1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The machine combiner pass uses machine trace metrics to ensure the combined 10 // instructions do not lengthen the critical path or the resource depth. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/ProfileSummaryInfo.h" 16 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 17 #include "llvm/CodeGen/MachineCombinerPattern.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineFunctionPass.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/MachineSizeOpts.h" 24 #include "llvm/CodeGen/MachineTraceMetrics.h" 25 #include "llvm/CodeGen/RegisterClassInfo.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSchedule.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/InitializePasses.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "machine-combiner" 38 39 STATISTIC(NumInstCombined, "Number of machineinst combined"); 40 41 static cl::opt<unsigned> 42 inc_threshold("machine-combiner-inc-threshold", cl::Hidden, 43 cl::desc("Incremental depth computation will be used for basic " 44 "blocks with more instructions."), cl::init(500)); 45 46 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden, 47 cl::desc("Dump all substituted intrs"), 48 cl::init(false)); 49 50 #ifdef EXPENSIVE_CHECKS 51 static cl::opt<bool> VerifyPatternOrder( 52 "machine-combiner-verify-pattern-order", cl::Hidden, 53 cl::desc( 54 "Verify that the generated patterns are ordered by increasing latency"), 55 cl::init(true)); 56 #else 57 static cl::opt<bool> VerifyPatternOrder( 58 "machine-combiner-verify-pattern-order", cl::Hidden, 59 cl::desc( 60 "Verify that the generated patterns are ordered by increasing latency"), 61 cl::init(false)); 62 #endif 63 64 namespace { 65 class MachineCombiner : public MachineFunctionPass { 66 const TargetSubtargetInfo *STI = nullptr; 67 const TargetInstrInfo *TII = nullptr; 68 const TargetRegisterInfo *TRI = nullptr; 69 MCSchedModel SchedModel; 70 MachineRegisterInfo *MRI = nullptr; 71 MachineLoopInfo *MLI = nullptr; // Current MachineLoopInfo 72 MachineTraceMetrics *Traces = nullptr; 73 MachineTraceMetrics::Ensemble *TraceEnsemble = nullptr; 74 MachineBlockFrequencyInfo *MBFI = nullptr; 75 ProfileSummaryInfo *PSI = nullptr; 76 RegisterClassInfo RegClassInfo; 77 78 TargetSchedModel TSchedModel; 79 80 public: 81 static char ID; 82 MachineCombiner() : MachineFunctionPass(ID) { 83 initializeMachineCombinerPass(*PassRegistry::getPassRegistry()); 84 } 85 void getAnalysisUsage(AnalysisUsage &AU) const override; 86 bool runOnMachineFunction(MachineFunction &MF) override; 87 StringRef getPassName() const override { return "Machine InstCombiner"; } 88 89 private: 90 bool combineInstructions(MachineBasicBlock *); 91 MachineInstr *getOperandDef(const MachineOperand &MO); 92 bool isTransientMI(const MachineInstr *MI); 93 unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs, 94 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 95 MachineTraceMetrics::Trace BlockTrace, 96 const MachineBasicBlock &MBB); 97 unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot, 98 MachineTraceMetrics::Trace BlockTrace); 99 bool improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root, 100 MachineTraceMetrics::Trace BlockTrace, 101 SmallVectorImpl<MachineInstr *> &InsInstrs, 102 SmallVectorImpl<MachineInstr *> &DelInstrs, 103 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 104 unsigned Pattern, bool SlackIsAccurate); 105 bool reduceRegisterPressure(MachineInstr &Root, MachineBasicBlock *MBB, 106 SmallVectorImpl<MachineInstr *> &InsInstrs, 107 SmallVectorImpl<MachineInstr *> &DelInstrs, 108 unsigned Pattern); 109 bool preservesResourceLen(MachineBasicBlock *MBB, 110 MachineTraceMetrics::Trace BlockTrace, 111 