1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/ModuleSlotTracker.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/Support/DataTypes.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 42 : BB(B), Number(-1), xParent(&MF) { 43 Insts.Parent = this; 44 } 45 46 MachineBasicBlock::~MachineBasicBlock() { 47 } 48 49 /// Return the MCSymbol for this basic block. 50 MCSymbol *MachineBasicBlock::getSymbol() const { 51 if (!CachedMCSymbol) { 52 const MachineFunction *MF = getParent(); 53 MCContext &Ctx = MF->getContext(); 54 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 55 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 56 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 57 Twine(MF->getFunctionNumber()) + 58 "_" + Twine(getNumber())); 59 } 60 61 return CachedMCSymbol; 62 } 63 64 65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 66 MBB.print(OS); 67 return OS; 68 } 69 70 /// When an MBB is added to an MF, we need to update the parent pointer of the 71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 72 /// operand list for registers. 73 /// 74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 75 /// gets the next available unique MBB number. If it is removed from a 76 /// MachineFunction, it goes back to being #-1. 77 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 78 MachineBasicBlock *N) { 79 MachineFunction &MF = *N->getParent(); 80 N->Number = MF.addToMBBNumbering(N); 81 82 // Make sure the instructions have their operands in the reginfo lists. 83 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 84 for (MachineBasicBlock::instr_iterator 85 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 86 I->AddRegOperandsToUseLists(RegInfo); 87 } 88 89 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 90 MachineBasicBlock *N) { 91 N->getParent()->removeFromMBBNumbering(N->Number); 92 N->Number = -1; 93 } 94 95 /// When we add an instruction to a basic block list, we update its parent 96 /// pointer and add its operands from reg use/def lists if appropriate. 97 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 98 assert(!N->getParent() && "machine instruction already in a basic block"); 99 N->setParent(Parent); 100 101 // Add the instruction's register operands to their corresponding 102 // use/def lists. 103 MachineFunction *MF = Parent->getParent(); 104 N->AddRegOperandsToUseLists(MF->getRegInfo()); 105 } 106 107 /// When we remove an instruction from a basic block list, we update its parent 108 /// pointer and remove its operands from reg use/def lists if appropriate. 109 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 110 assert(N->getParent() && "machine instruction not in a basic block"); 111 112 // Remove from the use/def lists. 113 if (MachineFunction *MF = N->getParent()->getParent()) 114 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 115 116 N->setParent(nullptr); 117 } 118 119 /// When moving a range of instructions from one MBB list to another, we need to 120 /// update the parent pointers and the use/def lists. 121 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 122 instr_iterator First, 123 instr_iterator Last) { 124 assert(Parent->getParent() == FromList.Parent->getParent() && 125 "MachineInstr parent mismatch!"); 126 assert(this != &FromList && "Called without a real transfer..."); 127 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 128 129 // If splicing between two blocks within the same function, just update the 130 // parent pointers. 131 for (; First != Last; ++First) 132 First->setParent(Parent); 133 } 134 135 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 136 assert(!MI->getParent() && "MI is still in a block!"); 137 Parent->getParent()->DeleteMachineInstr(MI); 138 } 139 140 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 141 instr_iterator I = instr_begin(), E = instr_end(); 142 while (I != E && I->isPHI()) 143 ++I; 144 assert((I == E || !I->isInsideBundle()) && 145 "First non-phi MI cannot be inside a bundle!"); 146 return I; 147 } 148 149 MachineBasicBlock::iterator 150 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 151 iterator E = end(); 152 while (I != E && (I->isPHI() || I->isPosition())) 153 ++I; 154 // FIXME: This needs to change if we wish to bundle labels 155 // inside the bundle. 156 assert((I == E || !I->isInsideBundle()) && 157 "First non-phi / non-label instruction is inside a bundle!"); 158 return I; 159 } 160 161 MachineBasicBlock::iterator 162 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 163 iterator E = end(); 164 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 165 ++I; 166 // FIXME: This needs to change if we wish to bundle labels / dbg_values 167 // inside the bundle. 168 assert((I == E || !I->isInsideBundle()) && 169 "First non-phi / non-label / non-debug " 170 "instruction is inside a bundle!"); 171 return I; 172 } 173 174 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 175 iterator B = begin(), E = end(), I = E; 176 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 177 ; /*noop */ 178 while (I != E && !I->isTerminator()) 179 ++I; 180 return I; 181 } 182 183 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 184 instr_iterator B = instr_begin(), E = instr_end(), I = E; 185 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 186 ; /*noop */ 187 while (I != E && !I->isTerminator()) 188 ++I; 189 return I; 190 } 191 192 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 193 // Skip over begin-of-block dbg_value instructions. 