1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/DataTypes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 if (B) 46 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 47 } 48 49 MachineBasicBlock::~MachineBasicBlock() { 50 } 51 52 /// Return the MCSymbol for this basic block. 53 MCSymbol *MachineBasicBlock::getSymbol() const { 54 if (!CachedMCSymbol) { 55 const MachineFunction *MF = getParent(); 56 MCContext &Ctx = MF->getContext(); 57 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 58 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 59 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 60 Twine(MF->getFunctionNumber()) + 61 "_" + Twine(getNumber())); 62 } 63 64 return CachedMCSymbol; 65 } 66 67 68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 69 MBB.print(OS); 70 return OS; 71 } 72 73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 74 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 75 } 76 77 /// When an MBB is added to an MF, we need to update the parent pointer of the 78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 79 /// operand list for registers. 80 /// 81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 82 /// gets the next available unique MBB number. If it is removed from a 83 /// MachineFunction, it goes back to being #-1. 84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 85 MachineBasicBlock *N) { 86 MachineFunction &MF = *N->getParent(); 87 N->Number = MF.addToMBBNumbering(N); 88 89 // Make sure the instructions have their operands in the reginfo lists. 90 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 91 for (MachineBasicBlock::instr_iterator 92 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 93 I->AddRegOperandsToUseLists(RegInfo); 94 } 95 96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 97 MachineBasicBlock *N) { 98 N->getParent()->removeFromMBBNumbering(N->Number); 99 N->Number = -1; 100 } 101 102 /// When we add an instruction to a basic block list, we update its parent 103 /// pointer and add its operands from reg use/def lists if appropriate. 104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 105 assert(!N->getParent() && "machine instruction already in a basic block"); 106 N->setParent(Parent); 107 108 // Add the instruction's register operands to their corresponding 109 // use/def lists. 110 MachineFunction *MF = Parent->getParent(); 111 N->AddRegOperandsToUseLists(MF->getRegInfo()); 112 } 113 114 /// When we remove an instruction from a basic block list, we update its parent 115 /// pointer and remove its operands from reg use/def lists if appropriate. 116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 117 assert(N->getParent() && "machine instruction not in a basic block"); 118 119 // Remove from the use/def lists. 120 if (MachineFunction *MF = N->getMF()) 121 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 122 123 N->setParent(nullptr); 124 } 125 126 /// When moving a range of instructions from one MBB list to another, we need to 127 /// update the parent pointers and the use/def lists. 128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 129 instr_iterator First, 130 instr_iterator Last) { 131 assert(Parent->getParent() == FromList.Parent->getParent() && 132 "MachineInstr parent mismatch!"); 133 assert(this != &FromList && "Called without a real transfer..."); 134 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 135 136 // If splicing between two blocks within the same function, just update the 137 // parent pointers. 138 for (; First != Last; ++First) 139 First->setParent(Parent); 140 } 141 142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 143 assert(!MI->getParent() && "MI is still in a block!"); 144 Parent->getParent()->DeleteMachineInstr(MI); 145 } 146 147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 148 instr_iterator I = instr_begin(), E = instr_end(); 149 while (I != E && I->isPHI()) 150 ++I; 151 assert((I == E || !I->isInsideBundle()) && 152 "First non-phi MI cannot be inside a bundle!"); 153 return I; 154 } 155 156 MachineBasicBlock::iterator 157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 158 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 159 160 iterator E = end(); 161 while (I != E && (I->isPHI() || I->isPosition() || 162 TII->isBasicBlockPrologue(*I))) 163 ++I; 164 // FIXME: This needs to change if we wish to bundle labels 165 // inside the bundle. 166 assert((I == E || !I->isInsideBundle()) && 167 "First non-phi / non-label instruction is inside a bundle!"); 168 return I; 169 } 170 171 MachineBasicBlock::iterator 172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 173 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 174 175 iterator E = end(); 176 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 177 TII->isBasicBlockPrologue(*I))) 178 ++I; 179 // FIXME: This needs to change if we wish to bundle labels / dbg_values 180 // inside the bundle. 181 assert((I == E || !I->isInsideBundle()) && 182 "First non-phi / non-label / non-debug " 183 "instruction is inside a bundle!"); 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 188 iterator B = begin(), E = end(), I = E; 189 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 190 ; /*noop */ 191 while (I != E && !I->isTerminator()) 192 ++I; 193 return I; 194 } 195 196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 197 instr_iterator B = instr_begin(), E = instr_end(), I = E; 198 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 199 ; /*noop */ 200 while (I != E && !I->isTerminator()) 201 ++I; 202 return I; 203 } 204 205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 206 // Skip over begin-of-block dbg_value instructions. 