xref: /llvm-project/llvm/lib/CodeGen/MachineCSE.cpp (revision 0ef39a882bb342982929d2c856d7865de147a3c7)
1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global common subexpression elimination on machine
10 // instructions using a scoped hash table based value numbering scheme. It
11 // must be run while the machine function is still in SSA form.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineCSE.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/MC/MCRegister.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/RecyclingAllocator.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <cassert>
46 #include <iterator>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "machine-cse"
52 
53 STATISTIC(NumCoalesces, "Number of copies coalesced");
54 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
55 STATISTIC(NumPREs,      "Number of partial redundant expression"
56                         " transformed to fully redundant");
57 STATISTIC(NumPhysCSEs,
58           "Number of physreg referencing common subexpr eliminated");
59 STATISTIC(NumCrossBBCSEs,
60           "Number of cross-MBB physreg referencing CS eliminated");
61 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
62 
63 // Threshold to avoid excessive cost to compute isProfitableToCSE.
64 static cl::opt<int>
65     CSUsesThreshold("csuses-threshold", cl::Hidden, cl::init(1024),
66                     cl::desc("Threshold for the size of CSUses"));
67 
68 static cl::opt<bool> AggressiveMachineCSE(
69     "aggressive-machine-cse", cl::Hidden, cl::init(false),
70     cl::desc("Override the profitability heuristics for Machine CSE"));
71 
72 namespace {
73 
74 class MachineCSEImpl {
75   const TargetInstrInfo *TII = nullptr;
76   const TargetRegisterInfo *TRI = nullptr;
77   MachineDominatorTree *DT = nullptr;
78   MachineRegisterInfo *MRI = nullptr;
79   MachineBlockFrequencyInfo *MBFI = nullptr;
80 
81 public:
82   MachineCSEImpl(MachineDominatorTree *DT, MachineBlockFrequencyInfo *MBFI)
83       : DT(DT), MBFI(MBFI) {}
84   bool run(MachineFunction &MF);
85 
86 private:
87   using AllocatorTy =
88       RecyclingAllocator<BumpPtrAllocator,
89                          ScopedHashTableVal<MachineInstr *, unsigned>>;
90   using ScopedHTType =
91       ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
92                       AllocatorTy>;
93   using ScopeType = ScopedHTType::ScopeTy;
94   using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;
95 
96   unsigned LookAheadLimit = 0;
97   DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
98   DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
99       PREMap;
100   ScopedHTType VNT;
101   SmallVector<MachineInstr *, 64> Exps;
102   unsigned CurrVN = 0;
103 
104   bool PerformTrivialCopyPropagation(MachineInstr *MI, MachineBasicBlock *MBB);
105   bool isPhysDefTriviallyDead(MCRegister Reg,
106                               MachineBasicBlock::const_iterator I,
107                               MachineBasicBlock::const_iterator E) const;
108   bool hasLivePhysRegDefUses(const MachineInstr *MI,
109                              const MachineBasicBlock *MBB,
110                              SmallSet<MCRegister, 8> &PhysRefs,
111                              PhysDefVector &PhysDefs, bool &PhysUseDef) const;
112   bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
113                         SmallSet<MCRegister, 8> &PhysRefs,
114                         PhysDefVector &PhysDefs, bool &NonLocal) const;
115   bool isCSECandidate(MachineInstr *MI);
116   bool isProfitableToCSE(Register CSReg, Register Reg, MachineBasicBlock *CSBB,
117                          MachineInstr *MI);
118   void EnterScope(MachineBasicBlock *MBB);
119   void ExitScope(MachineBasicBlock *MBB);
120   bool ProcessBlockCSE(MachineBasicBlock *MBB);
121   void ExitScopeIfDone(MachineDomTreeNode *Node,
122                        DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren);
123   bool PerformCSE(MachineDomTreeNode *Node);
124 
125   bool isPRECandidate(MachineInstr *MI, SmallSet<MCRegister, 8> &PhysRefs);
126   bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
127   bool PerformSimplePRE(MachineDominatorTree *DT);
128   /// Heuristics to see if it's profitable to move common computations of MBB
129   /// and MBB1 to CandidateBB.
