1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/DataTypes.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 if (B) 46 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 47 } 48 49 MachineBasicBlock::~MachineBasicBlock() { 50 } 51 52 /// Return the MCSymbol for this basic block. 53 MCSymbol *MachineBasicBlock::getSymbol() const { 54 if (!CachedMCSymbol) { 55 const MachineFunction *MF = getParent(); 56 MCContext &Ctx = MF->getContext(); 57 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 58 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 59 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 60 Twine(MF->getFunctionNumber()) + 61 "_" + Twine(getNumber())); 62 } 63 64 return CachedMCSymbol; 65 } 66 67 68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 69 MBB.print(OS); 70 return OS; 71 } 72 73 /// When an MBB is added to an MF, we need to update the parent pointer of the 74 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 75 /// operand list for registers. 76 /// 77 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 78 /// gets the next available unique MBB number. If it is removed from a 79 /// MachineFunction, it goes back to being #-1. 80 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 81 MachineBasicBlock *N) { 82 MachineFunction &MF = *N->getParent(); 83 N->Number = MF.addToMBBNumbering(N); 84 85 // Make sure the instructions have their operands in the reginfo lists. 86 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 87 for (MachineBasicBlock::instr_iterator 88 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 89 I->AddRegOperandsToUseLists(RegInfo); 90 } 91 92 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 93 MachineBasicBlock *N) { 94 N->getParent()->removeFromMBBNumbering(N->Number); 95 N->Number = -1; 96 } 97 98 /// When we add an instruction to a basic block list, we update its parent 99 /// pointer and add its operands from reg use/def lists if appropriate. 100 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 101 assert(!N->getParent() && "machine instruction already in a basic block"); 102 N->setParent(Parent); 103 104 // Add the instruction's register operands to their corresponding 105 // use/def lists. 106 MachineFunction *MF = Parent->getParent(); 107 N->AddRegOperandsToUseLists(MF->getRegInfo()); 108 } 109 110 /// When we remove an instruction from a basic block list, we update its parent 111 /// pointer and remove its operands from reg use/def lists if appropriate. 112 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 113 assert(N->getParent() && "machine instruction not in a basic block"); 114 115 // Remove from the use/def lists. 116 if (MachineFunction *MF = N->getMF()) 117 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 118 119 N->setParent(nullptr); 120 } 121 122 /// When moving a range of instructions from one MBB list to another, we need to 123 /// update the parent pointers and the use/def lists. 124 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 125 instr_iterator First, 126 instr_iterator Last) { 127 assert(Parent->getParent() == FromList.Parent->getParent() && 128 "MachineInstr parent mismatch!"); 129 assert(this != &FromList && "Called without a real transfer..."); 130 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 131 132 // If splicing between two blocks within the same function, just update the 133 // parent pointers. 134 for (; First != Last; ++First) 135 First->setParent(Parent); 136 } 137 138 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 139 assert(!MI->getParent() && "MI is still in a block!"); 140 Parent->getParent()->DeleteMachineInstr(MI); 141 } 142 143 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 144 instr_iterator I = instr_begin(), E = instr_end(); 145 while (I != E && I->isPHI()) 146 ++I; 147 assert((I == E || !I->isInsideBundle()) && 148 "First non-phi MI cannot be inside a bundle!"); 149 return I; 150 } 151 152 MachineBasicBlock::iterator 153 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 154 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 155 156 iterator E = end(); 157 while (I != E && (I->isPHI() || I->isPosition() || 158 TII->isBasicBlockPrologue(*I))) 159 ++I; 160 // FIXME: This needs to change if we wish to bundle labels 161 // inside the bundle. 162 assert((I == E || !I->isInsideBundle()) && 163 "First non-phi / non-label instruction is inside a bundle!"); 164 return I; 165 } 166 167 MachineBasicBlock::iterator 168 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 169 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 170 171 iterator E = end(); 172 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 173 TII->isBasicBlockPrologue(*I))) 174 ++I; 175 // FIXME: This needs to change if we wish to bundle labels / dbg_values 176 // inside the bundle. 177 assert((I == E || !I->isInsideBundle()) && 178 "First non-phi / non-label / non-debug " 179 "instruction is inside a bundle!"); 180 return I; 181 } 182 183 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 184 iterator B = begin(), E = end(), I = E; 185 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 186 ; /*noop */ 187 while (I != E && !I->isTerminator()) 188 ++I; 189 return I; 190 } 191 192 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 193 instr_iterator B = instr_begin(), E = instr_end(), I = E; 194 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 195 ; /*noop */ 196 while (I != E && !I->isTerminator()) 197 ++I; 198 return I; 199 } 200 201 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 202 // Skip over begin-of-block dbg_value instructions. 