207 return skipDebugInstructionsForward(begin(), end()); 208 } 209 210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 211 // Skip over end-of-block dbg_value instructions. 212 instr_iterator B = instr_begin(), I = instr_end(); 213 while (I != B) { 214 --I; 215 // Return instruction that starts a bundle. 216 if (I->isDebugValue() || I->isInsideBundle()) 217 continue; 218 return I; 219 } 220 // The block is all debug values. 221 return end(); 222 } 223 224 bool MachineBasicBlock::hasEHPadSuccessor() const { 225 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 226 if ((*I)->isEHPad()) 227 return true; 228 return false; 229 } 230 231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 233 print(dbgs()); 234 } 235 #endif 236 237 bool MachineBasicBlock::isLegalToHoistInto() const { 238 if (isReturnBlock() || hasEHPadSuccessor()) 239 return false; 240 return true; 241 } 242 243 StringRef MachineBasicBlock::getName() const { 244 if (const BasicBlock *LBB = getBasicBlock()) 245 return LBB->getName(); 246 else 247 return StringRef("", 0); 248 } 249 250 /// Return a hopefully unique identifier for this block. 251 std::string MachineBasicBlock::getFullName() const { 252 std::string Name; 253 if (getParent()) 254 Name = (getParent()->getName() + ":").str(); 255 if (getBasicBlock()) 256 Name += getBasicBlock()->getName(); 257 else 258 Name += ("BB" + Twine(getNumber())).str(); 259 return Name; 260 } 261 262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 263 bool IsVerbose) const { 264 const MachineFunction *MF = getParent(); 265 if (!MF) { 266 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 267 << " is null\n"; 268 return; 269 } 270 const Function &F = MF->getFunction(); 271 const Module *M = F.getParent(); 272 ModuleSlotTracker MST(M); 273 print(OS, MST, Indexes, IsVerbose); 274 } 275 276 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 277 const SlotIndexes *Indexes, 278 bool IsVerbose) const { 279 const MachineFunction *MF = getParent(); 280 if (!MF) { 281 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 282 << " is null\n"; 283 return; 284 } 285 286 if (Indexes) 287 OS << Indexes->getMBBStartIdx(this) << '\t'; 288 289 OS << printMBBReference(*this) << ": "; 290 291 const char *Comma = ""; 292 if (const BasicBlock *LBB = getBasicBlock()) { 293 OS << Comma << "derived from LLVM BB "; 294 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 295 Comma = ", "; 296 } 297 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 298 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 299 if (Alignment) 300 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 301 << " bytes)"; 302 303 OS << '\n'; 304 305 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 306 if (!livein_empty()) { 307 if (Indexes) OS << '\t'; 308 OS << " Live Ins:"; 309 for (const auto &LI : LiveIns) { 310 OS << ' ' << printReg(LI.PhysReg, TRI); 311 if (!LI.LaneMask.all()) 312 OS << ':' << PrintLaneMask(LI.LaneMask); 313 } 314 OS << '\n'; 315 } 316 // Print the preds of this block according to the CFG. 317 if (!pred_empty()) { 318 if (Indexes) OS << '\t'; 319 OS << " Predecessors according to CFG:"; 320 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 321 OS << " " << printMBBReference(*(*PI)); 322 OS << '\n'; 323 } 324 325 for (auto &I : instrs()) { 326 if (Indexes) { 327 if (Indexes->hasIndex(I)) 328 OS << Indexes->getInstructionIndex(I); 329 OS << '\t'; 330 } 331 OS << '\t'; 332 if (I.isInsideBundle()) 333 OS << " * "; 334 I.print(OS, MST, IsVerbose); 335 } 336 337 // Print the successors of this block according to the CFG. 338 if (!succ_empty()) { 339 if (Indexes) OS << '\t'; 340 OS << " Successors according to CFG:"; 341 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 342 OS << " " << printMBBReference(*(*SI)); 343 if (!Probs.empty()) 344 OS << '(' << *getProbabilityIterator(SI) << ')'; 345 } 346 OS << '\n'; 347 } 348 if (IrrLoopHeaderWeight) { 349 if (Indexes) OS << '\t'; 350 OS << " Irreducible loop header weight: " 351 << IrrLoopHeaderWeight.getValue(); 352 OS << '\n'; 353 } 354 } 355 356 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 357 bool /*PrintType*/) const { 358 OS << "%bb." << getNumber(); 359 } 360 361 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 362 LiveInVector::iterator I = find_if( 363 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 364 if (I == LiveIns.end()) 365 return; 366 367 I->LaneMask &= ~LaneMask; 368 if (I->LaneMask.none()) 369 LiveIns.erase(I); 370 } 371 372 MachineBasicBlock::livein_iterator 373 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 374 // Get non-const version of iterator. 375 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 376 return LiveIns.erase(LI); 377 } 378 379 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 380 livein_iterator I = find_if( 381 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 382 return I != livein_end() && (I->LaneMask & LaneMask).any(); 383 } 384 385 void MachineBasicBlock::sortUniqueLiveIns() { 386 std::sort(LiveIns.begin(), LiveIns.end(), 387 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 388 return LI0.PhysReg < LI1.PhysReg; 389 }); 390 // Liveins are sorted by physreg now we can merge their lanemasks. 