1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/Hashing.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/MemoryLocation.h" 21 #include "llvm/CodeGen/LiveRegUnits.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/PseudoSourceValue.h" 32 #include "llvm/CodeGen/Register.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/CodeGenTypes/LowLevelType.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InlineAsm.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/ModuleSlotTracker.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/MC/MCInstrDesc.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/FormattedStream.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetMachine.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstdint> 61 #include <cstring> 62 #include <utility> 63 64 using namespace llvm; 65 66 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 67 if (const MachineBasicBlock *MBB = MI.getParent()) 68 if (const MachineFunction *MF = MBB->getParent()) 69 return MF; 70 return nullptr; 71 } 72 73 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 74 // it. 75 static void tryToGetTargetInfo(const MachineInstr &MI, 76 const TargetRegisterInfo *&TRI, 77 const MachineRegisterInfo *&MRI, 78 const TargetIntrinsicInfo *&IntrinsicInfo, 79 const TargetInstrInfo *&TII) { 80 81 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 82 TRI = MF->getSubtarget().getRegisterInfo(); 83 MRI = &MF->getRegInfo(); 84 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 85 TII = MF->getSubtarget().getInstrInfo(); 86 } 87 } 88 89 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 90 for (MCPhysReg ImpDef : MCID->implicit_defs()) 91 addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true)); 92 for (MCPhysReg ImpUse : MCID->implicit_uses()) 93 addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true)); 94 } 95 96 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 97 /// implicit operands. It reserves space for the number of operands specified by 98 /// the MCInstrDesc. 99 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, 100 DebugLoc DL, bool NoImp) 101 : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0), 102 DbgLoc(std::move(DL)), DebugInstrNum(0), Opcode(TID.Opcode) { 103 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 104 105 // Reserve space for the expected number of operands. 106 if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() + 107 MCID->implicit_uses().size()) { 108 CapOperands = OperandCapacity::get(NumOps); 109 Operands = MF.allocateOperandArray(CapOperands); 110 } 111 112 if (!NoImp) 113 addImplicitDefUseOperands(MF); 114 } 115 116 /// MachineInstr ctor - Copies MachineInstr arg exactly. 117 /// Does not copy the number from debug instruction numbering, to preserve 118 /// uniqueness. 119 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 120 : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0), 121 Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0), 122 Opcode(MI.getOpcode()) { 123 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 124 125 CapOperands = OperandCapacity::get(MI.getNumOperands()); 126 Operands = MF.allocateOperandArray(CapOperands); 127 128 // Copy operands. 129 for (const MachineOperand &MO : MI.operands()) 130 addOperand(MF, MO); 131 132 // Replicate ties between the operands, which addOperand was not 133 // able to do reliably. 134 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 135 MachineOperand &NewMO = getOperand(i); 136 const MachineOperand &OrigMO = MI.getOperand(i); 137 NewMO.TiedTo = OrigMO.TiedTo; 138 } 139 140 // Copy all the sensible flags. 141 setFlags(MI.Flags); 142 } 143 144 void MachineInstr::setDesc(const MCInstrDesc &TID) { 145 if (getParent()) 146 getMF()->handleChangeDesc(*this, TID); 147 MCID = &TID; 148 Opcode = TID.Opcode; 149 } 150 151 void MachineInstr::moveBefore(MachineInstr *MovePos) { 152 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 153 } 154 155 /// getRegInfo - If this instruction is embedded into a MachineFunction, 156 /// return the MachineRegisterInfo object for the current function, otherwise 157 /// return null. 158 MachineRegisterInfo *MachineInstr::getRegInfo() { 159 if (MachineBasicBlock *MBB = getParent()) 160 return &MBB->getParent()->getRegInfo(); 161 return nullptr; 162 } 163 164 const MachineRegisterInfo *MachineInstr::getRegInfo() const { 165 if (const MachineBasicBlock *MBB = getParent()) 166 return &MBB->getParent()->getRegInfo(); 167 return nullptr; 168 } 169 170 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 171 for (MachineOperand &MO : operands()) 172 if (MO.isReg()) 173 MRI.removeRegOperandFromUseList(&MO); 174 } 175 176 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { 177 for (MachineOperand &MO : operands()) 178 if (MO.isReg()) 179 MRI.addRegOperandToUseList(&MO); 180 } 181 182 void MachineInstr::addOperand(const MachineOperand &Op) { 183 MachineBasicBlock *MBB = getParent(); 184 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 185 MachineFunction *MF = MBB->getParent(); 186 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 187 addOperand(*MF, Op); 188 } 189 190 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 191 /// ranges. If MRI is non-null also update use-def chains. 192 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 193 unsigned NumOps, MachineRegisterInfo *MRI) { 194 if (MRI) 195 return MRI->moveOperands(Dst, Src, NumOps); 196 // MachineOperand is a trivially copyable type so we can just use memmove. 197 assert(Dst && Src && "Unknown operands"); 198 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 199 } 200 201 /// addOperand - Add the specified operand to the instruction. If it is an 202 /// implicit operand, it is added to the end of the operand list. If it is 203 /// an explicit operand it is added at the end of the explicit operand list 204 /// (before the first implicit operand). 205 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 206 assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) && 207 "Cannot add more operands."); 208 assert(MCID && "Cannot add operands before providing an instr descriptor"); 209 210 // Check if we're adding one of our existing operands. 211 if (&Op >= Operands && &Op < Operands + NumOperands) { 212 // This is unusual: MI->addOperand(MI->getOperand(i)). 213 // If adding Op requires reallocating or moving existing operands around, 214 // the Op reference could go stale. Support it by copying Op. 215 MachineOperand CopyOp(Op); 216 return addOperand(MF, CopyOp); 217 } 218 219 // Find the insert location for the new operand. Implicit registers go at 220 // the end, everything else goes before the implicit regs. 221 // 222 // FIXME: Allow mixed explicit and implicit operands on inline asm. 223 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 224 // implicit-defs, but they must not be moved around. See the FIXME in 225 // InstrEmitter.cpp. 226 unsigned OpNo = getNumOperands(); 227 bool isImpReg = Op.isReg() && Op.isImplicit(); 228 if (!isImpReg && !isInlineAsm()) { 229 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 230 --OpNo; 231 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 232 } 233 } 234 235 // OpNo now points as the desired insertion point. Unless this is a variadic 236 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 237 // RegMask operands go between the explicit and implicit operands. 238 MachineRegisterInfo *MRI = getRegInfo(); 239 240 // Determine if the Operands array needs to be reallocated. 241 // Save the old capacity and operand array. 242 OperandCapacity OldCap = CapOperands; 243 MachineOperand *OldOperands = Operands; 244 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 245 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 246 Operands = MF.allocateOperandArray(CapOperands); 247 // Move the operands before the insertion point. 248 if (OpNo) 249 moveOperands(Operands, OldOperands, OpNo, MRI); 250 } 251 252 // Move the operands following the insertion point. 253 if (OpNo != NumOperands) 254 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 255 MRI); 256 ++NumOperands; 257 258 // Deallocate the old operand array. 259 if (OldOperands != Operands && OldOperands) 260 MF.deallocateOperandArray(OldCap, OldOperands); 261 262 // Copy Op into place. It still needs to be inserted into the MRI use lists. 263 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 264 NewMO->ParentMI = this; 265 266 // When adding a register operand, tell MRI about it. 267 if (NewMO->isReg()) { 268 // Ensure isOnRegUseList() returns false, regardless of Op's status. 269 NewMO->Contents.Reg.Prev = nullptr; 270 // Ignore existing ties. This is not a property that can be copied. 271 NewMO->TiedTo = 0; 272 // Add the new operand to MRI, but only for instructions in an MBB. 273 if (MRI) 274 MRI->addRegOperandToUseList(NewMO); 275 // The MCID operand information isn't accurate until we start adding 276 // explicit operands. The implicit operands are added first, then the 277 // explicits are inserted before them. 278 if (!isImpReg) { 279 // Tie uses to defs as indicated in MCInstrDesc. 280 if (NewMO->isUse()) { 281 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 282 if (DefIdx != -1) 283 tieOperands(DefIdx, OpNo); 284 } 285 // If the register operand is flagged as early, mark the operand as such. 286 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 287 NewMO->setIsEarlyClobber(true); 288 } 289 // Ensure debug instructions set debug flag on register uses. 290 if (NewMO->isUse() && isDebugInstr()) 291 NewMO->setIsDebug(); 292 } 293 } 294 295 void MachineInstr::removeOperand(unsigned OpNo) { 296 assert(OpNo < getNumOperands() && "Invalid operand number"); 297 untieRegOperand(OpNo); 298 299 #ifndef NDEBUG 300 // Moving tied operands would break the ties. 301 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 302 if (Operands[i].isReg()) 303 assert(!Operands[i].isTied() && "Cannot move tied operands"); 304 #endif 305 306 MachineRegisterInfo *MRI = getRegInfo(); 307 if (MRI && Operands[OpNo].isReg()) 308 MRI->removeRegOperandFromUseList(Operands + OpNo); 309 310 // Don't call the MachineOperand destructor. A lot of this code depends on 311 // MachineOperand having a trivial destructor anyway, and adding a call here 312 // wouldn't make it 'destructor-correct'. 313 314 if (unsigned N = NumOperands - 1 - OpNo) 315 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 316 --NumOperands; 317 } 318 319 void MachineInstr::setExtraInfo(MachineFunction &MF, 320 ArrayRef<MachineMemOperand *> MMOs, 321 MCSymbol *PreInstrSymbol, 322 MCSymbol *PostInstrSymbol, 323 MDNode *HeapAllocMarker, MDNode *PCSections, 324 uint32_t CFIType, MDNode *MMRAs) { 325 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 326 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 327 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 328 bool HasPCSections = PCSections != nullptr; 329 bool HasCFIType = CFIType != 0; 330 bool HasMMRAs = MMRAs != nullptr; 331 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + 332 HasHeapAllocMarker + HasPCSections + HasCFIType + HasMMRAs; 333 334 // Drop all extra info if there is none. 335 if (NumPointers <= 0) { 336 Info.clear(); 337 return; 338 } 339 340 // If more than one pointer, then store out of line. Store heap alloc markers 341 // out of line because PointerSumType cannot hold more than 4 tag types with 342 // 32-bit pointers. 343 // FIXME: Maybe we should make the symbols in the extra info mutable? 