1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/StringExtras.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LivePhysRegs.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDomTreeUpdater.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineLoopInfo.h" 25 #include "llvm/CodeGen/MachinePostDominators.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SlotIndexes.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetRegisterInfo.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/ModuleSlotTracker.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include <algorithm> 42 #include <cmath> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "codegen" 46 47 static cl::opt<bool> PrintSlotIndexes( 48 "print-slotindexes", 49 cl::desc("When printing machine IR, annotate instructions and blocks with " 50 "SlotIndexes when available"), 51 cl::init(true), cl::Hidden); 52 53 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 54 : BB(B), Number(-1), xParent(&MF) { 55 Insts.Parent = this; 56 if (B) 57 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 58 } 59 60 MachineBasicBlock::~MachineBasicBlock() = default; 61 62 /// Return the MCSymbol for this basic block. 63 MCSymbol *MachineBasicBlock::getSymbol() const { 64 if (!CachedMCSymbol) { 65 const MachineFunction *MF = getParent(); 66 MCContext &Ctx = MF->getContext(); 67 68 // We emit a non-temporary symbol -- with a descriptive name -- if it begins 69 // a section (with basic block sections). Otherwise we fall back to use temp 70 // label. 71 if (MF->hasBBSections() && isBeginSection()) { 72 SmallString<5> Suffix; 73 if (SectionID == MBBSectionID::ColdSectionID) { 74 Suffix += ".cold"; 75 } else if (SectionID == MBBSectionID::ExceptionSectionID) { 76 Suffix += ".eh"; 77 } else { 78 // For symbols that represent basic block sections, we add ".__part." to 79 // allow tools like symbolizers to know that this represents a part of 80 // the original function. 81 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str(); 82 } 83 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix); 84 } else { 85 // If the block occurs as label in inline assembly, parsing the assembly 86 // needs an actual label name => set AlwaysEmit in these cases. 87 CachedMCSymbol = Ctx.createBlockSymbol( 88 "BB" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber()), 89 /*AlwaysEmit=*/hasLabelMustBeEmitted()); 90 } 91 } 92 return CachedMCSymbol; 93 } 94 95 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const { 96 if (!CachedEHCatchretMCSymbol) { 97 const MachineFunction *MF = getParent(); 98 SmallString<128> SymbolName; 99 raw_svector_ostream(SymbolName) 100 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber(); 101 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName); 102 } 103 return CachedEHCatchretMCSymbol; 104 } 105 106 MCSymbol *MachineBasicBlock::getEndSymbol() const { 107 if (!CachedEndMCSymbol) { 108 const MachineFunction *MF = getParent(); 109 MCContext &Ctx = MF->getContext(); 110 CachedEndMCSymbol = Ctx.createBlockSymbol( 111 "BB_END" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber()), 112 /*AlwaysEmit=*/false); 113 } 114 return CachedEndMCSymbol; 115 } 116 117 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 118 MBB.print(OS); 119 return OS; 120 } 121 122 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 123 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 124 } 125 126 /// When an MBB is added to an MF, we need to update the parent pointer of the 127 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 128 /// operand list for registers. 129 /// 130 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 131 /// gets the next available unique MBB number. If it is removed from a 132 /// MachineFunction, it goes back to being #-1. 133 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 134 MachineBasicBlock *N) { 135 MachineFunction &MF = *N->getParent(); 136 N->Number = MF.addToMBBNumbering(N); 137 138 // Make sure the instructions have their operands in the reginfo lists. 139 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 140 for (MachineInstr &MI : N->instrs()) 141 MI.addRegOperandsToUseLists(RegInfo); 142 } 143 144 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 145 MachineBasicBlock *N) { 146 N->getParent()->removeFromMBBNumbering(N->Number); 147 N->Number = -1; 148 } 149 150 /// When we add an instruction to a basic block list, we update its parent 151 /// pointer and add its operands from reg use/def lists if appropriate. 152 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 153 assert(!N->getParent() && "machine instruction already in a basic block"); 154 N->setParent(Parent); 155 156 // Add the instruction's register operands to their corresponding 157 // use/def lists. 158 MachineFunction *MF = Parent->getParent(); 159 N->addRegOperandsToUseLists(MF->getRegInfo()); 160 MF->handleInsertion(*N); 161 } 162 163 /// When we remove an instruction from a basic block list, we update its parent 164 /// pointer and remove its operands from reg use/def lists if appropriate. 165 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 166 assert(N->getParent() && "machine instruction not in a basic block"); 167 168 // Remove from the use/def lists. 169 if (MachineFunction *MF = N->getMF()) { 170 MF->handleRemoval(*N); 171 N->removeRegOperandsFromUseLists(MF->getRegInfo()); 172 } 173 174 N->setParent(nullptr); 175 } 176 177 /// When moving a range of instructions from one MBB list to another, we need to 178 /// update the parent pointers and the use/def lists. 179 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 180 instr_iterator First, 181 instr_iterator Last) { 182 assert(Parent->getParent() == FromList.Parent->getParent() && 183 "cannot transfer MachineInstrs between MachineFunctions"); 184 185 // If it's within the same BB, there's nothing to do. 186 if (this == &FromList) 187 return; 188 189 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 190 191 // If splicing between two blocks within the same function, just update the 192 // parent pointers. 193 for (; First != Last; ++First) 194 First->setParent(Parent); 195 } 196 197 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 198 assert(!MI->getParent() && "MI is still in a block!"); 199 Parent->getParent()->deleteMachineInstr(MI); 200 } 201 202 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 203 instr_iterator I = instr_begin(), E = instr_end(); 204 while (I != E && I->isPHI()) 205 ++I; 206 assert((I == E || !I->isInsideBundle()) && 207 "First non-phi MI cannot be inside a bundle!"); 208 return I; 209 } 210 211 MachineBasicBlock::iterator 212 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 213 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 214 215 iterator E = end(); 216 while (I != E && (I->isPHI() || I->isPosition() || 217 TII->isBasicBlockPrologue(*I))) 218 ++I; 219 // FIXME: This needs to change if we wish to bundle labels 220 // inside the bundle. 221 assert((I == E || !I->isInsideBundle()) && 222 "First non-phi / non-label instruction is inside a bundle!"); 223 return I; 224 } 225 226 MachineBasicBlock::iterator 227 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I, 228 Register Reg, bool SkipPseudoOp) { 229 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 230 231 iterator E = end(); 232 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 233 (SkipPseudoOp && I->isPseudoProbe()) || 234 TII->isBasicBlockPrologue(*I, Reg))) 235 ++I; 236 // FIXME: This needs to change if we wish to bundle labels / dbg_values 237 // inside the bundle. 