xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 378b5f3de600ef68d856003454d0e9f3a818762f)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
43     : BB(B), Number(-1), xParent(&MF) {
44   Insts.Parent = this;
45   if (B)
46     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
47 }
48 
49 MachineBasicBlock::~MachineBasicBlock() {
50 }
51 
52 /// Return the MCSymbol for this basic block.
53 MCSymbol *MachineBasicBlock::getSymbol() const {
54   if (!CachedMCSymbol) {
55     const MachineFunction *MF = getParent();
56     MCContext &Ctx = MF->getContext();
57     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
58     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
59     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
60                                            Twine(MF->getFunctionNumber()) +
61                                            "_" + Twine(getNumber()));
62   }
63 
64   return CachedMCSymbol;
65 }
66 
67 
68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
69   MBB.print(OS);
70   return OS;
71 }
72 
73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
74   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
75 }
76 
77 /// When an MBB is added to an MF, we need to update the parent pointer of the
78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
79 /// operand list for registers.
80 ///
81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
82 /// gets the next available unique MBB number. If it is removed from a
83 /// MachineFunction, it goes back to being #-1.
84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
85     MachineBasicBlock *N) {
86   MachineFunction &MF = *N->getParent();
87   N->Number = MF.addToMBBNumbering(N);
88 
89   // Make sure the instructions have their operands in the reginfo lists.
90   MachineRegisterInfo &RegInfo = MF.getRegInfo();
91   for (MachineBasicBlock::instr_iterator
92          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
93     I->AddRegOperandsToUseLists(RegInfo);
94 }
95 
96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
97     MachineBasicBlock *N) {
98   N->getParent()->removeFromMBBNumbering(N->Number);
99   N->Number = -1;
100 }
101 
102 /// When we add an instruction to a basic block list, we update its parent
103 /// pointer and add its operands from reg use/def lists if appropriate.
104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
105   assert(!N->getParent() && "machine instruction already in a basic block");
106   N->setParent(Parent);
107 
108   // Add the instruction's register operands to their corresponding
109   // use/def lists.
110   MachineFunction *MF = Parent->getParent();
111   N->AddRegOperandsToUseLists(MF->getRegInfo());
112 }
113 
114 /// When we remove an instruction from a basic block list, we update its parent
115 /// pointer and remove its operands from reg use/def lists if appropriate.
116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
117   assert(N->getParent() && "machine instruction not in a basic block");
118 
119   // Remove from the use/def lists.
120   if (MachineFunction *MF = N->getMF())
121     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
122 
123   N->setParent(nullptr);
124 }
125 
126 /// When moving a range of instructions from one MBB list to another, we need to
127 /// update the parent pointers and the use/def lists.
128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
129                                                        instr_iterator First,
130                                                        instr_iterator Last) {
131   assert(Parent->getParent() == FromList.Parent->getParent() &&
132         "MachineInstr parent mismatch!");
133   assert(this != &FromList && "Called without a real transfer...");
134   assert(Parent != FromList.Parent && "Two lists have the same parent?");
135 
136   // If splicing between two blocks within the same function, just update the
137   // parent pointers.
138   for (; First != Last; ++First)
139     First->setParent(Parent);
140 }
141 
142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
143   assert(!MI->getParent() && "MI is still in a block!");
144   Parent->getParent()->DeleteMachineInstr(MI);
145 }
146 
147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
148   instr_iterator I = instr_begin(), E = instr_end();
149   while (I != E && I->isPHI())
150     ++I;
151   assert((I == E || !I->isInsideBundle()) &&
152          "First non-phi MI cannot be inside a bundle!");
153   return I;
154 }
155 
156 MachineBasicBlock::iterator
157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
158   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
159 
160   iterator E = end();
161   while (I != E && (I->isPHI() || I->isPosition() ||
162                     TII->isBasicBlockPrologue(*I)))
163     ++I;
164   // FIXME: This needs to change if we wish to bundle labels
165   // inside the bundle.
166   assert((I == E || !I->isInsideBundle()) &&
167          "First non-phi / non-label instruction is inside a bundle!");
168   return I;
169 }
170 
171 MachineBasicBlock::iterator
172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
173   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
174 
175   iterator E = end();
176   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() ||
177                     TII->isBasicBlockPrologue(*I)))
178     ++I;
179   // FIXME: This needs to change if we wish to bundle labels / dbg_values
180   // inside the bundle.
181   assert((I == E || !I->isInsideBundle()) &&
182          "First non-phi / non-label / non-debug "
183          "instruction is inside a bundle!");
184   return I;
185 }
186 
187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
188   iterator B = begin(), E = end(), I = E;
189   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
190     ; /*noop */
191   while (I != E && !I->isTerminator())
192     ++I;
193   return I;
194 }
195 
196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
197   instr_iterator B = instr_begin(), E = instr_end(), I = E;
198   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
199     ; /*noop */
200   while (I != E && !I->isTerminator())
201     ++I;
202   return I;
203 }
204 
205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
206   // Skip over begin-of-block dbg_value instructions.
207   return skipDebugInstructionsForward(begin(), end());
208 }
209 
210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
211   // Skip over end-of-block dbg_value instructions.
212   instr_iterator B = instr_begin(), I = instr_end();
213   while (I != B) {
214     --I;
215     // Return instruction that starts a bundle.