194 return skipDebugInstructionsForward(begin(), end()); 195 } 196 197 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 198 // Skip over end-of-block dbg_value instructions. 199 instr_iterator B = instr_begin(), I = instr_end(); 200 while (I != B) { 201 --I; 202 // Return instruction that starts a bundle. 203 if (I->isDebugValue() || I->isInsideBundle()) 204 continue; 205 return I; 206 } 207 // The block is all debug values. 208 return end(); 209 } 210 211 bool MachineBasicBlock::hasEHPadSuccessor() const { 212 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 213 if ((*I)->isEHPad()) 214 return true; 215 return false; 216 } 217 218 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 219 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 220 print(dbgs()); 221 } 222 #endif 223 224 StringRef MachineBasicBlock::getName() const { 225 if (const BasicBlock *LBB = getBasicBlock()) 226 return LBB->getName(); 227 else 228 return "(null)"; 229 } 230 231 /// Return a hopefully unique identifier for this block. 232 std::string MachineBasicBlock::getFullName() const { 233 std::string Name; 234 if (getParent()) 235 Name = (getParent()->getName() + ":").str(); 236 if (getBasicBlock()) 237 Name += getBasicBlock()->getName(); 238 else 239 Name += ("BB" + Twine(getNumber())).str(); 240 return Name; 241 } 242 243 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes) 244 const { 245 const MachineFunction *MF = getParent(); 246 if (!MF) { 247 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 248 << " is null\n"; 249 return; 250 } 251 const Function *F = MF->getFunction(); 252 const Module *M = F ? F->getParent() : nullptr; 253 ModuleSlotTracker MST(M); 254 print(OS, MST, Indexes); 255 } 256 257 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 258 const SlotIndexes *Indexes) const { 259 const MachineFunction *MF = getParent(); 260 if (!MF) { 261 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 262 << " is null\n"; 263 return; 264 } 265 266 if (Indexes) 267 OS << Indexes->getMBBStartIdx(this) << '\t'; 268 269 OS << "BB#" << getNumber() << ": "; 270 271 const char *Comma = ""; 272 if (const BasicBlock *LBB = getBasicBlock()) { 273 OS << Comma << "derived from LLVM BB "; 274 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 275 Comma = ", "; 276 } 277 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 278 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 279 if (Alignment) 280 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 281 << " bytes)"; 282 283 OS << '\n'; 284 285 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 286 if (!livein_empty()) { 287 if (Indexes) OS << '\t'; 288 OS << " Live Ins:"; 289 for (const auto &LI : make_range(livein_begin(), livein_end())) { 290 OS << ' ' << PrintReg(LI.PhysReg, TRI); 291 if (!LI.LaneMask.all()) 292 OS << ':' << PrintLaneMask(LI.LaneMask); 293 } 294 OS << '\n'; 295 } 296 // Print the preds of this block according to the CFG. 297 if (!pred_empty()) { 298 if (Indexes) OS << '\t'; 299 OS << " Predecessors according to CFG:"; 300 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 301 OS << " BB#" << (*PI)->getNumber(); 302 OS << '\n'; 303 } 304 305 for (auto &I : instrs()) { 306 if (Indexes) { 307 if (Indexes->hasIndex(I)) 308 OS << Indexes->getInstructionIndex(I); 309 OS << '\t'; 310 } 311 OS << '\t'; 312 if (I.isInsideBundle()) 313 OS << " * "; 314 I.print(OS, MST); 315 } 316 317 // Print the successors of this block according to the CFG. 318 if (!succ_empty()) { 319 if (Indexes) OS << '\t'; 320 OS << " Successors according to CFG:"; 321 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 322 OS << " BB#" << (*SI)->getNumber(); 323 if (!Probs.empty()) 324 OS << '(' << *getProbabilityIterator(SI) << ')'; 325 } 326 OS << '\n'; 327 } 328 } 329 330 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 331 bool /*PrintType*/) const { 332 OS << "BB#" << getNumber(); 333 } 334 335 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 336 LiveInVector::iterator I = find_if( 337 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 338 if (I == LiveIns.end()) 339 return; 340 341 I->LaneMask &= ~LaneMask; 342 if (I->LaneMask.none()) 343 LiveIns.erase(I); 344 } 345 346 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 347 livein_iterator I = find_if( 348 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 349 return I != livein_end() && (I->LaneMask & LaneMask).any(); 350 } 351 352 void MachineBasicBlock::sortUniqueLiveIns() { 353 std::sort(LiveIns.begin(), LiveIns.end(), 354 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 355 return LI0.PhysReg < LI1.PhysReg; 356 }); 357 // Liveins are sorted by physreg now we can merge their lanemasks. 