238 assert((I == E || !I->isInsideBundle()) && 239 "First non-phi / non-label / non-debug " 240 "instruction is inside a bundle!"); 241 return I; 242 } 243 244 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 245 iterator B = begin(), E = end(), I = E; 246 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 247 ; /*noop */ 248 while (I != E && !I->isTerminator()) 249 ++I; 250 return I; 251 } 252 253 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 254 instr_iterator B = instr_begin(), E = instr_end(), I = E; 255 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 256 ; /*noop */ 257 while (I != E && !I->isTerminator()) 258 ++I; 259 return I; 260 } 261 262 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() { 263 return find_if(instrs(), [](auto &II) { return II.isTerminator(); }); 264 } 265 266 MachineBasicBlock::iterator 267 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) { 268 // Skip over begin-of-block dbg_value instructions. 269 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp); 270 } 271 272 MachineBasicBlock::iterator 273 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) { 274 // Skip over end-of-block dbg_value instructions. 275 instr_iterator B = instr_begin(), I = instr_end(); 276 while (I != B) { 277 --I; 278 // Return instruction that starts a bundle. 279 if (I->isDebugInstr() || I->isInsideBundle()) 280 continue; 281 if (SkipPseudoOp && I->isPseudoProbe()) 282 continue; 283 return I; 284 } 285 // The block is all debug values. 286 return end(); 287 } 288 289 bool MachineBasicBlock::hasEHPadSuccessor() const { 290 for (const MachineBasicBlock *Succ : successors()) 291 if (Succ->isEHPad()) 292 return true; 293 return false; 294 } 295 296 bool MachineBasicBlock::isEntryBlock() const { 297 return getParent()->begin() == getIterator(); 298 } 299 300 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 301 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 302 print(dbgs()); 303 } 304 #endif 305 306 bool MachineBasicBlock::mayHaveInlineAsmBr() const { 307 for (const MachineBasicBlock *Succ : successors()) { 308 if (Succ->isInlineAsmBrIndirectTarget()) 309 return true; 310 } 311 return false; 312 } 313 314 bool MachineBasicBlock::isLegalToHoistInto() const { 315 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr()) 316 return false; 317 return true; 318 } 319 320 bool MachineBasicBlock::hasName() const { 321 if (const BasicBlock *LBB = getBasicBlock()) 322 return LBB->hasName(); 323 return false; 324 } 325 326 StringRef MachineBasicBlock::getName() const { 327 if (const BasicBlock *LBB = getBasicBlock()) 328 return LBB->getName(); 329 else 330 return StringRef("", 0); 331 } 332 333 /// Return a hopefully unique identifier for this block. 334 std::string MachineBasicBlock::getFullName() const { 335 std::string Name; 336 if (getParent()) 337 Name = (getParent()->getName() + ":").str(); 338 if (getBasicBlock()) 339 Name += getBasicBlock()->getName(); 340 else 341 Name += ("BB" + Twine(getNumber())).str(); 342 return Name; 343 } 344 345 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 346 bool IsStandalone) const { 347 const MachineFunction *MF = getParent(); 348 if (!MF) { 349 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 350 << " is null\n"; 351 return; 352 } 353 const Function &F = MF->getFunction(); 354 const Module *M = F.getParent(); 355 ModuleSlotTracker MST(M); 356 MST.incorporateFunction(F); 357 print(OS, MST, Indexes, IsStandalone); 358 } 359 360 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 361 const SlotIndexes *Indexes, 362 bool IsStandalone) const { 363 const MachineFunction *MF = getParent(); 364 if (!MF) { 365 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 366 << " is null\n"; 367 return; 368 } 369 370 if (Indexes && PrintSlotIndexes) 371 OS << Indexes->getMBBStartIdx(this) << '\t'; 372 373 printName(OS, PrintNameIr | PrintNameAttributes, &MST); 374 OS << ":\n"; 375 376 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 377 const MachineRegisterInfo &MRI = MF->getRegInfo(); 378 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 379 bool HasLineAttributes = false; 380 381 // Print the preds of this block according to the CFG. 382 if (!pred_empty() && IsStandalone) { 383 if (Indexes) OS << '\t'; 384 // Don't indent(2), align with previous line attributes. 385 OS << "; predecessors: "; 386 ListSeparator LS; 387 for (auto *Pred : predecessors()) 388 OS << LS << printMBBReference(*Pred); 389 OS << '\n'; 390 HasLineAttributes = true; 391 } 392 393 if (!succ_empty()) { 394 if (Indexes) OS << '\t'; 395 // Print the successors 396 OS.indent(2) << "successors: "; 397 ListSeparator LS; 398 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 399 OS << LS << printMBBReference(**I); 400 if (!Probs.empty()) 401 OS << '(' 402 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 403 << ')'; 404 } 405 if (!Probs.empty() && IsStandalone) { 406 // Print human readable probabilities as comments. 407 OS << "; "; 408 ListSeparator LS; 409 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 410 const BranchProbability &BP = getSuccProbability(I); 411 OS << LS << printMBBReference(**I) << '(' 412 << format("%.2f%%", 413 rint(((double)BP.getNumerator() / BP.getDenominator()) * 414 100.0 * 100.0) / 415 100.0) 416 << ')'; 417 } 418 } 419 420 OS << '\n'; 421 HasLineAttributes = true; 422 } 423 424 if (!livein_empty() && MRI.tracksLiveness()) { 425 if (Indexes) OS << '\t'; 426 OS.indent(2) << "liveins: "; 427 428 ListSeparator LS; 429 for (const auto &LI : liveins()) { 430 OS << LS << printReg(LI.PhysReg, TRI); 431 if (!LI.LaneMask.all()) 432 OS << ":0x" << PrintLaneMask(LI.LaneMask); 433 } 434 HasLineAttributes = true; 435 } 436 437 if (HasLineAttributes) 438 OS << '\n'; 439 440 bool IsInBundle = false; 441 for (const MachineInstr &MI : instrs()) { 442 if (Indexes && PrintSlotIndexes) { 443 if (Indexes->hasIndex(MI)) 444 OS << Indexes->getInstructionIndex(MI); 445 OS << '\t'; 446 } 447 448 if (IsInBundle && !MI.isInsideBundle()) { 449 OS.indent(2) << "}\n"; 450 IsInBundle = false; 451 } 452 453 OS.indent(IsInBundle ? 4 : 2); 454 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 455 /*AddNewLine=*/false, &TII); 456 457 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 458 OS << " {"; 459 IsInBundle = true; 460 } 461 OS << '\n'; 462 } 463 464 if (IsInBundle) 465 OS.indent(2) << "}\n"; 466 467 if (IrrLoopHeaderWeight && IsStandalone) { 468 if (Indexes) OS << '\t'; 469 OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight 470 << '\n'; 471 } 472 } 473 474 /// Print the basic block's name as: 475 /// 476 /// bb.{number}[.{ir-name}] [(attributes...)] 477 /// 478 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed 479 /// (which is the default). If the IR block has no name, it is identified 480 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})". 481 /// 482 /// When the \ref PrintNameAttributes flag is passed, additional attributes 483 /// of the block are printed when set. 484 /// 485 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating 486 /// the parts to print. 