203 return skipDebugInstructionsForward(begin(), end()); 204 } 205 206 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 207 // Skip over end-of-block dbg_value instructions. 208 instr_iterator B = instr_begin(), I = instr_end(); 209 while (I != B) { 210 --I; 211 // Return instruction that starts a bundle. 212 if (I->isDebugValue() || I->isInsideBundle()) 213 continue; 214 return I; 215 } 216 // The block is all debug values. 217 return end(); 218 } 219 220 bool MachineBasicBlock::hasEHPadSuccessor() const { 221 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 222 if ((*I)->isEHPad()) 223 return true; 224 return false; 225 } 226 227 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 228 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 229 print(dbgs()); 230 } 231 #endif 232 233 bool MachineBasicBlock::isLegalToHoistInto() const { 234 if (isReturnBlock() || hasEHPadSuccessor()) 235 return false; 236 return true; 237 } 238 239 StringRef MachineBasicBlock::getName() const { 240 if (const BasicBlock *LBB = getBasicBlock()) 241 return LBB->getName(); 242 else 243 return StringRef("", 0); 244 } 245 246 /// Return a hopefully unique identifier for this block. 247 std::string MachineBasicBlock::getFullName() const { 248 std::string Name; 249 if (getParent()) 250 Name = (getParent()->getName() + ":").str(); 251 if (getBasicBlock()) 252 Name += getBasicBlock()->getName(); 253 else 254 Name += ("BB" + Twine(getNumber())).str(); 255 return Name; 256 } 257 258 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes) 259 const { 260 const MachineFunction *MF = getParent(); 261 if (!MF) { 262 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 263 << " is null\n"; 264 return; 265 } 266 const Function *F = MF->getFunction(); 267 const Module *M = F ? F->getParent() : nullptr; 268 ModuleSlotTracker MST(M); 269 print(OS, MST, Indexes); 270 } 271 272 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 273 const SlotIndexes *Indexes) const { 274 const MachineFunction *MF = getParent(); 275 if (!MF) { 276 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 277 << " is null\n"; 278 return; 279 } 280 281 if (Indexes) 282 OS << Indexes->getMBBStartIdx(this) << '\t'; 283 284 OS << "BB#" << getNumber() << ": "; 285 286 const char *Comma = ""; 287 if (const BasicBlock *LBB = getBasicBlock()) { 288 OS << Comma << "derived from LLVM BB "; 289 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 290 Comma = ", "; 291 } 292 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 293 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 294 if (Alignment) 295 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 296 << " bytes)"; 297 298 OS << '\n'; 299 300 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 301 if (!livein_empty()) { 302 if (Indexes) OS << '\t'; 303 OS << " Live Ins:"; 304 for (const auto &LI : LiveIns) { 305 OS << ' ' << PrintReg(LI.PhysReg, TRI); 306 if (!LI.LaneMask.all()) 307 OS << ':' << PrintLaneMask(LI.LaneMask); 308 } 309 OS << '\n'; 310 } 311 // Print the preds of this block according to the CFG. 312 if (!pred_empty()) { 313 if (Indexes) OS << '\t'; 314 OS << " Predecessors according to CFG:"; 315 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 316 OS << " BB#" << (*PI)->getNumber(); 317 OS << '\n'; 318 } 319 320 for (auto &I : instrs()) { 321 if (Indexes) { 322 if (Indexes->hasIndex(I)) 323 OS << Indexes->getInstructionIndex(I); 324 OS << '\t'; 325 } 326 OS << '\t'; 327 if (I.isInsideBundle()) 328 OS << " * "; 329 I.print(OS, MST); 330 } 331 332 // Print the successors of this block according to the CFG. 333 if (!succ_empty()) { 334 if (Indexes) OS << '\t'; 335 OS << " Successors according to CFG:"; 336 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 337 OS << " BB#" << (*SI)->getNumber(); 338 if (!Probs.empty()) 339 OS << '(' << *getProbabilityIterator(SI) << ')'; 340 } 341 OS << '\n'; 342 } 343 if (IrrLoopHeaderWeight) { 344 if (Indexes) OS << '\t'; 345 OS << " Irreducible loop header weight: " 346 << IrrLoopHeaderWeight.getValue(); 347 OS << '\n'; 348 } 349 } 350 351 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 352 bool /*PrintType*/) const { 353 OS << "BB#" << getNumber(); 354 } 355 356 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 357 LiveInVector::iterator I = find_if( 358 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 359 if (I == LiveIns.end()) 360 return; 361 362 I->LaneMask &= ~LaneMask; 363 if (I->LaneMask.none()) 364 LiveIns.erase(I); 365 } 366 367 MachineBasicBlock::livein_iterator 368 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 369 // Get non-const version of iterator. 370 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 371 return LiveIns.erase(LI); 372 } 373 374 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 375 livein_iterator I = find_if( 376 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 377 return I != livein_end() && (I->LaneMask & LaneMask).any(); 378 } 379 380 void MachineBasicBlock::sortUniqueLiveIns() { 381 std::sort(LiveIns.begin(), LiveIns.end(), 382 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 383 return LI0.PhysReg < LI1.PhysReg; 384 }); 385 // Liveins are sorted by physreg now we can merge their lanemasks. 