1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion on machine instructions. We 10 // attempt to remove as much code from the body of a loop as possible. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/CodeGen/MachineLICM.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 27 #include "llvm/CodeGen/MachineDomTreeUpdater.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/PseudoSourceValue.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSchedule.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/MC/MCInstrDesc.h" 46 #include "llvm/MC/MCRegister.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <limits> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "machinelicm" 61 62 static cl::opt<bool> 63 AvoidSpeculation("avoid-speculation", 64 cl::desc("MachineLICM should avoid speculation"), 65 cl::init(true), cl::Hidden); 66 67 static cl::opt<bool> 68 HoistCheapInsts("hoist-cheap-insts", 69 cl::desc("MachineLICM should hoist even cheap instructions"), 70 cl::init(false), cl::Hidden); 71 72 static cl::opt<bool> 73 HoistConstStores("hoist-const-stores", 74 cl::desc("Hoist invariant stores"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<bool> HoistConstLoads("hoist-const-loads", 78 cl::desc("Hoist invariant loads"), 79 cl::init(true), cl::Hidden); 80 81 // The default threshold of 100 (i.e. if target block is 100 times hotter) 82 // is based on empirical data on a single target and is subject to tuning. 83 static cl::opt<unsigned> 84 BlockFrequencyRatioThreshold("block-freq-ratio-threshold", 85 cl::desc("Do not hoist instructions if target" 86 "block is N times hotter than the source."), 87 cl::init(100), cl::Hidden); 88 89 enum class UseBFI { None, PGO, All }; 90 91 static cl::opt<UseBFI> 92 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks", 93 cl::desc("Disable hoisting instructions to" 94 " hotter blocks"), 95 cl::init(UseBFI::PGO), cl::Hidden, 96 cl::values(clEnumValN(UseBFI::None, "none", 97 "disable the feature"), 98 clEnumValN(UseBFI::PGO, "pgo", 99 "enable the feature when using profile data"), 100 clEnumValN(UseBFI::All, "all", 101 "enable the feature with/wo profile data"))); 102 103 STATISTIC(NumHoisted, 104 "Number of machine instructions hoisted out of loops"); 105 STATISTIC(NumLowRP, 106 "Number of instructions hoisted in low reg pressure situation"); 107 STATISTIC(NumHighLatency, 108 "Number of high latency instructions hoisted"); 109 STATISTIC(NumCSEed, 110 "Number of hoisted machine instructions CSEed"); 111 STATISTIC(NumPostRAHoisted, 112 "Number of machine instructions hoisted out of loops post regalloc"); 113 STATISTIC(NumStoreConst, 114 "Number of stores of const phys reg hoisted out of loops"); 115 STATISTIC(NumNotHoistedDueToHotness, 116 "Number of instructions not hoisted due to block frequency"); 117 118 namespace { 119 enum HoistResult { NotHoisted = 1, Hoisted = 2, ErasedMI = 4 }; 120 121 class MachineLICMImpl { 122 const TargetInstrInfo *TII = nullptr; 123 const TargetLoweringBase *TLI = nullptr; 124 const TargetRegisterInfo *TRI = nullptr; 125 const MachineFrameInfo *MFI = nullptr; 126 MachineRegisterInfo *MRI = nullptr; 127 TargetSchedModel SchedModel; 128 bool PreRegAlloc = false; 129 bool HasProfileData = false; 130 Pass *LegacyPass; 131 MachineFunctionAnalysisManager *MFAM; 132 133 // Various analyses that we use... 134 AliasAnalysis *AA = nullptr; // Alias analysis info. 135 MachineBlockFrequencyInfo *MBFI = nullptr; // Machine block frequncy info 136 MachineLoopInfo *MLI = nullptr; // Current MachineLoopInfo 137 MachineDomTreeUpdater *MDTU = nullptr; // Wraps current dominator tree 138 139 // State that is updated as we process loops 140 bool Changed = false; // True if a loop is changed. 141 bool FirstInLoop = false; // True if it's the first LICM in the loop. 142 143 // Holds information about whether it is allowed to move load instructions 144 // out of the loop 145 SmallDenseMap<MachineLoop *, bool> AllowedToHoistLoads; 146 147 // Exit blocks of each Loop. 148 DenseMap<MachineLoop *, SmallVector<MachineBasicBlock *, 8>> ExitBlockMap; 149 150 bool isExitBlock(MachineLoop *CurLoop, const MachineBasicBlock *MBB) { 151 auto [It, Inserted] = ExitBlockMap.try_emplace(CurLoop); 152 if (Inserted) { 153 SmallVector<MachineBasicBlock *, 8> ExitBlocks; 154 CurLoop->getExitBlocks(ExitBlocks); 155 It->second = std::move(ExitBlocks); 156 } 157 return is_contained(It->second, MBB); 158 } 159 160 // Track 'estimated' register pressure. 161 SmallDenseSet<Register> RegSeen; 162 SmallVector<unsigned, 8> RegPressure; 163 164 // Register pressure "limit" per register pressure set. If the pressure 165 // is higher than the limit, then it's considered high. 166 SmallVector<unsigned, 8> RegLimit; 167 168 // Register pressure on path leading from loop preheader to current BB. 169 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 170 171 // For each opcode per preheader, keep a list of potential CSE instructions. 172 DenseMap<MachineBasicBlock *, 173 DenseMap<unsigned, std::vector<MachineInstr *>>> 174 CSEMap; 175 176 enum { 177 SpeculateFalse = 0, 178 SpeculateTrue = 1, 179 SpeculateUnknown = 2 180 }; 181 182 // If a MBB does not dominate loop exiting blocks then it may not safe 183 // to hoist loads from this block. 184 // Tri-state: 0 - false, 1 - true, 2 - unknown 185 unsigned SpeculationState = SpeculateUnknown; 186 187 public: 188 MachineLICMImpl(bool PreRegAlloc, Pass *LegacyPass, 189 MachineFunctionAnalysisManager *MFAM) 190 : PreRegAlloc(PreRegAlloc), LegacyPass(LegacyPass), MFAM(MFAM) { 191 assert((LegacyPass || MFAM) && "LegacyPass or MFAM must be provided"); 192 assert(!(LegacyPass && MFAM) && 193 "LegacyPass and MFAM cannot be provided at the same time"); 194 } 195 196 bool run(MachineFunction &MF); 197 198 void releaseMemory() { 199 RegSeen.clear(); 200 RegPressure.clear(); 201 RegLimit.clear(); 202 BackTrace.clear(); 203 CSEMap.clear(); 204 ExitBlockMap.clear(); 205 } 206 207 private: 208 /// Keep track of information about hoisting candidates. 209 struct CandidateInfo { 210 MachineInstr *MI; 211 unsigned Def; 212 int FI; 213 214 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 215 : MI(mi), Def(def), FI(fi) {} 216 }; 217 218 void HoistRegionPostRA(MachineLoop *CurLoop, 219 MachineBasicBlock *CurPreheader); 220 221 void HoistPostRA(MachineInstr *MI, unsigned Def, MachineLoop *CurLoop, 222 MachineBasicBlock *CurPreheader); 223 224 void ProcessMI(MachineInstr *MI, BitVector &RUDefs, BitVector &RUClobbers, 225 SmallDenseSet<int> &StoredFIs, 226 SmallVectorImpl<CandidateInfo> &Candidates, 227 MachineLoop *CurLoop); 228 229 void AddToLiveIns(MCRegister Reg, MachineLoop *CurLoop); 230 231 bool IsLICMCandidate(MachineInstr &I, MachineLoop *CurLoop); 232 233 bool IsLoopInvariantInst(MachineInstr &I, MachineLoop *CurLoop); 234 235 bool HasLoopPHIUse(const MachineInstr *MI, MachineLoop *CurLoop); 236 237 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, Register Reg, 238 MachineLoop *CurLoop) const; 239 240 bool IsCheapInstruction(MachineInstr &MI) const; 241 242 bool CanCauseHighRegPressure(const SmallDenseMap<unsigned, int> &Cost, 243 bool Cheap); 244 245 void UpdateBackTraceRegPressure(const MachineInstr *MI); 246 247 bool IsProfitableToHoist(MachineInstr &MI, MachineLoop *CurLoop); 248 249 bool IsGuaranteedToExecute(MachineBasicBlock *BB, MachineLoop *CurLoop); 250 251 bool isTriviallyReMaterializable(const MachineInstr &MI) const; 252 253 void EnterScope(MachineBasicBlock *MBB); 254 255 void ExitScope(MachineBasicBlock *MBB); 256 257 void ExitScopeIfDone( 258 MachineDomTreeNode *Node, 259 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 260 const DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 261 262 void HoistOutOfLoop(MachineDomTreeNode *HeaderN, MachineLoop *CurLoop, 263 MachineBasicBlock *CurPreheader); 264 265 void InitRegPressure(MachineBasicBlock *BB); 