391 LiveInVector::const_iterator I = LiveIns.begin(); 392 LiveInVector::const_iterator J; 393 LiveInVector::iterator Out = LiveIns.begin(); 394 for (; I != LiveIns.end(); ++Out, I = J) { 395 unsigned PhysReg = I->PhysReg; 396 LaneBitmask LaneMask = I->LaneMask; 397 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 398 LaneMask |= J->LaneMask; 399 Out->PhysReg = PhysReg; 400 Out->LaneMask = LaneMask; 401 } 402 LiveIns.erase(Out, LiveIns.end()); 403 } 404 405 unsigned 406 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 407 assert(getParent() && "MBB must be inserted in function"); 408 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 409 assert(RC && "Register class is required"); 410 assert((isEHPad() || this == &getParent()->front()) && 411 "Only the entry block and landing pads can have physreg live ins"); 412 413 bool LiveIn = isLiveIn(PhysReg); 414 iterator I = SkipPHIsAndLabels(begin()), E = end(); 415 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 416 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 417 418 // Look for an existing copy. 419 if (LiveIn) 420 for (;I != E && I->isCopy(); ++I) 421 if (I->getOperand(1).getReg() == PhysReg) { 422 unsigned VirtReg = I->getOperand(0).getReg(); 423 if (!MRI.constrainRegClass(VirtReg, RC)) 424 llvm_unreachable("Incompatible live-in register class."); 425 return VirtReg; 426 } 427 428 // No luck, create a virtual register. 429 unsigned VirtReg = MRI.createVirtualRegister(RC); 430 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 431 .addReg(PhysReg, RegState::Kill); 432 if (!LiveIn) 433 addLiveIn(PhysReg); 434 return VirtReg; 435 } 436 437 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 438 getParent()->splice(NewAfter->getIterator(), getIterator()); 439 } 440 441 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 442 getParent()->splice(++NewBefore->getIterator(), getIterator()); 443 } 444 445 void MachineBasicBlock::updateTerminator() { 446 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 447 // A block with no successors has no concerns with fall-through edges. 448 if (this->succ_empty()) 449 return; 450 451 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 452 SmallVector<MachineOperand, 4> Cond; 453 DebugLoc DL = findBranchDebugLoc(); 454 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 455 (void) B; 456 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 457 if (Cond.empty()) { 458 if (TBB) { 459 // The block has an unconditional branch. If its successor is now its 460 // layout successor, delete the branch. 461 if (isLayoutSuccessor(TBB)) 462 TII->removeBranch(*this); 463 } else { 464 // The block has an unconditional fallthrough. If its successor is not its 465 // layout successor, insert a branch. First we have to locate the only 466 // non-landing-pad successor, as that is the fallthrough block. 467 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 468 if ((*SI)->isEHPad()) 469 continue; 470 assert(!TBB && "Found more than one non-landing-pad successor!"); 471 TBB = *SI; 472 } 473 474 // If there is no non-landing-pad successor, the block has no fall-through 475 // edges to be concerned with. 476 if (!TBB) 477 return; 478 479 // Finally update the unconditional successor to be reached via a branch 480 // if it would not be reached by fallthrough. 481 if (!isLayoutSuccessor(TBB)) 482 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 483 } 484 return; 485 } 486 487 if (FBB) { 488 // The block has a non-fallthrough conditional branch. If one of its 489 // successors is its layout successor, rewrite it to a fallthrough 490 // conditional branch. 491 if (isLayoutSuccessor(TBB)) { 492 if (TII->reverseBranchCondition(Cond)) 493 return; 494 TII->removeBranch(*this); 495 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 496 } else if (isLayoutSuccessor(FBB)) { 497 TII->removeBranch(*this); 498 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 499 } 500 return; 501 } 502 503 // Walk through the successors and find the successor which is not a landing 504 // pad and is not the conditional branch destination (in TBB) as the 505 // fallthrough successor. 506 MachineBasicBlock *FallthroughBB = nullptr; 507 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 508 if ((*SI)->isEHPad() || *SI == TBB) 509 continue; 510 assert(!FallthroughBB && "Found more than one fallthrough successor."); 511 FallthroughBB = *SI; 512 } 513 514 if (!FallthroughBB) { 515 if (canFallThrough()) { 516 // We fallthrough to the same basic block as the conditional jump targets. 517 // Remove the conditional jump, leaving unconditional fallthrough. 518 // FIXME: This does not seem like a reasonable pattern to support, but it 519 // has been seen in the wild coming out of degenerate ARM test cases. 520 TII->removeBranch(*this); 521 522 // Finally update the unconditional successor to be reached via a branch if 523 // it would not be reached by fallthrough. 524 if (!isLayoutSuccessor(TBB)) 525 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 526 return; 527 } 528 529 // We enter here iff exactly one successor is TBB which cannot fallthrough 530 // and the rest successors if any are EHPads. In this case, we need to 531 // change the conditional branch into unconditional branch. 532 TII->removeBranch(*this); 533 Cond.clear(); 534 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 535 return; 536 } 537 538 // The block has a fallthrough conditional branch. 539 if (isLayoutSuccessor(TBB)) { 540 if (TII->reverseBranchCondition(Cond)) { 541 // We can't reverse the condition, add an unconditional branch. 542 Cond.clear(); 543 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 544 return; 545 } 546 TII->removeBranch(*this); 547 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 548 } else if (!isLayoutSuccessor(FallthroughBB)) { 549 TII->removeBranch(*this); 550 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 551 } 552 } 553 554 void MachineBasicBlock::validateSuccProbs() const { 555 #ifndef NDEBUG 556 int64_t Sum = 0; 557 for (auto Prob : Probs) 558 Sum += Prob.getNumerator(); 559 // Due to precision issue, we assume that the sum of probabilities is one if 560 // the difference between the sum of their numerators and the denominator is 561 // no greater than the number of successors. 