1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/DataTypes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 if (B) 46 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 47 } 48 49 MachineBasicBlock::~MachineBasicBlock() { 50 } 51 52 /// Return the MCSymbol for this basic block. 53 MCSymbol *MachineBasicBlock::getSymbol() const { 54 if (!CachedMCSymbol) { 55 const MachineFunction *MF = getParent(); 56 MCContext &Ctx = MF->getContext(); 57 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 58 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 59 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 60 Twine(MF->getFunctionNumber()) + 61 "_" + Twine(getNumber())); 62 } 63 64 return CachedMCSymbol; 65 } 66 67 68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 69 MBB.print(OS); 70 return OS; 71 } 72 73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 74 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 75 } 76 77 /// When an MBB is added to an MF, we need to update the parent pointer of the 78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 79 /// operand list for registers. 80 /// 81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 82 /// gets the next available unique MBB number. If it is removed from a 83 /// MachineFunction, it goes back to being #-1. 84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 85 MachineBasicBlock *N) { 86 MachineFunction &MF = *N->getParent(); 87 N->Number = MF.addToMBBNumbering(N); 88 89 // Make sure the instructions have their operands in the reginfo lists. 90 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 91 for (MachineBasicBlock::instr_iterator 92 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 93 I->AddRegOperandsToUseLists(RegInfo); 94 } 95 96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 97 MachineBasicBlock *N) { 98 N->getParent()->removeFromMBBNumbering(N->Number); 99 N->Number = -1; 100 } 101 102 /// When we add an instruction to a basic block list, we update its parent 103 /// pointer and add its operands from reg use/def lists if appropriate. 104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 105 assert(!N->getParent() && "machine instruction already in a basic block"); 106 N->setParent(Parent); 107 108 // Add the instruction's register operands to their corresponding 109 // use/def lists. 110 MachineFunction *MF = Parent->getParent(); 111 N->AddRegOperandsToUseLists(MF->getRegInfo()); 112 } 113 114 /// When we remove an instruction from a basic block list, we update its parent 115 /// pointer and remove its operands from reg use/def lists if appropriate. 116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 117 assert(N->getParent() && "machine instruction not in a basic block"); 118 119 // Remove from the use/def lists. 120 if (MachineFunction *MF = N->getMF()) 121 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 122 123 N->setParent(nullptr); 124 } 125 126 /// When moving a range of instructions from one MBB list to another, we need to 127 /// update the parent pointers and the use/def lists. 128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 129 instr_iterator First, 130 instr_iterator Last) { 131 assert(Parent->getParent() == FromList.Parent->getParent() && 132 "MachineInstr parent mismatch!"); 133 assert(this != &FromList && "Called without a real transfer..."); 134 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 135 136 // If splicing between two blocks within the same function, just update the 137 // parent pointers. 138 for (; First != Last; ++First) 139 First->setParent(Parent); 140 } 141 142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 143 assert(!MI->getParent() && "MI is still in a block!"); 144 Parent->getParent()->DeleteMachineInstr(MI); 145 } 146 147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 148 instr_iterator I = instr_begin(), E = instr_end(); 149 while (I != E && I->isPHI()) 150 ++I; 151 assert((I == E || !I->isInsideBundle()) && 152 "First non-phi MI cannot be inside a bundle!"); 153 return I; 154 } 155 156 MachineBasicBlock::iterator 157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 158 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 159 160 iterator E = end(); 161 while (I != E && (I->isPHI() || I->isPosition() || 162 TII->isBasicBlockPrologue(*I))) 163 ++I; 164 // FIXME: This needs to change if we wish to bundle labels 165 // inside the bundle. 166 assert((I == E || !I->isInsideBundle()) && 167 "First non-phi / non-label instruction is inside a bundle!"); 168 return I; 169 } 170 171 MachineBasicBlock::iterator 172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 173 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 174 175 iterator E = end(); 176 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 177 TII->isBasicBlockPrologue(*I))) 178 ++I; 179 // FIXME: This needs to change if we wish to bundle labels / dbg_values 180 // inside the bundle. 181 assert((I == E || !I->isInsideBundle()) && 182 "First non-phi / non-label / non-debug " 183 "instruction is inside a bundle!"); 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 188 iterator B = begin(), E = end(), I = E; 189 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 190 ; /*noop */ 191 while (I != E && !I->isTerminator()) 192 ++I; 193 return I; 194 } 195 196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 197 instr_iterator B = instr_begin(), E = instr_end(), I = E; 198 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 199 ; /*noop */ 200 while (I != E && !I->isTerminator()) 201 ++I; 202 return I; 203 } 204 205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 206 // Skip over begin-of-block dbg_value instructions. 