266 267 SmallDenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 268 bool ConsiderSeen, 269 bool ConsiderUnseenAsDef); 270 271 void UpdateRegPressure(const MachineInstr *MI, 272 bool ConsiderUnseenAsDef = false); 273 274 MachineInstr *ExtractHoistableLoad(MachineInstr *MI, MachineLoop *CurLoop); 275 276 MachineInstr *LookForDuplicate(const MachineInstr *MI, 277 std::vector<MachineInstr *> &PrevMIs); 278 279 bool 280 EliminateCSE(MachineInstr *MI, 281 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI); 282 283 bool MayCSE(MachineInstr *MI); 284 285 unsigned Hoist(MachineInstr *MI, MachineBasicBlock *Preheader, 286 MachineLoop *CurLoop); 287 288 void InitCSEMap(MachineBasicBlock *BB); 289 290 void InitializeLoadsHoistableLoops(); 291 292 bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, 293 MachineBasicBlock *TgtBlock); 294 MachineBasicBlock *getCurPreheader(MachineLoop *CurLoop, 295 MachineBasicBlock *CurPreheader); 296 }; 297 298 class MachineLICMBase : public MachineFunctionPass { 299 bool PreRegAlloc; 300 301 public: 302 MachineLICMBase(char &ID, bool PreRegAlloc) 303 : MachineFunctionPass(ID), PreRegAlloc(PreRegAlloc) {} 304 305 bool runOnMachineFunction(MachineFunction &MF) override; 306 307 void getAnalysisUsage(AnalysisUsage &AU) const override { 308 AU.addRequired<MachineLoopInfoWrapperPass>(); 309 if (DisableHoistingToHotterBlocks != UseBFI::None) 310 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 311 AU.addRequired<MachineDominatorTreeWrapperPass>(); 312 AU.addRequired<AAResultsWrapperPass>(); 313 AU.addPreserved<MachineLoopInfoWrapperPass>(); 314 MachineFunctionPass::getAnalysisUsage(AU); 315 } 316 }; 317 318 class MachineLICM : public MachineLICMBase { 319 public: 320 static char ID; 321 MachineLICM() : MachineLICMBase(ID, false) { 322 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 323 } 324 }; 325 326 class EarlyMachineLICM : public MachineLICMBase { 327 public: 328 static char ID; 329 EarlyMachineLICM() : MachineLICMBase(ID, true) { 330 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry()); 331 } 332 }; 333 334 } // end anonymous namespace 335 336 char MachineLICM::ID; 337 char EarlyMachineLICM::ID; 338 339 char &llvm::MachineLICMID = MachineLICM::ID; 340 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID; 341 342 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, 343 "Machine Loop Invariant Code Motion", false, false) 344 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 345 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) 346 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 347 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 348 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, 349 "Machine Loop Invariant Code Motion", false, false) 350 351 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm", 352 "Early Machine Loop Invariant Code Motion", false, false) 353 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 354 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) 355 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 356 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 357 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm", 358 "Early Machine Loop Invariant Code Motion", false, false) 359 360 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) { 361 if (skipFunction(MF.getFunction())) 362 return false; 363 364 MachineLICMImpl Impl(PreRegAlloc, this, nullptr); 365 return Impl.run(MF); 366 } 367 368 #define GET_RESULT(RESULT, GETTER, INFIX) \ 369 ((LegacyPass) \ 370 ? &LegacyPass->getAnalysis<RESULT##INFIX##WrapperPass>().GETTER() \ 371 : &MFAM->getResult<RESULT##Analysis>(MF)) 372 373 bool MachineLICMImpl::run(MachineFunction &MF) { 374 AA = MFAM != nullptr 375 ? &MFAM->getResult<FunctionAnalysisManagerMachineFunctionProxy>(MF) 376 .getManager() 377 .getResult<AAManager>(MF.getFunction()) 378 : &LegacyPass->getAnalysis<AAResultsWrapperPass>().getAAResults(); 379 MachineDomTreeUpdater DTU(GET_RESULT(MachineDominatorTree, getDomTree, ), 380 MachineDomTreeUpdater::UpdateStrategy::Lazy); 381 MDTU = &DTU; 382 MLI = GET_RESULT(MachineLoop, getLI, Info); 383 MBFI = DisableHoistingToHotterBlocks != UseBFI::None 384 ? GET_RESULT(MachineBlockFrequency, getMBFI, Info) 385 : nullptr; 386 387 Changed = FirstInLoop = false; 388 const TargetSubtargetInfo &ST = MF.getSubtarget(); 389 TII = ST.getInstrInfo(); 390 TLI = ST.getTargetLowering(); 391 TRI = ST.getRegisterInfo(); 392 MFI = &MF.getFrameInfo(); 393 MRI = &MF.getRegInfo(); 394 SchedModel.init(&ST); 395 396 HasProfileData = MF.getFunction().hasProfileData(); 397 398 if (PreRegAlloc) 399 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 400 else 401 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 402 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n"); 403 404 if (PreRegAlloc) { 405 // Estimate register pressure during pre-regalloc pass. 406 unsigned NumRPS = TRI->getNumRegPressureSets(); 407 RegPressure.resize(NumRPS); 408 std::fill(RegPressure.begin(), RegPressure.end(), 0); 409 RegLimit.resize(NumRPS); 410 for (unsigned i = 0, e = NumRPS; i != e; ++i) 411 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 412 } 413 414 if (HoistConstLoads) 415 InitializeLoadsHoistableLoops(); 416 417 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 418 while (!Worklist.empty()) { 419 MachineLoop *CurLoop = Worklist.pop_back_val(); 420 MachineBasicBlock *CurPreheader = nullptr; 421 422 if (!PreRegAlloc) 423 HoistRegionPostRA(CurLoop, CurPreheader); 424 else { 425 // CSEMap is initialized for loop header when the first instruction is 426 // being hoisted. 427 MachineDomTreeNode *N = MDTU->getDomTree().getNode(CurLoop->getHeader()); 428 FirstInLoop = true; 429 HoistOutOfLoop(N, CurLoop, CurPreheader); 430 CSEMap.clear(); 431 } 432 } 433 releaseMemory(); 434 return Changed; 435 } 436 437 /// Return true if instruction stores to the specified frame. 438 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 439 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return 440 // true since they have no memory operands. 441 if (!MI->mayStore()) 442 return false; 443 // If we lost memory operands, conservatively assume that the instruction 444 // writes to all slots. 445 if (MI->memoperands_empty()) 446 return true; 447 for (const MachineMemOperand *MemOp : MI->memoperands()) { 448 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 449 continue; 450 if (const FixedStackPseudoSourceValue *Value = 451 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 452 if (Value->getFrameIndex() == FI) 453 return true; 454 } 455 } 456 return false; 457 } 458 459 static void applyBitsNotInRegMaskToRegUnitsMask(const TargetRegisterInfo &TRI, 460 BitVector &RUs, 461 const uint32_t *Mask) { 462 // FIXME: This intentionally works in reverse due to some issues with the 463 // Register Units infrastructure. 464 // 465 // This is used to apply callee-saved-register masks to the clobbered regunits 466 // mask. 467 // 468 // The right way to approach this is to start with a BitVector full of ones, 469 // then reset all the bits of the regunits of each register that is set in the 470 // mask (registers preserved), then OR the resulting bits with the Clobbers 471 // mask. This correctly prioritizes the saved registers, so if a RU is shared 472 // between a register that is preserved, and one that is NOT preserved, that 473 // RU will not be set in the output vector (the clobbers). 474 // 475 // What we have to do for now is the opposite: we have to assume that the 476 // regunits of all registers that are NOT preserved are clobbered, even if 477 // those regunits are preserved by another register. So if a RU is shared 478 // like described previously, that RU will be set. 479 // 480 // This is to work around an issue which appears in AArch64, but isn't 481 // exclusive to that target: AArch64's Qn registers (128 bits) have Dn 482 // register (lower 64 bits). A few Dn registers are preserved by some calling 483 // conventions, but Qn and Dn share exactly the same reg units. 