1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/CodeGen/LiveIntervals.h" 16 #include "llvm/CodeGen/LiveVariables.h" 17 #include "llvm/CodeGen/MachineDominators.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SlotIndexes.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/DataTypes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 static cl::opt<bool> PrintSlotIndexes( 43 "print-slotindexes", 44 cl::desc("When printing machine IR, annotate instructions and blocks with " 45 "SlotIndexes when available"), 46 cl::init(true), cl::Hidden); 47 48 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 49 : BB(B), Number(-1), xParent(&MF) { 50 Insts.Parent = this; 51 if (B) 52 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 53 } 54 55 MachineBasicBlock::~MachineBasicBlock() { 56 } 57 58 /// Return the MCSymbol for this basic block. 59 MCSymbol *MachineBasicBlock::getSymbol() const { 60 if (!CachedMCSymbol) { 61 const MachineFunction *MF = getParent(); 62 MCContext &Ctx = MF->getContext(); 63 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 64 65 // We emit a non-temporary symbol for every basic block if we have BBLabels 66 // or -- with basic block sections -- when a basic block begins a section. 67 bool BasicBlockSymbols = isBeginSection() || MF->hasBBLabels(); 68 auto Delimiter = BasicBlockSymbols ? "." : "_"; 69 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 70 71 // With Basic Block Sections, we emit a symbol for every basic block. To 72 // keep the size of strtab small, we choose a unary encoding which can 73 // compress the symbol names significantly. The basic blocks for function 74 // foo are named a.BB.foo, aa.BB.foo, and so on. 75 if (BasicBlockSymbols) { 76 auto Iter = MF->getBBSectionsSymbolPrefix().begin(); 77 if (getNumber() < 0 || 78 getNumber() >= (int)MF->getBBSectionsSymbolPrefix().size()) 79 report_fatal_error("Unreachable MBB: " + Twine(getNumber())); 80 std::string Prefix(Iter + 1, Iter + getNumber() + 1); 81 std::reverse(Prefix.begin(), Prefix.end()); 82 CachedMCSymbol = 83 Ctx.getOrCreateSymbol(Prefix + Twine(Delimiter) + "BB" + 84 Twine(Delimiter) + Twine(MF->getName())); 85 } else { 86 CachedMCSymbol = Ctx.getOrCreateSymbol( 87 Twine(Prefix) + "BB" + Twine(MF->getFunctionNumber()) + 88 Twine(Delimiter) + Twine(getNumber())); 89 } 90 } 91 return CachedMCSymbol; 92 } 93 94 95 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 96 MBB.print(OS); 97 return OS; 98 } 99 100 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 101 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 102 } 103 104 /// When an MBB is added to an MF, we need to update the parent pointer of the 105 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 106 /// operand list for registers. 107 /// 108 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 109 /// gets the next available unique MBB number. If it is removed from a 110 /// MachineFunction, it goes back to being #-1. 111 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 112 MachineBasicBlock *N) { 113 MachineFunction &MF = *N->getParent(); 114 N->Number = MF.addToMBBNumbering(N); 115 116 // Make sure the instructions have their operands in the reginfo lists. 117 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 118 for (MachineBasicBlock::instr_iterator 119 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 120 I->AddRegOperandsToUseLists(RegInfo); 121 } 122 123 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 124 MachineBasicBlock *N) { 125 N->getParent()->removeFromMBBNumbering(N->Number); 126 N->Number = -1; 127 } 128 129 /// When we add an instruction to a basic block list, we update its parent 130 /// pointer and add its operands from reg use/def lists if appropriate. 131 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 132 assert(!N->getParent() && "machine instruction already in a basic block"); 133 N->setParent(Parent); 134 135 // Add the instruction's register operands to their corresponding 136 // use/def lists. 137 MachineFunction *MF = Parent->getParent(); 138 N->AddRegOperandsToUseLists(MF->getRegInfo()); 139 MF->handleInsertion(*N); 140 } 141 142 /// When we remove an instruction from a basic block list, we update its parent 143 /// pointer and remove its operands from reg use/def lists if appropriate. 144 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 145 assert(N->getParent() && "machine instruction not in a basic block"); 146 147 // Remove from the use/def lists. 148 if (MachineFunction *MF = N->getMF()) { 149 MF->handleRemoval(*N); 150 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 151 } 152 153 N->setParent(nullptr); 154 } 155 156 /// When moving a range of instructions from one MBB list to another, we need to 157 /// update the parent pointers and the use/def lists. 158 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 159 instr_iterator First, 160 instr_iterator Last) { 161 assert(Parent->getParent() == FromList.Parent->getParent() && 162 "cannot transfer MachineInstrs between MachineFunctions"); 163 164 // If it's within the same BB, there's nothing to do. 165 if (this == &FromList) 166 return; 167 168 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 169 170 // If splicing between two blocks within the same function, just update the 171 // parent pointers. 172 for (; First != Last; ++First) 173 First->setParent(Parent); 174 } 175 176 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 177 assert(!MI->getParent() && "MI is still in a block!"); 178 Parent->getParent()->DeleteMachineInstr(MI); 179 } 180 181 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 182 instr_iterator I = instr_begin(), E = instr_end(); 183 while (I != E && I->isPHI()) 184 ++I; 185 assert((I == E || !I->isInsideBundle()) && 186 "First non-phi MI cannot be inside a bundle!"); 187 return I; 188 } 189 190 MachineBasicBlock::iterator 191 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 192 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 193 194 iterator E = end(); 195 while (I != E && (I->isPHI() || I->isPosition() || 196 TII->isBasicBlockPrologue(*I))) 197 ++I; 198 // FIXME: This needs to change if we wish to bundle labels 199 // inside the bundle. 