207 return skipDebugInstructionsForward(begin(), end()); 208 } 209 210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 211 // Skip over end-of-block dbg_value instructions. 212 instr_iterator B = instr_begin(), I = instr_end(); 213 while (I != B) { 214 --I; 215 // Return instruction that starts a bundle. 216 if (I->isDebugValue() || I->isInsideBundle()) 217 continue; 218 return I; 219 } 220 // The block is all debug values. 221 return end(); 222 } 223 224 bool MachineBasicBlock::hasEHPadSuccessor() const { 225 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 226 if ((*I)->isEHPad()) 227 return true; 228 return false; 229 } 230 231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 233 print(dbgs()); 234 } 235 #endif 236 237 bool MachineBasicBlock::isLegalToHoistInto() const { 238 if (isReturnBlock() || hasEHPadSuccessor()) 239 return false; 240 return true; 241 } 242 243 StringRef MachineBasicBlock::getName() const { 244 if (const BasicBlock *LBB = getBasicBlock()) 245 return LBB->getName(); 246 else 247 return StringRef("", 0); 248 } 249 250 /// Return a hopefully unique identifier for this block. 251 std::string MachineBasicBlock::getFullName() const { 252 std::string Name; 253 if (getParent()) 254 Name = (getParent()->getName() + ":").str(); 255 if (getBasicBlock()) 256 Name += getBasicBlock()->getName(); 257 else 258 Name += ("BB" + Twine(getNumber())).str(); 259 return Name; 260 } 261 262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes) 263 const { 264 const MachineFunction *MF = getParent(); 265 if (!MF) { 266 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 267 << " is null\n"; 268 return; 269 } 270 const Function *F = MF->getFunction(); 271 const Module *M = F ? F->getParent() : nullptr; 272 ModuleSlotTracker MST(M); 273 print(OS, MST, Indexes); 274 } 275 276 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 277 const SlotIndexes *Indexes) const { 278 const MachineFunction *MF = getParent(); 279 if (!MF) { 280 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 281 << " is null\n"; 282 return; 283 } 284 285 if (Indexes) 286 OS << Indexes->getMBBStartIdx(this) << '\t'; 287 288 OS << printMBBReference(*this) << ": "; 289 290 const char *Comma = ""; 291 if (const BasicBlock *LBB = getBasicBlock()) { 292 OS << Comma << "derived from LLVM BB "; 293 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 294 Comma = ", "; 295 } 296 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 297 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 298 if (Alignment) 299 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 300 << " bytes)"; 301 302 OS << '\n'; 303 304 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 305 if (!livein_empty()) { 306 if (Indexes) OS << '\t'; 307 OS << " Live Ins:"; 308 for (const auto &LI : LiveIns) { 309 OS << ' ' << printReg(LI.PhysReg, TRI); 310 if (!LI.LaneMask.all()) 311 OS << ':' << PrintLaneMask(LI.LaneMask); 312 } 313 OS << '\n'; 314 } 315 // Print the preds of this block according to the CFG. 316 if (!pred_empty()) { 317 if (Indexes) OS << '\t'; 318 OS << " Predecessors according to CFG:"; 319 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 320 OS << " " << printMBBReference(*(*PI)); 321 OS << '\n'; 322 } 323 324 for (auto &I : instrs()) { 325 if (Indexes) { 326 if (Indexes->hasIndex(I)) 327 OS << Indexes->getInstructionIndex(I); 328 OS << '\t'; 329 } 330 OS << '\t'; 331 if (I.isInsideBundle()) 332 OS << " * "; 333 I.print(OS, MST); 334 } 335 336 // Print the successors of this block according to the CFG. 337 if (!succ_empty()) { 338 if (Indexes) OS << '\t'; 339 OS << " Successors according to CFG:"; 340 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 341 OS << " " << printMBBReference(*(*SI)); 342 if (!Probs.empty()) 343 OS << '(' << *getProbabilityIterator(SI) << ')'; 344 } 345 OS << '\n'; 346 } 347 if (IrrLoopHeaderWeight) { 348 if (Indexes) OS << '\t'; 349 OS << " Irreducible loop header weight: " 350 << IrrLoopHeaderWeight.getValue(); 351 OS << '\n'; 352 } 353 } 354 355 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 356 bool /*PrintType*/) const { 357 OS << "%bb." << getNumber(); 358 } 359 360 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 361 LiveInVector::iterator I = find_if( 362 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 363 if (I == LiveIns.end()) 364 return; 365 366 I->LaneMask &= ~LaneMask; 367 if (I->LaneMask.none()) 368 LiveIns.erase(I); 369 } 370 371 MachineBasicBlock::livein_iterator 372 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 373 // Get non-const version of iterator. 374 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 375 return LiveIns.erase(LI); 376 } 377 378 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 379 livein_iterator I = find_if( 380 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 381 return I != livein_end() && (I->LaneMask & LaneMask).any(); 382 } 383 384 void MachineBasicBlock::sortUniqueLiveIns() { 385 std::sort(LiveIns.begin(), LiveIns.end(), 386 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 387 return LI0.PhysReg < LI1.PhysReg; 388 }); 389 // Liveins are sorted by physreg now we can merge their lanemasks. 