484 // 485 // If we do this the right way, Qn will be marked as NOT clobbered even though 486 // its upper 64 bits are NOT preserved. The conservative approach handles this 487 // correctly at the cost of some missed optimizations on other targets. 488 // 489 // This is caused by how RegUnits are handled within TableGen. Ideally, Qn 490 // should have an extra RegUnit to model the "unknown" bits not covered by the 491 // subregs. 492 BitVector RUsFromRegsNotInMask(TRI.getNumRegUnits()); 493 const unsigned NumRegs = TRI.getNumRegs(); 494 const unsigned MaskWords = (NumRegs + 31) / 32; 495 for (unsigned K = 0; K < MaskWords; ++K) { 496 const uint32_t Word = Mask[K]; 497 for (unsigned Bit = 0; Bit < 32; ++Bit) { 498 const unsigned PhysReg = (K * 32) + Bit; 499 if (PhysReg == NumRegs) 500 break; 501 502 if (PhysReg && !((Word >> Bit) & 1)) { 503 for (MCRegUnitIterator RUI(PhysReg, &TRI); RUI.isValid(); ++RUI) 504 RUsFromRegsNotInMask.set(*RUI); 505 } 506 } 507 } 508 509 RUs |= RUsFromRegsNotInMask; 510 } 511 512 /// Examine the instruction for potential LICM candidate. Also 513 /// gather register def and frame object update information. 514 void MachineLICMImpl::ProcessMI(MachineInstr *MI, BitVector &RUDefs, 515 BitVector &RUClobbers, 516 SmallDenseSet<int> &StoredFIs, 517 SmallVectorImpl<CandidateInfo> &Candidates, 518 MachineLoop *CurLoop) { 519 bool RuledOut = false; 520 bool HasNonInvariantUse = false; 521 unsigned Def = 0; 522 for (const MachineOperand &MO : MI->operands()) { 523 if (MO.isFI()) { 524 // Remember if the instruction stores to the frame index. 525 int FI = MO.getIndex(); 526 if (!StoredFIs.count(FI) && 527 MFI->isSpillSlotObjectIndex(FI) && 528 InstructionStoresToFI(MI, FI)) 529 StoredFIs.insert(FI); 530 HasNonInvariantUse = true; 531 continue; 532 } 533 534 // We can't hoist an instruction defining a physreg that is clobbered in 535 // the loop. 536 if (MO.isRegMask()) { 537 applyBitsNotInRegMaskToRegUnitsMask(*TRI, RUClobbers, MO.getRegMask()); 538 continue; 539 } 540 541 if (!MO.isReg()) 542 continue; 543 Register Reg = MO.getReg(); 544 if (!Reg) 545 continue; 546 assert(Reg.isPhysical() && "Not expecting virtual register!"); 547 548 if (!MO.isDef()) { 549 if (!HasNonInvariantUse) { 550 for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) { 551 // If it's using a non-loop-invariant register, then it's obviously 552 // not safe to hoist. 553 if (RUDefs.test(*RUI) || RUClobbers.test(*RUI)) { 554 HasNonInvariantUse = true; 555 break; 556 } 557 } 558 } 559 continue; 560 } 561 562 if (MO.isImplicit()) { 563 for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) 564 RUClobbers.set(*RUI); 565 if (!MO.isDead()) 566 // Non-dead implicit def? This cannot be hoisted. 567 RuledOut = true; 568 // No need to check if a dead implicit def is also defined by 569 // another instruction. 570 continue; 571 } 572 573 // FIXME: For now, avoid instructions with multiple defs, unless 574 // it's a dead implicit def. 575 if (Def) 576 RuledOut = true; 577 else 578 Def = Reg; 579 580 // If we have already seen another instruction that defines the same 581 // register, then this is not safe. Two defs is indicated by setting a 582 // PhysRegClobbers bit. 583 for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) { 584 if (RUDefs.test(*RUI)) { 585 RUClobbers.set(*RUI); 586 RuledOut = true; 587 } else if (RUClobbers.test(*RUI)) { 588 // MI defined register is seen defined by another instruction in 589 // the loop, it cannot be a LICM candidate. 590 RuledOut = true; 591 } 592 593 RUDefs.set(*RUI); 594 } 595 } 596 597 // Only consider reloads for now and remats which do not have register 598 // operands. FIXME: Consider unfold load folding instructions. 599 if (Def && !RuledOut) { 600 int FI = std::numeric_limits<int>::min(); 601 if ((!HasNonInvariantUse && IsLICMCandidate(*MI, CurLoop)) || 602 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 603 Candidates.push_back(CandidateInfo(MI, Def, FI)); 604 } 605 } 606 607 /// Walk the specified region of the CFG and hoist loop invariants out to the 608 /// preheader. 609 void MachineLICMImpl::HoistRegionPostRA(MachineLoop *CurLoop, 610 MachineBasicBlock *CurPreheader) { 611 MachineBasicBlock *Preheader = getCurPreheader(CurLoop, CurPreheader); 612 if (!Preheader) 613 return; 614 615 unsigned NumRegUnits = TRI->getNumRegUnits(); 616 BitVector RUDefs(NumRegUnits); // RUs defined once in the loop. 617 BitVector RUClobbers(NumRegUnits); // RUs defined more than once. 618 619 SmallVector<CandidateInfo, 32> Candidates; 620 SmallDenseSet<int> StoredFIs; 621 622 // Walk the entire region, count number of defs for each register, and 623 // collect potential LICM candidates. 624 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 625 // If the header of the loop containing this basic block is a landing pad, 626 // then don't try to hoist instructions out of this loop. 627 const MachineLoop *ML = MLI->getLoopFor(BB); 628 if (ML && ML->getHeader()->isEHPad()) continue; 629 630 // Conservatively treat live-in's as an external def. 631 // FIXME: That means a reload that're reused in successor block(s) will not 632 // be LICM'ed. 633 for (const auto &LI : BB->liveins()) { 634 for (MCRegUnitIterator RUI(LI.PhysReg, TRI); RUI.isValid(); ++RUI) 635 RUDefs.set(*RUI); 636 } 637 638 // Funclet entry blocks will clobber all registers 639 if (const uint32_t *Mask = BB->getBeginClobberMask(TRI)) 640 applyBitsNotInRegMaskToRegUnitsMask(*TRI, RUClobbers, Mask); 641 642 SpeculationState = SpeculateUnknown; 643 for (MachineInstr &MI : *BB) 644 ProcessMI(&MI, RUDefs, RUClobbers, StoredFIs, Candidates, CurLoop); 645 } 646 647 // Gather the registers read / clobbered by the terminator. 648 BitVector TermRUs(NumRegUnits); 649 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 650 if (TI != Preheader->end()) { 651 for (const MachineOperand &MO : TI->operands()) { 652 if (!MO.isReg()) 653 continue; 654 Register Reg = MO.getReg(); 655 if (!Reg) 656 continue; 657 for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) 658 TermRUs.set(*RUI); 659 } 660 } 661 662 // Now evaluate whether the potential candidates qualify. 663 // 1. Check if the candidate defined register is defined by another 664 // instruction in the loop. 665 // 2. If the candidate is a load from stack slot (always true for now), 666 // check if the slot is stored anywhere in the loop. 667 // 3. Make sure candidate def should not clobber 668 // registers read by the terminator. Similarly its def should not be 669 // clobbered by the terminator. 670 for (CandidateInfo &Candidate : Candidates) { 671 if (Candidate.FI != std::numeric_limits<int>::min() && 672 StoredFIs.count(Candidate.FI)) 673 continue; 674 675 unsigned Def = Candidate.Def; 676 bool Safe = true; 677 for (MCRegUnitIterator RUI(Def, TRI); RUI.isValid(); ++RUI) { 678 if (RUClobbers.test(*RUI) || TermRUs.test(*RUI)) { 679 Safe = false; 680 break; 681 } 682 } 683 684 if (!Safe) 685 continue; 686 687 MachineInstr *MI = Candidate.MI; 688 for (const MachineOperand &MO : MI->all_uses()) { 689 if (!MO.getReg()) 690 continue; 691 for (MCRegUnitIterator RUI(MO.getReg(), TRI); RUI.isValid(); ++RUI) { 692 if (RUDefs.test(*RUI) || RUClobbers.test(*RUI)) { 693 // If it's using a non-loop-invariant register, then it's obviously 694 // not safe to hoist. 