130   bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
131                                MachineBasicBlock *MBB, MachineBasicBlock *MBB1);
132   void releaseMemory();
133 };
134 
135 class MachineCSELegacy : public MachineFunctionPass {
136 public:
137   static char ID; // Pass identification
138 
139   MachineCSELegacy() : MachineFunctionPass(ID) {
140     initializeMachineCSELegacyPass(*PassRegistry::getPassRegistry());
141   }
142 
143   bool runOnMachineFunction(MachineFunction &MF) override;
144 
145   void getAnalysisUsage(AnalysisUsage &AU) const override {
146     AU.setPreservesCFG();
147     MachineFunctionPass::getAnalysisUsage(AU);
148     AU.addPreservedID(MachineLoopInfoID);
149     AU.addRequired<MachineDominatorTreeWrapperPass>();
150     AU.addPreserved<MachineDominatorTreeWrapperPass>();
151     AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
152     AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>();
153   }
154 
155   MachineFunctionProperties getRequiredProperties() const override {
156     return MachineFunctionProperties().set(
157         MachineFunctionProperties::Property::IsSSA);
158   }
159 };
160 } // end anonymous namespace
161 
162 char MachineCSELegacy::ID = 0;
163 
164 char &llvm::MachineCSELegacyID = MachineCSELegacy::ID;
165 
166 INITIALIZE_PASS_BEGIN(MachineCSELegacy, DEBUG_TYPE,
167                       "Machine Common Subexpression Elimination", false, false)
168 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
169 INITIALIZE_PASS_END(MachineCSELegacy, DEBUG_TYPE,
170                     "Machine Common Subexpression Elimination", false, false)
171 
172 /// The source register of a COPY machine instruction can be propagated to all
173 /// its users, and this propagation could increase the probability of finding
174 /// common subexpressions. If the COPY has only one user, the COPY itself can
175 /// be removed.
176 bool MachineCSEImpl::PerformTrivialCopyPropagation(MachineInstr *MI,
177                                                    MachineBasicBlock *MBB) {
178   bool Changed = false;
179   for (MachineOperand &MO : MI->all_uses()) {
180     Register Reg = MO.getReg();
181     if (!Reg.isVirtual())
182       continue;
183     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
184     MachineInstr *DefMI = MRI->getVRegDef(Reg);
185     if (!DefMI || !DefMI->isCopy())
186       continue;
187     Register SrcReg = DefMI->getOperand(1).getReg();
188     if (!SrcReg.isVirtual())
189       continue;
190     // FIXME: We should trivially coalesce subregister copies to expose CSE
191     // opportunities on instructions with truncated operands (see
192     // cse-add-with-overflow.ll). This can be done here as follows:
193     // if (SrcSubReg)
194     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
195     //                                     SrcSubReg);
196     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
197     //
198     // The 2-addr pass has been updated to handle coalesced subregs. However,
199     // some machine-specific code still can't handle it.
200     // To handle it properly we also need a way find a constrained subregister
201     // class given a super-reg class and subreg index.
202     if (DefMI->getOperand(1).getSubReg())
203       continue;
204     if (!MRI->constrainRegAttrs(SrcReg, Reg))
205       continue;
206     LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
207     LLVM_DEBUG(dbgs() << "***     to: " << *MI);
208 
209     // Propagate SrcReg of copies to MI.
210     MO.setReg(SrcReg);
211     MRI->clearKillFlags(SrcReg);
212     // Coalesce single use copies.
213     if (OnlyOneUse) {
214       // If (and only if) we've eliminated all uses of the copy, also
215       // copy-propagate to any debug-users of MI, or they'll be left using
216       // an undefined value.
217       DefMI->changeDebugValuesDefReg(SrcReg);
218 
219       DefMI->eraseFromParent();
220       ++NumCoalesces;
221     }
222     Changed = true;
223   }
224 
225   return Changed;
226 }
227 
228 bool MachineCSEImpl::isPhysDefTriviallyDead(
229     MCRegister Reg, MachineBasicBlock::const_iterator I,
230     MachineBasicBlock::const_iterator E) const {
231   unsigned LookAheadLeft = LookAheadLimit;
232   while (LookAheadLeft) {
233     // Skip over dbg_value's.
234     I = skipDebugInstructionsForward(I, E);
235 
236     if (I == E)
237       // Reached end of block, we don't know if register is dead or not.
238       return false;
239 
240     bool SeenDef = false;
241     for (const MachineOperand &MO : I->operands()) {
242       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
243         SeenDef = true;
244       if (!MO.isReg() || !MO.getReg())
245         continue;
246       if (!TRI->regsOverlap(MO.getReg(), Reg))
247         continue;
248       if (MO.isUse())
249         // Found a use!
250         return false;
251       SeenDef = true;
252     }
253     if (SeenDef)
254       // See a def of Reg (or an alias) before encountering any use, it's
255       // trivially dead.