216     if (I->isDebugValue() || I->isInsideBundle())
217       continue;
218     return I;
219   }
220   // The block is all debug values.
221   return end();
222 }
223 
224 bool MachineBasicBlock::hasEHPadSuccessor() const {
225   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
226     if ((*I)->isEHPad())
227       return true;
228   return false;
229 }
230 
231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
233   print(dbgs());
234 }
235 #endif
236 
237 bool MachineBasicBlock::isLegalToHoistInto() const {
238   if (isReturnBlock() || hasEHPadSuccessor())
239     return false;
240   return true;
241 }
242 
243 StringRef MachineBasicBlock::getName() const {
244   if (const BasicBlock *LBB = getBasicBlock())
245     return LBB->getName();
246   else
247     return StringRef("", 0);
248 }
249 
250 /// Return a hopefully unique identifier for this block.
251 std::string MachineBasicBlock::getFullName() const {
252   std::string Name;
253   if (getParent())
254     Name = (getParent()->getName() + ":").str();
255   if (getBasicBlock())
256     Name += getBasicBlock()->getName();
257   else
258     Name += ("BB" + Twine(getNumber())).str();
259   return Name;
260 }
261 
262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
263                               bool IsVerbose) const {
264   const MachineFunction *MF = getParent();
265   if (!MF) {
266     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
267        << " is null\n";
268     return;
269   }
270   const Function &F = MF->getFunction();
271   const Module *M = F.getParent();
272   ModuleSlotTracker MST(M);
273   print(OS, MST, Indexes, IsVerbose);
274 }
275 
276 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
277                               const SlotIndexes *Indexes,
278                               bool IsVerbose) const {
279   const MachineFunction *MF = getParent();
280   if (!MF) {
281     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
282        << " is null\n";
283     return;
284   }
285 
286   if (Indexes)
287     OS << Indexes->getMBBStartIdx(this) << '\t';
288 
289   OS << printMBBReference(*this) << ": ";
290 
291   const char *Comma = "";
292   if (const BasicBlock *LBB = getBasicBlock()) {
293     OS << Comma << "derived from LLVM BB ";
294     LBB->printAsOperand(OS, /*PrintType=*/false, MST);
295     Comma = ", ";
296   }
297   if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
298   if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
299   if (Alignment)
300     OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
301        << " bytes)";
302 
303   OS << '\n';
304 
305   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
306   if (!livein_empty()) {
307     if (Indexes) OS << '\t';
308     OS << "    Live Ins:";
309     for (const auto &LI : LiveIns) {
310       OS << ' ' << printReg(LI.PhysReg, TRI);
311       if (!LI.LaneMask.all())
312         OS << ':' << PrintLaneMask(LI.LaneMask);
313     }
314     OS << '\n';
315   }
316   // Print the preds of this block according to the CFG.
317   if (!pred_empty()) {
318     if (Indexes) OS << '\t';
319     OS << "    Predecessors according to CFG:";
320     for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
321       OS << " " << printMBBReference(*(*PI));
322     OS << '\n';
323   }
324 
325   for (auto &I : instrs()) {
326     if (Indexes) {
327       if (Indexes->hasIndex(I))
328         OS << Indexes->getInstructionIndex(I);
329       OS << '\t';
330     }
331     OS << '\t';
332     if (I.isInsideBundle())
333       OS << "  * ";
334     I.print(OS, MST, IsVerbose);
335   }
336 
337   // Print the successors of this block according to the CFG.
338   if (!succ_empty()) {
339     if (Indexes) OS << '\t';
340     OS << "    Successors according to CFG:";
341     for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
342       OS << " " << printMBBReference(*(*SI));
343       if (!Probs.empty())
344         OS << '(' << *getProbabilityIterator(SI) << ')';
345     }
346     OS << '\n';
347   }
348   if (IrrLoopHeaderWeight) {
349     if (Indexes) OS << '\t';
350     OS << "    Irreducible loop header weight: "
351        << IrrLoopHeaderWeight.getValue();
352     OS << '\n';
353   }
354 }
355 
356 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
357                                        bool /*PrintType*/) const {
358   OS << "%bb." << getNumber();
359 }
360 
361 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
362   LiveInVector::iterator I = find_if(
363       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
364   if (I == LiveIns.end())
365     return;
366 
367   I->LaneMask &= ~LaneMask;
368   if (I->LaneMask.none())
369     LiveIns.erase(I);
370 }
371 
372 MachineBasicBlock::livein_iterator
373 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
374   // Get non-const version of iterator.
375   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
376   return LiveIns.erase(LI);
377 }
378 
379 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
380   livein_iterator I = find_if(
381       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
382   return I != livein_end() && (I->LaneMask & LaneMask).any();
383 }
384 
385 void MachineBasicBlock::sortUniqueLiveIns() {
386   std::sort(LiveIns.begin(), LiveIns.end(),
387             [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
388               return LI0.PhysReg < LI1.PhysReg;
389             });
390   // Liveins are sorted by physreg now we can merge their lanemasks.
