1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/ModuleSlotTracker.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/Support/DataTypes.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 42 : BB(B), Number(-1), xParent(&MF) { 43 Insts.Parent = this; 44 } 45 46 MachineBasicBlock::~MachineBasicBlock() { 47 } 48 49 /// Return the MCSymbol for this basic block. 50 MCSymbol *MachineBasicBlock::getSymbol() const { 51 if (!CachedMCSymbol) { 52 const MachineFunction *MF = getParent(); 53 MCContext &Ctx = MF->getContext(); 54 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 55 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 56 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 57 Twine(MF->getFunctionNumber()) + 58 "_" + Twine(getNumber())); 59 } 60 61 return CachedMCSymbol; 62 } 63 64 65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 66 MBB.print(OS); 67 return OS; 68 } 69 70 /// When an MBB is added to an MF, we need to update the parent pointer of the 71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 72 /// operand list for registers. 73 /// 74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 75 /// gets the next available unique MBB number. If it is removed from a 76 /// MachineFunction, it goes back to being #-1. 77 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 78 MachineBasicBlock *N) { 79 MachineFunction &MF = *N->getParent(); 80 N->Number = MF.addToMBBNumbering(N); 81 82 // Make sure the instructions have their operands in the reginfo lists. 83 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 84 for (MachineBasicBlock::instr_iterator 85 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 86 I->AddRegOperandsToUseLists(RegInfo); 87 } 88 89 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 90 MachineBasicBlock *N) { 91 N->getParent()->removeFromMBBNumbering(N->Number); 92 N->Number = -1; 93 } 94 95 /// When we add an instruction to a basic block list, we update its parent 96 /// pointer and add its operands from reg use/def lists if appropriate. 97 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 98 assert(!N->getParent() && "machine instruction already in a basic block"); 99 N->setParent(Parent); 100 101 // Add the instruction's register operands to their corresponding 102 // use/def lists. 103 MachineFunction *MF = Parent->getParent(); 104 N->AddRegOperandsToUseLists(MF->getRegInfo()); 105 } 106 107 /// When we remove an instruction from a basic block list, we update its parent 108 /// pointer and remove its operands from reg use/def lists if appropriate. 109 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 110 assert(N->getParent() && "machine instruction not in a basic block"); 111 112 // Remove from the use/def lists. 113 if (MachineFunction *MF = N->getParent()->getParent()) 114 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 115 116 N->setParent(nullptr); 117 } 118 119 /// When moving a range of instructions from one MBB list to another, we need to 120 /// update the parent pointers and the use/def lists. 121 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 122 instr_iterator First, 123 instr_iterator Last) { 124 assert(Parent->getParent() == FromList.Parent->getParent() && 125 "MachineInstr parent mismatch!"); 126 assert(this != &FromList && "Called without a real transfer..."); 127 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 128 129 // If splicing between two blocks within the same function, just update the 130 // parent pointers. 131 for (; First != Last; ++First) 132 First->setParent(Parent); 133 } 134 135 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 136 assert(!MI->getParent() && "MI is still in a block!"); 137 Parent->getParent()->DeleteMachineInstr(MI); 138 } 139 140 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 141 instr_iterator I = instr_begin(), E = instr_end(); 142 while (I != E && I->isPHI()) 143 ++I; 144 assert((I == E || !I->isInsideBundle()) && 145 "First non-phi MI cannot be inside a bundle!"); 146 return I; 147 } 148 149 MachineBasicBlock::iterator 150 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 151 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 152 153 iterator E = end(); 154 while (I != E && (I->isPHI() || I->isPosition() || 155 TII->isBasicBlockPrologue(*I))) 156 ++I; 157 // FIXME: This needs to change if we wish to bundle labels 158 // inside the bundle. 159 assert((I == E || !I->isInsideBundle()) && 160 "First non-phi / non-label instruction is inside a bundle!"); 161 return I; 162 } 163 164 MachineBasicBlock::iterator 165 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 166 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 167 168 iterator E = end(); 169 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 170 TII->isBasicBlockPrologue(*I))) 171 ++I; 172 // FIXME: This needs to change if we wish to bundle labels / dbg_values 173 // inside the bundle. 174 assert((I == E || !I->isInsideBundle()) && 175 "First non-phi / non-label / non-debug " 176 "instruction is inside a bundle!"); 177 return I; 178 } 179 180 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 181 iterator B = begin(), E = end(), I = E; 182 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 183 ; /*noop */ 184 while (I != E && !I->isTerminator()) 185 ++I; 186 return I; 187 } 188 189 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 190 instr_iterator B = instr_begin(), E = instr_end(), I = E; 191 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 192 ; /*noop */ 193 while (I != E && !I->isTerminator()) 194 ++I; 195 return I; 196 } 197 198 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 199 // Skip over begin-of-block dbg_value instructions. 