200 assert((I == E || !I->isInsideBundle()) && 201 "First non-phi / non-label instruction is inside a bundle!"); 202 return I; 203 } 204 205 MachineBasicBlock::iterator 206 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 207 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 208 209 iterator E = end(); 210 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 211 TII->isBasicBlockPrologue(*I))) 212 ++I; 213 // FIXME: This needs to change if we wish to bundle labels / dbg_values 214 // inside the bundle. 215 assert((I == E || !I->isInsideBundle()) && 216 "First non-phi / non-label / non-debug " 217 "instruction is inside a bundle!"); 218 return I; 219 } 220 221 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 222 iterator B = begin(), E = end(), I = E; 223 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 224 ; /*noop */ 225 while (I != E && !I->isTerminator()) 226 ++I; 227 return I; 228 } 229 230 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 231 instr_iterator B = instr_begin(), E = instr_end(), I = E; 232 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 233 ; /*noop */ 234 while (I != E && !I->isTerminator()) 235 ++I; 236 return I; 237 } 238 239 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 240 // Skip over begin-of-block dbg_value instructions. 241 return skipDebugInstructionsForward(begin(), end()); 242 } 243 244 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 245 // Skip over end-of-block dbg_value instructions. 246 instr_iterator B = instr_begin(), I = instr_end(); 247 while (I != B) { 248 --I; 249 // Return instruction that starts a bundle. 250 if (I->isDebugInstr() || I->isInsideBundle()) 251 continue; 252 return I; 253 } 254 // The block is all debug values. 255 return end(); 256 } 257 258 bool MachineBasicBlock::hasEHPadSuccessor() const { 259 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 260 if ((*I)->isEHPad()) 261 return true; 262 return false; 263 } 264 265 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 266 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 267 print(dbgs()); 268 } 269 #endif 270 271 bool MachineBasicBlock::isLegalToHoistInto() const { 272 if (isReturnBlock() || hasEHPadSuccessor()) 273 return false; 274 return true; 275 } 276 277 StringRef MachineBasicBlock::getName() const { 278 if (const BasicBlock *LBB = getBasicBlock()) 279 return LBB->getName(); 280 else 281 return StringRef("", 0); 282 } 283 284 /// Return a hopefully unique identifier for this block. 285 std::string MachineBasicBlock::getFullName() const { 286 std::string Name; 287 if (getParent()) 288 Name = (getParent()->getName() + ":").str(); 289 if (getBasicBlock()) 290 Name += getBasicBlock()->getName(); 291 else 292 Name += ("BB" + Twine(getNumber())).str(); 293 return Name; 294 } 295 296 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 297 bool IsStandalone) const { 298 const MachineFunction *MF = getParent(); 299 if (!MF) { 300 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 301 << " is null\n"; 302 return; 303 } 304 const Function &F = MF->getFunction(); 305 const Module *M = F.getParent(); 306 ModuleSlotTracker MST(M); 307 MST.incorporateFunction(F); 308 print(OS, MST, Indexes, IsStandalone); 309 } 310 311 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 312 const SlotIndexes *Indexes, 313 bool IsStandalone) const { 314 const MachineFunction *MF = getParent(); 315 if (!MF) { 316 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 317 << " is null\n"; 318 return; 319 } 320 321 if (Indexes && PrintSlotIndexes) 322 OS << Indexes->getMBBStartIdx(this) << '\t'; 323 324 OS << "bb." << getNumber(); 325 bool HasAttributes = false; 326 if (const auto *BB = getBasicBlock()) { 327 if (BB->hasName()) { 328 OS << "." << BB->getName(); 329 } else { 330 HasAttributes = true; 331 OS << " ("; 332 int Slot = MST.getLocalSlot(BB); 333 if (Slot == -1) 334 OS << "<ir-block badref>"; 335 else 336 OS << (Twine("%ir-block.") + Twine(Slot)).str(); 337 } 338 } 339 340 if (hasAddressTaken()) { 341 OS << (HasAttributes ? ", " : " ("); 342 OS << "address-taken"; 343 HasAttributes = true; 344 } 345 if (isEHPad()) { 346 OS << (HasAttributes ? ", " : " ("); 347 OS << "landing-pad"; 348 HasAttributes = true; 349 } 350 if (getAlignment() != Align(1)) { 351 OS << (HasAttributes ? ", " : " ("); 352 OS << "align " << Log2(getAlignment()); 353 HasAttributes = true; 354 } 355 if (HasAttributes) 356 OS << ")"; 357 OS << ":\n"; 358 359 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 360 const MachineRegisterInfo &MRI = MF->getRegInfo(); 361 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 362 bool HasLineAttributes = false; 363 364 // Print the preds of this block according to the CFG. 365 if (!pred_empty() && IsStandalone) { 366 if (Indexes) OS << '\t'; 367 // Don't indent(2), align with previous line attributes. 368 OS << "; predecessors: "; 369 for (auto I = pred_begin(), E = pred_end(); I != E; ++I) { 370 if (I != pred_begin()) 371 OS << ", "; 372 OS << printMBBReference(**I); 373 } 374 OS << '\n'; 375 HasLineAttributes = true; 376 } 377 378 if (!succ_empty()) { 379 if (Indexes) OS << '\t'; 380 // Print the successors 381 OS.indent(2) << "successors: "; 382 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 383 if (I != succ_begin()) 384 OS << ", "; 385 OS << printMBBReference(**I); 386 if (!Probs.empty()) 387 OS << '(' 388 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 389 << ')'; 390 } 391 if (!Probs.empty() && IsStandalone) { 392 // Print human readable probabilities as comments. 393 OS << "; "; 394 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 395 const BranchProbability &BP = getSuccProbability(I); 396 if (I != succ_begin()) 397 OS << ", "; 398 OS << printMBBReference(**I) << '(' 399 << format("%.2f%%", 400 rint(((double)BP.getNumerator() / BP.getDenominator()) * 401 100.0 * 100.0) / 402 100.0) 403 << ')'; 404 } 405 } 406 407 OS << '\n'; 408 HasLineAttributes = true; 409 } 410 411 if (!livein_empty() && MRI.tracksLiveness()) { 412 if (Indexes) OS << '\t'; 413 OS.indent(2) << "liveins: "; 414 415 bool First = true; 416 for (const auto &LI : liveins()) { 417 if (!First) 418 OS << ", "; 419 First = false; 420 OS << printReg(LI.PhysReg, TRI); 421 if (!LI.LaneMask.all()) 422 OS << ":0x" << PrintLaneMask(LI.LaneMask); 423 } 424 HasLineAttributes = true; 425 } 426 427 if (HasLineAttributes) 428 OS << '\n'; 429 430 bool IsInBundle = false; 431 for (const MachineInstr &MI : instrs()) { 432 if (Indexes && PrintSlotIndexes) { 433 if (Indexes->hasIndex(MI)) 434 OS << Indexes->getInstructionIndex(MI); 435 OS << '\t'; 436 } 437 438 if (IsInBundle && !MI.isInsideBundle()) { 439 OS.indent(2) << "}\n"; 440 IsInBundle = false; 441 } 442 443 OS.indent(IsInBundle ? 