562 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 563 Probs.size() && 564 "The sum of successors's probabilities exceeds one."); 565 #endif // NDEBUG 566 } 567 568 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 569 BranchProbability Prob) { 570 // Probability list is either empty (if successor list isn't empty, this means 571 // disabled optimization) or has the same size as successor list. 572 if (!(Probs.empty() && !Successors.empty())) 573 Probs.push_back(Prob); 574 Successors.push_back(Succ); 575 Succ->addPredecessor(this); 576 } 577 578 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 579 // We need to make sure probability list is either empty or has the same size 580 // of successor list. When this function is called, we can safely delete all 581 // probability in the list. 582 Probs.clear(); 583 Successors.push_back(Succ); 584 Succ->addPredecessor(this); 585 } 586 587 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 588 bool NormalizeSuccProbs) { 589 succ_iterator I = find(Successors, Succ); 590 removeSuccessor(I, NormalizeSuccProbs); 591 } 592 593 MachineBasicBlock::succ_iterator 594 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 595 assert(I != Successors.end() && "Not a current successor!"); 596 597 // If probability list is empty it means we don't use it (disabled 598 // optimization). 599 if (!Probs.empty()) { 600 probability_iterator WI = getProbabilityIterator(I); 601 Probs.erase(WI); 602 if (NormalizeSuccProbs) 603 normalizeSuccProbs(); 604 } 605 606 (*I)->removePredecessor(this); 607 return Successors.erase(I); 608 } 609 610 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 611 MachineBasicBlock *New) { 612 if (Old == New) 613 return; 614 615 succ_iterator E = succ_end(); 616 succ_iterator NewI = E; 617 succ_iterator OldI = E; 618 for (succ_iterator I = succ_begin(); I != E; ++I) { 619 if (*I == Old) { 620 OldI = I; 621 if (NewI != E) 622 break; 623 } 624 if (*I == New) { 625 NewI = I; 626 if (OldI != E) 627 break; 628 } 629 } 630 assert(OldI != E && "Old is not a successor of this block"); 631 632 // If New isn't already a successor, let it take Old's place. 633 if (NewI == E) { 634 Old->removePredecessor(this); 635 New->addPredecessor(this); 636 *OldI = New; 637 return; 638 } 639 640 // New is already a successor. 641 // Update its probability instead of adding a duplicate edge. 642 if (!Probs.empty()) { 643 auto ProbIter = getProbabilityIterator(NewI); 644 if (!ProbIter->isUnknown()) 645 *ProbIter += *getProbabilityIterator(OldI); 646 } 647 removeSuccessor(OldI); 648 } 649 650 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 651 Predecessors.push_back(Pred); 652 } 653 654 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 655 pred_iterator I = find(Predecessors, Pred); 656 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 657 Predecessors.erase(I); 658 } 659 660 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 661 if (this == FromMBB) 662 return; 663 664 while (!FromMBB->succ_empty()) { 665 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 666 667 // If probability list is empty it means we don't use it (disabled optimization). 668 if (!FromMBB->Probs.empty()) { 669 auto Prob = *FromMBB->Probs.begin(); 670 addSuccessor(Succ, Prob); 671 } else 672 addSuccessorWithoutProb(Succ); 673 674 FromMBB->removeSuccessor(Succ); 675 } 676 } 677 678 void 679 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 680 if (this == FromMBB) 681 return; 682 683 while (!FromMBB->succ_empty()) { 684 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 685 if (!FromMBB->Probs.empty()) { 686 auto Prob = *FromMBB->Probs.begin(); 687 addSuccessor(Succ, Prob); 688 } else 689 addSuccessorWithoutProb(Succ); 690 FromMBB->removeSuccessor(Succ); 691 692 // Fix up any PHI nodes in the successor. 693 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 694 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 695 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 696 MachineOperand &MO = MI->getOperand(i); 697 if (MO.getMBB() == FromMBB) 698 MO.setMBB(this); 699 } 700 } 701 normalizeSuccProbs(); 702 } 703 704 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 705 return is_contained(predecessors(), MBB); 706 } 707 708 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 709 return is_contained(successors(), MBB); 710 } 711 712 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 713 MachineFunction::const_iterator I(this); 714 return std::next(I) == MachineFunction::const_iterator(MBB); 715 } 716 717 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 718 MachineFunction::iterator Fallthrough = getIterator(); 719 ++Fallthrough; 720 // If FallthroughBlock is off the end of the function, it can't fall through. 721 if (Fallthrough == getParent()->end()) 722 return nullptr; 723 724 // If FallthroughBlock isn't a successor, no fallthrough is possible. 725 if (!isSuccessor(&*Fallthrough)) 726 return nullptr; 727 728 // Analyze the branches, if any, at the end of the block. 729 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 730 SmallVector<MachineOperand, 4> Cond; 731 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 732 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 733 // If we couldn't analyze the branch, examine the last instruction. 