695 Safe = false; 696 break; 697 } 698 } 699 700 if (!Safe) 701 break; 702 } 703 704 if (Safe) 705 HoistPostRA(MI, Candidate.Def, CurLoop, CurPreheader); 706 } 707 } 708 709 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 710 /// sure it is not killed by any instructions in the loop. 711 void MachineLICMImpl::AddToLiveIns(MCRegister Reg, MachineLoop *CurLoop) { 712 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 713 if (!BB->isLiveIn(Reg)) 714 BB->addLiveIn(Reg); 715 for (MachineInstr &MI : *BB) { 716 for (MachineOperand &MO : MI.all_uses()) { 717 if (!MO.getReg()) 718 continue; 719 if (TRI->regsOverlap(Reg, MO.getReg())) 720 MO.setIsKill(false); 721 } 722 } 723 } 724 } 725 726 /// When an instruction is found to only use loop invariant operands that is 727 /// safe to hoist, this instruction is called to do the dirty work. 728 void MachineLICMImpl::HoistPostRA(MachineInstr *MI, unsigned Def, 729 MachineLoop *CurLoop, 730 MachineBasicBlock *CurPreheader) { 731 MachineBasicBlock *Preheader = getCurPreheader(CurLoop, CurPreheader); 732 733 // Now move the instructions to the predecessor, inserting it before any 734 // terminator instructions. 735 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) 736 << " from " << printMBBReference(*MI->getParent()) << ": " 737 << *MI); 738 739 // Splice the instruction to the preheader. 740 MachineBasicBlock *MBB = MI->getParent(); 741 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 742 743 // Since we are moving the instruction out of its basic block, we do not 744 // retain its debug location. Doing so would degrade the debugging 745 // experience and adversely affect the accuracy of profiling information. 746 assert(!MI->isDebugInstr() && "Should not hoist debug inst"); 747 MI->setDebugLoc(DebugLoc()); 748 749 // Add register to livein list to all the BBs in the current loop since a 750 // loop invariant must be kept live throughout the whole loop. This is 751 // important to ensure later passes do not scavenge the def register. 752 AddToLiveIns(Def, CurLoop); 753 754 ++NumPostRAHoisted; 755 Changed = true; 756 } 757 758 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 759 /// may not be safe to hoist. 760 bool MachineLICMImpl::IsGuaranteedToExecute(MachineBasicBlock *BB, 761 MachineLoop *CurLoop) { 762 if (SpeculationState != SpeculateUnknown) 763 return SpeculationState == SpeculateFalse; 764 765 if (BB != CurLoop->getHeader()) { 766 // Check loop exiting blocks. 767 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 768 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 769 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 770 if (!MDTU->getDomTree().dominates(BB, CurrentLoopExitingBlock)) { 771 SpeculationState = SpeculateTrue; 772 return false; 773 } 774 } 775 776 SpeculationState = SpeculateFalse; 777 return true; 778 } 779 780 /// Check if \p MI is trivially remateralizable and if it does not have any 781 /// virtual register uses. Even though rematerializable RA might not actually 782 /// rematerialize it in this scenario. In that case we do not want to hoist such 783 /// instruction out of the loop in a belief RA will sink it back if needed. 784 bool MachineLICMImpl::isTriviallyReMaterializable( 785 const MachineInstr &MI) const { 786 if (!TII->isTriviallyReMaterializable(MI)) 787 return false; 788 789 for (const MachineOperand &MO : MI.all_uses()) { 790 if (MO.getReg().isVirtual()) 791 return false; 792 } 793 794 return true; 795 } 796 797 void MachineLICMImpl::EnterScope(MachineBasicBlock *MBB) { 798 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); 799 800 // Remember livein register pressure. 801 BackTrace.push_back(RegPressure); 802 } 803 804 void MachineLICMImpl::ExitScope(MachineBasicBlock *MBB) { 805 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); 806 BackTrace.pop_back(); 807 } 808 809 /// Destroy scope for the MBB that corresponds to the given dominator tree node 810 /// if its a leaf or all of its children are done. Walk up the dominator tree to 811 /// destroy ancestors which are now done. 812 void MachineLICMImpl::ExitScopeIfDone( 813 MachineDomTreeNode *Node, 814 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 815 const DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap) { 816 if (OpenChildren[Node]) 817 return; 818 819 for(;;) { 820 ExitScope(Node->getBlock()); 821 // Now traverse upwards to pop ancestors whose offsprings are all done. 822 MachineDomTreeNode *Parent = ParentMap.lookup(Node); 823 if (!Parent || --OpenChildren[Parent] != 0) 824 break; 825 Node = Parent; 826 } 827 } 828 829 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 830 /// specified header block, and that are in the current loop) in depth first 831 /// order w.r.t the DominatorTree. This allows us to visit definitions before 832 /// uses, allowing us to hoist a loop body in one pass without iteration. 833 void MachineLICMImpl::HoistOutOfLoop(MachineDomTreeNode *HeaderN, 834 MachineLoop *CurLoop, 835 MachineBasicBlock *CurPreheader) { 836 MachineBasicBlock *Preheader = getCurPreheader(CurLoop, CurPreheader); 837 if (!Preheader) 838 return; 839 840 SmallVector<MachineDomTreeNode*, 32> Scopes; 841 SmallVector<MachineDomTreeNode*, 8> WorkList; 842 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 843 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 844 845 // Perform a DFS walk to determine the order of visit. 846 WorkList.push_back(HeaderN); 847 while (!WorkList.empty()) { 848 MachineDomTreeNode *Node = WorkList.pop_back_val(); 849 assert(Node && "Null dominator tree node?"); 850 MachineBasicBlock *BB = Node->getBlock(); 851 852 // If the header of the loop containing this basic block is a landing pad, 853 // then don't try to hoist instructions out of this loop. 854 const MachineLoop *ML = MLI->getLoopFor(BB); 855 if (ML && ML->getHeader()->isEHPad()) 856 continue; 857 858 // If this subregion is not in the top level loop at all, exit. 859 if (!CurLoop->contains(BB)) 860 continue; 861 862 Scopes.push_back(Node); 863 unsigned NumChildren = Node->getNumChildren(); 864 865 // Don't hoist things out of a large switch statement. This often causes 866 // code to be hoisted that wasn't going to be executed, and increases 867 // register pressure in a situation where it's likely to matter. 868 if (BB->succ_size() >= 25) 869 NumChildren = 0; 870 871 OpenChildren[Node] = NumChildren; 872 if (NumChildren) { 873 // Add children in reverse order as then the next popped worklist node is 874 // the first child of this node. This means we ultimately traverse the 875 // DOM tree in exactly the same order as if we'd recursed. 876 for (MachineDomTreeNode *Child : reverse(Node->children())) { 877 ParentMap[Child] = Node; 878 WorkList.push_back(Child); 879 } 880 } 881 } 882 883 if (Scopes.size() == 0) 884 return; 885 886 // Compute registers which are livein into the loop headers. 887 RegSeen.clear(); 888 BackTrace.clear(); 889 InitRegPressure(Preheader); 890 891 // Now perform LICM. 892 for (MachineDomTreeNode *Node : Scopes) { 893 MachineBasicBlock *MBB = Node->getBlock(); 894 895 EnterScope(MBB); 896 897 // Process the block 898 SpeculationState = SpeculateUnknown; 899 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { 900 unsigned HoistRes = HoistResult::NotHoisted; 901 HoistRes = Hoist(&MI, Preheader, CurLoop); 902 if (HoistRes & HoistResult::NotHoisted) { 903 // We have failed to hoist MI to outermost loop's preheader. If MI is in 904 // a subloop, try to hoist it to subloop's preheader. 905 SmallVector<MachineLoop *> InnerLoopWorkList; 906 for (MachineLoop *L = MLI->getLoopFor(MI.getParent()); L != CurLoop; 907 L = L->getParentLoop()) 908 InnerLoopWorkList.push_back(L); 909 910 while (!InnerLoopWorkList.empty()) { 911 MachineLoop *InnerLoop = InnerLoopWorkList.pop_back_val(); 912 MachineBasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 913 if (InnerLoopPreheader) { 914 HoistRes = Hoist(&MI, InnerLoopPreheader, InnerLoop); 915 if (HoistRes & HoistResult::Hoisted) 916 break; 917 } 918 } 919 } 920 921 if (HoistRes & HoistResult::ErasedMI) 922 continue; 923 924 UpdateRegPressure(&MI); 925 } 926 927 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 928 ExitScopeIfDone(Node, OpenChildren, ParentMap); 929 } 930 } 931 932 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 933 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 934 } 935 936 /// Find all virtual register references that are liveout of the preheader to 937 /// initialize the starting "register pressure". Note this does not count live 938 /// through (livein but not used) registers. 