4 : 2); 444 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 445 /*AddNewLine=*/false, &TII); 446 447 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 448 OS << " {"; 449 IsInBundle = true; 450 } 451 OS << '\n'; 452 } 453 454 if (IsInBundle) 455 OS.indent(2) << "}\n"; 456 457 if (IrrLoopHeaderWeight && IsStandalone) { 458 if (Indexes) OS << '\t'; 459 OS.indent(2) << "; Irreducible loop header weight: " 460 << IrrLoopHeaderWeight.getValue() << '\n'; 461 } 462 } 463 464 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 465 bool /*PrintType*/) const { 466 OS << "%bb." << getNumber(); 467 } 468 469 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 470 LiveInVector::iterator I = find_if( 471 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 472 if (I == LiveIns.end()) 473 return; 474 475 I->LaneMask &= ~LaneMask; 476 if (I->LaneMask.none()) 477 LiveIns.erase(I); 478 } 479 480 MachineBasicBlock::livein_iterator 481 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 482 // Get non-const version of iterator. 483 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 484 return LiveIns.erase(LI); 485 } 486 487 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 488 livein_iterator I = find_if( 489 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 490 return I != livein_end() && (I->LaneMask & LaneMask).any(); 491 } 492 493 void MachineBasicBlock::sortUniqueLiveIns() { 494 llvm::sort(LiveIns, 495 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 496 return LI0.PhysReg < LI1.PhysReg; 497 }); 498 // Liveins are sorted by physreg now we can merge their lanemasks. 499 LiveInVector::const_iterator I = LiveIns.begin(); 500 LiveInVector::const_iterator J; 501 LiveInVector::iterator Out = LiveIns.begin(); 502 for (; I != LiveIns.end(); ++Out, I = J) { 503 MCRegister PhysReg = I->PhysReg; 504 LaneBitmask LaneMask = I->LaneMask; 505 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 506 LaneMask |= J->LaneMask; 507 Out->PhysReg = PhysReg; 508 Out->LaneMask = LaneMask; 509 } 510 LiveIns.erase(Out, LiveIns.end()); 511 } 512 513 Register 514 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 515 assert(getParent() && "MBB must be inserted in function"); 516 assert(PhysReg.isPhysical() && "Expected physreg"); 517 assert(RC && "Register class is required"); 518 assert((isEHPad() || this == &getParent()->front()) && 519 "Only the entry block and landing pads can have physreg live ins"); 520 521 bool LiveIn = isLiveIn(PhysReg); 522 iterator I = SkipPHIsAndLabels(begin()), E = end(); 523 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 524 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 525 526 // Look for an existing copy. 527 if (LiveIn) 528 for (;I != E && I->isCopy(); ++I) 529 if (I->getOperand(1).getReg() == PhysReg) { 530 Register VirtReg = I->getOperand(0).getReg(); 531 if (!MRI.constrainRegClass(VirtReg, RC)) 532 llvm_unreachable("Incompatible live-in register class."); 533 return VirtReg; 534 } 535 536 // No luck, create a virtual register. 537 Register VirtReg = MRI.createVirtualRegister(RC); 538 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 539 .addReg(PhysReg, RegState::Kill); 540 if (!LiveIn) 541 addLiveIn(PhysReg); 542 return VirtReg; 543 } 544 545 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 546 getParent()->splice(NewAfter->getIterator(), getIterator()); 547 } 548 549 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 550 getParent()->splice(++NewBefore->getIterator(), getIterator()); 551 } 552 553 void MachineBasicBlock::updateTerminator() { 554 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 555 // A block with no successors has no concerns with fall-through edges. 556 if (this->succ_empty()) 557 return; 558 559 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 560 SmallVector<MachineOperand, 4> Cond; 561 DebugLoc DL = findBranchDebugLoc(); 562 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 563 (void) B; 564 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 565 if (Cond.empty()) { 566 if (TBB) { 567 // The block has an unconditional branch. If its successor is now its 568 // layout successor, delete the branch. 569 if (isLayoutSuccessor(TBB)) 570 TII->removeBranch(*this); 571 } else { 572 // The block has an unconditional fallthrough. If its successor is not its 573 // layout successor, insert a branch. First we have to locate the only 574 // non-landing-pad successor, as that is the fallthrough block. 575 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 576 if ((*SI)->isEHPad()) 577 continue; 578 assert(!TBB && "Found more than one non-landing-pad successor!"); 579 TBB = *SI; 580 } 581 582 // If there is no non-landing-pad successor, the block has no fall-through 583 // edges to be concerned with. 584 if (!TBB) 585 return; 586 587 // Finally update the unconditional successor to be reached via a branch 588 // if it would not be reached by fallthrough. 589 if (!isLayoutSuccessor(TBB)) 590 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 591 } 592 return; 593 } 594 595 if (FBB) { 596 // The block has a non-fallthrough conditional branch. If one of its 597 // successors is its layout successor, rewrite it to a fallthrough 598 // conditional branch. 599 if (isLayoutSuccessor(TBB)) { 600 if (TII->reverseBranchCondition(Cond)) 601 return; 602 TII->removeBranch(*this); 603 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 604 } else if (isLayoutSuccessor(FBB)) { 605 TII->removeBranch(*this); 606 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 607 } 608 return; 609 } 610 611 // Walk through the successors and find the successor which is not a landing 612 // pad and is not the conditional branch destination (in TBB) as the 613 // fallthrough successor. 614 MachineBasicBlock *FallthroughBB = nullptr; 615 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 616 if ((*SI)->isEHPad() || *SI == TBB) 617 continue; 618 assert(!FallthroughBB && "Found more than one fallthrough successor."); 619 FallthroughBB = *SI; 620 } 621 622 if (!FallthroughBB) { 623 if (canFallThrough()) { 624 // We fallthrough to the same basic block as the conditional jump targets. 625 // Remove the conditional jump, leaving unconditional fallthrough. 626 // FIXME: This does not seem like a reasonable pattern to support, but it 627 // has been seen in the wild coming out of degenerate ARM test cases. 