SmallVectorImpl<MachineInstr *> &InsInstrs, 112 SmallVectorImpl<MachineInstr *> &DelInstrs); 113 void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs, 114 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC); 115 std::pair<unsigned, unsigned> 116 getLatenciesForInstrSequences(MachineInstr &MI, 117 SmallVectorImpl<MachineInstr *> &InsInstrs, 118 SmallVectorImpl<MachineInstr *> &DelInstrs, 119 MachineTraceMetrics::Trace BlockTrace); 120 121 void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root, 122 SmallVector<unsigned, 16> &Patterns); 123 CombinerObjective getCombinerObjective(unsigned Pattern); 124 }; 125 } 126 127 char MachineCombiner::ID = 0; 128 char &llvm::MachineCombinerID = MachineCombiner::ID; 129 130 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE, 131 "Machine InstCombiner", false, false) 132 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 133 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetricsWrapperPass) 134 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner", 135 false, false) 136 137 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const { 138 AU.setPreservesCFG(); 139 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 140 AU.addRequired<MachineLoopInfoWrapperPass>(); 141 AU.addPreserved<MachineLoopInfoWrapperPass>(); 142 AU.addRequired<MachineTraceMetricsWrapperPass>(); 143 AU.addPreserved<MachineTraceMetricsWrapperPass>(); 144 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 145 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 146 MachineFunctionPass::getAnalysisUsage(AU); 147 } 148 149 MachineInstr * 150 MachineCombiner::getOperandDef(const MachineOperand &MO) { 151 MachineInstr *DefInstr = nullptr; 152 // We need a virtual register definition. 153 if (MO.isReg() && MO.getReg().isVirtual()) 154 DefInstr = MRI->getUniqueVRegDef(MO.getReg()); 155 return DefInstr; 156 } 157 158 /// Return true if MI is unlikely to generate an actual target instruction. 159 bool MachineCombiner::isTransientMI(const MachineInstr *MI) { 160 if (!MI->isCopy()) 161 return MI->isTransient(); 162 163 // If MI is a COPY, check if its src and dst registers can be coalesced. 164 Register Dst = MI->getOperand(0).getReg(); 165 Register Src = MI->getOperand(1).getReg(); 166 167 if (!MI->isFullCopy()) { 168 // If src RC contains super registers of dst RC, it can also be coalesced. 169 if (MI->getOperand(0).getSubReg() || Src.isPhysical() || Dst.isPhysical()) 170 return false; 171 172 auto SrcSub = MI->getOperand(1).getSubReg(); 173 auto SrcRC = MRI->getRegClass(Src); 174 auto DstRC = MRI->getRegClass(Dst); 175 return TRI->getMatchingSuperRegClass(SrcRC, DstRC, SrcSub) != nullptr; 176 } 177 178 if (Src.isPhysical() && Dst.isPhysical()) 179 return Src == Dst; 180 181 if (Src.isVirtual() && Dst.isVirtual()) { 182 auto SrcRC = MRI->getRegClass(Src); 183 auto DstRC = MRI->getRegClass(Dst); 184 return SrcRC->hasSuperClassEq(DstRC) || SrcRC->hasSubClassEq(DstRC); 185 } 186 187 if (Src.isVirtual()) 188 std::swap(Src, Dst); 189 190 // Now Src is physical register, Dst is virtual register. 191 auto DstRC = MRI->getRegClass(Dst); 192 return DstRC->contains(Src); 193 } 194 195 /// Computes depth of instructions in vector \InsInstr. 196 /// 197 /// \param InsInstrs is a vector of machine instructions 198 /// \param InstrIdxForVirtReg is a dense map of virtual register to index 199 /// of defining machine instruction in \p InsInstrs 200 /// \param BlockTrace is a trace of machine instructions 201 /// 202 /// \returns Depth of last instruction in \InsInstrs ("NewRoot") 203 unsigned 204 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs, 205 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 206 MachineTraceMetrics::Trace BlockTrace, 207 const MachineBasicBlock &MBB) { 208 SmallVector<unsigned, 16> InstrDepth; 209 // For each instruction in the new sequence compute the depth based on the 210 // operands. Use the trace information when possible. For new operands which 211 // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth 212 for (auto *InstrPtr : InsInstrs) { // for each Use 213 unsigned IDepth = 0; 214 for (const MachineOperand &MO : InstrPtr->all_uses()) { 215 // Check for virtual register operand. 