1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/DataTypes.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 } 46 47 MachineBasicBlock::~MachineBasicBlock() { 48 } 49 50 /// Return the MCSymbol for this basic block. 51 MCSymbol *MachineBasicBlock::getSymbol() const { 52 if (!CachedMCSymbol) { 53 const MachineFunction *MF = getParent(); 54 MCContext &Ctx = MF->getContext(); 55 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 56 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 57 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 58 Twine(MF->getFunctionNumber()) + 59 "_" + Twine(getNumber())); 60 } 61 62 return CachedMCSymbol; 63 } 64 65 66 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 67 MBB.print(OS); 68 return OS; 69 } 70 71 /// When an MBB is added to an MF, we need to update the parent pointer of the 72 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 73 /// operand list for registers. 74 /// 75 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 76 /// gets the next available unique MBB number. If it is removed from a 77 /// MachineFunction, it goes back to being #-1. 78 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 79 MachineBasicBlock *N) { 80 MachineFunction &MF = *N->getParent(); 81 N->Number = MF.addToMBBNumbering(N); 82 83 // Make sure the instructions have their operands in the reginfo lists. 84 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 85 for (MachineBasicBlock::instr_iterator 86 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 87 I->AddRegOperandsToUseLists(RegInfo); 88 } 89 90 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 91 MachineBasicBlock *N) { 92 N->getParent()->removeFromMBBNumbering(N->Number); 93 N->Number = -1; 94 } 95 96 /// When we add an instruction to a basic block list, we update its parent 97 /// pointer and add its operands from reg use/def lists if appropriate. 98 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 99 assert(!N->getParent() && "machine instruction already in a basic block"); 100 N->setParent(Parent); 101 102 // Add the instruction's register operands to their corresponding 103 // use/def lists. 104 MachineFunction *MF = Parent->getParent(); 105 N->AddRegOperandsToUseLists(MF->getRegInfo()); 106 } 107 108 /// When we remove an instruction from a basic block list, we update its parent 109 /// pointer and remove its operands from reg use/def lists if appropriate. 110 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 111 assert(N->getParent() && "machine instruction not in a basic block"); 112 113 // Remove from the use/def lists. 114 if (MachineFunction *MF = N->getParent()->getParent()) 115 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 116 117 N->setParent(nullptr); 118 } 119 120 /// When moving a range of instructions from one MBB list to another, we need to 121 /// update the parent pointers and the use/def lists. 122 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 123 instr_iterator First, 124 instr_iterator Last) { 125 assert(Parent->getParent() == FromList.Parent->getParent() && 126 "MachineInstr parent mismatch!"); 127 assert(this != &FromList && "Called without a real transfer..."); 128 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 129 130 // If splicing between two blocks within the same function, just update the 131 // parent pointers. 132 for (; First != Last; ++First) 133 First->setParent(Parent); 134 } 135 136 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 137 assert(!MI->getParent() && "MI is still in a block!"); 138 Parent->getParent()->DeleteMachineInstr(MI); 139 } 140 141 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 142 instr_iterator I = instr_begin(), E = instr_end(); 143 while (I != E && I->isPHI()) 144 ++I; 145 assert((I == E || !I->isInsideBundle()) && 146 "First non-phi MI cannot be inside a bundle!"); 147 return I; 148 } 149 150 MachineBasicBlock::iterator 151 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 152 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 153 154 iterator E = end(); 155 while (I != E && (I->isPHI() || I->isPosition() || 156 TII->isBasicBlockPrologue(*I))) 157 ++I; 158 // FIXME: This needs to change if we wish to bundle labels 159 // inside the bundle. 160 assert((I == E || !I->isInsideBundle()) && 161 "First non-phi / non-label instruction is inside a bundle!"); 162 return I; 163 } 164 165 MachineBasicBlock::iterator 166 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 167 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 168 169 iterator E = end(); 170 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 171 TII->isBasicBlockPrologue(*I))) 172 ++I; 173 // FIXME: This needs to change if we wish to bundle labels / dbg_values 174 // inside the bundle. 175 assert((I == E || !I->isInsideBundle()) && 176 "First non-phi / non-label / non-debug " 177 "instruction is inside a bundle!"); 178 return I; 179 } 180 181 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 182 iterator B = begin(), E = end(), I = E; 183 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 184 ; /*noop */ 185 while (I != E && !I->isTerminator()) 186 ++I; 187 return I; 188 } 189 190 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 191 instr_iterator B = instr_begin(), E = instr_end(), I = E; 192 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 193 ; /*noop */ 194 while (I != E && !I->isTerminator()) 195 ++I; 196 return I; 197 } 198 199 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 200 // Skip over begin-of-block dbg_value instructions. 