628 TII->removeBranch(*this); 629 630 // Finally update the unconditional successor to be reached via a branch if 631 // it would not be reached by fallthrough. 632 if (!isLayoutSuccessor(TBB)) 633 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 634 return; 635 } 636 637 // We enter here iff exactly one successor is TBB which cannot fallthrough 638 // and the rest successors if any are EHPads. In this case, we need to 639 // change the conditional branch into unconditional branch. 640 TII->removeBranch(*this); 641 Cond.clear(); 642 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 643 return; 644 } 645 646 // The block has a fallthrough conditional branch. 647 if (isLayoutSuccessor(TBB)) { 648 if (TII->reverseBranchCondition(Cond)) { 649 // We can't reverse the condition, add an unconditional branch. 650 Cond.clear(); 651 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 652 return; 653 } 654 TII->removeBranch(*this); 655 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 656 } else if (!isLayoutSuccessor(FallthroughBB)) { 657 TII->removeBranch(*this); 658 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 659 } 660 } 661 662 void MachineBasicBlock::validateSuccProbs() const { 663 #ifndef NDEBUG 664 int64_t Sum = 0; 665 for (auto Prob : Probs) 666 Sum += Prob.getNumerator(); 667 // Due to precision issue, we assume that the sum of probabilities is one if 668 // the difference between the sum of their numerators and the denominator is 669 // no greater than the number of successors. 670 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 671 Probs.size() && 672 "The sum of successors's probabilities exceeds one."); 673 #endif // NDEBUG 674 } 675 676 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 677 BranchProbability Prob) { 678 // Probability list is either empty (if successor list isn't empty, this means 679 // disabled optimization) or has the same size as successor list. 680 if (!(Probs.empty() && !Successors.empty())) 681 Probs.push_back(Prob); 682 Successors.push_back(Succ); 683 Succ->addPredecessor(this); 684 } 685 686 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 687 // We need to make sure probability list is either empty or has the same size 688 // of successor list. When this function is called, we can safely delete all 689 // probability in the list. 690 Probs.clear(); 691 Successors.push_back(Succ); 692 Succ->addPredecessor(this); 693 } 694 695 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 696 MachineBasicBlock *New, 697 bool NormalizeSuccProbs) { 698 succ_iterator OldI = llvm::find(successors(), Old); 699 assert(OldI != succ_end() && "Old is not a successor of this block!"); 700 assert(llvm::find(successors(), New) == succ_end() && 701 "New is already a successor of this block!"); 702 703 // Add a new successor with equal probability as the original one. Note 704 // that we directly copy the probability using the iterator rather than 705 // getting a potentially synthetic probability computed when unknown. This 706 // preserves the probabilities as-is and then we can renormalize them and 707 // query them effectively afterward. 708 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 709 : *getProbabilityIterator(OldI)); 710 if (NormalizeSuccProbs) 711 normalizeSuccProbs(); 712 } 713 714 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 715 bool NormalizeSuccProbs) { 716 succ_iterator I = find(Successors, Succ); 717 removeSuccessor(I, NormalizeSuccProbs); 718 } 719 720 MachineBasicBlock::succ_iterator 721 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 722 assert(I != Successors.end() && "Not a current successor!"); 723 724 // If probability list is empty it means we don't use it (disabled 725 // optimization). 726 if (!Probs.empty()) { 727 probability_iterator WI = getProbabilityIterator(I); 728 Probs.erase(WI); 729 if (NormalizeSuccProbs) 730 normalizeSuccProbs(); 731 } 732 733 (*I)->removePredecessor(this); 734 return Successors.erase(I); 735 } 736 737 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 738 MachineBasicBlock *New) { 739 if (Old == New) 740 return; 741 742 succ_iterator E = succ_end(); 743 succ_iterator NewI = E; 744 succ_iterator OldI = E; 745 for (succ_iterator I = succ_begin(); I != E; ++I) { 746 if (*I == Old) { 747 OldI = I; 748 if (NewI != E) 749 break; 750 } 751 if (*I == New) { 752 NewI = I; 753 if (OldI != E) 754 break; 755 } 756 } 757 assert(OldI != E && "Old is not a successor of this block"); 758 759 // If New isn't already a successor, let it take Old's place. 760 if (NewI == E) { 761 Old->removePredecessor(this); 762 New->addPredecessor(this); 763 *OldI = New; 764 return; 765 } 766 767 // New is already a successor. 768 // Update its probability instead of adding a duplicate edge. 769 if (!Probs.empty()) { 770 auto ProbIter = getProbabilityIterator(NewI); 771 if (!ProbIter->isUnknown()) 772 *ProbIter += *getProbabilityIterator(OldI); 773 } 774 removeSuccessor(OldI); 775 } 776 777 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 778 succ_iterator I) { 779 if (Orig->Probs.empty()) 780 addSuccessor(*I, Orig->getSuccProbability(I)); 781 else 782 addSuccessorWithoutProb(*I); 783 } 784 785 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 786 Predecessors.push_back(Pred); 787 } 788 789 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 790 pred_iterator I = find(Predecessors, Pred); 791 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 792 Predecessors.erase(I); 793 } 794 795 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 796 if (this == FromMBB) 797 return; 798 799 while (!FromMBB->succ_empty()) { 800 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 801 802 // If probability list is empty it means we don't use it (disabled 803 // optimization). 804 if (!FromMBB->Probs.empty()) { 805 auto Prob = *FromMBB->Probs.begin(); 806 addSuccessor(Succ, Prob); 807 } else 808 addSuccessorWithoutProb(Succ); 809 810 FromMBB->removeSuccessor(Succ); 811 } 812 } 813 814 void 815 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 816 if (this == FromMBB) 817 return; 818 819 while (!FromMBB->succ_empty()) { 820 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 821 if (!FromMBB->Probs.empty()) { 822 auto Prob = *FromMBB->Probs.begin(); 823 addSuccessor(Succ, Prob); 824 } else 825 addSuccessorWithoutProb(Succ); 826 FromMBB->removeSuccessor(Succ); 827 828 // Fix up any PHI nodes in the successor. 