xref: /llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 6c11b7e689c89ff46e4472810dd555434eab1010)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallBitVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/MemoryLocation.h"
21 #include "llvm/CodeGen/LiveRegUnits.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/Register.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/CodeGenTypes/LowLevelType.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/ModuleSlotTracker.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/MC/MCInstrDesc.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/FormattedStream.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <cstring>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
67   if (const MachineBasicBlock *MBB = MI.getParent())
68     if (const MachineFunction *MF = MBB->getParent())
69       return MF;
70   return nullptr;
71 }
72 
73 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
74 // it.
75 static void tryToGetTargetInfo(const MachineInstr &MI,
76                                const TargetRegisterInfo *&TRI,
77                                const MachineRegisterInfo *&MRI,
78                                const TargetIntrinsicInfo *&IntrinsicInfo,
79                                const TargetInstrInfo *&TII) {
80 
81   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
82     TRI = MF->getSubtarget().getRegisterInfo();
83     MRI = &MF->getRegInfo();
84     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
85     TII = MF->getSubtarget().getInstrInfo();
86   }
87 }
88 
89 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
90   for (MCPhysReg ImpDef : MCID->implicit_defs())
91     addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true));
92   for (MCPhysReg ImpUse : MCID->implicit_uses())
93     addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true));
94 }
95 
96 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
97 /// implicit operands. It reserves space for the number of operands specified by
98 /// the MCInstrDesc.
99 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
100                            DebugLoc DL, bool NoImp)
101     : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0),
102       DbgLoc(std::move(DL)), DebugInstrNum(0), Opcode(TID.Opcode) {
103   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
104 
105   // Reserve space for the expected number of operands.
106   if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() +
107                         MCID->implicit_uses().size()) {
108     CapOperands = OperandCapacity::get(NumOps);
109     Operands = MF.allocateOperandArray(CapOperands);
110   }
111 
112   if (!NoImp)
113     addImplicitDefUseOperands(MF);
114 }
115 
116 /// MachineInstr ctor - Copies MachineInstr arg exactly.
117 /// Does not copy the number from debug instruction numbering, to preserve
118 /// uniqueness.
119 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
120     : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0),
121       Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0),
122       Opcode(MI.getOpcode()) {
123   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
124 
125   CapOperands = OperandCapacity::get(MI.getNumOperands());
126   Operands = MF.allocateOperandArray(CapOperands);
127 
128   // Copy operands.
129   for (const MachineOperand &MO : MI.operands())
130     addOperand(MF, MO);
131 
132   // Replicate ties between the operands, which addOperand was not
133   // able to do reliably.
134   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
135     MachineOperand &NewMO = getOperand(i);
136     const MachineOperand &OrigMO = MI.getOperand(i);
137     NewMO.TiedTo = OrigMO.TiedTo;
138   }
139 
140   // Copy all the sensible flags.
141   setFlags(MI.Flags);
142 }
143 
144 void MachineInstr::setDesc(const MCInstrDesc &TID) {
145   if (getParent())
146     getMF()->handleChangeDesc(*this, TID);
147   MCID = &TID;
148   Opcode = TID.Opcode;
149 }
150 
151 void MachineInstr::moveBefore(MachineInstr *MovePos) {
152   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
153 }
154 
155 /// getRegInfo - If this instruction is embedded into a MachineFunction,
156 /// return the MachineRegisterInfo object for the current function, otherwise
157 /// return null.
158 MachineRegisterInfo *MachineInstr::getRegInfo() {
159   if (MachineBasicBlock *MBB = getParent())
160     return &MBB->getParent()->getRegInfo();
161   return nullptr;
162 }
163 
164 const MachineRegisterInfo *MachineInstr::getRegInfo() const {
165   if (const MachineBasicBlock *MBB = getParent())
166     return &MBB->getParent()->getRegInfo();
167   return nullptr;
168 }
169 
170 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
171   for (MachineOperand &MO : operands())
172     if (MO.isReg())
173       MRI.removeRegOperandFromUseList(&MO);
174 }
175 
176 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
177   for (MachineOperand &MO : operands())
178     if (MO.isReg())
179       MRI.addRegOperandToUseList(&MO);
180 }
181 
182 void MachineInstr::addOperand(const MachineOperand &Op) {
183   MachineBasicBlock *MBB = getParent();
184   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
185   MachineFunction *MF = MBB->getParent();
186   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
187   addOperand(*MF, Op);
188 }
189 
190 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
191 /// ranges. If MRI is non-null also update use-def chains.
192 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
193                          unsigned NumOps, MachineRegisterInfo *MRI) {
194   if (MRI)
195     return MRI->moveOperands(Dst, Src, NumOps);
196   // MachineOperand is a trivially copyable type so we can just use memmove.
197   assert(Dst && Src && "Unknown operands");
198   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
199 }
200 
201 /// addOperand - Add the specified operand to the instruction.  If it is an
202 /// implicit operand, it is added to the end of the operand list.  If it is
203 /// an explicit operand it is added at the end of the explicit operand list
204 /// (before the first implicit operand).
205 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
206   assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) &&
207          "Cannot add more operands.");
208   assert(MCID && "Cannot add operands before providing an instr descriptor");
209 
210   // Check if we're adding one of our existing operands.
211   if (&Op >= Operands && &Op < Operands + NumOperands) {
212     // This is unusual: MI->addOperand(MI->getOperand(i)).
213     // If adding Op requires reallocating or moving existing operands around,
214     // the Op reference could go stale. Support it by copying Op.
215     MachineOperand CopyOp(Op);
216     return addOperand(MF, CopyOp);
217   }
218 
219   // Find the insert location for the new operand.  Implicit registers go at
220   // the end, everything else goes before the implicit regs.
221   //
222   // FIXME: Allow mixed explicit and implicit operands on inline asm.
223   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
224   // implicit-defs, but they must not be moved around.  See the FIXME in
225   // InstrEmitter.cpp.
226   unsigned OpNo = getNumOperands();
227   bool isImpReg = Op.isReg() && Op.isImplicit();
228   if (!isImpReg && !isInlineAsm()) {
229     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
230       --OpNo;
231       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
232     }
233   }
234 
235   // OpNo now points as the desired insertion point.  Unless this is a variadic
236   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
237   // RegMask operands go between the explicit and implicit operands.
238   MachineRegisterInfo *MRI = getRegInfo();
239 
240   // Determine if the Operands array needs to be reallocated.
241   // Save the old capacity and operand array.
242   OperandCapacity OldCap = CapOperands;
243   MachineOperand *OldOperands = Operands;
244   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
245     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
246     Operands = MF.allocateOperandArray(CapOperands);
247     // Move the operands before the insertion point.
248     if (OpNo)
249       moveOperands(Operands, OldOperands, OpNo, MRI);
250   }
251 
252   // Move the operands following the insertion point.
253   if (OpNo != NumOperands)
254     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
255                  MRI);
256   ++NumOperands;
257 
258   // Deallocate the old operand array.
259   if (OldOperands != Operands && OldOperands)
260     MF.deallocateOperandArray(OldCap, OldOperands);
261 
262   // Copy Op into place. It still needs to be inserted into the MRI use lists.
263   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
264   NewMO->ParentMI = this;
265 
266   // When adding a register operand, tell MRI about it.
267   if (NewMO->isReg()) {
268     // Ensure isOnRegUseList() returns false, regardless of Op's status.
269     NewMO->Contents.Reg.Prev = nullptr;
270     // Ignore existing ties. This is not a property that can be copied.
271     NewMO->TiedTo = 0;
272     // Add the new operand to MRI, but only for instructions in an MBB.
273     if (MRI)
274       MRI->addRegOperandToUseList(NewMO);
275     // The MCID operand information isn't accurate until we start adding
276     // explicit operands. The implicit operands are added first, then the
277     // explicits are inserted before them.
278     if (!isImpReg) {
279       // Tie uses to defs as indicated in MCInstrDesc.
280       if (NewMO->isUse()) {
281         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
282         if (DefIdx != -1)
283           tieOperands(DefIdx, OpNo);
284       }
285       // If the register operand is flagged as early, mark the operand as such.
286       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
287         NewMO->setIsEarlyClobber(true);
288     }
289     // Ensure debug instructions set debug flag on register uses.
290     if (NewMO->isUse() && isDebugInstr())
291       NewMO->setIsDebug();
292   }
293 }
294 
295 void MachineInstr::removeOperand(unsigned OpNo) {
296   assert(OpNo < getNumOperands() && "Invalid operand number");
297   untieRegOperand(OpNo);
298 
299 #ifndef NDEBUG
300   // Moving tied operands would break the ties.
301   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
302     if (Operands[i].isReg())
303       assert(!Operands[i].isTied() && "Cannot move tied operands");
304 #endif
305 
306   MachineRegisterInfo *MRI = getRegInfo();
307   if (MRI && Operands[OpNo].isReg())
308     MRI->removeRegOperandFromUseList(Operands + OpNo);
309 
310   // Don't call the MachineOperand destructor. A lot of this code depends on
311   // MachineOperand having a trivial destructor anyway, and adding a call here
312   // wouldn't make it 'destructor-correct'.
313 
314   if (unsigned N = NumOperands - 1 - OpNo)
315     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
316   --NumOperands;
317 }
318 
319 void MachineInstr::setExtraInfo(MachineFunction &MF,
320                                 ArrayRef<MachineMemOperand *> MMOs,
321                                 MCSymbol *PreInstrSymbol,
322                                 MCSymbol *PostInstrSymbol,
323                                 MDNode *HeapAllocMarker, MDNode *PCSections,
324                                 uint32_t CFIType, MDNode *MMRAs) {
325   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
326   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
327   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
328   bool HasPCSections = PCSections != nullptr;
329   bool HasCFIType = CFIType != 0;
330   bool HasMMRAs = MMRAs != nullptr;
331   int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol +
332                     HasHeapAllocMarker + HasPCSections + HasCFIType + HasMMRAs;
333 
334   // Drop all extra info if there is none.
335   if (NumPointers <= 0) {
336     Info.clear();
337     return;
338   }
339 
340   // If more than one pointer, then store out of line. Store heap alloc markers
341   // out of line because PointerSumType cannot hold more than 4 tag types with
342   // 32-bit pointers.
343   // FIXME: Maybe we should make the symbols in the extra info mutable?
344   else if (NumPointers > 1 || HasMMRAs || HasHeapAllocMarker || HasPCSections ||
345            HasCFIType) {
346     Info.set<EIIK_OutOfLine>(
347         MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol,
348                              HeapAllocMarker, PCSections, CFIType, MMRAs));
349     return;
350   }
351 
352   // Otherwise store the single pointer inline.