344 else if (NumPointers > 1 || HasMMRAs || HasHeapAllocMarker || HasPCSections || 345 HasCFIType) { 346 Info.set<EIIK_OutOfLine>( 347 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, 348 HeapAllocMarker, PCSections, CFIType, MMRAs)); 349 return; 350 } 351 352 // Otherwise store the single pointer inline. 353 if (HasPreInstrSymbol) 354 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 355 else if (HasPostInstrSymbol) 356 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 357 else 358 Info.set<EIIK_MMO>(MMOs[0]); 359 } 360 361 void MachineInstr::dropMemRefs(MachineFunction &MF) { 362 if (memoperands_empty()) 363 return; 364 365 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 366 getHeapAllocMarker(), getPCSections(), getCFIType(), 367 getMMRAMetadata()); 368 } 369 370 void MachineInstr::setMemRefs(MachineFunction &MF, 371 ArrayRef<MachineMemOperand *> MMOs) { 372 if (MMOs.empty()) { 373 dropMemRefs(MF); 374 return; 375 } 376 377 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 378 getHeapAllocMarker(), getPCSections(), getCFIType(), 379 getMMRAMetadata()); 380 } 381 382 void MachineInstr::addMemOperand(MachineFunction &MF, 383 MachineMemOperand *MO) { 384 SmallVector<MachineMemOperand *, 2> MMOs; 385 MMOs.append(memoperands_begin(), memoperands_end()); 386 MMOs.push_back(MO); 387 setMemRefs(MF, MMOs); 388 } 389 390 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 391 if (this == &MI) 392 // Nothing to do for a self-clone! 393 return; 394 395 assert(&MF == MI.getMF() && 396 "Invalid machine functions when cloning memory refrences!"); 397 // See if we can just steal the extra info already allocated for the 398 // instruction. We can do this whenever the pre- and post-instruction symbols 399 // are the same (including null). 400 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 401 getPostInstrSymbol() == MI.getPostInstrSymbol() && 402 getHeapAllocMarker() == MI.getHeapAllocMarker() && 403 getPCSections() == MI.getPCSections() && getMMRAMetadata() && 404 MI.getMMRAMetadata()) { 405 Info = MI.Info; 406 return; 407 } 408 409 // Otherwise, fall back on a copy-based clone. 410 setMemRefs(MF, MI.memoperands()); 411 } 412 413 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 414 /// identical. 415 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 416 ArrayRef<MachineMemOperand *> RHS) { 417 if (LHS.size() != RHS.size()) 418 return false; 419 420 auto LHSPointees = make_pointee_range(LHS); 421 auto RHSPointees = make_pointee_range(RHS); 422 return std::equal(LHSPointees.begin(), LHSPointees.end(), 423 RHSPointees.begin()); 424 } 425 426 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 427 ArrayRef<const MachineInstr *> MIs) { 428 // Try handling easy numbers of MIs with simpler mechanisms. 429 if (MIs.empty()) { 430 dropMemRefs(MF); 431 return; 432 } 433 if (MIs.size() == 1) { 434 cloneMemRefs(MF, *MIs[0]); 435 return; 436 } 437 // Because an empty memoperands list provides *no* information and must be 438 // handled conservatively (assuming the instruction can do anything), the only 439 // way to merge with it is to drop all other memoperands. 440 if (MIs[0]->memoperands_empty()) { 441 dropMemRefs(MF); 442 return; 443 } 444 445 // Handle the general case. 446 SmallVector<MachineMemOperand *, 2> MergedMMOs; 447 // Start with the first instruction. 448 assert(&MF == MIs[0]->getMF() && 449 "Invalid machine functions when cloning memory references!"); 450 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 451 // Now walk all the other instructions and accumulate any different MMOs. 452 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 453 assert(&MF == MI.getMF() && 454 "Invalid machine functions when cloning memory references!"); 455 456 // Skip MIs with identical operands to the first. This is a somewhat 457 // arbitrary hack but will catch common cases without being quadratic. 458 // TODO: We could fully implement merge semantics here if needed. 459 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 460 continue; 461 462 // Because an empty memoperands list provides *no* information and must be 463 // handled conservatively (assuming the instruction can do anything), the 464 // only way to merge with it is to drop all other memoperands. 465 if (MI.memoperands_empty()) { 466 dropMemRefs(MF); 467 return; 468 } 469 470 // Otherwise accumulate these into our temporary buffer of the merged state. 471 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 472 } 473 474 setMemRefs(MF, MergedMMOs); 475 } 476 477 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 478 // Do nothing if old and new symbols are the same. 479 if (Symbol == getPreInstrSymbol()) 480 return; 481 482 // If there was only one symbol and we're removing it, just clear info. 483 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 484 Info.clear(); 485 return; 486 } 487 488 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 489 getHeapAllocMarker(), getPCSections(), getCFIType(), 490 getMMRAMetadata()); 491 } 492 493 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 494 // Do nothing if old and new symbols are the same. 495 if (Symbol == getPostInstrSymbol()) 496 return; 497 498 // If there was only one symbol and we're removing it, just clear info. 499 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 500 Info.clear(); 501 return; 502 } 503 504 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 505 getHeapAllocMarker(), getPCSections(), getCFIType(), 506 getMMRAMetadata()); 507 } 508 509 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 510 // Do nothing if old and new symbols are the same. 511 if (Marker == getHeapAllocMarker()) 512 return; 513 514 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 515 Marker, getPCSections(), getCFIType(), getMMRAMetadata()); 516 } 517 518 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { 519 // Do nothing if old and new symbols are the same. 520 if (PCSections == getPCSections()) 521 return; 522 523 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 524 getHeapAllocMarker(), PCSections, getCFIType(), 525 getMMRAMetadata()); 526 } 527 528 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { 529 // Do nothing if old and new types are the same. 530 if (Type == getCFIType()) 531 return; 532 533 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 534 getHeapAllocMarker(), getPCSections(), Type, getMMRAMetadata()); 535 } 536 537 void MachineInstr::setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs) { 538 // Do nothing if old and new symbols are the same. 539 if (MMRAs == getMMRAMetadata()) 540 return; 541 542 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 543 getHeapAllocMarker(), getPCSections(), getCFIType(), MMRAs); 544 } 545 546 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 547 const MachineInstr &MI) { 548 if (this == &MI) 549 // Nothing to do for a self-clone! 550 return; 551 552 assert(&MF == MI.getMF() && 553 "Invalid machine functions when cloning instruction symbols!"); 554 555 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 556 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 557 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 558 setPCSections(MF, MI.getPCSections()); 559 setMMRAMetadata(MF, MI.getMMRAMetadata()); 560 } 561 562 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 563 // For now, the just return the union of the flags. If the flags get more 564 // complicated over time, we might need more logic here. 565 return getFlags() | Other.getFlags(); 566 } 567 568 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 569 uint32_t MIFlags = 0; 570 // Copy the wrapping flags. 571 if (const OverflowingBinaryOperator *OB = 572 dyn_cast<OverflowingBinaryOperator>(&I)) { 573 if (OB->hasNoSignedWrap()) 574 MIFlags |= MachineInstr::MIFlag::NoSWrap; 575 if (OB->hasNoUnsignedWrap()) 576 MIFlags |= MachineInstr::MIFlag::NoUWrap; 577 } else if (const TruncInst *TI = dyn_cast<TruncInst>(&I)) { 578 if (TI->hasNoSignedWrap()) 579 MIFlags |= MachineInstr::MIFlag::NoSWrap; 580 if (TI->hasNoUnsignedWrap()) 581 MIFlags |= MachineInstr::MIFlag::NoUWrap; 582 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { 583 if (GEP->hasNoUnsignedSignedWrap()) 584 MIFlags |= MachineInstr::MIFlag::NoUSWrap; 585 if (GEP->hasNoUnsignedWrap()) 586 MIFlags |= MachineInstr::MIFlag::NoUWrap; 587 } 588 589 // Copy the nonneg flag. 590 if (const PossiblyNonNegInst *PNI = dyn_cast<PossiblyNonNegInst>(&I)) { 591 if (PNI->hasNonNeg()) 592 MIFlags |= MachineInstr::MIFlag::NonNeg; 593 // Copy the disjoint flag. 594 } else if (const PossiblyDisjointInst *PD = 595 dyn_cast<PossiblyDisjointInst>(&I)) { 596 if (PD->isDisjoint()) 597 MIFlags |= MachineInstr::MIFlag::Disjoint; 598 } 599 600 // Copy the samesign flag. 601 if (const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I)) 602 if (ICmp->hasSameSign()) 603 MIFlags |= MachineInstr::MIFlag::SameSign; 604 605 // Copy the exact flag. 606 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 607 if (PE->isExact()) 608 MIFlags |= MachineInstr::MIFlag::IsExact; 609 610 // Copy the fast-math flags. 611 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 612 const FastMathFlags Flags = FP->getFastMathFlags(); 613 if (Flags.noNaNs()) 614 MIFlags |= MachineInstr::MIFlag::FmNoNans; 615 if (Flags.noInfs()) 616 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 617 if (Flags.noSignedZeros()) 618 MIFlags |= MachineInstr::MIFlag::FmNsz; 619 if (Flags.allowReciprocal()) 620 MIFlags |= MachineInstr::MIFlag::FmArcp; 621 if (Flags.allowContract()) 622 MIFlags |= MachineInstr::MIFlag::FmContract; 623 if (Flags.approxFunc()) 624 MIFlags |= MachineInstr::MIFlag::FmAfn; 625 if (Flags.allowReassoc()) 626 MIFlags |= MachineInstr::MIFlag::FmReassoc; 627 } 628 629 if (I.getMetadata(LLVMContext::MD_unpredictable)) 630 MIFlags |= MachineInstr::MIFlag::Unpredictable; 631 632 return MIFlags; 633 } 634 635 void MachineInstr::copyIRFlags(const Instruction &I) { 636 Flags = copyFlagsFromInstruction(I); 637 } 638 639 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 640 assert(!isBundledWithPred() && "Must be called on bundle header"); 641 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 642 if (MII->getDesc().getFlags() & Mask) { 643 if (Type == AnyInBundle) 644 return true; 645 } else { 646 if (Type == AllInBundle && !MII->isBundle()) 647 return false; 648 } 649 // This was the last instruction in the bundle. 650 if (!MII->isBundledWithSucc()) 651 return Type == AllInBundle; 652 } 653 } 654 655 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 656 MICheckType Check) const { 657 // If opcodes or number of operands are not the same then the two 658 // instructions are obviously not identical. 659 if (Other.getOpcode() != getOpcode() || 660 Other.getNumOperands() != getNumOperands()) 661 return false; 662 663 if (isBundle()) { 664 // We have passed the test above that both instructions have the same 665 // opcode, so we know that both instructions are bundles here. Let's compare 666 // MIs inside the bundle. 667 assert(Other.isBundle() && "Expected that both instructions are bundles."); 668 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 669 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 670 // Loop until we analysed the last intruction inside at least one of the 671 // bundles. 672 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 673 ++I1; 674 ++I2; 675 if (!I1->isIdenticalTo(*I2, Check)) 676 return false; 677 } 678 // If we've reached the end of just one of the two bundles, but not both, 679 // the instructions are not identical. 