358 LiveInVector::const_iterator I = LiveIns.begin(); 359 LiveInVector::const_iterator J; 360 LiveInVector::iterator Out = LiveIns.begin(); 361 for (; I != LiveIns.end(); ++Out, I = J) { 362 unsigned PhysReg = I->PhysReg; 363 LaneBitmask LaneMask = I->LaneMask; 364 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 365 LaneMask |= J->LaneMask; 366 Out->PhysReg = PhysReg; 367 Out->LaneMask = LaneMask; 368 } 369 LiveIns.erase(Out, LiveIns.end()); 370 } 371 372 unsigned 373 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 374 assert(getParent() && "MBB must be inserted in function"); 375 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 376 assert(RC && "Register class is required"); 377 assert((isEHPad() || this == &getParent()->front()) && 378 "Only the entry block and landing pads can have physreg live ins"); 379 380 bool LiveIn = isLiveIn(PhysReg); 381 iterator I = SkipPHIsAndLabels(begin()), E = end(); 382 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 383 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 384 385 // Look for an existing copy. 386 if (LiveIn) 387 for (;I != E && I->isCopy(); ++I) 388 if (I->getOperand(1).getReg() == PhysReg) { 389 unsigned VirtReg = I->getOperand(0).getReg(); 390 if (!MRI.constrainRegClass(VirtReg, RC)) 391 llvm_unreachable("Incompatible live-in register class."); 392 return VirtReg; 393 } 394 395 // No luck, create a virtual register. 396 unsigned VirtReg = MRI.createVirtualRegister(RC); 397 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 398 .addReg(PhysReg, RegState::Kill); 399 if (!LiveIn) 400 addLiveIn(PhysReg); 401 return VirtReg; 402 } 403 404 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 405 getParent()->splice(NewAfter->getIterator(), getIterator()); 406 } 407 408 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 409 getParent()->splice(++NewBefore->getIterator(), getIterator()); 410 } 411 412 void MachineBasicBlock::updateTerminator() { 413 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 414 // A block with no successors has no concerns with fall-through edges. 415 if (this->succ_empty()) 416 return; 417 418 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 419 SmallVector<MachineOperand, 4> Cond; 420 DebugLoc DL; // FIXME: this is nowhere 421 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 422 (void) B; 423 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 424 if (Cond.empty()) { 425 if (TBB) { 426 // The block has an unconditional branch. If its successor is now its 427 // layout successor, delete the branch. 428 if (isLayoutSuccessor(TBB)) 429 TII->removeBranch(*this); 430 } else { 431 // The block has an unconditional fallthrough. If its successor is not its 432 // layout successor, insert a branch. First we have to locate the only 433 // non-landing-pad successor, as that is the fallthrough block. 434 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 435 if ((*SI)->isEHPad()) 436 continue; 437 assert(!TBB && "Found more than one non-landing-pad successor!"); 438 TBB = *SI; 439 } 440 441 // If there is no non-landing-pad successor, the block has no fall-through 442 // edges to be concerned with. 443 if (!TBB) 444 return; 445 446 // Finally update the unconditional successor to be reached via a branch 447 // if it would not be reached by fallthrough. 448 if (!isLayoutSuccessor(TBB)) 449 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 450 } 451 return; 452 } 453 454 if (FBB) { 455 // The block has a non-fallthrough conditional branch. If one of its 456 // successors is its layout successor, rewrite it to a fallthrough 457 // conditional branch. 458 if (isLayoutSuccessor(TBB)) { 459 if (TII->reverseBranchCondition(Cond)) 460 return; 461 TII->removeBranch(*this); 462 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 463 } else if (isLayoutSuccessor(FBB)) { 464 TII->removeBranch(*this); 465 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 466 } 467 return; 468 } 469 470 // Walk through the successors and find the successor which is not a landing 471 // pad and is not the conditional branch destination (in TBB) as the 472 // fallthrough successor. 473 MachineBasicBlock *FallthroughBB = nullptr; 474 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 475 if ((*SI)->isEHPad() || *SI == TBB) 476 continue; 477 assert(!FallthroughBB && "Found more than one fallthrough successor."); 478 FallthroughBB = *SI; 479 } 480 481 if (!FallthroughBB) { 482 if (canFallThrough()) { 483 // We fallthrough to the same basic block as the conditional jump targets. 484 // Remove the conditional jump, leaving unconditional fallthrough. 485 // FIXME: This does not seem like a reasonable pattern to support, but it 486 // has been seen in the wild coming out of degenerate ARM test cases. 487 TII->removeBranch(*this); 488 489 // Finally update the unconditional successor to be reached via a branch if 490 // it would not be reached by fallthrough. 491 if (!isLayoutSuccessor(TBB)) 492 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 493 return; 494 } 495 496 // We enter here iff exactly one successor is TBB which cannot fallthrough 497 // and the rest successors if any are EHPads. In this case, we need to 498 // change the conditional branch into unconditional branch. 499 TII->removeBranch(*this); 500 Cond.clear(); 501 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 502 return; 503 } 504 505 // The block has a fallthrough conditional branch. 506 if (isLayoutSuccessor(TBB)) { 507 if (TII->reverseBranchCondition(Cond)) { 508 // We can't reverse the condition, add an unconditional branch. 509 Cond.clear(); 510 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 511 return; 512 } 513 TII->removeBranch(*this); 514 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 515 } else if (!isLayoutSuccessor(FallthroughBB)) { 516 TII->removeBranch(*this); 517 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 518 } 519 } 520 521 void MachineBasicBlock::validateSuccProbs() const { 522 #ifndef NDEBUG 523 int64_t Sum = 0; 524 for (auto Prob : Probs) 525 Sum += Prob.getNumerator(); 526 // Due to precision issue, we assume that the sum of probabilities is one if 527 // the difference between the sum of their numerators and the denominator is 528 // no greater than the number of successors. 