353   if (HasPreInstrSymbol)
354     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
355   else if (HasPostInstrSymbol)
356     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
357   else
358     Info.set<EIIK_MMO>(MMOs[0]);
359 }
360 
361 void MachineInstr::dropMemRefs(MachineFunction &MF) {
362   if (memoperands_empty())
363     return;
364 
365   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
366                getHeapAllocMarker(), getPCSections(), getCFIType(),
367                getMMRAMetadata());
368 }
369 
370 void MachineInstr::setMemRefs(MachineFunction &MF,
371                               ArrayRef<MachineMemOperand *> MMOs) {
372   if (MMOs.empty()) {
373     dropMemRefs(MF);
374     return;
375   }
376 
377   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
378                getHeapAllocMarker(), getPCSections(), getCFIType(),
379                getMMRAMetadata());
380 }
381 
382 void MachineInstr::addMemOperand(MachineFunction &MF,
383                                  MachineMemOperand *MO) {
384   SmallVector<MachineMemOperand *, 2> MMOs;
385   MMOs.append(memoperands_begin(), memoperands_end());
386   MMOs.push_back(MO);
387   setMemRefs(MF, MMOs);
388 }
389 
390 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
391   if (this == &MI)
392     // Nothing to do for a self-clone!
393     return;
394 
395   assert(&MF == MI.getMF() &&
396          "Invalid machine functions when cloning memory refrences!");
397   // See if we can just steal the extra info already allocated for the
398   // instruction. We can do this whenever the pre- and post-instruction symbols
399   // are the same (including null).
400   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
401       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
402       getHeapAllocMarker() == MI.getHeapAllocMarker() &&
403       getPCSections() == MI.getPCSections() && getMMRAMetadata() &&
404       MI.getMMRAMetadata()) {
405     Info = MI.Info;
406     return;
407   }
408 
409   // Otherwise, fall back on a copy-based clone.
410   setMemRefs(MF, MI.memoperands());
411 }
412 
413 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
414 /// identical.
415 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
416                              ArrayRef<MachineMemOperand *> RHS) {
417   if (LHS.size() != RHS.size())
418     return false;
419 
420   auto LHSPointees = make_pointee_range(LHS);
421   auto RHSPointees = make_pointee_range(RHS);
422   return std::equal(LHSPointees.begin(), LHSPointees.end(),
423                     RHSPointees.begin());
424 }
425 
426 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
427                                       ArrayRef<const MachineInstr *> MIs) {
428   // Try handling easy numbers of MIs with simpler mechanisms.
429   if (MIs.empty()) {
430     dropMemRefs(MF);
431     return;
432   }
433   if (MIs.size() == 1) {
434     cloneMemRefs(MF, *MIs[0]);
435     return;
436   }
437   // Because an empty memoperands list provides *no* information and must be
438   // handled conservatively (assuming the instruction can do anything), the only
439   // way to merge with it is to drop all other memoperands.
440   if (MIs[0]->memoperands_empty()) {
441     dropMemRefs(MF);
442     return;
443   }
444 
445   // Handle the general case.
446   SmallVector<MachineMemOperand *, 2> MergedMMOs;
447   // Start with the first instruction.
448   assert(&MF == MIs[0]->getMF() &&
449          "Invalid machine functions when cloning memory references!");
450   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
451   // Now walk all the other instructions and accumulate any different MMOs.
452   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
453     assert(&MF == MI.getMF() &&
454            "Invalid machine functions when cloning memory references!");
455 
456     // Skip MIs with identical operands to the first. This is a somewhat
457     // arbitrary hack but will catch common cases without being quadratic.
458     // TODO: We could fully implement merge semantics here if needed.
459     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
460       continue;
461 
462     // Because an empty memoperands list provides *no* information and must be
463     // handled conservatively (assuming the instruction can do anything), the
464     // only way to merge with it is to drop all other memoperands.
465     if (MI.memoperands_empty()) {
466       dropMemRefs(MF);
467       return;
468     }
469 
470     // Otherwise accumulate these into our temporary buffer of the merged state.
471     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
472   }
473 
474   setMemRefs(MF, MergedMMOs);
475 }
476 
477 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
478   // Do nothing if old and new symbols are the same.
479   if (Symbol == getPreInstrSymbol())
480     return;
481 
482   // If there was only one symbol and we're removing it, just clear info.
483   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
484     Info.clear();
485     return;
486   }
487 
488   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
489                getHeapAllocMarker(), getPCSections(), getCFIType(),
490                getMMRAMetadata());
491 }
492 
493 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
494   // Do nothing if old and new symbols are the same.
495   if (Symbol == getPostInstrSymbol())
496     return;
497 
498   // If there was only one symbol and we're removing it, just clear info.
499   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
500     Info.clear();
501     return;
502   }
503 
504   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
505                getHeapAllocMarker(), getPCSections(), getCFIType(),
506                getMMRAMetadata());
507 }
508 
509 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
510   // Do nothing if old and new symbols are the same.
511   if (Marker == getHeapAllocMarker())
512     return;
513 
514   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
515                Marker, getPCSections(), getCFIType(), getMMRAMetadata());
516 }
517 
518 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) {
519   // Do nothing if old and new symbols are the same.
520   if (PCSections == getPCSections())
521     return;
522 
523   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
524                getHeapAllocMarker(), PCSections, getCFIType(),
525                getMMRAMetadata());
526 }
527 
528 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) {
529   // Do nothing if old and new types are the same.
530   if (Type == getCFIType())
531     return;
532 
533   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
534                getHeapAllocMarker(), getPCSections(), Type, getMMRAMetadata());
535 }
536 
537 void MachineInstr::setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs) {
538   // Do nothing if old and new symbols are the same.
539   if (MMRAs == getMMRAMetadata())
540     return;
541 
542   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
543                getHeapAllocMarker(), getPCSections(), getCFIType(), MMRAs);
544 }
545 
546 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
547                                      const MachineInstr &MI) {
548   if (this == &MI)
549     // Nothing to do for a self-clone!
550     return;
551 
552   assert(&MF == MI.getMF() &&
553          "Invalid machine functions when cloning instruction symbols!");
554 
555   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
556   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
557   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
558   setPCSections(MF, MI.getPCSections());
559   setMMRAMetadata(MF, MI.getMMRAMetadata());
560 }
561 
562 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
563   // For now, the just return the union of the flags. If the flags get more
564   // complicated over time, we might need more logic here.
565   return getFlags() | Other.getFlags();
566 }
567 
568 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
569   uint32_t MIFlags = 0;
570   // Copy the wrapping flags.
571   if (const OverflowingBinaryOperator *OB =
572           dyn_cast<OverflowingBinaryOperator>(&I)) {
573     if (OB->hasNoSignedWrap())
574       MIFlags |= MachineInstr::MIFlag::NoSWrap;
575     if (OB->hasNoUnsignedWrap())
576       MIFlags |= MachineInstr::MIFlag::NoUWrap;
577   } else if (const TruncInst *TI = dyn_cast<TruncInst>(&I)) {
578     if (TI->hasNoSignedWrap())
579       MIFlags |= MachineInstr::MIFlag::NoSWrap;
580     if (TI->hasNoUnsignedWrap())
581       MIFlags |= MachineInstr::MIFlag::NoUWrap;
582   } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
583     if (GEP->hasNoUnsignedSignedWrap())
584       MIFlags |= MachineInstr::MIFlag::NoUSWrap;
585     if (GEP->hasNoUnsignedWrap())
586       MIFlags |= MachineInstr::MIFlag::NoUWrap;
587   }
588 
589   // Copy the nonneg flag.
590   if (const PossiblyNonNegInst *PNI = dyn_cast<PossiblyNonNegInst>(&I)) {
591     if (PNI->hasNonNeg())
592       MIFlags |= MachineInstr::MIFlag::NonNeg;
593     // Copy the disjoint flag.
594   } else if (const PossiblyDisjointInst *PD =
595                  dyn_cast<PossiblyDisjointInst>(&I)) {
596     if (PD->isDisjoint())
597       MIFlags |= MachineInstr::MIFlag::Disjoint;
598   }
599 
600   // Copy the samesign flag.
601   if (const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I))
602     if (ICmp->hasSameSign())
603       MIFlags |= MachineInstr::MIFlag::SameSign;
604 
605   // Copy the exact flag.
606   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
607     if (PE->isExact())
608       MIFlags |= MachineInstr::MIFlag::IsExact;
609 
610   // Copy the fast-math flags.
611   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
612     const FastMathFlags Flags = FP->getFastMathFlags();
613     if (Flags.noNaNs())
614       MIFlags |= MachineInstr::MIFlag::FmNoNans;
615     if (Flags.noInfs())
616       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
617     if (Flags.noSignedZeros())
618       MIFlags |= MachineInstr::MIFlag::FmNsz;
619     if (Flags.allowReciprocal())
620       MIFlags |= MachineInstr::MIFlag::FmArcp;
621     if (Flags.allowContract())
622       MIFlags |= MachineInstr::MIFlag::FmContract;
623     if (Flags.approxFunc())
624       MIFlags |= MachineInstr::MIFlag::FmAfn;
625     if (Flags.allowReassoc())
626       MIFlags |= MachineInstr::MIFlag::FmReassoc;
627   }
628 
629   if (I.getMetadata(LLVMContext::MD_unpredictable))
630     MIFlags |= MachineInstr::MIFlag::Unpredictable;
631 
632   return MIFlags;
633 }
634 
635 void MachineInstr::copyIRFlags(const Instruction &I) {
636   Flags = copyFlagsFromInstruction(I);
637 }
638 
639 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
640   assert(!isBundledWithPred() && "Must be called on bundle header");
641   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
642     if (MII->getDesc().getFlags() & Mask) {
643       if (Type == AnyInBundle)
644         return true;
645     } else {
646       if (Type == AllInBundle && !MII->isBundle())
647         return false;
648     }
649     // This was the last instruction in the bundle.
650     if (!MII->isBundledWithSucc())
651       return Type == AllInBundle;
652   }
653 }
654 
655 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
656                                  MICheckType Check) const {
657   // If opcodes or number of operands are not the same then the two
658   // instructions are obviously not identical.
659   if (Other.getOpcode() != getOpcode() ||
660       Other.getNumOperands() != getNumOperands())
661     return false;
662 
663   if (isBundle()) {
664     // We have passed the test above that both instructions have the same
665     // opcode, so we know that both instructions are bundles here. Let's compare
666     // MIs inside the bundle.
667     assert(Other.isBundle() && "Expected that both instructions are bundles.");
668     MachineBasicBlock::const_instr_iterator I1 = getIterator();
669     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
670     // Loop until we analysed the last intruction inside at least one of the
671     // bundles.
672     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
673       ++I1;
674       ++I2;
675       if (!I1->isIdenticalTo(*I2, Check))
676         return false;
677     }
678     // If we've reached the end of just one of the two bundles, but not both,
679     // the instructions are not identical.
680     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
681       return false;
682   }
683 
684   // Check operands to make sure they match.
685   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
686     const MachineOperand &MO = getOperand(i);
687     const MachineOperand &OMO = Other.getOperand(i);
688     if (!MO.isReg()) {
689       if (!MO.isIdenticalTo(OMO))
690         return false;
691       continue;
692     }
693 
694     // Clients may or may not want to ignore defs when testing for equality.
695     // For example, machine CSE pass only cares about finding common
696     // subexpressions, so it's safe to ignore virtual register defs.
697     if (MO.isDef()) {
698       if (Check == IgnoreDefs)
699         continue;
700       else if (Check == IgnoreVRegDefs) {
701         if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual())
702           if (!MO.isIdenticalTo(OMO))
703             return false;
704       } else {
705         if (!MO.isIdenticalTo(OMO))
706           return false;
707         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
708           return false;
709       }
710     } else {
711       if (!MO.isIdenticalTo(OMO))
712         return false;
713       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
714         return false;
715     }
716   }
717   // If DebugLoc does not match then two debug instructions are not identical.