939 void MachineLICMImpl::InitRegPressure(MachineBasicBlock *BB) { 940 std::fill(RegPressure.begin(), RegPressure.end(), 0); 941 942 // If the preheader has only a single predecessor and it ends with a 943 // fallthrough or an unconditional branch, then scan its predecessor for live 944 // defs as well. This happens whenever the preheader is created by splitting 945 // the critical edge from the loop predecessor to the loop header. 946 if (BB->pred_size() == 1) { 947 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 948 SmallVector<MachineOperand, 4> Cond; 949 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 950 InitRegPressure(*BB->pred_begin()); 951 } 952 953 for (const MachineInstr &MI : *BB) 954 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 955 } 956 957 /// Update estimate of register pressure after the specified instruction. 958 void MachineLICMImpl::UpdateRegPressure(const MachineInstr *MI, 959 bool ConsiderUnseenAsDef) { 960 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 961 for (const auto &RPIdAndCost : Cost) { 962 unsigned Class = RPIdAndCost.first; 963 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 964 RegPressure[Class] = 0; 965 else 966 RegPressure[Class] += RPIdAndCost.second; 967 } 968 } 969 970 /// Calculate the additional register pressure that the registers used in MI 971 /// cause. 972 /// 973 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 974 /// figure out which usages are live-ins. 975 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 976 SmallDenseMap<unsigned, int> 977 MachineLICMImpl::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 978 bool ConsiderUnseenAsDef) { 979 SmallDenseMap<unsigned, int> Cost; 980 if (MI->isImplicitDef()) 981 return Cost; 982 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 983 const MachineOperand &MO = MI->getOperand(i); 984 if (!MO.isReg() || MO.isImplicit()) 985 continue; 986 Register Reg = MO.getReg(); 987 if (!Reg.isVirtual()) 988 continue; 989 990 // FIXME: It seems bad to use RegSeen only for some of these calculations. 991 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 992 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 993 994 RegClassWeight W = TRI->getRegClassWeight(RC); 995 int RCCost = 0; 996 if (MO.isDef()) 997 RCCost = W.RegWeight; 998 else { 999 bool isKill = isOperandKill(MO, MRI); 1000 if (isNew && !isKill && ConsiderUnseenAsDef) 1001 // Haven't seen this, it must be a livein. 1002 RCCost = W.RegWeight; 1003 else if (!isNew && isKill) 1004 RCCost = -W.RegWeight; 1005 } 1006 if (RCCost == 0) 1007 continue; 1008 const int *PS = TRI->getRegClassPressureSets(RC); 1009 for (; *PS != -1; ++PS) 1010 Cost[*PS] += RCCost; 1011 } 1012 return Cost; 1013 } 1014 1015 /// Return true if this machine instruction loads from global offset table or 1016 /// constant pool. 1017 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 1018 assert(MI.mayLoad() && "Expected MI that loads!"); 1019 1020 // If we lost memory operands, conservatively assume that the instruction 1021 // reads from everything.. 1022 if (MI.memoperands_empty()) 1023 return true; 1024 1025 for (MachineMemOperand *MemOp : MI.memoperands()) 1026 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 1027 if (PSV->isGOT() || PSV->isConstantPool()) 1028 return true; 1029 1030 return false; 1031 } 1032 1033 // This function iterates through all the operands of the input store MI and 1034 // checks that each register operand statisfies isCallerPreservedPhysReg. 1035 // This means, the value being stored and the address where it is being stored 1036 // is constant throughout the body of the function (not including prologue and 1037 // epilogue). When called with an MI that isn't a store, it returns false. 1038 // A future improvement can be to check if the store registers are constant 1039 // throughout the loop rather than throughout the funtion. 1040 static bool isInvariantStore(const MachineInstr &MI, 1041 const TargetRegisterInfo *TRI, 1042 const MachineRegisterInfo *MRI) { 1043 1044 bool FoundCallerPresReg = false; 1045 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() || 1046 (MI.getNumOperands() == 0)) 1047 return false; 1048 1049 // Check that all register operands are caller-preserved physical registers. 1050 for (const MachineOperand &MO : MI.operands()) { 1051 if (MO.isReg()) { 1052 Register Reg = MO.getReg(); 1053 // If operand is a virtual register, check if it comes from a copy of a 1054 // physical register. 1055 if (Reg.isVirtual()) 1056 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI); 1057 if (Reg.isVirtual()) 1058 return false; 1059 if (!TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *MI.getMF())) 1060 return false; 1061 else 1062 FoundCallerPresReg = true; 1063 } else if (!MO.isImm()) { 1064 return false; 1065 } 1066 } 1067 return FoundCallerPresReg; 1068 } 1069 1070 // Return true if the input MI is a copy instruction that feeds an invariant 1071 // store instruction. This means that the src of the copy has to satisfy 1072 // isCallerPreservedPhysReg and atleast one of it's users should satisfy 1073 // isInvariantStore. 1074 static bool isCopyFeedingInvariantStore(const MachineInstr &MI, 1075 const MachineRegisterInfo *MRI, 1076 const TargetRegisterInfo *TRI) { 1077 1078 // FIXME: If targets would like to look through instructions that aren't 1079 // pure copies, this can be updated to a query. 1080 if (!MI.isCopy()) 1081 return false; 1082 1083 const MachineFunction *MF = MI.getMF(); 1084 // Check that we are copying a constant physical register. 1085 Register CopySrcReg = MI.getOperand(1).getReg(); 1086 if (CopySrcReg.isVirtual()) 1087 return false; 1088 1089 if (!TRI->isCallerPreservedPhysReg(CopySrcReg.asMCReg(), *MF)) 1090 return false; 1091 1092 Register CopyDstReg = MI.getOperand(0).getReg(); 1093 // Check if any of the uses of the copy are invariant stores. 1094 assert(CopyDstReg.isVirtual() && "copy dst is not a virtual reg"); 1095 1096 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) { 1097 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI)) 1098 return true; 1099 } 1100 return false; 1101 } 1102 1103 /// Returns true if the instruction may be a suitable candidate for LICM. 1104 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 1105 bool MachineLICMImpl::IsLICMCandidate(MachineInstr &I, MachineLoop *CurLoop) { 1106 // Check if it's safe to move the instruction. 1107 bool DontMoveAcrossStore = !HoistConstLoads || !AllowedToHoistLoads[CurLoop]; 1108 if ((!I.isSafeToMove(DontMoveAcrossStore)) && 1109 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) { 1110 LLVM_DEBUG(dbgs() << "LICM: Instruction not safe to move.\n"); 1111 return false; 1112 } 1113 1114 // If it is a load then check if it is guaranteed to execute by making sure 1115 // that it dominates all exiting blocks. If it doesn't, then there is a path 1116 // out of the loop which does not execute this load, so we can't hoist it. 1117 // Loads from constant memory are safe to speculate, for example indexed load 1118 // from a jump table. 1119 // Stores and side effects are already checked by isSafeToMove. 1120 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 1121 !IsGuaranteedToExecute(I.getParent(), CurLoop)) { 1122 LLVM_DEBUG(dbgs() << "LICM: Load not guaranteed to execute.