390 LiveInVector::const_iterator I = LiveIns.begin(); 391 LiveInVector::const_iterator J; 392 LiveInVector::iterator Out = LiveIns.begin(); 393 for (; I != LiveIns.end(); ++Out, I = J) { 394 unsigned PhysReg = I->PhysReg; 395 LaneBitmask LaneMask = I->LaneMask; 396 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 397 LaneMask |= J->LaneMask; 398 Out->PhysReg = PhysReg; 399 Out->LaneMask = LaneMask; 400 } 401 LiveIns.erase(Out, LiveIns.end()); 402 } 403 404 unsigned 405 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 406 assert(getParent() && "MBB must be inserted in function"); 407 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 408 assert(RC && "Register class is required"); 409 assert((isEHPad() || this == &getParent()->front()) && 410 "Only the entry block and landing pads can have physreg live ins"); 411 412 bool LiveIn = isLiveIn(PhysReg); 413 iterator I = SkipPHIsAndLabels(begin()), E = end(); 414 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 415 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 416 417 // Look for an existing copy. 418 if (LiveIn) 419 for (;I != E && I->isCopy(); ++I) 420 if (I->getOperand(1).getReg() == PhysReg) { 421 unsigned VirtReg = I->getOperand(0).getReg(); 422 if (!MRI.constrainRegClass(VirtReg, RC)) 423 llvm_unreachable("Incompatible live-in register class."); 424 return VirtReg; 425 } 426 427 // No luck, create a virtual register. 428 unsigned VirtReg = MRI.createVirtualRegister(RC); 429 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 430 .addReg(PhysReg, RegState::Kill); 431 if (!LiveIn) 432 addLiveIn(PhysReg); 433 return VirtReg; 434 } 435 436 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 437 getParent()->splice(NewAfter->getIterator(), getIterator()); 438 } 439 440 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 441 getParent()->splice(++NewBefore->getIterator(), getIterator()); 442 } 443 444 void MachineBasicBlock::updateTerminator() { 445 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 446 // A block with no successors has no concerns with fall-through edges. 447 if (this->succ_empty()) 448 return; 449 450 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 451 SmallVector<MachineOperand, 4> Cond; 452 DebugLoc DL = findBranchDebugLoc(); 453 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 454 (void) B; 455 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 456 if (Cond.empty()) { 457 if (TBB) { 458 // The block has an unconditional branch. If its successor is now its 459 // layout successor, delete the branch. 460 if (isLayoutSuccessor(TBB)) 461 TII->removeBranch(*this); 462 } else { 463 // The block has an unconditional fallthrough. If its successor is not its 464 // layout successor, insert a branch. First we have to locate the only 465 // non-landing-pad successor, as that is the fallthrough block. 466 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 467 if ((*SI)->isEHPad()) 468 continue; 469 assert(!TBB && "Found more than one non-landing-pad successor!"); 470 TBB = *SI; 471 } 472 473 // If there is no non-landing-pad successor, the block has no fall-through 474 // edges to be concerned with. 475 if (!TBB) 476 return; 477 478 // Finally update the unconditional successor to be reached via a branch 479 // if it would not be reached by fallthrough. 480 if (!isLayoutSuccessor(TBB)) 481 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 482 } 483 return; 484 } 485 486 if (FBB) { 487 // The block has a non-fallthrough conditional branch. If one of its 488 // successors is its layout successor, rewrite it to a fallthrough 489 // conditional branch. 490 if (isLayoutSuccessor(TBB)) { 491 if (TII->reverseBranchCondition(Cond)) 492 return; 493 TII->removeBranch(*this); 494 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 495 } else if (isLayoutSuccessor(FBB)) { 496 TII->removeBranch(*this); 497 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 498 } 499 return; 500 } 501 502 // Walk through the successors and find the successor which is not a landing 503 // pad and is not the conditional branch destination (in TBB) as the 504 // fallthrough successor. 505 MachineBasicBlock *FallthroughBB = nullptr; 506 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 507 if ((*SI)->isEHPad() || *SI == TBB) 508 continue; 509 assert(!FallthroughBB && "Found more than one fallthrough successor."); 510 FallthroughBB = *SI; 511 } 512 513 if (!FallthroughBB) { 514 if (canFallThrough()) { 515 // We fallthrough to the same basic block as the conditional jump targets. 516 // Remove the conditional jump, leaving unconditional fallthrough. 517 // FIXME: This does not seem like a reasonable pattern to support, but it 518 // has been seen in the wild coming out of degenerate ARM test cases. 519 TII->removeBranch(*this); 520 521 // Finally update the unconditional successor to be reached via a branch if 522 // it would not be reached by fallthrough. 523 if (!isLayoutSuccessor(TBB)) 524 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 525 return; 526 } 527 528 // We enter here iff exactly one successor is TBB which cannot fallthrough 529 // and the rest successors if any are EHPads. In this case, we need to 530 // change the conditional branch into unconditional branch. 531 TII->removeBranch(*this); 532 Cond.clear(); 533 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 534 return; 535 } 536 537 // The block has a fallthrough conditional branch. 538 if (isLayoutSuccessor(TBB)) { 539 if (TII->reverseBranchCondition(Cond)) { 540 // We can't reverse the condition, add an unconditional branch. 541 Cond.clear(); 542 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 543 return; 544 } 545 TII->removeBranch(*this); 546 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 547 } else if (!isLayoutSuccessor(FallthroughBB)) { 548 TII->removeBranch(*this); 549 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 550 } 551 } 552 553 void MachineBasicBlock::validateSuccProbs() const { 554 #ifndef NDEBUG 555 int64_t Sum = 0; 556 for (auto Prob : Probs) 557 Sum += Prob.getNumerator(); 558 // Due to precision issue, we assume that the sum of probabilities is one if 559 // the difference between the sum of their numerators and the denominator is 560 // no greater than the number of successors. 