487 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will 488 /// incorporate its own tracker when necessary to 489 /// determine the block's IR name. 490 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags, 491 ModuleSlotTracker *moduleSlotTracker) const { 492 os << "bb." << getNumber(); 493 bool hasAttributes = false; 494 495 auto PrintBBRef = [&](const BasicBlock *bb) { 496 os << "%ir-block."; 497 if (bb->hasName()) { 498 os << bb->getName(); 499 } else { 500 int slot = -1; 501 502 if (moduleSlotTracker) { 503 slot = moduleSlotTracker->getLocalSlot(bb); 504 } else if (bb->getParent()) { 505 ModuleSlotTracker tmpTracker(bb->getModule(), false); 506 tmpTracker.incorporateFunction(*bb->getParent()); 507 slot = tmpTracker.getLocalSlot(bb); 508 } 509 510 if (slot == -1) 511 os << "<ir-block badref>"; 512 else 513 os << slot; 514 } 515 }; 516 517 if (printNameFlags & PrintNameIr) { 518 if (const auto *bb = getBasicBlock()) { 519 if (bb->hasName()) { 520 os << '.' << bb->getName(); 521 } else { 522 hasAttributes = true; 523 os << " ("; 524 PrintBBRef(bb); 525 } 526 } 527 } 528 529 if (printNameFlags & PrintNameAttributes) { 530 if (isMachineBlockAddressTaken()) { 531 os << (hasAttributes ? ", " : " ("); 532 os << "machine-block-address-taken"; 533 hasAttributes = true; 534 } 535 if (isIRBlockAddressTaken()) { 536 os << (hasAttributes ? ", " : " ("); 537 os << "ir-block-address-taken "; 538 PrintBBRef(getAddressTakenIRBlock()); 539 hasAttributes = true; 540 } 541 if (isEHPad()) { 542 os << (hasAttributes ? ", " : " ("); 543 os << "landing-pad"; 544 hasAttributes = true; 545 } 546 if (isInlineAsmBrIndirectTarget()) { 547 os << (hasAttributes ? ", " : " ("); 548 os << "inlineasm-br-indirect-target"; 549 hasAttributes = true; 550 } 551 if (isEHFuncletEntry()) { 552 os << (hasAttributes ? ", " : " ("); 553 os << "ehfunclet-entry"; 554 hasAttributes = true; 555 } 556 if (getAlignment() != Align(1)) { 557 os << (hasAttributes ? ", " : " ("); 558 os << "align " << getAlignment().value(); 559 hasAttributes = true; 560 } 561 if (getSectionID() != MBBSectionID(0)) { 562 os << (hasAttributes ? ", " : " ("); 563 os << "bbsections "; 564 switch (getSectionID().Type) { 565 case MBBSectionID::SectionType::Exception: 566 os << "Exception"; 567 break; 568 case MBBSectionID::SectionType::Cold: 569 os << "Cold"; 570 break; 571 default: 572 os << getSectionID().Number; 573 } 574 hasAttributes = true; 575 } 576 if (getBBID().has_value()) { 577 os << (hasAttributes ? ", " : " ("); 578 os << "bb_id " << getBBID()->BaseID; 579 if (getBBID()->CloneID != 0) 580 os << " " << getBBID()->CloneID; 581 hasAttributes = true; 582 } 583 if (CallFrameSize != 0) { 584 os << (hasAttributes ? ", " : " ("); 585 os << "call-frame-size " << CallFrameSize; 586 hasAttributes = true; 587 } 588 } 589 590 if (hasAttributes) 591 os << ')'; 592 } 593 594 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 595 bool /*PrintType*/) const { 596 OS << '%'; 597 printName(OS, 0); 598 } 599 600 void MachineBasicBlock::removeLiveIn(MCRegister Reg, LaneBitmask LaneMask) { 601 LiveInVector::iterator I = find_if( 602 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 603 if (I == LiveIns.end()) 604 return; 605 606 I->LaneMask &= ~LaneMask; 607 if (I->LaneMask.none()) 608 LiveIns.erase(I); 609 } 610 611 MachineBasicBlock::livein_iterator 612 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 613 // Get non-const version of iterator. 614 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 615 return LiveIns.erase(LI); 616 } 617 618 bool MachineBasicBlock::isLiveIn(MCRegister Reg, LaneBitmask LaneMask) const { 619 livein_iterator I = find_if( 620 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 621 return I != livein_end() && (I->LaneMask & LaneMask).any(); 622 } 623 624 void MachineBasicBlock::sortUniqueLiveIns() { 625 llvm::sort(LiveIns, 626 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 627 return LI0.PhysReg < LI1.PhysReg; 628 }); 629 // Liveins are sorted by physreg now we can merge their lanemasks. 630 LiveInVector::const_iterator I = LiveIns.begin(); 631 LiveInVector::const_iterator J; 632 LiveInVector::iterator Out = LiveIns.begin(); 633 for (; I != LiveIns.end(); ++Out, I = J) { 634 MCRegister PhysReg = I->PhysReg; 635 LaneBitmask LaneMask = I->LaneMask; 636 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 637 LaneMask |= J->LaneMask; 638 Out->PhysReg = PhysReg; 639 Out->LaneMask = LaneMask; 640 } 641 LiveIns.erase(Out, LiveIns.end()); 642 } 643 644 Register 645 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 646 assert(getParent() && "MBB must be inserted in function"); 647 assert(PhysReg.isPhysical() && "Expected physreg"); 648 assert(RC && "Register class is required"); 649 assert((isEHPad() || this == &getParent()->front()) && 650 "Only the entry block and landing pads can have physreg live ins"); 651 652 bool LiveIn = isLiveIn(PhysReg); 653 iterator I = SkipPHIsAndLabels(begin()), E = end(); 654 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 655 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 656 657 // Look for an existing copy. 658 if (LiveIn) 659 for (;I != E && I->isCopy(); ++I) 660 if (I->getOperand(1).getReg() == PhysReg) { 661 Register VirtReg = I->getOperand(0).getReg(); 662 if (!MRI.constrainRegClass(VirtReg, RC)) 663 llvm_unreachable("Incompatible live-in register class."); 664 return VirtReg; 665 } 666 667 // No luck, create a virtual register. 668 Register VirtReg = MRI.createVirtualRegister(RC); 669 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 670 .addReg(PhysReg, RegState::Kill); 671 if (!LiveIn) 672 addLiveIn(PhysReg); 673 return VirtReg; 674 } 675 676 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 677 getParent()->splice(NewAfter->getIterator(), getIterator()); 678 } 679 680 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 681 getParent()->splice(++NewBefore->getIterator(), getIterator()); 682 } 683 684 static int findJumpTableIndex(const MachineBasicBlock &MBB) { 685 MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator(); 686 if (TerminatorI == MBB.end()) 687 return -1; 688 const MachineInstr &Terminator = *TerminatorI; 689 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 690 return TII->getJumpTableIndex(Terminator); 691 } 692 693 void MachineBasicBlock::updateTerminator( 694 MachineBasicBlock *PreviousLayoutSuccessor) { 695 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this) 696 << "\n"); 697 698 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 699 // A block with no successors has no concerns with fall-through edges. 700 if (this->succ_empty()) 701 return; 702 703 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 704 SmallVector<MachineOperand, 4> Cond; 705 DebugLoc DL = findBranchDebugLoc(); 706 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 707 (void) B; 708 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 709 if (Cond.empty()) { 710 if (TBB) { 711 // The block has an unconditional branch. If its successor is now its 712 // layout successor, delete the branch. 713 if (isLayoutSuccessor(TBB)) 714 TII->removeBranch(*this); 715 } else { 716 // The block has an unconditional fallthrough, or the end of the block is 717 // unreachable. 718 719 // Unfortunately, whether the end of the block is unreachable is not 720 // immediately obvious; we must fall back to checking the successor list, 721 // and assuming that if the passed in block is in the succesor list and 722 // not an EHPad, it must be the intended target. 