216 if (!MO.getReg().isVirtual()) 217 continue; 218 unsigned DepthOp = 0; 219 unsigned LatencyOp = 0; 220 DenseMap<unsigned, unsigned>::iterator II = 221 InstrIdxForVirtReg.find(MO.getReg()); 222 if (II != InstrIdxForVirtReg.end()) { 223 // Operand is new virtual register not in trace 224 assert(II->second < InstrDepth.size() && "Bad Index"); 225 MachineInstr *DefInstr = InsInstrs[II->second]; 226 assert(DefInstr && 227 "There must be a definition for a new virtual register"); 228 DepthOp = InstrDepth[II->second]; 229 int DefIdx = 230 DefInstr->findRegisterDefOperandIdx(MO.getReg(), /*TRI=*/nullptr); 231 int UseIdx = 232 InstrPtr->findRegisterUseOperandIdx(MO.getReg(), /*TRI=*/nullptr); 233 LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx, 234 InstrPtr, UseIdx); 235 } else { 236 MachineInstr *DefInstr = getOperandDef(MO); 237 if (DefInstr && (TII->getMachineCombinerTraceStrategy() != 238 MachineTraceStrategy::TS_Local || 239 DefInstr->getParent() == &MBB)) { 240 DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth; 241 if (!isTransientMI(DefInstr)) 242 LatencyOp = TSchedModel.computeOperandLatency( 243 DefInstr, 244 DefInstr->findRegisterDefOperandIdx(MO.getReg(), 245 /*TRI=*/nullptr), 246 InstrPtr, 247 InstrPtr->findRegisterUseOperandIdx(MO.getReg(), 248 /*TRI=*/nullptr)); 249 } 250 } 251 IDepth = std::max(IDepth, DepthOp + LatencyOp); 252 } 253 InstrDepth.push_back(IDepth); 254 } 255 unsigned NewRootIdx = InsInstrs.size() - 1; 256 return InstrDepth[NewRootIdx]; 257 } 258 259 /// Computes instruction latency as max of latency of defined operands. 260 /// 261 /// \param Root is a machine instruction that could be replaced by NewRoot. 262 /// It is used to compute a more accurate latency information for NewRoot in 263 /// case there is a dependent instruction in the same trace (\p BlockTrace) 264 /// \param NewRoot is the instruction for which the latency is computed 265 /// \param BlockTrace is a trace of machine instructions 266 /// 267 /// \returns Latency of \p NewRoot 268 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot, 269 MachineTraceMetrics::Trace BlockTrace) { 270 // Check each definition in NewRoot and compute the latency 271 unsigned NewRootLatency = 0; 272 273 for (const MachineOperand &MO : NewRoot->all_defs()) { 274 // Check for virtual register operand. 275 if (!MO.getReg().isVirtual()) 276 continue; 277 // Get the first instruction that uses MO 278 MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg()); 279 RI++; 280 if (RI == MRI->reg_end()) 281 continue; 282 MachineInstr *UseMO = RI->getParent(); 283 unsigned LatencyOp = 0; 284 if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) { 285 LatencyOp = TSchedModel.computeOperandLatency( 286 NewRoot, 287 NewRoot->findRegisterDefOperandIdx(MO.getReg(), /*TRI=*/nullptr), 288 UseMO, 289 UseMO->findRegisterUseOperandIdx(MO.getReg(), /*TRI=*/nullptr)); 290 } else { 291 LatencyOp = TSchedModel.computeInstrLatency(NewRoot); 292 } 293 NewRootLatency = std::max(NewRootLatency, LatencyOp); 294 } 295 return NewRootLatency; 296 } 297 298 CombinerObjective MachineCombiner::getCombinerObjective(unsigned Pattern) { 299 // TODO: If C++ ever gets a real enum class, make this part of the 300 // MachineCombinerPattern class. 