256       return true;
257 
258     --LookAheadLeft;
259     ++I;
260   }
261   return false;
262 }
263 
264 static bool isCallerPreservedOrConstPhysReg(MCRegister Reg,
265                                             const MachineOperand &MO,
266                                             const MachineFunction &MF,
267                                             const TargetRegisterInfo &TRI,
268                                             const TargetInstrInfo &TII) {
269   // MachineRegisterInfo::isConstantPhysReg directly called by
270   // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
271   // reserved registers to be frozen. That doesn't cause a problem  post-ISel as
272   // most (if not all) targets freeze reserved registers right after ISel.
273   //
274   // It does cause issues mid-GlobalISel, however, hence the additional
275   // reservedRegsFrozen check.
276   const MachineRegisterInfo &MRI = MF.getRegInfo();
277   return TRI.isCallerPreservedPhysReg(Reg, MF) || TII.isIgnorableUse(MO) ||
278          (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
279 }
280 
281 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
282 /// physical registers (except for dead defs of physical registers). It also
283 /// returns the physical register def by reference if it's the only one and the
284 /// instruction does not uses a physical register.
285 bool MachineCSEImpl::hasLivePhysRegDefUses(const MachineInstr *MI,
286                                            const MachineBasicBlock *MBB,
287                                            SmallSet<MCRegister, 8> &PhysRefs,
288                                            PhysDefVector &PhysDefs,
289                                            bool &PhysUseDef) const {
290   // First, add all uses to PhysRefs.
291   for (const MachineOperand &MO : MI->all_uses()) {
292     Register Reg = MO.getReg();
293     if (!Reg)
294       continue;
295     if (Reg.isVirtual())
296       continue;
297     // Reading either caller preserved or constant physregs is ok.
298     if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), MO, *MI->getMF(), *TRI,
299                                          *TII))
300       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
301         PhysRefs.insert(*AI);
302   }
303 
304   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
305   // (which currently contains only uses), set the PhysUseDef flag.
306   PhysUseDef = false;
307   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
308   for (const auto &MOP : llvm::enumerate(MI->operands())) {
309     const MachineOperand &MO = MOP.value();
310     if (!MO.isReg() || !MO.isDef())
311       continue;
312     Register Reg = MO.getReg();
313     if (!Reg)
314       continue;
315     if (Reg.isVirtual())
316       continue;
317     // Check against PhysRefs even if the def is "dead".
318     if (PhysRefs.count(Reg.asMCReg()))
319       PhysUseDef = true;
320     // If the def is dead, it's ok. But the def may not marked "dead". That's
321     // common since this pass is run before livevariables. We can scan
322     // forward a few instructions and check if it is obviously dead.
323     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end()))
324       PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
325   }
326 
327   // Finally, add all defs to PhysRefs as well.
328   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
329     for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
330          ++AI)
331       PhysRefs.insert(*AI);
332 
333   return !PhysRefs.empty();
334 }
335 
336 bool MachineCSEImpl::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
337                                       SmallSet<MCRegister, 8> &PhysRefs,
338                                       PhysDefVector &PhysDefs,
339                                       bool &NonLocal) const {
340   // For now conservatively returns false if the common subexpression is
341   // not in the same basic block as the given instruction. The only exception
342   // is if the common subexpression is in the sole predecessor block.
343   const MachineBasicBlock *MBB = MI->getParent();
344   const MachineBasicBlock *CSMBB = CSMI->getParent();
345 
346   bool CrossMBB = false;
347   if (CSMBB != MBB) {
348     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
349       return false;
350 
351     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
352       if (MRI->isAllocatable(PhysDefs[i].second) ||
353           MRI->isReserved(PhysDefs[i].second))
354         // Avoid extending live range of physical registers if they are
355         //allocatable or reserved.
356         return false;
357     }
358     CrossMBB = true;
359   }
360   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
361   MachineBasicBlock::const_iterator E = MI;
362   MachineBasicBlock::const_iterator EE = CSMBB->end();
363   unsigned LookAheadLeft = LookAheadLimit;
364   while (LookAheadLeft) {
365     // Skip over dbg_value's.
366     while (I != E && I != EE && I->isDebugInstr())
367       ++I;
368 
369     if (I == EE) {
370       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
371       (void)CrossMBB;
372       CrossMBB = false;
373       NonLocal = true;
374       I = MBB->begin();
375       EE = MBB->end();
376       continue;
377     }
378 
379     if (I == E)
380       return true;
381 
382     for (const MachineOperand &MO : I->operands()) {
383       // RegMasks go on instructions like calls that clobber lots of physregs.