718   if (isDebugInstr())
719     if (getDebugLoc() && Other.getDebugLoc() &&
720         getDebugLoc() != Other.getDebugLoc())
721       return false;
722   // If pre- or post-instruction symbols do not match then the two instructions
723   // are not identical.
724   if (getPreInstrSymbol() != Other.getPreInstrSymbol() ||
725       getPostInstrSymbol() != Other.getPostInstrSymbol())
726     return false;
727   // Call instructions with different CFI types are not identical.
728   if (isCall() && getCFIType() != Other.getCFIType())
729     return false;
730 
731   return true;
732 }
733 
734 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const {
735   if (!isDebugValueLike() || !Other.isDebugValueLike())
736     return false;
737   if (getDebugLoc() != Other.getDebugLoc())
738     return false;
739   if (getDebugVariable() != Other.getDebugVariable())
740     return false;
741   if (getNumDebugOperands() != Other.getNumDebugOperands())
742     return false;
743   for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx)
744     if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx)))
745       return false;
746   if (!DIExpression::isEqualExpression(
747           getDebugExpression(), isIndirectDebugValue(),
748           Other.getDebugExpression(), Other.isIndirectDebugValue()))
749     return false;
750   return true;
751 }
752 
753 const MachineFunction *MachineInstr::getMF() const {
754   return getParent()->getParent();
755 }
756 
757 MachineInstr *MachineInstr::removeFromParent() {
758   assert(getParent() && "Not embedded in a basic block!");
759   return getParent()->remove(this);
760 }
761 
762 MachineInstr *MachineInstr::removeFromBundle() {
763   assert(getParent() && "Not embedded in a basic block!");
764   return getParent()->remove_instr(this);
765 }
766 
767 void MachineInstr::eraseFromParent() {
768   assert(getParent() && "Not embedded in a basic block!");
769   getParent()->erase(this);
770 }
771 
772 void MachineInstr::eraseFromBundle() {
773   assert(getParent() && "Not embedded in a basic block!");
774   getParent()->erase_instr(this);
775 }
776 
777 bool MachineInstr::isCandidateForAdditionalCallInfo(QueryType Type) const {
778   if (!isCall(Type))
779     return false;
780   switch (getOpcode()) {
781   case TargetOpcode::PATCHPOINT:
782   case TargetOpcode::STACKMAP:
783   case TargetOpcode::STATEPOINT:
784   case TargetOpcode::FENTRY_CALL:
785     return false;
786   }
787   return true;
788 }
789 
790 bool MachineInstr::shouldUpdateAdditionalCallInfo() const {
791   if (isBundle())
792     return isCandidateForAdditionalCallInfo(MachineInstr::AnyInBundle);
793   return isCandidateForAdditionalCallInfo();
794 }
795 
796 unsigned MachineInstr::getNumExplicitOperands() const {
797   unsigned NumOperands = MCID->getNumOperands();
798   if (!MCID->isVariadic())
799     return NumOperands;
800 
801   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
802     const MachineOperand &MO = getOperand(I);
803     // The operands must always be in the following order:
804     // - explicit reg defs,
805     // - other explicit operands (reg uses, immediates, etc.),
806     // - implicit reg defs
807     // - implicit reg uses
808     if (MO.isReg() && MO.isImplicit())
809       break;
810     ++NumOperands;
811   }
812   return NumOperands;
813 }
814 
815 unsigned MachineInstr::getNumExplicitDefs() const {
816   unsigned NumDefs = MCID->getNumDefs();
817   if (!MCID->isVariadic())
818     return NumDefs;
819 
820   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
821     const MachineOperand &MO = getOperand(I);
822     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
823       break;
824     ++NumDefs;
825   }
826   return NumDefs;
827 }
828 
829 void MachineInstr::bundleWithPred() {
830   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
831   setFlag(BundledPred);
832   MachineBasicBlock::instr_iterator Pred = getIterator();
833   --Pred;
834   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
835   Pred->setFlag(BundledSucc);
836 }
837 
838 void MachineInstr::bundleWithSucc() {
839   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
840   setFlag(BundledSucc);
841   MachineBasicBlock::instr_iterator Succ = getIterator();
842   ++Succ;
843   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
844   Succ->setFlag(BundledPred);
845 }
846 
847 void MachineInstr::unbundleFromPred() {
848   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
849   clearFlag(BundledPred);
850   MachineBasicBlock::instr_iterator Pred = getIterator();
851   --Pred;
852   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
853   Pred->clearFlag(BundledSucc);
854 }
855 
856 void MachineInstr::unbundleFromSucc() {
857   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
858   clearFlag(BundledSucc);
859   MachineBasicBlock::instr_iterator Succ = getIterator();
860   ++Succ;
861   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
862   Succ->clearFlag(BundledPred);
863 }
864 
865 bool MachineInstr::isStackAligningInlineAsm() const {
866   if (isInlineAsm()) {
867     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
868     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
869       return true;
870   }
871   return false;
872 }
873 
874 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
875   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
876   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
877   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
878 }
879 
880 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
881                                        unsigned *GroupNo) const {
882   assert(isInlineAsm() && "Expected an inline asm instruction");
883   assert(OpIdx < getNumOperands() && "OpIdx out of range");
884 
885   // Ignore queries about the initial operands.
886   if (OpIdx < InlineAsm::MIOp_FirstOperand)
887     return -1;
888 
889   unsigned Group = 0;
890   unsigned NumOps;
891   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
892        i += NumOps) {
893     const MachineOperand &FlagMO = getOperand(i);
894     // If we reach the implicit register operands, stop looking.
895     if (!FlagMO.isImm())
896       return -1;
897     const InlineAsm::Flag F(FlagMO.getImm());
898     NumOps = 1 + F.getNumOperandRegisters();
899     if (i + NumOps > OpIdx) {
900       if (GroupNo)
901         *GroupNo = Group;
902       return i;
903     }
904     ++Group;
905   }
906   return -1;
907 }
908 
909 const DILabel *MachineInstr::getDebugLabel() const {
910   assert(isDebugLabel() && "not a DBG_LABEL");
911   return cast<DILabel>(getOperand(0).getMetadata());
912 }
913 
914 const MachineOperand &MachineInstr::getDebugVariableOp() const {
915   assert((isDebugValueLike()) && "not a DBG_VALUE*");
916   unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
917   return getOperand(VariableOp);
918 }
919 
920 MachineOperand &MachineInstr::getDebugVariableOp() {
921   assert((isDebugValueLike()) && "not a DBG_VALUE*");
922   unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
923   return getOperand(VariableOp);
924 }
925 
926 const DILocalVariable *MachineInstr::getDebugVariable() const {
927   return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
928 }
929 
930 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
931   assert((isDebugValueLike()) && "not a DBG_VALUE*");
932   unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
933   return getOperand(ExpressionOp);
934 }
935 
936 MachineOperand &MachineInstr::getDebugExpressionOp() {
937   assert((isDebugValueLike()) && "not a DBG_VALUE*");
938   unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
939   return getOperand(ExpressionOp);
940 }
941 
942 const DIExpression *MachineInstr::getDebugExpression() const {
943   return cast<DIExpression>(getDebugExpressionOp().getMetadata());
944 }
945 
946 bool MachineInstr::isDebugEntryValue() const {
947   return isDebugValue() && getDebugExpression()->isEntryValue();
948 }
949 
950 const TargetRegisterClass*
951 MachineInstr::getRegClassConstraint(unsigned OpIdx,
952                                     const TargetInstrInfo *TII,
953                                     const TargetRegisterInfo *TRI) const {
954   assert(getParent() && "Can't have an MBB reference here!");
955   assert(getMF() && "Can't have an MF reference here!");
956   const MachineFunction &MF = *getMF();
957 
958   // Most opcodes have fixed constraints in their MCInstrDesc.
959   if (!isInlineAsm())
960     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
961 
962   if (!getOperand(OpIdx).isReg())
963     return nullptr;
964 
965   // For tied uses on inline asm, get the constraint from the def.
966   unsigned DefIdx;
967   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
968     OpIdx = DefIdx;
969 
970   // Inline asm stores register class constraints in the flag word.
971   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
972   if (FlagIdx < 0)
973     return nullptr;
974 
975   const InlineAsm::Flag F(getOperand(FlagIdx).getImm());
976   unsigned RCID;
977   if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) &&
978       F.hasRegClassConstraint(RCID))
979     return TRI->getRegClass(RCID);
980 
981   // Assume that all registers in a memory operand are pointers.
982   if (F.isMemKind())
983     return TRI->getPointerRegClass(MF);
984 
985   return nullptr;
986 }
987 
988 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
989     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
990     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
991   // Check every operands inside the bundle if we have
992   // been asked to.
993   if (ExploreBundle)
994     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
995          ++OpndIt)
996       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
997           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
998   else
999     // Otherwise, just check the current operands.
1000     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1001       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1002   return CurRC;
1003 }
1004 
1005 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1006     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
1007     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1008   assert(CurRC && "Invalid initial register class");
1009   // Check if Reg is constrained by some of its use/def from MI.
1010   const MachineOperand &MO = getOperand(OpIdx);
1011   if (!MO.isReg() || MO.getReg() != Reg)
1012     return CurRC;
1013   // If yes, accumulate the constraints through the operand.
1014   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1015 }
1016 
1017 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1018     unsigned OpIdx, const TargetRegisterClass *CurRC,
1019     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1020   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1021   const MachineOperand &MO = getOperand(OpIdx);
1022   assert(MO.isReg() &&
1023          "Cannot get register constraints for non-register operand");
1024   assert(CurRC && "Invalid initial register class");
1025   if (unsigned SubIdx = MO.getSubReg()) {
1026     if (OpRC)
1027       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1028     else
1029       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1030   } else if (OpRC)
1031     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1032   return CurRC;
1033 }
1034 
1035 /// Return the number of instructions inside the MI bundle, not counting the
1036 /// header instruction.
1037 unsigned MachineInstr::getBundleSize() const {
1038   MachineBasicBlock::const_instr_iterator I = getIterator();
1039   unsigned Size = 0;
1040   while (I->isBundledWithSucc()) {
1041     ++Size;
1042     ++I;
1043   }
1044   return Size;
1045 }
1046 
1047 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1048 /// the given register (not considering sub/super-registers).
1049 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
1050   for (const MachineOperand &MO : implicit_operands()) {
1051     if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
1052       return true;
1053   }
1054   return false;
1055 }
1056 
1057 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1058 /// the specific register or -1 if it is not found. It further tightens
1059 /// the search criteria to a use that kills the register if isKill is true.
1060 int MachineInstr::findRegisterUseOperandIdx(Register Reg,
1061                                             const TargetRegisterInfo *TRI,
1062                                             bool isKill) const {
1063   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1064     const MachineOperand &MO = getOperand(i);
1065     if (!MO.isReg() || !MO.isUse())
1066       continue;
1067     Register MOReg = MO.getReg();
1068     if (!MOReg)
1069       continue;
1070     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
1071       if (!isKill || MO.isKill())
1072         return i;
1073   }
1074   return -1;
1075 }
1076 
1077 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1078 /// indicating if this instruction reads or writes Reg. This also considers
1079 /// partial defines.