200 return skipDebugInstructionsForward(begin(), end()); 201 } 202 203 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 204 // Skip over end-of-block dbg_value instructions. 205 instr_iterator B = instr_begin(), I = instr_end(); 206 while (I != B) { 207 --I; 208 // Return instruction that starts a bundle. 209 if (I->isDebugValue() || I->isInsideBundle()) 210 continue; 211 return I; 212 } 213 // The block is all debug values. 214 return end(); 215 } 216 217 bool MachineBasicBlock::hasEHPadSuccessor() const { 218 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 219 if ((*I)->isEHPad()) 220 return true; 221 return false; 222 } 223 224 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 225 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 226 print(dbgs()); 227 } 228 #endif 229 230 StringRef MachineBasicBlock::getName() const { 231 if (const BasicBlock *LBB = getBasicBlock()) 232 return LBB->getName(); 233 else 234 return "(null)"; 235 } 236 237 /// Return a hopefully unique identifier for this block. 238 std::string MachineBasicBlock::getFullName() const { 239 std::string Name; 240 if (getParent()) 241 Name = (getParent()->getName() + ":").str(); 242 if (getBasicBlock()) 243 Name += getBasicBlock()->getName(); 244 else 245 Name += ("BB" + Twine(getNumber())).str(); 246 return Name; 247 } 248 249 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes) 250 const { 251 const MachineFunction *MF = getParent(); 252 if (!MF) { 253 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 254 << " is null\n"; 255 return; 256 } 257 const Function *F = MF->getFunction(); 258 const Module *M = F ? F->getParent() : nullptr; 259 ModuleSlotTracker MST(M); 260 print(OS, MST, Indexes); 261 } 262 263 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 264 const SlotIndexes *Indexes) const { 265 const MachineFunction *MF = getParent(); 266 if (!MF) { 267 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 268 << " is null\n"; 269 return; 270 } 271 272 if (Indexes) 273 OS << Indexes->getMBBStartIdx(this) << '\t'; 274 275 OS << "BB#" << getNumber() << ": "; 276 277 const char *Comma = ""; 278 if (const BasicBlock *LBB = getBasicBlock()) { 279 OS << Comma << "derived from LLVM BB "; 280 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 281 Comma = ", "; 282 } 283 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 284 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 285 if (Alignment) 286 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 287 << " bytes)"; 288 289 OS << '\n'; 290 291 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 292 if (!livein_empty()) { 293 if (Indexes) OS << '\t'; 294 OS << " Live Ins:"; 295 for (const auto &LI : LiveIns) { 296 OS << ' ' << PrintReg(LI.PhysReg, TRI); 297 if (!LI.LaneMask.all()) 298 OS << ':' << PrintLaneMask(LI.LaneMask); 299 } 300 OS << '\n'; 301 } 302 // Print the preds of this block according to the CFG. 303 if (!pred_empty()) { 304 if (Indexes) OS << '\t'; 305 OS << " Predecessors according to CFG:"; 306 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 307 OS << " BB#" << (*PI)->getNumber(); 308 OS << '\n'; 309 } 310 311 for (auto &I : instrs()) { 312 if (Indexes) { 313 if (Indexes->hasIndex(I)) 314 OS << Indexes->getInstructionIndex(I); 315 OS << '\t'; 316 } 317 OS << '\t'; 318 if (I.isInsideBundle()) 319 OS << " * "; 320 I.print(OS, MST); 321 } 322 323 // Print the successors of this block according to the CFG. 324 if (!succ_empty()) { 325 if (Indexes) OS << '\t'; 326 OS << " Successors according to CFG:"; 327 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 328 OS << " BB#" << (*SI)->getNumber(); 329 if (!Probs.empty()) 330 OS << '(' << *getProbabilityIterator(SI) << ')'; 331 } 332 OS << '\n'; 333 } 334 } 335 336 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 337 bool /*PrintType*/) const { 338 OS << "BB#" << getNumber(); 339 } 340 341 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 342 LiveInVector::iterator I = find_if( 343 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 344 if (I == LiveIns.end()) 345 return; 346 347 I->LaneMask &= ~LaneMask; 348 if (I->LaneMask.none()) 349 LiveIns.erase(I); 350 } 351 352 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 353 livein_iterator I = find_if( 354 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 355 return I != livein_end() && (I->LaneMask & LaneMask).any(); 356 } 357 358 void MachineBasicBlock::sortUniqueLiveIns() { 359 std::sort(LiveIns.begin(), LiveIns.end(), 360 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 361 return LI0.PhysReg < LI1.PhysReg; 362 }); 363 // Liveins are sorted by physreg now we can merge their lanemasks. 