386 LiveInVector::const_iterator I = LiveIns.begin(); 387 LiveInVector::const_iterator J; 388 LiveInVector::iterator Out = LiveIns.begin(); 389 for (; I != LiveIns.end(); ++Out, I = J) { 390 unsigned PhysReg = I->PhysReg; 391 LaneBitmask LaneMask = I->LaneMask; 392 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 393 LaneMask |= J->LaneMask; 394 Out->PhysReg = PhysReg; 395 Out->LaneMask = LaneMask; 396 } 397 LiveIns.erase(Out, LiveIns.end()); 398 } 399 400 unsigned 401 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 402 assert(getParent() && "MBB must be inserted in function"); 403 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 404 assert(RC && "Register class is required"); 405 assert((isEHPad() || this == &getParent()->front()) && 406 "Only the entry block and landing pads can have physreg live ins"); 407 408 bool LiveIn = isLiveIn(PhysReg); 409 iterator I = SkipPHIsAndLabels(begin()), E = end(); 410 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 411 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 412 413 // Look for an existing copy. 414 if (LiveIn) 415 for (;I != E && I->isCopy(); ++I) 416 if (I->getOperand(1).getReg() == PhysReg) { 417 unsigned VirtReg = I->getOperand(0).getReg(); 418 if (!MRI.constrainRegClass(VirtReg, RC)) 419 llvm_unreachable("Incompatible live-in register class."); 420 return VirtReg; 421 } 422 423 // No luck, create a virtual register. 424 unsigned VirtReg = MRI.createVirtualRegister(RC); 425 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 426 .addReg(PhysReg, RegState::Kill); 427 if (!LiveIn) 428 addLiveIn(PhysReg); 429 return VirtReg; 430 } 431 432 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 433 getParent()->splice(NewAfter->getIterator(), getIterator()); 434 } 435 436 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 437 getParent()->splice(++NewBefore->getIterator(), getIterator()); 438 } 439 440 void MachineBasicBlock::updateTerminator() { 441 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 442 // A block with no successors has no concerns with fall-through edges. 443 if (this->succ_empty()) 444 return; 445 446 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 447 SmallVector<MachineOperand, 4> Cond; 448 DebugLoc DL = findBranchDebugLoc(); 449 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 450 (void) B; 451 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 452 if (Cond.empty()) { 453 if (TBB) { 454 // The block has an unconditional branch. If its successor is now its 455 // layout successor, delete the branch. 456 if (isLayoutSuccessor(TBB)) 457 TII->removeBranch(*this); 458 } else { 459 // The block has an unconditional fallthrough. If its successor is not its 460 // layout successor, insert a branch. First we have to locate the only 461 // non-landing-pad successor, as that is the fallthrough block. 462 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 463 if ((*SI)->isEHPad()) 464 continue; 465 assert(!TBB && "Found more than one non-landing-pad successor!"); 466 TBB = *SI; 467 } 468 469 // If there is no non-landing-pad successor, the block has no fall-through 470 // edges to be concerned with. 471 if (!TBB) 472 return; 473 474 // Finally update the unconditional successor to be reached via a branch 475 // if it would not be reached by fallthrough. 476 if (!isLayoutSuccessor(TBB)) 477 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 478 } 479 return; 480 } 481 482 if (FBB) { 483 // The block has a non-fallthrough conditional branch. If one of its 484 // successors is its layout successor, rewrite it to a fallthrough 485 // conditional branch. 486 if (isLayoutSuccessor(TBB)) { 487 if (TII->reverseBranchCondition(Cond)) 488 return; 489 TII->removeBranch(*this); 490 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 491 } else if (isLayoutSuccessor(FBB)) { 492 TII->removeBranch(*this); 493 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 494 } 495 return; 496 } 497 498 // Walk through the successors and find the successor which is not a landing 499 // pad and is not the conditional branch destination (in TBB) as the 500 // fallthrough successor. 501 MachineBasicBlock *FallthroughBB = nullptr; 502 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 503 if ((*SI)->isEHPad() || *SI == TBB) 504 continue; 505 assert(!FallthroughBB && "Found more than one fallthrough successor."); 506 FallthroughBB = *SI; 507 } 508 509 if (!FallthroughBB) { 510 if (canFallThrough()) { 511 // We fallthrough to the same basic block as the conditional jump targets. 512 // Remove the conditional jump, leaving unconditional fallthrough. 513 // FIXME: This does not seem like a reasonable pattern to support, but it 514 // has been seen in the wild coming out of degenerate ARM test cases. 515 TII->removeBranch(*this); 516 517 // Finally update the unconditional successor to be reached via a branch if 518 // it would not be reached by fallthrough. 519 if (!isLayoutSuccessor(TBB)) 520 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 521 return; 522 } 523 524 // We enter here iff exactly one successor is TBB which cannot fallthrough 525 // and the rest successors if any are EHPads. In this case, we need to 526 // change the conditional branch into unconditional branch. 527 TII->removeBranch(*this); 528 Cond.clear(); 529 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 530 return; 531 } 532 533 // The block has a fallthrough conditional branch. 534 if (isLayoutSuccessor(TBB)) { 535 if (TII->reverseBranchCondition(Cond)) { 536 // We can't reverse the condition, add an unconditional branch. 537 Cond.clear(); 538 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 539 return; 540 } 541 TII->removeBranch(*this); 542 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 543 } else if (!isLayoutSuccessor(FallthroughBB)) { 544 TII->removeBranch(*this); 545 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 546 } 547 } 548 549 void MachineBasicBlock::validateSuccProbs() const { 550 #ifndef NDEBUG 551 int64_t Sum = 0; 552 for (auto Prob : Probs) 553 Sum += Prob.getNumerator(); 554 // Due to precision issue, we assume that the sum of probabilities is one if 555 // the difference between the sum of their numerators and the denominator is 556 // no greater than the number of successors. 