\n"); 1123 return false; 1124 } 1125 1126 // Convergent attribute has been used on operations that involve inter-thread 1127 // communication which results are implicitly affected by the enclosing 1128 // control flows. It is not safe to hoist or sink such operations across 1129 // control flow. 1130 if (I.isConvergent()) 1131 return false; 1132 1133 if (!TII->shouldHoist(I, CurLoop)) 1134 return false; 1135 1136 return true; 1137 } 1138 1139 /// Returns true if the instruction is loop invariant. 1140 bool MachineLICMImpl::IsLoopInvariantInst(MachineInstr &I, 1141 MachineLoop *CurLoop) { 1142 if (!IsLICMCandidate(I, CurLoop)) { 1143 LLVM_DEBUG(dbgs() << "LICM: Instruction not a LICM candidate\n"); 1144 return false; 1145 } 1146 return CurLoop->isLoopInvariant(I); 1147 } 1148 1149 /// Return true if the specified instruction is used by a phi node and hoisting 1150 /// it could cause a copy to be inserted. 1151 bool MachineLICMImpl::HasLoopPHIUse(const MachineInstr *MI, 1152 MachineLoop *CurLoop) { 1153 SmallVector<const MachineInstr *, 8> Work(1, MI); 1154 do { 1155 MI = Work.pop_back_val(); 1156 for (const MachineOperand &MO : MI->all_defs()) { 1157 Register Reg = MO.getReg(); 1158 if (!Reg.isVirtual()) 1159 continue; 1160 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 1161 // A PHI may cause a copy to be inserted. 1162 if (UseMI.isPHI()) { 1163 // A PHI inside the loop causes a copy because the live range of Reg is 1164 // extended across the PHI. 1165 if (CurLoop->contains(&UseMI)) 1166 return true; 1167 // A PHI in an exit block can cause a copy to be inserted if the PHI 1168 // has multiple predecessors in the loop with different values. 1169 // For now, approximate by rejecting all exit blocks. 1170 if (isExitBlock(CurLoop, UseMI.getParent())) 1171 return true; 1172 continue; 1173 } 1174 // Look past copies as well. 1175 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1176 Work.push_back(&UseMI); 1177 } 1178 } 1179 } while (!Work.empty()); 1180 return false; 1181 } 1182 1183 /// Compute operand latency between a def of 'Reg' and an use in the current 1184 /// loop, return true if the target considered it high. 1185 bool MachineLICMImpl::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 1186 Register Reg, 1187 MachineLoop *CurLoop) const { 1188 if (MRI->use_nodbg_empty(Reg)) 1189 return false; 1190 1191 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1192 if (UseMI.isCopyLike()) 1193 continue; 1194 if (!CurLoop->contains(UseMI.getParent())) 1195 continue; 1196 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1197 const MachineOperand &MO = UseMI.getOperand(i); 1198 if (!MO.isReg() || !MO.isUse()) 1199 continue; 1200 Register MOReg = MO.getReg(); 1201 if (MOReg != Reg) 1202 continue; 1203 1204 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) 1205 return true; 1206 } 1207 1208 // Only look at the first in loop use. 1209 break; 1210 } 1211 1212 return false; 1213 } 1214 1215 /// Return true if the instruction is marked "cheap" or the operand latency 1216 /// between its def and a use is one or less. 1217 bool MachineLICMImpl::IsCheapInstruction(MachineInstr &MI) const { 1218 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) 1219 return true; 1220 1221 bool isCheap = false; 1222 unsigned NumDefs = MI.getDesc().getNumDefs(); 1223 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1224 MachineOperand &DefMO = MI.getOperand(i); 1225 if (!DefMO.isReg() || !DefMO.isDef()) 1226 continue; 1227 --NumDefs; 1228 Register Reg = DefMO.getReg(); 1229 if (Reg.isPhysical()) 1230 continue; 1231 1232 if (!TII->hasLowDefLatency(SchedModel, MI, i)) 1233 return false; 1234 isCheap = true; 1235 } 1236 1237 return isCheap; 1238 } 1239 1240 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1241 /// given cost matrix can cause high register pressure. 1242 bool MachineLICMImpl::CanCauseHighRegPressure( 1243 const SmallDenseMap<unsigned, int> &Cost, bool CheapInstr) { 1244 for (const auto &RPIdAndCost : Cost) { 1245 if (RPIdAndCost.second <= 0) 1246 continue; 1247 1248 unsigned Class = RPIdAndCost.first; 1249 int Limit = RegLimit[Class]; 1250 1251 // Don't hoist cheap instructions if they would increase register pressure, 1252 // even if we're under the limit. 1253 if (CheapInstr && !HoistCheapInsts) 1254 return true; 1255 1256 for (const auto &RP : BackTrace) 1257 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1258 return true; 1259 } 1260 1261 return false; 1262 } 1263 1264 /// Traverse the back trace from header to the current block and update their 1265 /// register pressures to reflect the effect of hoisting MI from the current 1266 /// block to the preheader. 1267 void MachineLICMImpl::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1268 // First compute the 'cost' of the instruction, i.e. its contribution 1269 // to register pressure. 1270 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1271 /*ConsiderUnseenAsDef=*/false); 1272 1273 // Update register pressure of blocks from loop header to current block. 1274 for (auto &RP : BackTrace) 1275 for (const auto &RPIdAndCost : Cost) 1276 RP[RPIdAndCost.first] += RPIdAndCost.second; 1277 } 1278 1279 /// Return true if it is potentially profitable to hoist the given loop 1280 /// invariant. 1281 bool MachineLICMImpl::IsProfitableToHoist(MachineInstr &MI, 1282 MachineLoop *CurLoop) { 1283 if (MI.isImplicitDef()) 1284 return true; 1285 1286 // Besides removing computation from the loop, hoisting an instruction has 1287 // these effects: 1288 // 1289 // - The value defined by the instruction becomes live across the entire 1290 // loop. This increases register pressure in the loop. 1291 // 1292 // - If the value is used by a PHI in the loop, a copy will be required for 1293 // lowering the PHI after extending the live range. 1294 // 1295 // - When hoisting the last use of a value in the loop, that value no longer 1296 // needs to be live in the loop. This lowers register pressure in the loop. 1297 1298 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI)) 1299 return true; 1300 1301 bool CheapInstr = IsCheapInstruction(MI); 1302 bool CreatesCopy = HasLoopPHIUse(&MI, CurLoop); 1303 1304 // Don't hoist a cheap instruction if it would create a copy in the loop. 1305 if (CheapInstr && CreatesCopy) { 1306 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1307 return false; 1308 } 1309 1310 // Rematerializable instructions should always be hoisted providing the 1311 // register allocator can just pull them down again when needed. 1312 if (isTriviallyReMaterializable(MI)) 1313 return true; 1314 1315 // FIXME: If there are long latency loop-invariant instructions inside the 1316 // loop at this point, why didn't the optimizer's LICM hoist them? 1317 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1318 const MachineOperand &MO = MI.getOperand(i); 1319 if (!MO.isReg() || MO.isImplicit()) 1320 continue; 1321 Register Reg = MO.getReg(); 1322 if (!Reg.isVirtual()) 1323 continue; 1324 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg, CurLoop)) { 1325 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI); 1326 ++NumHighLatency; 1327 return true; 1328 } 1329 } 1330 1331 // Estimate register pressure to determine whether to LICM the instruction. 1332 // In low register pressure situation, we can be more aggressive about 1333 // hoisting. Also, favors hoisting long latency instructions even in 1334 // moderately high pressure situation. 1335 // Cheap instructions will only be hoisted if they don't increase register 1336 // pressure at all. 1337 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1338 /*ConsiderUnseenAsDef=*/false); 1339 1340 // Visit BBs from header to current BB, if hoisting this doesn't cause 1341 // high register pressure, then it's safe to proceed. 1342 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1343 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1344 ++NumLowRP; 1345 return true; 1346 } 1347 1348 // Don't risk increasing register pressure if it would create copies. 