364 LiveInVector::const_iterator I = LiveIns.begin(); 365 LiveInVector::const_iterator J; 366 LiveInVector::iterator Out = LiveIns.begin(); 367 for (; I != LiveIns.end(); ++Out, I = J) { 368 unsigned PhysReg = I->PhysReg; 369 LaneBitmask LaneMask = I->LaneMask; 370 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 371 LaneMask |= J->LaneMask; 372 Out->PhysReg = PhysReg; 373 Out->LaneMask = LaneMask; 374 } 375 LiveIns.erase(Out, LiveIns.end()); 376 } 377 378 unsigned 379 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 380 assert(getParent() && "MBB must be inserted in function"); 381 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 382 assert(RC && "Register class is required"); 383 assert((isEHPad() || this == &getParent()->front()) && 384 "Only the entry block and landing pads can have physreg live ins"); 385 386 bool LiveIn = isLiveIn(PhysReg); 387 iterator I = SkipPHIsAndLabels(begin()), E = end(); 388 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 389 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 390 391 // Look for an existing copy. 392 if (LiveIn) 393 for (;I != E && I->isCopy(); ++I) 394 if (I->getOperand(1).getReg() == PhysReg) { 395 unsigned VirtReg = I->getOperand(0).getReg(); 396 if (!MRI.constrainRegClass(VirtReg, RC)) 397 llvm_unreachable("Incompatible live-in register class."); 398 return VirtReg; 399 } 400 401 // No luck, create a virtual register. 402 unsigned VirtReg = MRI.createVirtualRegister(RC); 403 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 404 .addReg(PhysReg, RegState::Kill); 405 if (!LiveIn) 406 addLiveIn(PhysReg); 407 return VirtReg; 408 } 409 410 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 411 getParent()->splice(NewAfter->getIterator(), getIterator()); 412 } 413 414 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 415 getParent()->splice(++NewBefore->getIterator(), getIterator()); 416 } 417 418 void MachineBasicBlock::updateTerminator() { 419 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 420 // A block with no successors has no concerns with fall-through edges. 421 if (this->succ_empty()) 422 return; 423 424 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 425 SmallVector<MachineOperand, 4> Cond; 426 DebugLoc DL; // FIXME: this is nowhere 427 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 428 (void) B; 429 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 430 if (Cond.empty()) { 431 if (TBB) { 432 // The block has an unconditional branch. If its successor is now its 433 // layout successor, delete the branch. 434 if (isLayoutSuccessor(TBB)) 435 TII->removeBranch(*this); 436 } else { 437 // The block has an unconditional fallthrough. If its successor is not its 438 // layout successor, insert a branch. First we have to locate the only 439 // non-landing-pad successor, as that is the fallthrough block. 440 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 441 if ((*SI)->isEHPad()) 442 continue; 443 assert(!TBB && "Found more than one non-landing-pad successor!"); 444 TBB = *SI; 445 } 446 447 // If there is no non-landing-pad successor, the block has no fall-through 448 // edges to be concerned with. 449 if (!TBB) 450 return; 451 452 // Finally update the unconditional successor to be reached via a branch 453 // if it would not be reached by fallthrough. 454 if (!isLayoutSuccessor(TBB)) 455 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 456 } 457 return; 458 } 459 460 if (FBB) { 461 // The block has a non-fallthrough conditional branch. If one of its 462 // successors is its layout successor, rewrite it to a fallthrough 463 // conditional branch. 464 if (isLayoutSuccessor(TBB)) { 465 if (TII->reverseBranchCondition(Cond)) 466 return; 467 TII->removeBranch(*this); 468 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 469 } else if (isLayoutSuccessor(FBB)) { 470 TII->removeBranch(*this); 471 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 472 } 473 return; 474 } 475 476 // Walk through the successors and find the successor which is not a landing 477 // pad and is not the conditional branch destination (in TBB) as the 478 // fallthrough successor. 479 MachineBasicBlock *FallthroughBB = nullptr; 480 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 481 if ((*SI)->isEHPad() || *SI == TBB) 482 continue; 483 assert(!FallthroughBB && "Found more than one fallthrough successor."); 484 FallthroughBB = *SI; 485 } 486 487 if (!FallthroughBB) { 488 if (canFallThrough()) { 489 // We fallthrough to the same basic block as the conditional jump targets. 490 // Remove the conditional jump, leaving unconditional fallthrough. 491 // FIXME: This does not seem like a reasonable pattern to support, but it 492 // has been seen in the wild coming out of degenerate ARM test cases. 493 TII->removeBranch(*this); 494 495 // Finally update the unconditional successor to be reached via a branch if 496 // it would not be reached by fallthrough. 497 if (!isLayoutSuccessor(TBB)) 498 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 499 return; 500 } 501 502 // We enter here iff exactly one successor is TBB which cannot fallthrough 503 // and the rest successors if any are EHPads. In this case, we need to 504 // change the conditional branch into unconditional branch. 505 TII->removeBranch(*this); 506 Cond.clear(); 507 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 508 return; 509 } 510 511 // The block has a fallthrough conditional branch. 512 if (isLayoutSuccessor(TBB)) { 513 if (TII->reverseBranchCondition(Cond)) { 514 // We can't reverse the condition, add an unconditional branch. 515 Cond.clear(); 516 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 517 return; 518 } 519 TII->removeBranch(*this); 520 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 521 } else if (!isLayoutSuccessor(FallthroughBB)) { 522 TII->removeBranch(*this); 523 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 524 } 525 } 526 527 void MachineBasicBlock::validateSuccProbs() const { 528 #ifndef NDEBUG 529 int64_t Sum = 0; 530 for (auto Prob : Probs) 531 Sum += Prob.getNumerator(); 532 // Due to precision issue, we assume that the sum of probabilities is one if 533 // the difference between the sum of their numerators and the denominator is 534 // no greater than the number of successors. 