasing the max critical pressure in the scheduled region. 2672 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2673 Cand.RPDelta.CriticalMax, 2674 TryCand, Cand, RegCritical)) 2675 return; 2676 2677 // For loops that are acyclic path limited, aggressively schedule for latency. 2678 // This can result in very long dependence chains scheduled in sequence, so 2679 // once every cycle (when CurrMOps == 0), switch to normal heuristics. 2680 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() 2681 && tryLatency(TryCand, Cand, Zone)) 2682 return; 2683 2684 // Prioritize instructions that read unbuffered resources by stall cycles. 2685 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), 2686 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2687 return; 2688 2689 // Keep clustered nodes together to encourage downstream peephole 2690 // optimizations which may reduce resource requirements. 2691 // 2692 // This is a best effort to set things up for a post-RA pass. Optimizations 2693 // like generating loads of multiple registers should ideally be done within 2694 // the scheduler pass by combining the loads during DAG postprocessing. 2695 const SUnit *NextClusterSU = 2696 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2697 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2698 TryCand, Cand, Cluster)) 2699 return; 2700 2701 // Weak edges are for clustering and other constraints. 2702 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2703 getWeakLeft(Cand.SU, Zone.isTop()), 2704 TryCand, Cand, Weak)) { 2705 return; 2706 } 2707 // Avoid increasing the max pressure of the entire region. 2708 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2709 Cand.RPDelta.CurrentMax, 2710 TryCand, Cand, RegMax)) 2711 return; 2712 2713 // Avoid critical resource consumption and balance the schedule. 2714 TryCand.initResourceDelta(DAG, SchedModel); 2715 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2716 TryCand, Cand, ResourceReduce)) 2717 return; 2718 if (tryGreater(TryCand.ResDelta.DemandedResources, 2719 Cand.ResDelta.DemandedResources, 2720 TryCand, Cand, ResourceDemand)) 2721 return; 2722 2723 // Avoid serializing long latency dependence chains. 2724 // For acyclic path limited loops, latency was already checked above. 2725 if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency && 2726 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) { 2727 return; 2728 } 2729 2730 // Prefer immediate defs/users of the last scheduled instruction. This is a 2731 // local pressure avoidance strategy that also makes the machine code 2732 // readable. 2733 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), 2734 TryCand, Cand, NextDefUse)) 2735 return; 2736 2737 // Fall through to original instruction order. 2738 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2739 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2740 TryCand.Reason = NodeOrder; 2741 } 2742 } 2743 2744 /// Pick the best candidate from the queue. 2745 /// 2746 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2747 /// DAG building. To adjust for the current scheduling location we need to 2748 /// maintain the number of vreg uses remaining to be top-scheduled. 2749 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2750 const RegPressureTracker &RPTracker, 2751 SchedCandidate &Cand) { 2752 ReadyQueue &Q = Zone.Available; 2753 2754 DEBUG(Q.dump()); 2755 2756 // getMaxPressureDelta temporarily modifies the tracker. 2757 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2758 2759 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2760 2761 SchedCandidate TryCand(Cand.Policy); 2762 TryCand.SU = *I; 2763 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2764 if (TryCand.Reason != NoCand) { 2765 // Initialize resource delta if needed in case future heuristics query it. 2766 if (TryCand.ResDelta == SchedResourceDelta()) 2767 TryCand.initResourceDelta(DAG, SchedModel); 2768 Cand.setBest(TryCand); 2769 DEBUG(traceCandidate(Cand)); 2770 } 2771 } 2772 } 2773 2774 /// Pick the best candidate node from either the top or bottom queue. 2775 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2776 // Schedule as far as possible in the direction of no choice. This is most 2777 // efficient, but also provides the best heuristics for CriticalPSets. 2778 if (SUnit *SU = Bot.pickOnlyChoice()) { 2779 IsTopNode = false; 2780 DEBUG(dbgs() << "Pick Bot NOCAND\n"); 2781 return SU; 2782 } 2783 if (SUnit *SU = Top.pickOnlyChoice()) { 2784 IsTopNode = true; 2785 DEBUG(dbgs() << "Pick Top NOCAND\n"); 2786 return SU; 2787 } 2788 CandPolicy NoPolicy; 2789 SchedCandidate BotCand(NoPolicy); 2790 SchedCandidate TopCand(NoPolicy); 2791 // Set the bottom-up policy based on the state of the current bottom zone and 2792 // the instructions outside the zone, including the top zone. 2793 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); 2794 // Set the top-down policy based on the state of the current top zone and 2795 // the instructions outside the zone, including the bottom zone. 2796 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); 2797 2798 // Prefer bottom scheduling when heuristics are silent. 