201 return skipDebugInstructionsForward(begin(), end()); 202 } 203 204 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 205 // Skip over end-of-block dbg_value instructions. 206 instr_iterator B = instr_begin(), I = instr_end(); 207 while (I != B) { 208 --I; 209 // Return instruction that starts a bundle. 210 if (I->isDebugValue() || I->isInsideBundle()) 211 continue; 212 return I; 213 } 214 // The block is all debug values. 215 return end(); 216 } 217 218 bool MachineBasicBlock::hasEHPadSuccessor() const { 219 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 220 if ((*I)->isEHPad()) 221 return true; 222 return false; 223 } 224 225 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 226 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 227 print(dbgs()); 228 } 229 #endif 230 231 bool MachineBasicBlock::isLegalToHoistInto() const { 232 if (isReturnBlock() || hasEHPadSuccessor()) 233 return false; 234 return true; 235 } 236 237 StringRef MachineBasicBlock::getName() const { 238 if (const BasicBlock *LBB = getBasicBlock()) 239 return LBB->getName(); 240 else 241 return StringRef("", 0); 242 } 243 244 /// Return a hopefully unique identifier for this block. 245 std::string MachineBasicBlock::getFullName() const { 246 std::string Name; 247 if (getParent()) 248 Name = (getParent()->getName() + ":").str(); 249 if (getBasicBlock()) 250 Name += getBasicBlock()->getName(); 251 else 252 Name += ("BB" + Twine(getNumber())).str(); 253 return Name; 254 } 255 256 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes) 257 const { 258 const MachineFunction *MF = getParent(); 259 if (!MF) { 260 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 261 << " is null\n"; 262 return; 263 } 264 const Function *F = MF->getFunction(); 265 const Module *M = F ? F->getParent() : nullptr; 266 ModuleSlotTracker MST(M); 267 print(OS, MST, Indexes); 268 } 269 270 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 271 const SlotIndexes *Indexes) const { 272 const MachineFunction *MF = getParent(); 273 if (!MF) { 274 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 275 << " is null\n"; 276 return; 277 } 278 279 if (Indexes) 280 OS << Indexes->getMBBStartIdx(this) << '\t'; 281 282 OS << "BB#" << getNumber() << ": "; 283 284 const char *Comma = ""; 285 if (const BasicBlock *LBB = getBasicBlock()) { 286 OS << Comma << "derived from LLVM BB "; 287 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 288 Comma = ", "; 289 } 290 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 291 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 292 if (Alignment) 293 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 294 << " bytes)"; 295 296 OS << '\n'; 297 298 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 299 if (!livein_empty()) { 300 if (Indexes) OS << '\t'; 301 OS << " Live Ins:"; 302 for (const auto &LI : LiveIns) { 303 OS << ' ' << PrintReg(LI.PhysReg, TRI); 304 if (!LI.LaneMask.all()) 305 OS << ':' << PrintLaneMask(LI.LaneMask); 306 } 307 OS << '\n'; 308 } 309 // Print the preds of this block according to the CFG. 310 if (!pred_empty()) { 311 if (Indexes) OS << '\t'; 312 OS << " Predecessors according to CFG:"; 313 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 314 OS << " BB#" << (*PI)->getNumber(); 315 OS << '\n'; 316 } 317 318 for (auto &I : instrs()) { 319 if (Indexes) { 320 if (Indexes->hasIndex(I)) 321 OS << Indexes->getInstructionIndex(I); 322 OS << '\t'; 323 } 324 OS << '\t'; 325 if (I.isInsideBundle()) 326 OS << " * "; 327 I.print(OS, MST); 328 } 329 330 // Print the successors of this block according to the CFG. 331 if (!succ_empty()) { 332 if (Indexes) OS << '\t'; 333 OS << " Successors according to CFG:"; 334 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 335 OS << " BB#" << (*SI)->getNumber(); 336 if (!Probs.empty()) 337 OS << '(' << *getProbabilityIterator(SI) << ')'; 338 } 339 OS << '\n'; 340 } 341 } 342 343 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 344 bool /*PrintType*/) const { 345 OS << "BB#" << getNumber(); 346 } 347 348 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 349 LiveInVector::iterator I = find_if( 350 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 351 if (I == LiveIns.end()) 352 return; 353 354 I->LaneMask &= ~LaneMask; 355 if (I->LaneMask.none()) 356 LiveIns.erase(I); 357 } 358 359 MachineBasicBlock::livein_iterator 360 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 361 // Get non-const version of iterator. 362 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 363 return LiveIns.erase(LI); 364 } 365 366 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 367 livein_iterator I = find_if( 368 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 369 return I != livein_end() && (I->LaneMask & LaneMask).any(); 370 } 371 372 void MachineBasicBlock::sortUniqueLiveIns() { 373 std::sort(LiveIns.begin(), LiveIns.end(), 374 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 375 return LI0.PhysReg < LI1.PhysReg; 376 }); 377 // Liveins are sorted by physreg now we can merge their lanemasks. 