734 // If the block doesn't end in a known control barrier, assume fallthrough 735 // is possible. The isPredicated check is needed because this code can be 736 // called during IfConversion, where an instruction which is normally a 737 // Barrier is predicated and thus no longer an actual control barrier. 738 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 739 ? &*Fallthrough 740 : nullptr; 741 } 742 743 // If there is no branch, control always falls through. 744 if (!TBB) return &*Fallthrough; 745 746 // If there is some explicit branch to the fallthrough block, it can obviously 747 // reach, even though the branch should get folded to fall through implicitly. 748 if (MachineFunction::iterator(TBB) == Fallthrough || 749 MachineFunction::iterator(FBB) == Fallthrough) 750 return &*Fallthrough; 751 752 // If it's an unconditional branch to some block not the fall through, it 753 // doesn't fall through. 754 if (Cond.empty()) return nullptr; 755 756 // Otherwise, if it is conditional and has no explicit false block, it falls 757 // through. 758 return (FBB == nullptr) ? &*Fallthrough : nullptr; 759 } 760 761 bool MachineBasicBlock::canFallThrough() { 762 return getFallThrough() != nullptr; 763 } 764 765 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 766 Pass &P) { 767 if (!canSplitCriticalEdge(Succ)) 768 return nullptr; 769 770 MachineFunction *MF = getParent(); 771 DebugLoc DL; // FIXME: this is nowhere 772 773 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 774 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 775 DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 776 << " -- " << printMBBReference(*NMBB) << " -- " 777 << printMBBReference(*Succ) << '\n'); 778 779 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 780 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 781 if (LIS) 782 LIS->insertMBBInMaps(NMBB); 783 else if (Indexes) 784 Indexes->insertMBBInMaps(NMBB); 785 786 // On some targets like Mips, branches may kill virtual registers. Make sure 787 // that LiveVariables is properly updated after updateTerminator replaces the 788 // terminators. 789 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 790 791 // Collect a list of virtual registers killed by the terminators. 792 SmallVector<unsigned, 4> KilledRegs; 793 if (LV) 794 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 795 I != E; ++I) { 796 MachineInstr *MI = &*I; 797 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 798 OE = MI->operands_end(); OI != OE; ++OI) { 799 if (!OI->isReg() || OI->getReg() == 0 || 800 !OI->isUse() || !OI->isKill() || OI->isUndef()) 801 continue; 802 unsigned Reg = OI->getReg(); 803 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 804 LV->getVarInfo(Reg).removeKill(*MI)) { 805 KilledRegs.push_back(Reg); 806 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 807 OI->setIsKill(false); 808 } 809 } 810 } 811 812 SmallVector<unsigned, 4> UsedRegs; 813 if (LIS) { 814 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 815 I != E; ++I) { 816 MachineInstr *MI = &*I; 817 818 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 819 OE = MI->operands_end(); OI != OE; ++OI) { 820 if (!OI->isReg() || OI->getReg() == 0) 821 continue; 822 823 unsigned Reg = OI->getReg(); 824 if (!is_contained(UsedRegs, Reg)) 825 UsedRegs.push_back(Reg); 826 } 827 } 828 } 829 830 ReplaceUsesOfBlockWith(Succ, NMBB); 831 832 // If updateTerminator() removes instructions, we need to remove them from 833 // SlotIndexes. 834 SmallVector<MachineInstr*, 4> Terminators; 835 if (Indexes) { 836 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 837 I != E; ++I) 838 Terminators.push_back(&*I); 839 } 840 841 updateTerminator(); 842 843 if (Indexes) { 844 SmallVector<MachineInstr*, 4> NewTerminators; 845 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 846 I != E; ++I) 847 NewTerminators.push_back(&*I); 848 849 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 850 E = Terminators.end(); I != E; ++I) { 851 if (!is_contained(NewTerminators, *I)) 852 Indexes->removeMachineInstrFromMaps(**I); 853 } 854 } 855 856 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 857 NMBB->addSuccessor(Succ); 858 if (!NMBB->isLayoutSuccessor(Succ)) { 859 SmallVector<MachineOperand, 4> Cond; 860 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 861 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 862 863 if (Indexes) { 864 for (MachineInstr &MI : NMBB->instrs()) { 865 // Some instructions may have been moved to NMBB by updateTerminator(), 866 // so we first remove any instruction that already has an index. 867 if (Indexes->hasIndex(MI)) 868 Indexes->removeMachineInstrFromMaps(MI); 869 Indexes->insertMachineInstrInMaps(MI); 870 } 871 } 872 } 873 874 // Fix PHI nodes in Succ so they refer to NMBB instead of this 875 for (MachineBasicBlock::instr_iterator 876 i = Succ->instr_begin(),e = Succ->instr_end(); 877 i != e && i->isPHI(); ++i) 878 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 879 if (i->getOperand(ni+1).getMBB() == this) 880 i->getOperand(ni+1).setMBB(NMBB); 881 882 // Inherit live-ins from the successor 883 for (const auto &LI : Succ->liveins()) 884 NMBB->addLiveIn(LI); 885 886 // Update LiveVariables. 887 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 888 if (LV) { 889 // Restore kills of virtual registers that were killed by the terminators. 890 while (!KilledRegs.empty()) { 891 unsigned Reg = KilledRegs.pop_back_val(); 892 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 893 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 894 continue; 895 if (TargetRegisterInfo::isVirtualRegister(Reg)) 896 LV->getVarInfo(Reg).Kills.push_back(&*I); 897 DEBUG(dbgs() << "Restored terminator kill: " << *I); 898 break; 899 } 900 } 901 // Update relevant live-through information. 