561 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 562 Probs.size() && 563 "The sum of successors's probabilities exceeds one."); 564 #endif // NDEBUG 565 } 566 567 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 568 BranchProbability Prob) { 569 // Probability list is either empty (if successor list isn't empty, this means 570 // disabled optimization) or has the same size as successor list. 571 if (!(Probs.empty() && !Successors.empty())) 572 Probs.push_back(Prob); 573 Successors.push_back(Succ); 574 Succ->addPredecessor(this); 575 } 576 577 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 578 // We need to make sure probability list is either empty or has the same size 579 // of successor list. When this function is called, we can safely delete all 580 // probability in the list. 581 Probs.clear(); 582 Successors.push_back(Succ); 583 Succ->addPredecessor(this); 584 } 585 586 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 587 bool NormalizeSuccProbs) { 588 succ_iterator I = find(Successors, Succ); 589 removeSuccessor(I, NormalizeSuccProbs); 590 } 591 592 MachineBasicBlock::succ_iterator 593 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 594 assert(I != Successors.end() && "Not a current successor!"); 595 596 // If probability list is empty it means we don't use it (disabled 597 // optimization). 598 if (!Probs.empty()) { 599 probability_iterator WI = getProbabilityIterator(I); 600 Probs.erase(WI); 601 if (NormalizeSuccProbs) 602 normalizeSuccProbs(); 603 } 604 605 (*I)->removePredecessor(this); 606 return Successors.erase(I); 607 } 608 609 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 610 MachineBasicBlock *New) { 611 if (Old == New) 612 return; 613 614 succ_iterator E = succ_end(); 615 succ_iterator NewI = E; 616 succ_iterator OldI = E; 617 for (succ_iterator I = succ_begin(); I != E; ++I) { 618 if (*I == Old) { 619 OldI = I; 620 if (NewI != E) 621 break; 622 } 623 if (*I == New) { 624 NewI = I; 625 if (OldI != E) 626 break; 627 } 628 } 629 assert(OldI != E && "Old is not a successor of this block"); 630 631 // If New isn't already a successor, let it take Old's place. 632 if (NewI == E) { 633 Old->removePredecessor(this); 634 New->addPredecessor(this); 635 *OldI = New; 636 return; 637 } 638 639 // New is already a successor. 640 // Update its probability instead of adding a duplicate edge. 641 if (!Probs.empty()) { 642 auto ProbIter = getProbabilityIterator(NewI); 643 if (!ProbIter->isUnknown()) 644 *ProbIter += *getProbabilityIterator(OldI); 645 } 646 removeSuccessor(OldI); 647 } 648 649 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 650 Predecessors.push_back(Pred); 651 } 652 653 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 654 pred_iterator I = find(Predecessors, Pred); 655 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 656 Predecessors.erase(I); 657 } 658 659 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 660 if (this == FromMBB) 661 return; 662 663 while (!FromMBB->succ_empty()) { 664 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 665 666 // If probability list is empty it means we don't use it (disabled optimization). 667 if (!FromMBB->Probs.empty()) { 668 auto Prob = *FromMBB->Probs.begin(); 669 addSuccessor(Succ, Prob); 670 } else 671 addSuccessorWithoutProb(Succ); 672 673 FromMBB->removeSuccessor(Succ); 674 } 675 } 676 677 void 678 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 679 if (this == FromMBB) 680 return; 681 682 while (!FromMBB->succ_empty()) { 683 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 684 if (!FromMBB->Probs.empty()) { 685 auto Prob = *FromMBB->Probs.begin(); 686 addSuccessor(Succ, Prob); 687 } else 688 addSuccessorWithoutProb(Succ); 689 FromMBB->removeSuccessor(Succ); 690 691 // Fix up any PHI nodes in the successor. 692 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 693 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 694 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 695 MachineOperand &MO = MI->getOperand(i); 696 if (MO.getMBB() == FromMBB) 697 MO.setMBB(this); 698 } 699 } 700 normalizeSuccProbs(); 701 } 702 703 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 704 return is_contained(predecessors(), MBB); 705 } 706 707 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 708 return is_contained(successors(), MBB); 709 } 710 711 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 712 MachineFunction::const_iterator I(this); 713 return std::next(I) == MachineFunction::const_iterator(MBB); 714 } 715 716 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 717 MachineFunction::iterator Fallthrough = getIterator(); 718 ++Fallthrough; 719 // If FallthroughBlock is off the end of the function, it can't fall through. 720 if (Fallthrough == getParent()->end()) 721 return nullptr; 722 723 // If FallthroughBlock isn't a successor, no fallthrough is possible. 724 if (!isSuccessor(&*Fallthrough)) 725 return nullptr; 726 727 // Analyze the branches, if any, at the end of the block. 728 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 729 SmallVector<MachineOperand, 4> Cond; 730 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 731 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 732 // If we couldn't analyze the branch, examine the last instruction. 