378 LiveInVector::const_iterator I = LiveIns.begin(); 379 LiveInVector::const_iterator J; 380 LiveInVector::iterator Out = LiveIns.begin(); 381 for (; I != LiveIns.end(); ++Out, I = J) { 382 unsigned PhysReg = I->PhysReg; 383 LaneBitmask LaneMask = I->LaneMask; 384 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 385 LaneMask |= J->LaneMask; 386 Out->PhysReg = PhysReg; 387 Out->LaneMask = LaneMask; 388 } 389 LiveIns.erase(Out, LiveIns.end()); 390 } 391 392 unsigned 393 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 394 assert(getParent() && "MBB must be inserted in function"); 395 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 396 assert(RC && "Register class is required"); 397 assert((isEHPad() || this == &getParent()->front()) && 398 "Only the entry block and landing pads can have physreg live ins"); 399 400 bool LiveIn = isLiveIn(PhysReg); 401 iterator I = SkipPHIsAndLabels(begin()), E = end(); 402 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 403 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 404 405 // Look for an existing copy. 406 if (LiveIn) 407 for (;I != E && I->isCopy(); ++I) 408 if (I->getOperand(1).getReg() == PhysReg) { 409 unsigned VirtReg = I->getOperand(0).getReg(); 410 if (!MRI.constrainRegClass(VirtReg, RC)) 411 llvm_unreachable("Incompatible live-in register class."); 412 return VirtReg; 413 } 414 415 // No luck, create a virtual register. 416 unsigned VirtReg = MRI.createVirtualRegister(RC); 417 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 418 .addReg(PhysReg, RegState::Kill); 419 if (!LiveIn) 420 addLiveIn(PhysReg); 421 return VirtReg; 422 } 423 424 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 425 getParent()->splice(NewAfter->getIterator(), getIterator()); 426 } 427 428 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 429 getParent()->splice(++NewBefore->getIterator(), getIterator()); 430 } 431 432 void MachineBasicBlock::updateTerminator() { 433 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 434 // A block with no successors has no concerns with fall-through edges. 435 if (this->succ_empty()) 436 return; 437 438 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 439 SmallVector<MachineOperand, 4> Cond; 440 DebugLoc DL = findBranchDebugLoc(); 441 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 442 (void) B; 443 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 444 if (Cond.empty()) { 445 if (TBB) { 446 // The block has an unconditional branch. If its successor is now its 447 // layout successor, delete the branch. 448 if (isLayoutSuccessor(TBB)) 449 TII->removeBranch(*this); 450 } else { 451 // The block has an unconditional fallthrough. If its successor is not its 452 // layout successor, insert a branch. First we have to locate the only 453 // non-landing-pad successor, as that is the fallthrough block. 454 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 455 if ((*SI)->isEHPad()) 456 continue; 457 assert(!TBB && "Found more than one non-landing-pad successor!"); 458 TBB = *SI; 459 } 460 461 // If there is no non-landing-pad successor, the block has no fall-through 462 // edges to be concerned with. 463 if (!TBB) 464 return; 465 466 // Finally update the unconditional successor to be reached via a branch 467 // if it would not be reached by fallthrough. 468 if (!isLayoutSuccessor(TBB)) 469 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 470 } 471 return; 472 } 473 474 if (FBB) { 475 // The block has a non-fallthrough conditional branch. If one of its 476 // successors is its layout successor, rewrite it to a fallthrough 477 // conditional branch. 478 if (isLayoutSuccessor(TBB)) { 479 if (TII->reverseBranchCondition(Cond)) 480 return; 481 TII->removeBranch(*this); 482 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 483 } else if (isLayoutSuccessor(FBB)) { 484 TII->removeBranch(*this); 485 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 486 } 487 return; 488 } 489 490 // Walk through the successors and find the successor which is not a landing 491 // pad and is not the conditional branch destination (in TBB) as the 492 // fallthrough successor. 493 MachineBasicBlock *FallthroughBB = nullptr; 494 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 495 if ((*SI)->isEHPad() || *SI == TBB) 496 continue; 497 assert(!FallthroughBB && "Found more than one fallthrough successor."); 498 FallthroughBB = *SI; 499 } 500 501 if (!FallthroughBB) { 502 if (canFallThrough()) { 503 // We fallthrough to the same basic block as the conditional jump targets. 504 // Remove the conditional jump, leaving unconditional fallthrough. 505 // FIXME: This does not seem like a reasonable pattern to support, but it 506 // has been seen in the wild coming out of degenerate ARM test cases. 507 TII->removeBranch(*this); 508 509 // Finally update the unconditional successor to be reached via a branch if 510 // it would not be reached by fallthrough. 511 if (!isLayoutSuccessor(TBB)) 512 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 513 return; 514 } 515 516 // We enter here iff exactly one successor is TBB which cannot fallthrough 517 // and the rest successors if any are EHPads. In this case, we need to 518 // change the conditional branch into unconditional branch. 519 TII->removeBranch(*this); 520 Cond.clear(); 521 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 522 return; 523 } 524 525 // The block has a fallthrough conditional branch. 526 if (isLayoutSuccessor(TBB)) { 527 if (TII->reverseBranchCondition(Cond)) { 528 // We can't reverse the condition, add an unconditional branch. 529 Cond.clear(); 530 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 531 return; 532 } 533 TII->removeBranch(*this); 534 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 535 } else if (!isLayoutSuccessor(FallthroughBB)) { 536 TII->removeBranch(*this); 537 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 538 } 539 } 540 541 void MachineBasicBlock::validateSuccProbs() const { 542 #ifndef NDEBUG 543 int64_t Sum = 0; 544 for (auto Prob : Probs) 545 Sum += Prob.getNumerator(); 546 // Due to precision issue, we assume that the sum of probabilities is one if 547 // the difference between the sum of their numerators and the denominator is 548 // no greater than the number of successors. 