391   LiveInVector::const_iterator I = LiveIns.begin();
392   LiveInVector::const_iterator J;
393   LiveInVector::iterator Out = LiveIns.begin();
394   for (; I != LiveIns.end(); ++Out, I = J) {
395     unsigned PhysReg = I->PhysReg;
396     LaneBitmask LaneMask = I->LaneMask;
397     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
398       LaneMask |= J->LaneMask;
399     Out->PhysReg = PhysReg;
400     Out->LaneMask = LaneMask;
401   }
402   LiveIns.erase(Out, LiveIns.end());
403 }
404 
405 unsigned
406 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
407   assert(getParent() && "MBB must be inserted in function");
408   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
409   assert(RC && "Register class is required");
410   assert((isEHPad() || this == &getParent()->front()) &&
411          "Only the entry block and landing pads can have physreg live ins");
412 
413   bool LiveIn = isLiveIn(PhysReg);
414   iterator I = SkipPHIsAndLabels(begin()), E = end();
415   MachineRegisterInfo &MRI = getParent()->getRegInfo();
416   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
417 
418   // Look for an existing copy.
419   if (LiveIn)
420     for (;I != E && I->isCopy(); ++I)
421       if (I->getOperand(1).getReg() == PhysReg) {
422         unsigned VirtReg = I->getOperand(0).getReg();
423         if (!MRI.constrainRegClass(VirtReg, RC))
424           llvm_unreachable("Incompatible live-in register class.");
425         return VirtReg;
426       }
427 
428   // No luck, create a virtual register.
429   unsigned VirtReg = MRI.createVirtualRegister(RC);
430   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
431     .addReg(PhysReg, RegState::Kill);
432   if (!LiveIn)
433     addLiveIn(PhysReg);
434   return VirtReg;
435 }
436 
437 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
438   getParent()->splice(NewAfter->getIterator(), getIterator());
439 }
440 
441 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
442   getParent()->splice(++NewBefore->getIterator(), getIterator());
443 }
444 
445 void MachineBasicBlock::updateTerminator() {
446   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
447   // A block with no successors has no concerns with fall-through edges.
448   if (this->succ_empty())
449     return;
450 
451   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
452   SmallVector<MachineOperand, 4> Cond;
453   DebugLoc DL = findBranchDebugLoc();
454   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
455   (void) B;
456   assert(!B && "UpdateTerminators requires analyzable predecessors!");
457   if (Cond.empty()) {
458     if (TBB) {
459       // The block has an unconditional branch. If its successor is now its
460       // layout successor, delete the branch.
461       if (isLayoutSuccessor(TBB))
462         TII->removeBranch(*this);
463     } else {
464       // The block has an unconditional fallthrough. If its successor is not its
465       // layout successor, insert a branch. First we have to locate the only
466       // non-landing-pad successor, as that is the fallthrough block.
467       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
468         if ((*SI)->isEHPad())
469           continue;
470         assert(!TBB && "Found more than one non-landing-pad successor!");
471         TBB = *SI;
472       }
473 
474       // If there is no non-landing-pad successor, the block has no fall-through
475       // edges to be concerned with.
476       if (!TBB)
477         return;
478 
479       // Finally update the unconditional successor to be reached via a branch
480       // if it would not be reached by fallthrough.
481       if (!isLayoutSuccessor(TBB))
482         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
483     }
484     return;
485   }
486 
487   if (FBB) {
488     // The block has a non-fallthrough conditional branch. If one of its
489     // successors is its layout successor, rewrite it to a fallthrough
490     // conditional branch.
491     if (isLayoutSuccessor(TBB)) {
492       if (TII->reverseBranchCondition(Cond))
493         return;
494       TII->removeBranch(*this);
495       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
496     } else if (isLayoutSuccessor(FBB)) {
497       TII->removeBranch(*this);
498       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
499     }
500     return;
501   }
502 
503   // Walk through the successors and find the successor which is not a landing
504   // pad and is not the conditional branch destination (in TBB) as the
505   // fallthrough successor.
506   MachineBasicBlock *FallthroughBB = nullptr;
507   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
508     if ((*SI)->isEHPad() || *SI == TBB)
509       continue;
510     assert(!FallthroughBB && "Found more than one fallthrough successor.");
511     FallthroughBB = *SI;
512   }
513 
514   if (!FallthroughBB) {
515     if (canFallThrough()) {
516       // We fallthrough to the same basic block as the conditional jump targets.
517       // Remove the conditional jump, leaving unconditional fallthrough.
518       // FIXME: This does not seem like a reasonable pattern to support, but it
519       // has been seen in the wild coming out of degenerate ARM test cases.
520       TII->removeBranch(*this);
521 
522       // Finally update the unconditional successor to be reached via a branch if
523       // it would not be reached by fallthrough.
524       if (!isLayoutSuccessor(TBB))
525         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
526       return;
527     }
528 
529     // We enter here iff exactly one successor is TBB which cannot fallthrough
530     // and the rest successors if any are EHPads.  In this case, we need to
531     // change the conditional branch into unconditional branch.
532     TII->removeBranch(*this);
533     Cond.clear();
534     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
535     return;
536   }
537 
538   // The block has a fallthrough conditional branch.
539   if (isLayoutSuccessor(TBB)) {
540     if (TII->reverseBranchCondition(Cond)) {
541       // We can't reverse the condition, add an unconditional branch.