557 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 558 Probs.size() && 559 "The sum of successors's probabilities exceeds one."); 560 #endif // NDEBUG 561 } 562 563 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 564 BranchProbability Prob) { 565 // Probability list is either empty (if successor list isn't empty, this means 566 // disabled optimization) or has the same size as successor list. 567 if (!(Probs.empty() && !Successors.empty())) 568 Probs.push_back(Prob); 569 Successors.push_back(Succ); 570 Succ->addPredecessor(this); 571 } 572 573 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 574 // We need to make sure probability list is either empty or has the same size 575 // of successor list. When this function is called, we can safely delete all 576 // probability in the list. 577 Probs.clear(); 578 Successors.push_back(Succ); 579 Succ->addPredecessor(this); 580 } 581 582 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 583 bool NormalizeSuccProbs) { 584 succ_iterator I = find(Successors, Succ); 585 removeSuccessor(I, NormalizeSuccProbs); 586 } 587 588 MachineBasicBlock::succ_iterator 589 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 590 assert(I != Successors.end() && "Not a current successor!"); 591 592 // If probability list is empty it means we don't use it (disabled 593 // optimization). 594 if (!Probs.empty()) { 595 probability_iterator WI = getProbabilityIterator(I); 596 Probs.erase(WI); 597 if (NormalizeSuccProbs) 598 normalizeSuccProbs(); 599 } 600 601 (*I)->removePredecessor(this); 602 return Successors.erase(I); 603 } 604 605 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 606 MachineBasicBlock *New) { 607 if (Old == New) 608 return; 609 610 succ_iterator E = succ_end(); 611 succ_iterator NewI = E; 612 succ_iterator OldI = E; 613 for (succ_iterator I = succ_begin(); I != E; ++I) { 614 if (*I == Old) { 615 OldI = I; 616 if (NewI != E) 617 break; 618 } 619 if (*I == New) { 620 NewI = I; 621 if (OldI != E) 622 break; 623 } 624 } 625 assert(OldI != E && "Old is not a successor of this block"); 626 627 // If New isn't already a successor, let it take Old's place. 628 if (NewI == E) { 629 Old->removePredecessor(this); 630 New->addPredecessor(this); 631 *OldI = New; 632 return; 633 } 634 635 // New is already a successor. 636 // Update its probability instead of adding a duplicate edge. 637 if (!Probs.empty()) { 638 auto ProbIter = getProbabilityIterator(NewI); 639 if (!ProbIter->isUnknown()) 640 *ProbIter += *getProbabilityIterator(OldI); 641 } 642 removeSuccessor(OldI); 643 } 644 645 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 646 Predecessors.push_back(Pred); 647 } 648 649 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 650 pred_iterator I = find(Predecessors, Pred); 651 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 652 Predecessors.erase(I); 653 } 654 655 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 656 if (this == FromMBB) 657 return; 658 659 while (!FromMBB->succ_empty()) { 660 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 661 662 // If probability list is empty it means we don't use it (disabled optimization). 663 if (!FromMBB->Probs.empty()) { 664 auto Prob = *FromMBB->Probs.begin(); 665 addSuccessor(Succ, Prob); 666 } else 667 addSuccessorWithoutProb(Succ); 668 669 FromMBB->removeSuccessor(Succ); 670 } 671 } 672 673 void 674 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 675 if (this == FromMBB) 676 return; 677 678 while (!FromMBB->succ_empty()) { 679 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 680 if (!FromMBB->Probs.empty()) { 681 auto Prob = *FromMBB->Probs.begin(); 682 addSuccessor(Succ, Prob); 683 } else 684 addSuccessorWithoutProb(Succ); 685 FromMBB->removeSuccessor(Succ); 686 687 // Fix up any PHI nodes in the successor. 688 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 689 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 690 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 691 MachineOperand &MO = MI->getOperand(i); 692 if (MO.getMBB() == FromMBB) 693 MO.setMBB(this); 694 } 695 } 696 normalizeSuccProbs(); 697 } 698 699 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 700 return is_contained(predecessors(), MBB); 701 } 702 703 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 704 return is_contained(successors(), MBB); 705 } 706 707 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 708 MachineFunction::const_iterator I(this); 709 return std::next(I) == MachineFunction::const_iterator(MBB); 710 } 711 712 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 713 MachineFunction::iterator Fallthrough = getIterator(); 714 ++Fallthrough; 715 // If FallthroughBlock is off the end of the function, it can't fall through. 716 if (Fallthrough == getParent()->end()) 717 return nullptr; 718 719 // If FallthroughBlock isn't a successor, no fallthrough is possible. 720 if (!isSuccessor(&*Fallthrough)) 721 return nullptr; 722 723 // Analyze the branches, if any, at the end of the block. 724 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 725 SmallVector<MachineOperand, 4> Cond; 726 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 727 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 728 // If we couldn't analyze the branch, examine the last instruction. 729 // If the block doesn't end in a known control barrier, assume fallthrough 730 // is possible. The isPredicated check is needed because this code can be 731 // called during IfConversion, where an instruction which is normally a 732 // Barrier is predicated and thus no longer an actual control barrier. 