549 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 550 Probs.size() && 551 "The sum of successors's probabilities exceeds one."); 552 #endif // NDEBUG 553 } 554 555 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 556 BranchProbability Prob) { 557 // Probability list is either empty (if successor list isn't empty, this means 558 // disabled optimization) or has the same size as successor list. 559 if (!(Probs.empty() && !Successors.empty())) 560 Probs.push_back(Prob); 561 Successors.push_back(Succ); 562 Succ->addPredecessor(this); 563 } 564 565 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 566 // We need to make sure probability list is either empty or has the same size 567 // of successor list. When this function is called, we can safely delete all 568 // probability in the list. 569 Probs.clear(); 570 Successors.push_back(Succ); 571 Succ->addPredecessor(this); 572 } 573 574 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 575 bool NormalizeSuccProbs) { 576 succ_iterator I = find(Successors, Succ); 577 removeSuccessor(I, NormalizeSuccProbs); 578 } 579 580 MachineBasicBlock::succ_iterator 581 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 582 assert(I != Successors.end() && "Not a current successor!"); 583 584 // If probability list is empty it means we don't use it (disabled 585 // optimization). 586 if (!Probs.empty()) { 587 probability_iterator WI = getProbabilityIterator(I); 588 Probs.erase(WI); 589 if (NormalizeSuccProbs) 590 normalizeSuccProbs(); 591 } 592 593 (*I)->removePredecessor(this); 594 return Successors.erase(I); 595 } 596 597 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 598 MachineBasicBlock *New) { 599 if (Old == New) 600 return; 601 602 succ_iterator E = succ_end(); 603 succ_iterator NewI = E; 604 succ_iterator OldI = E; 605 for (succ_iterator I = succ_begin(); I != E; ++I) { 606 if (*I == Old) { 607 OldI = I; 608 if (NewI != E) 609 break; 610 } 611 if (*I == New) { 612 NewI = I; 613 if (OldI != E) 614 break; 615 } 616 } 617 assert(OldI != E && "Old is not a successor of this block"); 618 619 // If New isn't already a successor, let it take Old's place. 620 if (NewI == E) { 621 Old->removePredecessor(this); 622 New->addPredecessor(this); 623 *OldI = New; 624 return; 625 } 626 627 // New is already a successor. 628 // Update its probability instead of adding a duplicate edge. 629 if (!Probs.empty()) { 630 auto ProbIter = getProbabilityIterator(NewI); 631 if (!ProbIter->isUnknown()) 632 *ProbIter += *getProbabilityIterator(OldI); 633 } 634 removeSuccessor(OldI); 635 } 636 637 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 638 Predecessors.push_back(Pred); 639 } 640 641 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 642 pred_iterator I = find(Predecessors, Pred); 643 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 644 Predecessors.erase(I); 645 } 646 647 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 648 if (this == FromMBB) 649 return; 650 651 while (!FromMBB->succ_empty()) { 652 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 653 654 // If probability list is empty it means we don't use it (disabled optimization). 655 if (!FromMBB->Probs.empty()) { 656 auto Prob = *FromMBB->Probs.begin(); 657 addSuccessor(Succ, Prob); 658 } else 659 addSuccessorWithoutProb(Succ); 660 661 FromMBB->removeSuccessor(Succ); 662 } 663 } 664 665 void 666 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 667 if (this == FromMBB) 668 return; 669 670 while (!FromMBB->succ_empty()) { 671 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 672 if (!FromMBB->Probs.empty()) { 673 auto Prob = *FromMBB->Probs.begin(); 674 addSuccessor(Succ, Prob); 675 } else 676 addSuccessorWithoutProb(Succ); 677 FromMBB->removeSuccessor(Succ); 678 679 // Fix up any PHI nodes in the successor. 680 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 681 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 682 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 683 MachineOperand &MO = MI->getOperand(i); 684 if (MO.getMBB() == FromMBB) 685 MO.setMBB(this); 686 } 687 } 688 normalizeSuccProbs(); 689 } 690 691 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 692 return is_contained(predecessors(), MBB); 693 } 694 695 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 696 return is_contained(successors(), MBB); 697 } 698 699 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 700 MachineFunction::const_iterator I(this); 701 return std::next(I) == MachineFunction::const_iterator(MBB); 702 } 703 704 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 705 MachineFunction::iterator Fallthrough = getIterator(); 706 ++Fallthrough; 707 // If FallthroughBlock is off the end of the function, it can't fall through. 708 if (Fallthrough == getParent()->end()) 709 return nullptr; 710 711 // If FallthroughBlock isn't a successor, no fallthrough is possible. 712 if (!isSuccessor(&*Fallthrough)) 713 return nullptr; 714 715 // Analyze the branches, if any, at the end of the block. 716 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 717 SmallVector<MachineOperand, 4> Cond; 718 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 719 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 720 // If we couldn't analyze the branch, examine the last instruction. 721 // If the block doesn't end in a known control barrier, assume fallthrough 722 // is possible. The isPredicated check is needed because this code can be 723 // called during IfConversion, where an instruction which is normally a 724 // Barrier is predicated and thus no longer an actual control barrier. 