384       // Don't attempt to CSE across such an instruction.
385       if (MO.isRegMask())
386         return false;
387       if (!MO.isReg() || !MO.isDef())
388         continue;
389       Register MOReg = MO.getReg();
390       if (MOReg.isVirtual())
391         continue;
392       if (PhysRefs.count(MOReg.asMCReg()))
393         return false;
394     }
395 
396     --LookAheadLeft;
397     ++I;
398   }
399 
400   return false;
401 }
402 
403 bool MachineCSEImpl::isCSECandidate(MachineInstr *MI) {
404   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
405       MI->isInlineAsm() || MI->isDebugInstr() || MI->isJumpTableDebugInfo() ||
406       MI->isFakeUse())
407     return false;
408 
409   // Ignore copies.
410   if (MI->isCopyLike())
411     return false;
412 
413   // Ignore stuff that we obviously can't move.
414   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
415       MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
416     return false;
417 
418   if (MI->mayLoad()) {
419     // Okay, this instruction does a load. As a refinement, we allow the target
420     // to decide whether the loaded value is actually a constant. If so, we can
421     // actually use it as a load.
422     if (!MI->isDereferenceableInvariantLoad())
423       // FIXME: we should be able to hoist loads with no other side effects if
424       // there are no other instructions which can change memory in this loop.
425       // This is a trivial form of alias analysis.
426       return false;
427   }
428 
429   // Ignore stack guard loads, otherwise the register that holds CSEed value may
430   // be spilled and get loaded back with corrupted data.
431   if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
432     return false;
433 
434   return true;
435 }
436 
437 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
438 /// common expression that defines Reg. CSBB is basic block where CSReg is
439 /// defined.
440 bool MachineCSEImpl::isProfitableToCSE(Register CSReg, Register Reg,
441                                        MachineBasicBlock *CSBB,
442                                        MachineInstr *MI) {
443   if (AggressiveMachineCSE)
444     return true;
445 
446   // FIXME: Heuristics that works around the lack the live range splitting.
447 
448   // If CSReg is used at all uses of Reg, CSE should not increase register
449   // pressure of CSReg.
450   bool MayIncreasePressure = true;
451   if (CSReg.isVirtual() && Reg.isVirtual()) {
452     MayIncreasePressure = false;
453     SmallPtrSet<MachineInstr*, 8> CSUses;
454     int NumOfUses = 0;
455     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
456       CSUses.insert(&MI);
457       // Too costly to compute if NumOfUses is very large. Conservatively assume
458       // MayIncreasePressure to avoid spending too much time here.
459       if (++NumOfUses > CSUsesThreshold) {
460         MayIncreasePressure = true;
461         break;
462       }
463     }
464     if (!MayIncreasePressure)
465       for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
466         if (!CSUses.count(&MI)) {
467           MayIncreasePressure = true;
468           break;
469         }
470       }
471   }
472   if (!MayIncreasePressure) return true;
473 
474   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
475   // an immediate predecessor. We don't want to increase register pressure and
476   // end up causing other computation to be spilled.
477   if (TII->isAsCheapAsAMove(*MI)) {
478     MachineBasicBlock *BB = MI->getParent();
479     if (CSBB != BB && !CSBB->isSuccessor(BB))
480       return false;
481   }
482 
483   // Heuristics #2: If the expression doesn't not use a vr and the only use
484   // of the redundant computation are copies, do not cse.
485   bool HasVRegUse = false;
486   for (const MachineOperand &MO : MI->all_uses()) {
487     if (MO.getReg().isVirtual()) {
488       HasVRegUse = true;
489       break;
490     }
491   }
492   if (!HasVRegUse) {
493     bool HasNonCopyUse = false;
494     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
495       // Ignore copies.
496       if (!MI.isCopyLike()) {
497         HasNonCopyUse = true;
498         break;
499       }
500     }
501     if (!HasNonCopyUse)
502       return false;
503   }
504 
505   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
506   // it unless the defined value is already used in the BB of the new use.