542       Cond.clear();
543       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
544       return;
545     }
546     TII->removeBranch(*this);
547     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
548   } else if (!isLayoutSuccessor(FallthroughBB)) {
549     TII->removeBranch(*this);
550     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
551   }
552 }
553 
554 void MachineBasicBlock::validateSuccProbs() const {
555 #ifndef NDEBUG
556   int64_t Sum = 0;
557   for (auto Prob : Probs)
558     Sum += Prob.getNumerator();
559   // Due to precision issue, we assume that the sum of probabilities is one if
560   // the difference between the sum of their numerators and the denominator is
561   // no greater than the number of successors.
562   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
563              Probs.size() &&
564          "The sum of successors's probabilities exceeds one.");
565 #endif // NDEBUG
566 }
567 
568 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
569                                      BranchProbability Prob) {
570   // Probability list is either empty (if successor list isn't empty, this means
571   // disabled optimization) or has the same size as successor list.
572   if (!(Probs.empty() && !Successors.empty()))
573     Probs.push_back(Prob);
574   Successors.push_back(Succ);
575   Succ->addPredecessor(this);
576 }
577 
578 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
579   // We need to make sure probability list is either empty or has the same size
580   // of successor list. When this function is called, we can safely delete all
581   // probability in the list.
582   Probs.clear();
583   Successors.push_back(Succ);
584   Succ->addPredecessor(this);
585 }
586 
587 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
588                                         bool NormalizeSuccProbs) {
589   succ_iterator I = find(Successors, Succ);
590   removeSuccessor(I, NormalizeSuccProbs);
591 }
592 
593 MachineBasicBlock::succ_iterator
594 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
595   assert(I != Successors.end() && "Not a current successor!");
596 
597   // If probability list is empty it means we don't use it (disabled
598   // optimization).
599   if (!Probs.empty()) {
600     probability_iterator WI = getProbabilityIterator(I);
601     Probs.erase(WI);
602     if (NormalizeSuccProbs)
603       normalizeSuccProbs();
604   }
605 
606   (*I)->removePredecessor(this);
607   return Successors.erase(I);
608 }
609 
610 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
611                                          MachineBasicBlock *New) {
612   if (Old == New)
613     return;
614 
615   succ_iterator E = succ_end();
616   succ_iterator NewI = E;
617   succ_iterator OldI = E;
618   for (succ_iterator I = succ_begin(); I != E; ++I) {
619     if (*I == Old) {
620       OldI = I;
621       if (NewI != E)
622         break;
623     }
624     if (*I == New) {
625       NewI = I;
626       if (OldI != E)
627         break;
628     }
629   }
630   assert(OldI != E && "Old is not a successor of this block");
631 
632   // If New isn't already a successor, let it take Old's place.
633   if (NewI == E) {
634     Old->removePredecessor(this);
635     New->addPredecessor(this);
636     *OldI = New;
637     return;
638   }
639 
640   // New is already a successor.
641   // Update its probability instead of adding a duplicate edge.
642   if (!Probs.empty()) {
643     auto ProbIter = getProbabilityIterator(NewI);
644     if (!ProbIter->isUnknown())
645       *ProbIter += *getProbabilityIterator(OldI);
646   }
647   removeSuccessor(OldI);
648 }
649 
650 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
651   Predecessors.push_back(Pred);
652 }
653 
654 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
655   pred_iterator I = find(Predecessors, Pred);
656   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
657   Predecessors.erase(I);
658 }
659 
660 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
661   if (this == FromMBB)
662     return;
663 
664   while (!FromMBB->succ_empty()) {
665     MachineBasicBlock *Succ = *FromMBB->succ_begin();
666 
667     // If probability list is empty it means we don't use it (disabled optimization).
668     if (!FromMBB->Probs.empty()) {
669       auto Prob = *FromMBB->Probs.begin();
670       addSuccessor(Succ, Prob);
671     } else
672       addSuccessorWithoutProb(Succ);
673 
674     FromMBB->removeSuccessor(Succ);
675   }
676 }
677 
678 void
679 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
680   if (this == FromMBB)
681     return;
682 
683   while (!FromMBB->succ_empty()) {
684     MachineBasicBlock *Succ = *FromMBB->succ_begin();
685     if (!FromMBB->Probs.empty()) {
686       auto Prob = *FromMBB->Probs.begin();
687       addSuccessor(Succ, Prob);
688     } else
689       addSuccessorWithoutProb(Succ);
690     FromMBB->removeSuccessor(Succ);
691 
692     // Fix up any PHI nodes in the successor.
693     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
694            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
695       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
696         MachineOperand &MO = MI->getOperand(i);
697         if (MO.getMBB() == FromMBB)
698           MO.setMBB(this);
699       }
700   }
701   normalizeSuccProbs();
702 }
703 
704 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
705   return is_contained(predecessors(), MBB);
706 }
707 
708 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
709   return is_contained(successors(), MBB);
710 }
711 
712 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
713   MachineFunction::const_iterator I(this);
714   return std::next(I) == MachineFunction::const_iterator(MBB);
715 }
716 
717 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
718   MachineFunction::iterator Fallthrough = getIterator();
719   ++Fallthrough;
720   // If FallthroughBlock is off the end of the function, it can't fall through.
721   if (Fallthrough == getParent()->end())
722     return nullptr;
723 
724   // If FallthroughBlock isn't a successor, no fallthrough is possible.
725   if (!isSuccessor(&*Fallthrough))
726     return nullptr;
727 
728   // Analyze the branches, if any, at the end of the block.
