1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/DataTypes.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 } 46 47 MachineBasicBlock::~MachineBasicBlock() { 48 } 49 50 /// Return the MCSymbol for this basic block. 51 MCSymbol *MachineBasicBlock::getSymbol() const { 52 if (!CachedMCSymbol) { 53 const MachineFunction *MF = getParent(); 54 MCContext &Ctx = MF->getContext(); 55 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 56 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 57 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 58 Twine(MF->getFunctionNumber()) + 59 "_" + Twine(getNumber())); 60 } 61 62 return CachedMCSymbol; 63 } 64 65 66 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 67 MBB.print(OS); 68 return OS; 69 } 70 71 /// When an MBB is added to an MF, we need to update the parent pointer of the 72 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 73 /// operand list for registers. 74 /// 75 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 76 /// gets the next available unique MBB number. If it is removed from a 77 /// MachineFunction, it goes back to being #-1. 78 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 79 MachineBasicBlock *N) { 80 MachineFunction &MF = *N->getParent(); 81 N->Number = MF.addToMBBNumbering(N); 82 83 // Make sure the instructions have their operands in the reginfo lists. 84 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 85 for (MachineBasicBlock::instr_iterator 86 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 87 I->AddRegOperandsToUseLists(RegInfo); 88 } 89 90 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 91 MachineBasicBlock *N) { 92 N->getParent()->removeFromMBBNumbering(N->Number); 93 N->Number = -1; 94 } 95 96 /// When we add an instruction to a basic block list, we update its parent 97 /// pointer and add its operands from reg use/def lists if appropriate. 98 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 99 assert(!N->getParent() && "machine instruction already in a basic block"); 100 N->setParent(Parent); 101 102 // Add the instruction's register operands to their corresponding 103 // use/def lists. 104 MachineFunction *MF = Parent->getParent(); 105 N->AddRegOperandsToUseLists(MF->getRegInfo()); 106 } 107 108 /// When we remove an instruction from a basic block list, we update its parent 109 /// pointer and remove its operands from reg use/def lists if appropriate. 110 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 111 assert(N->getParent() && "machine instruction not in a basic block"); 112 113 // Remove from the use/def lists. 114 if (MachineFunction *MF = N->getParent()->getParent()) 115 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 116 117 N->setParent(nullptr); 118 } 119 120 /// When moving a range of instructions from one MBB list to another, we need to 121 /// update the parent pointers and the use/def lists. 122 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 123 instr_iterator First, 124 instr_iterator Last) { 125 assert(Parent->getParent() == FromList.Parent->getParent() && 126 "MachineInstr parent mismatch!"); 127 assert(this != &FromList && "Called without a real transfer..."); 128 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 129 130 // If splicing between two blocks within the same function, just update the 131 // parent pointers. 132 for (; First != Last; ++First) 133 First->setParent(Parent); 134 } 135 136 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 137 assert(!MI->getParent() && "MI is still in a block!"); 138 Parent->getParent()->DeleteMachineInstr(MI); 139 } 140 141 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 142 instr_iterator I = instr_begin(), E = instr_end(); 143 while (I != E && I->isPHI()) 144 ++I; 145 assert((I == E || !I->isInsideBundle()) && 146 "First non-phi MI cannot be inside a bundle!"); 147 return I; 148 } 149 150 MachineBasicBlock::iterator 151 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 152 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 153 154 iterator E = end(); 155 while (I != E && (I->isPHI() || I->isPosition() || 156 TII->isBasicBlockPrologue(*I))) 157 ++I; 158 // FIXME: This needs to change if we wish to bundle labels 159 // inside the bundle. 160 assert((I == E || !I->isInsideBundle()) && 161 "First non-phi / non-label instruction is inside a bundle!"); 162 return I; 163 } 164 165 MachineBasicBlock::iterator 166 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 167 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 168 169 iterator E = end(); 170 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 171 TII->isBasicBlockPrologue(*I))) 172 ++I; 173 // FIXME: This needs to change if we wish to bundle labels / dbg_values 174 // inside the bundle. 175 assert((I == E || !I->isInsideBundle()) && 176 "First non-phi / non-label / non-debug " 177 "instruction is inside a bundle!"); 178 return I; 179 } 180 181 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 182 iterator B = begin(), E = end(), I = E; 183 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 184 ; /*noop */ 185 while (I != E && !I->isTerminator()) 186 ++I; 187 return I; 188 } 189 190 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 191 instr_iterator B = instr_begin(), E = instr_end(), I = E; 192 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 193 ; /*noop */ 194 while (I != E && !I->isTerminator()) 195 ++I; 196 return I; 197 } 198 199 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 200 // Skip over begin-of-block dbg_value instructions. 