535 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 536 Probs.size() && 537 "The sum of successors's probabilities exceeds one."); 538 #endif // NDEBUG 539 } 540 541 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 542 BranchProbability Prob) { 543 // Probability list is either empty (if successor list isn't empty, this means 544 // disabled optimization) or has the same size as successor list. 545 if (!(Probs.empty() && !Successors.empty())) 546 Probs.push_back(Prob); 547 Successors.push_back(Succ); 548 Succ->addPredecessor(this); 549 } 550 551 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 552 // We need to make sure probability list is either empty or has the same size 553 // of successor list. When this function is called, we can safely delete all 554 // probability in the list. 555 Probs.clear(); 556 Successors.push_back(Succ); 557 Succ->addPredecessor(this); 558 } 559 560 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 561 bool NormalizeSuccProbs) { 562 succ_iterator I = find(Successors, Succ); 563 removeSuccessor(I, NormalizeSuccProbs); 564 } 565 566 MachineBasicBlock::succ_iterator 567 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 568 assert(I != Successors.end() && "Not a current successor!"); 569 570 // If probability list is empty it means we don't use it (disabled 571 // optimization). 572 if (!Probs.empty()) { 573 probability_iterator WI = getProbabilityIterator(I); 574 Probs.erase(WI); 575 if (NormalizeSuccProbs) 576 normalizeSuccProbs(); 577 } 578 579 (*I)->removePredecessor(this); 580 return Successors.erase(I); 581 } 582 583 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 584 MachineBasicBlock *New) { 585 if (Old == New) 586 return; 587 588 succ_iterator E = succ_end(); 589 succ_iterator NewI = E; 590 succ_iterator OldI = E; 591 for (succ_iterator I = succ_begin(); I != E; ++I) { 592 if (*I == Old) { 593 OldI = I; 594 if (NewI != E) 595 break; 596 } 597 if (*I == New) { 598 NewI = I; 599 if (OldI != E) 600 break; 601 } 602 } 603 assert(OldI != E && "Old is not a successor of this block"); 604 605 // If New isn't already a successor, let it take Old's place. 606 if (NewI == E) { 607 Old->removePredecessor(this); 608 New->addPredecessor(this); 609 *OldI = New; 610 return; 611 } 612 613 // New is already a successor. 614 // Update its probability instead of adding a duplicate edge. 615 if (!Probs.empty()) { 616 auto ProbIter = getProbabilityIterator(NewI); 617 if (!ProbIter->isUnknown()) 618 *ProbIter += *getProbabilityIterator(OldI); 619 } 620 removeSuccessor(OldI); 621 } 622 623 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 624 Predecessors.push_back(Pred); 625 } 626 627 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 628 pred_iterator I = find(Predecessors, Pred); 629 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 630 Predecessors.erase(I); 631 } 632 633 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 634 if (this == FromMBB) 635 return; 636 637 while (!FromMBB->succ_empty()) { 638 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 639 640 // If probability list is empty it means we don't use it (disabled optimization). 641 if (!FromMBB->Probs.empty()) { 642 auto Prob = *FromMBB->Probs.begin(); 643 addSuccessor(Succ, Prob); 644 } else 645 addSuccessorWithoutProb(Succ); 646 647 FromMBB->removeSuccessor(Succ); 648 } 649 } 650 651 void 652 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 653 if (this == FromMBB) 654 return; 655 656 while (!FromMBB->succ_empty()) { 657 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 658 if (!FromMBB->Probs.empty()) { 659 auto Prob = *FromMBB->Probs.begin(); 660 addSuccessor(Succ, Prob); 661 } else 662 addSuccessorWithoutProb(Succ); 663 FromMBB->removeSuccessor(Succ); 664 665 // Fix up any PHI nodes in the successor. 666 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 667 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 668 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 669 MachineOperand &MO = MI->getOperand(i); 670 if (MO.getMBB() == FromMBB) 671 MO.setMBB(this); 672 } 673 } 674 normalizeSuccProbs(); 675 } 676 677 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 678 return is_contained(predecessors(), MBB); 679 } 680 681 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 682 return is_contained(successors(), MBB); 683 } 684 685 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 686 MachineFunction::const_iterator I(this); 687 return std::next(I) == MachineFunction::const_iterator(MBB); 688 } 689 690 bool MachineBasicBlock::canFallThrough() { 691 MachineFunction::iterator Fallthrough = getIterator(); 692 ++Fallthrough; 693 // If FallthroughBlock is off the end of the function, it can't fall through. 694 if (Fallthrough == getParent()->end()) 695 return false; 696 697 // If FallthroughBlock isn't a successor, no fallthrough is possible. 698 if (!isSuccessor(&*Fallthrough)) 699 return false; 700 701 // Analyze the branches, if any, at the end of the block. 702 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 703 SmallVector<MachineOperand, 4> Cond; 704 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 705 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 706 // If we couldn't analyze the branch, examine the last instruction. 