1080 std::pair<bool,bool>
1081 MachineInstr::readsWritesVirtualRegister(Register Reg,
1082                                          SmallVectorImpl<unsigned> *Ops) const {
1083   bool PartDef = false; // Partial redefine.
1084   bool FullDef = false; // Full define.
1085   bool Use = false;
1086 
1087   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1088     const MachineOperand &MO = getOperand(i);
1089     if (!MO.isReg() || MO.getReg() != Reg)
1090       continue;
1091     if (Ops)
1092       Ops->push_back(i);
1093     if (MO.isUse())
1094       Use |= !MO.isUndef();
1095     else if (MO.getSubReg() && !MO.isUndef())
1096       // A partial def undef doesn't count as reading the register.
1097       PartDef = true;
1098     else
1099       FullDef = true;
1100   }
1101   // A partial redefine uses Reg unless there is also a full define.
1102   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1103 }
1104 
1105 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1106 /// the specified register or -1 if it is not found. If isDead is true, defs
1107 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1108 /// also checks if there is a def of a super-register.
1109 int MachineInstr::findRegisterDefOperandIdx(Register Reg,
1110                                             const TargetRegisterInfo *TRI,
1111                                             bool isDead, bool Overlap) const {
1112   bool isPhys = Reg.isPhysical();
1113   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1114     const MachineOperand &MO = getOperand(i);
1115     // Accept regmask operands when Overlap is set.
1116     // Ignore them when looking for a specific def operand (Overlap == false).
1117     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1118       return i;
1119     if (!MO.isReg() || !MO.isDef())
1120       continue;
1121     Register MOReg = MO.getReg();
1122     bool Found = (MOReg == Reg);
1123     if (!Found && TRI && isPhys && MOReg.isPhysical()) {
1124       if (Overlap)
1125         Found = TRI->regsOverlap(MOReg, Reg);
1126       else
1127         Found = TRI->isSubRegister(MOReg, Reg);
1128     }
1129     if (Found && (!isDead || MO.isDead()))
1130       return i;
1131   }
1132   return -1;
1133 }
1134 
1135 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1136 /// operand list that is used to represent the predicate. It returns -1 if
1137 /// none is found.
1138 int MachineInstr::findFirstPredOperandIdx() const {
1139   // Don't call MCID.findFirstPredOperandIdx() because this variant
1140   // is sometimes called on an instruction that's not yet complete, and
1141   // so the number of operands is less than the MCID indicates. In
1142   // particular, the PTX target does this.
1143   const MCInstrDesc &MCID = getDesc();
1144   if (MCID.isPredicable()) {
1145     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1146       if (MCID.operands()[i].isPredicate())
1147         return i;
1148   }
1149 
1150   return -1;
1151 }
1152 
1153 // MachineOperand::TiedTo is 4 bits wide.
1154 const unsigned TiedMax = 15;
1155 
1156 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1157 ///
1158 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1159 /// field. TiedTo can have these values:
1160 ///
1161 /// 0:              Operand is not tied to anything.
1162 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1163 /// TiedMax:        Tied to an operand >= TiedMax-1.
1164 ///
1165 /// The tied def must be one of the first TiedMax operands on a normal
1166 /// instruction. INLINEASM instructions allow more tied defs.
1167 ///
1168 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1169   MachineOperand &DefMO = getOperand(DefIdx);
1170   MachineOperand &UseMO = getOperand(UseIdx);
1171   assert(DefMO.isDef() && "DefIdx must be a def operand");
1172   assert(UseMO.isUse() && "UseIdx must be a use operand");
1173   assert(!DefMO.isTied() && "Def is already tied to another use");
1174   assert(!UseMO.isTied() && "Use is already tied to another def");
1175 
1176   if (DefIdx < TiedMax)
1177     UseMO.TiedTo = DefIdx + 1;
1178   else {
1179     // Inline asm can use the group descriptors to find tied operands,
1180     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1181     // but on normal instruction, the tied def must be within the first TiedMax
1182     // operands.
1183     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1184            "DefIdx out of range");
1185     UseMO.TiedTo = TiedMax;
1186   }
1187 
1188   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1189   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1190 }
1191 
1192 /// Given the index of a tied register operand, find the operand it is tied to.
1193 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1194 /// which must exist.
1195 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1196   const MachineOperand &MO = getOperand(OpIdx);
1197   assert(MO.isTied() && "Operand isn't tied");
1198 
1199   // Normally TiedTo is in range.
1200   if (MO.TiedTo < TiedMax)
1201     return MO.TiedTo - 1;
1202 
1203   // Uses on normal instructions can be out of range.
1204   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1205     // Normal tied defs must be in the 0..TiedMax-1 range.
1206     if (MO.isUse())
1207       return TiedMax - 1;
1208     // MO is a def. Search for the tied use.
1209     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1210       const MachineOperand &UseMO = getOperand(i);
1211       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1212         return i;
1213     }
1214     llvm_unreachable("Can't find tied use");
1215   }
1216 
1217   if (getOpcode() == TargetOpcode::STATEPOINT) {
1218     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1219     // on registers.
1220     StatepointOpers SO(this);
1221     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1222     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1223     unsigned NumDefs = getNumDefs();
1224     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1225       while (!getOperand(CurUseIdx).isReg())
1226         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1227       if (OpIdx == CurDefIdx)
1228         return CurUseIdx;
1229       if (OpIdx == CurUseIdx)
1230         return CurDefIdx;
1231       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1232     }
1233     llvm_unreachable("Can't find tied use");
1234   }
1235 
1236   // Now deal with inline asm by parsing the operand group descriptor flags.
1237   // Find the beginning of each operand group.
1238   SmallVector<unsigned, 8> GroupIdx;
1239   unsigned OpIdxGroup = ~0u;
1240   unsigned NumOps;
1241   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1242        i += NumOps) {
1243     const MachineOperand &FlagMO = getOperand(i);
1244     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1245     unsigned CurGroup = GroupIdx.size();
1246     GroupIdx.push_back(i);
1247     const InlineAsm::Flag F(FlagMO.getImm());
1248     NumOps = 1 + F.getNumOperandRegisters();
1249     // OpIdx belongs to this operand group.
1250     if (OpIdx > i && OpIdx < i + NumOps)
1251       OpIdxGroup = CurGroup;
1252     unsigned TiedGroup;
1253     if (!F.isUseOperandTiedToDef(TiedGroup))
1254       continue;
1255     // Operands in this group are tied to operands in TiedGroup which must be
1256     // earlier. Find the number of operands between the two groups.
1257     unsigned Delta = i - GroupIdx[TiedGroup];
1258 
1259     // OpIdx is a use tied to TiedGroup.
1260     if (OpIdxGroup == CurGroup)
1261       return OpIdx - Delta;
1262 
1263     // OpIdx is a def tied to this use group.
1264     if (OpIdxGroup == TiedGroup)
1265       return OpIdx + Delta;
1266   }
1267   llvm_unreachable("Invalid tied operand on inline asm");
1268 }
1269 
1270 /// clearKillInfo - Clears kill flags on all operands.
1271 ///
1272 void MachineInstr::clearKillInfo() {
1273   for (MachineOperand &MO : operands()) {
1274     if (MO.isReg() && MO.isUse())
1275       MO.setIsKill(false);
1276   }
1277 }
1278 
1279 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1280                                       unsigned SubIdx,
1281                                       const TargetRegisterInfo &RegInfo) {
1282   if (ToReg.isPhysical()) {
1283     if (SubIdx)
1284       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1285     for (MachineOperand &MO : operands()) {
1286       if (!MO.isReg() || MO.getReg() != FromReg)
1287         continue;
1288       MO.substPhysReg(ToReg, RegInfo);
1289     }
1290   } else {
1291     for (MachineOperand &MO : operands()) {
1292       if (!MO.isReg() || MO.getReg() != FromReg)
1293         continue;
1294       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1295     }
1296   }
1297 }
1298 
1299 /// isSafeToMove - Return true if it is safe to move this instruction. If
1300 /// SawStore is set to true, it means that there is a store (or call) between
1301 /// the instruction's location and its intended destination.
1302 bool MachineInstr::isSafeToMove(bool &SawStore) const {
1303   // Ignore stuff that we obviously can't move.
1304   //
1305   // Treat volatile loads as stores. This is not strictly necessary for
1306   // volatiles, but it is required for atomic loads. It is not allowed to move
1307   // a load across an atomic load with Ordering > Monotonic.
1308   if (mayStore() || isCall() || isPHI() ||
1309       (mayLoad() && hasOrderedMemoryRef())) {
1310     SawStore = true;
1311     return false;
1312   }
1313 
1314   if (isPosition() || isDebugInstr() || isTerminator() ||
1315       mayRaiseFPException() || hasUnmodeledSideEffects() ||
1316       isJumpTableDebugInfo())
1317     return false;
1318 
1319   // See if this instruction does a load.  If so, we have to guarantee that the
1320   // loaded value doesn't change between the load and the its intended
1321   // destination. The check for isInvariantLoad gives the target the chance to
1322   // classify the load as always returning a constant, e.g. a constant pool
1323   // load.
1324   if (mayLoad() && !isDereferenceableInvariantLoad())
1325     // Otherwise, this is a real load.  If there is a store between the load and
1326     // end of block, we can't move it.
1327     return !SawStore;
1328 
1329   return true;
1330 }
1331 
1332 bool MachineInstr::wouldBeTriviallyDead() const {
1333   // Don't delete frame allocation labels.
1334   // FIXME: Why is LOCAL_ESCAPE not considered in MachineInstr::isLabel?
1335   if (getOpcode() == TargetOpcode::LOCAL_ESCAPE)
1336     return false;
1337 
1338   // Don't delete FAKE_USE.
1339   // FIXME: Why is FAKE_USE not considered in MachineInstr::isPosition?
1340   if (isFakeUse())
1341     return false;
1342 
1343   // LIFETIME markers should be preserved.
1344   // FIXME: Why are LIFETIME markers not considered in MachineInstr::isPosition?
1345   if (isLifetimeMarker())
1346     return false;
1347 
1348   // If we can move an instruction, we can remove it.  Otherwise, it has
1349   // a side-effect of some sort.
1350   bool SawStore = false;
1351   return isPHI() || isSafeToMove(SawStore);
1352 }
1353 
1354 bool MachineInstr::isDead(const MachineRegisterInfo &MRI,
1355                           LiveRegUnits *LivePhysRegs) const {
1356   // Instructions without side-effects are dead iff they only define dead regs.
1357   // This function is hot and this loop returns early in the common case,
1358   // so only perform additional checks before this if absolutely necessary.
1359   for (const MachineOperand &MO : all_defs()) {
1360     Register Reg = MO.getReg();
1361     if (Reg.isPhysical()) {
1362       // Don't delete live physreg defs, or any reserved register defs.
1363       if (!LivePhysRegs || !LivePhysRegs->available(Reg) || MRI.isReserved(Reg))
1364         return false;
1365     } else {
1366       if (MO.isDead())
1367         continue;
1368       for (const MachineInstr &Use : MRI.use_nodbg_instructions(Reg)) {
1369         if (&Use != this)
1370           // This def has a non-debug use. Don't delete the instruction!