201 return skipDebugInstructionsForward(begin(), end()); 202 } 203 204 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 205 // Skip over end-of-block dbg_value instructions. 206 instr_iterator B = instr_begin(), I = instr_end(); 207 while (I != B) { 208 --I; 209 // Return instruction that starts a bundle. 210 if (I->isDebugValue() || I->isInsideBundle()) 211 continue; 212 return I; 213 } 214 // The block is all debug values. 215 return end(); 216 } 217 218 bool MachineBasicBlock::hasEHPadSuccessor() const { 219 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 220 if ((*I)->isEHPad()) 221 return true; 222 return false; 223 } 224 225 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 226 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 227 print(dbgs()); 228 } 229 #endif 230 231 StringRef MachineBasicBlock::getName() const { 232 if (const BasicBlock *LBB = getBasicBlock()) 233 return LBB->getName(); 234 else 235 return StringRef("", 0); 236 } 237 238 /// Return a hopefully unique identifier for this block. 239 std::string MachineBasicBlock::getFullName() const { 240 std::string Name; 241 if (getParent()) 242 Name = (getParent()->getName() + ":").str(); 243 if (getBasicBlock()) 244 Name += getBasicBlock()->getName(); 245 else 246 Name += ("BB" + Twine(getNumber())).str(); 247 return Name; 248 } 249 250 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes) 251 const { 252 const MachineFunction *MF = getParent(); 253 if (!MF) { 254 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 255 << " is null\n"; 256 return; 257 } 258 const Function *F = MF->getFunction(); 259 const Module *M = F ? F->getParent() : nullptr; 260 ModuleSlotTracker MST(M); 261 print(OS, MST, Indexes); 262 } 263 264 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 265 const SlotIndexes *Indexes) const { 266 const MachineFunction *MF = getParent(); 267 if (!MF) { 268 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 269 << " is null\n"; 270 return; 271 } 272 273 if (Indexes) 274 OS << Indexes->getMBBStartIdx(this) << '\t'; 275 276 OS << "BB#" << getNumber() << ": "; 277 278 const char *Comma = ""; 279 if (const BasicBlock *LBB = getBasicBlock()) { 280 OS << Comma << "derived from LLVM BB "; 281 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 282 Comma = ", "; 283 } 284 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 285 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 286 if (Alignment) 287 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 288 << " bytes)"; 289 290 OS << '\n'; 291 292 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 293 if (!livein_empty()) { 294 if (Indexes) OS << '\t'; 295 OS << " Live Ins:"; 296 for (const auto &LI : LiveIns) { 297 OS << ' ' << PrintReg(LI.PhysReg, TRI); 298 if (!LI.LaneMask.all()) 299 OS << ':' << PrintLaneMask(LI.LaneMask); 300 } 301 OS << '\n'; 302 } 303 // Print the preds of this block according to the CFG. 304 if (!pred_empty()) { 305 if (Indexes) OS << '\t'; 306 OS << " Predecessors according to CFG:"; 307 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 308 OS << " BB#" << (*PI)->getNumber(); 309 OS << '\n'; 310 } 311 312 for (auto &I : instrs()) { 313 if (Indexes) { 314 if (Indexes->hasIndex(I)) 315 OS << Indexes->getInstructionIndex(I); 316 OS << '\t'; 317 } 318 OS << '\t'; 319 if (I.isInsideBundle()) 320 OS << " * "; 321 I.print(OS, MST); 322 } 323 324 // Print the successors of this block according to the CFG. 325 if (!succ_empty()) { 326 if (Indexes) OS << '\t'; 327 OS << " Successors according to CFG:"; 328 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 329 OS << " BB#" << (*SI)->getNumber(); 330 if (!Probs.empty()) 331 OS << '(' << *getProbabilityIterator(SI) << ')'; 332 } 333 OS << '\n'; 334 } 335 } 336 337 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 338 bool /*PrintType*/) const { 339 OS << "BB#" << getNumber(); 340 } 341 342 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 343 LiveInVector::iterator I = find_if( 344 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 345 if (I == LiveIns.end()) 346 return; 347 348 I->LaneMask &= ~LaneMask; 349 if (I->LaneMask.none()) 350 LiveIns.erase(I); 351 } 352 353 MachineBasicBlock::livein_iterator 354 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 355 // Get non-const version of iterator. 356 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 357 return LiveIns.erase(LI); 358 } 359 360 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 361 livein_iterator I = find_if( 362 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 363 return I != livein_end() && (I->LaneMask & LaneMask).any(); 364 } 365 366 void MachineBasicBlock::sortUniqueLiveIns() { 367 std::sort(LiveIns.begin(), LiveIns.end(), 368 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 369 return LI0.PhysReg < LI1.PhysReg; 370 }); 371 // Liveins are sorted by physreg now we can merge their lanemasks. 372 LiveInVector::const_iterator I = LiveIns.begin(); 373 LiveInVector::const_iterator J; 374 LiveInVector::iterator Out = LiveIns.begin(); 375 for (; I != LiveIns.end(); ++Out, I = J) { 376 unsigned PhysReg = I->PhysReg; 377 LaneBitmask LaneMask = I->LaneMask; 378 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 379 LaneMask |= J->LaneMask; 380 Out->PhysReg = PhysReg; 381 Out->LaneMask = LaneMask; 382 } 383 LiveIns.erase(Out, LiveIns.end()); 384 } 385 386 unsigned 387 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 388 assert(getParent() && "MBB must be inserted in function"); 389 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 390 assert(RC && "Register class is required"); 391 assert((isEHPad() || this == &getParent()->front()) && 392 "Only the entry block and landing pads can have physreg live ins"); 393 394 bool LiveIn = isLiveIn(PhysReg); 395 iterator I = SkipPHIsAndLabels(begin()), E = end(); 396 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 397 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 398 399 // Look for an existing copy. 400 if (LiveIn) 401 for (;I != E && I->isCopy(); ++I) 402 if (I->getOperand(1).getReg() == PhysReg) { 403 unsigned VirtReg = I->getOperand(0).getReg(); 404 if (!MRI.constrainRegClass(VirtReg, RC)) 405 llvm_unreachable("Incompatible live-in register class."); 406 return VirtReg; 407 } 408 409 // No luck, create a virtual register. 