829 Succ->replacePhiUsesWith(FromMBB, this); 830 } 831 normalizeSuccProbs(); 832 } 833 834 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 835 return is_contained(predecessors(), MBB); 836 } 837 838 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 839 return is_contained(successors(), MBB); 840 } 841 842 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 843 MachineFunction::const_iterator I(this); 844 return std::next(I) == MachineFunction::const_iterator(MBB); 845 } 846 847 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 848 MachineFunction::iterator Fallthrough = getIterator(); 849 ++Fallthrough; 850 // If FallthroughBlock is off the end of the function, it can't fall through. 851 if (Fallthrough == getParent()->end()) 852 return nullptr; 853 854 // If FallthroughBlock isn't a successor, no fallthrough is possible. 855 if (!isSuccessor(&*Fallthrough)) 856 return nullptr; 857 858 // Analyze the branches, if any, at the end of the block. 859 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 860 SmallVector<MachineOperand, 4> Cond; 861 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 862 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 863 // If we couldn't analyze the branch, examine the last instruction. 864 // If the block doesn't end in a known control barrier, assume fallthrough 865 // is possible. The isPredicated check is needed because this code can be 866 // called during IfConversion, where an instruction which is normally a 867 // Barrier is predicated and thus no longer an actual control barrier. 868 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 869 ? &*Fallthrough 870 : nullptr; 871 } 872 873 // If there is no branch, control always falls through. 874 if (!TBB) return &*Fallthrough; 875 876 // If there is some explicit branch to the fallthrough block, it can obviously 877 // reach, even though the branch should get folded to fall through implicitly. 878 if (MachineFunction::iterator(TBB) == Fallthrough || 879 MachineFunction::iterator(FBB) == Fallthrough) 880 return &*Fallthrough; 881 882 // If it's an unconditional branch to some block not the fall through, it 883 // doesn't fall through. 884 if (Cond.empty()) return nullptr; 885 886 // Otherwise, if it is conditional and has no explicit false block, it falls 887 // through. 888 return (FBB == nullptr) ? &*Fallthrough : nullptr; 889 } 890 891 bool MachineBasicBlock::canFallThrough() { 892 return getFallThrough() != nullptr; 893 } 894 895 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( 896 MachineBasicBlock *Succ, Pass &P, 897 std::vector<SparseBitVector<>> *LiveInSets) { 898 if (!canSplitCriticalEdge(Succ)) 899 return nullptr; 900 901 MachineFunction *MF = getParent(); 902 DebugLoc DL; // FIXME: this is nowhere 903 904 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 905 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 906 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 907 << " -- " << printMBBReference(*NMBB) << " -- " 908 << printMBBReference(*Succ) << '\n'); 909 910 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 911 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 912 if (LIS) 913 LIS->insertMBBInMaps(NMBB); 914 else if (Indexes) 915 Indexes->insertMBBInMaps(NMBB); 916 917 // On some targets like Mips, branches may kill virtual registers. Make sure 918 // that LiveVariables is properly updated after updateTerminator replaces the 919 // terminators. 920 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 921 922 // Collect a list of virtual registers killed by the terminators. 923 SmallVector<Register, 4> KilledRegs; 924 if (LV) 925 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 926 I != E; ++I) { 927 MachineInstr *MI = &*I; 928 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 929 OE = MI->operands_end(); OI != OE; ++OI) { 930 if (!OI->isReg() || OI->getReg() == 0 || 931 !OI->isUse() || !OI->isKill() || OI->isUndef()) 932 continue; 933 Register Reg = OI->getReg(); 934 if (Register::isPhysicalRegister(Reg) || 935 LV->getVarInfo(Reg).removeKill(*MI)) { 936 KilledRegs.push_back(Reg); 937 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI); 938 OI->setIsKill(false); 939 } 940 } 941 } 942 943 SmallVector<Register, 4> UsedRegs; 944 if (LIS) { 945 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 946 I != E; ++I) { 947 MachineInstr *MI = &*I; 948 949 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 950 OE = MI->operands_end(); OI != OE; ++OI) { 951 if (!OI->isReg() || OI->getReg() == 0) 952 continue; 953 954 Register Reg = OI->getReg(); 955 if (!is_contained(UsedRegs, Reg)) 956 UsedRegs.push_back(Reg); 957 } 958 } 959 } 960 961 ReplaceUsesOfBlockWith(Succ, NMBB); 962 963 // If updateTerminator() removes instructions, we need to remove them from 964 // SlotIndexes. 965 SmallVector<MachineInstr*, 4> Terminators; 966 if (Indexes) { 967 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 968 I != E; ++I) 969 Terminators.push_back(&*I); 970 } 971 972 updateTerminator(); 973 974 if (Indexes) { 975 SmallVector<MachineInstr*, 4> NewTerminators; 976 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 977 I != E; ++I) 978 NewTerminators.push_back(&*I); 979 980 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 981 E = Terminators.end(); I != E; ++I) { 982 if (!is_contained(NewTerminators, *I)) 983 Indexes->removeMachineInstrFromMaps(**I); 984 } 985 } 986 987 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 988 NMBB->addSuccessor(Succ); 989 if (!NMBB->isLayoutSuccessor(Succ)) { 990 SmallVector<MachineOperand, 4> Cond; 991 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 992 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 993 994 if (Indexes) { 995 for (MachineInstr &MI : NMBB->instrs()) { 996 // Some instructions may have been moved to NMBB by updateTerminator(), 997 // so we first remove any instruction that already has an index. 998 if (Indexes->hasIndex(MI)) 999 Indexes->removeMachineInstrFromMaps(MI); 1000 Indexes->insertMachineInstrInMaps(MI); 1001 } 1002 } 1003 } 1004 1005 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 1006 Succ->replacePhiUsesWith(this, NMBB); 1007 1008 // Inherit live-ins from the successor 1009 for (const auto &LI : Succ->liveins()) 1010 NMBB->addLiveIn(LI); 1011 1012 // Update LiveVariables. 