1371           return false;
1372       }
1373     }
1374   }
1375 
1376   // Technically speaking inline asm without side effects and no defs can still
1377   // be deleted. But there is so much bad inline asm code out there, we should
1378   // let them be.
1379   if (isInlineAsm())
1380     return false;
1381 
1382   // FIXME: See issue #105950 for why LIFETIME markers are considered dead here.
1383   if (isLifetimeMarker())
1384     return true;
1385 
1386   // If there are no defs with uses, then we call the instruction dead so long
1387   // as we do not suspect it may have sideeffects.
1388   return wouldBeTriviallyDead();
1389 }
1390 
1391 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI,
1392                                  BatchAAResults *AA, bool UseTBAA,
1393                                  const MachineMemOperand *MMOa,
1394                                  const MachineMemOperand *MMOb) {
1395   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1396   // operates with MachineMemOperand offset with some important assumptions:
1397   //   - LLVM fundamentally assumes flat address spaces.
1398   //   - MachineOperand offset can *only* result from legalization and cannot
1399   //     affect queries other than the trivial case of overlap checking.
1400   //   - These offsets never wrap and never step outside of allocated objects.
1401   //   - There should never be any negative offsets here.
1402   //
1403   // FIXME: Modify API to hide this math from "user"
1404   // Even before we go to AA we can reason locally about some memory objects. It
1405   // can save compile time, and possibly catch some corner cases not currently
1406   // covered.
1407 
1408   int64_t OffsetA = MMOa->getOffset();
1409   int64_t OffsetB = MMOb->getOffset();
1410   int64_t MinOffset = std::min(OffsetA, OffsetB);
1411 
1412   LocationSize WidthA = MMOa->getSize();
1413   LocationSize WidthB = MMOb->getSize();
1414   bool KnownWidthA = WidthA.hasValue();
1415   bool KnownWidthB = WidthB.hasValue();
1416   bool BothMMONonScalable = !WidthA.isScalable() && !WidthB.isScalable();
1417 
1418   const Value *ValA = MMOa->getValue();
1419   const Value *ValB = MMOb->getValue();
1420   bool SameVal = (ValA && ValB && (ValA == ValB));
1421   if (!SameVal) {
1422     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1423     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1424     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1425       return false;
1426     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1427       return false;
1428     if (PSVa && PSVb && (PSVa == PSVb))
1429       SameVal = true;
1430   }
1431 
1432   if (SameVal && BothMMONonScalable) {
1433     if (!KnownWidthA || !KnownWidthB)
1434       return true;
1435     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1436     int64_t LowWidth = (MinOffset == OffsetA)
1437                            ? WidthA.getValue().getKnownMinValue()
1438                            : WidthB.getValue().getKnownMinValue();
1439     return (MinOffset + LowWidth > MaxOffset);
1440   }
1441 
1442   if (!AA)
1443     return true;
1444 
1445   if (!ValA || !ValB)
1446     return true;
1447 
1448   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1449   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1450 
1451   // If Scalable Location Size has non-zero offset, Width + Offset does not work
1452   // at the moment
1453   if ((WidthA.isScalable() && OffsetA > 0) ||
1454       (WidthB.isScalable() && OffsetB > 0))
1455     return true;
1456 
1457   int64_t OverlapA =
1458       KnownWidthA ? WidthA.getValue().getKnownMinValue() + OffsetA - MinOffset
1459                   : MemoryLocation::UnknownSize;
1460   int64_t OverlapB =
1461       KnownWidthB ? WidthB.getValue().getKnownMinValue() + OffsetB - MinOffset
1462                   : MemoryLocation::UnknownSize;
1463 
1464   LocationSize LocA = (WidthA.isScalable() || !KnownWidthA)
1465                           ? WidthA
1466                           : LocationSize::precise(OverlapA);
1467   LocationSize LocB = (WidthB.isScalable() || !KnownWidthB)
1468                           ? WidthB
1469                           : LocationSize::precise(OverlapB);
1470 
1471   return !AA->isNoAlias(
1472       MemoryLocation(ValA, LocA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1473       MemoryLocation(ValB, LocB, UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1474 }
1475 
1476 bool MachineInstr::mayAlias(BatchAAResults *AA, const MachineInstr &Other,
1477                             bool UseTBAA) const {
1478   const MachineFunction *MF = getMF();
1479   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1480   const MachineFrameInfo &MFI = MF->getFrameInfo();
1481 
1482   // Exclude call instruction which may alter the memory but can not be handled
1483   // by this function.
1484   if (isCall() || Other.isCall())
1485     return true;
1486 
1487   // If neither instruction stores to memory, they can't alias in any
1488   // meaningful way, even if they read from the same address.
1489   if (!mayStore() && !Other.mayStore())
1490     return false;
1491 
1492   // Both instructions must be memory operations to be able to alias.
1493   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1494     return false;
1495 
1496   // Let the target decide if memory accesses cannot possibly overlap.
1497   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1498     return false;
1499 
1500   // Memory operations without memory operands may access anything. Be
1501   // conservative and assume `MayAlias`.
1502   if (memoperands_empty() || Other.memoperands_empty())
1503     return true;
1504 
1505   // Skip if there are too many memory operands.
1506   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1507   if (NumChecks > TII->getMemOperandAACheckLimit())
1508     return true;
1509 
1510   // Check each pair of memory operands from both instructions, which can't
1511   // alias only if all pairs won't alias.
1512   for (auto *MMOa : memoperands())
1513     for (auto *MMOb : Other.memoperands())
1514       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1515         return true;
1516 
1517   return false;
1518 }
1519 
1520 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1521                             bool UseTBAA) const {
1522   if (AA) {
1523     BatchAAResults BAA(*AA);
1524     return mayAlias(&BAA, Other, UseTBAA);
1525   }
1526   return mayAlias(static_cast<BatchAAResults *>(nullptr), Other, UseTBAA);
1527 }
1528 
1529 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1530 /// or volatile memory reference, or if the information describing the memory
1531 /// reference is not available. Return false if it is known to have no ordered
1532 /// memory references.
1533 bool MachineInstr::hasOrderedMemoryRef() const {
1534   // An instruction known never to access memory won't have a volatile access.
1535   if (!mayStore() &&
1536       !mayLoad() &&
1537       !isCall() &&
1538       !hasUnmodeledSideEffects())
1539     return false;
1540 
1541   // Otherwise, if the instruction has no memory reference information,
1542   // conservatively assume it wasn't preserved.
1543   if (memoperands_empty())
1544     return true;
1545 
1546   // Check if any of our memory operands are ordered.
1547   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1548     return !MMO->isUnordered();
1549   });
1550 }
1551 
1552 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1553 /// trap and is loading from a location whose value is invariant across a run of
1554 /// this function.
1555 bool MachineInstr::isDereferenceableInvariantLoad() const {
1556   // If the instruction doesn't load at all, it isn't an invariant load.
1557   if (!mayLoad())
1558     return false;
1559 
1560   // If the instruction has lost its memoperands, conservatively assume that
1561   // it may not be an invariant load.
1562   if (memoperands_empty())
1563     return false;
1564 
1565   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1566 
1567   for (MachineMemOperand *MMO : memoperands()) {
1568     if (!MMO->isUnordered())
1569       // If the memory operand has ordering side effects, we can't move the
1570       // instruction.  Such an instruction is technically an invariant load,
1571       // but the caller code would need updated to expect that.
1572       return false;
1573     if (MMO->isStore()) return false;
1574     if (MMO->isInvariant() && MMO->isDereferenceable())
1575       continue;
1576 
1577     // A load from a constant PseudoSourceValue is invariant.
1578     if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
1579       if (PSV->isConstant(&MFI))
1580         continue;
1581     }
1582 
1583     // Otherwise assume conservatively.
1584     return false;
1585   }
1586 
1587   // Everything checks out.
1588   return true;
1589 }
1590 
1591 Register MachineInstr::isConstantValuePHI() const {
1592   if (!isPHI())
1593     return {};
1594   assert(getNumOperands() >= 3 &&
1595          "It's illegal to have a PHI without source operands");
1596 
1597   Register Reg = getOperand(1).getReg();
1598   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1599     if (getOperand(i).getReg() != Reg)
1600       return {};
1601   return Reg;
1602 }
1603 
1604 bool MachineInstr::hasUnmodeledSideEffects() const {
1605   if (hasProperty(MCID::UnmodeledSideEffects))
1606     return true;
1607   if (isInlineAsm()) {
1608     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1609     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1610       return true;
1611   }
1612 
1613   return false;
1614 }
1615 
1616 bool MachineInstr::isLoadFoldBarrier() const {
1617   return mayStore() || isCall() ||
1618          (hasUnmodeledSideEffects() && !isPseudoProbe());
1619 }
1620 
1621 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1622 ///
1623 bool MachineInstr::allDefsAreDead() const {
1624   for (const MachineOperand &MO : operands()) {
1625     if (!MO.isReg() || MO.isUse())
1626       continue;
1627     if (!MO.isDead())
1628       return false;
1629   }
1630   return true;
1631 }
1632 
1633 bool MachineInstr::allImplicitDefsAreDead() const {
1634   for (const MachineOperand &MO : implicit_operands()) {
1635     if (!MO.isReg() || MO.isUse())
1636       continue;
1637     if (!MO.isDead())
1638       return false;
1639   }
1640   return true;
1641 }
1642 
1643 /// copyImplicitOps - Copy implicit register operands from specified
1644 /// instruction to this instruction.
1645 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1646                                    const MachineInstr &MI) {
1647   for (const MachineOperand &MO :
1648        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1649     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1650       addOperand(MF, MO);
1651 }
1652 
1653 bool MachineInstr::hasComplexRegisterTies() const {
1654   const MCInstrDesc &MCID = getDesc();
1655   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1656     return true;
1657   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1658     const auto &Operand = getOperand(I);
1659     if (!Operand.isReg() || Operand.isDef())
1660       // Ignore the defined registers as MCID marks only the uses as tied.
1661       continue;
1662     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1663     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1664     if (ExpectedTiedIdx != TiedIdx)
1665       return true;
1666   }
1667   return false;
1668 }
1669 
1670 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1671                                  const MachineRegisterInfo &MRI) const {
1672   const MachineOperand &Op = getOperand(OpIdx);
1673   if (!Op.isReg())
1674     return LLT{};
1675 
1676   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1677     return MRI.getType(Op.getReg());
1678 
1679   auto &OpInfo = getDesc().operands()[OpIdx];
1680   if (!OpInfo.isGenericType())
1681     return MRI.getType(Op.getReg());
1682 
1683   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1684     return LLT{};
1685 
1686   LLT TypeToPrint = MRI.getType(Op.getReg());
1687   // Don't mark the type index printed if it wasn't actually printed: maybe
1688   // another operand with the same type index has an actual type attached:
1689   if (TypeToPrint.isValid())
1690     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1691   return TypeToPrint;
1692 }
1693 
1694 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1695 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1696   dbgs() << "  ";
1697   print(dbgs());
1698 }
1699 
1700 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1701     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1702     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1703   if (Depth >= MaxDepth)
1704     return;
1705   if (!AlreadySeenInstrs.insert(this).second)
1706     return;
1707   // PadToColumn always inserts at least one space.