410 unsigned VirtReg = MRI.createVirtualRegister(RC); 411 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 412 .addReg(PhysReg, RegState::Kill); 413 if (!LiveIn) 414 addLiveIn(PhysReg); 415 return VirtReg; 416 } 417 418 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 419 getParent()->splice(NewAfter->getIterator(), getIterator()); 420 } 421 422 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 423 getParent()->splice(++NewBefore->getIterator(), getIterator()); 424 } 425 426 void MachineBasicBlock::updateTerminator() { 427 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 428 // A block with no successors has no concerns with fall-through edges. 429 if (this->succ_empty()) 430 return; 431 432 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 433 SmallVector<MachineOperand, 4> Cond; 434 DebugLoc DL = findBranchDebugLoc(); 435 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 436 (void) B; 437 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 438 if (Cond.empty()) { 439 if (TBB) { 440 // The block has an unconditional branch. If its successor is now its 441 // layout successor, delete the branch. 442 if (isLayoutSuccessor(TBB)) 443 TII->removeBranch(*this); 444 } else { 445 // The block has an unconditional fallthrough. If its successor is not its 446 // layout successor, insert a branch. First we have to locate the only 447 // non-landing-pad successor, as that is the fallthrough block. 448 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 449 if ((*SI)->isEHPad()) 450 continue; 451 assert(!TBB && "Found more than one non-landing-pad successor!"); 452 TBB = *SI; 453 } 454 455 // If there is no non-landing-pad successor, the block has no fall-through 456 // edges to be concerned with. 457 if (!TBB) 458 return; 459 460 // Finally update the unconditional successor to be reached via a branch 461 // if it would not be reached by fallthrough. 462 if (!isLayoutSuccessor(TBB)) 463 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 464 } 465 return; 466 } 467 468 if (FBB) { 469 // The block has a non-fallthrough conditional branch. If one of its 470 // successors is its layout successor, rewrite it to a fallthrough 471 // conditional branch. 472 if (isLayoutSuccessor(TBB)) { 473 if (TII->reverseBranchCondition(Cond)) 474 return; 475 TII->removeBranch(*this); 476 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 477 } else if (isLayoutSuccessor(FBB)) { 478 TII->removeBranch(*this); 479 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 480 } 481 return; 482 } 483 484 // Walk through the successors and find the successor which is not a landing 485 // pad and is not the conditional branch destination (in TBB) as the 486 // fallthrough successor. 487 MachineBasicBlock *FallthroughBB = nullptr; 488 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 489 if ((*SI)->isEHPad() || *SI == TBB) 490 continue; 491 assert(!FallthroughBB && "Found more than one fallthrough successor."); 492 FallthroughBB = *SI; 493 } 494 495 if (!FallthroughBB) { 496 if (canFallThrough()) { 497 // We fallthrough to the same basic block as the conditional jump targets. 498 // Remove the conditional jump, leaving unconditional fallthrough. 499 // FIXME: This does not seem like a reasonable pattern to support, but it 500 // has been seen in the wild coming out of degenerate ARM test cases. 501 TII->removeBranch(*this); 502 503 // Finally update the unconditional successor to be reached via a branch if 504 // it would not be reached by fallthrough. 505 if (!isLayoutSuccessor(TBB)) 506 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 507 return; 508 } 509 510 // We enter here iff exactly one successor is TBB which cannot fallthrough 511 // and the rest successors if any are EHPads. In this case, we need to 512 // change the conditional branch into unconditional branch. 513 TII->removeBranch(*this); 514 Cond.clear(); 515 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 516 return; 517 } 518 519 // The block has a fallthrough conditional branch. 520 if (isLayoutSuccessor(TBB)) { 521 if (TII->reverseBranchCondition(Cond)) { 522 // We can't reverse the condition, add an unconditional branch. 523 Cond.clear(); 524 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 525 return; 526 } 527 TII->removeBranch(*this); 528 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 529 } else if (!isLayoutSuccessor(FallthroughBB)) { 530 TII->removeBranch(*this); 531 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 532 } 533 } 534 535 void MachineBasicBlock::validateSuccProbs() const { 536 #ifndef NDEBUG 537 int64_t Sum = 0; 538 for (auto Prob : Probs) 539 Sum += Prob.getNumerator(); 540 // Due to precision issue, we assume that the sum of probabilities is one if 541 // the difference between the sum of their numerators and the denominator is 542 // no greater than the number of successors. 