2799 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2800 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2801 2802 // If either Q has a single candidate that provides the least increase in 2803 // Excess pressure, we can immediately schedule from that Q. 2804 // 2805 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2806 // affects picking from either Q. If scheduling in one direction must 2807 // increase pressure for one of the excess PSets, then schedule in that 2808 // direction first to provide more freedom in the other direction. 2809 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2810 || (BotCand.Reason == RegCritical 2811 && !BotCand.isRepeat(RegCritical))) 2812 { 2813 IsTopNode = false; 2814 tracePick(BotCand, IsTopNode); 2815 return BotCand.SU; 2816 } 2817 // Check if the top Q has a better candidate. 2818 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2819 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2820 2821 // Choose the queue with the most important (lowest enum) reason. 2822 if (TopCand.Reason < BotCand.Reason) { 2823 IsTopNode = true; 2824 tracePick(TopCand, IsTopNode); 2825 return TopCand.SU; 2826 } 2827 // Otherwise prefer the bottom candidate, in node order if all else failed. 2828 IsTopNode = false; 2829 tracePick(BotCand, IsTopNode); 2830 return BotCand.SU; 2831 } 2832 2833 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2834 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2835 if (DAG->top() == DAG->bottom()) { 2836 assert(Top.Available.empty() && Top.Pending.empty() && 2837 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2838 return nullptr; 2839 } 2840 SUnit *SU; 2841 do { 2842 if (RegionPolicy.OnlyTopDown) { 2843 SU = Top.pickOnlyChoice(); 2844 if (!SU) { 2845 CandPolicy NoPolicy; 2846 SchedCandidate TopCand(NoPolicy); 2847 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2848 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2849 tracePick(TopCand, true); 2850 SU = TopCand.SU; 2851 } 2852 IsTopNode = true; 2853 } 2854 else if (RegionPolicy.OnlyBottomUp) { 2855 SU = Bot.pickOnlyChoice(); 2856 if (!SU) { 2857 CandPolicy NoPolicy; 2858 SchedCandidate BotCand(NoPolicy); 2859 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2860 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2861 tracePick(BotCand, false); 2862 SU = BotCand.SU; 2863 } 2864 IsTopNode = false; 2865 } 2866 else { 2867 SU = pickNodeBidirectional(IsTopNode); 2868 } 2869 } while (SU->isScheduled); 2870 2871 if (SU->isTopReady()) 2872 Top.removeReady(SU); 2873 if (SU->isBottomReady()) 2874 Bot.removeReady(SU); 2875 2876 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2877 return SU; 2878 } 2879 2880 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2881 2882 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2883 if (!isTop) 2884 ++InsertPos; 2885 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2886 2887 // Find already scheduled copies with a single physreg dependence and move 2888 // them just above the scheduled instruction. 2889 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2890 I != E; ++I) { 2891 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2892 continue; 2893 SUnit *DepSU = I->getSUnit(); 2894 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2895 continue; 2896 MachineInstr *Copy = DepSU->getInstr(); 2897 if (!Copy->isCopy()) 2898 continue; 2899 DEBUG(dbgs() << " Rescheduling physreg copy "; 2900 I->getSUnit()->dump(DAG)); 2901 DAG->moveInstruction(Copy, InsertPos); 2902 } 2903 } 2904 2905 /// Update the scheduler's state after scheduling a node. This is the same node 2906 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 2907 /// update it's state based on the current cycle before MachineSchedStrategy 2908 /// does. 2909 /// 2910 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2911 /// them here. See comments in biasPhysRegCopy. 2912 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2913 if (IsTopNode) { 2914 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 2915 Top.bumpNode(SU); 2916 if (SU->hasPhysRegUses) 2917 reschedulePhysRegCopies(SU, true); 2918 } 2919 else { 2920 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 2921 Bot.bumpNode(SU); 2922 if (SU->hasPhysRegDefs) 2923 reschedulePhysRegCopies(SU, false); 2924 } 2925 } 2926 2927 /// Create the standard converging machine scheduler. This will be used as the 2928 /// default scheduler if the target does not set a default. 2929 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 2930 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 2931 // Register DAG post-processors. 