725 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 726 ? &*Fallthrough 727 : nullptr; 728 } 729 730 // If there is no branch, control always falls through. 731 if (!TBB) return &*Fallthrough; 732 733 // If there is some explicit branch to the fallthrough block, it can obviously 734 // reach, even though the branch should get folded to fall through implicitly. 735 if (MachineFunction::iterator(TBB) == Fallthrough || 736 MachineFunction::iterator(FBB) == Fallthrough) 737 return &*Fallthrough; 738 739 // If it's an unconditional branch to some block not the fall through, it 740 // doesn't fall through. 741 if (Cond.empty()) return nullptr; 742 743 // Otherwise, if it is conditional and has no explicit false block, it falls 744 // through. 745 return (FBB == nullptr) ? &*Fallthrough : nullptr; 746 } 747 748 bool MachineBasicBlock::canFallThrough() { 749 return getFallThrough() != nullptr; 750 } 751 752 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 753 Pass &P) { 754 if (!canSplitCriticalEdge(Succ)) 755 return nullptr; 756 757 MachineFunction *MF = getParent(); 758 DebugLoc DL; // FIXME: this is nowhere 759 760 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 761 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 762 DEBUG(dbgs() << "Splitting critical edge:" 763 " BB#" << getNumber() 764 << " -- BB#" << NMBB->getNumber() 765 << " -- BB#" << Succ->getNumber() << '\n'); 766 767 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 768 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 769 if (LIS) 770 LIS->insertMBBInMaps(NMBB); 771 else if (Indexes) 772 Indexes->insertMBBInMaps(NMBB); 773 774 // On some targets like Mips, branches may kill virtual registers. Make sure 775 // that LiveVariables is properly updated after updateTerminator replaces the 776 // terminators. 777 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 778 779 // Collect a list of virtual registers killed by the terminators. 780 SmallVector<unsigned, 4> KilledRegs; 781 if (LV) 782 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 783 I != E; ++I) { 784 MachineInstr *MI = &*I; 785 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 786 OE = MI->operands_end(); OI != OE; ++OI) { 787 if (!OI->isReg() || OI->getReg() == 0 || 788 !OI->isUse() || !OI->isKill() || OI->isUndef()) 789 continue; 790 unsigned Reg = OI->getReg(); 791 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 792 LV->getVarInfo(Reg).removeKill(*MI)) { 793 KilledRegs.push_back(Reg); 794 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 795 OI->setIsKill(false); 796 } 797 } 798 } 799 800 SmallVector<unsigned, 4> UsedRegs; 801 if (LIS) { 802 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 803 I != E; ++I) { 804 MachineInstr *MI = &*I; 805 806 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 807 OE = MI->operands_end(); OI != OE; ++OI) { 808 if (!OI->isReg() || OI->getReg() == 0) 809 continue; 810 811 unsigned Reg = OI->getReg(); 812 if (!is_contained(UsedRegs, Reg)) 813 UsedRegs.push_back(Reg); 814 } 815 } 816 } 817 818 ReplaceUsesOfBlockWith(Succ, NMBB); 819 820 // If updateTerminator() removes instructions, we need to remove them from 821 // SlotIndexes. 822 SmallVector<MachineInstr*, 4> Terminators; 823 if (Indexes) { 824 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 825 I != E; ++I) 826 Terminators.push_back(&*I); 827 } 828 829 updateTerminator(); 830 831 if (Indexes) { 832 SmallVector<MachineInstr*, 4> NewTerminators; 833 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 834 I != E; ++I) 835 NewTerminators.push_back(&*I); 836 837 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 838 E = Terminators.end(); I != E; ++I) { 839 if (!is_contained(NewTerminators, *I)) 840 Indexes->removeMachineInstrFromMaps(**I); 841 } 842 } 843 844 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 845 NMBB->addSuccessor(Succ); 846 if (!NMBB->isLayoutSuccessor(Succ)) { 847 SmallVector<MachineOperand, 4> Cond; 848 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 849 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 850 851 if (Indexes) { 852 for (MachineInstr &MI : NMBB->instrs()) { 853 // Some instructions may have been moved to NMBB by updateTerminator(), 854 // so we first remove any instruction that already has an index. 855 if (Indexes->hasIndex(MI)) 856 Indexes->removeMachineInstrFromMaps(MI); 857 Indexes->insertMachineInstrInMaps(MI); 858 } 859 } 860 } 861 862 // Fix PHI nodes in Succ so they refer to NMBB instead of this 863 for (MachineBasicBlock::instr_iterator 864 i = Succ->instr_begin(),e = Succ->instr_end(); 865 i != e && i->isPHI(); ++i) 866 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 867 if (i->getOperand(ni+1).getMBB() == this) 868 i->getOperand(ni+1).setMBB(NMBB); 869 870 // Inherit live-ins from the successor 871 for (const auto &LI : Succ->liveins()) 872 NMBB->addLiveIn(LI); 873 874 // Update LiveVariables. 875 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 876 if (LV) { 877 // Restore kills of virtual registers that were killed by the terminators. 878 while (!KilledRegs.empty()) { 879 unsigned Reg = KilledRegs.pop_back_val(); 880 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 881 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 882 continue; 883 if (TargetRegisterInfo::isVirtualRegister(Reg)) 884 LV->getVarInfo(Reg).Kills.push_back(&*I); 885 DEBUG(dbgs() << "Restored terminator kill: " << *I); 886 break; 887 } 888 } 889 // Update relevant live-through information. 