543 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 544 Probs.size() && 545 "The sum of successors's probabilities exceeds one."); 546 #endif // NDEBUG 547 } 548 549 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 550 BranchProbability Prob) { 551 // Probability list is either empty (if successor list isn't empty, this means 552 // disabled optimization) or has the same size as successor list. 553 if (!(Probs.empty() && !Successors.empty())) 554 Probs.push_back(Prob); 555 Successors.push_back(Succ); 556 Succ->addPredecessor(this); 557 } 558 559 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 560 // We need to make sure probability list is either empty or has the same size 561 // of successor list. When this function is called, we can safely delete all 562 // probability in the list. 563 Probs.clear(); 564 Successors.push_back(Succ); 565 Succ->addPredecessor(this); 566 } 567 568 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 569 bool NormalizeSuccProbs) { 570 succ_iterator I = find(Successors, Succ); 571 removeSuccessor(I, NormalizeSuccProbs); 572 } 573 574 MachineBasicBlock::succ_iterator 575 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 576 assert(I != Successors.end() && "Not a current successor!"); 577 578 // If probability list is empty it means we don't use it (disabled 579 // optimization). 580 if (!Probs.empty()) { 581 probability_iterator WI = getProbabilityIterator(I); 582 Probs.erase(WI); 583 if (NormalizeSuccProbs) 584 normalizeSuccProbs(); 585 } 586 587 (*I)->removePredecessor(this); 588 return Successors.erase(I); 589 } 590 591 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 592 MachineBasicBlock *New) { 593 if (Old == New) 594 return; 595 596 succ_iterator E = succ_end(); 597 succ_iterator NewI = E; 598 succ_iterator OldI = E; 599 for (succ_iterator I = succ_begin(); I != E; ++I) { 600 if (*I == Old) { 601 OldI = I; 602 if (NewI != E) 603 break; 604 } 605 if (*I == New) { 606 NewI = I; 607 if (OldI != E) 608 break; 609 } 610 } 611 assert(OldI != E && "Old is not a successor of this block"); 612 613 // If New isn't already a successor, let it take Old's place. 614 if (NewI == E) { 615 Old->removePredecessor(this); 616 New->addPredecessor(this); 617 *OldI = New; 618 return; 619 } 620 621 // New is already a successor. 622 // Update its probability instead of adding a duplicate edge. 623 if (!Probs.empty()) { 624 auto ProbIter = getProbabilityIterator(NewI); 625 if (!ProbIter->isUnknown()) 626 *ProbIter += *getProbabilityIterator(OldI); 627 } 628 removeSuccessor(OldI); 629 } 630 631 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 632 Predecessors.push_back(Pred); 633 } 634 635 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 636 pred_iterator I = find(Predecessors, Pred); 637 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 638 Predecessors.erase(I); 639 } 640 641 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 642 if (this == FromMBB) 643 return; 644 645 while (!FromMBB->succ_empty()) { 646 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 647 648 // If probability list is empty it means we don't use it (disabled optimization). 649 if (!FromMBB->Probs.empty()) { 650 auto Prob = *FromMBB->Probs.begin(); 651 addSuccessor(Succ, Prob); 652 } else 653 addSuccessorWithoutProb(Succ); 654 655 FromMBB->removeSuccessor(Succ); 656 } 657 } 658 659 void 660 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 661 if (this == FromMBB) 662 return; 663 664 while (!FromMBB->succ_empty()) { 665 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 666 if (!FromMBB->Probs.empty()) { 667 auto Prob = *FromMBB->Probs.begin(); 668 addSuccessor(Succ, Prob); 669 } else 670 addSuccessorWithoutProb(Succ); 671 FromMBB->removeSuccessor(Succ); 672 673 // Fix up any PHI nodes in the successor. 674 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 675 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 676 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 677 MachineOperand &MO = MI->getOperand(i); 678 if (MO.getMBB() == FromMBB) 679 MO.setMBB(this); 680 } 681 } 682 normalizeSuccProbs(); 683 } 684 685 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 686 return is_contained(predecessors(), MBB); 687 } 688 689 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 690 return is_contained(successors(), MBB); 691 } 692 693 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 694 MachineFunction::const_iterator I(this); 695 return std::next(I) == MachineFunction::const_iterator(MBB); 696 } 697 698 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 699 MachineFunction::iterator Fallthrough = getIterator(); 700 ++Fallthrough; 701 // If FallthroughBlock is off the end of the function, it can't fall through. 702 if (Fallthrough == getParent()->end()) 703 return nullptr; 704 705 // If FallthroughBlock isn't a successor, no fallthrough is possible. 706 if (!isSuccessor(&*Fallthrough)) 707 return nullptr; 708 709 // Analyze the branches, if any, at the end of the block. 710 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 711 SmallVector<MachineOperand, 4> Cond; 712 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 713 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 714 // If we couldn't analyze the branch, examine the last instruction. 715 // If the block doesn't end in a known control barrier, assume fallthrough 716 // is possible. The isPredicated check is needed because this code can be 717 // called during IfConversion, where an instruction which is normally a 718 // Barrier is predicated and thus no longer an actual control barrier. 