902 LV->addNewBlock(NMBB, this, Succ); 903 } 904 905 if (LIS) { 906 // After splitting the edge and updating SlotIndexes, live intervals may be 907 // in one of two situations, depending on whether this block was the last in 908 // the function. If the original block was the last in the function, all 909 // live intervals will end prior to the beginning of the new split block. If 910 // the original block was not at the end of the function, all live intervals 911 // will extend to the end of the new split block. 912 913 bool isLastMBB = 914 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 915 916 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 917 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 918 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 919 920 // Find the registers used from NMBB in PHIs in Succ. 921 SmallSet<unsigned, 8> PHISrcRegs; 922 for (MachineBasicBlock::instr_iterator 923 I = Succ->instr_begin(), E = Succ->instr_end(); 924 I != E && I->isPHI(); ++I) { 925 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 926 if (I->getOperand(ni+1).getMBB() == NMBB) { 927 MachineOperand &MO = I->getOperand(ni); 928 unsigned Reg = MO.getReg(); 929 PHISrcRegs.insert(Reg); 930 if (MO.isUndef()) 931 continue; 932 933 LiveInterval &LI = LIS->getInterval(Reg); 934 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 935 assert(VNI && 936 "PHI sources should be live out of their predecessors."); 937 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 938 } 939 } 940 } 941 942 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 943 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 944 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 945 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 946 continue; 947 948 LiveInterval &LI = LIS->getInterval(Reg); 949 if (!LI.liveAt(PrevIndex)) 950 continue; 951 952 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 953 if (isLiveOut && isLastMBB) { 954 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 955 assert(VNI && "LiveInterval should have VNInfo where it is live."); 956 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 957 } else if (!isLiveOut && !isLastMBB) { 958 LI.removeSegment(StartIndex, EndIndex); 959 } 960 } 961 962 // Update all intervals for registers whose uses may have been modified by 963 // updateTerminator(). 964 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 965 } 966 967 if (MachineDominatorTree *MDT = 968 P.getAnalysisIfAvailable<MachineDominatorTree>()) 969 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 970 971 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 972 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 973 // If one or the other blocks were not in a loop, the new block is not 974 // either, and thus LI doesn't need to be updated. 975 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 976 if (TIL == DestLoop) { 977 // Both in the same loop, the NMBB joins loop. 978 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 979 } else if (TIL->contains(DestLoop)) { 980 // Edge from an outer loop to an inner loop. Add to the outer loop. 981 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 982 } else if (DestLoop->contains(TIL)) { 983 // Edge from an inner loop to an outer loop. Add to the outer loop. 984 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 985 } else { 986 // Edge from two loops with no containment relation. Because these 987 // are natural loops, we know that the destination block must be the 988 // header of its loop (adding a branch into a loop elsewhere would 989 // create an irreducible loop). 990 assert(DestLoop->getHeader() == Succ && 991 "Should not create irreducible loops!"); 992 if (MachineLoop *P = DestLoop->getParentLoop()) 993 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 994 } 995 } 996 } 997 998 return NMBB; 999 } 1000 1001 bool MachineBasicBlock::canSplitCriticalEdge( 1002 const MachineBasicBlock *Succ) const { 1003 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1004 // it in this generic function. 1005 if (Succ->isEHPad()) 1006 return false; 1007 1008 const MachineFunction *MF = getParent(); 1009 1010 // Performance might be harmed on HW that implements branching using exec mask 1011 // where both sides of the branches are always executed. 1012 if (MF->getTarget().requiresStructuredCFG()) 1013 return false; 1014 1015 // We may need to update this's terminator, but we can't do that if 1016 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1017 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1018 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1019 SmallVector<MachineOperand, 4> Cond; 1020 // AnalyzeBanch should modify this, since we did not allow modification. 1021 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1022 /*AllowModify*/ false)) 1023 return false; 1024 1025 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1026 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1027 // case that we can't handle. Since this never happens in properly optimized 1028 // code, just skip those edges. 1029 if (TBB && TBB == FBB) { 1030 DEBUG(dbgs() << "Won't split critical edge after degenerate " 1031 << printMBBReference(*this) << '\n'); 1032 return false; 1033 } 1034 return true; 1035 } 1036 1037 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1038 /// neighboring instructions so the bundle won't be broken by removing MI. 1039 static void unbundleSingleMI(MachineInstr *MI) { 1040 // Removing the first instruction in a bundle. 1041 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1042 MI->unbundleFromSucc(); 1043 // Removing the last instruction in a bundle. 