733 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 734 ? &*Fallthrough 735 : nullptr; 736 } 737 738 // If there is no branch, control always falls through. 739 if (!TBB) return &*Fallthrough; 740 741 // If there is some explicit branch to the fallthrough block, it can obviously 742 // reach, even though the branch should get folded to fall through implicitly. 743 if (MachineFunction::iterator(TBB) == Fallthrough || 744 MachineFunction::iterator(FBB) == Fallthrough) 745 return &*Fallthrough; 746 747 // If it's an unconditional branch to some block not the fall through, it 748 // doesn't fall through. 749 if (Cond.empty()) return nullptr; 750 751 // Otherwise, if it is conditional and has no explicit false block, it falls 752 // through. 753 return (FBB == nullptr) ? &*Fallthrough : nullptr; 754 } 755 756 bool MachineBasicBlock::canFallThrough() { 757 return getFallThrough() != nullptr; 758 } 759 760 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 761 Pass &P) { 762 if (!canSplitCriticalEdge(Succ)) 763 return nullptr; 764 765 MachineFunction *MF = getParent(); 766 DebugLoc DL; // FIXME: this is nowhere 767 768 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 769 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 770 DEBUG(dbgs() << "Splitting critical edge:" 771 " BB#" << getNumber() 772 << " -- BB#" << NMBB->getNumber() 773 << " -- BB#" << Succ->getNumber() << '\n'); 774 775 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 776 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 777 if (LIS) 778 LIS->insertMBBInMaps(NMBB); 779 else if (Indexes) 780 Indexes->insertMBBInMaps(NMBB); 781 782 // On some targets like Mips, branches may kill virtual registers. Make sure 783 // that LiveVariables is properly updated after updateTerminator replaces the 784 // terminators. 785 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 786 787 // Collect a list of virtual registers killed by the terminators. 788 SmallVector<unsigned, 4> KilledRegs; 789 if (LV) 790 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 791 I != E; ++I) { 792 MachineInstr *MI = &*I; 793 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 794 OE = MI->operands_end(); OI != OE; ++OI) { 795 if (!OI->isReg() || OI->getReg() == 0 || 796 !OI->isUse() || !OI->isKill() || OI->isUndef()) 797 continue; 798 unsigned Reg = OI->getReg(); 799 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 800 LV->getVarInfo(Reg).removeKill(*MI)) { 801 KilledRegs.push_back(Reg); 802 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 803 OI->setIsKill(false); 804 } 805 } 806 } 807 808 SmallVector<unsigned, 4> UsedRegs; 809 if (LIS) { 810 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 811 I != E; ++I) { 812 MachineInstr *MI = &*I; 813 814 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 815 OE = MI->operands_end(); OI != OE; ++OI) { 816 if (!OI->isReg() || OI->getReg() == 0) 817 continue; 818 819 unsigned Reg = OI->getReg(); 820 if (!is_contained(UsedRegs, Reg)) 821 UsedRegs.push_back(Reg); 822 } 823 } 824 } 825 826 ReplaceUsesOfBlockWith(Succ, NMBB); 827 828 // If updateTerminator() removes instructions, we need to remove them from 829 // SlotIndexes. 830 SmallVector<MachineInstr*, 4> Terminators; 831 if (Indexes) { 832 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 833 I != E; ++I) 834 Terminators.push_back(&*I); 835 } 836 837 updateTerminator(); 838 839 if (Indexes) { 840 SmallVector<MachineInstr*, 4> NewTerminators; 841 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 842 I != E; ++I) 843 NewTerminators.push_back(&*I); 844 845 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 846 E = Terminators.end(); I != E; ++I) { 847 if (!is_contained(NewTerminators, *I)) 848 Indexes->removeMachineInstrFromMaps(**I); 849 } 850 } 851 852 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 853 NMBB->addSuccessor(Succ); 854 if (!NMBB->isLayoutSuccessor(Succ)) { 855 SmallVector<MachineOperand, 4> Cond; 856 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 857 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 858 859 if (Indexes) { 860 for (MachineInstr &MI : NMBB->instrs()) { 861 // Some instructions may have been moved to NMBB by updateTerminator(), 862 // so we first remove any instruction that already has an index. 863 if (Indexes->hasIndex(MI)) 864 Indexes->removeMachineInstrFromMaps(MI); 865 Indexes->insertMachineInstrInMaps(MI); 866 } 867 } 868 } 869 870 // Fix PHI nodes in Succ so they refer to NMBB instead of this 871 for (MachineBasicBlock::instr_iterator 872 i = Succ->instr_begin(),e = Succ->instr_end(); 873 i != e && i->isPHI(); ++i) 874 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 875 if (i->getOperand(ni+1).getMBB() == this) 876 i->getOperand(ni+1).setMBB(NMBB); 877 878 // Inherit live-ins from the successor 879 for (const auto &LI : Succ->liveins()) 880 NMBB->addLiveIn(LI); 881 882 // Update LiveVariables. 883 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 884 if (LV) { 885 // Restore kills of virtual registers that were killed by the terminators. 886 while (!KilledRegs.empty()) { 887 unsigned Reg = KilledRegs.pop_back_val(); 888 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 889 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 890 continue; 891 if (TargetRegisterInfo::isVirtualRegister(Reg)) 892 LV->getVarInfo(Reg).Kills.push_back(&*I); 893 DEBUG(dbgs() << "Restored terminator kill: " << *I); 894 break; 895 } 896 } 897 // Update relevant live-through information. 