1708   // Don't mess up the alignment if we don't want any space.
1709   if (Depth)
1710     fdbgs().PadToColumn(Depth * 2);
1711   print(fdbgs());
1712   for (const MachineOperand &MO : operands()) {
1713     if (!MO.isReg() || MO.isDef())
1714       continue;
1715     Register Reg = MO.getReg();
1716     if (Reg.isPhysical())
1717       continue;
1718     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1719     if (NewMI == nullptr)
1720       continue;
1721     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1722   }
1723 }
1724 
1725 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1726                                           unsigned MaxDepth) const {
1727   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1728   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1729 }
1730 #endif
1731 
1732 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1733                          bool SkipDebugLoc, bool AddNewLine,
1734                          const TargetInstrInfo *TII) const {
1735   const Module *M = nullptr;
1736   const Function *F = nullptr;
1737   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1738     F = &MF->getFunction();
1739     M = F->getParent();
1740     if (!TII)
1741       TII = MF->getSubtarget().getInstrInfo();
1742   }
1743 
1744   ModuleSlotTracker MST(M);
1745   if (F)
1746     MST.incorporateFunction(*F);
1747   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1748 }
1749 
1750 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1751                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1752                          bool AddNewLine, const TargetInstrInfo *TII) const {
1753   // We can be a bit tidier if we know the MachineFunction.
1754   const TargetRegisterInfo *TRI = nullptr;
1755   const MachineRegisterInfo *MRI = nullptr;
1756   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1757   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1758 
1759   if (isCFIInstruction())
1760     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1761 
1762   SmallBitVector PrintedTypes(8);
1763   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1764   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1765     if (!ShouldPrintRegisterTies)
1766       return 0U;
1767     const MachineOperand &MO = getOperand(OpIdx);
1768     if (MO.isReg() && MO.isTied() && !MO.isDef())
1769       return findTiedOperandIdx(OpIdx);
1770     return 0U;
1771   };
1772   unsigned StartOp = 0;
1773   unsigned e = getNumOperands();
1774 
1775   // Print explicitly defined operands on the left of an assignment syntax.
1776   while (StartOp < e) {
1777     const MachineOperand &MO = getOperand(StartOp);
1778     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1779       break;
1780 
1781     if (StartOp != 0)
1782       OS << ", ";
1783 
1784     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1785     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1786     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1787              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1788     ++StartOp;
1789   }
1790 
1791   if (StartOp != 0)
1792     OS << " = ";
1793 
1794   if (getFlag(MachineInstr::FrameSetup))
1795     OS << "frame-setup ";
1796   if (getFlag(MachineInstr::FrameDestroy))
1797     OS << "frame-destroy ";
1798   if (getFlag(MachineInstr::FmNoNans))
1799     OS << "nnan ";
1800   if (getFlag(MachineInstr::FmNoInfs))
1801     OS << "ninf ";
1802   if (getFlag(MachineInstr::FmNsz))
1803     OS << "nsz ";
1804   if (getFlag(MachineInstr::FmArcp))
1805     OS << "arcp ";
1806   if (getFlag(MachineInstr::FmContract))
1807     OS << "contract ";
1808   if (getFlag(MachineInstr::FmAfn))
1809     OS << "afn ";
1810   if (getFlag(MachineInstr::FmReassoc))
1811     OS << "reassoc ";
1812   if (getFlag(MachineInstr::NoUWrap))
1813     OS << "nuw ";
1814   if (getFlag(MachineInstr::NoSWrap))
1815     OS << "nsw ";
1816   if (getFlag(MachineInstr::IsExact))
1817     OS << "exact ";
1818   if (getFlag(MachineInstr::NoFPExcept))
1819     OS << "nofpexcept ";
1820   if (getFlag(MachineInstr::NoMerge))
1821     OS << "nomerge ";
1822   if (getFlag(MachineInstr::NonNeg))
1823     OS << "nneg ";
1824   if (getFlag(MachineInstr::Disjoint))
1825     OS << "disjoint ";
1826   if (getFlag(MachineInstr::SameSign))
1827     OS << "samesign ";
1828 
1829   // Print the opcode name.
1830   if (TII)
1831     OS << TII->getName(getOpcode());
1832   else
1833     OS << "UNKNOWN";
1834 
1835   if (SkipOpers)
1836     return;
1837 
1838   // Print the rest of the operands.
1839   bool FirstOp = true;
1840   unsigned AsmDescOp = ~0u;
1841   unsigned AsmOpCount = 0;
1842 
1843   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1844     // Print asm string.
1845     OS << " ";
1846     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1847     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1848     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1849     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1850                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1851                             IntrinsicInfo);
1852 
1853     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1854     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1855     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1856       OS << " [sideeffect]";
1857     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1858       OS << " [mayload]";
1859     if (ExtraInfo & InlineAsm::Extra_MayStore)
1860       OS << " [maystore]";
1861     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1862       OS << " [isconvergent]";
1863     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1864       OS << " [alignstack]";
1865     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1866       OS << " [attdialect]";
1867     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1868       OS << " [inteldialect]";
1869 
1870     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1871     FirstOp = false;
1872   }
1873 
1874   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1875     const MachineOperand &MO = getOperand(i);
1876 
1877     if (FirstOp) FirstOp = false; else OS << ",";
1878     OS << " ";
1879 
1880     if (isDebugValueLike() && MO.isMetadata()) {
1881       // Pretty print DBG_VALUE* instructions.
1882       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1883       if (DIV && !DIV->getName().empty())
1884         OS << "!\"" << DIV->getName() << '\"';
1885       else {
1886         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1887         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1888         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1889                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1890       }
1891     } else if (isDebugLabel() && MO.isMetadata()) {
1892       // Pretty print DBG_LABEL instructions.
1893       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1894       if (DIL && !DIL->getName().empty())
1895         OS << "\"" << DIL->getName() << '\"';
1896       else {
1897         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1898         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1899         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1900                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1901       }
1902     } else if (i == AsmDescOp && MO.isImm()) {
1903       // Pretty print the inline asm operand descriptor.
1904       OS << '$' << AsmOpCount++;
1905       unsigned Flag = MO.getImm();
1906       const InlineAsm::Flag F(Flag);
1907       OS << ":[";
1908       OS << F.getKindName();
1909 
1910       unsigned RCID;
1911       if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) {
1912         if (TRI) {
1913           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1914         } else
1915           OS << ":RC" << RCID;
1916       }
1917 
1918       if (F.isMemKind()) {
1919         const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID();
1920         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1921       }
1922 
1923       unsigned TiedTo;
1924       if (F.isUseOperandTiedToDef(TiedTo))
1925         OS << " tiedto:$" << TiedTo;
1926 
1927       if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() ||
1928            F.isRegUseKind()) &&
1929           F.getRegMayBeFolded()) {
1930         OS << " foldable";
1931       }
1932 
1933       OS << ']';
1934 
1935       // Compute the index of the next operand descriptor.
1936       AsmDescOp += 1 + F.getNumOperandRegisters();
1937     } else {
1938       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1939       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1940       if (MO.isImm() && isOperandSubregIdx(i))
1941         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1942       else
1943         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1944                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1945     }
1946   }
1947 
1948   // Print any optional symbols attached to this instruction as-if they were
1949   // operands.
1950   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1951     if (!FirstOp) {
1952       FirstOp = false;
1953       OS << ',';
1954     }
1955     OS << " pre-instr-symbol ";
1956     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1957   }
1958   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1959     if (!FirstOp) {
1960       FirstOp = false;
1961       OS << ',';
1962     }
1963     OS << " post-instr-symbol ";
1964     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1965   }
1966   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1967     if (!FirstOp) {
1968       FirstOp = false;
1969       OS << ',';
1970     }
1971     OS << " heap-alloc-marker ";
1972     HeapAllocMarker->printAsOperand(OS, MST);
1973   }
1974   if (MDNode *PCSections = getPCSections()) {
1975     if (!FirstOp) {
1976       FirstOp = false;
1977       OS << ',';
1978     }
1979     OS << " pcsections ";
1980     PCSections->printAsOperand(OS, MST);
1981   }
1982   if (MDNode *MMRA = getMMRAMetadata()) {
1983     if (!FirstOp) {
1984       FirstOp = false;
1985       OS << ',';
1986     }
1987     OS << " mmra ";
1988     MMRA->printAsOperand(OS, MST);
1989   }
1990   if (uint32_t CFIType = getCFIType()) {
1991     if (!FirstOp)
1992       OS << ',';
1993     OS << " cfi-type " << CFIType;
1994   }
1995 
1996   if (DebugInstrNum) {
1997     if (!FirstOp)
1998       OS << ",";
1999     OS << " debug-instr-number " << DebugInstrNum;
2000   }
2001 
2002   if (!SkipDebugLoc) {
2003     if (const DebugLoc &DL = getDebugLoc()) {
2004       if (!FirstOp)
2005         OS << ',';
2006       OS << " debug-location ";
2007       DL->printAsOperand(OS, MST);
2008     }
2009   }
2010 
2011   if (!memoperands_empty()) {
2012     SmallVector<StringRef, 0> SSNs;
2013     const LLVMContext *Context = nullptr;
2014     std::unique_ptr<LLVMContext> CtxPtr;
2015     const MachineFrameInfo *MFI = nullptr;
2016     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
2017       MFI = &MF->getFrameInfo();
2018       Context = &MF->getFunction().getContext();
2019     } else {
2020       CtxPtr = std::make_unique<LLVMContext>();
2021       Context = CtxPtr.get();
2022     }
2023 
2024     OS << " :: ";
2025     bool NeedComma = false;
2026     for (const MachineMemOperand *Op : memoperands()) {
2027       if (NeedComma)
2028         OS << ", ";
2029       Op->print(OS, MST, SSNs, *Context, MFI, TII);
2030       NeedComma = true;
2031     }
2032   }
2033 
2034   if (SkipDebugLoc)
2035     return;
2036 
2037   bool HaveSemi = false;
2038 
2039   // Print debug location information.
2040   if (const DebugLoc &DL = getDebugLoc()) {
2041     if (!HaveSemi) {
2042       OS << ';';
2043       HaveSemi = true;
2044     }
2045     OS << ' ';
2046     DL.print(OS);
2047   }
2048 
2049   // Print extra comments for DEBUG_VALUE and friends if they are well-formed.
2050   if ((isNonListDebugValue() && getNumOperands() >= 4) ||
2051       (isDebugValueList() && getNumOperands() >= 2) ||
2052       (isDebugRef() && getNumOperands() >= 3)) {
2053     if (getDebugVariableOp().isMetadata()) {
2054       if (!HaveSemi) {
2055         OS << ";";
2056         HaveSemi = true;
2057       }
2058       auto *DV = getDebugVariable();
2059       OS << " line no:" << DV->getLine();
2060       if (isIndirectDebugValue())
2061         OS << " indirect";
2062     }
2063   }
2064   // TODO: DBG_LABEL
2065 
2066   if (AddNewLine)
2067     OS << '\n';
2068 }
2069 
2070 bool MachineInstr::addRegisterKilled(Register IncomingReg,
2071                                      const TargetRegisterInfo *RegInfo,
2072                                      bool AddIfNotFound) {
2073   bool isPhysReg = IncomingReg.isPhysical();
2074   bool hasAliases = isPhysReg &&
2075     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
2076   bool Found = false;
2077   SmallVector<unsigned,4> DeadOps;
2078   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2079     MachineOperand &MO = getOperand(i);
2080     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
2081       continue;
2082 
2083     // DEBUG_VALUE nodes do not contribute to code generation and should
2084     // always be ignored. Failure to do so may result in trying to modify
2085     // KILL flags on DEBUG_VALUE nodes.