1044 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1045 MI->unbundleFromPred(); 1046 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1047 // are already fine. 1048 } 1049 1050 MachineBasicBlock::instr_iterator 1051 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1052 unbundleSingleMI(&*I); 1053 return Insts.erase(I); 1054 } 1055 1056 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1057 unbundleSingleMI(MI); 1058 MI->clearFlag(MachineInstr::BundledPred); 1059 MI->clearFlag(MachineInstr::BundledSucc); 1060 return Insts.remove(MI); 1061 } 1062 1063 MachineBasicBlock::instr_iterator 1064 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1065 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1066 "Cannot insert instruction with bundle flags"); 1067 // Set the bundle flags when inserting inside a bundle. 1068 if (I != instr_end() && I->isBundledWithPred()) { 1069 MI->setFlag(MachineInstr::BundledPred); 1070 MI->setFlag(MachineInstr::BundledSucc); 1071 } 1072 return Insts.insert(I, MI); 1073 } 1074 1075 /// This method unlinks 'this' from the containing function, and returns it, but 1076 /// does not delete it. 1077 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1078 assert(getParent() && "Not embedded in a function!"); 1079 getParent()->remove(this); 1080 return this; 1081 } 1082 1083 /// This method unlinks 'this' from the containing function, and deletes it. 1084 void MachineBasicBlock::eraseFromParent() { 1085 assert(getParent() && "Not embedded in a function!"); 1086 getParent()->erase(this); 1087 } 1088 1089 /// Given a machine basic block that branched to 'Old', change the code and CFG 1090 /// so that it branches to 'New' instead. 1091 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1092 MachineBasicBlock *New) { 1093 assert(Old != New && "Cannot replace self with self!"); 1094 1095 MachineBasicBlock::instr_iterator I = instr_end(); 1096 while (I != instr_begin()) { 1097 --I; 1098 if (!I->isTerminator()) break; 1099 1100 // Scan the operands of this machine instruction, replacing any uses of Old 1101 // with New. 1102 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1103 if (I->getOperand(i).isMBB() && 1104 I->getOperand(i).getMBB() == Old) 1105 I->getOperand(i).setMBB(New); 1106 } 1107 1108 // Update the successor information. 1109 replaceSuccessor(Old, New); 1110 } 1111 1112 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1113 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1114 /// MBB successors from the CFG. DestA and DestB can be null. 1115 /// 1116 /// Besides DestA and DestB, retain other edges leading to LandingPads 1117 /// (currently there can be only one; we don't check or require that here). 1118 /// Note it is possible that DestA and/or DestB are LandingPads. 1119 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1120 MachineBasicBlock *DestB, 1121 bool IsCond) { 1122 // The values of DestA and DestB frequently come from a call to the 1123 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1124 // values from there. 1125 // 1126 // 1. If both DestA and DestB are null, then the block ends with no branches 1127 // (it falls through to its successor). 1128 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1129 // with only an unconditional branch. 1130 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1131 // with a conditional branch that falls through to a successor (DestB). 1132 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1133 // conditional branch followed by an unconditional branch. DestA is the 1134 // 'true' destination and DestB is the 'false' destination. 1135 1136 bool Changed = false; 1137 1138 MachineBasicBlock *FallThru = getNextNode(); 1139 1140 if (!DestA && !DestB) { 1141 // Block falls through to successor. 1142 DestA = FallThru; 1143 DestB = FallThru; 1144 } else if (DestA && !DestB) { 1145 if (IsCond) 1146 // Block ends in conditional jump that falls through to successor. 1147 DestB = FallThru; 1148 } else { 1149 assert(DestA && DestB && IsCond && 1150 "CFG in a bad state. Cannot correct CFG edges"); 1151 } 1152 1153 // Remove superfluous edges. I.e., those which aren't destinations of this 1154 // basic block, duplicate edges, or landing pads. 1155 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1156 MachineBasicBlock::succ_iterator SI = succ_begin(); 1157 while (SI != succ_end()) { 1158 const MachineBasicBlock *MBB = *SI; 1159 if (!SeenMBBs.insert(MBB).second || 1160 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1161 // This is a superfluous edge, remove it. 1162 SI = removeSuccessor(SI); 1163 Changed = true; 1164 } else { 1165 ++SI; 1166 } 1167 } 1168 1169 if (Changed) 1170 normalizeSuccProbs(); 1171 return Changed; 1172 } 1173 1174 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1175 /// instructions. Return UnknownLoc if there is none. 1176 DebugLoc 1177 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1178 // Skip debug declarations, we don't want a DebugLoc from them. 1179 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1180 if (MBBI != instr_end()) 1181 return MBBI->getDebugLoc(); 1182 return {}; 1183 } 1184 1185 /// Find and return the merged DebugLoc of the branch instructions of the block. 