680 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 681 return false; 682 } 683 684 // Check operands to make sure they match. 685 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 686 const MachineOperand &MO = getOperand(i); 687 const MachineOperand &OMO = Other.getOperand(i); 688 if (!MO.isReg()) { 689 if (!MO.isIdenticalTo(OMO)) 690 return false; 691 continue; 692 } 693 694 // Clients may or may not want to ignore defs when testing for equality. 695 // For example, machine CSE pass only cares about finding common 696 // subexpressions, so it's safe to ignore virtual register defs. 697 if (MO.isDef()) { 698 if (Check == IgnoreDefs) 699 continue; 700 else if (Check == IgnoreVRegDefs) { 701 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual()) 702 if (!MO.isIdenticalTo(OMO)) 703 return false; 704 } else { 705 if (!MO.isIdenticalTo(OMO)) 706 return false; 707 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 708 return false; 709 } 710 } else { 711 if (!MO.isIdenticalTo(OMO)) 712 return false; 713 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 714 return false; 715 } 716 } 717 // If DebugLoc does not match then two debug instructions are not identical. 718 if (isDebugInstr()) 719 if (getDebugLoc() && Other.getDebugLoc() && 720 getDebugLoc() != Other.getDebugLoc()) 721 return false; 722 // If pre- or post-instruction symbols do not match then the two instructions 723 // are not identical. 724 if (getPreInstrSymbol() != Other.getPreInstrSymbol() || 725 getPostInstrSymbol() != Other.getPostInstrSymbol()) 726 return false; 727 // Call instructions with different CFI types are not identical. 728 if (isCall() && getCFIType() != Other.getCFIType()) 729 return false; 730 731 return true; 732 } 733 734 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const { 735 if (!isDebugValueLike() || !Other.isDebugValueLike()) 736 return false; 737 if (getDebugLoc() != Other.getDebugLoc()) 738 return false; 739 if (getDebugVariable() != Other.getDebugVariable()) 740 return false; 741 if (getNumDebugOperands() != Other.getNumDebugOperands()) 742 return false; 743 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx) 744 if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx))) 745 return false; 746 if (!DIExpression::isEqualExpression( 747 getDebugExpression(), isIndirectDebugValue(), 748 Other.getDebugExpression(), Other.isIndirectDebugValue())) 749 return false; 750 return true; 751 } 752 753 const MachineFunction *MachineInstr::getMF() const { 754 return getParent()->getParent(); 755 } 756 757 MachineInstr *MachineInstr::removeFromParent() { 758 assert(getParent() && "Not embedded in a basic block!"); 759 return getParent()->remove(this); 760 } 761 762 MachineInstr *MachineInstr::removeFromBundle() { 763 assert(getParent() && "Not embedded in a basic block!"); 764 return getParent()->remove_instr(this); 765 } 766 767 void MachineInstr::eraseFromParent() { 768 assert(getParent() && "Not embedded in a basic block!"); 769 getParent()->erase(this); 770 } 771 772 void MachineInstr::eraseFromBundle() { 773 assert(getParent() && "Not embedded in a basic block!"); 774 getParent()->erase_instr(this); 775 } 776 777 bool MachineInstr::isCandidateForAdditionalCallInfo(QueryType Type) const { 778 if (!isCall(Type)) 779 return false; 780 switch (getOpcode()) { 781 case TargetOpcode::PATCHPOINT: 782 case TargetOpcode::STACKMAP: 783 case TargetOpcode::STATEPOINT: 784 case TargetOpcode::FENTRY_CALL: 785 return false; 786 } 787 return true; 788 } 789 790 bool MachineInstr::shouldUpdateAdditionalCallInfo() const { 791 if (isBundle()) 792 return isCandidateForAdditionalCallInfo(MachineInstr::AnyInBundle); 793 return isCandidateForAdditionalCallInfo(); 794 } 795 796 unsigned MachineInstr::getNumExplicitOperands() const { 797 unsigned NumOperands = MCID->getNumOperands(); 798 if (!MCID->isVariadic()) 799 return NumOperands; 800 801 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 802 const MachineOperand &MO = getOperand(I); 803 // The operands must always be in the following order: 804 // - explicit reg defs, 805 // - other explicit operands (reg uses, immediates, etc.), 806 // - implicit reg defs 807 // - implicit reg uses 808 if (MO.isReg() && MO.isImplicit()) 809 break; 810 ++NumOperands; 811 } 812 return NumOperands; 813 } 814 815 unsigned MachineInstr::getNumExplicitDefs() const { 816 unsigned NumDefs = MCID->getNumDefs(); 817 if (!MCID->isVariadic()) 818 return NumDefs; 819 820 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 821 const MachineOperand &MO = getOperand(I); 822 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 823 break; 824 ++NumDefs; 825 } 826 return NumDefs; 827 } 828 829 void MachineInstr::bundleWithPred() { 830 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 831 setFlag(BundledPred); 832 MachineBasicBlock::instr_iterator Pred = getIterator(); 833 --Pred; 834 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 835 Pred->setFlag(BundledSucc); 836 } 837 838 void MachineInstr::bundleWithSucc() { 839 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 840 setFlag(BundledSucc); 841 MachineBasicBlock::instr_iterator Succ = getIterator(); 842 ++Succ; 843 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 844 Succ->setFlag(BundledPred); 845 } 846 847 void MachineInstr::unbundleFromPred() { 848 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 849 clearFlag(BundledPred); 850 MachineBasicBlock::instr_iterator Pred = getIterator(); 851 --Pred; 852 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 853 Pred->clearFlag(BundledSucc); 854 } 855 856 void MachineInstr::unbundleFromSucc() { 857 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 858 clearFlag(BundledSucc); 859 MachineBasicBlock::instr_iterator Succ = getIterator(); 860 ++Succ; 861 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 862 Succ->clearFlag(BundledPred); 863 } 864 865 bool MachineInstr::isStackAligningInlineAsm() const { 866 if (isInlineAsm()) { 867 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 868 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 869 return true; 870 } 871 return false; 872 } 873 874 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 875 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 876 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 877 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 878 } 879 880 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 881 unsigned *GroupNo) const { 882 assert(isInlineAsm() && "Expected an inline asm instruction"); 883 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 884 885 // Ignore queries about the initial operands. 886 if (OpIdx < InlineAsm::MIOp_FirstOperand) 887 return -1; 888 889 unsigned Group = 0; 890 unsigned NumOps; 891 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 892 i += NumOps) { 893 const MachineOperand &FlagMO = getOperand(i); 894 // If we reach the implicit register operands, stop looking. 895 if (!FlagMO.isImm()) 896 return -1; 897 const InlineAsm::Flag F(FlagMO.getImm()); 898 NumOps = 1 + F.getNumOperandRegisters(); 899 if (i + NumOps > OpIdx) { 900 if (GroupNo) 901 *GroupNo = Group; 902 return i; 903 } 904 ++Group; 905 } 906 return -1; 907 } 908 909 const DILabel *MachineInstr::getDebugLabel() const { 910 assert(isDebugLabel() && "not a DBG_LABEL"); 911 return cast<DILabel>(getOperand(0).getMetadata()); 912 } 913 914 const MachineOperand &MachineInstr::getDebugVariableOp() const { 915 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 916 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 917 return getOperand(VariableOp); 918 } 919 920 MachineOperand &MachineInstr::getDebugVariableOp() { 921 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 922 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 923 return getOperand(VariableOp); 924 } 925 926 const DILocalVariable *MachineInstr::getDebugVariable() const { 927 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 928 } 929 930 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 931 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 932 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 933 return getOperand(ExpressionOp); 934 } 935 936 MachineOperand &MachineInstr::getDebugExpressionOp() { 937 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 938 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 939 return getOperand(ExpressionOp); 940 } 941 942 const DIExpression *MachineInstr::getDebugExpression() const { 943 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 944 } 945 946 bool MachineInstr::isDebugEntryValue() const { 947 return isDebugValue() && getDebugExpression()->isEntryValue(); 948 } 949 950 const TargetRegisterClass* 951 MachineInstr::getRegClassConstraint(unsigned OpIdx, 952 const TargetInstrInfo *TII, 953 const TargetRegisterInfo *TRI) const { 954 assert(getParent() && "Can't have an MBB reference here!"); 955 assert(getMF() && "Can't have an MF reference here!"); 956 const MachineFunction &MF = *getMF(); 957 958 // Most opcodes have fixed constraints in their MCInstrDesc. 959 if (!isInlineAsm()) 960 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 961 962 if (!getOperand(OpIdx).isReg()) 963 return nullptr; 964 965 // For tied uses on inline asm, get the constraint from the def. 966 unsigned DefIdx; 967 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 968 OpIdx = DefIdx; 969 970 // Inline asm stores register class constraints in the flag word. 971 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 972 if (FlagIdx < 0) 973 return nullptr; 974 975 const InlineAsm::Flag F(getOperand(FlagIdx).getImm()); 976 unsigned RCID; 977 if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) && 978 F.hasRegClassConstraint(RCID)) 979 return TRI->getRegClass(RCID); 980 981 // Assume that all registers in a memory operand are pointers. 982 if (F.isMemKind()) 983 return TRI->getPointerRegClass(MF); 984 985 return nullptr; 986 } 987 988 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 989 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 990 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 991 // Check every operands inside the bundle if we have 992 // been asked to. 993 if (ExploreBundle) 994 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 995 ++OpndIt) 996 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 997 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 998 else 999 // Otherwise, just check the current operands. 1000 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1001 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1002 return CurRC; 1003 } 1004 1005 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1006 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 1007 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1008 assert(CurRC && "Invalid initial register class"); 1009 // Check if Reg is constrained by some of its use/def from MI. 1010 const MachineOperand &MO = getOperand(OpIdx); 1011 if (!MO.isReg() || MO.getReg() != Reg) 1012 return CurRC; 1013 // If yes, accumulate the constraints through the operand. 