719 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 720 ? &*Fallthrough 721 : nullptr; 722 } 723 724 // If there is no branch, control always falls through. 725 if (!TBB) return &*Fallthrough; 726 727 // If there is some explicit branch to the fallthrough block, it can obviously 728 // reach, even though the branch should get folded to fall through implicitly. 729 if (MachineFunction::iterator(TBB) == Fallthrough || 730 MachineFunction::iterator(FBB) == Fallthrough) 731 return &*Fallthrough; 732 733 // If it's an unconditional branch to some block not the fall through, it 734 // doesn't fall through. 735 if (Cond.empty()) return nullptr; 736 737 // Otherwise, if it is conditional and has no explicit false block, it falls 738 // through. 739 return (FBB == nullptr) ? &*Fallthrough : nullptr; 740 } 741 742 bool MachineBasicBlock::canFallThrough() { 743 return getFallThrough() != nullptr; 744 } 745 746 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 747 Pass &P) { 748 if (!canSplitCriticalEdge(Succ)) 749 return nullptr; 750 751 MachineFunction *MF = getParent(); 752 DebugLoc DL; // FIXME: this is nowhere 753 754 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 755 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 756 DEBUG(dbgs() << "Splitting critical edge:" 757 " BB#" << getNumber() 758 << " -- BB#" << NMBB->getNumber() 759 << " -- BB#" << Succ->getNumber() << '\n'); 760 761 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 762 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 763 if (LIS) 764 LIS->insertMBBInMaps(NMBB); 765 else if (Indexes) 766 Indexes->insertMBBInMaps(NMBB); 767 768 // On some targets like Mips, branches may kill virtual registers. Make sure 769 // that LiveVariables is properly updated after updateTerminator replaces the 770 // terminators. 771 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 772 773 // Collect a list of virtual registers killed by the terminators. 774 SmallVector<unsigned, 4> KilledRegs; 775 if (LV) 776 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 777 I != E; ++I) { 778 MachineInstr *MI = &*I; 779 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 780 OE = MI->operands_end(); OI != OE; ++OI) { 781 if (!OI->isReg() || OI->getReg() == 0 || 782 !OI->isUse() || !OI->isKill() || OI->isUndef()) 783 continue; 784 unsigned Reg = OI->getReg(); 785 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 786 LV->getVarInfo(Reg).removeKill(*MI)) { 787 KilledRegs.push_back(Reg); 788 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 789 OI->setIsKill(false); 790 } 791 } 792 } 793 794 SmallVector<unsigned, 4> UsedRegs; 795 if (LIS) { 796 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 797 I != E; ++I) { 798 MachineInstr *MI = &*I; 799 800 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 801 OE = MI->operands_end(); OI != OE; ++OI) { 802 if (!OI->isReg() || OI->getReg() == 0) 803 continue; 804 805 unsigned Reg = OI->getReg(); 806 if (!is_contained(UsedRegs, Reg)) 807 UsedRegs.push_back(Reg); 808 } 809 } 810 } 811 812 ReplaceUsesOfBlockWith(Succ, NMBB); 813 814 // If updateTerminator() removes instructions, we need to remove them from 815 // SlotIndexes. 816 SmallVector<MachineInstr*, 4> Terminators; 817 if (Indexes) { 818 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 819 I != E; ++I) 820 Terminators.push_back(&*I); 821 } 822 823 updateTerminator(); 824 825 if (Indexes) { 826 SmallVector<MachineInstr*, 4> NewTerminators; 827 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 828 I != E; ++I) 829 NewTerminators.push_back(&*I); 830 831 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 832 E = Terminators.end(); I != E; ++I) { 833 if (!is_contained(NewTerminators, *I)) 834 Indexes->removeMachineInstrFromMaps(**I); 835 } 836 } 837 838 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 839 NMBB->addSuccessor(Succ); 840 if (!NMBB->isLayoutSuccessor(Succ)) { 841 SmallVector<MachineOperand, 4> Cond; 842 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 843 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 844 845 if (Indexes) { 846 for (MachineInstr &MI : NMBB->instrs()) { 847 // Some instructions may have been moved to NMBB by updateTerminator(), 848 // so we first remove any instruction that already has an index. 849 if (Indexes->hasIndex(MI)) 850 Indexes->removeMachineInstrFromMaps(MI); 851 Indexes->insertMachineInstrInMaps(MI); 852 } 853 } 854 } 855 856 // Fix PHI nodes in Succ so they refer to NMBB instead of this 857 for (MachineBasicBlock::instr_iterator 858 i = Succ->instr_begin(),e = Succ->instr_end(); 859 i != e && i->isPHI(); ++i) 860 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 861 if (i->getOperand(ni+1).getMBB() == this) 862 i->getOperand(ni+1).setMBB(NMBB); 863 864 // Inherit live-ins from the successor 865 for (const auto &LI : Succ->liveins()) 866 NMBB->addLiveIn(LI); 867 868 // Update LiveVariables. 869 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 870 if (LV) { 871 // Restore kills of virtual registers that were killed by the terminators. 872 while (!KilledRegs.empty()) { 873 unsigned Reg = KilledRegs.pop_back_val(); 874 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 875 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 876 continue; 877 if (TargetRegisterInfo::isVirtualRegister(Reg)) 878 LV->getVarInfo(Reg).Kills.push_back(&*I); 879 DEBUG(dbgs() << "Restored terminator kill: " << *I); 880 break; 881 } 882 } 883 // Update relevant live-through information. 