729   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
730   SmallVector<MachineOperand, 4> Cond;
731   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
732   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
733     // If we couldn't analyze the branch, examine the last instruction.
734     // If the block doesn't end in a known control barrier, assume fallthrough
735     // is possible. The isPredicated check is needed because this code can be
736     // called during IfConversion, where an instruction which is normally a
737     // Barrier is predicated and thus no longer an actual control barrier.
738     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
739                ? &*Fallthrough
740                : nullptr;
741   }
742 
743   // If there is no branch, control always falls through.
744   if (!TBB) return &*Fallthrough;
745 
746   // If there is some explicit branch to the fallthrough block, it can obviously
747   // reach, even though the branch should get folded to fall through implicitly.
748   if (MachineFunction::iterator(TBB) == Fallthrough ||
749       MachineFunction::iterator(FBB) == Fallthrough)
750     return &*Fallthrough;
751 
752   // If it's an unconditional branch to some block not the fall through, it
753   // doesn't fall through.
754   if (Cond.empty()) return nullptr;
755 
756   // Otherwise, if it is conditional and has no explicit false block, it falls
757   // through.
758   return (FBB == nullptr) ? &*Fallthrough : nullptr;
759 }
760 
761 bool MachineBasicBlock::canFallThrough() {
762   return getFallThrough() != nullptr;
763 }
764 
765 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
766                                                         Pass &P) {
767   if (!canSplitCriticalEdge(Succ))
768     return nullptr;
769 
770   MachineFunction *MF = getParent();
771   DebugLoc DL;  // FIXME: this is nowhere
772 
773   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
774   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
775   DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
776                << " -- " << printMBBReference(*NMBB) << " -- "
777                << printMBBReference(*Succ) << '\n');
778 
779   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
780   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
781   if (LIS)
782     LIS->insertMBBInMaps(NMBB);
783   else if (Indexes)
784     Indexes->insertMBBInMaps(NMBB);
785 
786   // On some targets like Mips, branches may kill virtual registers. Make sure
787   // that LiveVariables is properly updated after updateTerminator replaces the
788   // terminators.
789   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
790 
791   // Collect a list of virtual registers killed by the terminators.
792   SmallVector<unsigned, 4> KilledRegs;
793   if (LV)
794     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
795          I != E; ++I) {
796       MachineInstr *MI = &*I;
797       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
798            OE = MI->operands_end(); OI != OE; ++OI) {
799         if (!OI->isReg() || OI->getReg() == 0 ||
800             !OI->isUse() || !OI->isKill() || OI->isUndef())
801           continue;
802         unsigned Reg = OI->getReg();
803         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
804             LV->getVarInfo(Reg).removeKill(*MI)) {
805           KilledRegs.push_back(Reg);
806           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
807           OI->setIsKill(false);
808         }
809       }
810     }
811 
812   SmallVector<unsigned, 4> UsedRegs;
813   if (LIS) {
814     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
815          I != E; ++I) {
816       MachineInstr *MI = &*I;
817 
818       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
819            OE = MI->operands_end(); OI != OE; ++OI) {
820         if (!OI->isReg() || OI->getReg() == 0)
821           continue;
822 
823         unsigned Reg = OI->getReg();
824         if (!is_contained(UsedRegs, Reg))
825           UsedRegs.push_back(Reg);
826       }
827     }
828   }
829 
830   ReplaceUsesOfBlockWith(Succ, NMBB);
831 
832   // If updateTerminator() removes instructions, we need to remove them from
833   // SlotIndexes.
834   SmallVector<MachineInstr*, 4> Terminators;
835   if (Indexes) {
836     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
837          I != E; ++I)
838       Terminators.push_back(&*I);
839   }
840 
841   updateTerminator();
842 
843   if (Indexes) {
844     SmallVector<MachineInstr*, 4> NewTerminators;
845     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
846          I != E; ++I)
847       NewTerminators.push_back(&*I);
848 
849     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
850         E = Terminators.end(); I != E; ++I) {
851       if (!is_contained(NewTerminators, *I))
852         Indexes->removeMachineInstrFromMaps(**I);
853     }
854   }
855 
856   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
857   NMBB->addSuccessor(Succ);
858   if (!NMBB->isLayoutSuccessor(Succ)) {
859     SmallVector<MachineOperand, 4> Cond;
860     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
861     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
862 
863     if (Indexes) {
864       for (MachineInstr &MI : NMBB->instrs()) {
865         // Some instructions may have been moved to NMBB by updateTerminator(),
866         // so we first remove any instruction that already has an index.
867         if (Indexes->hasIndex(MI))
868           Indexes->removeMachineInstrFromMaps(MI);
869         Indexes->insertMachineInstrInMaps(MI);
870       }
871     }
872   }
873 
874   // Fix PHI nodes in Succ so they refer to NMBB instead of this
875   for (MachineBasicBlock::instr_iterator
876          i = Succ->instr_begin(),e = Succ->instr_end();
877        i != e && i->isPHI(); ++i)
878     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
879       if (i->getOperand(ni+1).getMBB() == this)
880         i->getOperand(ni+1).setMBB(NMBB);
881 
882   // Inherit live-ins from the successor
883   for (const auto &LI : Succ->liveins())
884     NMBB->addLiveIn(LI);
885 
886   // Update LiveVariables.