1013 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1014 if (LV) { 1015 // Restore kills of virtual registers that were killed by the terminators. 1016 while (!KilledRegs.empty()) { 1017 Register Reg = KilledRegs.pop_back_val(); 1018 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 1019 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 1020 continue; 1021 if (Register::isVirtualRegister(Reg)) 1022 LV->getVarInfo(Reg).Kills.push_back(&*I); 1023 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1024 break; 1025 } 1026 } 1027 // Update relevant live-through information. 1028 if (LiveInSets != nullptr) 1029 LV->addNewBlock(NMBB, this, Succ, *LiveInSets); 1030 else 1031 LV->addNewBlock(NMBB, this, Succ); 1032 } 1033 1034 if (LIS) { 1035 // After splitting the edge and updating SlotIndexes, live intervals may be 1036 // in one of two situations, depending on whether this block was the last in 1037 // the function. If the original block was the last in the function, all 1038 // live intervals will end prior to the beginning of the new split block. If 1039 // the original block was not at the end of the function, all live intervals 1040 // will extend to the end of the new split block. 1041 1042 bool isLastMBB = 1043 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1044 1045 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1046 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1047 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1048 1049 // Find the registers used from NMBB in PHIs in Succ. 1050 SmallSet<Register, 8> PHISrcRegs; 1051 for (MachineBasicBlock::instr_iterator 1052 I = Succ->instr_begin(), E = Succ->instr_end(); 1053 I != E && I->isPHI(); ++I) { 1054 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1055 if (I->getOperand(ni+1).getMBB() == NMBB) { 1056 MachineOperand &MO = I->getOperand(ni); 1057 Register Reg = MO.getReg(); 1058 PHISrcRegs.insert(Reg); 1059 if (MO.isUndef()) 1060 continue; 1061 1062 LiveInterval &LI = LIS->getInterval(Reg); 1063 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1064 assert(VNI && 1065 "PHI sources should be live out of their predecessors."); 1066 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1067 } 1068 } 1069 } 1070 1071 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1072 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1073 Register Reg = Register::index2VirtReg(i); 1074 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1075 continue; 1076 1077 LiveInterval &LI = LIS->getInterval(Reg); 1078 if (!LI.liveAt(PrevIndex)) 1079 continue; 1080 1081 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1082 if (isLiveOut && isLastMBB) { 1083 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1084 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1085 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1086 } else if (!isLiveOut && !isLastMBB) { 1087 LI.removeSegment(StartIndex, EndIndex); 1088 } 1089 } 1090 1091 // Update all intervals for registers whose uses may have been modified by 1092 // updateTerminator(). 1093 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1094 } 1095 1096 if (MachineDominatorTree *MDT = 1097 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1098 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1099 1100 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1101 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1102 // If one or the other blocks were not in a loop, the new block is not 1103 // either, and thus LI doesn't need to be updated. 1104 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1105 if (TIL == DestLoop) { 1106 // Both in the same loop, the NMBB joins loop. 1107 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1108 } else if (TIL->contains(DestLoop)) { 1109 // Edge from an outer loop to an inner loop. Add to the outer loop. 1110 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1111 } else if (DestLoop->contains(TIL)) { 1112 // Edge from an inner loop to an outer loop. Add to the outer loop. 1113 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1114 } else { 1115 // Edge from two loops with no containment relation. Because these 1116 // are natural loops, we know that the destination block must be the 1117 // header of its loop (adding a branch into a loop elsewhere would 1118 // create an irreducible loop). 1119 assert(DestLoop->getHeader() == Succ && 1120 "Should not create irreducible loops!"); 1121 if (MachineLoop *P = DestLoop->getParentLoop()) 1122 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1123 } 1124 } 1125 } 1126 1127 return NMBB; 1128 } 1129 1130 bool MachineBasicBlock::canSplitCriticalEdge( 1131 const MachineBasicBlock *Succ) const { 1132 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1133 // it in this generic function. 1134 if (Succ->isEHPad()) 1135 return false; 1136 1137 // Splitting the critical edge to a callbr's indirect block isn't advised. 1138 // Don't do it in this generic function. 1139 if (isInlineAsmBrIndirectTarget(Succ)) 1140 return false; 1141 1142 const MachineFunction *MF = getParent(); 1143 // Performance might be harmed on HW that implements branching using exec mask 1144 // where both sides of the branches are always executed. 1145 if (MF->getTarget().requiresStructuredCFG()) 1146 return false; 1147 1148 // We may need to update this's terminator, but we can't do that if 1149 // analyzeBranch fails. If this uses a jump table, we won't touch it. 1150 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1151 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1152 SmallVector<MachineOperand, 4> Cond; 1153 // AnalyzeBanch should modify this, since we did not allow modification. 1154 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1155 /*AllowModify*/ false)) 1156 return false; 1157 1158 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1159 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1160 // case that we can't handle. Since this never happens in properly optimized 1161 // code, just skip those edges. 1162 if (TBB && TBB == FBB) { 1163 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1164 << printMBBReference(*this) << '\n'); 1165 return false; 1166 } 1167 return true; 1168 } 1169 1170 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1171 /// neighboring instructions so the bundle won't be broken by removing MI. 1172 static void unbundleSingleMI(MachineInstr *MI) { 1173 // Removing the first instruction in a bundle. 