890 LV->addNewBlock(NMBB, this, Succ); 891 } 892 893 if (LIS) { 894 // After splitting the edge and updating SlotIndexes, live intervals may be 895 // in one of two situations, depending on whether this block was the last in 896 // the function. If the original block was the last in the function, all 897 // live intervals will end prior to the beginning of the new split block. If 898 // the original block was not at the end of the function, all live intervals 899 // will extend to the end of the new split block. 900 901 bool isLastMBB = 902 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 903 904 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 905 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 906 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 907 908 // Find the registers used from NMBB in PHIs in Succ. 909 SmallSet<unsigned, 8> PHISrcRegs; 910 for (MachineBasicBlock::instr_iterator 911 I = Succ->instr_begin(), E = Succ->instr_end(); 912 I != E && I->isPHI(); ++I) { 913 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 914 if (I->getOperand(ni+1).getMBB() == NMBB) { 915 MachineOperand &MO = I->getOperand(ni); 916 unsigned Reg = MO.getReg(); 917 PHISrcRegs.insert(Reg); 918 if (MO.isUndef()) 919 continue; 920 921 LiveInterval &LI = LIS->getInterval(Reg); 922 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 923 assert(VNI && 924 "PHI sources should be live out of their predecessors."); 925 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 926 } 927 } 928 } 929 930 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 931 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 932 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 933 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 934 continue; 935 936 LiveInterval &LI = LIS->getInterval(Reg); 937 if (!LI.liveAt(PrevIndex)) 938 continue; 939 940 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 941 if (isLiveOut && isLastMBB) { 942 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 943 assert(VNI && "LiveInterval should have VNInfo where it is live."); 944 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 945 } else if (!isLiveOut && !isLastMBB) { 946 LI.removeSegment(StartIndex, EndIndex); 947 } 948 } 949 950 // Update all intervals for registers whose uses may have been modified by 951 // updateTerminator(). 952 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 953 } 954 955 if (MachineDominatorTree *MDT = 956 P.getAnalysisIfAvailable<MachineDominatorTree>()) 957 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 958 959 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 960 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 961 // If one or the other blocks were not in a loop, the new block is not 962 // either, and thus LI doesn't need to be updated. 963 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 964 if (TIL == DestLoop) { 965 // Both in the same loop, the NMBB joins loop. 966 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 967 } else if (TIL->contains(DestLoop)) { 968 // Edge from an outer loop to an inner loop. Add to the outer loop. 969 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 970 } else if (DestLoop->contains(TIL)) { 971 // Edge from an inner loop to an outer loop. Add to the outer loop. 972 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 973 } else { 974 // Edge from two loops with no containment relation. Because these 975 // are natural loops, we know that the destination block must be the 976 // header of its loop (adding a branch into a loop elsewhere would 977 // create an irreducible loop). 978 assert(DestLoop->getHeader() == Succ && 979 "Should not create irreducible loops!"); 980 if (MachineLoop *P = DestLoop->getParentLoop()) 981 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 982 } 983 } 984 } 985 986 return NMBB; 987 } 988 989 bool MachineBasicBlock::canSplitCriticalEdge( 990 const MachineBasicBlock *Succ) const { 991 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 992 // it in this generic function. 993 if (Succ->isEHPad()) 994 return false; 995 996 const MachineFunction *MF = getParent(); 997 998 // Performance might be harmed on HW that implements branching using exec mask 999 // where both sides of the branches are always executed. 1000 if (MF->getTarget().requiresStructuredCFG()) 1001 return false; 1002 1003 // We may need to update this's terminator, but we can't do that if 1004 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1005 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1006 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1007 SmallVector<MachineOperand, 4> Cond; 1008 // AnalyzeBanch should modify this, since we did not allow modification. 1009 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1010 /*AllowModify*/ false)) 1011 return false; 1012 1013 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1014 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1015 // case that we can't handle. Since this never happens in properly optimized 1016 // code, just skip those edges. 1017 if (TBB && TBB == FBB) { 1018 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 1019 << getNumber() << '\n'); 1020 return false; 1021 } 1022 return true; 1023 } 1024 1025 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1026 /// neighboring instructions so the bundle won't be broken by removing MI. 1027 static void unbundleSingleMI(MachineInstr *MI) { 1028 // Removing the first instruction in a bundle. 1029 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1030 MI->unbundleFromSucc(); 1031 // Removing the last instruction in a bundle. 