1186 /// Return UnknownLoc if there is none. 1187 DebugLoc 1188 MachineBasicBlock::findBranchDebugLoc() { 1189 DebugLoc DL; 1190 auto TI = getFirstTerminator(); 1191 while (TI != end() && !TI->isBranch()) 1192 ++TI; 1193 1194 if (TI != end()) { 1195 DL = TI->getDebugLoc(); 1196 for (++TI ; TI != end() ; ++TI) 1197 if (TI->isBranch()) 1198 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1199 } 1200 return DL; 1201 } 1202 1203 /// Return probability of the edge from this block to MBB. 1204 BranchProbability 1205 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1206 if (Probs.empty()) 1207 return BranchProbability(1, succ_size()); 1208 1209 const auto &Prob = *getProbabilityIterator(Succ); 1210 if (Prob.isUnknown()) { 1211 // For unknown probabilities, collect the sum of all known ones, and evenly 1212 // ditribute the complemental of the sum to each unknown probability. 1213 unsigned KnownProbNum = 0; 1214 auto Sum = BranchProbability::getZero(); 1215 for (auto &P : Probs) { 1216 if (!P.isUnknown()) { 1217 Sum += P; 1218 KnownProbNum++; 1219 } 1220 } 1221 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1222 } else 1223 return Prob; 1224 } 1225 1226 /// Set successor probability of a given iterator. 1227 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1228 BranchProbability Prob) { 1229 assert(!Prob.isUnknown()); 1230 if (Probs.empty()) 1231 return; 1232 *getProbabilityIterator(I) = Prob; 1233 } 1234 1235 /// Return probability iterator corresonding to the I successor iterator 1236 MachineBasicBlock::const_probability_iterator 1237 MachineBasicBlock::getProbabilityIterator( 1238 MachineBasicBlock::const_succ_iterator I) const { 1239 assert(Probs.size() == Successors.size() && "Async probability list!"); 1240 const size_t index = std::distance(Successors.begin(), I); 1241 assert(index < Probs.size() && "Not a current successor!"); 1242 return Probs.begin() + index; 1243 } 1244 1245 /// Return probability iterator corresonding to the I successor iterator. 1246 MachineBasicBlock::probability_iterator 1247 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1248 assert(Probs.size() == Successors.size() && "Async probability list!"); 1249 const size_t index = std::distance(Successors.begin(), I); 1250 assert(index < Probs.size() && "Not a current successor!"); 1251 return Probs.begin() + index; 1252 } 1253 1254 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1255 /// as of just before "MI". 1256 /// 1257 /// Search is localised to a neighborhood of 1258 /// Neighborhood instructions before (searching for defs or kills) and N 1259 /// instructions after (searching just for defs) MI. 1260 MachineBasicBlock::LivenessQueryResult 1261 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1262 unsigned Reg, const_iterator Before, 1263 unsigned Neighborhood) const { 1264 unsigned N = Neighborhood; 1265 1266 // Start by searching backwards from Before, looking for kills, reads or defs. 1267 const_iterator I(Before); 1268 // If this is the first insn in the block, don't search backwards. 1269 if (I != begin()) { 1270 do { 1271 --I; 1272 1273 MachineOperandIteratorBase::PhysRegInfo Info = 1274 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1275 1276 // Defs happen after uses so they take precedence if both are present. 1277 1278 // Register is dead after a dead def of the full register. 1279 if (Info.DeadDef) 1280 return LQR_Dead; 1281 // Register is (at least partially) live after a def. 1282 if (Info.Defined) { 1283 if (!Info.PartialDeadDef) 1284 return LQR_Live; 1285 // As soon as we saw a partial definition (dead or not), 1286 // we cannot tell if the value is partial live without 1287 // tracking the lanemasks. We are not going to do this, 1288 // so fall back on the remaining of the analysis. 1289 break; 1290 } 1291 // Register is dead after a full kill or clobber and no def. 1292 if (Info.Killed || Info.Clobbered) 1293 return LQR_Dead; 1294 // Register must be live if we read it. 1295 if (Info.Read) 1296 return LQR_Live; 1297 } while (I != begin() && --N > 0); 1298 } 1299 1300 // Did we get to the start of the block? 1301 if (I == begin()) { 1302 // If so, the register's state is definitely defined by the live-in state. 1303 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1304 ++RAI) 1305 if (isLiveIn(*RAI)) 1306 return LQR_Live; 1307 1308 return LQR_Dead; 1309 } 1310 1311 N = Neighborhood; 1312 1313 // Try searching forwards from Before, looking for reads or defs. 1314 I = const_iterator(Before); 1315 // If this is the last insn in the block, don't search forwards. 1316 if (I != end()) { 1317 for (++I; I != end() && N > 0; ++I, --N) { 1318 MachineOperandIteratorBase::PhysRegInfo Info = 1319 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1320 1321 // Register is live when we read it here. 1322 if (Info.Read) 1323 return LQR_Live; 1324 // Register is dead if we can fully overwrite or clobber it here. 1325 if (Info.FullyDefined || Info.Clobbered) 1326 return LQR_Dead; 1327 } 1328 } 1329 1330 // At this point we have no idea of the liveness of the register. 1331 return LQR_Unknown; 1332 } 1333 1334 const uint32_t * 1335 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1336 // EH funclet entry does not preserve any registers. 1337 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1338 } 1339 1340 const uint32_t * 1341 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1342 // If we see a return block with successors, this must be a funclet return, 1343 // which does not preserve any registers. If there are no successors, we don't 1344 // care what kind of return it is, putting a mask after it is a no-op. 1345 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1346 } 1347 1348 void MachineBasicBlock::clearLiveIns() { 1349 LiveIns.clear(); 1350 } 1351 1352 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1353 assert(getParent()->getProperties().hasProperty( 1354 MachineFunctionProperties::Property::TracksLiveness) && 1355 "Liveness information is accurate"); 1356 return LiveIns.begin(); 1357 } 1358