707 // If the block doesn't end in a known control barrier, assume fallthrough 708 // is possible. The isPredicated check is needed because this code can be 709 // called during IfConversion, where an instruction which is normally a 710 // Barrier is predicated and thus no longer an actual control barrier. 711 return empty() || !back().isBarrier() || TII->isPredicated(back()); 712 } 713 714 // If there is no branch, control always falls through. 715 if (!TBB) return true; 716 717 // If there is some explicit branch to the fallthrough block, it can obviously 718 // reach, even though the branch should get folded to fall through implicitly. 719 if (MachineFunction::iterator(TBB) == Fallthrough || 720 MachineFunction::iterator(FBB) == Fallthrough) 721 return true; 722 723 // If it's an unconditional branch to some block not the fall through, it 724 // doesn't fall through. 725 if (Cond.empty()) return false; 726 727 // Otherwise, if it is conditional and has no explicit false block, it falls 728 // through. 729 return FBB == nullptr; 730 } 731 732 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 733 Pass &P) { 734 if (!canSplitCriticalEdge(Succ)) 735 return nullptr; 736 737 MachineFunction *MF = getParent(); 738 DebugLoc DL; // FIXME: this is nowhere 739 740 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 741 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 742 DEBUG(dbgs() << "Splitting critical edge:" 743 " BB#" << getNumber() 744 << " -- BB#" << NMBB->getNumber() 745 << " -- BB#" << Succ->getNumber() << '\n'); 746 747 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 748 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 749 if (LIS) 750 LIS->insertMBBInMaps(NMBB); 751 else if (Indexes) 752 Indexes->insertMBBInMaps(NMBB); 753 754 // On some targets like Mips, branches may kill virtual registers. Make sure 755 // that LiveVariables is properly updated after updateTerminator replaces the 756 // terminators. 757 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 758 759 // Collect a list of virtual registers killed by the terminators. 760 SmallVector<unsigned, 4> KilledRegs; 761 if (LV) 762 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 763 I != E; ++I) { 764 MachineInstr *MI = &*I; 765 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 766 OE = MI->operands_end(); OI != OE; ++OI) { 767 if (!OI->isReg() || OI->getReg() == 0 || 768 !OI->isUse() || !OI->isKill() || OI->isUndef()) 769 continue; 770 unsigned Reg = OI->getReg(); 771 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 772 LV->getVarInfo(Reg).removeKill(*MI)) { 773 KilledRegs.push_back(Reg); 774 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 775 OI->setIsKill(false); 776 } 777 } 778 } 779 780 SmallVector<unsigned, 4> UsedRegs; 781 if (LIS) { 782 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 783 I != E; ++I) { 784 MachineInstr *MI = &*I; 785 786 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 787 OE = MI->operands_end(); OI != OE; ++OI) { 788 if (!OI->isReg() || OI->getReg() == 0) 789 continue; 790 791 unsigned Reg = OI->getReg(); 792 if (!is_contained(UsedRegs, Reg)) 793 UsedRegs.push_back(Reg); 794 } 795 } 796 } 797 798 ReplaceUsesOfBlockWith(Succ, NMBB); 799 800 // If updateTerminator() removes instructions, we need to remove them from 801 // SlotIndexes. 802 SmallVector<MachineInstr*, 4> Terminators; 803 if (Indexes) { 804 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 805 I != E; ++I) 806 Terminators.push_back(&*I); 807 } 808 809 updateTerminator(); 810 811 if (Indexes) { 812 SmallVector<MachineInstr*, 4> NewTerminators; 813 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 814 I != E; ++I) 815 NewTerminators.push_back(&*I); 816 817 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 818 E = Terminators.end(); I != E; ++I) { 819 if (!is_contained(NewTerminators, *I)) 820 Indexes->removeMachineInstrFromMaps(**I); 821 } 822 } 823 824 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 825 NMBB->addSuccessor(Succ); 826 if (!NMBB->isLayoutSuccessor(Succ)) { 827 SmallVector<MachineOperand, 4> Cond; 828 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 829 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 830 831 if (Indexes) { 832 for (MachineInstr &MI : NMBB->instrs()) { 833 // Some instructions may have been moved to NMBB by updateTerminator(), 834 // so we first remove any instruction that already has an index. 835 if (Indexes->hasIndex(MI)) 836 Indexes->removeMachineInstrFromMaps(MI); 837 Indexes->insertMachineInstrInMaps(MI); 838 } 839 } 840 } 841 842 // Fix PHI nodes in Succ so they refer to NMBB instead of this 843 for (MachineBasicBlock::instr_iterator 844 i = Succ->instr_begin(),e = Succ->instr_end(); 845 i != e && i->isPHI(); ++i) 846 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 847 if (i->getOperand(ni+1).getMBB() == this) 848 i->getOperand(ni+1).setMBB(NMBB); 849 850 // Inherit live-ins from the successor 851 for (const auto &LI : Succ->liveins()) 852 NMBB->addLiveIn(LI); 853 854 // Update LiveVariables. 855 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 856 if (LV) { 857 // Restore kills of virtual registers that were killed by the terminators. 858 while (!KilledRegs.empty()) { 859 unsigned Reg = KilledRegs.pop_back_val(); 860 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 861 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 862 continue; 863 if (TargetRegisterInfo::isVirtualRegister(Reg)) 864 LV->getVarInfo(Reg).Kills.push_back(&*I); 865 DEBUG(dbgs() << "Restored terminator kill: " << *I); 866 break; 867 } 868 } 869 // Update relevant live-through information. 