887   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
888   if (LV) {
889     // Restore kills of virtual registers that were killed by the terminators.
890     while (!KilledRegs.empty()) {
891       unsigned Reg = KilledRegs.pop_back_val();
892       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
893         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
894           continue;
895         if (TargetRegisterInfo::isVirtualRegister(Reg))
896           LV->getVarInfo(Reg).Kills.push_back(&*I);
897         DEBUG(dbgs() << "Restored terminator kill: " << *I);
898         break;
899       }
900     }
901     // Update relevant live-through information.
902     LV->addNewBlock(NMBB, this, Succ);
903   }
904 
905   if (LIS) {
906     // After splitting the edge and updating SlotIndexes, live intervals may be
907     // in one of two situations, depending on whether this block was the last in
908     // the function. If the original block was the last in the function, all
909     // live intervals will end prior to the beginning of the new split block. If
910     // the original block was not at the end of the function, all live intervals
911     // will extend to the end of the new split block.
912 
913     bool isLastMBB =
914       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
915 
916     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
917     SlotIndex PrevIndex = StartIndex.getPrevSlot();
918     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
919 
920     // Find the registers used from NMBB in PHIs in Succ.
921     SmallSet<unsigned, 8> PHISrcRegs;
922     for (MachineBasicBlock::instr_iterator
923          I = Succ->instr_begin(), E = Succ->instr_end();
924          I != E && I->isPHI(); ++I) {
925       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
926         if (I->getOperand(ni+1).getMBB() == NMBB) {
927           MachineOperand &MO = I->getOperand(ni);
928           unsigned Reg = MO.getReg();
929           PHISrcRegs.insert(Reg);
930           if (MO.isUndef())
931             continue;
932 
933           LiveInterval &LI = LIS->getInterval(Reg);
934           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
935           assert(VNI &&
936                  "PHI sources should be live out of their predecessors.");
937           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
938         }
939       }
940     }
941 
942     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
943     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
944       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
945       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
946         continue;
947 
948       LiveInterval &LI = LIS->getInterval(Reg);
949       if (!LI.liveAt(PrevIndex))
950         continue;
951 
952       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
953       if (isLiveOut && isLastMBB) {
954         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
955         assert(VNI && "LiveInterval should have VNInfo where it is live.");
956         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
957       } else if (!isLiveOut && !isLastMBB) {
958         LI.removeSegment(StartIndex, EndIndex);
959       }
960     }
961 
962     // Update all intervals for registers whose uses may have been modified by
963     // updateTerminator().
964     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
965   }
966 
967   if (MachineDominatorTree *MDT =
968           P.getAnalysisIfAvailable<MachineDominatorTree>())
969     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
970 
971   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
972     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
973       // If one or the other blocks were not in a loop, the new block is not
974       // either, and thus LI doesn't need to be updated.
975       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
976         if (TIL == DestLoop) {
977           // Both in the same loop, the NMBB joins loop.
978           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
979         } else if (TIL->contains(DestLoop)) {
980           // Edge from an outer loop to an inner loop.  Add to the outer loop.
981           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
982         } else if (DestLoop->contains(TIL)) {
983           // Edge from an inner loop to an outer loop.  Add to the outer loop.
984           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
985         } else {
986           // Edge from two loops with no containment relation.  Because these
987           // are natural loops, we know that the destination block must be the
988           // header of its loop (adding a branch into a loop elsewhere would
989           // create an irreducible loop).
990           assert(DestLoop->getHeader() == Succ &&
991                  "Should not create irreducible loops!");
992           if (MachineLoop *P = DestLoop->getParentLoop())
993             P->addBasicBlockToLoop(NMBB, MLI->getBase());
994         }
995       }
996     }
997 
998   return NMBB;
999 }
1000 
1001 bool MachineBasicBlock::canSplitCriticalEdge(
1002     const MachineBasicBlock *Succ) const {
1003   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1004   // it in this generic function.
1005   if (Succ->isEHPad())
1006     return false;
1007 
1008   const MachineFunction *MF = getParent();
1009 
1010   // Performance might be harmed on HW that implements branching using exec mask
1011   // where both sides of the branches are always executed.
1012   if (MF->getTarget().requiresStructuredCFG())
1013     return false;
1014 
1015   // We may need to update this's terminator, but we can't do that if
1016   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1017   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1018   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1019   SmallVector<MachineOperand, 4> Cond;
1020   // AnalyzeBanch should modify this, since we did not allow modification.
1021   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1022                          /*AllowModify*/ false))
1023     return false;
1024 
1025   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1026   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1027   // case that we can't handle. Since this never happens in properly optimized
1028   // code, just skip those edges.
1029   if (TBB && TBB == FBB) {
1030     DEBUG(dbgs() << "Won't split critical edge after degenerate "
1031                  << printMBBReference(*this) << '\n');
1032     return false;
1033   }
1034   return true;
1035 }
1036 
1037 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1038 /// neighboring instructions so the bundle won't be broken by removing MI.
1039 static void unbundleSingleMI(MachineInstr *MI) {
1040   // Removing the first instruction in a bundle.
1041   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1042     MI->unbundleFromSucc();
1043   // Removing the last instruction in a bundle.
1044   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1045     MI->unbundleFromPred();
1046   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1047   // are already fine.