1349 if (CreatesCopy) { 1350 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1351 return false; 1352 } 1353 1354 // Do not "speculate" in high register pressure situation. If an 1355 // instruction is not guaranteed to be executed in the loop, it's best to be 1356 // conservative. 1357 if (AvoidSpeculation && 1358 (!IsGuaranteedToExecute(MI.getParent(), CurLoop) && !MayCSE(&MI))) { 1359 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI); 1360 return false; 1361 } 1362 1363 // If we have a COPY with other uses in the loop, hoist to allow the users to 1364 // also be hoisted. 1365 // TODO: Handle all isCopyLike? 1366 if (MI.isCopy() || MI.isRegSequence()) { 1367 Register DefReg = MI.getOperand(0).getReg(); 1368 if (DefReg.isVirtual() && 1369 all_of(MI.uses(), 1370 [this](const MachineOperand &UseOp) { 1371 return !UseOp.isReg() || UseOp.getReg().isVirtual() || 1372 MRI->isConstantPhysReg(UseOp.getReg()); 1373 }) && 1374 IsLoopInvariantInst(MI, CurLoop) && 1375 any_of(MRI->use_nodbg_instructions(DefReg), 1376 [&CurLoop, this, DefReg, 1377 Cost = std::move(Cost)](MachineInstr &UseMI) { 1378 if (!CurLoop->contains(&UseMI)) 1379 return false; 1380 1381 // COPY is a cheap instruction, but if moving it won't cause 1382 // high RP we're fine to hoist it even if the user can't be 1383 // hoisted later Otherwise we want to check the user if it's 1384 // hoistable 1385 if (CanCauseHighRegPressure(Cost, false) && 1386 !CurLoop->isLoopInvariant(UseMI, DefReg)) 1387 return false; 1388 1389 return true; 1390 })) 1391 return true; 1392 } 1393 1394 // High register pressure situation, only hoist if the instruction is going 1395 // to be remat'ed. 1396 if (!isTriviallyReMaterializable(MI) && 1397 !MI.isDereferenceableInvariantLoad()) { 1398 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1399 return false; 1400 } 1401 1402 return true; 1403 } 1404 1405 /// Unfold a load from the given machineinstr if the load itself could be 1406 /// hoisted. Return the unfolded and hoistable load, or null if the load 1407 /// couldn't be unfolded or if it wouldn't be hoistable. 1408 MachineInstr *MachineLICMImpl::ExtractHoistableLoad(MachineInstr *MI, 1409 MachineLoop *CurLoop) { 1410 // Don't unfold simple loads. 1411 if (MI->canFoldAsLoad()) 1412 return nullptr; 1413 1414 // If not, we may be able to unfold a load and hoist that. 1415 // First test whether the instruction is loading from an amenable 1416 // memory location. 1417 if (!MI->isDereferenceableInvariantLoad()) 1418 return nullptr; 1419 1420 // Next determine the register class for a temporary register. 1421 unsigned LoadRegIndex; 1422 unsigned NewOpc = 1423 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1424 /*UnfoldLoad=*/true, 1425 /*UnfoldStore=*/false, 1426 &LoadRegIndex); 1427 if (NewOpc == 0) return nullptr; 1428 const MCInstrDesc &MID = TII->get(NewOpc); 1429 MachineFunction &MF = *MI->getMF(); 1430 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1431 // Ok, we're unfolding. Create a temporary register and do the unfold. 1432 Register Reg = MRI->createVirtualRegister(RC); 1433 1434 SmallVector<MachineInstr *, 2> NewMIs; 1435 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, 1436 /*UnfoldLoad=*/true, 1437 /*UnfoldStore=*/false, NewMIs); 1438 (void)Success; 1439 assert(Success && 1440 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1441 "succeeded!"); 1442 assert(NewMIs.size() == 2 && 1443 "Unfolded a load into multiple instructions!"); 1444 MachineBasicBlock *MBB = MI->getParent(); 1445 MachineBasicBlock::iterator Pos = MI; 1446 MBB->insert(Pos, NewMIs[0]); 1447 MBB->insert(Pos, NewMIs[1]); 1448 // If unfolding produced a load that wasn't loop-invariant or profitable to 1449 // hoist, discard the new instructions and bail. 1450 if (!IsLoopInvariantInst(*NewMIs[0], CurLoop) || 1451 !IsProfitableToHoist(*NewMIs[0], CurLoop)) { 1452 NewMIs[0]->eraseFromParent(); 1453 NewMIs[1]->eraseFromParent(); 1454 return nullptr; 1455 } 1456 1457 // Update register pressure for the unfolded instruction. 1458 UpdateRegPressure(NewMIs[1]); 1459 1460 // Otherwise we successfully unfolded a load that we can hoist. 1461 1462 // Update the call info. 1463 if (MI->shouldUpdateAdditionalCallInfo()) 1464 MF.eraseAdditionalCallInfo(MI); 1465 1466 MI->eraseFromParent(); 1467 return NewMIs[0]; 1468 } 1469 1470 /// Initialize the CSE map with instructions that are in the current loop 1471 /// preheader that may become duplicates of instructions that are hoisted 1472 /// out of the loop. 1473 void MachineLICMImpl::InitCSEMap(MachineBasicBlock *BB) { 1474 for (MachineInstr &MI : *BB) 1475 CSEMap[BB][MI.getOpcode()].push_back(&MI); 1476 } 1477 1478 /// Initialize AllowedToHoistLoads with information about whether invariant 1479 /// loads can be moved outside a given loop 1480 void MachineLICMImpl::InitializeLoadsHoistableLoops() { 1481 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 1482 SmallVector<MachineLoop *, 8> LoopsInPreOrder; 1483 1484 // Mark all loops as hoistable initially and prepare a list of loops in 1485 // pre-order DFS. 1486 while (!Worklist.empty()) { 1487 auto *L = Worklist.pop_back_val(); 1488 AllowedToHoistLoads[L] = true; 1489 LoopsInPreOrder.push_back(L); 1490 Worklist.insert(Worklist.end(), L->getSubLoops().begin(), 1491 L->getSubLoops().end()); 1492 } 1493 1494 // Going from the innermost to outermost loops, check if a loop has 1495 // instructions preventing invariant load hoisting. If such instruction is 1496 // found, mark this loop and its parent as non-hoistable and continue 1497 // investigating the next loop. 1498 // Visiting in a reversed pre-ordered DFS manner 1499 // allows us to not process all the instructions of the outer loop if the 1500 // inner loop is proved to be non-load-hoistable. 1501 for (auto *Loop : reverse(LoopsInPreOrder)) { 1502 for (auto *MBB : Loop->blocks()) { 1503 // If this loop has already been marked as non-hoistable, skip it. 1504 if (!AllowedToHoistLoads[Loop]) 1505 continue; 1506 for (auto &MI : *MBB) { 1507 if (!MI.isLoadFoldBarrier() && !MI.mayStore() && !MI.isCall() && 1508 !(MI.mayLoad() && MI.hasOrderedMemoryRef())) 1509 continue; 1510 for (MachineLoop *L = Loop; L != nullptr; L = L->getParentLoop()) 1511 AllowedToHoistLoads[L] = false; 1512 break; 1513 } 1514 } 1515 } 1516 } 1517 1518 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1519 /// Return this instruction if it's found. 1520 MachineInstr * 1521 MachineLICMImpl::LookForDuplicate(const MachineInstr *MI, 1522 std::vector<MachineInstr *> &PrevMIs) { 1523 for (MachineInstr *PrevMI : PrevMIs) 1524 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) 1525 return PrevMI; 1526 1527 return nullptr; 1528 } 1529 1530 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1531 /// computes the same value. If it's found, do a RAU on with the definition of 1532 /// the existing instruction rather than hoisting the instruction to the 1533 /// preheader. 