723 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) || 724 PreviousLayoutSuccessor->isEHPad()) 725 return; 726 727 // If the unconditional successor block is not the current layout 728 // successor, insert a branch to jump to it. 729 if (!isLayoutSuccessor(PreviousLayoutSuccessor)) 730 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 731 } 732 return; 733 } 734 735 if (FBB) { 736 // The block has a non-fallthrough conditional branch. If one of its 737 // successors is its layout successor, rewrite it to a fallthrough 738 // conditional branch. 739 if (isLayoutSuccessor(TBB)) { 740 if (TII->reverseBranchCondition(Cond)) 741 return; 742 TII->removeBranch(*this); 743 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 744 } else if (isLayoutSuccessor(FBB)) { 745 TII->removeBranch(*this); 746 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 747 } 748 return; 749 } 750 751 // We now know we're going to fallthrough to PreviousLayoutSuccessor. 752 assert(PreviousLayoutSuccessor); 753 assert(!PreviousLayoutSuccessor->isEHPad()); 754 assert(isSuccessor(PreviousLayoutSuccessor)); 755 756 if (PreviousLayoutSuccessor == TBB) { 757 // We had a fallthrough to the same basic block as the conditional jump 758 // targets. Remove the conditional jump, leaving an unconditional 759 // fallthrough or an unconditional jump. 760 TII->removeBranch(*this); 761 if (!isLayoutSuccessor(TBB)) { 762 Cond.clear(); 763 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 764 } 765 return; 766 } 767 768 // The block has a fallthrough conditional branch. 769 if (isLayoutSuccessor(TBB)) { 770 if (TII->reverseBranchCondition(Cond)) { 771 // We can't reverse the condition, add an unconditional branch. 772 Cond.clear(); 773 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 774 return; 775 } 776 TII->removeBranch(*this); 777 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 778 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) { 779 TII->removeBranch(*this); 780 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL); 781 } 782 } 783 784 void MachineBasicBlock::validateSuccProbs() const { 785 #ifndef NDEBUG 786 int64_t Sum = 0; 787 for (auto Prob : Probs) 788 Sum += Prob.getNumerator(); 789 // Due to precision issue, we assume that the sum of probabilities is one if 790 // the difference between the sum of their numerators and the denominator is 791 // no greater than the number of successors. 792 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 793 Probs.size() && 794 "The sum of successors's probabilities exceeds one."); 795 #endif // NDEBUG 796 } 797 798 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 799 BranchProbability Prob) { 800 // Probability list is either empty (if successor list isn't empty, this means 801 // disabled optimization) or has the same size as successor list. 802 if (!(Probs.empty() && !Successors.empty())) 803 Probs.push_back(Prob); 804 Successors.push_back(Succ); 805 Succ->addPredecessor(this); 806 } 807 808 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 809 // We need to make sure probability list is either empty or has the same size 810 // of successor list. When this function is called, we can safely delete all 811 // probability in the list. 812 Probs.clear(); 813 Successors.push_back(Succ); 814 Succ->addPredecessor(this); 815 } 816 817 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 818 MachineBasicBlock *New, 819 bool NormalizeSuccProbs) { 820 succ_iterator OldI = llvm::find(successors(), Old); 821 assert(OldI != succ_end() && "Old is not a successor of this block!"); 822 assert(!llvm::is_contained(successors(), New) && 823 "New is already a successor of this block!"); 824 825 // Add a new successor with equal probability as the original one. Note 826 // that we directly copy the probability using the iterator rather than 827 // getting a potentially synthetic probability computed when unknown. This 828 // preserves the probabilities as-is and then we can renormalize them and 829 // query them effectively afterward. 830 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 831 : *getProbabilityIterator(OldI)); 832 if (NormalizeSuccProbs) 833 normalizeSuccProbs(); 834 } 835 836 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 837 bool NormalizeSuccProbs) { 838 succ_iterator I = find(Successors, Succ); 839 removeSuccessor(I, NormalizeSuccProbs); 840 } 841 842 MachineBasicBlock::succ_iterator 843 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 844 assert(I != Successors.end() && "Not a current successor!"); 845 846 // If probability list is empty it means we don't use it (disabled 847 // optimization). 848 if (!Probs.empty()) { 849 probability_iterator WI = getProbabilityIterator(I); 850 Probs.erase(WI); 851 if (NormalizeSuccProbs) 852 normalizeSuccProbs(); 853 } 854 855 (*I)->removePredecessor(this); 856 return Successors.erase(I); 857 } 858 859 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 860 MachineBasicBlock *New) { 861 if (Old == New) 862 return; 863 864 succ_iterator E = succ_end(); 865 succ_iterator NewI = E; 866 succ_iterator OldI = E; 867 for (succ_iterator I = succ_begin(); I != E; ++I) { 868 if (*I == Old) { 869 OldI = I; 870 if (NewI != E) 871 break; 872 } 873 if (*I == New) { 874 NewI = I; 875 if (OldI != E) 876 break; 877 } 878 } 879 assert(OldI != E && "Old is not a successor of this block"); 880 881 // If New isn't already a successor, let it take Old's place. 882 if (NewI == E) { 883 Old->removePredecessor(this); 884 New->addPredecessor(this); 885 *OldI = New; 886 return; 887 } 888 889 // New is already a successor. 890 // Update its probability instead of adding a duplicate edge. 891 if (!Probs.empty()) { 892 auto ProbIter = getProbabilityIterator(NewI); 893 if (!ProbIter->isUnknown()) 894 *ProbIter += *getProbabilityIterator(OldI); 895 } 896 removeSuccessor(OldI); 897 } 898 899 void MachineBasicBlock::copySuccessor(const MachineBasicBlock *Orig, 900 succ_iterator I) { 901 if (!Orig->Probs.empty()) 902 addSuccessor(*I, Orig->getSuccProbability(I)); 903 else 904 addSuccessorWithoutProb(*I); 905 } 906 907 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 908 Predecessors.push_back(Pred); 909 } 910 911 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 912 pred_iterator I = find(Predecessors, Pred); 913 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 914 Predecessors.erase(I); 915 } 916 917 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 918 if (this == FromMBB) 919 return; 920 921 while (!FromMBB->succ_empty()) { 922 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 923 924 // If probability list is empty it means we don't use it (disabled 925 // optimization). 926 if (!FromMBB->Probs.empty()) { 927 auto Prob = *FromMBB->Probs.begin(); 928 addSuccessor(Succ, Prob); 929 } else 930 addSuccessorWithoutProb(Succ); 931 932 FromMBB->removeSuccessor(Succ); 933 } 934 } 935 936 void 937 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 938 if (this == FromMBB) 939 return; 940 941 while (!FromMBB->succ_empty()) { 942 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 943 if (!FromMBB->Probs.empty()) { 944 auto Prob = *FromMBB->Probs.begin(); 945 addSuccessor(Succ, Prob); 946 } else 947 addSuccessorWithoutProb(Succ); 948 FromMBB->removeSuccessor(Succ); 949 950 // Fix up any PHI nodes in the successor. 