301 switch (Pattern) { 302 case MachineCombinerPattern::REASSOC_AX_BY: 303 case MachineCombinerPattern::REASSOC_AX_YB: 304 case MachineCombinerPattern::REASSOC_XA_BY: 305 case MachineCombinerPattern::REASSOC_XA_YB: 306 return CombinerObjective::MustReduceDepth; 307 default: 308 return TII->getCombinerObjective(Pattern); 309 } 310 } 311 312 /// Estimate the latency of the new and original instruction sequence by summing 313 /// up the latencies of the inserted and deleted instructions. This assumes 314 /// that the inserted and deleted instructions are dependent instruction chains, 315 /// which might not hold in all cases. 316 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences( 317 MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs, 318 SmallVectorImpl<MachineInstr *> &DelInstrs, 319 MachineTraceMetrics::Trace BlockTrace) { 320 assert(!InsInstrs.empty() && "Only support sequences that insert instrs."); 321 unsigned NewRootLatency = 0; 322 // NewRoot is the last instruction in the \p InsInstrs vector. 323 MachineInstr *NewRoot = InsInstrs.back(); 324 for (unsigned i = 0; i < InsInstrs.size() - 1; i++) 325 NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]); 326 NewRootLatency += getLatency(&MI, NewRoot, BlockTrace); 327 328 unsigned RootLatency = 0; 329 for (auto *I : DelInstrs) 330 RootLatency += TSchedModel.computeInstrLatency(I); 331 332 return {NewRootLatency, RootLatency}; 333 } 334 335 bool MachineCombiner::reduceRegisterPressure( 336 MachineInstr &Root, MachineBasicBlock *MBB, 337 SmallVectorImpl<MachineInstr *> &InsInstrs, 338 SmallVectorImpl<MachineInstr *> &DelInstrs, unsigned Pattern) { 339 // FIXME: for now, we don't do any check for the register pressure patterns. 340 // We treat them as always profitable. But we can do better if we make 341 // RegPressureTracker class be aware of TIE attribute. Then we can get an 342 // accurate compare of register pressure with DelInstrs or InsInstrs. 343 return true; 344 } 345 346 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root. 347 /// The new code sequence ends in MI NewRoot. A necessary condition for the new 348 /// sequence to replace the old sequence is that it cannot lengthen the critical 349 /// path. The definition of "improve" may be restricted by specifying that the 350 /// new path improves the data dependency chain (MustReduceDepth). 351 bool MachineCombiner::improvesCriticalPathLen( 352 MachineBasicBlock *MBB, MachineInstr *Root, 353 MachineTraceMetrics::Trace BlockTrace, 354 SmallVectorImpl<MachineInstr *> &InsInstrs, 355 SmallVectorImpl<MachineInstr *> &DelInstrs, 356 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned Pattern, 357 bool SlackIsAccurate) { 358 // Get depth and latency of NewRoot and Root. 359 unsigned NewRootDepth = 360 getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace, *MBB); 361 unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth; 362 363 LLVM_DEBUG(dbgs() << " Dependence data for " << *Root << "\tNewRootDepth: " 364 << NewRootDepth << "\tRootDepth: " << RootDepth); 365 366 // For a transform such as reassociation, the cost equation is 367 // conservatively calculated so that we must improve the depth (data 368 // dependency cycles) in the critical path to proceed with the transform. 369 // Being conservative also protects against inaccuracies in the underlying 370 // machine trace metrics and CPU models. 371 if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) { 372 LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth "); 373 LLVM_DEBUG(NewRootDepth < RootDepth 374 ? dbgs() << "\t and it does it\n" 375 : dbgs() << "\t but it does NOT do it\n"); 376 return NewRootDepth < RootDepth; 377 } 378 379 // A more flexible cost calculation for the critical path includes the slack 380 // of the original code sequence. This may allow the transform to proceed 381 // even if the instruction depths (data dependency cycles) become worse. 