870 LV->addNewBlock(NMBB, this, Succ); 871 } 872 873 if (LIS) { 874 // After splitting the edge and updating SlotIndexes, live intervals may be 875 // in one of two situations, depending on whether this block was the last in 876 // the function. If the original block was the last in the function, all 877 // live intervals will end prior to the beginning of the new split block. If 878 // the original block was not at the end of the function, all live intervals 879 // will extend to the end of the new split block. 880 881 bool isLastMBB = 882 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 883 884 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 885 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 886 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 887 888 // Find the registers used from NMBB in PHIs in Succ. 889 SmallSet<unsigned, 8> PHISrcRegs; 890 for (MachineBasicBlock::instr_iterator 891 I = Succ->instr_begin(), E = Succ->instr_end(); 892 I != E && I->isPHI(); ++I) { 893 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 894 if (I->getOperand(ni+1).getMBB() == NMBB) { 895 MachineOperand &MO = I->getOperand(ni); 896 unsigned Reg = MO.getReg(); 897 PHISrcRegs.insert(Reg); 898 if (MO.isUndef()) 899 continue; 900 901 LiveInterval &LI = LIS->getInterval(Reg); 902 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 903 assert(VNI && 904 "PHI sources should be live out of their predecessors."); 905 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 906 } 907 } 908 } 909 910 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 911 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 912 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 913 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 914 continue; 915 916 LiveInterval &LI = LIS->getInterval(Reg); 917 if (!LI.liveAt(PrevIndex)) 918 continue; 919 920 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 921 if (isLiveOut && isLastMBB) { 922 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 923 assert(VNI && "LiveInterval should have VNInfo where it is live."); 924 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 925 } else if (!isLiveOut && !isLastMBB) { 926 LI.removeSegment(StartIndex, EndIndex); 927 } 928 } 929 930 // Update all intervals for registers whose uses may have been modified by 931 // updateTerminator(). 932 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 933 } 934 935 if (MachineDominatorTree *MDT = 936 P.getAnalysisIfAvailable<MachineDominatorTree>()) 937 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 938 939 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 940 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 941 // If one or the other blocks were not in a loop, the new block is not 942 // either, and thus LI doesn't need to be updated. 943 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 944 if (TIL == DestLoop) { 945 // Both in the same loop, the NMBB joins loop. 946 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 947 } else if (TIL->contains(DestLoop)) { 948 // Edge from an outer loop to an inner loop. Add to the outer loop. 949 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 950 } else if (DestLoop->contains(TIL)) { 951 // Edge from an inner loop to an outer loop. Add to the outer loop. 952 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 953 } else { 954 // Edge from two loops with no containment relation. Because these 955 // are natural loops, we know that the destination block must be the 956 // header of its loop (adding a branch into a loop elsewhere would 957 // create an irreducible loop). 958 assert(DestLoop->getHeader() == Succ && 959 "Should not create irreducible loops!"); 960 if (MachineLoop *P = DestLoop->getParentLoop()) 961 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 962 } 963 } 964 } 965 966 return NMBB; 967 } 968 969 bool MachineBasicBlock::canSplitCriticalEdge( 970 const MachineBasicBlock *Succ) const { 971 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 972 // it in this generic function. 973 if (Succ->isEHPad()) 974 return false; 975 976 const MachineFunction *MF = getParent(); 977 978 // Performance might be harmed on HW that implements branching using exec mask 979 // where both sides of the branches are always executed. 980 if (MF->getTarget().requiresStructuredCFG()) 981 return false; 982 983 // We may need to update this's terminator, but we can't do that if 984 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 985 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 986 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 987 SmallVector<MachineOperand, 4> Cond; 988 // AnalyzeBanch should modify this, since we did not allow modification. 989 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 990 /*AllowModify*/ false)) 991 return false; 992 993 // Avoid bugpoint weirdness: A block may end with a conditional branch but 994 // jumps to the same MBB is either case. We have duplicate CFG edges in that 995 // case that we can't handle. Since this never happens in properly optimized 996 // code, just skip those edges. 997 if (TBB && TBB == FBB) { 998 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 999 << getNumber() << '\n'); 1000 return false; 1001 } 1002 return true; 1003 } 1004 1005 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1006 /// neighboring instructions so the bundle won't be broken by removing MI. 1007 static void unbundleSingleMI(MachineInstr *MI) { 1008 // Removing the first instruction in a bundle. 