1048 }
1049 
1050 MachineBasicBlock::instr_iterator
1051 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1052   unbundleSingleMI(&*I);
1053   return Insts.erase(I);
1054 }
1055 
1056 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1057   unbundleSingleMI(MI);
1058   MI->clearFlag(MachineInstr::BundledPred);
1059   MI->clearFlag(MachineInstr::BundledSucc);
1060   return Insts.remove(MI);
1061 }
1062 
1063 MachineBasicBlock::instr_iterator
1064 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1065   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1066          "Cannot insert instruction with bundle flags");
1067   // Set the bundle flags when inserting inside a bundle.
1068   if (I != instr_end() && I->isBundledWithPred()) {
1069     MI->setFlag(MachineInstr::BundledPred);
1070     MI->setFlag(MachineInstr::BundledSucc);
1071   }
1072   return Insts.insert(I, MI);
1073 }
1074 
1075 /// This method unlinks 'this' from the containing function, and returns it, but
1076 /// does not delete it.
1077 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1078   assert(getParent() && "Not embedded in a function!");
1079   getParent()->remove(this);
1080   return this;
1081 }
1082 
1083 /// This method unlinks 'this' from the containing function, and deletes it.
1084 void MachineBasicBlock::eraseFromParent() {
1085   assert(getParent() && "Not embedded in a function!");
1086   getParent()->erase(this);
1087 }
1088 
1089 /// Given a machine basic block that branched to 'Old', change the code and CFG
1090 /// so that it branches to 'New' instead.
1091 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1092                                                MachineBasicBlock *New) {
1093   assert(Old != New && "Cannot replace self with self!");
1094 
1095   MachineBasicBlock::instr_iterator I = instr_end();
1096   while (I != instr_begin()) {
1097     --I;
1098     if (!I->isTerminator()) break;
1099 
1100     // Scan the operands of this machine instruction, replacing any uses of Old
1101     // with New.
1102     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1103       if (I->getOperand(i).isMBB() &&
1104           I->getOperand(i).getMBB() == Old)
1105         I->getOperand(i).setMBB(New);
1106   }
1107 
1108   // Update the successor information.
1109   replaceSuccessor(Old, New);
1110 }
1111 
1112 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1113 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1114 /// MBB successors from the CFG.  DestA and DestB can be null.
1115 ///
1116 /// Besides DestA and DestB, retain other edges leading to LandingPads
1117 /// (currently there can be only one; we don't check or require that here).
1118 /// Note it is possible that DestA and/or DestB are LandingPads.
1119 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1120                                              MachineBasicBlock *DestB,
1121                                              bool IsCond) {
1122   // The values of DestA and DestB frequently come from a call to the
1123   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1124   // values from there.
1125   //
1126   // 1. If both DestA and DestB are null, then the block ends with no branches
1127   //    (it falls through to its successor).
1128   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1129   //    with only an unconditional branch.
1130   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1131   //    with a conditional branch that falls through to a successor (DestB).
1132   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1133   //    conditional branch followed by an unconditional branch. DestA is the
1134   //    'true' destination and DestB is the 'false' destination.
1135 
1136   bool Changed = false;
1137 
1138   MachineBasicBlock *FallThru = getNextNode();
1139 
1140   if (!DestA && !DestB) {
1141     // Block falls through to successor.
1142     DestA = FallThru;
1143     DestB = FallThru;
1144   } else if (DestA && !DestB) {
1145     if (IsCond)
1146       // Block ends in conditional jump that falls through to successor.
1147       DestB = FallThru;
1148   } else {
1149     assert(DestA && DestB && IsCond &&
1150            "CFG in a bad state. Cannot correct CFG edges");
1151   }
1152 
1153   // Remove superfluous edges. I.e., those which aren't destinations of this
1154   // basic block, duplicate edges, or landing pads.
1155   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1156   MachineBasicBlock::succ_iterator SI = succ_begin();
1157   while (SI != succ_end()) {
1158     const MachineBasicBlock *MBB = *SI;
1159     if (!SeenMBBs.insert(MBB).second ||
1160         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1161       // This is a superfluous edge, remove it.
1162       SI = removeSuccessor(SI);
1163       Changed = true;
1164     } else {
1165       ++SI;
1166     }
1167   }
1168 
1169   if (Changed)
1170     normalizeSuccProbs();
1171   return Changed;
1172 }
1173 
1174 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1175 /// instructions.  Return UnknownLoc if there is none.
1176 DebugLoc
1177 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1178   // Skip debug declarations, we don't want a DebugLoc from them.
1179   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1180   if (MBBI != instr_end())
1181     return MBBI->getDebugLoc();
1182   return {};
1183 }
1184 
1185 /// Find and return the merged DebugLoc of the branch instructions of the block.
1186 /// Return UnknownLoc if there is none.
1187 DebugLoc
1188 MachineBasicBlock::findBranchDebugLoc() {
1189   DebugLoc DL;
1190   auto TI = getFirstTerminator();
1191   while (TI != end() && !TI->isBranch())
1192     ++TI;
1193 
1194   if (TI != end()) {
1195     DL = TI->getDebugLoc();
1196     for (++TI ; TI != end() ; ++TI)
1197       if (TI->isBranch())
1198         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1199   }
1200   return DL;
1201 }
1202 
1203 /// Return probability of the edge from this block to MBB.