951 Succ->replacePhiUsesWith(FromMBB, this); 952 } 953 normalizeSuccProbs(); 954 } 955 956 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 957 return is_contained(predecessors(), MBB); 958 } 959 960 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 961 return is_contained(successors(), MBB); 962 } 963 964 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 965 MachineFunction::const_iterator I(this); 966 return std::next(I) == MachineFunction::const_iterator(MBB); 967 } 968 969 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const { 970 return Successors.size() == 1 ? Successors[0] : nullptr; 971 } 972 973 const MachineBasicBlock *MachineBasicBlock::getSinglePredecessor() const { 974 return Predecessors.size() == 1 ? Predecessors[0] : nullptr; 975 } 976 977 MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) { 978 MachineFunction::iterator Fallthrough = getIterator(); 979 ++Fallthrough; 980 // If FallthroughBlock is off the end of the function, it can't fall through. 981 if (Fallthrough == getParent()->end()) 982 return nullptr; 983 984 // If FallthroughBlock isn't a successor, no fallthrough is possible. 985 if (!isSuccessor(&*Fallthrough)) 986 return nullptr; 987 988 // Analyze the branches, if any, at the end of the block. 989 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 990 SmallVector<MachineOperand, 4> Cond; 991 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 992 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 993 // If we couldn't analyze the branch, examine the last instruction. 994 // If the block doesn't end in a known control barrier, assume fallthrough 995 // is possible. The isPredicated check is needed because this code can be 996 // called during IfConversion, where an instruction which is normally a 997 // Barrier is predicated and thus no longer an actual control barrier. 998 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 999 ? &*Fallthrough 1000 : nullptr; 1001 } 1002 1003 // If there is no branch, control always falls through. 1004 if (!TBB) return &*Fallthrough; 1005 1006 // If there is some explicit branch to the fallthrough block, it can obviously 1007 // reach, even though the branch should get folded to fall through implicitly. 1008 if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough || 1009 MachineFunction::iterator(FBB) == Fallthrough)) 1010 return &*Fallthrough; 1011 1012 // If it's an unconditional branch to some block not the fall through, it 1013 // doesn't fall through. 1014 if (Cond.empty()) return nullptr; 1015 1016 // Otherwise, if it is conditional and has no explicit false block, it falls 1017 // through. 1018 return (FBB == nullptr) ? &*Fallthrough : nullptr; 1019 } 1020 1021 bool MachineBasicBlock::canFallThrough() { 1022 return getFallThrough() != nullptr; 1023 } 1024 1025 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI, 1026 bool UpdateLiveIns, 1027 LiveIntervals *LIS) { 1028 MachineBasicBlock::iterator SplitPoint(&MI); 1029 ++SplitPoint; 1030 1031 if (SplitPoint == end()) { 1032 // Don't bother with a new block. 1033 return this; 1034 } 1035 1036 MachineFunction *MF = getParent(); 1037 1038 LivePhysRegs LiveRegs; 1039 if (UpdateLiveIns) { 1040 // Make sure we add any physregs we define in the block as liveins to the 1041 // new block. 1042 MachineBasicBlock::iterator Prev(&MI); 1043 LiveRegs.init(*MF->getSubtarget().getRegisterInfo()); 1044 LiveRegs.addLiveOuts(*this); 1045 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I) 1046 LiveRegs.stepBackward(*I); 1047 } 1048 1049 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock()); 1050 1051 MF->insert(++MachineFunction::iterator(this), SplitBB); 1052 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end()); 1053 1054 SplitBB->transferSuccessorsAndUpdatePHIs(this); 1055 addSuccessor(SplitBB); 1056 1057 if (UpdateLiveIns) 1058 addLiveIns(*SplitBB, LiveRegs); 1059 1060 if (LIS) 1061 LIS->insertMBBInMaps(SplitBB); 1062 1063 return SplitBB; 1064 } 1065 1066 // Returns `true` if there are possibly other users of the jump table at 1067 // `JumpTableIndex` except for the ones in `IgnoreMBB`. 1068 static bool jumpTableHasOtherUses(const MachineFunction &MF, 1069 const MachineBasicBlock &IgnoreMBB, 1070 int JumpTableIndex) { 1071 assert(JumpTableIndex >= 0 && "need valid index"); 1072 const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo(); 1073 const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex]; 1074 // Take any basic block from the table; every user of the jump table must 1075 // show up in the predecessor list. 1076 const MachineBasicBlock *MBB = nullptr; 1077 for (MachineBasicBlock *B : MJTE.MBBs) { 1078 if (B != nullptr) { 1079 MBB = B; 1080 break; 1081 } 1082 } 1083 if (MBB == nullptr) 1084 return true; // can't rule out other users if there isn't any block. 1085 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1086 SmallVector<MachineOperand, 4> Cond; 1087 for (MachineBasicBlock *Pred : MBB->predecessors()) { 1088 if (Pred == &IgnoreMBB) 1089 continue; 1090 MachineBasicBlock *DummyT = nullptr; 1091 MachineBasicBlock *DummyF = nullptr; 1092 Cond.clear(); 1093 if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond, 1094 /*AllowModify=*/false)) { 1095 // analyzable direct jump 1096 continue; 1097 } 1098 int PredJTI = findJumpTableIndex(*Pred); 1099 if (PredJTI >= 0) { 1100 if (PredJTI == JumpTableIndex) 1101 return true; 1102 continue; 1103 } 1104 // Be conservative for unanalyzable jumps. 1105 return true; 1106 } 1107 return false; 1108 } 1109 1110 class SlotIndexUpdateDelegate : public MachineFunction::Delegate { 1111 private: 1112 MachineFunction &MF; 1113 SlotIndexes *Indexes; 1114 SmallSetVector<MachineInstr *, 2> Insertions; 1115 1116 public: 1117 SlotIndexUpdateDelegate(MachineFunction &MF, SlotIndexes *Indexes) 1118 : MF(MF), Indexes(Indexes) { 1119 MF.setDelegate(this); 1120 } 1121 1122 ~SlotIndexUpdateDelegate() { 1123 MF.resetDelegate(this); 1124 for (auto MI : Insertions) 1125 Indexes->insertMachineInstrInMaps(*MI); 1126 } 1127 1128 void MF_HandleInsertion(MachineInstr &MI) override { 1129 // This is called before MI is inserted into block so defer index update. 1130 if (Indexes) 1131 Insertions.insert(&MI); 1132 } 1133 1134 void MF_HandleRemoval(MachineInstr &MI) override { 1135 if (Indexes && !Insertions.remove(&MI)) 1136 Indexes->removeMachineInstrFromMaps(MI); 1137 } 1138 }; 1139 1140 #define GET_RESULT(RESULT, GETTER, INFIX) \ 1141 [MF, P, MFAM]() { \ 1142 if (P) { \ 1143 auto *Wrapper = P->getAnalysisIfAvailable<RESULT##INFIX##WrapperPass>(); \ 1144 return Wrapper ? &Wrapper->GETTER() : nullptr; \ 1145 } \ 1146 return MFAM->getCachedResult<RESULT##Analysis>(*MF); \ 1147 }() 1148 1149 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( 1150 MachineBasicBlock *Succ, Pass *P, MachineFunctionAnalysisManager *MFAM, 1151 std::vector<SparseBitVector<>> *LiveInSets, MachineDomTreeUpdater *MDTU) { 1152 assert((P || MFAM) && "Need a way to get analysis results!"); 1153 if (!canSplitCriticalEdge(Succ)) 1154 return nullptr; 1155 1156 MachineFunction *MF = getParent(); 1157 MachineBasicBlock *PrevFallthrough = getNextNode(); 1158 1159 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 1160 NMBB->setCallFrameSize(Succ->getCallFrameSize()); 1161 1162 // Is there an indirect jump with jump table? 