529 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 530 Probs.size() && 531 "The sum of successors's probabilities exceeds one."); 532 #endif // NDEBUG 533 } 534 535 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 536 BranchProbability Prob) { 537 // Probability list is either empty (if successor list isn't empty, this means 538 // disabled optimization) or has the same size as successor list. 539 if (!(Probs.empty() && !Successors.empty())) 540 Probs.push_back(Prob); 541 Successors.push_back(Succ); 542 Succ->addPredecessor(this); 543 } 544 545 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 546 // We need to make sure probability list is either empty or has the same size 547 // of successor list. When this function is called, we can safely delete all 548 // probability in the list. 549 Probs.clear(); 550 Successors.push_back(Succ); 551 Succ->addPredecessor(this); 552 } 553 554 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 555 bool NormalizeSuccProbs) { 556 succ_iterator I = find(Successors, Succ); 557 removeSuccessor(I, NormalizeSuccProbs); 558 } 559 560 MachineBasicBlock::succ_iterator 561 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 562 assert(I != Successors.end() && "Not a current successor!"); 563 564 // If probability list is empty it means we don't use it (disabled 565 // optimization). 566 if (!Probs.empty()) { 567 probability_iterator WI = getProbabilityIterator(I); 568 Probs.erase(WI); 569 if (NormalizeSuccProbs) 570 normalizeSuccProbs(); 571 } 572 573 (*I)->removePredecessor(this); 574 return Successors.erase(I); 575 } 576 577 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 578 MachineBasicBlock *New) { 579 if (Old == New) 580 return; 581 582 succ_iterator E = succ_end(); 583 succ_iterator NewI = E; 584 succ_iterator OldI = E; 585 for (succ_iterator I = succ_begin(); I != E; ++I) { 586 if (*I == Old) { 587 OldI = I; 588 if (NewI != E) 589 break; 590 } 591 if (*I == New) { 592 NewI = I; 593 if (OldI != E) 594 break; 595 } 596 } 597 assert(OldI != E && "Old is not a successor of this block"); 598 599 // If New isn't already a successor, let it take Old's place. 600 if (NewI == E) { 601 Old->removePredecessor(this); 602 New->addPredecessor(this); 603 *OldI = New; 604 return; 605 } 606 607 // New is already a successor. 608 // Update its probability instead of adding a duplicate edge. 609 if (!Probs.empty()) { 610 auto ProbIter = getProbabilityIterator(NewI); 611 if (!ProbIter->isUnknown()) 612 *ProbIter += *getProbabilityIterator(OldI); 613 } 614 removeSuccessor(OldI); 615 } 616 617 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 618 Predecessors.push_back(Pred); 619 } 620 621 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 622 pred_iterator I = find(Predecessors, Pred); 623 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 624 Predecessors.erase(I); 625 } 626 627 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 628 if (this == FromMBB) 629 return; 630 631 while (!FromMBB->succ_empty()) { 632 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 633 634 // If probability list is empty it means we don't use it (disabled optimization). 635 if (!FromMBB->Probs.empty()) { 636 auto Prob = *FromMBB->Probs.begin(); 637 addSuccessor(Succ, Prob); 638 } else 639 addSuccessorWithoutProb(Succ); 640 641 FromMBB->removeSuccessor(Succ); 642 } 643 } 644 645 void 646 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 647 if (this == FromMBB) 648 return; 649 650 while (!FromMBB->succ_empty()) { 651 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 652 if (!FromMBB->Probs.empty()) { 653 auto Prob = *FromMBB->Probs.begin(); 654 addSuccessor(Succ, Prob); 655 } else 656 addSuccessorWithoutProb(Succ); 657 FromMBB->removeSuccessor(Succ); 658 659 // Fix up any PHI nodes in the successor. 660 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 661 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 662 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 663 MachineOperand &MO = MI->getOperand(i); 664 if (MO.getMBB() == FromMBB) 665 MO.setMBB(this); 666 } 667 } 668 normalizeSuccProbs(); 669 } 670 671 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 672 return is_contained(predecessors(), MBB); 673 } 674 675 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 676 return is_contained(successors(), MBB); 677 } 678 679 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 680 MachineFunction::const_iterator I(this); 681 return std::next(I) == MachineFunction::const_iterator(MBB); 682 } 683 684 bool MachineBasicBlock::canFallThrough() { 685 MachineFunction::iterator Fallthrough = getIterator(); 686 ++Fallthrough; 687 // If FallthroughBlock is off the end of the function, it can't fall through. 688 if (Fallthrough == getParent()->end()) 689 return false; 690 691 // If FallthroughBlock isn't a successor, no fallthrough is possible. 692 if (!isSuccessor(&*Fallthrough)) 693 return false; 694 695 // Analyze the branches, if any, at the end of the block. 696 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 697 SmallVector<MachineOperand, 4> Cond; 698 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 699 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 700 // If we couldn't analyze the branch, examine the last instruction. 