1032 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1033 MI->unbundleFromPred(); 1034 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1035 // are already fine. 1036 } 1037 1038 MachineBasicBlock::instr_iterator 1039 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1040 unbundleSingleMI(&*I); 1041 return Insts.erase(I); 1042 } 1043 1044 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1045 unbundleSingleMI(MI); 1046 MI->clearFlag(MachineInstr::BundledPred); 1047 MI->clearFlag(MachineInstr::BundledSucc); 1048 return Insts.remove(MI); 1049 } 1050 1051 MachineBasicBlock::instr_iterator 1052 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1053 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1054 "Cannot insert instruction with bundle flags"); 1055 // Set the bundle flags when inserting inside a bundle. 1056 if (I != instr_end() && I->isBundledWithPred()) { 1057 MI->setFlag(MachineInstr::BundledPred); 1058 MI->setFlag(MachineInstr::BundledSucc); 1059 } 1060 return Insts.insert(I, MI); 1061 } 1062 1063 /// This method unlinks 'this' from the containing function, and returns it, but 1064 /// does not delete it. 1065 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1066 assert(getParent() && "Not embedded in a function!"); 1067 getParent()->remove(this); 1068 return this; 1069 } 1070 1071 /// This method unlinks 'this' from the containing function, and deletes it. 1072 void MachineBasicBlock::eraseFromParent() { 1073 assert(getParent() && "Not embedded in a function!"); 1074 getParent()->erase(this); 1075 } 1076 1077 /// Given a machine basic block that branched to 'Old', change the code and CFG 1078 /// so that it branches to 'New' instead. 1079 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1080 MachineBasicBlock *New) { 1081 assert(Old != New && "Cannot replace self with self!"); 1082 1083 MachineBasicBlock::instr_iterator I = instr_end(); 1084 while (I != instr_begin()) { 1085 --I; 1086 if (!I->isTerminator()) break; 1087 1088 // Scan the operands of this machine instruction, replacing any uses of Old 1089 // with New. 1090 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1091 if (I->getOperand(i).isMBB() && 1092 I->getOperand(i).getMBB() == Old) 1093 I->getOperand(i).setMBB(New); 1094 } 1095 1096 // Update the successor information. 1097 replaceSuccessor(Old, New); 1098 } 1099 1100 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1101 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1102 /// MBB successors from the CFG. DestA and DestB can be null. 1103 /// 1104 /// Besides DestA and DestB, retain other edges leading to LandingPads 1105 /// (currently there can be only one; we don't check or require that here). 1106 /// Note it is possible that DestA and/or DestB are LandingPads. 1107 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1108 MachineBasicBlock *DestB, 1109 bool IsCond) { 1110 // The values of DestA and DestB frequently come from a call to the 1111 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1112 // values from there. 1113 // 1114 // 1. If both DestA and DestB are null, then the block ends with no branches 1115 // (it falls through to its successor). 1116 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1117 // with only an unconditional branch. 1118 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1119 // with a conditional branch that falls through to a successor (DestB). 1120 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1121 // conditional branch followed by an unconditional branch. DestA is the 1122 // 'true' destination and DestB is the 'false' destination. 1123 1124 bool Changed = false; 1125 1126 MachineBasicBlock *FallThru = getNextNode(); 1127 1128 if (!DestA && !DestB) { 1129 // Block falls through to successor. 1130 DestA = FallThru; 1131 DestB = FallThru; 1132 } else if (DestA && !DestB) { 1133 if (IsCond) 1134 // Block ends in conditional jump that falls through to successor. 1135 DestB = FallThru; 1136 } else { 1137 assert(DestA && DestB && IsCond && 1138 "CFG in a bad state. Cannot correct CFG edges"); 1139 } 1140 1141 // Remove superfluous edges. I.e., those which aren't destinations of this 1142 // basic block, duplicate edges, or landing pads. 1143 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1144 MachineBasicBlock::succ_iterator SI = succ_begin(); 1145 while (SI != succ_end()) { 1146 const MachineBasicBlock *MBB = *SI; 1147 if (!SeenMBBs.insert(MBB).second || 1148 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1149 // This is a superfluous edge, remove it. 1150 SI = removeSuccessor(SI); 1151 Changed = true; 1152 } else { 1153 ++SI; 1154 } 1155 } 1156 1157 if (Changed) 1158 normalizeSuccProbs(); 1159 return Changed; 1160 } 1161 1162 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1163 /// instructions. Return UnknownLoc if there is none. 1164 DebugLoc 1165 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1166 // Skip debug declarations, we don't want a DebugLoc from them. 1167 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1168 if (MBBI != instr_end()) 1169 return MBBI->getDebugLoc(); 1170 return {}; 1171 } 1172 1173 /// Find and return the merged DebugLoc of the branch instructions of the block. 