733 // If the block doesn't end in a known control barrier, assume fallthrough 734 // is possible. The isPredicated check is needed because this code can be 735 // called during IfConversion, where an instruction which is normally a 736 // Barrier is predicated and thus no longer an actual control barrier. 737 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 738 ? &*Fallthrough 739 : nullptr; 740 } 741 742 // If there is no branch, control always falls through. 743 if (!TBB) return &*Fallthrough; 744 745 // If there is some explicit branch to the fallthrough block, it can obviously 746 // reach, even though the branch should get folded to fall through implicitly. 747 if (MachineFunction::iterator(TBB) == Fallthrough || 748 MachineFunction::iterator(FBB) == Fallthrough) 749 return &*Fallthrough; 750 751 // If it's an unconditional branch to some block not the fall through, it 752 // doesn't fall through. 753 if (Cond.empty()) return nullptr; 754 755 // Otherwise, if it is conditional and has no explicit false block, it falls 756 // through. 757 return (FBB == nullptr) ? &*Fallthrough : nullptr; 758 } 759 760 bool MachineBasicBlock::canFallThrough() { 761 return getFallThrough() != nullptr; 762 } 763 764 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 765 Pass &P) { 766 if (!canSplitCriticalEdge(Succ)) 767 return nullptr; 768 769 MachineFunction *MF = getParent(); 770 DebugLoc DL; // FIXME: this is nowhere 771 772 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 773 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 774 DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 775 << " -- " << printMBBReference(*NMBB) << " -- " 776 << printMBBReference(*Succ) << '\n'); 777 778 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 779 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 780 if (LIS) 781 LIS->insertMBBInMaps(NMBB); 782 else if (Indexes) 783 Indexes->insertMBBInMaps(NMBB); 784 785 // On some targets like Mips, branches may kill virtual registers. Make sure 786 // that LiveVariables is properly updated after updateTerminator replaces the 787 // terminators. 788 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 789 790 // Collect a list of virtual registers killed by the terminators. 791 SmallVector<unsigned, 4> KilledRegs; 792 if (LV) 793 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 794 I != E; ++I) { 795 MachineInstr *MI = &*I; 796 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 797 OE = MI->operands_end(); OI != OE; ++OI) { 798 if (!OI->isReg() || OI->getReg() == 0 || 799 !OI->isUse() || !OI->isKill() || OI->isUndef()) 800 continue; 801 unsigned Reg = OI->getReg(); 802 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 803 LV->getVarInfo(Reg).removeKill(*MI)) { 804 KilledRegs.push_back(Reg); 805 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 806 OI->setIsKill(false); 807 } 808 } 809 } 810 811 SmallVector<unsigned, 4> UsedRegs; 812 if (LIS) { 813 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 814 I != E; ++I) { 815 MachineInstr *MI = &*I; 816 817 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 818 OE = MI->operands_end(); OI != OE; ++OI) { 819 if (!OI->isReg() || OI->getReg() == 0) 820 continue; 821 822 unsigned Reg = OI->getReg(); 823 if (!is_contained(UsedRegs, Reg)) 824 UsedRegs.push_back(Reg); 825 } 826 } 827 } 828 829 ReplaceUsesOfBlockWith(Succ, NMBB); 830 831 // If updateTerminator() removes instructions, we need to remove them from 832 // SlotIndexes. 833 SmallVector<MachineInstr*, 4> Terminators; 834 if (Indexes) { 835 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 836 I != E; ++I) 837 Terminators.push_back(&*I); 838 } 839 840 updateTerminator(); 841 842 if (Indexes) { 843 SmallVector<MachineInstr*, 4> NewTerminators; 844 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 845 I != E; ++I) 846 NewTerminators.push_back(&*I); 847 848 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 849 E = Terminators.end(); I != E; ++I) { 850 if (!is_contained(NewTerminators, *I)) 851 Indexes->removeMachineInstrFromMaps(**I); 852 } 853 } 854 855 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 856 NMBB->addSuccessor(Succ); 857 if (!NMBB->isLayoutSuccessor(Succ)) { 858 SmallVector<MachineOperand, 4> Cond; 859 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 860 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 861 862 if (Indexes) { 863 for (MachineInstr &MI : NMBB->instrs()) { 864 // Some instructions may have been moved to NMBB by updateTerminator(), 865 // so we first remove any instruction that already has an index. 866 if (Indexes->hasIndex(MI)) 867 Indexes->removeMachineInstrFromMaps(MI); 868 Indexes->insertMachineInstrInMaps(MI); 869 } 870 } 871 } 872 873 // Fix PHI nodes in Succ so they refer to NMBB instead of this 874 for (MachineBasicBlock::instr_iterator 875 i = Succ->instr_begin(),e = Succ->instr_end(); 876 i != e && i->isPHI(); ++i) 877 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 878 if (i->getOperand(ni+1).getMBB() == this) 879 i->getOperand(ni+1).setMBB(NMBB); 880 881 // Inherit live-ins from the successor 882 for (const auto &LI : Succ->liveins()) 883 NMBB->addLiveIn(LI); 884 885 // Update LiveVariables. 886 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 887 if (LV) { 888 // Restore kills of virtual registers that were killed by the terminators. 889 while (!KilledRegs.empty()) { 890 unsigned Reg = KilledRegs.pop_back_val(); 891 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 892 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 893 continue; 894 if (TargetRegisterInfo::isVirtualRegister(Reg)) 895 LV->getVarInfo(Reg).Kills.push_back(&*I); 896 DEBUG(dbgs() << "Restored terminator kill: " << *I); 897 break; 898 } 899 } 900 // Update relevant live-through information. 