507   bool HasPHI = false;
508   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
509     HasPHI |= UseMI.isPHI();
510     if (UseMI.getParent() == MI->getParent())
511       return true;
512   }
513 
514   return !HasPHI;
515 }
516 
517 void MachineCSEImpl::EnterScope(MachineBasicBlock *MBB) {
518   LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
519   ScopeType *Scope = new ScopeType(VNT);
520   ScopeMap[MBB] = Scope;
521 }
522 
523 void MachineCSEImpl::ExitScope(MachineBasicBlock *MBB) {
524   LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
525   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
526   assert(SI != ScopeMap.end());
527   delete SI->second;
528   ScopeMap.erase(SI);
529 }
530 
531 bool MachineCSEImpl::ProcessBlockCSE(MachineBasicBlock *MBB) {
532   bool Changed = false;
533 
534   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
535   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
536   SmallVector<unsigned, 2> ImplicitDefs;
537   for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
538     if (!isCSECandidate(&MI))
539       continue;
540 
541     bool FoundCSE = VNT.count(&MI);
542     if (!FoundCSE) {
543       // Using trivial copy propagation to find more CSE opportunities.
544       if (PerformTrivialCopyPropagation(&MI, MBB)) {
545         Changed = true;
546 
547         // After coalescing MI itself may become a copy.
548         if (MI.isCopyLike())
549           continue;
550 
551         // Try again to see if CSE is possible.
552         FoundCSE = VNT.count(&MI);
553       }
554     }
555 
556     // Commute commutable instructions.
557     bool Commuted = false;
558     if (!FoundCSE && MI.isCommutable()) {
559       if (MachineInstr *NewMI = TII->commuteInstruction(MI)) {
560         Commuted = true;
561         FoundCSE = VNT.count(NewMI);
562         if (NewMI != &MI) {
563           // New instruction. It doesn't need to be kept.
564           NewMI->eraseFromParent();
565           Changed = true;
566         } else if (!FoundCSE)
567           // MI was changed but it didn't help, commute it back!
568           (void)TII->commuteInstruction(MI);
569       }
570     }
571 
572     // If the instruction defines physical registers and the values *may* be
573     // used, then it's not safe to replace it with a common subexpression.
574     // It's also not safe if the instruction uses physical registers.
575     bool CrossMBBPhysDef = false;
576     SmallSet<MCRegister, 8> PhysRefs;
577     PhysDefVector PhysDefs;
578     bool PhysUseDef = false;
579     if (FoundCSE &&
580         hasLivePhysRegDefUses(&MI, MBB, PhysRefs, PhysDefs, PhysUseDef)) {
581       FoundCSE = false;
582 
583       // ... Unless the CS is local or is in the sole predecessor block
584       // and it also defines the physical register which is not clobbered
585       // in between and the physical register uses were not clobbered.
586       // This can never be the case if the instruction both uses and
587       // defines the same physical register, which was detected above.
588       if (!PhysUseDef) {
589         unsigned CSVN = VNT.lookup(&MI);
590         MachineInstr *CSMI = Exps[CSVN];
591         if (PhysRegDefsReach(CSMI, &MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
592           FoundCSE = true;
593       }
594     }
595 
596     if (!FoundCSE) {
597       VNT.insert(&MI, CurrVN++);
598       Exps.push_back(&MI);
599       continue;
600     }
601 
602     // Found a common subexpression, eliminate it.
603     unsigned CSVN = VNT.lookup(&MI);
604     MachineInstr *CSMI = Exps[CSVN];
605     LLVM_DEBUG(dbgs() << "Examining: " << MI);
606     LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
607 
608     // Prevent CSE-ing non-local convergent instructions.
609     // LLVM's current definition of `isConvergent` does not necessarily prove
610     // that non-local CSE is illegal. The following check extends the definition
611     // of `isConvergent` to assume a convergent instruction is dependent not
612     // only on additional conditions, but also on fewer conditions. LLVM does
613     // not have a MachineInstr attribute which expresses this extended
614     // definition, so it's necessary to use `isConvergent` to prevent illegally
615     // CSE-ing the subset of `isConvergent` instructions which do fall into this
616     // extended definition.
617     if (MI.isConvergent() && MI.getParent() != CSMI->getParent()) {
618       LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in "
619                            "different BBs, avoid CSE!\n");
620       VNT.insert(&MI, CurrVN++);
621       Exps.push_back(&MI);
622       continue;
623     }
624 
625     // Check if it's profitable to perform this CSE.
626     bool DoCSE = true;
627     unsigned NumDefs = MI.getNumDefs();
628 
629     for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
630       MachineOperand &MO = MI.getOperand(i);
631       if (!MO.isReg() || !MO.isDef())
632         continue;
633       Register OldReg = MO.getReg();
634       Register NewReg = CSMI->getOperand(i).getReg();
635 
636       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
637       // we should make sure it is not dead at CSMI.