1009 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1010 MI->unbundleFromSucc(); 1011 // Removing the last instruction in a bundle. 1012 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1013 MI->unbundleFromPred(); 1014 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1015 // are already fine. 1016 } 1017 1018 MachineBasicBlock::instr_iterator 1019 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1020 unbundleSingleMI(&*I); 1021 return Insts.erase(I); 1022 } 1023 1024 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1025 unbundleSingleMI(MI); 1026 MI->clearFlag(MachineInstr::BundledPred); 1027 MI->clearFlag(MachineInstr::BundledSucc); 1028 return Insts.remove(MI); 1029 } 1030 1031 MachineBasicBlock::instr_iterator 1032 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1033 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1034 "Cannot insert instruction with bundle flags"); 1035 // Set the bundle flags when inserting inside a bundle. 1036 if (I != instr_end() && I->isBundledWithPred()) { 1037 MI->setFlag(MachineInstr::BundledPred); 1038 MI->setFlag(MachineInstr::BundledSucc); 1039 } 1040 return Insts.insert(I, MI); 1041 } 1042 1043 /// This method unlinks 'this' from the containing function, and returns it, but 1044 /// does not delete it. 1045 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1046 assert(getParent() && "Not embedded in a function!"); 1047 getParent()->remove(this); 1048 return this; 1049 } 1050 1051 /// This method unlinks 'this' from the containing function, and deletes it. 1052 void MachineBasicBlock::eraseFromParent() { 1053 assert(getParent() && "Not embedded in a function!"); 1054 getParent()->erase(this); 1055 } 1056 1057 /// Given a machine basic block that branched to 'Old', change the code and CFG 1058 /// so that it branches to 'New' instead. 1059 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1060 MachineBasicBlock *New) { 1061 assert(Old != New && "Cannot replace self with self!"); 1062 1063 MachineBasicBlock::instr_iterator I = instr_end(); 1064 while (I != instr_begin()) { 1065 --I; 1066 if (!I->isTerminator()) break; 1067 1068 // Scan the operands of this machine instruction, replacing any uses of Old 1069 // with New. 1070 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1071 if (I->getOperand(i).isMBB() && 1072 I->getOperand(i).getMBB() == Old) 1073 I->getOperand(i).setMBB(New); 1074 } 1075 1076 // Update the successor information. 1077 replaceSuccessor(Old, New); 1078 } 1079 1080 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1081 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1082 /// MBB successors from the CFG. DestA and DestB can be null. 1083 /// 1084 /// Besides DestA and DestB, retain other edges leading to LandingPads 1085 /// (currently there can be only one; we don't check or require that here). 1086 /// Note it is possible that DestA and/or DestB are LandingPads. 1087 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1088 MachineBasicBlock *DestB, 1089 bool IsCond) { 1090 // The values of DestA and DestB frequently come from a call to the 1091 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1092 // values from there. 1093 // 1094 // 1. If both DestA and DestB are null, then the block ends with no branches 1095 // (it falls through to its successor). 1096 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1097 // with only an unconditional branch. 1098 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1099 // with a conditional branch that falls through to a successor (DestB). 1100 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1101 // conditional branch followed by an unconditional branch. DestA is the 1102 // 'true' destination and DestB is the 'false' destination. 1103 1104 bool Changed = false; 1105 1106 MachineBasicBlock *FallThru = getNextNode(); 1107 1108 if (!DestA && !DestB) { 1109 // Block falls through to successor. 1110 DestA = FallThru; 1111 DestB = FallThru; 1112 } else if (DestA && !DestB) { 1113 if (IsCond) 1114 // Block ends in conditional jump that falls through to successor. 1115 DestB = FallThru; 1116 } else { 1117 assert(DestA && DestB && IsCond && 1118 "CFG in a bad state. Cannot correct CFG edges"); 1119 } 1120 1121 // Remove superfluous edges. I.e., those which aren't destinations of this 1122 // basic block, duplicate edges, or landing pads. 1123 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1124 MachineBasicBlock::succ_iterator SI = succ_begin(); 1125 while (SI != succ_end()) { 1126 const MachineBasicBlock *MBB = *SI; 1127 if (!SeenMBBs.insert(MBB).second || 1128 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1129 // This is a superfluous edge, remove it. 1130 SI = removeSuccessor(SI); 1131 Changed = true; 1132 } else { 1133 ++SI; 1134 } 1135 } 1136 1137 if (Changed) 1138 normalizeSuccProbs(); 1139 return Changed; 1140 } 1141 1142 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1143 /// instructions. Return UnknownLoc if there is none. 1144 DebugLoc 1145 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1146 // Skip debug declarations, we don't want a DebugLoc from them. 1147 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1148 if (MBBI != instr_end()) 1149 return MBBI->getDebugLoc(); 1150 return {}; 1151 } 1152 1153 /// Return probability of the edge from this block to MBB. 1154 BranchProbability 1155 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1156 if (Probs.empty()) 1157 return BranchProbability(1, succ_size()); 1158 1159 const auto &Prob = *getProbabilityIterator(Succ); 1160 if (Prob.isUnknown()) { 1161 // For unknown probabilities, collect the sum of all known ones, and evenly 1162 // ditribute the complemental of the sum to each unknown probability. 