701 // If the block doesn't end in a known control barrier, assume fallthrough 702 // is possible. The isPredicated check is needed because this code can be 703 // called during IfConversion, where an instruction which is normally a 704 // Barrier is predicated and thus no longer an actual control barrier. 705 return empty() || !back().isBarrier() || TII->isPredicated(back()); 706 } 707 708 // If there is no branch, control always falls through. 709 if (!TBB) return true; 710 711 // If there is some explicit branch to the fallthrough block, it can obviously 712 // reach, even though the branch should get folded to fall through implicitly. 713 if (MachineFunction::iterator(TBB) == Fallthrough || 714 MachineFunction::iterator(FBB) == Fallthrough) 715 return true; 716 717 // If it's an unconditional branch to some block not the fall through, it 718 // doesn't fall through. 719 if (Cond.empty()) return false; 720 721 // Otherwise, if it is conditional and has no explicit false block, it falls 722 // through. 723 return FBB == nullptr; 724 } 725 726 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 727 Pass &P) { 728 if (!canSplitCriticalEdge(Succ)) 729 return nullptr; 730 731 MachineFunction *MF = getParent(); 732 DebugLoc DL; // FIXME: this is nowhere 733 734 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 735 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 736 DEBUG(dbgs() << "Splitting critical edge:" 737 " BB#" << getNumber() 738 << " -- BB#" << NMBB->getNumber() 739 << " -- BB#" << Succ->getNumber() << '\n'); 740 741 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 742 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 743 if (LIS) 744 LIS->insertMBBInMaps(NMBB); 745 else if (Indexes) 746 Indexes->insertMBBInMaps(NMBB); 747 748 // On some targets like Mips, branches may kill virtual registers. Make sure 749 // that LiveVariables is properly updated after updateTerminator replaces the 750 // terminators. 751 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 752 753 // Collect a list of virtual registers killed by the terminators. 754 SmallVector<unsigned, 4> KilledRegs; 755 if (LV) 756 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 757 I != E; ++I) { 758 MachineInstr *MI = &*I; 759 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 760 OE = MI->operands_end(); OI != OE; ++OI) { 761 if (!OI->isReg() || OI->getReg() == 0 || 762 !OI->isUse() || !OI->isKill() || OI->isUndef()) 763 continue; 764 unsigned Reg = OI->getReg(); 765 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 766 LV->getVarInfo(Reg).removeKill(*MI)) { 767 KilledRegs.push_back(Reg); 768 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 769 OI->setIsKill(false); 770 } 771 } 772 } 773 774 SmallVector<unsigned, 4> UsedRegs; 775 if (LIS) { 776 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 777 I != E; ++I) { 778 MachineInstr *MI = &*I; 779 780 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 781 OE = MI->operands_end(); OI != OE; ++OI) { 782 if (!OI->isReg() || OI->getReg() == 0) 783 continue; 784 785 unsigned Reg = OI->getReg(); 786 if (!is_contained(UsedRegs, Reg)) 787 UsedRegs.push_back(Reg); 788 } 789 } 790 } 791 792 ReplaceUsesOfBlockWith(Succ, NMBB); 793 794 // If updateTerminator() removes instructions, we need to remove them from 795 // SlotIndexes. 796 SmallVector<MachineInstr*, 4> Terminators; 797 if (Indexes) { 798 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 799 I != E; ++I) 800 Terminators.push_back(&*I); 801 } 802 803 updateTerminator(); 804 805 if (Indexes) { 806 SmallVector<MachineInstr*, 4> NewTerminators; 807 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 808 I != E; ++I) 809 NewTerminators.push_back(&*I); 810 811 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 812 E = Terminators.end(); I != E; ++I) { 813 if (!is_contained(NewTerminators, *I)) 814 Indexes->removeMachineInstrFromMaps(**I); 815 } 816 } 817 818 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 819 NMBB->addSuccessor(Succ); 820 if (!NMBB->isLayoutSuccessor(Succ)) { 821 SmallVector<MachineOperand, 4> Cond; 822 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 823 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 824 825 if (Indexes) { 826 for (MachineInstr &MI : NMBB->instrs()) { 827 // Some instructions may have been moved to NMBB by updateTerminator(), 828 // so we first remove any instruction that already has an index. 829 if (Indexes->hasIndex(MI)) 830 Indexes->removeMachineInstrFromMaps(MI); 831 Indexes->insertMachineInstrInMaps(MI); 832 } 833 } 834 } 835 836 // Fix PHI nodes in Succ so they refer to NMBB instead of this 837 for (MachineBasicBlock::instr_iterator 838 i = Succ->instr_begin(),e = Succ->instr_end(); 839 i != e && i->isPHI(); ++i) 840 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 841 if (i->getOperand(ni+1).getMBB() == this) 842 i->getOperand(ni+1).setMBB(NMBB); 843 844 // Inherit live-ins from the successor 845 for (const auto &LI : Succ->liveins()) 846 NMBB->addLiveIn(LI); 847 848 // Update LiveVariables. 849 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 850 if (LV) { 851 // Restore kills of virtual registers that were killed by the terminators. 