898 LV->addNewBlock(NMBB, this, Succ); 899 } 900 901 if (LIS) { 902 // After splitting the edge and updating SlotIndexes, live intervals may be 903 // in one of two situations, depending on whether this block was the last in 904 // the function. If the original block was the last in the function, all 905 // live intervals will end prior to the beginning of the new split block. If 906 // the original block was not at the end of the function, all live intervals 907 // will extend to the end of the new split block. 908 909 bool isLastMBB = 910 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 911 912 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 913 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 914 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 915 916 // Find the registers used from NMBB in PHIs in Succ. 917 SmallSet<unsigned, 8> PHISrcRegs; 918 for (MachineBasicBlock::instr_iterator 919 I = Succ->instr_begin(), E = Succ->instr_end(); 920 I != E && I->isPHI(); ++I) { 921 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 922 if (I->getOperand(ni+1).getMBB() == NMBB) { 923 MachineOperand &MO = I->getOperand(ni); 924 unsigned Reg = MO.getReg(); 925 PHISrcRegs.insert(Reg); 926 if (MO.isUndef()) 927 continue; 928 929 LiveInterval &LI = LIS->getInterval(Reg); 930 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 931 assert(VNI && 932 "PHI sources should be live out of their predecessors."); 933 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 934 } 935 } 936 } 937 938 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 939 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 940 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 941 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 942 continue; 943 944 LiveInterval &LI = LIS->getInterval(Reg); 945 if (!LI.liveAt(PrevIndex)) 946 continue; 947 948 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 949 if (isLiveOut && isLastMBB) { 950 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 951 assert(VNI && "LiveInterval should have VNInfo where it is live."); 952 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 953 } else if (!isLiveOut && !isLastMBB) { 954 LI.removeSegment(StartIndex, EndIndex); 955 } 956 } 957 958 // Update all intervals for registers whose uses may have been modified by 959 // updateTerminator(). 960 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 961 } 962 963 if (MachineDominatorTree *MDT = 964 P.getAnalysisIfAvailable<MachineDominatorTree>()) 965 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 966 967 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 968 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 969 // If one or the other blocks were not in a loop, the new block is not 970 // either, and thus LI doesn't need to be updated. 971 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 972 if (TIL == DestLoop) { 973 // Both in the same loop, the NMBB joins loop. 974 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 975 } else if (TIL->contains(DestLoop)) { 976 // Edge from an outer loop to an inner loop. Add to the outer loop. 977 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 978 } else if (DestLoop->contains(TIL)) { 979 // Edge from an inner loop to an outer loop. Add to the outer loop. 980 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 981 } else { 982 // Edge from two loops with no containment relation. Because these 983 // are natural loops, we know that the destination block must be the 984 // header of its loop (adding a branch into a loop elsewhere would 985 // create an irreducible loop). 986 assert(DestLoop->getHeader() == Succ && 987 "Should not create irreducible loops!"); 988 if (MachineLoop *P = DestLoop->getParentLoop()) 989 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 990 } 991 } 992 } 993 994 return NMBB; 995 } 996 997 bool MachineBasicBlock::canSplitCriticalEdge( 998 const MachineBasicBlock *Succ) const { 999 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1000 // it in this generic function. 1001 if (Succ->isEHPad()) 1002 return false; 1003 1004 const MachineFunction *MF = getParent(); 1005 1006 // Performance might be harmed on HW that implements branching using exec mask 1007 // where both sides of the branches are always executed. 1008 if (MF->getTarget().requiresStructuredCFG()) 1009 return false; 1010 1011 // We may need to update this's terminator, but we can't do that if 1012 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1013 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1014 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1015 SmallVector<MachineOperand, 4> Cond; 1016 // AnalyzeBanch should modify this, since we did not allow modification. 1017 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1018 /*AllowModify*/ false)) 1019 return false; 1020 1021 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1022 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1023 // case that we can't handle. Since this never happens in properly optimized 1024 // code, just skip those edges. 1025 if (TBB && TBB == FBB) { 1026 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 1027 << getNumber() << '\n'); 1028 return false; 1029 } 1030 return true; 1031 } 1032 1033 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1034 /// neighboring instructions so the bundle won't be broken by removing MI. 1035 static void unbundleSingleMI(MachineInstr *MI) { 1036 // Removing the first instruction in a bundle. 1037 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1038 MI->unbundleFromSucc(); 1039 // Removing the last instruction in a bundle. 