2932 // 2933 // FIXME: extend the mutation API to allow earlier mutations to instantiate 2934 // data and pass it to later mutations. Have a single mutation that gathers 2935 // the interesting nodes in one pass. 2936 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); 2937 if (EnableLoadCluster && DAG->TII->enableClusterLoads()) 2938 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); 2939 if (EnableMacroFusion) 2940 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI)); 2941 return DAG; 2942 } 2943 2944 static MachineSchedRegistry 2945 GenericSchedRegistry("converge", "Standard converging scheduler.", 2946 createGenericSchedLive); 2947 2948 //===----------------------------------------------------------------------===// 2949 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 2950 //===----------------------------------------------------------------------===// 2951 2952 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 2953 DAG = Dag; 2954 SchedModel = DAG->getSchedModel(); 2955 TRI = DAG->TRI; 2956 2957 Rem.init(DAG, SchedModel); 2958 Top.init(DAG, SchedModel, &Rem); 2959 BotRoots.clear(); 2960 2961 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 2962 // or are disabled, then these HazardRecs will be disabled. 2963 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2964 if (!Top.HazardRec) { 2965 Top.HazardRec = 2966 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2967 Itin, DAG); 2968 } 2969 } 2970 2971 2972 void PostGenericScheduler::registerRoots() { 2973 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2974 2975 // Some roots may not feed into ExitSU. Check all of them in case. 2976 for (SmallVectorImpl<SUnit*>::const_iterator 2977 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 2978 if ((*I)->getDepth() > Rem.CriticalPath) 2979 Rem.CriticalPath = (*I)->getDepth(); 2980 } 2981 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 2982 if (DumpCriticalPathLength) { 2983 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 2984 } 2985 } 2986 2987 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 2988 /// 2989 /// \param Cand provides the policy and current best candidate. 2990 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2991 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 2992 SchedCandidate &TryCand) { 2993 2994 // Initialize the candidate if needed. 2995 if (!Cand.isValid()) { 2996 TryCand.Reason = NodeOrder; 2997 return; 2998 } 2999 3000 // Prioritize instructions that read unbuffered resources by stall cycles. 3001 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3002 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3003 return; 3004 3005 // Avoid critical resource consumption and balance the schedule. 3006 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3007 TryCand, Cand, ResourceReduce)) 3008 return; 3009 if (tryGreater(TryCand.ResDelta.DemandedResources, 3010 Cand.ResDelta.DemandedResources, 3011 TryCand, Cand, ResourceDemand)) 3012 return; 3013 3014 // Avoid serializing long latency dependence chains. 3015 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3016 return; 3017 } 3018 3019 // Fall through to original instruction order. 3020 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3021 TryCand.Reason = NodeOrder; 3022 } 3023 3024 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3025 ReadyQueue &Q = Top.Available; 3026 3027 DEBUG(Q.dump()); 3028 3029 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3030 SchedCandidate TryCand(Cand.Policy); 3031 TryCand.SU = *I; 3032 TryCand.initResourceDelta(DAG, SchedModel); 3033 tryCandidate(Cand, TryCand); 3034 if (TryCand.Reason != NoCand) { 3035 Cand.setBest(TryCand); 3036 DEBUG(traceCandidate(Cand)); 3037 } 3038 } 3039 } 3040 3041 /// Pick the next node to schedule. 3042 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3043 if (DAG->top() == DAG->bottom()) { 3044 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3045 return nullptr; 3046 } 3047 SUnit *SU; 3048 do { 3049 SU = Top.pickOnlyChoice(); 3050 if (!SU) { 3051 CandPolicy NoPolicy; 3052 SchedCandidate TopCand(NoPolicy); 3053 // Set the top-down policy based on the state of the current top zone and 3054 // the instructions outside the zone, including the bottom zone. 3055 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3056 pickNodeFromQueue(TopCand); 3057 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3058 tracePick(TopCand, true); 3059 SU = TopCand.SU; 3060 } 3061 } while (SU->isScheduled); 3062 3063 IsTopNode = true; 3064 Top.removeReady(SU); 3065 3066 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3067 return SU; 3068 } 3069 3070 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3071 /// scheduled/remaining flags in the DAG nodes. 3072 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3073 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3074 Top.bumpNode(SU); 3075 } 3076 3077 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3078 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3079 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3080 } 3081 3082 //===----------------------------------------------------------------------===// 3083 // ILP Scheduler. Currently for experimental analysis of heuristics. 