2086     if (MO.isDebug())
2087       continue;
2088 
2089     Register Reg = MO.getReg();
2090     if (!Reg)
2091       continue;
2092 
2093     if (Reg == IncomingReg) {
2094       if (!Found) {
2095         if (MO.isKill())
2096           // The register is already marked kill.
2097           return true;
2098         if (isPhysReg && isRegTiedToDefOperand(i))
2099           // Two-address uses of physregs must not be marked kill.
2100           return true;
2101         MO.setIsKill();
2102         Found = true;
2103       }
2104     } else if (hasAliases && MO.isKill() && Reg.isPhysical()) {
2105       // A super-register kill already exists.
2106       if (RegInfo->isSuperRegister(IncomingReg, Reg))
2107         return true;
2108       if (RegInfo->isSubRegister(IncomingReg, Reg))
2109         DeadOps.push_back(i);
2110     }
2111   }
2112 
2113   // Trim unneeded kill operands.
2114   while (!DeadOps.empty()) {
2115     unsigned OpIdx = DeadOps.back();
2116     if (getOperand(OpIdx).isImplicit() &&
2117         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
2118       removeOperand(OpIdx);
2119     else
2120       getOperand(OpIdx).setIsKill(false);
2121     DeadOps.pop_back();
2122   }
2123 
2124   // If not found, this means an alias of one of the operands is killed. Add a
2125   // new implicit operand if required.
2126   if (!Found && AddIfNotFound) {
2127     addOperand(MachineOperand::CreateReg(IncomingReg,
2128                                          false /*IsDef*/,
2129                                          true  /*IsImp*/,
2130                                          true  /*IsKill*/));
2131     return true;
2132   }
2133   return Found;
2134 }
2135 
2136 void MachineInstr::clearRegisterKills(Register Reg,
2137                                       const TargetRegisterInfo *RegInfo) {
2138   if (!Reg.isPhysical())
2139     RegInfo = nullptr;
2140   for (MachineOperand &MO : operands()) {
2141     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2142       continue;
2143     Register OpReg = MO.getReg();
2144     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
2145       MO.setIsKill(false);
2146   }
2147 }
2148 
2149 bool MachineInstr::addRegisterDead(Register Reg,
2150                                    const TargetRegisterInfo *RegInfo,
2151                                    bool AddIfNotFound) {
2152   bool isPhysReg = Reg.isPhysical();
2153   bool hasAliases = isPhysReg &&
2154     MCRegAliasIterator(Reg, RegInfo, false).isValid();
2155   bool Found = false;
2156   SmallVector<unsigned,4> DeadOps;
2157   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2158     MachineOperand &MO = getOperand(i);
2159     if (!MO.isReg() || !MO.isDef())
2160       continue;
2161     Register MOReg = MO.getReg();
2162     if (!MOReg)
2163       continue;
2164 
2165     if (MOReg == Reg) {
2166       MO.setIsDead();
2167       Found = true;
2168     } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) {
2169       // There exists a super-register that's marked dead.
2170       if (RegInfo->isSuperRegister(Reg, MOReg))
2171         return true;
2172       if (RegInfo->isSubRegister(Reg, MOReg))
2173         DeadOps.push_back(i);
2174     }
2175   }
2176 
2177   // Trim unneeded dead operands.
2178   while (!DeadOps.empty()) {
2179     unsigned OpIdx = DeadOps.back();
2180     if (getOperand(OpIdx).isImplicit() &&
2181         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
2182       removeOperand(OpIdx);
2183     else
2184       getOperand(OpIdx).setIsDead(false);
2185     DeadOps.pop_back();
2186   }
2187 
2188   // If not found, this means an alias of one of the operands is dead. Add a
2189   // new implicit operand if required.
2190   if (Found || !AddIfNotFound)
2191     return Found;
2192 
2193   addOperand(MachineOperand::CreateReg(Reg,
2194                                        true  /*IsDef*/,
2195                                        true  /*IsImp*/,
2196                                        false /*IsKill*/,
2197                                        true  /*IsDead*/));
2198   return true;
2199 }
2200 
2201 void MachineInstr::clearRegisterDeads(Register Reg) {
2202   for (MachineOperand &MO : all_defs())
2203     if (MO.getReg() == Reg)
2204       MO.setIsDead(false);
2205 }
2206 
2207 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2208   for (MachineOperand &MO : all_defs())
2209     if (MO.getReg() == Reg && MO.getSubReg() != 0)
2210       MO.setIsUndef(IsUndef);
2211 }
2212 
2213 void MachineInstr::addRegisterDefined(Register Reg,
2214                                       const TargetRegisterInfo *RegInfo) {
2215   if (Reg.isPhysical()) {
2216     MachineOperand *MO = findRegisterDefOperand(Reg, RegInfo, false, false);
2217     if (MO)
2218       return;
2219   } else {
2220     for (const MachineOperand &MO : all_defs()) {
2221       if (MO.getReg() == Reg && MO.getSubReg() == 0)
2222         return;
2223     }
2224   }
2225   addOperand(MachineOperand::CreateReg(Reg,
2226                                        true  /*IsDef*/,
2227                                        true  /*IsImp*/));
2228 }
2229 
2230 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2231                                          const TargetRegisterInfo &TRI) {
2232   bool HasRegMask = false;
2233   for (MachineOperand &MO : operands()) {
2234     if (MO.isRegMask()) {
2235       HasRegMask = true;
2236       continue;
2237     }
2238     if (!MO.isReg() || !MO.isDef()) continue;
2239     Register Reg = MO.getReg();
2240     if (!Reg.isPhysical())
2241       continue;
2242     // If there are no uses, including partial uses, the def is dead.
2243     if (llvm::none_of(UsedRegs,
2244                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2245       MO.setIsDead();
2246   }
2247 
2248   // This is a call with a register mask operand.
2249   // Mask clobbers are always dead, so add defs for the non-dead defines.
2250   if (HasRegMask)
2251     for (const Register &UsedReg : UsedRegs)
2252       addRegisterDefined(UsedReg, &TRI);
2253 }
2254 
2255 unsigned
2256 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2257   // Build up a buffer of hash code components.
2258   SmallVector<size_t, 16> HashComponents;
2259   HashComponents.reserve(MI->getNumOperands() + 1);
2260   HashComponents.push_back(MI->getOpcode());
2261   for (const MachineOperand &MO : MI->operands()) {
2262     if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual())
2263       continue;  // Skip virtual register defs.
2264 
2265     HashComponents.push_back(hash_value(MO));
2266   }
2267   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2268 }
2269 
2270 const MDNode *MachineInstr::getLocCookieMD() const {
2271   // Find the source location cookie.
2272   const MDNode *LocMD = nullptr;
2273   for (unsigned i = getNumOperands(); i != 0; --i) {
2274     if (getOperand(i-1).isMetadata() &&
2275         (LocMD = getOperand(i-1).getMetadata()) &&
2276         LocMD->getNumOperands() != 0) {
2277       if (mdconst::hasa<ConstantInt>(LocMD->getOperand(0)))
2278         return LocMD;
2279     }
2280   }
2281 
2282   return nullptr;
2283 }
2284 
2285 void MachineInstr::emitInlineAsmError(const Twine &Msg) const {
2286   assert(isInlineAsm());
2287   const MDNode *LocMD = getLocCookieMD();
2288   uint64_t LocCookie =
2289       LocMD
2290           ? mdconst::extract<ConstantInt>(LocMD->getOperand(0))->getZExtValue()
2291           : 0;
2292   LLVMContext &Ctx = getMF()->getFunction().getContext();
2293   Ctx.diagnose(DiagnosticInfoInlineAsm(LocCookie, Msg));
2294 }
2295 
2296 void MachineInstr::emitGenericError(const Twine &Msg) const {
2297   const Function &Fn = getMF()->getFunction();
2298   Fn.getContext().diagnose(
2299       DiagnosticInfoGenericWithLoc(Msg, Fn, getDebugLoc()));
2300 }
2301 
2302 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2303                                   const MCInstrDesc &MCID, bool IsIndirect,
2304                                   Register Reg, const MDNode *Variable,
2305                                   const MDNode *Expr) {
2306   assert(isa<DILocalVariable>(Variable) && "not a variable");
2307   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2308   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2309          "Expected inlined-at fields to agree");
2310   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2311   if (IsIndirect)
2312     MIB.addImm(0U);
2313   else
2314     MIB.addReg(0U);
2315   return MIB.addMetadata(Variable).addMetadata(Expr);
2316 }
2317 
2318 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2319                                   const MCInstrDesc &MCID, bool IsIndirect,
2320                                   ArrayRef<MachineOperand> DebugOps,
2321                                   const MDNode *Variable, const MDNode *Expr) {
2322   assert(isa<DILocalVariable>(Variable) && "not a variable");
2323   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2324   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2325          "Expected inlined-at fields to agree");
2326   if (MCID.Opcode == TargetOpcode::DBG_VALUE) {
2327     assert(DebugOps.size() == 1 &&
2328            "DBG_VALUE must contain exactly one debug operand");
2329     MachineOperand DebugOp = DebugOps[0];
2330     if (DebugOp.isReg())
2331       return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable,
2332                      Expr);
2333 
2334     auto MIB = BuildMI(MF, DL, MCID).add(DebugOp);
2335     if (IsIndirect)
2336       MIB.addImm(0U);
2337     else
2338       MIB.addReg(0U);
2339     return MIB.addMetadata(Variable).addMetadata(Expr);
2340   }
2341 
2342   auto MIB = BuildMI(MF, DL, MCID);
2343   MIB.addMetadata(Variable).addMetadata(Expr);
2344   for (const MachineOperand &DebugOp : DebugOps)
2345     if (DebugOp.isReg())
2346       MIB.addReg(DebugOp.getReg());
2347     else
2348       MIB.add(DebugOp);
2349   return MIB;
2350 }
2351 
2352 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2353                                   MachineBasicBlock::iterator I,
2354                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2355                                   bool IsIndirect, Register Reg,
2356                                   const MDNode *Variable, const MDNode *Expr) {
2357   MachineFunction &MF = *BB.getParent();
2358   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2359   BB.insert(I, MI);
2360   return MachineInstrBuilder(MF, MI);
2361 }
2362 
2363 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2364                                   MachineBasicBlock::iterator I,
2365                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2366                                   bool IsIndirect,
2367                                   ArrayRef<MachineOperand> DebugOps,
2368                                   const MDNode *Variable, const MDNode *Expr) {
2369   MachineFunction &MF = *BB.getParent();
2370   MachineInstr *MI =
2371       BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr);
2372   BB.insert(I, MI);
2373   return MachineInstrBuilder(MF, *MI);
2374 }
2375 
2376 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2377 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2378 static const DIExpression *computeExprForSpill(
2379     const MachineInstr &MI,
2380     const SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2381   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2382          "Expected inlined-at fields to agree");
2383 
2384   const DIExpression *Expr = MI.getDebugExpression();
2385   if (MI.isIndirectDebugValue()) {
2386     assert(MI.getDebugOffset().getImm() == 0 &&
2387            "DBG_VALUE with nonzero offset");
2388     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2389   } else if (MI.isDebugValueList()) {
2390     // We will replace the spilled register with a frame index, so
2391     // immediately deref all references to the spilled register.