884 LV->addNewBlock(NMBB, this, Succ); 885 } 886 887 if (LIS) { 888 // After splitting the edge and updating SlotIndexes, live intervals may be 889 // in one of two situations, depending on whether this block was the last in 890 // the function. If the original block was the last in the function, all 891 // live intervals will end prior to the beginning of the new split block. If 892 // the original block was not at the end of the function, all live intervals 893 // will extend to the end of the new split block. 894 895 bool isLastMBB = 896 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 897 898 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 899 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 900 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 901 902 // Find the registers used from NMBB in PHIs in Succ. 903 SmallSet<unsigned, 8> PHISrcRegs; 904 for (MachineBasicBlock::instr_iterator 905 I = Succ->instr_begin(), E = Succ->instr_end(); 906 I != E && I->isPHI(); ++I) { 907 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 908 if (I->getOperand(ni+1).getMBB() == NMBB) { 909 MachineOperand &MO = I->getOperand(ni); 910 unsigned Reg = MO.getReg(); 911 PHISrcRegs.insert(Reg); 912 if (MO.isUndef()) 913 continue; 914 915 LiveInterval &LI = LIS->getInterval(Reg); 916 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 917 assert(VNI && 918 "PHI sources should be live out of their predecessors."); 919 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 920 } 921 } 922 } 923 924 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 925 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 926 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 927 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 928 continue; 929 930 LiveInterval &LI = LIS->getInterval(Reg); 931 if (!LI.liveAt(PrevIndex)) 932 continue; 933 934 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 935 if (isLiveOut && isLastMBB) { 936 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 937 assert(VNI && "LiveInterval should have VNInfo where it is live."); 938 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 939 } else if (!isLiveOut && !isLastMBB) { 940 LI.removeSegment(StartIndex, EndIndex); 941 } 942 } 943 944 // Update all intervals for registers whose uses may have been modified by 945 // updateTerminator(). 946 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 947 } 948 949 if (MachineDominatorTree *MDT = 950 P.getAnalysisIfAvailable<MachineDominatorTree>()) 951 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 952 953 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 954 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 955 // If one or the other blocks were not in a loop, the new block is not 956 // either, and thus LI doesn't need to be updated. 957 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 958 if (TIL == DestLoop) { 959 // Both in the same loop, the NMBB joins loop. 960 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 961 } else if (TIL->contains(DestLoop)) { 962 // Edge from an outer loop to an inner loop. Add to the outer loop. 963 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 964 } else if (DestLoop->contains(TIL)) { 965 // Edge from an inner loop to an outer loop. Add to the outer loop. 966 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 967 } else { 968 // Edge from two loops with no containment relation. Because these 969 // are natural loops, we know that the destination block must be the 970 // header of its loop (adding a branch into a loop elsewhere would 971 // create an irreducible loop). 972 assert(DestLoop->getHeader() == Succ && 973 "Should not create irreducible loops!"); 974 if (MachineLoop *P = DestLoop->getParentLoop()) 975 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 976 } 977 } 978 } 979 980 return NMBB; 981 } 982 983 bool MachineBasicBlock::canSplitCriticalEdge( 984 const MachineBasicBlock *Succ) const { 985 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 986 // it in this generic function. 987 if (Succ->isEHPad()) 988 return false; 989 990 const MachineFunction *MF = getParent(); 991 992 // Performance might be harmed on HW that implements branching using exec mask 993 // where both sides of the branches are always executed. 994 if (MF->getTarget().requiresStructuredCFG()) 995 return false; 996 997 // We may need to update this's terminator, but we can't do that if 998 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 999 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1000 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1001 SmallVector<MachineOperand, 4> Cond; 1002 // AnalyzeBanch should modify this, since we did not allow modification. 1003 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1004 /*AllowModify*/ false)) 1005 return false; 1006 1007 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1008 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1009 // case that we can't handle. Since this never happens in properly optimized 1010 // code, just skip those edges. 1011 if (TBB && TBB == FBB) { 1012 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 1013 << getNumber() << '\n'); 1014 return false; 1015 } 1016 return true; 1017 } 1018 1019 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1020 /// neighboring instructions so the bundle won't be broken by removing MI. 1021 static void unbundleSingleMI(MachineInstr *MI) { 1022 // Removing the first instruction in a bundle. 1023 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1024 MI->unbundleFromSucc(); 1025 // Removing the last instruction in a bundle. 