1163 bool ChangedIndirectJump = false; 1164 int JTI = findJumpTableIndex(*this); 1165 if (JTI >= 0) { 1166 MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo(); 1167 MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB); 1168 ChangedIndirectJump = true; 1169 } 1170 1171 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 1172 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 1173 << " -- " << printMBBReference(*NMBB) << " -- " 1174 << printMBBReference(*Succ) << '\n'); 1175 1176 LiveIntervals *LIS = GET_RESULT(LiveIntervals, getLIS, ); 1177 SlotIndexes *Indexes = GET_RESULT(SlotIndexes, getSI, ); 1178 if (LIS) 1179 LIS->insertMBBInMaps(NMBB); 1180 else if (Indexes) 1181 Indexes->insertMBBInMaps(NMBB); 1182 1183 // On some targets like Mips, branches may kill virtual registers. Make sure 1184 // that LiveVariables is properly updated after updateTerminator replaces the 1185 // terminators. 1186 LiveVariables *LV = GET_RESULT(LiveVariables, getLV, ); 1187 1188 // Collect a list of virtual registers killed by the terminators. 1189 SmallVector<Register, 4> KilledRegs; 1190 if (LV) 1191 for (MachineInstr &MI : 1192 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1193 for (MachineOperand &MO : MI.all_uses()) { 1194 if (MO.getReg() == 0 || !MO.isKill() || MO.isUndef()) 1195 continue; 1196 Register Reg = MO.getReg(); 1197 if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) { 1198 KilledRegs.push_back(Reg); 1199 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI); 1200 MO.setIsKill(false); 1201 } 1202 } 1203 } 1204 1205 SmallVector<Register, 4> UsedRegs; 1206 if (LIS) { 1207 for (MachineInstr &MI : 1208 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1209 for (const MachineOperand &MO : MI.operands()) { 1210 if (!MO.isReg() || MO.getReg() == 0) 1211 continue; 1212 1213 Register Reg = MO.getReg(); 1214 if (!is_contained(UsedRegs, Reg)) 1215 UsedRegs.push_back(Reg); 1216 } 1217 } 1218 } 1219 1220 ReplaceUsesOfBlockWith(Succ, NMBB); 1221 1222 // Since we replaced all uses of Succ with NMBB, that should also be treated 1223 // as the fallthrough successor 1224 if (Succ == PrevFallthrough) 1225 PrevFallthrough = NMBB; 1226 1227 if (!ChangedIndirectJump) { 1228 SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes); 1229 updateTerminator(PrevFallthrough); 1230 } 1231 1232 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 1233 NMBB->addSuccessor(Succ); 1234 if (!NMBB->isLayoutSuccessor(Succ)) { 1235 SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes); 1236 SmallVector<MachineOperand, 4> Cond; 1237 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 1238 1239 // In original 'this' BB, there must be a branch instruction targeting at 1240 // Succ. We can not find it out since currently getBranchDestBlock was not 1241 // implemented for all targets. However, if the merged DL has column or line 1242 // number, the scope and non-zero column and line number is same with that 1243 // branch instruction so we can safely use it. 1244 DebugLoc DL, MergedDL = findBranchDebugLoc(); 1245 if (MergedDL && (MergedDL.getLine() || MergedDL.getCol())) 1246 DL = MergedDL; 1247 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 1248 } 1249 1250 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 1251 Succ->replacePhiUsesWith(this, NMBB); 1252 1253 // Inherit live-ins from the successor 1254 for (const auto &LI : Succ->liveins()) 1255 NMBB->addLiveIn(LI); 1256 1257 // Update LiveVariables. 1258 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1259 if (LV) { 1260 // Restore kills of virtual registers that were killed by the terminators. 1261 while (!KilledRegs.empty()) { 1262 Register Reg = KilledRegs.pop_back_val(); 1263 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 1264 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 1265 continue; 1266 if (Reg.isVirtual()) 1267 LV->getVarInfo(Reg).Kills.push_back(&*I); 1268 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1269 break; 1270 } 1271 } 1272 // Update relevant live-through information. 1273 if (LiveInSets != nullptr) 1274 LV->addNewBlock(NMBB, this, Succ, *LiveInSets); 1275 else 1276 LV->addNewBlock(NMBB, this, Succ); 1277 } 1278 1279 if (LIS) { 1280 // After splitting the edge and updating SlotIndexes, live intervals may be 1281 // in one of two situations, depending on whether this block was the last in 1282 // the function. If the original block was the last in the function, all 1283 // live intervals will end prior to the beginning of the new split block. If 1284 // the original block was not at the end of the function, all live intervals 1285 // will extend to the end of the new split block. 1286 1287 bool isLastMBB = 1288 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1289 1290 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1291 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1292 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1293 1294 // Find the registers used from NMBB in PHIs in Succ. 1295 SmallSet<Register, 8> PHISrcRegs; 1296 for (MachineBasicBlock::instr_iterator 1297 I = Succ->instr_begin(), E = Succ->instr_end(); 1298 I != E && I->isPHI(); ++I) { 1299 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1300 if (I->getOperand(ni+1).getMBB() == NMBB) { 1301 MachineOperand &MO = I->getOperand(ni); 1302 Register Reg = MO.getReg(); 1303 PHISrcRegs.insert(Reg); 1304 if (MO.isUndef()) 1305 continue; 1306 1307 LiveInterval &LI = LIS->getInterval(Reg); 1308 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1309 assert(VNI && 1310 "PHI sources should be live out of their predecessors."); 1311 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1312 for (auto &SR : LI.subranges()) 1313 SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1314 } 1315 } 1316 } 1317 1318 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1319 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1320 Register Reg = Register::index2VirtReg(i); 1321 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1322 continue; 1323 1324 LiveInterval &LI = LIS->getInterval(Reg); 1325 if (!LI.liveAt(PrevIndex)) 1326 continue; 1327 1328 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1329 if (isLiveOut && isLastMBB) { 1330 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1331 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1332 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1333 // Update subranges with live values 1334 for (auto &SR : LI.subranges()) { 1335 VNInfo *VNI = SR.getVNInfoAt(PrevIndex); 1336 if (VNI) 1337 SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1338 } 1339 } else if (!isLiveOut && !isLastMBB) { 1340 LI.removeSegment(StartIndex, EndIndex); 1341 for (auto &SR : LI.subranges()) 1342 SR.removeSegment(StartIndex, EndIndex); 1343 } 1344 } 1345 1346 // Update all intervals for registers whose uses may have been modified by 1347 // updateTerminator(). 1348 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1349 } 1350 1351 if (MDTU) 1352 MDTU->splitCriticalEdge(this, Succ, NMBB); 1353 1354 if (MachineLoopInfo *MLI = GET_RESULT(MachineLoop, getLI, Info)) 1355 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1356 // If one or the other blocks were not in a loop, the new block is not 1357 // either, and thus LI doesn't need to be updated. 1358 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1359 if (TIL == DestLoop) { 1360 // Both in the same loop, the NMBB joins loop. 1361 DestLoop->addBasicBlockToLoop(NMBB, *MLI); 1362 } else if (TIL->contains(DestLoop)) { 1363 // Edge from an outer loop to an inner loop. Add to the outer loop. 1364 TIL->addBasicBlockToLoop(NMBB, *MLI); 1365 } else if (DestLoop->contains(TIL)) { 1366 // Edge from an inner loop to an outer loop. Add to the outer loop. 1367 DestLoop->addBasicBlockToLoop(NMBB, *MLI); 1368 } else { 1369 // Edge from two loops with no containment relation. Because these 1370 // are natural loops, we know that the destination block must be the 1371 // header of its loop (adding a branch into a loop elsewhere would 1372 // create an irreducible loop). 