1163 unsigned KnownProbNum = 0; 1164 auto Sum = BranchProbability::getZero(); 1165 for (auto &P : Probs) { 1166 if (!P.isUnknown()) { 1167 Sum += P; 1168 KnownProbNum++; 1169 } 1170 } 1171 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1172 } else 1173 return Prob; 1174 } 1175 1176 /// Set successor probability of a given iterator. 1177 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1178 BranchProbability Prob) { 1179 assert(!Prob.isUnknown()); 1180 if (Probs.empty()) 1181 return; 1182 *getProbabilityIterator(I) = Prob; 1183 } 1184 1185 /// Return probability iterator corresonding to the I successor iterator 1186 MachineBasicBlock::const_probability_iterator 1187 MachineBasicBlock::getProbabilityIterator( 1188 MachineBasicBlock::const_succ_iterator I) const { 1189 assert(Probs.size() == Successors.size() && "Async probability list!"); 1190 const size_t index = std::distance(Successors.begin(), I); 1191 assert(index < Probs.size() && "Not a current successor!"); 1192 return Probs.begin() + index; 1193 } 1194 1195 /// Return probability iterator corresonding to the I successor iterator. 1196 MachineBasicBlock::probability_iterator 1197 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1198 assert(Probs.size() == Successors.size() && "Async probability list!"); 1199 const size_t index = std::distance(Successors.begin(), I); 1200 assert(index < Probs.size() && "Not a current successor!"); 1201 return Probs.begin() + index; 1202 } 1203 1204 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1205 /// as of just before "MI". 1206 /// 1207 /// Search is localised to a neighborhood of 1208 /// Neighborhood instructions before (searching for defs or kills) and N 1209 /// instructions after (searching just for defs) MI. 1210 MachineBasicBlock::LivenessQueryResult 1211 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1212 unsigned Reg, const_iterator Before, 1213 unsigned Neighborhood) const { 1214 unsigned N = Neighborhood; 1215 1216 // Start by searching backwards from Before, looking for kills, reads or defs. 1217 const_iterator I(Before); 1218 // If this is the first insn in the block, don't search backwards. 1219 if (I != begin()) { 1220 do { 1221 --I; 1222 1223 MachineOperandIteratorBase::PhysRegInfo Info = 1224 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1225 1226 // Defs happen after uses so they take precedence if both are present. 1227 1228 // Register is dead after a dead def of the full register. 1229 if (Info.DeadDef) 1230 return LQR_Dead; 1231 // Register is (at least partially) live after a def. 1232 if (Info.Defined) { 1233 if (!Info.PartialDeadDef) 1234 return LQR_Live; 1235 // As soon as we saw a partial definition (dead or not), 1236 // we cannot tell if the value is partial live without 1237 // tracking the lanemasks. We are not going to do this, 1238 // so fall back on the remaining of the analysis. 1239 break; 1240 } 1241 // Register is dead after a full kill or clobber and no def. 1242 if (Info.Killed || Info.Clobbered) 1243 return LQR_Dead; 1244 // Register must be live if we read it. 1245 if (Info.Read) 1246 return LQR_Live; 1247 } while (I != begin() && --N > 0); 1248 } 1249 1250 // Did we get to the start of the block? 1251 if (I == begin()) { 1252 // If so, the register's state is definitely defined by the live-in state. 1253 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1254 ++RAI) 1255 if (isLiveIn(*RAI)) 1256 return LQR_Live; 1257 1258 return LQR_Dead; 1259 } 1260 1261 N = Neighborhood; 1262 1263 // Try searching forwards from Before, looking for reads or defs. 1264 I = const_iterator(Before); 1265 // If this is the last insn in the block, don't search forwards. 1266 if (I != end()) { 1267 for (++I; I != end() && N > 0; ++I, --N) { 1268 MachineOperandIteratorBase::PhysRegInfo Info = 1269 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1270 1271 // Register is live when we read it here. 1272 if (Info.Read) 1273 return LQR_Live; 1274 // Register is dead if we can fully overwrite or clobber it here. 1275 if (Info.FullyDefined || Info.Clobbered) 1276 return LQR_Dead; 1277 } 1278 } 1279 1280 // At this point we have no idea of the liveness of the register. 1281 return LQR_Unknown; 1282 } 1283 1284 const uint32_t * 1285 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1286 // EH funclet entry does not preserve any registers. 1287 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1288 } 1289 1290 const uint32_t * 1291 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1292 // If we see a return block with successors, this must be a funclet return, 1293 // which does not preserve any registers. If there are no successors, we don't 1294 // care what kind of return it is, putting a mask after it is a no-op. 1295 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1296 } 1297 1298 void MachineBasicBlock::clearLiveIns() { 1299 LiveIns.clear(); 1300 } 1301 1302 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1303 assert(getParent()->getProperties().hasProperty( 1304 MachineFunctionProperties::Property::TracksLiveness) && 1305 "Liveness information is accurate"); 1306 return LiveIns.begin(); 1307 } 1308