1026 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1027 MI->unbundleFromPred(); 1028 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1029 // are already fine. 1030 } 1031 1032 MachineBasicBlock::instr_iterator 1033 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1034 unbundleSingleMI(&*I); 1035 return Insts.erase(I); 1036 } 1037 1038 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1039 unbundleSingleMI(MI); 1040 MI->clearFlag(MachineInstr::BundledPred); 1041 MI->clearFlag(MachineInstr::BundledSucc); 1042 return Insts.remove(MI); 1043 } 1044 1045 MachineBasicBlock::instr_iterator 1046 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1047 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1048 "Cannot insert instruction with bundle flags"); 1049 // Set the bundle flags when inserting inside a bundle. 1050 if (I != instr_end() && I->isBundledWithPred()) { 1051 MI->setFlag(MachineInstr::BundledPred); 1052 MI->setFlag(MachineInstr::BundledSucc); 1053 } 1054 return Insts.insert(I, MI); 1055 } 1056 1057 /// This method unlinks 'this' from the containing function, and returns it, but 1058 /// does not delete it. 1059 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1060 assert(getParent() && "Not embedded in a function!"); 1061 getParent()->remove(this); 1062 return this; 1063 } 1064 1065 /// This method unlinks 'this' from the containing function, and deletes it. 1066 void MachineBasicBlock::eraseFromParent() { 1067 assert(getParent() && "Not embedded in a function!"); 1068 getParent()->erase(this); 1069 } 1070 1071 /// Given a machine basic block that branched to 'Old', change the code and CFG 1072 /// so that it branches to 'New' instead. 1073 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1074 MachineBasicBlock *New) { 1075 assert(Old != New && "Cannot replace self with self!"); 1076 1077 MachineBasicBlock::instr_iterator I = instr_end(); 1078 while (I != instr_begin()) { 1079 --I; 1080 if (!I->isTerminator()) break; 1081 1082 // Scan the operands of this machine instruction, replacing any uses of Old 1083 // with New. 1084 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1085 if (I->getOperand(i).isMBB() && 1086 I->getOperand(i).getMBB() == Old) 1087 I->getOperand(i).setMBB(New); 1088 } 1089 1090 // Update the successor information. 1091 replaceSuccessor(Old, New); 1092 } 1093 1094 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1095 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1096 /// MBB successors from the CFG. DestA and DestB can be null. 1097 /// 1098 /// Besides DestA and DestB, retain other edges leading to LandingPads 1099 /// (currently there can be only one; we don't check or require that here). 1100 /// Note it is possible that DestA and/or DestB are LandingPads. 1101 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1102 MachineBasicBlock *DestB, 1103 bool IsCond) { 1104 // The values of DestA and DestB frequently come from a call to the 1105 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1106 // values from there. 1107 // 1108 // 1. If both DestA and DestB are null, then the block ends with no branches 1109 // (it falls through to its successor). 1110 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1111 // with only an unconditional branch. 1112 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1113 // with a conditional branch that falls through to a successor (DestB). 1114 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1115 // conditional branch followed by an unconditional branch. DestA is the 1116 // 'true' destination and DestB is the 'false' destination. 1117 1118 bool Changed = false; 1119 1120 MachineBasicBlock *FallThru = getNextNode(); 1121 1122 if (!DestA && !DestB) { 1123 // Block falls through to successor. 1124 DestA = FallThru; 1125 DestB = FallThru; 1126 } else if (DestA && !DestB) { 1127 if (IsCond) 1128 // Block ends in conditional jump that falls through to successor. 1129 DestB = FallThru; 1130 } else { 1131 assert(DestA && DestB && IsCond && 1132 "CFG in a bad state. Cannot correct CFG edges"); 1133 } 1134 1135 // Remove superfluous edges. I.e., those which aren't destinations of this 1136 // basic block, duplicate edges, or landing pads. 1137 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1138 MachineBasicBlock::succ_iterator SI = succ_begin(); 1139 while (SI != succ_end()) { 1140 const MachineBasicBlock *MBB = *SI; 1141 if (!SeenMBBs.insert(MBB).second || 1142 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1143 // This is a superfluous edge, remove it. 1144 SI = removeSuccessor(SI); 1145 Changed = true; 1146 } else { 1147 ++SI; 1148 } 1149 } 1150 1151 if (Changed) 1152 normalizeSuccProbs(); 1153 return Changed; 1154 } 1155 1156 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1157 /// instructions. Return UnknownLoc if there is none. 1158 DebugLoc 1159 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1160 // Skip debug declarations, we don't want a DebugLoc from them. 1161 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1162 if (MBBI != instr_end()) 1163 return MBBI->getDebugLoc(); 1164 return {}; 1165 } 1166 1167 /// Find and return the merged DebugLoc of the branch instructions of the block. 1168 /// Return UnknownLoc if there is none. 1169 DebugLoc 1170 MachineBasicBlock::findBranchDebugLoc() { 1171 DebugLoc DL; 1172 auto TI = getFirstTerminator(); 1173 while (TI != end() && !TI->isBranch()) 1174 ++TI; 1175 1176 if (TI != end()) { 1177 DL = TI->getDebugLoc(); 1178 for (++TI ; TI != end() ; ++TI) 1179 if (TI->isBranch()) 1180 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1181 } 1182 return DL; 1183 } 1184 1185 /// Return probability of the edge from this block to MBB. 1186 BranchProbability 1187 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1188 if (Probs.empty()) 1189 return BranchProbability(1, succ_size()); 1190 1191 const auto &Prob = *getProbabilityIterator(Succ); 1192 if (Prob.isUnknown()) { 1193 // For unknown probabilities, collect the sum of all known ones, and evenly 1194 // ditribute the complemental of the sum to each unknown probability. 