1373 assert(DestLoop->getHeader() == Succ && 1374 "Should not create irreducible loops!"); 1375 if (MachineLoop *P = DestLoop->getParentLoop()) 1376 P->addBasicBlockToLoop(NMBB, *MLI); 1377 } 1378 } 1379 } 1380 1381 return NMBB; 1382 } 1383 1384 bool MachineBasicBlock::canSplitCriticalEdge( 1385 const MachineBasicBlock *Succ) const { 1386 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1387 // it in this generic function. 1388 if (Succ->isEHPad()) 1389 return false; 1390 1391 // Splitting the critical edge to a callbr's indirect block isn't advised. 1392 // Don't do it in this generic function. 1393 if (Succ->isInlineAsmBrIndirectTarget()) 1394 return false; 1395 1396 const MachineFunction *MF = getParent(); 1397 // Performance might be harmed on HW that implements branching using exec mask 1398 // where both sides of the branches are always executed. 1399 if (MF->getTarget().requiresStructuredCFG()) 1400 return false; 1401 1402 // Do we have an Indirect jump with a jumptable that we can rewrite? 1403 int JTI = findJumpTableIndex(*this); 1404 if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI)) 1405 return true; 1406 1407 // We may need to update this's terminator, but we can't do that if 1408 // analyzeBranch fails. 1409 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1410 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1411 SmallVector<MachineOperand, 4> Cond; 1412 // AnalyzeBanch should modify this, since we did not allow modification. 1413 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1414 /*AllowModify*/ false)) 1415 return false; 1416 1417 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1418 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1419 // case that we can't handle. Since this never happens in properly optimized 1420 // code, just skip those edges. 1421 if (TBB && TBB == FBB) { 1422 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1423 << printMBBReference(*this) << '\n'); 1424 return false; 1425 } 1426 return true; 1427 } 1428 1429 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1430 /// neighboring instructions so the bundle won't be broken by removing MI. 1431 static void unbundleSingleMI(MachineInstr *MI) { 1432 // Removing the first instruction in a bundle. 1433 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1434 MI->unbundleFromSucc(); 1435 // Removing the last instruction in a bundle. 1436 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1437 MI->unbundleFromPred(); 1438 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1439 // are already fine. 1440 } 1441 1442 MachineBasicBlock::instr_iterator 1443 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1444 unbundleSingleMI(&*I); 1445 return Insts.erase(I); 1446 } 1447 1448 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1449 unbundleSingleMI(MI); 1450 MI->clearFlag(MachineInstr::BundledPred); 1451 MI->clearFlag(MachineInstr::BundledSucc); 1452 return Insts.remove(MI); 1453 } 1454 1455 MachineBasicBlock::instr_iterator 1456 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1457 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1458 "Cannot insert instruction with bundle flags"); 1459 // Set the bundle flags when inserting inside a bundle. 1460 if (I != instr_end() && I->isBundledWithPred()) { 1461 MI->setFlag(MachineInstr::BundledPred); 1462 MI->setFlag(MachineInstr::BundledSucc); 1463 } 1464 return Insts.insert(I, MI); 1465 } 1466 1467 /// This method unlinks 'this' from the containing function, and returns it, but 1468 /// does not delete it. 1469 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1470 assert(getParent() && "Not embedded in a function!"); 1471 getParent()->remove(this); 1472 return this; 1473 } 1474 1475 /// This method unlinks 'this' from the containing function, and deletes it. 1476 void MachineBasicBlock::eraseFromParent() { 1477 assert(getParent() && "Not embedded in a function!"); 1478 getParent()->erase(this); 1479 } 1480 1481 /// Given a machine basic block that branched to 'Old', change the code and CFG 1482 /// so that it branches to 'New' instead. 1483 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1484 MachineBasicBlock *New) { 1485 assert(Old != New && "Cannot replace self with self!"); 1486 1487 MachineBasicBlock::instr_iterator I = instr_end(); 1488 while (I != instr_begin()) { 1489 --I; 1490 if (!I->isTerminator()) break; 1491 1492 // Scan the operands of this machine instruction, replacing any uses of Old 1493 // with New. 1494 for (MachineOperand &MO : I->operands()) 1495 if (MO.isMBB() && MO.getMBB() == Old) 1496 MO.setMBB(New); 1497 } 1498 1499 // Update the successor information. 1500 replaceSuccessor(Old, New); 1501 } 1502 1503 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1504 MachineBasicBlock *New) { 1505 for (MachineInstr &MI : phis()) 1506 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1507 MachineOperand &MO = MI.getOperand(i); 1508 if (MO.getMBB() == Old) 1509 MO.setMBB(New); 1510 } 1511 } 1512 1513 /// Find the next valid DebugLoc starting at MBBI, skipping any debug 1514 /// instructions. Return UnknownLoc if there is none. 1515 DebugLoc 1516 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1517 // Skip debug declarations, we don't want a DebugLoc from them. 1518 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1519 if (MBBI != instr_end()) 1520 return MBBI->getDebugLoc(); 1521 return {}; 1522 } 1523 1524 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) { 1525 if (MBBI == instr_rend()) 1526 return findDebugLoc(instr_begin()); 1527 // Skip debug declarations, we don't want a DebugLoc from them. 1528 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin()); 1529 if (!MBBI->isDebugInstr()) 1530 return MBBI->getDebugLoc(); 1531 return {}; 1532 } 1533 1534 /// Find the previous valid DebugLoc preceding MBBI, skipping any debug 1535 /// instructions. Return UnknownLoc if there is none. 1536 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1537 if (MBBI == instr_begin()) 1538 return {}; 1539 // Skip debug instructions, we don't want a DebugLoc from them. 1540 MBBI = prev_nodbg(MBBI, instr_begin()); 1541 if (!MBBI->isDebugInstr()) 1542 return MBBI->getDebugLoc(); 1543 return {}; 1544 } 1545 1546 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) { 1547 if (MBBI == instr_rend()) 1548 return {}; 1549 // Skip debug declarations, we don't want a DebugLoc from them. 1550 MBBI = next_nodbg(MBBI, instr_rend()); 1551 if (MBBI != instr_rend()) 1552 return MBBI->getDebugLoc(); 1553 return {}; 1554 } 1555 1556 /// Find and return the merged DebugLoc of the branch instructions of the block. 1557 /// Return UnknownLoc if there is none. 1558 DebugLoc 1559 MachineBasicBlock::findBranchDebugLoc() { 1560 DebugLoc DL; 1561 auto TI = getFirstTerminator(); 1562 while (TI != end() && !TI->isBranch()) 1563 ++TI; 1564 1565 if (TI != end()) { 1566 DL = TI->getDebugLoc(); 1567 for (++TI ; TI != end() ; ++TI) 1568 if (TI->isBranch()) 1569 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1570 } 1571 return DL; 1572 } 1573 1574 /// Return probability of the edge from this block to MBB. 1575 BranchProbability 1576 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1577 if (Probs.empty()) 1578 return BranchProbability(1, succ_size()); 1579 1580 const auto &Prob = *getProbabilityIterator(Succ); 1581 if (Prob.isUnknown()) { 1582 // For unknown probabilities, collect the sum of all known ones, and evenly 1583 // ditribute the complemental of the sum to each unknown probability. 