1534 bool MachineLICMImpl::EliminateCSE( 1535 MachineInstr *MI, 1536 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI) { 1537 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1538 // the undef property onto uses. 1539 if (MI->isImplicitDef()) 1540 return false; 1541 1542 // Do not CSE normal loads because between them could be store instructions 1543 // that change the loaded value 1544 if (MI->mayLoad() && !MI->isDereferenceableInvariantLoad()) 1545 return false; 1546 1547 if (MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1548 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1549 1550 // Replace virtual registers defined by MI by their counterparts defined 1551 // by Dup. 1552 SmallVector<unsigned, 2> Defs; 1553 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1554 const MachineOperand &MO = MI->getOperand(i); 1555 1556 // Physical registers may not differ here. 1557 assert((!MO.isReg() || MO.getReg() == 0 || !MO.getReg().isPhysical() || 1558 MO.getReg() == Dup->getOperand(i).getReg()) && 1559 "Instructions with different phys regs are not identical!"); 1560 1561 if (MO.isReg() && MO.isDef() && !MO.getReg().isPhysical()) 1562 Defs.push_back(i); 1563 } 1564 1565 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1566 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1567 unsigned Idx = Defs[i]; 1568 Register Reg = MI->getOperand(Idx).getReg(); 1569 Register DupReg = Dup->getOperand(Idx).getReg(); 1570 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1571 1572 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1573 // Restore old RCs if more than one defs. 1574 for (unsigned j = 0; j != i; ++j) 1575 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1576 return false; 1577 } 1578 } 1579 1580 for (unsigned Idx : Defs) { 1581 Register Reg = MI->getOperand(Idx).getReg(); 1582 Register DupReg = Dup->getOperand(Idx).getReg(); 1583 MRI->replaceRegWith(Reg, DupReg); 1584 MRI->clearKillFlags(DupReg); 1585 // Clear Dup dead flag if any, we reuse it for Reg. 1586 if (!MRI->use_nodbg_empty(DupReg)) 1587 Dup->getOperand(Idx).setIsDead(false); 1588 } 1589 1590 MI->eraseFromParent(); 1591 ++NumCSEed; 1592 return true; 1593 } 1594 return false; 1595 } 1596 1597 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1598 /// the loop. 1599 bool MachineLICMImpl::MayCSE(MachineInstr *MI) { 1600 if (MI->mayLoad() && !MI->isDereferenceableInvariantLoad()) 1601 return false; 1602 1603 unsigned Opcode = MI->getOpcode(); 1604 for (auto &Map : CSEMap) { 1605 // Check this CSEMap's preheader dominates MI's basic block. 1606 if (MDTU->getDomTree().dominates(Map.first, MI->getParent())) { 1607 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI = 1608 Map.second.find(Opcode); 1609 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1610 // the undef property onto uses. 1611 if (CI == Map.second.end() || MI->isImplicitDef()) 1612 continue; 1613 if (LookForDuplicate(MI, CI->second) != nullptr) 1614 return true; 1615 } 1616 } 1617 1618 return false; 1619 } 1620 1621 /// When an instruction is found to use only loop invariant operands 1622 /// that are safe to hoist, this instruction is called to do the dirty work. 1623 /// It returns true if the instruction is hoisted. 1624 unsigned MachineLICMImpl::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader, 1625 MachineLoop *CurLoop) { 1626 MachineBasicBlock *SrcBlock = MI->getParent(); 1627 1628 // Disable the instruction hoisting due to block hotness 1629 if ((DisableHoistingToHotterBlocks == UseBFI::All || 1630 (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) && 1631 isTgtHotterThanSrc(SrcBlock, Preheader)) { 1632 ++NumNotHoistedDueToHotness; 1633 return HoistResult::NotHoisted; 1634 } 1635 // First check whether we should hoist this instruction. 1636 bool HasExtractHoistableLoad = false; 1637 if (!IsLoopInvariantInst(*MI, CurLoop) || 1638 !IsProfitableToHoist(*MI, CurLoop)) { 1639 // If not, try unfolding a hoistable load. 1640 MI = ExtractHoistableLoad(MI, CurLoop); 1641 if (!MI) 1642 return HoistResult::NotHoisted; 1643 HasExtractHoistableLoad = true; 1644 } 1645 1646 // If we have hoisted an instruction that may store, it can only be a constant 1647 // store. 1648 if (MI->mayStore()) 1649 NumStoreConst++; 1650 1651 // Now move the instructions to the predecessor, inserting it before any 1652 // terminator instructions. 1653 LLVM_DEBUG({ 1654 dbgs() << "Hoisting " << *MI; 1655 if (MI->getParent()->getBasicBlock()) 1656 dbgs() << " from " << printMBBReference(*MI->getParent()); 1657 if (Preheader->getBasicBlock()) 1658 dbgs() << " to " << printMBBReference(*Preheader); 1659 dbgs() << "\n"; 1660 }); 1661 1662 // If this is the first instruction being hoisted to the preheader, 1663 // initialize the CSE map with potential common expressions. 1664 if (FirstInLoop) { 1665 InitCSEMap(Preheader); 1666 FirstInLoop = false; 1667 } 1668 1669 // Look for opportunity to CSE the hoisted instruction. 1670 unsigned Opcode = MI->getOpcode(); 1671 bool HasCSEDone = false; 1672 for (auto &Map : CSEMap) { 1673 // Check this CSEMap's preheader dominates MI's basic block. 1674 if (MDTU->getDomTree().dominates(Map.first, MI->getParent())) { 1675 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI = 1676 Map.second.find(Opcode); 1677 if (CI != Map.second.end()) { 1678 if (EliminateCSE(MI, CI)) { 1679 HasCSEDone = true; 1680 break; 1681 } 1682 } 1683 } 1684 } 1685 1686 if (!HasCSEDone) { 1687 // Otherwise, splice the instruction to the preheader. 1688 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1689 1690 // Since we are moving the instruction out of its basic block, we do not 1691 // retain its debug location. Doing so would degrade the debugging 1692 // experience and adversely affect the accuracy of profiling information. 1693 assert(!MI->isDebugInstr() && "Should not hoist debug inst"); 1694 MI->setDebugLoc(DebugLoc()); 1695 1696 // Update register pressure for BBs from header to this block. 1697 UpdateBackTraceRegPressure(MI); 1698 1699 // Clear the kill flags of any register this instruction defines, 1700 // since they may need to be live throughout the entire loop 1701 // rather than just live for part of it. 1702 for (MachineOperand &MO : MI->all_defs()) 1703 if (!MO.isDead()) 1704 MRI->clearKillFlags(MO.getReg()); 1705 1706 CSEMap[Preheader][Opcode].push_back(MI); 1707 } 1708 1709 ++NumHoisted; 1710 Changed = true; 1711 1712 if (HasCSEDone || HasExtractHoistableLoad) 1713 return HoistResult::Hoisted | HoistResult::ErasedMI; 1714 return HoistResult::Hoisted; 1715 } 1716 1717 /// Get the preheader for the current loop, splitting a critical edge if needed. 1718 MachineBasicBlock * 1719 MachineLICMImpl::getCurPreheader(MachineLoop *CurLoop, 1720 MachineBasicBlock *CurPreheader) { 1721 // Determine the block to which to hoist instructions. If we can't find a 1722 // suitable loop predecessor, we can't do any hoisting. 1723 1724 // If we've tried to get a preheader and failed, don't try again. 1725 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1726 return nullptr; 1727 1728 if (!CurPreheader) { 1729 CurPreheader = CurLoop->getLoopPreheader(); 1730 if (!CurPreheader) { 1731 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1732 if (!Pred) { 1733 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1734 return nullptr; 1735 } 1736 1737 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), LegacyPass, 1738 MFAM, nullptr, MDTU); 1739 if (!CurPreheader) { 1740 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1741 return nullptr; 1742 } 1743 } 1744 } 1745 return CurPreheader; 1746 } 1747 1748 /// Is the target basic block at least "BlockFrequencyRatioThreshold" 1749 /// times hotter than the source basic block. 1750 bool MachineLICMImpl::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, 1751 MachineBasicBlock *TgtBlock) { 1752 // Parse source and target basic block frequency from MBFI 1753 uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency(); 1754 uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency(); 1755 1756 // Disable the hoisting if source block frequency is zero 1757 if (!SrcBF) 1758 return true; 1759 1760 double Ratio = (double)DstBF / SrcBF; 1761 1762 // Compare the block frequency ratio with the threshold 1763 return Ratio > BlockFrequencyRatioThreshold; 1764 } 1765 1766 template <typename DerivedT, bool PreRegAlloc> 1767 PreservedAnalyses MachineLICMBasePass<DerivedT, PreRegAlloc>::run( 1768 MachineFunction &MF, MachineFunctionAnalysisManager &MFAM) { 1769 bool Changed = MachineLICMImpl(PreRegAlloc, nullptr, &MFAM).run(MF); 1770 if (!Changed) 1771 return PreservedAnalyses::all(); 1772 auto PA = getMachineFunctionPassPreservedAnalyses(); 1773 PA.preserve<MachineLoopAnalysis>(); 1774 return PA; 1775 } 1776 1777 template class llvm::MachineLICMBasePass<EarlyMachineLICMPass, true>; 1778 template class llvm::MachineLICMBasePass<MachineLICMPass, false>; 1779