638       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
639         ImplicitDefsToUpdate.push_back(i);
640 
641       // Keep track of implicit defs of CSMI and MI, to clear possibly
642       // made-redundant kill flags.
643       if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
644         ImplicitDefs.push_back(OldReg);
645 
646       if (OldReg == NewReg) {
647         --NumDefs;
648         continue;
649       }
650 
651       assert(OldReg.isVirtual() && NewReg.isVirtual() &&
652              "Do not CSE physical register defs!");
653 
654       if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), &MI)) {
655         LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
656         DoCSE = false;
657         break;
658       }
659 
660       // Don't perform CSE if the result of the new instruction cannot exist
661       // within the constraints (register class, bank, or low-level type) of
662       // the old instruction.
663       if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
664         LLVM_DEBUG(
665             dbgs() << "*** Not the same register constraints, avoid CSE!\n");
666         DoCSE = false;
667         break;
668       }
669 
670       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
671       --NumDefs;
672     }
673 
674     // Actually perform the elimination.
675     if (DoCSE) {
676       for (const std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
677         unsigned OldReg = CSEPair.first;
678         unsigned NewReg = CSEPair.second;
679         // OldReg may have been unused but is used now, clear the Dead flag
680         MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
681         assert(Def != nullptr && "CSEd register has no unique definition?");
682         Def->clearRegisterDeads(NewReg);
683         // Replace with NewReg and clear kill flags which may be wrong now.
684         MRI->replaceRegWith(OldReg, NewReg);
685         MRI->clearKillFlags(NewReg);
686       }
687 
688       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
689       // we should make sure it is not dead at CSMI.
690       for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
691         CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
692       for (const auto &PhysDef : PhysDefs)
693         if (!MI.getOperand(PhysDef.first).isDead())
694           CSMI->getOperand(PhysDef.first).setIsDead(false);
695 
696       // Go through implicit defs of CSMI and MI, and clear the kill flags on
697       // their uses in all the instructions between CSMI and MI.
698       // We might have made some of the kill flags redundant, consider:
699       //   subs  ... implicit-def %nzcv    <- CSMI
700       //   csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
701       //   subs  ... implicit-def %nzcv    <- MI, to be eliminated
702       //   csinc ... implicit killed %nzcv
703       // Since we eliminated MI, and reused a register imp-def'd by CSMI
704       // (here %nzcv), that register, if it was killed before MI, should have
705       // that kill flag removed, because it's lifetime was extended.
706       if (CSMI->getParent() == MI.getParent()) {
707         for (MachineBasicBlock::iterator II = CSMI, IE = &MI; II != IE; ++II)
708           for (auto ImplicitDef : ImplicitDefs)
709             if (MachineOperand *MO = II->findRegisterUseOperand(
710                     ImplicitDef, TRI, /*isKill=*/true))
711               MO->setIsKill(false);
712       } else {
713         // If the instructions aren't in the same BB, bail out and clear the
714         // kill flag on all uses of the imp-def'd register.
715         for (auto ImplicitDef : ImplicitDefs)
716           MRI->clearKillFlags(ImplicitDef);
717       }
718 
719       if (CrossMBBPhysDef) {
720         // Add physical register defs now coming in from a predecessor to MBB
721         // livein list.
722         while (!PhysDefs.empty()) {
723           auto LiveIn = PhysDefs.pop_back_val();
724           if (!MBB->isLiveIn(LiveIn.second))
725             MBB->addLiveIn(LiveIn.second);
726         }
727         ++NumCrossBBCSEs;
728       }
729 
730       MI.eraseFromParent();
731       ++NumCSEs;
732       if (!PhysRefs.empty())
733         ++NumPhysCSEs;
734       if (Commuted)
735         ++NumCommutes;
736       Changed = true;
737     } else {
738       VNT.insert(&MI, CurrVN++);
739       Exps.push_back(&MI);
740     }
741     CSEPairs.clear();
742     ImplicitDefsToUpdate.clear();
743     ImplicitDefs.clear();
744   }
745 
746   return Changed;
747 }
748 
749 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
750 /// dominator tree node if its a leaf or all of its children are done. Walk
751 /// up the dominator tree to destroy ancestors which are now done.
752 void MachineCSEImpl::ExitScopeIfDone(
753     MachineDomTreeNode *Node,
754     DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren) {
755   if (OpenChildren[Node])
756     return;
757 
758   // Pop scope.