2392     std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2393     for (const MachineOperand *Op : SpilledOperands) {
2394       unsigned OpIdx = MI.getDebugOperandIndex(Op);
2395       Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2396     }
2397   }
2398   return Expr;
2399 }
2400 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2401                                                Register SpillReg) {
2402   assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2403   SmallVector<const MachineOperand *> SpillOperands;
2404   for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2405     SpillOperands.push_back(&Op);
2406   return computeExprForSpill(MI, SpillOperands);
2407 }
2408 
2409 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2410                                           MachineBasicBlock::iterator I,
2411                                           const MachineInstr &Orig,
2412                                           int FrameIndex, Register SpillReg) {
2413   assert(!Orig.isDebugRef() &&
2414          "DBG_INSTR_REF should not reference a virtual register.");
2415   const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2416   MachineInstrBuilder NewMI =
2417       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2418   // Non-Variadic Operands: Location, Offset, Variable, Expression
2419   // Variadic Operands:     Variable, Expression, Locations...
2420   if (Orig.isNonListDebugValue())
2421     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2422   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2423   if (Orig.isDebugValueList()) {
2424     for (const MachineOperand &Op : Orig.debug_operands())
2425       if (Op.isReg() && Op.getReg() == SpillReg)
2426         NewMI.addFrameIndex(FrameIndex);
2427       else
2428         NewMI.add(MachineOperand(Op));
2429   }
2430   return NewMI;
2431 }
2432 MachineInstr *llvm::buildDbgValueForSpill(
2433     MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2434     const MachineInstr &Orig, int FrameIndex,
2435     const SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2436   const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2437   MachineInstrBuilder NewMI =
2438       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2439   // Non-Variadic Operands: Location, Offset, Variable, Expression
2440   // Variadic Operands:     Variable, Expression, Locations...
2441   if (Orig.isNonListDebugValue())
2442     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2443   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2444   if (Orig.isDebugValueList()) {
2445     for (const MachineOperand &Op : Orig.debug_operands())
2446       if (is_contained(SpilledOperands, &Op))
2447         NewMI.addFrameIndex(FrameIndex);
2448       else
2449         NewMI.add(MachineOperand(Op));
2450   }
2451   return NewMI;
2452 }
2453 
2454 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2455                                   Register Reg) {
2456   const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2457   if (Orig.isNonListDebugValue())
2458     Orig.getDebugOffset().ChangeToImmediate(0U);
2459   for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2460     Op.ChangeToFrameIndex(FrameIndex);
2461   Orig.getDebugExpressionOp().setMetadata(Expr);
2462 }
2463 
2464 void MachineInstr::collectDebugValues(
2465                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2466   MachineInstr &MI = *this;
2467   if (!MI.getOperand(0).isReg())
2468     return;
2469 
2470   MachineBasicBlock::iterator DI = MI; ++DI;
2471   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2472        DI != DE; ++DI) {
2473     if (!DI->isDebugValue())
2474       return;
2475     if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2476       DbgValues.push_back(&*DI);
2477   }
2478 }
2479 
2480 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2481   // Collect matching debug values.
2482   SmallVector<MachineInstr *, 2> DbgValues;
2483 
2484   if (!getOperand(0).isReg())
2485     return;
2486 
2487   Register DefReg = getOperand(0).getReg();
2488   auto *MRI = getRegInfo();
2489   for (auto &MO : MRI->use_operands(DefReg)) {
2490     auto *DI = MO.getParent();
2491     if (!DI->isDebugValue())
2492       continue;
2493     if (DI->hasDebugOperandForReg(DefReg)) {
2494       DbgValues.push_back(DI);
2495     }
2496   }
2497 
2498   // Propagate Reg to debug value instructions.
2499   for (auto *DBI : DbgValues)
2500     for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2501       Op.setReg(Reg);
2502 }
2503 
2504 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2505 
2506 static LocationSize getSpillSlotSize(const MMOList &Accesses,
2507                                      const MachineFrameInfo &MFI) {
2508   uint64_t Size = 0;
2509   for (const auto *A : Accesses) {
2510     if (MFI.isSpillSlotObjectIndex(
2511             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2512                 ->getFrameIndex())) {
2513       LocationSize S = A->getSize();
2514       if (!S.hasValue())
2515         return LocationSize::beforeOrAfterPointer();
2516       Size += S.getValue();
2517     }
2518   }
2519   return Size;
2520 }
2521 
2522 std::optional<LocationSize>
2523 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2524   int FI;
2525   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2526     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2527     if (MFI.isSpillSlotObjectIndex(FI))
2528       return (*memoperands_begin())->getSize();
2529   }
2530   return std::nullopt;
2531 }
2532 
2533 std::optional<LocationSize>
2534 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2535   MMOList Accesses;
2536   if (TII->hasStoreToStackSlot(*this, Accesses))
2537     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2538   return std::nullopt;
2539 }
2540 
2541 std::optional<LocationSize>
2542 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2543   int FI;
2544   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2545     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2546     if (MFI.isSpillSlotObjectIndex(FI))
2547       return (*memoperands_begin())->getSize();
2548   }
2549   return std::nullopt;
2550 }
2551 
2552 std::optional<LocationSize>
2553 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2554   MMOList Accesses;
2555   if (TII->hasLoadFromStackSlot(*this, Accesses))
2556     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2557   return std::nullopt;
2558 }
2559 
2560 unsigned MachineInstr::getDebugInstrNum() {
2561   if (DebugInstrNum == 0)
2562     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2563   return DebugInstrNum;
2564 }
2565 
2566 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2567   if (DebugInstrNum == 0)
2568     DebugInstrNum = MF.getNewDebugInstrNum();
2569   return DebugInstrNum;
2570 }
2571 
2572 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const {
2573   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2574                     getRegInfo()->getType(getOperand(1).getReg()));
2575 }
2576 
2577 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const {
2578   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2579                     getRegInfo()->getType(getOperand(1).getReg()),
2580                     getRegInfo()->getType(getOperand(2).getReg()));
2581 }
2582 
2583 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const {
2584   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2585                     getRegInfo()->getType(getOperand(1).getReg()),
2586                     getRegInfo()->getType(getOperand(2).getReg()),
2587                     getRegInfo()->getType(getOperand(3).getReg()));
2588 }
2589 
2590 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const {
2591   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2592                     getRegInfo()->getType(getOperand(1).getReg()),
2593                     getRegInfo()->getType(getOperand(2).getReg()),
2594                     getRegInfo()->getType(getOperand(3).getReg()),
2595                     getRegInfo()->getType(getOperand(4).getReg()));
2596 }
2597 
2598 std::tuple<Register, LLT, Register, LLT>
2599 MachineInstr::getFirst2RegLLTs() const {
2600   Register Reg0 = getOperand(0).getReg();
2601   Register Reg1 = getOperand(1).getReg();
2602   return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2603                     getRegInfo()->getType(Reg1));
2604 }
2605 
2606 std::tuple<Register, LLT, Register, LLT, Register, LLT>
2607 MachineInstr::getFirst3RegLLTs() const {
2608   Register Reg0 = getOperand(0).getReg();
2609   Register Reg1 = getOperand(1).getReg();
2610   Register Reg2 = getOperand(2).getReg();
2611   return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2612                     getRegInfo()->getType(Reg1), Reg2,
2613                     getRegInfo()->getType(Reg2));
2614 }
2615 
2616 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT>
2617 MachineInstr::getFirst4RegLLTs() const {
2618   Register Reg0 = getOperand(0).getReg();
2619   Register Reg1 = getOperand(1).getReg();
2620   Register Reg2 = getOperand(2).getReg();
2621   Register Reg3 = getOperand(3).getReg();
2622   return std::tuple(
2623       Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2624       Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3));
2625 }
2626 
2627 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register,
2628            LLT>
2629 MachineInstr::getFirst5RegLLTs() const {
2630   Register Reg0 = getOperand(0).getReg();
2631   Register Reg1 = getOperand(1).getReg();
2632   Register Reg2 = getOperand(2).getReg();
2633   Register Reg3 = getOperand(3).getReg();
2634   Register Reg4 = getOperand(4).getReg();
2635   return std::tuple(
2636       Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2637       Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3),
2638       Reg4, getRegInfo()->getType(Reg4));
2639 }
2640 
2641 void MachineInstr::insert(mop_iterator InsertBefore,
2642                           ArrayRef<MachineOperand> Ops) {
2643   assert(InsertBefore != nullptr && "invalid iterator");
2644   assert(InsertBefore->getParent() == this &&
2645          "iterator points to operand of other inst");
2646   if (Ops.empty())
2647     return;
2648 
2649   // Do one pass to untie operands.
2650   SmallDenseMap<unsigned, unsigned> TiedOpIndices;
2651   for (const MachineOperand &MO : operands()) {
2652     if (MO.isReg() && MO.isTied()) {
2653       unsigned OpNo = getOperandNo(&MO);
2654       unsigned TiedTo = findTiedOperandIdx(OpNo);
2655       TiedOpIndices[OpNo] = TiedTo;
2656       untieRegOperand(OpNo);
2657     }
2658   }
2659 
2660   unsigned OpIdx = getOperandNo(InsertBefore);
2661   unsigned NumOperands = getNumOperands();
2662   unsigned OpsToMove = NumOperands - OpIdx;
2663 
2664   SmallVector<MachineOperand> MovingOps;
2665   MovingOps.reserve(OpsToMove);
2666 
2667   for (unsigned I = 0; I < OpsToMove; ++I) {
2668     MovingOps.emplace_back(getOperand(OpIdx));
2669     removeOperand(OpIdx);
2670   }
2671   for (const MachineOperand &MO : Ops)
2672     addOperand(MO);
2673   for (const MachineOperand &OpMoved : MovingOps)
2674     addOperand(OpMoved);
2675 
2676   // Re-tie operands.
2677   for (auto [Tie1, Tie2] : TiedOpIndices) {
2678     if (Tie1 >= OpIdx)
2679       Tie1 += Ops.size();
2680     if (Tie2 >= OpIdx)
2681       Tie2 += Ops.size();
2682     tieOperands(Tie1, Tie2);
2683   }
2684 }
2685 
2686 bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId) const {
2687   assert(OpId && "expected non-zero operand id");
2688   assert(isInlineAsm() && "should only be used on inline asm");
2689 
2690   if (!getOperand(OpId).isReg())
2691     return false;
2692 
2693   const MachineOperand &MD = getOperand(OpId - 1);
2694   if (!MD.isImm())
2695     return false;
2696 
2697   InlineAsm::Flag F(MD.getImm());
2698   if (F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind())
2699     return F.getRegMayBeFolded();
2700   return false;
2701 }
2702