901 LV->addNewBlock(NMBB, this, Succ); 902 } 903 904 if (LIS) { 905 // After splitting the edge and updating SlotIndexes, live intervals may be 906 // in one of two situations, depending on whether this block was the last in 907 // the function. If the original block was the last in the function, all 908 // live intervals will end prior to the beginning of the new split block. If 909 // the original block was not at the end of the function, all live intervals 910 // will extend to the end of the new split block. 911 912 bool isLastMBB = 913 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 914 915 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 916 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 917 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 918 919 // Find the registers used from NMBB in PHIs in Succ. 920 SmallSet<unsigned, 8> PHISrcRegs; 921 for (MachineBasicBlock::instr_iterator 922 I = Succ->instr_begin(), E = Succ->instr_end(); 923 I != E && I->isPHI(); ++I) { 924 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 925 if (I->getOperand(ni+1).getMBB() == NMBB) { 926 MachineOperand &MO = I->getOperand(ni); 927 unsigned Reg = MO.getReg(); 928 PHISrcRegs.insert(Reg); 929 if (MO.isUndef()) 930 continue; 931 932 LiveInterval &LI = LIS->getInterval(Reg); 933 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 934 assert(VNI && 935 "PHI sources should be live out of their predecessors."); 936 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 937 } 938 } 939 } 940 941 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 942 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 943 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 944 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 945 continue; 946 947 LiveInterval &LI = LIS->getInterval(Reg); 948 if (!LI.liveAt(PrevIndex)) 949 continue; 950 951 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 952 if (isLiveOut && isLastMBB) { 953 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 954 assert(VNI && "LiveInterval should have VNInfo where it is live."); 955 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 956 } else if (!isLiveOut && !isLastMBB) { 957 LI.removeSegment(StartIndex, EndIndex); 958 } 959 } 960 961 // Update all intervals for registers whose uses may have been modified by 962 // updateTerminator(). 963 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 964 } 965 966 if (MachineDominatorTree *MDT = 967 P.getAnalysisIfAvailable<MachineDominatorTree>()) 968 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 969 970 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 971 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 972 // If one or the other blocks were not in a loop, the new block is not 973 // either, and thus LI doesn't need to be updated. 974 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 975 if (TIL == DestLoop) { 976 // Both in the same loop, the NMBB joins loop. 977 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 978 } else if (TIL->contains(DestLoop)) { 979 // Edge from an outer loop to an inner loop. Add to the outer loop. 980 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 981 } else if (DestLoop->contains(TIL)) { 982 // Edge from an inner loop to an outer loop. Add to the outer loop. 983 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 984 } else { 985 // Edge from two loops with no containment relation. Because these 986 // are natural loops, we know that the destination block must be the 987 // header of its loop (adding a branch into a loop elsewhere would 988 // create an irreducible loop). 989 assert(DestLoop->getHeader() == Succ && 990 "Should not create irreducible loops!"); 991 if (MachineLoop *P = DestLoop->getParentLoop()) 992 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 993 } 994 } 995 } 996 997 return NMBB; 998 } 999 1000 bool MachineBasicBlock::canSplitCriticalEdge( 1001 const MachineBasicBlock *Succ) const { 1002 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1003 // it in this generic function. 1004 if (Succ->isEHPad()) 1005 return false; 1006 1007 const MachineFunction *MF = getParent(); 1008 1009 // Performance might be harmed on HW that implements branching using exec mask 1010 // where both sides of the branches are always executed. 1011 if (MF->getTarget().requiresStructuredCFG()) 1012 return false; 1013 1014 // We may need to update this's terminator, but we can't do that if 1015 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1016 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1017 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1018 SmallVector<MachineOperand, 4> Cond; 1019 // AnalyzeBanch should modify this, since we did not allow modification. 1020 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1021 /*AllowModify*/ false)) 1022 return false; 1023 1024 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1025 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1026 // case that we can't handle. Since this never happens in properly optimized 1027 // code, just skip those edges. 1028 if (TBB && TBB == FBB) { 1029 DEBUG(dbgs() << "Won't split critical edge after degenerate " 1030 << printMBBReference(*this) << '\n'); 1031 return false; 1032 } 1033 return true; 1034 } 1035 1036 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1037 /// neighboring instructions so the bundle won't be broken by removing MI. 1038 static void unbundleSingleMI(MachineInstr *MI) { 1039 // Removing the first instruction in a bundle. 1040 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1041 MI->unbundleFromSucc(); 1042 // Removing the last instruction in a bundle. 