1174 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1175 MI->unbundleFromSucc(); 1176 // Removing the last instruction in a bundle. 1177 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1178 MI->unbundleFromPred(); 1179 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1180 // are already fine. 1181 } 1182 1183 MachineBasicBlock::instr_iterator 1184 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1185 unbundleSingleMI(&*I); 1186 return Insts.erase(I); 1187 } 1188 1189 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1190 unbundleSingleMI(MI); 1191 MI->clearFlag(MachineInstr::BundledPred); 1192 MI->clearFlag(MachineInstr::BundledSucc); 1193 return Insts.remove(MI); 1194 } 1195 1196 MachineBasicBlock::instr_iterator 1197 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1198 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1199 "Cannot insert instruction with bundle flags"); 1200 // Set the bundle flags when inserting inside a bundle. 1201 if (I != instr_end() && I->isBundledWithPred()) { 1202 MI->setFlag(MachineInstr::BundledPred); 1203 MI->setFlag(MachineInstr::BundledSucc); 1204 } 1205 return Insts.insert(I, MI); 1206 } 1207 1208 /// This method unlinks 'this' from the containing function, and returns it, but 1209 /// does not delete it. 1210 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1211 assert(getParent() && "Not embedded in a function!"); 1212 getParent()->remove(this); 1213 return this; 1214 } 1215 1216 /// This method unlinks 'this' from the containing function, and deletes it. 1217 void MachineBasicBlock::eraseFromParent() { 1218 assert(getParent() && "Not embedded in a function!"); 1219 getParent()->erase(this); 1220 } 1221 1222 /// Given a machine basic block that branched to 'Old', change the code and CFG 1223 /// so that it branches to 'New' instead. 1224 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1225 MachineBasicBlock *New) { 1226 assert(Old != New && "Cannot replace self with self!"); 1227 1228 MachineBasicBlock::instr_iterator I = instr_end(); 1229 while (I != instr_begin()) { 1230 --I; 1231 if (!I->isTerminator()) break; 1232 1233 // Scan the operands of this machine instruction, replacing any uses of Old 1234 // with New. 1235 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1236 if (I->getOperand(i).isMBB() && 1237 I->getOperand(i).getMBB() == Old) 1238 I->getOperand(i).setMBB(New); 1239 } 1240 1241 // Update the successor information. 1242 replaceSuccessor(Old, New); 1243 } 1244 1245 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1246 MachineBasicBlock *New) { 1247 for (MachineInstr &MI : phis()) 1248 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1249 MachineOperand &MO = MI.getOperand(i); 1250 if (MO.getMBB() == Old) 1251 MO.setMBB(New); 1252 } 1253 } 1254 1255 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1256 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1257 /// MBB successors from the CFG. DestA and DestB can be null. 1258 /// 1259 /// Besides DestA and DestB, retain other edges leading to LandingPads 1260 /// (currently there can be only one; we don't check or require that here). 1261 /// Note it is possible that DestA and/or DestB are LandingPads. 1262 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1263 MachineBasicBlock *DestB, 1264 bool IsCond) { 1265 // The values of DestA and DestB frequently come from a call to the 1266 // 'TargetInstrInfo::analyzeBranch' method. We take our meaning of the initial 1267 // values from there. 1268 // 1269 // 1. If both DestA and DestB are null, then the block ends with no branches 1270 // (it falls through to its successor). 1271 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1272 // with only an unconditional branch. 1273 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1274 // with a conditional branch that falls through to a successor (DestB). 1275 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1276 // conditional branch followed by an unconditional branch. DestA is the 1277 // 'true' destination and DestB is the 'false' destination. 1278 1279 bool Changed = false; 1280 1281 MachineBasicBlock *FallThru = getNextNode(); 1282 1283 if (!DestA && !DestB) { 1284 // Block falls through to successor. 1285 DestA = FallThru; 1286 DestB = FallThru; 1287 } else if (DestA && !DestB) { 1288 if (IsCond) 1289 // Block ends in conditional jump that falls through to successor. 1290 DestB = FallThru; 1291 } else { 1292 assert(DestA && DestB && IsCond && 1293 "CFG in a bad state. Cannot correct CFG edges"); 1294 } 1295 1296 // Remove superfluous edges. I.e., those which aren't destinations of this 1297 // basic block, duplicate edges, or landing pads. 1298 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1299 MachineBasicBlock::succ_iterator SI = succ_begin(); 1300 while (SI != succ_end()) { 1301 const MachineBasicBlock *MBB = *SI; 1302 if (!SeenMBBs.insert(MBB).second || 1303 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1304 // This is a superfluous edge, remove it. 1305 SI = removeSuccessor(SI); 1306 Changed = true; 1307 } else { 1308 ++SI; 1309 } 1310 } 1311 1312 if (Changed) 1313 normalizeSuccProbs(); 1314 return Changed; 1315 } 1316 1317 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1318 /// instructions. Return UnknownLoc if there is none. 1319 DebugLoc 1320 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1321 // Skip debug declarations, we don't want a DebugLoc from them. 1322 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1323 if (MBBI != instr_end()) 1324 return MBBI->getDebugLoc(); 1325 return {}; 1326 } 1327 1328 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE 1329 /// instructions. Return UnknownLoc if there is none. 1330 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1331 if (MBBI == instr_begin()) return {}; 1332 // Skip debug instructions, we don't want a DebugLoc from them. 1333 MBBI = prev_nodbg(MBBI, instr_begin()); 1334 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); 1335 return {}; 1336 } 1337 1338 /// Find and return the merged DebugLoc of the branch instructions of the block. 