1204 BranchProbability
1205 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1206   if (Probs.empty())
1207     return BranchProbability(1, succ_size());
1208 
1209   const auto &Prob = *getProbabilityIterator(Succ);
1210   if (Prob.isUnknown()) {
1211     // For unknown probabilities, collect the sum of all known ones, and evenly
1212     // ditribute the complemental of the sum to each unknown probability.
1213     unsigned KnownProbNum = 0;
1214     auto Sum = BranchProbability::getZero();
1215     for (auto &P : Probs) {
1216       if (!P.isUnknown()) {
1217         Sum += P;
1218         KnownProbNum++;
1219       }
1220     }
1221     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1222   } else
1223     return Prob;
1224 }
1225 
1226 /// Set successor probability of a given iterator.
1227 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1228                                            BranchProbability Prob) {
1229   assert(!Prob.isUnknown());
1230   if (Probs.empty())
1231     return;
1232   *getProbabilityIterator(I) = Prob;
1233 }
1234 
1235 /// Return probability iterator corresonding to the I successor iterator
1236 MachineBasicBlock::const_probability_iterator
1237 MachineBasicBlock::getProbabilityIterator(
1238     MachineBasicBlock::const_succ_iterator I) const {
1239   assert(Probs.size() == Successors.size() && "Async probability list!");
1240   const size_t index = std::distance(Successors.begin(), I);
1241   assert(index < Probs.size() && "Not a current successor!");
1242   return Probs.begin() + index;
1243 }
1244 
1245 /// Return probability iterator corresonding to the I successor iterator.
1246 MachineBasicBlock::probability_iterator
1247 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1248   assert(Probs.size() == Successors.size() && "Async probability list!");
1249   const size_t index = std::distance(Successors.begin(), I);
1250   assert(index < Probs.size() && "Not a current successor!");
1251   return Probs.begin() + index;
1252 }
1253 
1254 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1255 /// as of just before "MI".
1256 ///
1257 /// Search is localised to a neighborhood of
1258 /// Neighborhood instructions before (searching for defs or kills) and N
1259 /// instructions after (searching just for defs) MI.
1260 MachineBasicBlock::LivenessQueryResult
1261 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1262                                            unsigned Reg, const_iterator Before,
1263                                            unsigned Neighborhood) const {
1264   unsigned N = Neighborhood;
1265 
1266   // Start by searching backwards from Before, looking for kills, reads or defs.
1267   const_iterator I(Before);
1268   // If this is the first insn in the block, don't search backwards.
1269   if (I != begin()) {
1270     do {
1271       --I;
1272 
1273       MachineOperandIteratorBase::PhysRegInfo Info =
1274           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1275 
1276       // Defs happen after uses so they take precedence if both are present.
1277 
1278       // Register is dead after a dead def of the full register.
1279       if (Info.DeadDef)
1280         return LQR_Dead;
1281       // Register is (at least partially) live after a def.
1282       if (Info.Defined) {
1283         if (!Info.PartialDeadDef)
1284           return LQR_Live;
1285         // As soon as we saw a partial definition (dead or not),
1286         // we cannot tell if the value is partial live without
1287         // tracking the lanemasks. We are not going to do this,
1288         // so fall back on the remaining of the analysis.
1289         break;
1290       }
1291       // Register is dead after a full kill or clobber and no def.
1292       if (Info.Killed || Info.Clobbered)
1293         return LQR_Dead;
1294       // Register must be live if we read it.
1295       if (Info.Read)
1296         return LQR_Live;
1297     } while (I != begin() && --N > 0);
1298   }
1299 
1300   // Did we get to the start of the block?
1301   if (I == begin()) {
1302     // If so, the register's state is definitely defined by the live-in state.
1303     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
1304          ++RAI)
1305       if (isLiveIn(*RAI))
1306         return LQR_Live;
1307 
1308     return LQR_Dead;
1309   }
1310 
1311   N = Neighborhood;
1312 
1313   // Try searching forwards from Before, looking for reads or defs.
1314   I = const_iterator(Before);
1315   // If this is the last insn in the block, don't search forwards.
1316   if (I != end()) {
1317     for (++I; I != end() && N > 0; ++I, --N) {
1318       MachineOperandIteratorBase::PhysRegInfo Info =
1319           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1320 
1321       // Register is live when we read it here.
1322       if (Info.Read)
1323         return LQR_Live;
1324       // Register is dead if we can fully overwrite or clobber it here.
1325       if (Info.FullyDefined || Info.Clobbered)
1326         return LQR_Dead;
1327     }
1328   }
1329 
1330   // At this point we have no idea of the liveness of the register.
1331   return LQR_Unknown;
1332 }
1333 
1334 const uint32_t *
1335 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1336   // EH funclet entry does not preserve any registers.
1337   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1338 }
1339 
1340 const uint32_t *
1341 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1342   // If we see a return block with successors, this must be a funclet return,
1343   // which does not preserve any registers. If there are no successors, we don't
1344   // care what kind of return it is, putting a mask after it is a no-op.
1345   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1346 }
1347 
1348 void MachineBasicBlock::clearLiveIns() {
1349   LiveIns.clear();
1350 }
1351 
1352 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1353   assert(getParent()->getProperties().hasProperty(
1354       MachineFunctionProperties::Property::TracksLiveness) &&
1355       "Liveness information is accurate");
1356   return LiveIns.begin();
1357 }
1358