1043 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1044 MI->unbundleFromPred(); 1045 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1046 // are already fine. 1047 } 1048 1049 MachineBasicBlock::instr_iterator 1050 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1051 unbundleSingleMI(&*I); 1052 return Insts.erase(I); 1053 } 1054 1055 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1056 unbundleSingleMI(MI); 1057 MI->clearFlag(MachineInstr::BundledPred); 1058 MI->clearFlag(MachineInstr::BundledSucc); 1059 return Insts.remove(MI); 1060 } 1061 1062 MachineBasicBlock::instr_iterator 1063 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1064 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1065 "Cannot insert instruction with bundle flags"); 1066 // Set the bundle flags when inserting inside a bundle. 1067 if (I != instr_end() && I->isBundledWithPred()) { 1068 MI->setFlag(MachineInstr::BundledPred); 1069 MI->setFlag(MachineInstr::BundledSucc); 1070 } 1071 return Insts.insert(I, MI); 1072 } 1073 1074 /// This method unlinks 'this' from the containing function, and returns it, but 1075 /// does not delete it. 1076 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1077 assert(getParent() && "Not embedded in a function!"); 1078 getParent()->remove(this); 1079 return this; 1080 } 1081 1082 /// This method unlinks 'this' from the containing function, and deletes it. 1083 void MachineBasicBlock::eraseFromParent() { 1084 assert(getParent() && "Not embedded in a function!"); 1085 getParent()->erase(this); 1086 } 1087 1088 /// Given a machine basic block that branched to 'Old', change the code and CFG 1089 /// so that it branches to 'New' instead. 1090 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1091 MachineBasicBlock *New) { 1092 assert(Old != New && "Cannot replace self with self!"); 1093 1094 MachineBasicBlock::instr_iterator I = instr_end(); 1095 while (I != instr_begin()) { 1096 --I; 1097 if (!I->isTerminator()) break; 1098 1099 // Scan the operands of this machine instruction, replacing any uses of Old 1100 // with New. 1101 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1102 if (I->getOperand(i).isMBB() && 1103 I->getOperand(i).getMBB() == Old) 1104 I->getOperand(i).setMBB(New); 1105 } 1106 1107 // Update the successor information. 1108 replaceSuccessor(Old, New); 1109 } 1110 1111 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1112 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1113 /// MBB successors from the CFG. DestA and DestB can be null. 1114 /// 1115 /// Besides DestA and DestB, retain other edges leading to LandingPads 1116 /// (currently there can be only one; we don't check or require that here). 1117 /// Note it is possible that DestA and/or DestB are LandingPads. 1118 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1119 MachineBasicBlock *DestB, 1120 bool IsCond) { 1121 // The values of DestA and DestB frequently come from a call to the 1122 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1123 // values from there. 1124 // 1125 // 1. If both DestA and DestB are null, then the block ends with no branches 1126 // (it falls through to its successor). 1127 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1128 // with only an unconditional branch. 1129 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1130 // with a conditional branch that falls through to a successor (DestB). 1131 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1132 // conditional branch followed by an unconditional branch. DestA is the 1133 // 'true' destination and DestB is the 'false' destination. 1134 1135 bool Changed = false; 1136 1137 MachineBasicBlock *FallThru = getNextNode(); 1138 1139 if (!DestA && !DestB) { 1140 // Block falls through to successor. 1141 DestA = FallThru; 1142 DestB = FallThru; 1143 } else if (DestA && !DestB) { 1144 if (IsCond) 1145 // Block ends in conditional jump that falls through to successor. 1146 DestB = FallThru; 1147 } else { 1148 assert(DestA && DestB && IsCond && 1149 "CFG in a bad state. Cannot correct CFG edges"); 1150 } 1151 1152 // Remove superfluous edges. I.e., those which aren't destinations of this 1153 // basic block, duplicate edges, or landing pads. 1154 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1155 MachineBasicBlock::succ_iterator SI = succ_begin(); 1156 while (SI != succ_end()) { 1157 const MachineBasicBlock *MBB = *SI; 1158 if (!SeenMBBs.insert(MBB).second || 1159 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1160 // This is a superfluous edge, remove it. 1161 SI = removeSuccessor(SI); 1162 Changed = true; 1163 } else { 1164 ++SI; 1165 } 1166 } 1167 1168 if (Changed) 1169 normalizeSuccProbs(); 1170 return Changed; 1171 } 1172 1173 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1174 /// instructions. Return UnknownLoc if there is none. 1175 DebugLoc 1176 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1177 // Skip debug declarations, we don't want a DebugLoc from them. 1178 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1179 if (MBBI != instr_end()) 1180 return MBBI->getDebugLoc(); 1181 return {}; 1182 } 1183 1184 /// Find and return the merged DebugLoc of the branch instructions of the block. 