1584 unsigned KnownProbNum = 0; 1585 auto Sum = BranchProbability::getZero(); 1586 for (const auto &P : Probs) { 1587 if (!P.isUnknown()) { 1588 Sum += P; 1589 KnownProbNum++; 1590 } 1591 } 1592 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1593 } else 1594 return Prob; 1595 } 1596 1597 /// Set successor probability of a given iterator. 1598 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1599 BranchProbability Prob) { 1600 assert(!Prob.isUnknown()); 1601 if (Probs.empty()) 1602 return; 1603 *getProbabilityIterator(I) = Prob; 1604 } 1605 1606 /// Return probability iterator corresonding to the I successor iterator 1607 MachineBasicBlock::const_probability_iterator 1608 MachineBasicBlock::getProbabilityIterator( 1609 MachineBasicBlock::const_succ_iterator I) const { 1610 assert(Probs.size() == Successors.size() && "Async probability list!"); 1611 const size_t index = std::distance(Successors.begin(), I); 1612 assert(index < Probs.size() && "Not a current successor!"); 1613 return Probs.begin() + index; 1614 } 1615 1616 /// Return probability iterator corresonding to the I successor iterator. 1617 MachineBasicBlock::probability_iterator 1618 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1619 assert(Probs.size() == Successors.size() && "Async probability list!"); 1620 const size_t index = std::distance(Successors.begin(), I); 1621 assert(index < Probs.size() && "Not a current successor!"); 1622 return Probs.begin() + index; 1623 } 1624 1625 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1626 /// as of just before "MI". 1627 /// 1628 /// Search is localised to a neighborhood of 1629 /// Neighborhood instructions before (searching for defs or kills) and N 1630 /// instructions after (searching just for defs) MI. 1631 MachineBasicBlock::LivenessQueryResult 1632 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1633 MCRegister Reg, const_iterator Before, 1634 unsigned Neighborhood) const { 1635 unsigned N = Neighborhood; 1636 1637 // Try searching forwards from Before, looking for reads or defs. 1638 const_iterator I(Before); 1639 for (; I != end() && N > 0; ++I) { 1640 if (I->isDebugOrPseudoInstr()) 1641 continue; 1642 1643 --N; 1644 1645 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1646 1647 // Register is live when we read it here. 1648 if (Info.Read) 1649 return LQR_Live; 1650 // Register is dead if we can fully overwrite or clobber it here. 1651 if (Info.FullyDefined || Info.Clobbered) 1652 return LQR_Dead; 1653 } 1654 1655 // If we reached the end, it is safe to clobber Reg at the end of a block of 1656 // no successor has it live in. 1657 if (I == end()) { 1658 for (MachineBasicBlock *S : successors()) { 1659 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1660 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1661 return LQR_Live; 1662 } 1663 } 1664 1665 return LQR_Dead; 1666 } 1667 1668 1669 N = Neighborhood; 1670 1671 // Start by searching backwards from Before, looking for kills, reads or defs. 1672 I = const_iterator(Before); 1673 // If this is the first insn in the block, don't search backwards. 1674 if (I != begin()) { 1675 do { 1676 --I; 1677 1678 if (I->isDebugOrPseudoInstr()) 1679 continue; 1680 1681 --N; 1682 1683 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1684 1685 // Defs happen after uses so they take precedence if both are present. 1686 1687 // Register is dead after a dead def of the full register. 1688 if (Info.DeadDef) 1689 return LQR_Dead; 1690 // Register is (at least partially) live after a def. 1691 if (Info.Defined) { 1692 if (!Info.PartialDeadDef) 1693 return LQR_Live; 1694 // As soon as we saw a partial definition (dead or not), 1695 // we cannot tell if the value is partial live without 1696 // tracking the lanemasks. We are not going to do this, 1697 // so fall back on the remaining of the analysis. 1698 break; 1699 } 1700 // Register is dead after a full kill or clobber and no def. 1701 if (Info.Killed || Info.Clobbered) 1702 return LQR_Dead; 1703 // Register must be live if we read it. 1704 if (Info.Read) 1705 return LQR_Live; 1706 1707 } while (I != begin() && N > 0); 1708 } 1709 1710 // If all the instructions before this in the block are debug instructions, 1711 // skip over them. 1712 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr()) 1713 --I; 1714 1715 // Did we get to the start of the block? 1716 if (I == begin()) { 1717 // If so, the register's state is definitely defined by the live-in state. 1718 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1719 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1720 return LQR_Live; 1721 1722 return LQR_Dead; 1723 } 1724 1725 // At this point we have no idea of the liveness of the register. 1726 return LQR_Unknown; 1727 } 1728 1729 const uint32_t * 1730 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1731 // EH funclet entry does not preserve any registers. 1732 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1733 } 1734 1735 const uint32_t * 1736 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1737 // If we see a return block with successors, this must be a funclet return, 1738 // which does not preserve any registers. If there are no successors, we don't 1739 // care what kind of return it is, putting a mask after it is a no-op. 1740 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1741 } 1742 1743 void MachineBasicBlock::clearLiveIns() { 1744 LiveIns.clear(); 1745 } 1746 1747 void MachineBasicBlock::clearLiveIns( 1748 std::vector<RegisterMaskPair> &OldLiveIns) { 1749 assert(OldLiveIns.empty() && "Vector must be empty"); 1750 std::swap(LiveIns, OldLiveIns); 1751 } 1752 1753 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1754 assert(getParent()->getProperties().hasProperty( 1755 MachineFunctionProperties::Property::TracksLiveness) && 1756 "Liveness information is accurate"); 1757 return LiveIns.begin(); 1758 } 1759 1760 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const { 1761 const MachineFunction &MF = *getParent(); 1762 assert(MF.getProperties().hasProperty( 1763 MachineFunctionProperties::Property::TracksLiveness) && 1764 "Liveness information is accurate"); 1765 1766 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1767 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0; 1768 if (MF.getFunction().hasPersonalityFn()) { 1769 auto PersonalityFn = MF.getFunction().getPersonalityFn(); 1770 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn); 1771 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn); 1772 } 1773 1774 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false); 1775 } 1776 1777 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const { 1778 unsigned Cntr = 0; 1779 auto R = instructionsWithoutDebug(begin(), end()); 1780 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1781 if (++Cntr > Limit) 1782 return true; 1783 } 1784 return false; 1785 } 1786 1787 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); 1788 const MBBSectionID 1789 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception); 1790