1339 /// Return UnknownLoc if there is none. 1340 DebugLoc 1341 MachineBasicBlock::findBranchDebugLoc() { 1342 DebugLoc DL; 1343 auto TI = getFirstTerminator(); 1344 while (TI != end() && !TI->isBranch()) 1345 ++TI; 1346 1347 if (TI != end()) { 1348 DL = TI->getDebugLoc(); 1349 for (++TI ; TI != end() ; ++TI) 1350 if (TI->isBranch()) 1351 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1352 } 1353 return DL; 1354 } 1355 1356 /// Return probability of the edge from this block to MBB. 1357 BranchProbability 1358 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1359 if (Probs.empty()) 1360 return BranchProbability(1, succ_size()); 1361 1362 const auto &Prob = *getProbabilityIterator(Succ); 1363 if (Prob.isUnknown()) { 1364 // For unknown probabilities, collect the sum of all known ones, and evenly 1365 // ditribute the complemental of the sum to each unknown probability. 1366 unsigned KnownProbNum = 0; 1367 auto Sum = BranchProbability::getZero(); 1368 for (auto &P : Probs) { 1369 if (!P.isUnknown()) { 1370 Sum += P; 1371 KnownProbNum++; 1372 } 1373 } 1374 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1375 } else 1376 return Prob; 1377 } 1378 1379 /// Set successor probability of a given iterator. 1380 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1381 BranchProbability Prob) { 1382 assert(!Prob.isUnknown()); 1383 if (Probs.empty()) 1384 return; 1385 *getProbabilityIterator(I) = Prob; 1386 } 1387 1388 /// Return probability iterator corresonding to the I successor iterator 1389 MachineBasicBlock::const_probability_iterator 1390 MachineBasicBlock::getProbabilityIterator( 1391 MachineBasicBlock::const_succ_iterator I) const { 1392 assert(Probs.size() == Successors.size() && "Async probability list!"); 1393 const size_t index = std::distance(Successors.begin(), I); 1394 assert(index < Probs.size() && "Not a current successor!"); 1395 return Probs.begin() + index; 1396 } 1397 1398 /// Return probability iterator corresonding to the I successor iterator. 1399 MachineBasicBlock::probability_iterator 1400 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1401 assert(Probs.size() == Successors.size() && "Async probability list!"); 1402 const size_t index = std::distance(Successors.begin(), I); 1403 assert(index < Probs.size() && "Not a current successor!"); 1404 return Probs.begin() + index; 1405 } 1406 1407 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1408 /// as of just before "MI". 1409 /// 1410 /// Search is localised to a neighborhood of 1411 /// Neighborhood instructions before (searching for defs or kills) and N 1412 /// instructions after (searching just for defs) MI. 1413 MachineBasicBlock::LivenessQueryResult 1414 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1415 MCRegister Reg, const_iterator Before, 1416 unsigned Neighborhood) const { 1417 unsigned N = Neighborhood; 1418 1419 // Try searching forwards from Before, looking for reads or defs. 1420 const_iterator I(Before); 1421 for (; I != end() && N > 0; ++I) { 1422 if (I->isDebugInstr()) 1423 continue; 1424 1425 --N; 1426 1427 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1428 1429 // Register is live when we read it here. 1430 if (Info.Read) 1431 return LQR_Live; 1432 // Register is dead if we can fully overwrite or clobber it here. 1433 if (Info.FullyDefined || Info.Clobbered) 1434 return LQR_Dead; 1435 } 1436 1437 // If we reached the end, it is safe to clobber Reg at the end of a block of 1438 // no successor has it live in. 1439 if (I == end()) { 1440 for (MachineBasicBlock *S : successors()) { 1441 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1442 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1443 return LQR_Live; 1444 } 1445 } 1446 1447 return LQR_Dead; 1448 } 1449 1450 1451 N = Neighborhood; 1452 1453 // Start by searching backwards from Before, looking for kills, reads or defs. 1454 I = const_iterator(Before); 1455 // If this is the first insn in the block, don't search backwards. 1456 if (I != begin()) { 1457 do { 1458 --I; 1459 1460 if (I->isDebugInstr()) 1461 continue; 1462 1463 --N; 1464 1465 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1466 1467 // Defs happen after uses so they take precedence if both are present. 1468 1469 // Register is dead after a dead def of the full register. 1470 if (Info.DeadDef) 1471 return LQR_Dead; 1472 // Register is (at least partially) live after a def. 1473 if (Info.Defined) { 1474 if (!Info.PartialDeadDef) 1475 return LQR_Live; 1476 // As soon as we saw a partial definition (dead or not), 1477 // we cannot tell if the value is partial live without 1478 // tracking the lanemasks. We are not going to do this, 1479 // so fall back on the remaining of the analysis. 1480 break; 1481 } 1482 // Register is dead after a full kill or clobber and no def. 1483 if (Info.Killed || Info.Clobbered) 1484 return LQR_Dead; 1485 // Register must be live if we read it. 1486 if (Info.Read) 1487 return LQR_Live; 1488 1489 } while (I != begin() && N > 0); 1490 } 1491 1492 // If all the instructions before this in the block are debug instructions, 1493 // skip over them. 1494 while (I != begin() && std::prev(I)->isDebugInstr()) 1495 --I; 1496 1497 // Did we get to the start of the block? 1498 if (I == begin()) { 1499 // If so, the register's state is definitely defined by the live-in state. 1500 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1501 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1502 return LQR_Live; 1503 1504 return LQR_Dead; 1505 } 1506 1507 // At this point we have no idea of the liveness of the register. 1508 return LQR_Unknown; 1509 } 1510 1511 const uint32_t * 1512 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1513 // EH funclet entry does not preserve any registers. 1514 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1515 } 1516 1517 const uint32_t * 1518 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1519 // If we see a return block with successors, this must be a funclet return, 1520 // which does not preserve any registers. If there are no successors, we don't 1521 // care what kind of return it is, putting a mask after it is a no-op. 1522 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1523 } 1524 1525 void MachineBasicBlock::clearLiveIns() { 1526 LiveIns.clear(); 1527 } 1528 1529 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1530 assert(getParent()->getProperties().hasProperty( 1531 MachineFunctionProperties::Property::TracksLiveness) && 1532 "Liveness information is accurate"); 1533 return LiveIns.begin(); 1534 } 1535 1536 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); 1537 const MBBSectionID 1538 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception); 1539