382 383 // Account for the latency of the inserted and deleted instructions by 384 unsigned NewRootLatency, RootLatency; 385 if (TII->accumulateInstrSeqToRootLatency(*Root)) { 386 std::tie(NewRootLatency, RootLatency) = 387 getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace); 388 } else { 389 NewRootLatency = TSchedModel.computeInstrLatency(InsInstrs.back()); 390 RootLatency = TSchedModel.computeInstrLatency(Root); 391 } 392 393 unsigned RootSlack = BlockTrace.getInstrSlack(*Root); 394 unsigned NewCycleCount = NewRootDepth + NewRootLatency; 395 unsigned OldCycleCount = 396 RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0); 397 LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency 398 << "\tRootLatency: " << RootLatency << "\n\tRootSlack: " 399 << RootSlack << " SlackIsAccurate=" << SlackIsAccurate 400 << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount 401 << "\n\tRootDepth + RootLatency + RootSlack = " 402 << OldCycleCount); 403 LLVM_DEBUG(NewCycleCount <= OldCycleCount 404 ? dbgs() << "\n\t It IMPROVES PathLen because" 405 : dbgs() << "\n\t It DOES NOT improve PathLen because"); 406 LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount 407 << ", OldCycleCount = " << OldCycleCount << "\n"); 408 409 return NewCycleCount <= OldCycleCount; 410 } 411 412 /// helper routine to convert instructions into SC 413 void MachineCombiner::instr2instrSC( 414 SmallVectorImpl<MachineInstr *> &Instrs, 415 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) { 416 for (auto *InstrPtr : Instrs) { 417 unsigned Opc = InstrPtr->getOpcode(); 418 unsigned Idx = TII->get(Opc).getSchedClass(); 419 const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx); 420 InstrsSC.push_back(SC); 421 } 422 } 423 424 /// True when the new instructions do not increase resource length 425 bool MachineCombiner::preservesResourceLen( 426 MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace, 427 SmallVectorImpl<MachineInstr *> &InsInstrs, 428 SmallVectorImpl<MachineInstr *> &DelInstrs) { 429 if (!TSchedModel.hasInstrSchedModel()) 430 return true; 431 432 // Compute current resource length 433 434 //ArrayRef<const MachineBasicBlock *> MBBarr(MBB); 435 SmallVector <const MachineBasicBlock *, 1> MBBarr; 436 MBBarr.push_back(MBB); 437 unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr); 438 439 // Deal with SC rather than Instructions. 440 SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC; 441 SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC; 442 443 instr2instrSC(InsInstrs, InsInstrsSC); 444 instr2instrSC(DelInstrs, DelInstrsSC); 445 446 ArrayRef<const MCSchedClassDesc *> MSCInsArr{InsInstrsSC}; 447 ArrayRef<const MCSchedClassDesc *> MSCDelArr{DelInstrsSC}; 448 449 // Compute new resource length. 450 unsigned ResLenAfterCombine = 451 BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr); 452 453 LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: " 454 << ResLenBeforeCombine 455 << " and after: " << ResLenAfterCombine << "\n"); 456 LLVM_DEBUG( 457 ResLenAfterCombine <= 458 ResLenBeforeCombine + TII->getExtendResourceLenLimit() 459 ? dbgs() << "\t\t As result it IMPROVES/PRESERVES Resource Length\n" 460 : dbgs() << "\t\t As result it DOES NOT improve/preserve Resource " 461 "Length\n"); 462 463 return ResLenAfterCombine <= 464 ResLenBeforeCombine + TII->getExtendResourceLenLimit(); 465 } 466 467 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction 468 /// depths if requested. 