759   ExitScope(Node->getBlock());
760 
761   // Now traverse upwards to pop ancestors whose offsprings are all done.
762   while (MachineDomTreeNode *Parent = Node->getIDom()) {
763     unsigned Left = --OpenChildren[Parent];
764     if (Left != 0)
765       break;
766     ExitScope(Parent->getBlock());
767     Node = Parent;
768   }
769 }
770 
771 bool MachineCSEImpl::PerformCSE(MachineDomTreeNode *Node) {
772   SmallVector<MachineDomTreeNode*, 32> Scopes;
773   SmallVector<MachineDomTreeNode*, 8> WorkList;
774   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
775 
776   CurrVN = 0;
777 
778   // Perform a DFS walk to determine the order of visit.
779   WorkList.push_back(Node);
780   do {
781     Node = WorkList.pop_back_val();
782     Scopes.push_back(Node);
783     OpenChildren[Node] = Node->getNumChildren();
784     append_range(WorkList, Node->children());
785   } while (!WorkList.empty());
786 
787   // Now perform CSE.
788   bool Changed = false;
789   for (MachineDomTreeNode *Node : Scopes) {
790     MachineBasicBlock *MBB = Node->getBlock();
791     EnterScope(MBB);
792     Changed |= ProcessBlockCSE(MBB);
793     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
794     ExitScopeIfDone(Node, OpenChildren);
795   }
796 
797   return Changed;
798 }
799 
800 // We use stronger checks for PRE candidate rather than for CSE ones to embrace
801 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
802 // to exclude instrs created by PRE that won't be CSEed later.
803 bool MachineCSEImpl::isPRECandidate(MachineInstr *MI,
804                                     SmallSet<MCRegister, 8> &PhysRefs) {
805   if (!isCSECandidate(MI) ||
806       MI->isNotDuplicable() ||
807       MI->mayLoad() ||
808       TII->isAsCheapAsAMove(*MI) ||
809       MI->getNumDefs() != 1 ||
810       MI->getNumExplicitDefs() != 1)
811     return false;
812 
813   for (const MachineOperand &MO : MI->operands()) {
814     if (MO.isReg() && !MO.getReg().isVirtual()) {
815       if (MO.isDef())
816         return false;
817       else
818         PhysRefs.insert(MO.getReg());
819     }
820   }
821 
822   return true;
823 }
824 
825 bool MachineCSEImpl::ProcessBlockPRE(MachineDominatorTree *DT,
826                                      MachineBasicBlock *MBB) {
827   bool Changed = false;
828   for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
829     SmallSet<MCRegister, 8> PhysRefs;
830     if (!isPRECandidate(&MI, PhysRefs))
831       continue;
832 
833     auto [It, Inserted] = PREMap.try_emplace(&MI, MBB);
834     if (Inserted)
835       continue;
836 
837     auto *MBB1 = It->second;
838     assert(
839         !DT->properlyDominates(MBB, MBB1) &&
840         "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
841     auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
842     if (!CMBB->isLegalToHoistInto())
843       continue;
844 
845     if (!isProfitableToHoistInto(CMBB, MBB, MBB1))
846       continue;
847 
848     // Two instrs are partial redundant if their basic blocks are reachable
849     // from one to another but one doesn't dominate another.
850     if (CMBB != MBB1) {
851       auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
852       if (BB != nullptr && BB1 != nullptr &&
853           (isPotentiallyReachable(BB1, BB) ||
854            isPotentiallyReachable(BB, BB1))) {
855         // The following check extends the definition of `isConvergent` to
856         // assume a convergent instruction is dependent not only on additional
857         // conditions, but also on fewer conditions. LLVM does not have a
858         // MachineInstr attribute which expresses this extended definition, so
859         // it's necessary to use `isConvergent` to prevent illegally PRE-ing the
860         // subset of `isConvergent` instructions which do fall into this
861         // extended definition.
862         if (MI.isConvergent() && CMBB != MBB)
863           continue;
864 
865         // If this instruction uses physical registers then we can only do PRE
866         // if it's using the value that is live at the place we're hoisting to.