3084 //===----------------------------------------------------------------------===// 3085 3086 namespace { 3087 /// \brief Order nodes by the ILP metric. 3088 struct ILPOrder { 3089 const SchedDFSResult *DFSResult; 3090 const BitVector *ScheduledTrees; 3091 bool MaximizeILP; 3092 3093 ILPOrder(bool MaxILP) 3094 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3095 3096 /// \brief Apply a less-than relation on node priority. 3097 /// 3098 /// (Return true if A comes after B in the Q.) 3099 bool operator()(const SUnit *A, const SUnit *B) const { 3100 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3101 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3102 if (SchedTreeA != SchedTreeB) { 3103 // Unscheduled trees have lower priority. 3104 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3105 return ScheduledTrees->test(SchedTreeB); 3106 3107 // Trees with shallower connections have have lower priority. 3108 if (DFSResult->getSubtreeLevel(SchedTreeA) 3109 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3110 return DFSResult->getSubtreeLevel(SchedTreeA) 3111 < DFSResult->getSubtreeLevel(SchedTreeB); 3112 } 3113 } 3114 if (MaximizeILP) 3115 return DFSResult->getILP(A) < DFSResult->getILP(B); 3116 else 3117 return DFSResult->getILP(A) > DFSResult->getILP(B); 3118 } 3119 }; 3120 3121 /// \brief Schedule based on the ILP metric. 3122 class ILPScheduler : public MachineSchedStrategy { 3123 ScheduleDAGMILive *DAG; 3124 ILPOrder Cmp; 3125 3126 std::vector<SUnit*> ReadyQ; 3127 public: 3128 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3129 3130 void initialize(ScheduleDAGMI *dag) override { 3131 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3132 DAG = static_cast<ScheduleDAGMILive*>(dag); 3133 DAG->computeDFSResult(); 3134 Cmp.DFSResult = DAG->getDFSResult(); 3135 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3136 ReadyQ.clear(); 3137 } 3138 3139 void registerRoots() override { 3140 // Restore the heap in ReadyQ with the updated DFS results. 3141 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3142 } 3143 3144 /// Implement MachineSchedStrategy interface. 3145 /// ----------------------------------------- 3146 3147 /// Callback to select the highest priority node from the ready Q. 3148 SUnit *pickNode(bool &IsTopNode) override { 3149 if (ReadyQ.empty()) return nullptr; 3150 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3151 SUnit *SU = ReadyQ.back(); 3152 ReadyQ.pop_back(); 3153 IsTopNode = false; 3154 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3155 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3156 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3157 << DAG->getDFSResult()->getSubtreeLevel( 3158 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3159 << "Scheduling " << *SU->getInstr()); 3160 return SU; 3161 } 3162 3163 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3164 void scheduleTree(unsigned SubtreeID) override { 3165 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3166 } 3167 3168 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3169 /// DFSResults, and resort the priority Q. 3170 void schedNode(SUnit *SU, bool IsTopNode) override { 3171 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3172 } 3173 3174 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3175 3176 void releaseBottomNode(SUnit *SU) override { 3177 ReadyQ.push_back(SU); 3178 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3179 } 3180 }; 3181 } // namespace 3182 3183 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3184 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3185 } 3186 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3187 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3188 } 3189 static MachineSchedRegistry ILPMaxRegistry( 3190 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3191 static MachineSchedRegistry ILPMinRegistry( 3192 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3193 3194 //===----------------------------------------------------------------------===// 3195 // Machine Instruction Shuffler for Correctness Testing 3196 //===----------------------------------------------------------------------===// 3197 3198 #ifndef NDEBUG 3199 namespace { 3200 /// Apply a less-than relation on the node order, which corresponds to the 3201 /// instruction order prior to scheduling. IsReverse implements greater-than. 3202 template<bool IsReverse> 3203 struct SUnitOrder { 3204 bool operator()(SUnit *A, SUnit *B) const { 3205 if (IsReverse) 3206 return A->NodeNum > B->NodeNum; 3207 else 3208 return A->NodeNum < B->NodeNum; 3209 } 3210 }; 3211 3212 /// Reorder instructions as much as possible. 