1174 /// Return UnknownLoc if there is none. 1175 DebugLoc 1176 MachineBasicBlock::findBranchDebugLoc() { 1177 DebugLoc DL; 1178 auto TI = getFirstTerminator(); 1179 while (TI != end() && !TI->isBranch()) 1180 ++TI; 1181 1182 if (TI != end()) { 1183 DL = TI->getDebugLoc(); 1184 for (++TI ; TI != end() ; ++TI) 1185 if (TI->isBranch()) 1186 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1187 } 1188 return DL; 1189 } 1190 1191 /// Return probability of the edge from this block to MBB. 1192 BranchProbability 1193 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1194 if (Probs.empty()) 1195 return BranchProbability(1, succ_size()); 1196 1197 const auto &Prob = *getProbabilityIterator(Succ); 1198 if (Prob.isUnknown()) { 1199 // For unknown probabilities, collect the sum of all known ones, and evenly 1200 // ditribute the complemental of the sum to each unknown probability. 1201 unsigned KnownProbNum = 0; 1202 auto Sum = BranchProbability::getZero(); 1203 for (auto &P : Probs) { 1204 if (!P.isUnknown()) { 1205 Sum += P; 1206 KnownProbNum++; 1207 } 1208 } 1209 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1210 } else 1211 return Prob; 1212 } 1213 1214 /// Set successor probability of a given iterator. 1215 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1216 BranchProbability Prob) { 1217 assert(!Prob.isUnknown()); 1218 if (Probs.empty()) 1219 return; 1220 *getProbabilityIterator(I) = Prob; 1221 } 1222 1223 /// Return probability iterator corresonding to the I successor iterator 1224 MachineBasicBlock::const_probability_iterator 1225 MachineBasicBlock::getProbabilityIterator( 1226 MachineBasicBlock::const_succ_iterator I) const { 1227 assert(Probs.size() == Successors.size() && "Async probability list!"); 1228 const size_t index = std::distance(Successors.begin(), I); 1229 assert(index < Probs.size() && "Not a current successor!"); 1230 return Probs.begin() + index; 1231 } 1232 1233 /// Return probability iterator corresonding to the I successor iterator. 1234 MachineBasicBlock::probability_iterator 1235 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1236 assert(Probs.size() == Successors.size() && "Async probability list!"); 1237 const size_t index = std::distance(Successors.begin(), I); 1238 assert(index < Probs.size() && "Not a current successor!"); 1239 return Probs.begin() + index; 1240 } 1241 1242 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1243 /// as of just before "MI". 1244 /// 1245 /// Search is localised to a neighborhood of 1246 /// Neighborhood instructions before (searching for defs or kills) and N 1247 /// instructions after (searching just for defs) MI. 1248 MachineBasicBlock::LivenessQueryResult 1249 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1250 unsigned Reg, const_iterator Before, 1251 unsigned Neighborhood) const { 1252 unsigned N = Neighborhood; 1253 1254 // Start by searching backwards from Before, looking for kills, reads or defs. 1255 const_iterator I(Before); 1256 // If this is the first insn in the block, don't search backwards. 1257 if (I != begin()) { 1258 do { 1259 --I; 1260 1261 MachineOperandIteratorBase::PhysRegInfo Info = 1262 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1263 1264 // Defs happen after uses so they take precedence if both are present. 1265 1266 // Register is dead after a dead def of the full register. 1267 if (Info.DeadDef) 1268 return LQR_Dead; 1269 // Register is (at least partially) live after a def. 1270 if (Info.Defined) { 1271 if (!Info.PartialDeadDef) 1272 return LQR_Live; 1273 // As soon as we saw a partial definition (dead or not), 1274 // we cannot tell if the value is partial live without 1275 // tracking the lanemasks. We are not going to do this, 1276 // so fall back on the remaining of the analysis. 1277 break; 1278 } 1279 // Register is dead after a full kill or clobber and no def. 1280 if (Info.Killed || Info.Clobbered) 1281 return LQR_Dead; 1282 // Register must be live if we read it. 1283 if (Info.Read) 1284 return LQR_Live; 1285 } while (I != begin() && --N > 0); 1286 } 1287 1288 // Did we get to the start of the block? 1289 if (I == begin()) { 1290 // If so, the register's state is definitely defined by the live-in state. 1291 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1292 ++RAI) 1293 if (isLiveIn(*RAI)) 1294 return LQR_Live; 1295 1296 return LQR_Dead; 1297 } 1298 1299 N = Neighborhood; 1300 1301 // Try searching forwards from Before, looking for reads or defs. 1302 I = const_iterator(Before); 1303 // If this is the last insn in the block, don't search forwards. 1304 if (I != end()) { 1305 for (++I; I != end() && N > 0; ++I, --N) { 1306 MachineOperandIteratorBase::PhysRegInfo Info = 1307 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1308 1309 // Register is live when we read it here. 1310 if (Info.Read) 1311 return LQR_Live; 1312 // Register is dead if we can fully overwrite or clobber it here. 1313 if (Info.FullyDefined || Info.Clobbered) 1314 return LQR_Dead; 1315 } 1316 } 1317 1318 // At this point we have no idea of the liveness of the register. 1319 return LQR_Unknown; 1320 } 1321 1322 const uint32_t * 1323 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1324 // EH funclet entry does not preserve any registers. 1325 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1326 } 1327 1328 const uint32_t * 1329 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1330 // If we see a return block with successors, this must be a funclet return, 1331 // which does not preserve any registers. If there are no successors, we don't 1332 // care what kind of return it is, putting a mask after it is a no-op. 1333 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1334 } 1335 1336 void MachineBasicBlock::clearLiveIns() { 1337 LiveIns.clear(); 1338 } 1339 1340 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1341 assert(getParent()->getProperties().hasProperty( 1342 MachineFunctionProperties::Property::TracksLiveness) && 1343 "Liveness information is accurate"); 1344 return LiveIns.begin(); 1345 } 1346