1014 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1015 } 1016 1017 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1018 unsigned OpIdx, const TargetRegisterClass *CurRC, 1019 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1020 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1021 const MachineOperand &MO = getOperand(OpIdx); 1022 assert(MO.isReg() && 1023 "Cannot get register constraints for non-register operand"); 1024 assert(CurRC && "Invalid initial register class"); 1025 if (unsigned SubIdx = MO.getSubReg()) { 1026 if (OpRC) 1027 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1028 else 1029 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1030 } else if (OpRC) 1031 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1032 return CurRC; 1033 } 1034 1035 /// Return the number of instructions inside the MI bundle, not counting the 1036 /// header instruction. 1037 unsigned MachineInstr::getBundleSize() const { 1038 MachineBasicBlock::const_instr_iterator I = getIterator(); 1039 unsigned Size = 0; 1040 while (I->isBundledWithSucc()) { 1041 ++Size; 1042 ++I; 1043 } 1044 return Size; 1045 } 1046 1047 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1048 /// the given register (not considering sub/super-registers). 1049 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 1050 for (const MachineOperand &MO : implicit_operands()) { 1051 if (MO.isReg() && MO.isUse() && MO.getReg() == Reg) 1052 return true; 1053 } 1054 return false; 1055 } 1056 1057 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1058 /// the specific register or -1 if it is not found. It further tightens 1059 /// the search criteria to a use that kills the register if isKill is true. 1060 int MachineInstr::findRegisterUseOperandIdx(Register Reg, 1061 const TargetRegisterInfo *TRI, 1062 bool isKill) const { 1063 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1064 const MachineOperand &MO = getOperand(i); 1065 if (!MO.isReg() || !MO.isUse()) 1066 continue; 1067 Register MOReg = MO.getReg(); 1068 if (!MOReg) 1069 continue; 1070 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 1071 if (!isKill || MO.isKill()) 1072 return i; 1073 } 1074 return -1; 1075 } 1076 1077 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1078 /// indicating if this instruction reads or writes Reg. This also considers 1079 /// partial defines. 1080 std::pair<bool,bool> 1081 MachineInstr::readsWritesVirtualRegister(Register Reg, 1082 SmallVectorImpl<unsigned> *Ops) const { 1083 bool PartDef = false; // Partial redefine. 1084 bool FullDef = false; // Full define. 1085 bool Use = false; 1086 1087 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1088 const MachineOperand &MO = getOperand(i); 1089 if (!MO.isReg() || MO.getReg() != Reg) 1090 continue; 1091 if (Ops) 1092 Ops->push_back(i); 1093 if (MO.isUse()) 1094 Use |= !MO.isUndef(); 1095 else if (MO.getSubReg() && !MO.isUndef()) 1096 // A partial def undef doesn't count as reading the register. 1097 PartDef = true; 1098 else 1099 FullDef = true; 1100 } 1101 // A partial redefine uses Reg unless there is also a full define. 1102 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1103 } 1104 1105 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1106 /// the specified register or -1 if it is not found. If isDead is true, defs 1107 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1108 /// also checks if there is a def of a super-register. 1109 int MachineInstr::findRegisterDefOperandIdx(Register Reg, 1110 const TargetRegisterInfo *TRI, 1111 bool isDead, bool Overlap) const { 1112 bool isPhys = Reg.isPhysical(); 1113 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1114 const MachineOperand &MO = getOperand(i); 1115 // Accept regmask operands when Overlap is set. 1116 // Ignore them when looking for a specific def operand (Overlap == false). 1117 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1118 return i; 1119 if (!MO.isReg() || !MO.isDef()) 1120 continue; 1121 Register MOReg = MO.getReg(); 1122 bool Found = (MOReg == Reg); 1123 if (!Found && TRI && isPhys && MOReg.isPhysical()) { 1124 if (Overlap) 1125 Found = TRI->regsOverlap(MOReg, Reg); 1126 else 1127 Found = TRI->isSubRegister(MOReg, Reg); 1128 } 1129 if (Found && (!isDead || MO.isDead())) 1130 return i; 1131 } 1132 return -1; 1133 } 1134 1135 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1136 /// operand list that is used to represent the predicate. It returns -1 if 1137 /// none is found. 1138 int MachineInstr::findFirstPredOperandIdx() const { 1139 // Don't call MCID.findFirstPredOperandIdx() because this variant 1140 // is sometimes called on an instruction that's not yet complete, and 1141 // so the number of operands is less than the MCID indicates. In 1142 // particular, the PTX target does this. 1143 const MCInstrDesc &MCID = getDesc(); 1144 if (MCID.isPredicable()) { 1145 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1146 if (MCID.operands()[i].isPredicate()) 1147 return i; 1148 } 1149 1150 return -1; 1151 } 1152 1153 // MachineOperand::TiedTo is 4 bits wide. 1154 const unsigned TiedMax = 15; 1155 1156 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1157 /// 1158 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1159 /// field. TiedTo can have these values: 1160 /// 1161 /// 0: Operand is not tied to anything. 1162 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1163 /// TiedMax: Tied to an operand >= TiedMax-1. 1164 /// 1165 /// The tied def must be one of the first TiedMax operands on a normal 1166 /// instruction. INLINEASM instructions allow more tied defs. 1167 /// 1168 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1169 MachineOperand &DefMO = getOperand(DefIdx); 1170 MachineOperand &UseMO = getOperand(UseIdx); 1171 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1172 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1173 assert(!DefMO.isTied() && "Def is already tied to another use"); 1174 assert(!UseMO.isTied() && "Use is already tied to another def"); 1175 1176 if (DefIdx < TiedMax) 1177 UseMO.TiedTo = DefIdx + 1; 1178 else { 1179 // Inline asm can use the group descriptors to find tied operands, 1180 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1181 // but on normal instruction, the tied def must be within the first TiedMax 1182 // operands. 1183 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1184 "DefIdx out of range"); 1185 UseMO.TiedTo = TiedMax; 1186 } 1187 1188 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1189 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1190 } 1191 1192 /// Given the index of a tied register operand, find the operand it is tied to. 1193 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1194 /// which must exist. 1195 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1196 const MachineOperand &MO = getOperand(OpIdx); 1197 assert(MO.isTied() && "Operand isn't tied"); 1198 1199 // Normally TiedTo is in range. 1200 if (MO.TiedTo < TiedMax) 1201 return MO.TiedTo - 1; 1202 1203 // Uses on normal instructions can be out of range. 1204 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1205 // Normal tied defs must be in the 0..TiedMax-1 range. 1206 if (MO.isUse()) 1207 return TiedMax - 1; 1208 // MO is a def. Search for the tied use. 1209 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1210 const MachineOperand &UseMO = getOperand(i); 1211 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1212 return i; 1213 } 1214 llvm_unreachable("Can't find tied use"); 1215 } 1216 1217 if (getOpcode() == TargetOpcode::STATEPOINT) { 1218 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1219 // on registers. 1220 StatepointOpers SO(this); 1221 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1222 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1223 unsigned NumDefs = getNumDefs(); 1224 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1225 while (!getOperand(CurUseIdx).isReg()) 1226 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1227 if (OpIdx == CurDefIdx) 1228 return CurUseIdx; 1229 if (OpIdx == CurUseIdx) 1230 return CurDefIdx; 1231 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1232 } 1233 llvm_unreachable("Can't find tied use"); 1234 } 1235 1236 // Now deal with inline asm by parsing the operand group descriptor flags. 1237 // Find the beginning of each operand group. 1238 SmallVector<unsigned, 8> GroupIdx; 1239 unsigned OpIdxGroup = ~0u; 1240 unsigned NumOps; 1241 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1242 i += NumOps) { 1243 const MachineOperand &FlagMO = getOperand(i); 1244 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1245 unsigned CurGroup = GroupIdx.size(); 1246 GroupIdx.push_back(i); 1247 const InlineAsm::Flag F(FlagMO.getImm()); 1248 NumOps = 1 + F.getNumOperandRegisters(); 1249 // OpIdx belongs to this operand group. 1250 if (OpIdx > i && OpIdx < i + NumOps) 1251 OpIdxGroup = CurGroup; 1252 unsigned TiedGroup; 1253 if (!F.isUseOperandTiedToDef(TiedGroup)) 1254 continue; 1255 // Operands in this group are tied to operands in TiedGroup which must be 1256 // earlier. Find the number of operands between the two groups. 1257 unsigned Delta = i - GroupIdx[TiedGroup]; 1258 1259 // OpIdx is a use tied to TiedGroup. 1260 if (OpIdxGroup == CurGroup) 1261 return OpIdx - Delta; 1262 1263 // OpIdx is a def tied to this use group. 1264 if (OpIdxGroup == TiedGroup) 1265 return OpIdx + Delta; 1266 } 1267 llvm_unreachable("Invalid tied operand on inline asm"); 1268 } 1269 1270 /// clearKillInfo - Clears kill flags on all operands. 1271 /// 1272 void MachineInstr::clearKillInfo() { 1273 for (MachineOperand &MO : operands()) { 1274 if (MO.isReg() && MO.isUse()) 1275 MO.setIsKill(false); 1276 } 1277 } 1278 1279 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1280 unsigned SubIdx, 1281 const TargetRegisterInfo &RegInfo) { 1282 if (ToReg.isPhysical()) { 1283 if (SubIdx) 1284 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1285 for (MachineOperand &MO : operands()) { 1286 if (!MO.isReg() || MO.getReg() != FromReg) 1287 continue; 1288 MO.substPhysReg(ToReg, RegInfo); 1289 } 1290 } else { 1291 for (MachineOperand &MO : operands()) { 1292 if (!MO.isReg() || MO.getReg() != FromReg) 1293 continue; 1294 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1295 } 1296 } 1297 } 1298 1299 /// isSafeToMove - Return true if it is safe to move this instruction. If 1300 /// SawStore is set to true, it means that there is a store (or call) between 1301 /// the instruction's location and its intended destination. 1302 bool MachineInstr::isSafeToMove(bool &SawStore) const { 1303 // Ignore stuff that we obviously can't move. 1304 // 1305 // Treat volatile loads as stores. This is not strictly necessary for 1306 // volatiles, but it is required for atomic loads. It is not allowed to move 1307 // a load across an atomic load with Ordering > Monotonic. 1308 if (mayStore() || isCall() || isPHI() || 1309 (mayLoad() && hasOrderedMemoryRef())) { 1310 SawStore = true; 1311 return false; 1312 } 1313 1314 if (isPosition() || isDebugInstr() || isTerminator() || 1315 mayRaiseFPException() || hasUnmodeledSideEffects() || 1316 isJumpTableDebugInfo()) 1317 return false; 1318 1319 // See if this instruction does a load. If so, we have to guarantee that the 1320 // loaded value doesn't change between the load and the its intended 1321 // destination. The check for isInvariantLoad gives the target the chance to 1322 // classify the load as always returning a constant, e.g. a constant pool 1323 // load. 1324 if (mayLoad() && !isDereferenceableInvariantLoad()) 1325 // Otherwise, this is a real load. If there is a store between the load and 1326 // end of block, we can't move it. 1327 return !SawStore; 1328 1329 return true; 1330 } 1331 1332 bool MachineInstr::wouldBeTriviallyDead() const { 1333 // Don't delete frame allocation labels. 