469 /// 470 /// \param MBB basic block to insert instructions in 471 /// \param MI current machine instruction 472 /// \param InsInstrs new instructions to insert in \p MBB 473 /// \param DelInstrs instruction to delete from \p MBB 474 /// \param TraceEnsemble is a pointer to the machine trace information 475 /// \param RegUnits set of live registers, needed to compute instruction depths 476 /// \param TII is target instruction info, used to call target hook 477 /// \param Pattern is used to call target hook finalizeInsInstrs 478 /// \param IncrementalUpdate if true, compute instruction depths incrementally, 479 /// otherwise invalidate the trace 480 static void 481 insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI, 482 SmallVectorImpl<MachineInstr *> &InsInstrs, 483 SmallVectorImpl<MachineInstr *> &DelInstrs, 484 MachineTraceMetrics::Ensemble *TraceEnsemble, 485 SparseSet<LiveRegUnit> &RegUnits, 486 const TargetInstrInfo *TII, unsigned Pattern, 487 bool IncrementalUpdate) { 488 // If we want to fix up some placeholder for some target, do it now. 489 // We need this because in genAlternativeCodeSequence, we have not decided the 490 // better pattern InsInstrs or DelInstrs, so we don't want generate some 491 // sideeffect to the function. For example we need to delay the constant pool 492 // entry creation here after InsInstrs is selected as better pattern. 493 // Otherwise the constant pool entry created for InsInstrs will not be deleted 494 // even if InsInstrs is not the better pattern. 495 TII->finalizeInsInstrs(MI, Pattern, InsInstrs); 496 497 for (auto *InstrPtr : InsInstrs) 498 MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr); 499 500 for (auto *InstrPtr : DelInstrs) { 501 InstrPtr->eraseFromParent(); 502 // Erase all LiveRegs defined by the removed instruction 503 for (auto *I = RegUnits.begin(); I != RegUnits.end();) { 504 if (I->MI == InstrPtr) 505 I = RegUnits.erase(I); 506 else 507 I++; 508 } 509 } 510 511 if (IncrementalUpdate) 512 for (auto *InstrPtr : InsInstrs) 513 TraceEnsemble->updateDepth(MBB, *InstrPtr, RegUnits); 514 else 515 TraceEnsemble->invalidate(MBB); 516 517 NumInstCombined++; 518 } 519 520 // Check that the difference between original and new latency is decreasing for 521 // later patterns. This helps to discover sub-optimal pattern orderings. 522 void MachineCombiner::verifyPatternOrder(MachineBasicBlock *MBB, 523 MachineInstr &Root, 524 SmallVector<unsigned, 16> &Patterns) { 525 long PrevLatencyDiff = std::numeric_limits<long>::max(); 526 (void)PrevLatencyDiff; // Variable is used in assert only. 527 for (auto P : Patterns) { 528 SmallVector<MachineInstr *, 16> InsInstrs; 529 SmallVector<MachineInstr *, 16> DelInstrs; 530 DenseMap<unsigned, unsigned> InstrIdxForVirtReg; 531 TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs, 532 InstrIdxForVirtReg); 533 // Found pattern, but did not generate alternative sequence. 534 // This can happen e.g. when an immediate could not be materialized 535 // in a single instruction. 536 if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries()) 537 continue; 538 539 unsigned NewRootLatency, RootLatency; 540 std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences( 541 Root, InsInstrs, DelInstrs, TraceEnsemble->getTrace(MBB)); 542 long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency); 543 assert(CurrentLatencyDiff <= PrevLatencyDiff && 544 "Current pattern is better than previous pattern."); 545 PrevLatencyDiff = CurrentLatencyDiff; 546 } 547 } 548 549 /// Substitute a slow code sequence with a faster one by 550 /// evaluating instruction combining pattern. 551 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction 552 /// combining based on machine trace metrics. Only combine a sequence of 553 /// instructions when this neither lengthens the critical path nor increases 554 /// resource pressure. When optimizing for codesize always combine when the new 555 /// sequence is shorter. 