852 while (!KilledRegs.empty()) { 853 unsigned Reg = KilledRegs.pop_back_val(); 854 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 855 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 856 continue; 857 if (TargetRegisterInfo::isVirtualRegister(Reg)) 858 LV->getVarInfo(Reg).Kills.push_back(&*I); 859 DEBUG(dbgs() << "Restored terminator kill: " << *I); 860 break; 861 } 862 } 863 // Update relevant live-through information. 864 LV->addNewBlock(NMBB, this, Succ); 865 } 866 867 if (LIS) { 868 // After splitting the edge and updating SlotIndexes, live intervals may be 869 // in one of two situations, depending on whether this block was the last in 870 // the function. If the original block was the last in the function, all 871 // live intervals will end prior to the beginning of the new split block. If 872 // the original block was not at the end of the function, all live intervals 873 // will extend to the end of the new split block. 874 875 bool isLastMBB = 876 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 877 878 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 879 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 880 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 881 882 // Find the registers used from NMBB in PHIs in Succ. 883 SmallSet<unsigned, 8> PHISrcRegs; 884 for (MachineBasicBlock::instr_iterator 885 I = Succ->instr_begin(), E = Succ->instr_end(); 886 I != E && I->isPHI(); ++I) { 887 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 888 if (I->getOperand(ni+1).getMBB() == NMBB) { 889 MachineOperand &MO = I->getOperand(ni); 890 unsigned Reg = MO.getReg(); 891 PHISrcRegs.insert(Reg); 892 if (MO.isUndef()) 893 continue; 894 895 LiveInterval &LI = LIS->getInterval(Reg); 896 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 897 assert(VNI && 898 "PHI sources should be live out of their predecessors."); 899 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 900 } 901 } 902 } 903 904 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 905 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 906 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 907 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 908 continue; 909 910 LiveInterval &LI = LIS->getInterval(Reg); 911 if (!LI.liveAt(PrevIndex)) 912 continue; 913 914 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 915 if (isLiveOut && isLastMBB) { 916 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 917 assert(VNI && "LiveInterval should have VNInfo where it is live."); 918 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 919 } else if (!isLiveOut && !isLastMBB) { 920 LI.removeSegment(StartIndex, EndIndex); 921 } 922 } 923 924 // Update all intervals for registers whose uses may have been modified by 925 // updateTerminator(). 926 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 927 } 928 929 if (MachineDominatorTree *MDT = 930 P.getAnalysisIfAvailable<MachineDominatorTree>()) 931 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 932 933 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 934 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 935 // If one or the other blocks were not in a loop, the new block is not 936 // either, and thus LI doesn't need to be updated. 937 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 938 if (TIL == DestLoop) { 939 // Both in the same loop, the NMBB joins loop. 940 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 941 } else if (TIL->contains(DestLoop)) { 942 // Edge from an outer loop to an inner loop. Add to the outer loop. 943 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 944 } else if (DestLoop->contains(TIL)) { 945 // Edge from an inner loop to an outer loop. Add to the outer loop. 946 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 947 } else { 948 // Edge from two loops with no containment relation. Because these 949 // are natural loops, we know that the destination block must be the 950 // header of its loop (adding a branch into a loop elsewhere would 951 // create an irreducible loop). 952 assert(DestLoop->getHeader() == Succ && 953 "Should not create irreducible loops!"); 954 if (MachineLoop *P = DestLoop->getParentLoop()) 955 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 956 } 957 } 958 } 959 960 return NMBB; 961 } 962 963 bool MachineBasicBlock::canSplitCriticalEdge( 964 const MachineBasicBlock *Succ) const { 965 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 966 // it in this generic function. 967 if (Succ->isEHPad()) 968 return false; 969 970 const MachineFunction *MF = getParent(); 971 972 // Performance might be harmed on HW that implements branching using exec mask 973 // where both sides of the branches are always executed. 974 if (MF->getTarget().requiresStructuredCFG()) 975 return false; 976 977 // We may need to update this's terminator, but we can't do that if 978 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 979 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 980 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 981 SmallVector<MachineOperand, 4> Cond; 982 // AnalyzeBanch should modify this, since we did not allow modification. 983 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 984 /*AllowModify*/ false)) 985 return false; 986 987 // Avoid bugpoint weirdness: A block may end with a conditional branch but 988 // jumps to the same MBB is either case. We have duplicate CFG edges in that 989 // case that we can't handle. Since this never happens in properly optimized 990 // code, just skip those edges. 