1334 // FIXME: Why is LOCAL_ESCAPE not considered in MachineInstr::isLabel? 1335 if (getOpcode() == TargetOpcode::LOCAL_ESCAPE) 1336 return false; 1337 1338 // Don't delete FAKE_USE. 1339 // FIXME: Why is FAKE_USE not considered in MachineInstr::isPosition? 1340 if (isFakeUse()) 1341 return false; 1342 1343 // LIFETIME markers should be preserved. 1344 // FIXME: Why are LIFETIME markers not considered in MachineInstr::isPosition? 1345 if (isLifetimeMarker()) 1346 return false; 1347 1348 // If we can move an instruction, we can remove it. Otherwise, it has 1349 // a side-effect of some sort. 1350 bool SawStore = false; 1351 return isPHI() || isSafeToMove(SawStore); 1352 } 1353 1354 bool MachineInstr::isDead(const MachineRegisterInfo &MRI, 1355 LiveRegUnits *LivePhysRegs) const { 1356 // Instructions without side-effects are dead iff they only define dead regs. 1357 // This function is hot and this loop returns early in the common case, 1358 // so only perform additional checks before this if absolutely necessary. 1359 for (const MachineOperand &MO : all_defs()) { 1360 Register Reg = MO.getReg(); 1361 if (Reg.isPhysical()) { 1362 // Don't delete live physreg defs, or any reserved register defs. 1363 if (!LivePhysRegs || !LivePhysRegs->available(Reg) || MRI.isReserved(Reg)) 1364 return false; 1365 } else { 1366 if (MO.isDead()) 1367 continue; 1368 for (const MachineInstr &Use : MRI.use_nodbg_instructions(Reg)) { 1369 if (&Use != this) 1370 // This def has a non-debug use. Don't delete the instruction! 1371 return false; 1372 } 1373 } 1374 } 1375 1376 // Technically speaking inline asm without side effects and no defs can still 1377 // be deleted. But there is so much bad inline asm code out there, we should 1378 // let them be. 1379 if (isInlineAsm()) 1380 return false; 1381 1382 // FIXME: See issue #105950 for why LIFETIME markers are considered dead here. 1383 if (isLifetimeMarker()) 1384 return true; 1385 1386 // If there are no defs with uses, then we call the instruction dead so long 1387 // as we do not suspect it may have sideeffects. 1388 return wouldBeTriviallyDead(); 1389 } 1390 1391 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, 1392 BatchAAResults *AA, bool UseTBAA, 1393 const MachineMemOperand *MMOa, 1394 const MachineMemOperand *MMOb) { 1395 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1396 // operates with MachineMemOperand offset with some important assumptions: 1397 // - LLVM fundamentally assumes flat address spaces. 1398 // - MachineOperand offset can *only* result from legalization and cannot 1399 // affect queries other than the trivial case of overlap checking. 1400 // - These offsets never wrap and never step outside of allocated objects. 1401 // - There should never be any negative offsets here. 1402 // 1403 // FIXME: Modify API to hide this math from "user" 1404 // Even before we go to AA we can reason locally about some memory objects. It 1405 // can save compile time, and possibly catch some corner cases not currently 1406 // covered. 1407 1408 int64_t OffsetA = MMOa->getOffset(); 1409 int64_t OffsetB = MMOb->getOffset(); 1410 int64_t MinOffset = std::min(OffsetA, OffsetB); 1411 1412 LocationSize WidthA = MMOa->getSize(); 1413 LocationSize WidthB = MMOb->getSize(); 1414 bool KnownWidthA = WidthA.hasValue(); 1415 bool KnownWidthB = WidthB.hasValue(); 1416 bool BothMMONonScalable = !WidthA.isScalable() && !WidthB.isScalable(); 1417 1418 const Value *ValA = MMOa->getValue(); 1419 const Value *ValB = MMOb->getValue(); 1420 bool SameVal = (ValA && ValB && (ValA == ValB)); 1421 if (!SameVal) { 1422 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1423 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1424 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1425 return false; 1426 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1427 return false; 1428 if (PSVa && PSVb && (PSVa == PSVb)) 1429 SameVal = true; 1430 } 1431 1432 if (SameVal && BothMMONonScalable) { 1433 if (!KnownWidthA || !KnownWidthB) 1434 return true; 1435 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1436 int64_t LowWidth = (MinOffset == OffsetA) 1437 ? WidthA.getValue().getKnownMinValue() 1438 : WidthB.getValue().getKnownMinValue(); 1439 return (MinOffset + LowWidth > MaxOffset); 1440 } 1441 1442 if (!AA) 1443 return true; 1444 1445 if (!ValA || !ValB) 1446 return true; 1447 1448 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1449 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1450 1451 // If Scalable Location Size has non-zero offset, Width + Offset does not work 1452 // at the moment 1453 if ((WidthA.isScalable() && OffsetA > 0) || 1454 (WidthB.isScalable() && OffsetB > 0)) 1455 return true; 1456 1457 int64_t OverlapA = 1458 KnownWidthA ? WidthA.getValue().getKnownMinValue() + OffsetA - MinOffset 1459 : MemoryLocation::UnknownSize; 1460 int64_t OverlapB = 1461 KnownWidthB ? WidthB.getValue().getKnownMinValue() + OffsetB - MinOffset 1462 : MemoryLocation::UnknownSize; 1463 1464 LocationSize LocA = (WidthA.isScalable() || !KnownWidthA) 1465 ? WidthA 1466 : LocationSize::precise(OverlapA); 1467 LocationSize LocB = (WidthB.isScalable() || !KnownWidthB) 1468 ? WidthB 1469 : LocationSize::precise(OverlapB); 1470 1471 return !AA->isNoAlias( 1472 MemoryLocation(ValA, LocA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1473 MemoryLocation(ValB, LocB, UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1474 } 1475 1476 bool MachineInstr::mayAlias(BatchAAResults *AA, const MachineInstr &Other, 1477 bool UseTBAA) const { 1478 const MachineFunction *MF = getMF(); 1479 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1480 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1481 1482 // Exclude call instruction which may alter the memory but can not be handled 1483 // by this function. 1484 if (isCall() || Other.isCall()) 1485 return true; 1486 1487 // If neither instruction stores to memory, they can't alias in any 1488 // meaningful way, even if they read from the same address. 1489 if (!mayStore() && !Other.mayStore()) 1490 return false; 1491 1492 // Both instructions must be memory operations to be able to alias. 1493 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1494 return false; 1495 1496 // Let the target decide if memory accesses cannot possibly overlap. 1497 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1498 return false; 1499 1500 // Memory operations without memory operands may access anything. Be 1501 // conservative and assume `MayAlias`. 1502 if (memoperands_empty() || Other.memoperands_empty()) 1503 return true; 1504 1505 // Skip if there are too many memory operands. 1506 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1507 if (NumChecks > TII->getMemOperandAACheckLimit()) 1508 return true; 1509 1510 // Check each pair of memory operands from both instructions, which can't 1511 // alias only if all pairs won't alias. 1512 for (auto *MMOa : memoperands()) 1513 for (auto *MMOb : Other.memoperands()) 1514 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1515 return true; 1516 1517 return false; 1518 } 1519 1520 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1521 bool UseTBAA) const { 1522 if (AA) { 1523 BatchAAResults BAA(*AA); 1524 return mayAlias(&BAA, Other, UseTBAA); 1525 } 1526 return mayAlias(static_cast<BatchAAResults *>(nullptr), Other, UseTBAA); 1527 } 1528 1529 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1530 /// or volatile memory reference, or if the information describing the memory 1531 /// reference is not available. Return false if it is known to have no ordered 1532 /// memory references. 1533 bool MachineInstr::hasOrderedMemoryRef() const { 1534 // An instruction known never to access memory won't have a volatile access. 1535 if (!mayStore() && 1536 !mayLoad() && 1537 !isCall() && 1538 !hasUnmodeledSideEffects()) 1539 return false; 1540 1541 // Otherwise, if the instruction has no memory reference information, 1542 // conservatively assume it wasn't preserved. 1543 if (memoperands_empty()) 1544 return true; 1545 1546 // Check if any of our memory operands are ordered. 1547 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1548 return !MMO->isUnordered(); 1549 }); 1550 } 1551 1552 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1553 /// trap and is loading from a location whose value is invariant across a run of 1554 /// this function. 1555 bool MachineInstr::isDereferenceableInvariantLoad() const { 1556 // If the instruction doesn't load at all, it isn't an invariant load. 1557 if (!mayLoad()) 1558 return false; 1559 1560 // If the instruction has lost its memoperands, conservatively assume that 1561 // it may not be an invariant load. 1562 if (memoperands_empty()) 1563 return false; 1564 1565 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1566 1567 for (MachineMemOperand *MMO : memoperands()) { 1568 if (!MMO->isUnordered()) 1569 // If the memory operand has ordering side effects, we can't move the 1570 // instruction. Such an instruction is technically an invariant load, 1571 // but the caller code would need updated to expect that. 1572 return false; 1573 if (MMO->isStore()) return false; 1574 if (MMO->isInvariant() && MMO->isDereferenceable()) 1575 continue; 1576 1577 // A load from a constant PseudoSourceValue is invariant. 1578 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 1579 if (PSV->isConstant(&MFI)) 1580 continue; 1581 } 1582 1583 // Otherwise assume conservatively. 1584 return false; 1585 } 1586 1587 // Everything checks out. 1588 return true; 1589 } 1590 1591 Register MachineInstr::isConstantValuePHI() const { 1592 if (!isPHI()) 1593 return {}; 1594 assert(getNumOperands() >= 3 && 1595 "It's illegal to have a PHI without source operands"); 1596 1597 Register Reg = getOperand(1).getReg(); 1598 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1599 if (getOperand(i).getReg() != Reg) 1600 return {}; 1601 return Reg; 1602 } 1603 1604 bool MachineInstr::hasUnmodeledSideEffects() const { 1605 if (hasProperty(MCID::UnmodeledSideEffects)) 1606 return true; 1607 if (isInlineAsm()) { 1608 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1609 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1610 return true; 1611 } 1612 1613 return false; 1614 } 1615 1616 bool MachineInstr::isLoadFoldBarrier() const { 1617 return mayStore() || isCall() || 1618 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1619 } 1620 1621 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1622 /// 1623 bool MachineInstr::allDefsAreDead() const { 1624 for (const MachineOperand &MO : operands()) { 1625 if (!MO.isReg() || MO.isUse()) 1626 continue; 1627 if (!MO.isDead()) 1628 return false; 1629 } 1630 return true; 1631 } 1632 1633 bool MachineInstr::allImplicitDefsAreDead() const { 1634 for (const MachineOperand &MO : implicit_operands()) { 1635 if (!MO.isReg() || MO.isUse()) 1636 continue; 1637 if (!MO.isDead()) 1638 return false; 1639 } 1640 return true; 1641 } 1642 1643 /// copyImplicitOps - Copy implicit register operands from specified 1644 /// instruction to this instruction. 