556 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) { 557 bool Changed = false; 558 LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n"); 559 560 bool IncrementalUpdate = false; 561 auto BlockIter = MBB->begin(); 562 decltype(BlockIter) LastUpdate; 563 // Check if the block is in a loop. 564 const MachineLoop *ML = MLI->getLoopFor(MBB); 565 if (!TraceEnsemble) 566 TraceEnsemble = Traces->getEnsemble(TII->getMachineCombinerTraceStrategy()); 567 568 SparseSet<LiveRegUnit> RegUnits; 569 RegUnits.setUniverse(TRI->getNumRegUnits()); 570 571 bool OptForSize = llvm::shouldOptimizeForSize(MBB, PSI, MBFI); 572 573 bool DoRegPressureReduce = 574 TII->shouldReduceRegisterPressure(MBB, &RegClassInfo); 575 576 while (BlockIter != MBB->end()) { 577 auto &MI = *BlockIter++; 578 SmallVector<unsigned, 16> Patterns; 579 // The motivating example is: 580 // 581 // MUL Other MUL_op1 MUL_op2 Other 582 // \ / \ | / 583 // ADD/SUB => MADD/MSUB 584 // (=Root) (=NewRoot) 585 586 // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is 587 // usually beneficial for code size it unfortunately can hurt performance 588 // when the ADD is on the critical path, but the MUL is not. With the 589 // substitution the MUL becomes part of the critical path (in form of the 590 // MADD) and can lengthen it on architectures where the MADD latency is 591 // longer than the ADD latency. 592 // 593 // For each instruction we check if it can be the root of a combiner 594 // pattern. Then for each pattern the new code sequence in form of MI is 595 // generated and evaluated. When the efficiency criteria (don't lengthen 596 // critical path, don't use more resources) is met the new sequence gets 597 // hooked up into the basic block before the old sequence is removed. 598 // 599 // The algorithm does not try to evaluate all patterns and pick the best. 600 // This is only an artificial restriction though. In practice there is 601 // mostly one pattern, and getMachineCombinerPatterns() can order patterns 602 // based on an internal cost heuristic. If 603 // machine-combiner-verify-pattern-order is enabled, all patterns are 604 // checked to ensure later patterns do not provide better latency savings. 605 606 if (!TII->getMachineCombinerPatterns(MI, Patterns, DoRegPressureReduce)) 607 continue; 608 609 if (VerifyPatternOrder) 610 verifyPatternOrder(MBB, MI, Patterns); 611 612 for (const auto P : Patterns) { 613 SmallVector<MachineInstr *, 16> InsInstrs; 614 SmallVector<MachineInstr *, 16> DelInstrs; 615 DenseMap<unsigned, unsigned> InstrIdxForVirtReg; 616 TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs, 617 InstrIdxForVirtReg); 618 // Found pattern, but did not generate alternative sequence. 619 // This can happen e.g. when an immediate could not be materialized 620 // in a single instruction. 621 if (InsInstrs.empty()) 622 continue; 623 624 LLVM_DEBUG(if (dump_intrs) { 625 dbgs() << "\tFor the Pattern (" << (int)P 626 << ") these instructions could be removed\n"; 627 for (auto const *InstrPtr : DelInstrs) 628 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, 629 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII); 630 dbgs() << "\tThese instructions could replace the removed ones\n"; 631 for (auto const *InstrPtr : InsInstrs) 632 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, 633 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII); 634 }); 635 636 if (IncrementalUpdate && LastUpdate != BlockIter) { 637 // Update depths since the last incremental update. 