1185 /// Return UnknownLoc if there is none. 1186 DebugLoc 1187 MachineBasicBlock::findBranchDebugLoc() { 1188 DebugLoc DL; 1189 auto TI = getFirstTerminator(); 1190 while (TI != end() && !TI->isBranch()) 1191 ++TI; 1192 1193 if (TI != end()) { 1194 DL = TI->getDebugLoc(); 1195 for (++TI ; TI != end() ; ++TI) 1196 if (TI->isBranch()) 1197 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1198 } 1199 return DL; 1200 } 1201 1202 /// Return probability of the edge from this block to MBB. 1203 BranchProbability 1204 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1205 if (Probs.empty()) 1206 return BranchProbability(1, succ_size()); 1207 1208 const auto &Prob = *getProbabilityIterator(Succ); 1209 if (Prob.isUnknown()) { 1210 // For unknown probabilities, collect the sum of all known ones, and evenly 1211 // ditribute the complemental of the sum to each unknown probability. 1212 unsigned KnownProbNum = 0; 1213 auto Sum = BranchProbability::getZero(); 1214 for (auto &P : Probs) { 1215 if (!P.isUnknown()) { 1216 Sum += P; 1217 KnownProbNum++; 1218 } 1219 } 1220 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1221 } else 1222 return Prob; 1223 } 1224 1225 /// Set successor probability of a given iterator. 1226 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1227 BranchProbability Prob) { 1228 assert(!Prob.isUnknown()); 1229 if (Probs.empty()) 1230 return; 1231 *getProbabilityIterator(I) = Prob; 1232 } 1233 1234 /// Return probability iterator corresonding to the I successor iterator 1235 MachineBasicBlock::const_probability_iterator 1236 MachineBasicBlock::getProbabilityIterator( 1237 MachineBasicBlock::const_succ_iterator I) const { 1238 assert(Probs.size() == Successors.size() && "Async probability list!"); 1239 const size_t index = std::distance(Successors.begin(), I); 1240 assert(index < Probs.size() && "Not a current successor!"); 1241 return Probs.begin() + index; 1242 } 1243 1244 /// Return probability iterator corresonding to the I successor iterator. 1245 MachineBasicBlock::probability_iterator 1246 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1247 assert(Probs.size() == Successors.size() && "Async probability list!"); 1248 const size_t index = std::distance(Successors.begin(), I); 1249 assert(index < Probs.size() && "Not a current successor!"); 1250 return Probs.begin() + index; 1251 } 1252 1253 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1254 /// as of just before "MI". 1255 /// 1256 /// Search is localised to a neighborhood of 1257 /// Neighborhood instructions before (searching for defs or kills) and N 1258 /// instructions after (searching just for defs) MI. 1259 MachineBasicBlock::LivenessQueryResult 1260 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1261 unsigned Reg, const_iterator Before, 1262 unsigned Neighborhood) const { 1263 unsigned N = Neighborhood; 1264 1265 // Start by searching backwards from Before, looking for kills, reads or defs. 1266 const_iterator I(Before); 1267 // If this is the first insn in the block, don't search backwards. 1268 if (I != begin()) { 1269 do { 1270 --I; 1271 1272 MachineOperandIteratorBase::PhysRegInfo Info = 1273 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1274 1275 // Defs happen after uses so they take precedence if both are present. 1276 1277 // Register is dead after a dead def of the full register. 1278 if (Info.DeadDef) 1279 return LQR_Dead; 1280 // Register is (at least partially) live after a def. 1281 if (Info.Defined) { 1282 if (!Info.PartialDeadDef) 1283 return LQR_Live; 1284 // As soon as we saw a partial definition (dead or not), 1285 // we cannot tell if the value is partial live without 1286 // tracking the lanemasks. We are not going to do this, 1287 // so fall back on the remaining of the analysis. 1288 break; 1289 } 1290 // Register is dead after a full kill or clobber and no def. 1291 if (Info.Killed || Info.Clobbered) 1292 return LQR_Dead; 1293 // Register must be live if we read it. 1294 if (Info.Read) 1295 return LQR_Live; 1296 } while (I != begin() && --N > 0); 1297 } 1298 1299 // Did we get to the start of the block? 1300 if (I == begin()) { 1301 // If so, the register's state is definitely defined by the live-in state. 1302 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1303 ++RAI) 1304 if (isLiveIn(*RAI)) 1305 return LQR_Live; 1306 1307 return LQR_Dead; 1308 } 1309 1310 N = Neighborhood; 1311 1312 // Try searching forwards from Before, looking for reads or defs. 1313 I = const_iterator(Before); 1314 // If this is the last insn in the block, don't search forwards. 1315 if (I != end()) { 1316 for (++I; I != end() && N > 0; ++I, --N) { 1317 MachineOperandIteratorBase::PhysRegInfo Info = 1318 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1319 1320 // Register is live when we read it here. 1321 if (Info.Read) 1322 return LQR_Live; 1323 // Register is dead if we can fully overwrite or clobber it here. 1324 if (Info.FullyDefined || Info.Clobbered) 1325 return LQR_Dead; 1326 } 1327 } 1328 1329 // At this point we have no idea of the liveness of the register. 1330 return LQR_Unknown; 1331 } 1332 1333 const uint32_t * 1334 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1335 // EH funclet entry does not preserve any registers. 1336 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1337 } 1338 1339 const uint32_t * 1340 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1341 // If we see a return block with successors, this must be a funclet return, 1342 // which does not preserve any registers. If there are no successors, we don't 1343 // care what kind of return it is, putting a mask after it is a no-op. 1344 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1345 } 1346 1347 void MachineBasicBlock::clearLiveIns() { 1348 LiveIns.clear(); 1349 } 1350 1351 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1352 assert(getParent()->getProperties().hasProperty( 1353 MachineFunctionProperties::Property::TracksLiveness) && 1354 "Liveness information is accurate"); 1355 return LiveIns.begin(); 1356 } 1357