1645 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1646 const MachineInstr &MI) { 1647 for (const MachineOperand &MO : 1648 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) 1649 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1650 addOperand(MF, MO); 1651 } 1652 1653 bool MachineInstr::hasComplexRegisterTies() const { 1654 const MCInstrDesc &MCID = getDesc(); 1655 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1656 return true; 1657 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1658 const auto &Operand = getOperand(I); 1659 if (!Operand.isReg() || Operand.isDef()) 1660 // Ignore the defined registers as MCID marks only the uses as tied. 1661 continue; 1662 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1663 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1664 if (ExpectedTiedIdx != TiedIdx) 1665 return true; 1666 } 1667 return false; 1668 } 1669 1670 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1671 const MachineRegisterInfo &MRI) const { 1672 const MachineOperand &Op = getOperand(OpIdx); 1673 if (!Op.isReg()) 1674 return LLT{}; 1675 1676 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1677 return MRI.getType(Op.getReg()); 1678 1679 auto &OpInfo = getDesc().operands()[OpIdx]; 1680 if (!OpInfo.isGenericType()) 1681 return MRI.getType(Op.getReg()); 1682 1683 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1684 return LLT{}; 1685 1686 LLT TypeToPrint = MRI.getType(Op.getReg()); 1687 // Don't mark the type index printed if it wasn't actually printed: maybe 1688 // another operand with the same type index has an actual type attached: 1689 if (TypeToPrint.isValid()) 1690 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1691 return TypeToPrint; 1692 } 1693 1694 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1695 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1696 dbgs() << " "; 1697 print(dbgs()); 1698 } 1699 1700 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1701 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1702 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1703 if (Depth >= MaxDepth) 1704 return; 1705 if (!AlreadySeenInstrs.insert(this).second) 1706 return; 1707 // PadToColumn always inserts at least one space. 1708 // Don't mess up the alignment if we don't want any space. 1709 if (Depth) 1710 fdbgs().PadToColumn(Depth * 2); 1711 print(fdbgs()); 1712 for (const MachineOperand &MO : operands()) { 1713 if (!MO.isReg() || MO.isDef()) 1714 continue; 1715 Register Reg = MO.getReg(); 1716 if (Reg.isPhysical()) 1717 continue; 1718 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1719 if (NewMI == nullptr) 1720 continue; 1721 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1722 } 1723 } 1724 1725 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1726 unsigned MaxDepth) const { 1727 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1728 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1729 } 1730 #endif 1731 1732 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1733 bool SkipDebugLoc, bool AddNewLine, 1734 const TargetInstrInfo *TII) const { 1735 const Module *M = nullptr; 1736 const Function *F = nullptr; 1737 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1738 F = &MF->getFunction(); 1739 M = F->getParent(); 1740 if (!TII) 1741 TII = MF->getSubtarget().getInstrInfo(); 1742 } 1743 1744 ModuleSlotTracker MST(M); 1745 if (F) 1746 MST.incorporateFunction(*F); 1747 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1748 } 1749 1750 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1751 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1752 bool AddNewLine, const TargetInstrInfo *TII) const { 1753 // We can be a bit tidier if we know the MachineFunction. 1754 const TargetRegisterInfo *TRI = nullptr; 1755 const MachineRegisterInfo *MRI = nullptr; 1756 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1757 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1758 1759 if (isCFIInstruction()) 1760 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1761 1762 SmallBitVector PrintedTypes(8); 1763 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1764 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1765 if (!ShouldPrintRegisterTies) 1766 return 0U; 1767 const MachineOperand &MO = getOperand(OpIdx); 1768 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1769 return findTiedOperandIdx(OpIdx); 1770 return 0U; 1771 }; 1772 unsigned StartOp = 0; 1773 unsigned e = getNumOperands(); 1774 1775 // Print explicitly defined operands on the left of an assignment syntax. 1776 while (StartOp < e) { 1777 const MachineOperand &MO = getOperand(StartOp); 1778 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1779 break; 1780 1781 if (StartOp != 0) 1782 OS << ", "; 1783 1784 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1785 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1786 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1787 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1788 ++StartOp; 1789 } 1790 1791 if (StartOp != 0) 1792 OS << " = "; 1793 1794 if (getFlag(MachineInstr::FrameSetup)) 1795 OS << "frame-setup "; 1796 if (getFlag(MachineInstr::FrameDestroy)) 1797 OS << "frame-destroy "; 1798 if (getFlag(MachineInstr::FmNoNans)) 1799 OS << "nnan "; 1800 if (getFlag(MachineInstr::FmNoInfs)) 1801 OS << "ninf "; 1802 if (getFlag(MachineInstr::FmNsz)) 1803 OS << "nsz "; 1804 if (getFlag(MachineInstr::FmArcp)) 1805 OS << "arcp "; 1806 if (getFlag(MachineInstr::FmContract)) 1807 OS << "contract "; 1808 if (getFlag(MachineInstr::FmAfn)) 1809 OS << "afn "; 1810 if (getFlag(MachineInstr::FmReassoc)) 1811 OS << "reassoc "; 1812 if (getFlag(MachineInstr::NoUWrap)) 1813 OS << "nuw "; 1814 if (getFlag(MachineInstr::NoSWrap)) 1815 OS << "nsw "; 1816 if (getFlag(MachineInstr::IsExact)) 1817 OS << "exact "; 1818 if (getFlag(MachineInstr::NoFPExcept)) 1819 OS << "nofpexcept "; 1820 if (getFlag(MachineInstr::NoMerge)) 1821 OS << "nomerge "; 1822 if (getFlag(MachineInstr::NonNeg)) 1823 OS << "nneg "; 1824 if (getFlag(MachineInstr::Disjoint)) 1825 OS << "disjoint "; 1826 if (getFlag(MachineInstr::SameSign)) 1827 OS << "samesign "; 1828 1829 // Print the opcode name. 1830 if (TII) 1831 OS << TII->getName(getOpcode()); 1832 else 1833 OS << "UNKNOWN"; 1834 1835 if (SkipOpers) 1836 return; 1837 1838 // Print the rest of the operands. 1839 bool FirstOp = true; 1840 unsigned AsmDescOp = ~0u; 1841 unsigned AsmOpCount = 0; 1842 1843 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1844 // Print asm string. 1845 OS << " "; 1846 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1847 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1848 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1849 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1850 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1851 IntrinsicInfo); 1852 1853 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1854 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1855 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1856 OS << " [sideeffect]"; 1857 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1858 OS << " [mayload]"; 1859 if (ExtraInfo & InlineAsm::Extra_MayStore) 1860 OS << " [maystore]"; 1861 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1862 OS << " [isconvergent]"; 1863 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1864 OS << " [alignstack]"; 1865 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1866 OS << " [attdialect]"; 1867 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1868 OS << " [inteldialect]"; 1869 1870 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1871 FirstOp = false; 1872 } 1873 1874 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1875 const MachineOperand &MO = getOperand(i); 1876 1877 if (FirstOp) FirstOp = false; else OS << ","; 1878 OS << " "; 1879 1880 if (isDebugValueLike() && MO.isMetadata()) { 1881 // Pretty print DBG_VALUE* instructions. 1882 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1883 if (DIV && !DIV->getName().empty()) 1884 OS << "!\"" << DIV->getName() << '\"'; 1885 else { 1886 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1887 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1888 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1889 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1890 } 1891 } else if (isDebugLabel() && MO.isMetadata()) { 1892 // Pretty print DBG_LABEL instructions. 1893 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1894 if (DIL && !DIL->getName().empty()) 1895 OS << "\"" << DIL->getName() << '\"'; 1896 else { 1897 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1898 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1899 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1900 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1901 } 1902 } else if (i == AsmDescOp && MO.isImm()) { 1903 // Pretty print the inline asm operand descriptor. 1904 OS << '$' << AsmOpCount++; 1905 unsigned Flag = MO.getImm(); 1906 const InlineAsm::Flag F(Flag); 1907 OS << ":["; 1908 OS << F.getKindName(); 1909 1910 unsigned RCID; 1911 if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) { 1912 if (TRI) { 1913 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1914 } else 1915 OS << ":RC" << RCID; 1916 } 1917 1918 if (F.isMemKind()) { 1919 const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID(); 1920 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1921 } 1922 1923 unsigned TiedTo; 1924 if (F.isUseOperandTiedToDef(TiedTo)) 1925 OS << " tiedto:$" << TiedTo; 1926 1927 if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || 1928 F.isRegUseKind()) && 1929 F.getRegMayBeFolded()) { 1930 OS << " foldable"; 1931 } 1932 1933 OS << ']'; 1934 1935 // Compute the index of the next operand descriptor. 1936 AsmDescOp += 1 + F.getNumOperandRegisters(); 1937 } else { 1938 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1939 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1940 if (MO.isImm() && isOperandSubregIdx(i)) 1941 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1942 else 1943 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1944 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1945 } 1946 } 1947 1948 // Print any optional symbols attached to this instruction as-if they were 1949 // operands. 1950 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1951 if (!FirstOp) { 1952 FirstOp = false; 1953 OS << ','; 1954 } 1955 OS << " pre-instr-symbol "; 1956 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1957 } 1958 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1959 if (!FirstOp) { 1960 FirstOp = false; 1961 OS << ','; 1962 } 1963 OS << " post-instr-symbol "; 1964 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1965 } 1966 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1967 if (!FirstOp) { 1968 FirstOp = false; 1969 OS << ','; 1970 } 1971 OS << " heap-alloc-marker "; 1972 HeapAllocMarker->printAsOperand(OS, MST); 1973 } 1974 if (MDNode *PCSections = getPCSections()) { 1975 if (!FirstOp) { 1976 FirstOp = false; 1977 OS << ','; 1978 } 1979 OS << " pcsections "; 1980 PCSections->printAsOperand(OS, MST); 1981 } 1982 if (MDNode *MMRA = getMMRAMetadata()) { 1983 if (!FirstOp) { 1984 FirstOp = false; 1985 OS << ','; 1986 } 1987 OS << " mmra "; 1988 MMRA->printAsOperand(OS, MST); 1989 } 1990 if (uint32_t CFIType = getCFIType()) { 1991 if (!FirstOp) 1992 OS << ','; 1993 OS << " cfi-type " << CFIType; 1994 } 1995 1996 if (DebugInstrNum) { 1997 if (!FirstOp) 1998 OS << ","; 1999 OS << " debug-instr-number " << DebugInstrNum; 2000 } 2001 2002 if (!SkipDebugLoc) { 2003 if (const DebugLoc &DL = getDebugLoc()) { 2004 if (!FirstOp) 2005 OS << ','; 2006 OS << " debug-location "; 2007 DL->printAsOperand(OS, MST); 2008 } 2009 } 2010 2011 if (!memoperands_empty()) { 2012 SmallVector<StringRef, 0> SSNs; 2013 const LLVMContext *Context = nullptr; 2014 std::unique_ptr<LLVMContext> CtxPtr; 2015 const MachineFrameInfo *MFI = nullptr; 2016 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 2017 MFI = &MF->getFrameInfo(); 2018 Context = &MF->getFunction().getContext(); 2019 } else { 2020 CtxPtr = std::make_unique<LLVMContext>(); 2021 Context = CtxPtr.get(); 2022 } 2023 2024 OS << " :: "; 2025 bool NeedComma = false; 2026 for (const MachineMemOperand *Op : memoperands()) { 2027 if (NeedComma) 2028 OS << ", "; 2029 Op->print(OS, MST, SSNs, *Context, MFI, TII); 2030 NeedComma = true; 2031 } 2032 } 2033 2034 if (SkipDebugLoc) 2035 return; 2036 2037 bool HaveSemi = false; 2038 2039 // Print debug location information. 