638 TraceEnsemble->updateDepths(LastUpdate, BlockIter, RegUnits); 639 LastUpdate = BlockIter; 640 } 641 642 if (DoRegPressureReduce && 643 getCombinerObjective(P) == 644 CombinerObjective::MustReduceRegisterPressure) { 645 if (MBB->size() > inc_threshold) { 646 // Use incremental depth updates for basic blocks above threshold 647 IncrementalUpdate = true; 648 LastUpdate = BlockIter; 649 } 650 if (reduceRegisterPressure(MI, MBB, InsInstrs, DelInstrs, P)) { 651 // Replace DelInstrs with InsInstrs. 652 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble, 653 RegUnits, TII, P, IncrementalUpdate); 654 Changed |= true; 655 656 // Go back to previous instruction as it may have ILP reassociation 657 // opportunity. 658 BlockIter--; 659 break; 660 } 661 } 662 663 if (ML && TII->isThroughputPattern(P)) { 664 LLVM_DEBUG(dbgs() << "\t Replacing due to throughput pattern in loop\n"); 665 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble, 666 RegUnits, TII, P, IncrementalUpdate); 667 // Eagerly stop after the first pattern fires. 668 Changed = true; 669 break; 670 } else if (OptForSize && InsInstrs.size() < DelInstrs.size()) { 671 LLVM_DEBUG(dbgs() << "\t Replacing due to OptForSize (" 672 << InsInstrs.size() << " < " 673 << DelInstrs.size() << ")\n"); 674 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble, 675 RegUnits, TII, P, IncrementalUpdate); 676 // Eagerly stop after the first pattern fires. 677 Changed = true; 678 break; 679 } else { 680 // For big basic blocks, we only compute the full trace the first time 681 // we hit this. We do not invalidate the trace, but instead update the 682 // instruction depths incrementally. 683 // NOTE: Only the instruction depths up to MI are accurate. All other 684 // trace information is not updated. 685 MachineTraceMetrics::Trace BlockTrace = TraceEnsemble->getTrace(MBB); 686 Traces->verifyAnalysis(); 687 if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs, 688 InstrIdxForVirtReg, P, 689 !IncrementalUpdate) && 690 preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) { 691 if (MBB->size() > inc_threshold) { 692 // Use incremental depth updates for basic blocks above treshold 693 IncrementalUpdate = true; 694 LastUpdate = BlockIter; 695 } 696 697 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble, 698 RegUnits, TII, P, IncrementalUpdate); 699 700 // Eagerly stop after the first pattern fires. 701 Changed = true; 702 break; 703 } 704 // Cleanup instructions of the alternative code sequence. There is no 705 // use for them. 706 MachineFunction *MF = MBB->getParent(); 707 for (auto *InstrPtr : InsInstrs) 708 MF->deleteMachineInstr(InstrPtr); 709 } 710 InstrIdxForVirtReg.clear(); 711 } 712 } 713 714 if (Changed && IncrementalUpdate) 715 Traces->invalidate(MBB); 716 return Changed; 717 } 718 719 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) { 720 STI = &MF.getSubtarget(); 721 TII = STI->getInstrInfo(); 722 TRI = STI->getRegisterInfo(); 723 SchedModel = STI->getSchedModel(); 724 TSchedModel.init(STI); 725 MRI = &MF.getRegInfo(); 726 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 727 Traces = &getAnalysis<MachineTraceMetricsWrapperPass>().getMTM(); 728 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 729 MBFI = (PSI && PSI->hasProfileSummary()) ? 730 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : 731 nullptr; 732 TraceEnsemble = nullptr; 733 RegClassInfo.runOnMachineFunction(MF); 734 735 LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n'); 736 if (!TII->useMachineCombiner()) { 737 LLVM_DEBUG( 738 dbgs() 739 << " Skipping pass: Target does not support machine combiner\n"); 740 return false; 741 } 742 743 bool Changed = false; 744 745 // Try to combine instructions. 746 for (auto &MBB : MF) 747 Changed |= combineInstructions(&MBB); 748 749 return Changed; 750 } 751