3213 class InstructionShuffler : public MachineSchedStrategy { 3214 bool IsAlternating; 3215 bool IsTopDown; 3216 3217 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3218 // gives nodes with a higher number higher priority causing the latest 3219 // instructions to be scheduled first. 3220 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3221 TopQ; 3222 // When scheduling bottom-up, use greater-than as the queue priority. 3223 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3224 BottomQ; 3225 public: 3226 InstructionShuffler(bool alternate, bool topdown) 3227 : IsAlternating(alternate), IsTopDown(topdown) {} 3228 3229 void initialize(ScheduleDAGMI*) override { 3230 TopQ.clear(); 3231 BottomQ.clear(); 3232 } 3233 3234 /// Implement MachineSchedStrategy interface. 3235 /// ----------------------------------------- 3236 3237 SUnit *pickNode(bool &IsTopNode) override { 3238 SUnit *SU; 3239 if (IsTopDown) { 3240 do { 3241 if (TopQ.empty()) return nullptr; 3242 SU = TopQ.top(); 3243 TopQ.pop(); 3244 } while (SU->isScheduled); 3245 IsTopNode = true; 3246 } 3247 else { 3248 do { 3249 if (BottomQ.empty()) return nullptr; 3250 SU = BottomQ.top(); 3251 BottomQ.pop(); 3252 } while (SU->isScheduled); 3253 IsTopNode = false; 3254 } 3255 if (IsAlternating) 3256 IsTopDown = !IsTopDown; 3257 return SU; 3258 } 3259 3260 void schedNode(SUnit *SU, bool IsTopNode) override {} 3261 3262 void releaseTopNode(SUnit *SU) override { 3263 TopQ.push(SU); 3264 } 3265 void releaseBottomNode(SUnit *SU) override { 3266 BottomQ.push(SU); 3267 } 3268 }; 3269 } // namespace 3270 3271 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3272 bool Alternate = !ForceTopDown && !ForceBottomUp; 3273 bool TopDown = !ForceBottomUp; 3274 assert((TopDown || !ForceTopDown) && 3275 "-misched-topdown incompatible with -misched-bottomup"); 3276 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3277 } 3278 static MachineSchedRegistry ShufflerRegistry( 3279 "shuffle", "Shuffle machine instructions alternating directions", 3280 createInstructionShuffler); 3281 #endif // !NDEBUG 3282 3283 //===----------------------------------------------------------------------===// 3284 // GraphWriter support for ScheduleDAGMILive. 3285 //===----------------------------------------------------------------------===// 3286 3287 #ifndef NDEBUG 3288 namespace llvm { 3289 3290 template<> struct GraphTraits< 3291 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3292 3293 template<> 3294 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3295 3296 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3297 3298 static std::string getGraphName(const ScheduleDAG *G) { 3299 return G->MF.getName(); 3300 } 3301 3302 static bool renderGraphFromBottomUp() { 3303 return true; 3304 } 3305 3306 static bool isNodeHidden(const SUnit *Node) { 3307 if (ViewMISchedCutoff == 0) 3308 return false; 3309 return (Node->Preds.size() > ViewMISchedCutoff 3310 || Node->Succs.size() > ViewMISchedCutoff); 3311 } 3312 3313 /// If you want to override the dot attributes printed for a particular 3314 /// edge, override this method. 3315 static std::string getEdgeAttributes(const SUnit *Node, 3316 SUnitIterator EI, 3317 const ScheduleDAG *Graph) { 3318 if (EI.isArtificialDep()) 3319 return "color=cyan,style=dashed"; 3320 if (EI.isCtrlDep()) 3321 return "color=blue,style=dashed"; 3322 return ""; 3323 } 3324 3325 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3326 std::string Str; 3327 raw_string_ostream SS(Str); 3328 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3329 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3330 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3331 SS << "SU:" << SU->NodeNum; 3332 if (DFS) 3333 SS << " I:" << DFS->getNumInstrs(SU); 3334 return SS.str(); 3335 } 3336 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3337 return G->getGraphNodeLabel(SU); 3338 } 3339 3340 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3341 std::string Str("shape=Mrecord"); 3342 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3343 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3344 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3345 if (DFS) { 3346 Str += ",style=filled,fillcolor=\"#"; 3347 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3348 Str += '"'; 3349 } 3350 return Str; 3351 } 3352 }; 3353 } // namespace llvm 3354 #endif // NDEBUG 3355 3356 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3357 /// rendered using 'dot'. 3358 /// 3359 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3360 #ifndef NDEBUG 3361 ViewGraph(this, Name, false, Title); 3362 #else 3363 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3364 << "systems with Graphviz or gv!\n"; 3365 #endif // NDEBUG 3366 } 3367 3368 /// Out-of-line implementation with no arguments is handy for gdb. 3369 void ScheduleDAGMI::viewGraph() { 3370 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3371 } 3372