2040 if (const DebugLoc &DL = getDebugLoc()) { 2041 if (!HaveSemi) { 2042 OS << ';'; 2043 HaveSemi = true; 2044 } 2045 OS << ' '; 2046 DL.print(OS); 2047 } 2048 2049 // Print extra comments for DEBUG_VALUE and friends if they are well-formed. 2050 if ((isNonListDebugValue() && getNumOperands() >= 4) || 2051 (isDebugValueList() && getNumOperands() >= 2) || 2052 (isDebugRef() && getNumOperands() >= 3)) { 2053 if (getDebugVariableOp().isMetadata()) { 2054 if (!HaveSemi) { 2055 OS << ";"; 2056 HaveSemi = true; 2057 } 2058 auto *DV = getDebugVariable(); 2059 OS << " line no:" << DV->getLine(); 2060 if (isIndirectDebugValue()) 2061 OS << " indirect"; 2062 } 2063 } 2064 // TODO: DBG_LABEL 2065 2066 if (AddNewLine) 2067 OS << '\n'; 2068 } 2069 2070 bool MachineInstr::addRegisterKilled(Register IncomingReg, 2071 const TargetRegisterInfo *RegInfo, 2072 bool AddIfNotFound) { 2073 bool isPhysReg = IncomingReg.isPhysical(); 2074 bool hasAliases = isPhysReg && 2075 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 2076 bool Found = false; 2077 SmallVector<unsigned,4> DeadOps; 2078 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2079 MachineOperand &MO = getOperand(i); 2080 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 2081 continue; 2082 2083 // DEBUG_VALUE nodes do not contribute to code generation and should 2084 // always be ignored. Failure to do so may result in trying to modify 2085 // KILL flags on DEBUG_VALUE nodes. 2086 if (MO.isDebug()) 2087 continue; 2088 2089 Register Reg = MO.getReg(); 2090 if (!Reg) 2091 continue; 2092 2093 if (Reg == IncomingReg) { 2094 if (!Found) { 2095 if (MO.isKill()) 2096 // The register is already marked kill. 2097 return true; 2098 if (isPhysReg && isRegTiedToDefOperand(i)) 2099 // Two-address uses of physregs must not be marked kill. 2100 return true; 2101 MO.setIsKill(); 2102 Found = true; 2103 } 2104 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) { 2105 // A super-register kill already exists. 2106 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 2107 return true; 2108 if (RegInfo->isSubRegister(IncomingReg, Reg)) 2109 DeadOps.push_back(i); 2110 } 2111 } 2112 2113 // Trim unneeded kill operands. 2114 while (!DeadOps.empty()) { 2115 unsigned OpIdx = DeadOps.back(); 2116 if (getOperand(OpIdx).isImplicit() && 2117 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2118 removeOperand(OpIdx); 2119 else 2120 getOperand(OpIdx).setIsKill(false); 2121 DeadOps.pop_back(); 2122 } 2123 2124 // If not found, this means an alias of one of the operands is killed. Add a 2125 // new implicit operand if required. 2126 if (!Found && AddIfNotFound) { 2127 addOperand(MachineOperand::CreateReg(IncomingReg, 2128 false /*IsDef*/, 2129 true /*IsImp*/, 2130 true /*IsKill*/)); 2131 return true; 2132 } 2133 return Found; 2134 } 2135 2136 void MachineInstr::clearRegisterKills(Register Reg, 2137 const TargetRegisterInfo *RegInfo) { 2138 if (!Reg.isPhysical()) 2139 RegInfo = nullptr; 2140 for (MachineOperand &MO : operands()) { 2141 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2142 continue; 2143 Register OpReg = MO.getReg(); 2144 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2145 MO.setIsKill(false); 2146 } 2147 } 2148 2149 bool MachineInstr::addRegisterDead(Register Reg, 2150 const TargetRegisterInfo *RegInfo, 2151 bool AddIfNotFound) { 2152 bool isPhysReg = Reg.isPhysical(); 2153 bool hasAliases = isPhysReg && 2154 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2155 bool Found = false; 2156 SmallVector<unsigned,4> DeadOps; 2157 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2158 MachineOperand &MO = getOperand(i); 2159 if (!MO.isReg() || !MO.isDef()) 2160 continue; 2161 Register MOReg = MO.getReg(); 2162 if (!MOReg) 2163 continue; 2164 2165 if (MOReg == Reg) { 2166 MO.setIsDead(); 2167 Found = true; 2168 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) { 2169 // There exists a super-register that's marked dead. 2170 if (RegInfo->isSuperRegister(Reg, MOReg)) 2171 return true; 2172 if (RegInfo->isSubRegister(Reg, MOReg)) 2173 DeadOps.push_back(i); 2174 } 2175 } 2176 2177 // Trim unneeded dead operands. 2178 while (!DeadOps.empty()) { 2179 unsigned OpIdx = DeadOps.back(); 2180 if (getOperand(OpIdx).isImplicit() && 2181 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2182 removeOperand(OpIdx); 2183 else 2184 getOperand(OpIdx).setIsDead(false); 2185 DeadOps.pop_back(); 2186 } 2187 2188 // If not found, this means an alias of one of the operands is dead. Add a 2189 // new implicit operand if required. 2190 if (Found || !AddIfNotFound) 2191 return Found; 2192 2193 addOperand(MachineOperand::CreateReg(Reg, 2194 true /*IsDef*/, 2195 true /*IsImp*/, 2196 false /*IsKill*/, 2197 true /*IsDead*/)); 2198 return true; 2199 } 2200 2201 void MachineInstr::clearRegisterDeads(Register Reg) { 2202 for (MachineOperand &MO : all_defs()) 2203 if (MO.getReg() == Reg) 2204 MO.setIsDead(false); 2205 } 2206 2207 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2208 for (MachineOperand &MO : all_defs()) 2209 if (MO.getReg() == Reg && MO.getSubReg() != 0) 2210 MO.setIsUndef(IsUndef); 2211 } 2212 2213 void MachineInstr::addRegisterDefined(Register Reg, 2214 const TargetRegisterInfo *RegInfo) { 2215 if (Reg.isPhysical()) { 2216 MachineOperand *MO = findRegisterDefOperand(Reg, RegInfo, false, false); 2217 if (MO) 2218 return; 2219 } else { 2220 for (const MachineOperand &MO : all_defs()) { 2221 if (MO.getReg() == Reg && MO.getSubReg() == 0) 2222 return; 2223 } 2224 } 2225 addOperand(MachineOperand::CreateReg(Reg, 2226 true /*IsDef*/, 2227 true /*IsImp*/)); 2228 } 2229 2230 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2231 const TargetRegisterInfo &TRI) { 2232 bool HasRegMask = false; 2233 for (MachineOperand &MO : operands()) { 2234 if (MO.isRegMask()) { 2235 HasRegMask = true; 2236 continue; 2237 } 2238 if (!MO.isReg() || !MO.isDef()) continue; 2239 Register Reg = MO.getReg(); 2240 if (!Reg.isPhysical()) 2241 continue; 2242 // If there are no uses, including partial uses, the def is dead. 2243 if (llvm::none_of(UsedRegs, 2244 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2245 MO.setIsDead(); 2246 } 2247 2248 // This is a call with a register mask operand. 2249 // Mask clobbers are always dead, so add defs for the non-dead defines. 2250 if (HasRegMask) 2251 for (const Register &UsedReg : UsedRegs) 2252 addRegisterDefined(UsedReg, &TRI); 2253 } 2254 2255 unsigned 2256 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2257 // Build up a buffer of hash code components. 2258 SmallVector<size_t, 16> HashComponents; 2259 HashComponents.reserve(MI->getNumOperands() + 1); 2260 HashComponents.push_back(MI->getOpcode()); 2261 for (const MachineOperand &MO : MI->operands()) { 2262 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual()) 2263 continue; // Skip virtual register defs. 2264 2265 HashComponents.push_back(hash_value(MO)); 2266 } 2267 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2268 } 2269 2270 const MDNode *MachineInstr::getLocCookieMD() const { 2271 // Find the source location cookie. 2272 const MDNode *LocMD = nullptr; 2273 for (unsigned i = getNumOperands(); i != 0; --i) { 2274 if (getOperand(i-1).isMetadata() && 2275 (LocMD = getOperand(i-1).getMetadata()) && 2276 LocMD->getNumOperands() != 0) { 2277 if (mdconst::hasa<ConstantInt>(LocMD->getOperand(0))) 2278 return LocMD; 2279 } 2280 } 2281 2282 return nullptr; 2283 } 2284 2285 void MachineInstr::emitInlineAsmError(const Twine &Msg) const { 2286 assert(isInlineAsm()); 2287 const MDNode *LocMD = getLocCookieMD(); 2288 uint64_t LocCookie = 2289 LocMD 2290 ? mdconst::extract<ConstantInt>(LocMD->getOperand(0))->getZExtValue() 2291 : 0; 2292 LLVMContext &Ctx = getMF()->getFunction().getContext(); 2293 Ctx.diagnose(DiagnosticInfoInlineAsm(LocCookie, Msg)); 2294 } 2295 2296 void MachineInstr::emitGenericError(const Twine &Msg) const { 2297 const Function &Fn = getMF()->getFunction(); 2298 Fn.getContext().diagnose( 2299 DiagnosticInfoGenericWithLoc(Msg, Fn, getDebugLoc())); 2300 } 2301 2302 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2303 const MCInstrDesc &MCID, bool IsIndirect, 2304 Register Reg, const MDNode *Variable, 2305 const MDNode *Expr) { 2306 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2307 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2308 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2309 "Expected inlined-at fields to agree"); 2310 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); 2311 if (IsIndirect) 2312 MIB.addImm(0U); 2313 else 2314 MIB.addReg(0U); 2315 return MIB.addMetadata(Variable).addMetadata(Expr); 2316 } 2317 2318 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2319 const MCInstrDesc &MCID, bool IsIndirect, 2320 ArrayRef<MachineOperand> DebugOps, 2321 const MDNode *Variable, const MDNode *Expr) { 2322 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2323 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2324 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2325 "Expected inlined-at fields to agree"); 2326 if (MCID.Opcode == TargetOpcode::DBG_VALUE) { 2327 assert(DebugOps.size() == 1 && 2328 "DBG_VALUE must contain exactly one debug operand"); 2329 MachineOperand DebugOp = DebugOps[0]; 2330 if (DebugOp.isReg()) 2331 return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable, 2332 Expr); 2333 2334 auto MIB = BuildMI(MF, DL, MCID).add(DebugOp); 2335 if (IsIndirect) 2336 MIB.addImm(0U); 2337 else 2338 MIB.addReg(0U); 2339 return MIB.addMetadata(Variable).addMetadata(Expr); 2340 } 2341 2342 auto MIB = BuildMI(MF, DL, MCID); 2343 MIB.addMetadata(Variable).addMetadata(Expr); 2344 for (const MachineOperand &DebugOp : DebugOps) 2345 if (DebugOp.isReg()) 2346 MIB.addReg(DebugOp.getReg()); 2347 else 2348 MIB.add(DebugOp); 2349 return MIB; 2350 } 2351 2352 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2353 MachineBasicBlock::iterator I, 2354 const DebugLoc &DL, const MCInstrDesc &MCID, 2355 bool IsIndirect, Register Reg, 2356 const MDNode *Variable, const MDNode *Expr) { 2357 MachineFunction &MF = *BB.getParent(); 2358 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2359 BB.insert(I, MI); 2360 return MachineInstrBuilder(MF, MI); 2361 } 2362 2363 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2364 MachineBasicBlock::iterator I, 2365 const DebugLoc &DL, const MCInstrDesc &MCID, 2366 bool IsIndirect, 2367 ArrayRef<MachineOperand> DebugOps, 2368 const MDNode *Variable, const MDNode *Expr) { 2369 MachineFunction &MF = *BB.getParent(); 2370 MachineInstr *MI = 2371 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr); 2372 BB.insert(I, MI); 2373 return MachineInstrBuilder(MF, *MI); 2374 } 2375 2376 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2377 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2378 static const DIExpression *computeExprForSpill( 2379 const MachineInstr &MI, 2380 const SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2381 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2382 "Expected inlined-at fields to agree"); 2383 2384 const DIExpression *Expr = MI.getDebugExpression(); 2385 if (MI.isIndirectDebugValue()) { 2386 assert(MI.getDebugOffset().getImm() == 0 && 2387 "DBG_VALUE with nonzero offset"); 2388 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2389 } else if (MI.isDebugValueList()) { 2390 // We will replace the spilled register with a frame index, so 2391 // immediately deref all references to the spilled register. 