1040 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1041 MI->unbundleFromPred(); 1042 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1043 // are already fine. 1044 } 1045 1046 MachineBasicBlock::instr_iterator 1047 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1048 unbundleSingleMI(&*I); 1049 return Insts.erase(I); 1050 } 1051 1052 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1053 unbundleSingleMI(MI); 1054 MI->clearFlag(MachineInstr::BundledPred); 1055 MI->clearFlag(MachineInstr::BundledSucc); 1056 return Insts.remove(MI); 1057 } 1058 1059 MachineBasicBlock::instr_iterator 1060 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1061 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1062 "Cannot insert instruction with bundle flags"); 1063 // Set the bundle flags when inserting inside a bundle. 1064 if (I != instr_end() && I->isBundledWithPred()) { 1065 MI->setFlag(MachineInstr::BundledPred); 1066 MI->setFlag(MachineInstr::BundledSucc); 1067 } 1068 return Insts.insert(I, MI); 1069 } 1070 1071 /// This method unlinks 'this' from the containing function, and returns it, but 1072 /// does not delete it. 1073 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1074 assert(getParent() && "Not embedded in a function!"); 1075 getParent()->remove(this); 1076 return this; 1077 } 1078 1079 /// This method unlinks 'this' from the containing function, and deletes it. 1080 void MachineBasicBlock::eraseFromParent() { 1081 assert(getParent() && "Not embedded in a function!"); 1082 getParent()->erase(this); 1083 } 1084 1085 /// Given a machine basic block that branched to 'Old', change the code and CFG 1086 /// so that it branches to 'New' instead. 1087 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1088 MachineBasicBlock *New) { 1089 assert(Old != New && "Cannot replace self with self!"); 1090 1091 MachineBasicBlock::instr_iterator I = instr_end(); 1092 while (I != instr_begin()) { 1093 --I; 1094 if (!I->isTerminator()) break; 1095 1096 // Scan the operands of this machine instruction, replacing any uses of Old 1097 // with New. 1098 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1099 if (I->getOperand(i).isMBB() && 1100 I->getOperand(i).getMBB() == Old) 1101 I->getOperand(i).setMBB(New); 1102 } 1103 1104 // Update the successor information. 1105 replaceSuccessor(Old, New); 1106 } 1107 1108 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1109 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1110 /// MBB successors from the CFG. DestA and DestB can be null. 1111 /// 1112 /// Besides DestA and DestB, retain other edges leading to LandingPads 1113 /// (currently there can be only one; we don't check or require that here). 1114 /// Note it is possible that DestA and/or DestB are LandingPads. 1115 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1116 MachineBasicBlock *DestB, 1117 bool IsCond) { 1118 // The values of DestA and DestB frequently come from a call to the 1119 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1120 // values from there. 1121 // 1122 // 1. If both DestA and DestB are null, then the block ends with no branches 1123 // (it falls through to its successor). 1124 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1125 // with only an unconditional branch. 1126 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1127 // with a conditional branch that falls through to a successor (DestB). 1128 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1129 // conditional branch followed by an unconditional branch. DestA is the 1130 // 'true' destination and DestB is the 'false' destination. 1131 1132 bool Changed = false; 1133 1134 MachineBasicBlock *FallThru = getNextNode(); 1135 1136 if (!DestA && !DestB) { 1137 // Block falls through to successor. 1138 DestA = FallThru; 1139 DestB = FallThru; 1140 } else if (DestA && !DestB) { 1141 if (IsCond) 1142 // Block ends in conditional jump that falls through to successor. 1143 DestB = FallThru; 1144 } else { 1145 assert(DestA && DestB && IsCond && 1146 "CFG in a bad state. Cannot correct CFG edges"); 1147 } 1148 1149 // Remove superfluous edges. I.e., those which aren't destinations of this 1150 // basic block, duplicate edges, or landing pads. 1151 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1152 MachineBasicBlock::succ_iterator SI = succ_begin(); 1153 while (SI != succ_end()) { 1154 const MachineBasicBlock *MBB = *SI; 1155 if (!SeenMBBs.insert(MBB).second || 1156 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1157 // This is a superfluous edge, remove it. 1158 SI = removeSuccessor(SI); 1159 Changed = true; 1160 } else { 1161 ++SI; 1162 } 1163 } 1164 1165 if (Changed) 1166 normalizeSuccProbs(); 1167 return Changed; 1168 } 1169 1170 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1171 /// instructions. Return UnknownLoc if there is none. 1172 DebugLoc 1173 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1174 // Skip debug declarations, we don't want a DebugLoc from them. 1175 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1176 if (MBBI != instr_end()) 1177 return MBBI->getDebugLoc(); 1178 return {}; 1179 } 1180 1181 /// Find and return the merged DebugLoc of the branch instructions of the block. 