867         bool NonLocal;
868         PhysDefVector PhysDefs;
869         if (!PhysRefs.empty() &&
870             !PhysRegDefsReach(&*(CMBB->getFirstTerminator()), &MI, PhysRefs,
871                               PhysDefs, NonLocal))
872           continue;
873 
874         assert(MI.getOperand(0).isDef() &&
875                "First operand of instr with one explicit def must be this def");
876         Register VReg = MI.getOperand(0).getReg();
877         Register NewReg = MRI->cloneVirtualRegister(VReg);
878         if (!isProfitableToCSE(NewReg, VReg, CMBB, &MI))
879           continue;
880         MachineInstr &NewMI =
881             TII->duplicate(*CMBB, CMBB->getFirstTerminator(), MI);
882 
883         // When hoisting, make sure we don't carry the debug location of
884         // the original instruction, as that's not correct and can cause
885         // unexpected jumps when debugging optimized code.
886         auto EmptyDL = DebugLoc();
887         NewMI.setDebugLoc(EmptyDL);
888 
889         NewMI.getOperand(0).setReg(NewReg);
890 
891         PREMap[&MI] = CMBB;
892         ++NumPREs;
893         Changed = true;
894       }
895     }
896   }
897   return Changed;
898 }
899 
900 // This simple PRE (partial redundancy elimination) pass doesn't actually
901 // eliminate partial redundancy but transforms it to full redundancy,
902 // anticipating that the next CSE step will eliminate this created redundancy.
903 // If CSE doesn't eliminate this, than created instruction will remain dead
904 // and eliminated later by Remove Dead Machine Instructions pass.
905 bool MachineCSEImpl::PerformSimplePRE(MachineDominatorTree *DT) {
906   SmallVector<MachineDomTreeNode *, 32> BBs;
907 
908   PREMap.clear();
909   bool Changed = false;
910   BBs.push_back(DT->getRootNode());
911   do {
912     auto Node = BBs.pop_back_val();
913     append_range(BBs, Node->children());
914 
915     MachineBasicBlock *MBB = Node->getBlock();
916     Changed |= ProcessBlockPRE(DT, MBB);
917 
918   } while (!BBs.empty());
919 
920   return Changed;
921 }
922 
923 bool MachineCSEImpl::isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
924                                              MachineBasicBlock *MBB,
925                                              MachineBasicBlock *MBB1) {
926   if (CandidateBB->getParent()->getFunction().hasMinSize())
927     return true;
928   assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB");
929   assert(DT->dominates(CandidateBB, MBB1) &&
930          "CandidateBB should dominate MBB1");
931   return MBFI->getBlockFreq(CandidateBB) <=
932          MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1);
933 }
934 
935 void MachineCSEImpl::releaseMemory() {
936   ScopeMap.clear();
937   PREMap.clear();
938   Exps.clear();
939 }
940 
941 bool MachineCSEImpl::run(MachineFunction &MF) {
942   TII = MF.getSubtarget().getInstrInfo();
943   TRI = MF.getSubtarget().getRegisterInfo();
944   MRI = &MF.getRegInfo();
945   LookAheadLimit = TII->getMachineCSELookAheadLimit();
946   bool ChangedPRE, ChangedCSE;
947   ChangedPRE = PerformSimplePRE(DT);
948   ChangedCSE = PerformCSE(DT->getRootNode());
949   releaseMemory();
950   return ChangedPRE || ChangedCSE;
951 }
952 
953 PreservedAnalyses MachineCSEPass::run(MachineFunction &MF,
954                                       MachineFunctionAnalysisManager &MFAM) {
955   MFPropsModifier _(*this, MF);
956 
957   MachineDominatorTree &MDT = MFAM.getResult<MachineDominatorTreeAnalysis>(MF);
958   MachineBlockFrequencyInfo &MBFI =
959       MFAM.getResult<MachineBlockFrequencyAnalysis>(MF);
960   MachineCSEImpl Impl(&MDT, &MBFI);
961   bool Changed = Impl.run(MF);
962   if (!Changed)
963     return PreservedAnalyses::all();
964 
965   auto PA = getMachineFunctionPassPreservedAnalyses();
966   PA.preserve<MachineLoopAnalysis>();
967   PA.preserve<MachineDominatorTreeAnalysis>();
968   PA.preserve<MachineBlockFrequencyAnalysis>();
969   PA.preserveSet<CFGAnalyses>();
970   return PA;
971 }
972 
973 bool MachineCSELegacy::runOnMachineFunction(MachineFunction &MF) {
974   if (skipFunction(MF.getFunction()))
975     return false;
976 
977   MachineDominatorTree &MDT =
978       getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
979   MachineBlockFrequencyInfo &MBFI =
980       getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI();
981   MachineCSEImpl Impl(&MDT, &MBFI);
982   return Impl.run(MF);
983 }
984