991 if (TBB && TBB == FBB) { 992 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 993 << getNumber() << '\n'); 994 return false; 995 } 996 return true; 997 } 998 999 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1000 /// neighboring instructions so the bundle won't be broken by removing MI. 1001 static void unbundleSingleMI(MachineInstr *MI) { 1002 // Removing the first instruction in a bundle. 1003 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1004 MI->unbundleFromSucc(); 1005 // Removing the last instruction in a bundle. 1006 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1007 MI->unbundleFromPred(); 1008 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1009 // are already fine. 1010 } 1011 1012 MachineBasicBlock::instr_iterator 1013 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1014 unbundleSingleMI(&*I); 1015 return Insts.erase(I); 1016 } 1017 1018 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1019 unbundleSingleMI(MI); 1020 MI->clearFlag(MachineInstr::BundledPred); 1021 MI->clearFlag(MachineInstr::BundledSucc); 1022 return Insts.remove(MI); 1023 } 1024 1025 MachineBasicBlock::instr_iterator 1026 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1027 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1028 "Cannot insert instruction with bundle flags"); 1029 // Set the bundle flags when inserting inside a bundle. 1030 if (I != instr_end() && I->isBundledWithPred()) { 1031 MI->setFlag(MachineInstr::BundledPred); 1032 MI->setFlag(MachineInstr::BundledSucc); 1033 } 1034 return Insts.insert(I, MI); 1035 } 1036 1037 /// This method unlinks 'this' from the containing function, and returns it, but 1038 /// does not delete it. 1039 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1040 assert(getParent() && "Not embedded in a function!"); 1041 getParent()->remove(this); 1042 return this; 1043 } 1044 1045 /// This method unlinks 'this' from the containing function, and deletes it. 1046 void MachineBasicBlock::eraseFromParent() { 1047 assert(getParent() && "Not embedded in a function!"); 1048 getParent()->erase(this); 1049 } 1050 1051 /// Given a machine basic block that branched to 'Old', change the code and CFG 1052 /// so that it branches to 'New' instead. 1053 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1054 MachineBasicBlock *New) { 1055 assert(Old != New && "Cannot replace self with self!"); 1056 1057 MachineBasicBlock::instr_iterator I = instr_end(); 1058 while (I != instr_begin()) { 1059 --I; 1060 if (!I->isTerminator()) break; 1061 1062 // Scan the operands of this machine instruction, replacing any uses of Old 1063 // with New. 1064 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1065 if (I->getOperand(i).isMBB() && 1066 I->getOperand(i).getMBB() == Old) 1067 I->getOperand(i).setMBB(New); 1068 } 1069 1070 // Update the successor information. 1071 replaceSuccessor(Old, New); 1072 } 1073 1074 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1075 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1076 /// MBB successors from the CFG. DestA and DestB can be null. 1077 /// 1078 /// Besides DestA and DestB, retain other edges leading to LandingPads 1079 /// (currently there can be only one; we don't check or require that here). 1080 /// Note it is possible that DestA and/or DestB are LandingPads. 1081 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1082 MachineBasicBlock *DestB, 1083 bool IsCond) { 1084 // The values of DestA and DestB frequently come from a call to the 1085 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1086 // values from there. 1087 // 1088 // 1. If both DestA and DestB are null, then the block ends with no branches 1089 // (it falls through to its successor). 1090 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1091 // with only an unconditional branch. 1092 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1093 // with a conditional branch that falls through to a successor (DestB). 1094 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1095 // conditional branch followed by an unconditional branch. DestA is the 1096 // 'true' destination and DestB is the 'false' destination. 1097 1098 bool Changed = false; 1099 1100 MachineBasicBlock *FallThru = getNextNode(); 1101 1102 if (!DestA && !DestB) { 1103 // Block falls through to successor. 1104 DestA = FallThru; 1105 DestB = FallThru; 1106 } else if (DestA && !DestB) { 1107 if (IsCond) 1108 // Block ends in conditional jump that falls through to successor. 1109 DestB = FallThru; 1110 } else { 1111 assert(DestA && DestB && IsCond && 1112 "CFG in a bad state. Cannot correct CFG edges"); 1113 } 1114 1115 // Remove superfluous edges. I.e., those which aren't destinations of this 1116 // basic block, duplicate edges, or landing pads. 1117 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1118 MachineBasicBlock::succ_iterator SI = succ_begin(); 1119 while (SI != succ_end()) { 1120 const MachineBasicBlock *MBB = *SI; 1121 if (!SeenMBBs.insert(MBB).second || 1122 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1123 // This is a superfluous edge, remove it. 1124 SI = removeSuccessor(SI); 1125 Changed = true; 1126 } else { 1127 ++SI; 1128 } 1129 } 1130 1131 if (Changed) 1132 normalizeSuccProbs(); 1133 return Changed; 1134 } 1135 1136 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1137 /// instructions. Return UnknownLoc if there is none. 1138 DebugLoc 1139 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1140 // Skip debug declarations, we don't want a DebugLoc from them. 1141 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1142 if (MBBI != instr_end()) 1143 return MBBI->getDebugLoc(); 1144 return {}; 1145 } 1146 1147 /// Return probability of the edge from this block to MBB. 1148 BranchProbability 1149 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1150 if (Probs.empty()) 1151 return BranchProbability(1, succ_size()); 1152 1153 const auto &Prob = *getProbabilityIterator(Succ); 1154 if (Prob.isUnknown()) { 1155 // For unknown probabilities, collect the sum of all known ones, and evenly 1156 // ditribute the complemental of the sum to each unknown probability. 