1182 /// Return UnknownLoc if there is none. 1183 DebugLoc 1184 MachineBasicBlock::findBranchDebugLoc() { 1185 DebugLoc DL; 1186 auto TI = getFirstTerminator(); 1187 while (TI != end() && !TI->isBranch()) 1188 ++TI; 1189 1190 if (TI != end()) { 1191 DL = TI->getDebugLoc(); 1192 for (++TI ; TI != end() ; ++TI) 1193 if (TI->isBranch()) 1194 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1195 } 1196 return DL; 1197 } 1198 1199 /// Return probability of the edge from this block to MBB. 1200 BranchProbability 1201 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1202 if (Probs.empty()) 1203 return BranchProbability(1, succ_size()); 1204 1205 const auto &Prob = *getProbabilityIterator(Succ); 1206 if (Prob.isUnknown()) { 1207 // For unknown probabilities, collect the sum of all known ones, and evenly 1208 // ditribute the complemental of the sum to each unknown probability. 1209 unsigned KnownProbNum = 0; 1210 auto Sum = BranchProbability::getZero(); 1211 for (auto &P : Probs) { 1212 if (!P.isUnknown()) { 1213 Sum += P; 1214 KnownProbNum++; 1215 } 1216 } 1217 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1218 } else 1219 return Prob; 1220 } 1221 1222 /// Set successor probability of a given iterator. 1223 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1224 BranchProbability Prob) { 1225 assert(!Prob.isUnknown()); 1226 if (Probs.empty()) 1227 return; 1228 *getProbabilityIterator(I) = Prob; 1229 } 1230 1231 /// Return probability iterator corresonding to the I successor iterator 1232 MachineBasicBlock::const_probability_iterator 1233 MachineBasicBlock::getProbabilityIterator( 1234 MachineBasicBlock::const_succ_iterator I) const { 1235 assert(Probs.size() == Successors.size() && "Async probability list!"); 1236 const size_t index = std::distance(Successors.begin(), I); 1237 assert(index < Probs.size() && "Not a current successor!"); 1238 return Probs.begin() + index; 1239 } 1240 1241 /// Return probability iterator corresonding to the I successor iterator. 1242 MachineBasicBlock::probability_iterator 1243 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1244 assert(Probs.size() == Successors.size() && "Async probability list!"); 1245 const size_t index = std::distance(Successors.begin(), I); 1246 assert(index < Probs.size() && "Not a current successor!"); 1247 return Probs.begin() + index; 1248 } 1249 1250 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1251 /// as of just before "MI". 1252 /// 1253 /// Search is localised to a neighborhood of 1254 /// Neighborhood instructions before (searching for defs or kills) and N 1255 /// instructions after (searching just for defs) MI. 1256 MachineBasicBlock::LivenessQueryResult 1257 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1258 unsigned Reg, const_iterator Before, 1259 unsigned Neighborhood) const { 1260 unsigned N = Neighborhood; 1261 1262 // Start by searching backwards from Before, looking for kills, reads or defs. 1263 const_iterator I(Before); 1264 // If this is the first insn in the block, don't search backwards. 1265 if (I != begin()) { 1266 do { 1267 --I; 1268 1269 MachineOperandIteratorBase::PhysRegInfo Info = 1270 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1271 1272 // Defs happen after uses so they take precedence if both are present. 1273 1274 // Register is dead after a dead def of the full register. 1275 if (Info.DeadDef) 1276 return LQR_Dead; 1277 // Register is (at least partially) live after a def. 1278 if (Info.Defined) { 1279 if (!Info.PartialDeadDef) 1280 return LQR_Live; 1281 // As soon as we saw a partial definition (dead or not), 1282 // we cannot tell if the value is partial live without 1283 // tracking the lanemasks. We are not going to do this, 1284 // so fall back on the remaining of the analysis. 1285 break; 1286 } 1287 // Register is dead after a full kill or clobber and no def. 1288 if (Info.Killed || Info.Clobbered) 1289 return LQR_Dead; 1290 // Register must be live if we read it. 1291 if (Info.Read) 1292 return LQR_Live; 1293 } while (I != begin() && --N > 0); 1294 } 1295 1296 // Did we get to the start of the block? 1297 if (I == begin()) { 1298 // If so, the register's state is definitely defined by the live-in state. 1299 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1300 ++RAI) 1301 if (isLiveIn(*RAI)) 1302 return LQR_Live; 1303 1304 return LQR_Dead; 1305 } 1306 1307 N = Neighborhood; 1308 1309 // Try searching forwards from Before, looking for reads or defs. 1310 I = const_iterator(Before); 1311 // If this is the last insn in the block, don't search forwards. 1312 if (I != end()) { 1313 for (++I; I != end() && N > 0; ++I, --N) { 1314 MachineOperandIteratorBase::PhysRegInfo Info = 1315 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1316 1317 // Register is live when we read it here. 1318 if (Info.Read) 1319 return LQR_Live; 1320 // Register is dead if we can fully overwrite or clobber it here. 1321 if (Info.FullyDefined || Info.Clobbered) 1322 return LQR_Dead; 1323 } 1324 } 1325 1326 // At this point we have no idea of the liveness of the register. 1327 return LQR_Unknown; 1328 } 1329 1330 const uint32_t * 1331 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1332 // EH funclet entry does not preserve any registers. 1333 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1334 } 1335 1336 const uint32_t * 1337 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1338 // If we see a return block with successors, this must be a funclet return, 1339 // which does not preserve any registers. If there are no successors, we don't 1340 // care what kind of return it is, putting a mask after it is a no-op. 1341 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1342 } 1343 1344 void MachineBasicBlock::clearLiveIns() { 1345 LiveIns.clear(); 1346 } 1347 1348 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1349 assert(getParent()->getProperties().hasProperty( 1350 MachineFunctionProperties::Property::TracksLiveness) && 1351 "Liveness information is accurate"); 1352 return LiveIns.begin(); 1353 } 1354