2392 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2393 for (const MachineOperand *Op : SpilledOperands) { 2394 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2395 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2396 } 2397 } 2398 return Expr; 2399 } 2400 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2401 Register SpillReg) { 2402 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2403 SmallVector<const MachineOperand *> SpillOperands; 2404 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2405 SpillOperands.push_back(&Op); 2406 return computeExprForSpill(MI, SpillOperands); 2407 } 2408 2409 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2410 MachineBasicBlock::iterator I, 2411 const MachineInstr &Orig, 2412 int FrameIndex, Register SpillReg) { 2413 assert(!Orig.isDebugRef() && 2414 "DBG_INSTR_REF should not reference a virtual register."); 2415 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2416 MachineInstrBuilder NewMI = 2417 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2418 // Non-Variadic Operands: Location, Offset, Variable, Expression 2419 // Variadic Operands: Variable, Expression, Locations... 2420 if (Orig.isNonListDebugValue()) 2421 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2422 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2423 if (Orig.isDebugValueList()) { 2424 for (const MachineOperand &Op : Orig.debug_operands()) 2425 if (Op.isReg() && Op.getReg() == SpillReg) 2426 NewMI.addFrameIndex(FrameIndex); 2427 else 2428 NewMI.add(MachineOperand(Op)); 2429 } 2430 return NewMI; 2431 } 2432 MachineInstr *llvm::buildDbgValueForSpill( 2433 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2434 const MachineInstr &Orig, int FrameIndex, 2435 const SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2436 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2437 MachineInstrBuilder NewMI = 2438 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2439 // Non-Variadic Operands: Location, Offset, Variable, Expression 2440 // Variadic Operands: Variable, Expression, Locations... 2441 if (Orig.isNonListDebugValue()) 2442 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2443 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2444 if (Orig.isDebugValueList()) { 2445 for (const MachineOperand &Op : Orig.debug_operands()) 2446 if (is_contained(SpilledOperands, &Op)) 2447 NewMI.addFrameIndex(FrameIndex); 2448 else 2449 NewMI.add(MachineOperand(Op)); 2450 } 2451 return NewMI; 2452 } 2453 2454 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2455 Register Reg) { 2456 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2457 if (Orig.isNonListDebugValue()) 2458 Orig.getDebugOffset().ChangeToImmediate(0U); 2459 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2460 Op.ChangeToFrameIndex(FrameIndex); 2461 Orig.getDebugExpressionOp().setMetadata(Expr); 2462 } 2463 2464 void MachineInstr::collectDebugValues( 2465 SmallVectorImpl<MachineInstr *> &DbgValues) { 2466 MachineInstr &MI = *this; 2467 if (!MI.getOperand(0).isReg()) 2468 return; 2469 2470 MachineBasicBlock::iterator DI = MI; ++DI; 2471 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2472 DI != DE; ++DI) { 2473 if (!DI->isDebugValue()) 2474 return; 2475 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2476 DbgValues.push_back(&*DI); 2477 } 2478 } 2479 2480 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2481 // Collect matching debug values. 2482 SmallVector<MachineInstr *, 2> DbgValues; 2483 2484 if (!getOperand(0).isReg()) 2485 return; 2486 2487 Register DefReg = getOperand(0).getReg(); 2488 auto *MRI = getRegInfo(); 2489 for (auto &MO : MRI->use_operands(DefReg)) { 2490 auto *DI = MO.getParent(); 2491 if (!DI->isDebugValue()) 2492 continue; 2493 if (DI->hasDebugOperandForReg(DefReg)) { 2494 DbgValues.push_back(DI); 2495 } 2496 } 2497 2498 // Propagate Reg to debug value instructions. 2499 for (auto *DBI : DbgValues) 2500 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2501 Op.setReg(Reg); 2502 } 2503 2504 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2505 2506 static LocationSize getSpillSlotSize(const MMOList &Accesses, 2507 const MachineFrameInfo &MFI) { 2508 uint64_t Size = 0; 2509 for (const auto *A : Accesses) { 2510 if (MFI.isSpillSlotObjectIndex( 2511 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2512 ->getFrameIndex())) { 2513 LocationSize S = A->getSize(); 2514 if (!S.hasValue()) 2515 return LocationSize::beforeOrAfterPointer(); 2516 Size += S.getValue(); 2517 } 2518 } 2519 return Size; 2520 } 2521 2522 std::optional<LocationSize> 2523 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2524 int FI; 2525 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2526 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2527 if (MFI.isSpillSlotObjectIndex(FI)) 2528 return (*memoperands_begin())->getSize(); 2529 } 2530 return std::nullopt; 2531 } 2532 2533 std::optional<LocationSize> 2534 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2535 MMOList Accesses; 2536 if (TII->hasStoreToStackSlot(*this, Accesses)) 2537 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2538 return std::nullopt; 2539 } 2540 2541 std::optional<LocationSize> 2542 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2543 int FI; 2544 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2545 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2546 if (MFI.isSpillSlotObjectIndex(FI)) 2547 return (*memoperands_begin())->getSize(); 2548 } 2549 return std::nullopt; 2550 } 2551 2552 std::optional<LocationSize> 2553 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2554 MMOList Accesses; 2555 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2556 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2557 return std::nullopt; 2558 } 2559 2560 unsigned MachineInstr::getDebugInstrNum() { 2561 if (DebugInstrNum == 0) 2562 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2563 return DebugInstrNum; 2564 } 2565 2566 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { 2567 if (DebugInstrNum == 0) 2568 DebugInstrNum = MF.getNewDebugInstrNum(); 2569 return DebugInstrNum; 2570 } 2571 2572 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const { 2573 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2574 getRegInfo()->getType(getOperand(1).getReg())); 2575 } 2576 2577 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const { 2578 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2579 getRegInfo()->getType(getOperand(1).getReg()), 2580 getRegInfo()->getType(getOperand(2).getReg())); 2581 } 2582 2583 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const { 2584 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2585 getRegInfo()->getType(getOperand(1).getReg()), 2586 getRegInfo()->getType(getOperand(2).getReg()), 2587 getRegInfo()->getType(getOperand(3).getReg())); 2588 } 2589 2590 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const { 2591 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2592 getRegInfo()->getType(getOperand(1).getReg()), 2593 getRegInfo()->getType(getOperand(2).getReg()), 2594 getRegInfo()->getType(getOperand(3).getReg()), 2595 getRegInfo()->getType(getOperand(4).getReg())); 2596 } 2597 2598 std::tuple<Register, LLT, Register, LLT> 2599 MachineInstr::getFirst2RegLLTs() const { 2600 Register Reg0 = getOperand(0).getReg(); 2601 Register Reg1 = getOperand(1).getReg(); 2602 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2603 getRegInfo()->getType(Reg1)); 2604 } 2605 2606 std::tuple<Register, LLT, Register, LLT, Register, LLT> 2607 MachineInstr::getFirst3RegLLTs() const { 2608 Register Reg0 = getOperand(0).getReg(); 2609 Register Reg1 = getOperand(1).getReg(); 2610 Register Reg2 = getOperand(2).getReg(); 2611 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2612 getRegInfo()->getType(Reg1), Reg2, 2613 getRegInfo()->getType(Reg2)); 2614 } 2615 2616 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> 2617 MachineInstr::getFirst4RegLLTs() const { 2618 Register Reg0 = getOperand(0).getReg(); 2619 Register Reg1 = getOperand(1).getReg(); 2620 Register Reg2 = getOperand(2).getReg(); 2621 Register Reg3 = getOperand(3).getReg(); 2622 return std::tuple( 2623 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2624 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3)); 2625 } 2626 2627 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register, 2628 LLT> 2629 MachineInstr::getFirst5RegLLTs() const { 2630 Register Reg0 = getOperand(0).getReg(); 2631 Register Reg1 = getOperand(1).getReg(); 2632 Register Reg2 = getOperand(2).getReg(); 2633 Register Reg3 = getOperand(3).getReg(); 2634 Register Reg4 = getOperand(4).getReg(); 2635 return std::tuple( 2636 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2637 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3), 2638 Reg4, getRegInfo()->getType(Reg4)); 2639 } 2640 2641 void MachineInstr::insert(mop_iterator InsertBefore, 2642 ArrayRef<MachineOperand> Ops) { 2643 assert(InsertBefore != nullptr && "invalid iterator"); 2644 assert(InsertBefore->getParent() == this && 2645 "iterator points to operand of other inst"); 2646 if (Ops.empty()) 2647 return; 2648 2649 // Do one pass to untie operands. 2650 SmallDenseMap<unsigned, unsigned> TiedOpIndices; 2651 for (const MachineOperand &MO : operands()) { 2652 if (MO.isReg() && MO.isTied()) { 2653 unsigned OpNo = getOperandNo(&MO); 2654 unsigned TiedTo = findTiedOperandIdx(OpNo); 2655 TiedOpIndices[OpNo] = TiedTo; 2656 untieRegOperand(OpNo); 2657 } 2658 } 2659 2660 unsigned OpIdx = getOperandNo(InsertBefore); 2661 unsigned NumOperands = getNumOperands(); 2662 unsigned OpsToMove = NumOperands - OpIdx; 2663 2664 SmallVector<MachineOperand> MovingOps; 2665 MovingOps.reserve(OpsToMove); 2666 2667 for (unsigned I = 0; I < OpsToMove; ++I) { 2668 MovingOps.emplace_back(getOperand(OpIdx)); 2669 removeOperand(OpIdx); 2670 } 2671 for (const MachineOperand &MO : Ops) 2672 addOperand(MO); 2673 for (const MachineOperand &OpMoved : MovingOps) 2674 addOperand(OpMoved); 2675 2676 // Re-tie operands. 2677 for (auto [Tie1, Tie2] : TiedOpIndices) { 2678 if (Tie1 >= OpIdx) 2679 Tie1 += Ops.size(); 2680 if (Tie2 >= OpIdx) 2681 Tie2 += Ops.size(); 2682 tieOperands(Tie1, Tie2); 2683 } 2684 } 2685 2686 bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId) const { 2687 assert(OpId && "expected non-zero operand id"); 2688 assert(isInlineAsm() && "should only be used on inline asm"); 2689 2690 if (!getOperand(OpId).isReg()) 2691 return false; 2692 2693 const MachineOperand &MD = getOperand(OpId - 1); 2694 if (!MD.isImm()) 2695 return false; 2696 2697 InlineAsm::Flag F(MD.getImm()); 2698 if (F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) 2699 return F.getRegMayBeFolded(); 2700 return false; 2701 } 2702