1157 unsigned KnownProbNum = 0; 1158 auto Sum = BranchProbability::getZero(); 1159 for (auto &P : Probs) { 1160 if (!P.isUnknown()) { 1161 Sum += P; 1162 KnownProbNum++; 1163 } 1164 } 1165 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1166 } else 1167 return Prob; 1168 } 1169 1170 /// Set successor probability of a given iterator. 1171 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1172 BranchProbability Prob) { 1173 assert(!Prob.isUnknown()); 1174 if (Probs.empty()) 1175 return; 1176 *getProbabilityIterator(I) = Prob; 1177 } 1178 1179 /// Return probability iterator corresonding to the I successor iterator 1180 MachineBasicBlock::const_probability_iterator 1181 MachineBasicBlock::getProbabilityIterator( 1182 MachineBasicBlock::const_succ_iterator I) const { 1183 assert(Probs.size() == Successors.size() && "Async probability list!"); 1184 const size_t index = std::distance(Successors.begin(), I); 1185 assert(index < Probs.size() && "Not a current successor!"); 1186 return Probs.begin() + index; 1187 } 1188 1189 /// Return probability iterator corresonding to the I successor iterator. 1190 MachineBasicBlock::probability_iterator 1191 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1192 assert(Probs.size() == Successors.size() && "Async probability list!"); 1193 const size_t index = std::distance(Successors.begin(), I); 1194 assert(index < Probs.size() && "Not a current successor!"); 1195 return Probs.begin() + index; 1196 } 1197 1198 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1199 /// as of just before "MI". 1200 /// 1201 /// Search is localised to a neighborhood of 1202 /// Neighborhood instructions before (searching for defs or kills) and N 1203 /// instructions after (searching just for defs) MI. 1204 MachineBasicBlock::LivenessQueryResult 1205 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1206 unsigned Reg, const_iterator Before, 1207 unsigned Neighborhood) const { 1208 unsigned N = Neighborhood; 1209 1210 // Start by searching backwards from Before, looking for kills, reads or defs. 1211 const_iterator I(Before); 1212 // If this is the first insn in the block, don't search backwards. 1213 if (I != begin()) { 1214 do { 1215 --I; 1216 1217 MachineOperandIteratorBase::PhysRegInfo Info = 1218 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1219 1220 // Defs happen after uses so they take precedence if both are present. 1221 1222 // Register is dead after a dead def of the full register. 1223 if (Info.DeadDef) 1224 return LQR_Dead; 1225 // Register is (at least partially) live after a def. 1226 if (Info.Defined) { 1227 if (!Info.PartialDeadDef) 1228 return LQR_Live; 1229 // As soon as we saw a partial definition (dead or not), 1230 // we cannot tell if the value is partial live without 1231 // tracking the lanemasks. We are not going to do this, 1232 // so fall back on the remaining of the analysis. 1233 break; 1234 } 1235 // Register is dead after a full kill or clobber and no def. 1236 if (Info.Killed || Info.Clobbered) 1237 return LQR_Dead; 1238 // Register must be live if we read it. 1239 if (Info.Read) 1240 return LQR_Live; 1241 } while (I != begin() && --N > 0); 1242 } 1243 1244 // Did we get to the start of the block? 1245 if (I == begin()) { 1246 // If so, the register's state is definitely defined by the live-in state. 1247 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1248 ++RAI) 1249 if (isLiveIn(*RAI)) 1250 return LQR_Live; 1251 1252 return LQR_Dead; 1253 } 1254 1255 N = Neighborhood; 1256 1257 // Try searching forwards from Before, looking for reads or defs. 1258 I = const_iterator(Before); 1259 // If this is the last insn in the block, don't search forwards. 1260 if (I != end()) { 1261 for (++I; I != end() && N > 0; ++I, --N) { 1262 MachineOperandIteratorBase::PhysRegInfo Info = 1263 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1264 1265 // Register is live when we read it here. 1266 if (Info.Read) 1267 return LQR_Live; 1268 // Register is dead if we can fully overwrite or clobber it here. 1269 if (Info.FullyDefined || Info.Clobbered) 1270 return LQR_Dead; 1271 } 1272 } 1273 1274 // At this point we have no idea of the liveness of the register. 1275 return LQR_Unknown; 1276 } 1277 1278 const uint32_t * 1279 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1280 // EH funclet entry does not preserve any registers. 1281 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1282 } 1283 1284 const uint32_t * 1285 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1286 // If we see a return block with successors, this must be a funclet return, 1287 // which does not preserve any registers. If there are no successors, we don't 1288 // care what kind of return it is, putting a mask after it is a no-op. 1289 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1290 } 1291