1195 unsigned KnownProbNum = 0; 1196 auto Sum = BranchProbability::getZero(); 1197 for (auto &P : Probs) { 1198 if (!P.isUnknown()) { 1199 Sum += P; 1200 KnownProbNum++; 1201 } 1202 } 1203 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1204 } else 1205 return Prob; 1206 } 1207 1208 /// Set successor probability of a given iterator. 1209 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1210 BranchProbability Prob) { 1211 assert(!Prob.isUnknown()); 1212 if (Probs.empty()) 1213 return; 1214 *getProbabilityIterator(I) = Prob; 1215 } 1216 1217 /// Return probability iterator corresonding to the I successor iterator 1218 MachineBasicBlock::const_probability_iterator 1219 MachineBasicBlock::getProbabilityIterator( 1220 MachineBasicBlock::const_succ_iterator I) const { 1221 assert(Probs.size() == Successors.size() && "Async probability list!"); 1222 const size_t index = std::distance(Successors.begin(), I); 1223 assert(index < Probs.size() && "Not a current successor!"); 1224 return Probs.begin() + index; 1225 } 1226 1227 /// Return probability iterator corresonding to the I successor iterator. 1228 MachineBasicBlock::probability_iterator 1229 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1230 assert(Probs.size() == Successors.size() && "Async probability list!"); 1231 const size_t index = std::distance(Successors.begin(), I); 1232 assert(index < Probs.size() && "Not a current successor!"); 1233 return Probs.begin() + index; 1234 } 1235 1236 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1237 /// as of just before "MI". 1238 /// 1239 /// Search is localised to a neighborhood of 1240 /// Neighborhood instructions before (searching for defs or kills) and N 1241 /// instructions after (searching just for defs) MI. 1242 MachineBasicBlock::LivenessQueryResult 1243 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1244 unsigned Reg, const_iterator Before, 1245 unsigned Neighborhood) const { 1246 unsigned N = Neighborhood; 1247 1248 // Start by searching backwards from Before, looking for kills, reads or defs. 1249 const_iterator I(Before); 1250 // If this is the first insn in the block, don't search backwards. 1251 if (I != begin()) { 1252 do { 1253 --I; 1254 1255 MachineOperandIteratorBase::PhysRegInfo Info = 1256 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1257 1258 // Defs happen after uses so they take precedence if both are present. 1259 1260 // Register is dead after a dead def of the full register. 1261 if (Info.DeadDef) 1262 return LQR_Dead; 1263 // Register is (at least partially) live after a def. 1264 if (Info.Defined) { 1265 if (!Info.PartialDeadDef) 1266 return LQR_Live; 1267 // As soon as we saw a partial definition (dead or not), 1268 // we cannot tell if the value is partial live without 1269 // tracking the lanemasks. We are not going to do this, 1270 // so fall back on the remaining of the analysis. 1271 break; 1272 } 1273 // Register is dead after a full kill or clobber and no def. 1274 if (Info.Killed || Info.Clobbered) 1275 return LQR_Dead; 1276 // Register must be live if we read it. 1277 if (Info.Read) 1278 return LQR_Live; 1279 } while (I != begin() && --N > 0); 1280 } 1281 1282 // Did we get to the start of the block? 1283 if (I == begin()) { 1284 // If so, the register's state is definitely defined by the live-in state. 1285 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1286 ++RAI) 1287 if (isLiveIn(*RAI)) 1288 return LQR_Live; 1289 1290 return LQR_Dead; 1291 } 1292 1293 N = Neighborhood; 1294 1295 // Try searching forwards from Before, looking for reads or defs. 1296 I = const_iterator(Before); 1297 // If this is the last insn in the block, don't search forwards. 1298 if (I != end()) { 1299 for (++I; I != end() && N > 0; ++I, --N) { 1300 MachineOperandIteratorBase::PhysRegInfo Info = 1301 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1302 1303 // Register is live when we read it here. 1304 if (Info.Read) 1305 return LQR_Live; 1306 // Register is dead if we can fully overwrite or clobber it here. 1307 if (Info.FullyDefined || Info.Clobbered) 1308 return LQR_Dead; 1309 } 1310 } 1311 1312 // At this point we have no idea of the liveness of the register. 1313 return LQR_Unknown; 1314 } 1315 1316 const uint32_t * 1317 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1318 // EH funclet entry does not preserve any registers. 1319 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1320 } 1321 1322 const uint32_t * 1323 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1324 // If we see a return block with successors, this must be a funclet return, 1325 // which does not preserve any registers. If there are no successors, we don't 1326 // care what kind of return it is, putting a mask after it is a no-op. 1327 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1328 } 1329 1330 void MachineBasicBlock::clearLiveIns() { 1331 LiveIns.clear(); 1332 } 1333 1334 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1335 assert(getParent()->getProperties().hasProperty( 1336 MachineFunctionProperties::Property::TracksLiveness) && 1337 "Liveness information is accurate"); 1338 return LiveIns.begin(); 1339 } 1340