1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/DataTypes.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 } 46 47 MachineBasicBlock::~MachineBasicBlock() { 48 } 49 50 /// Return the MCSymbol for this basic block. 51 MCSymbol *MachineBasicBlock::getSymbol() const { 52 if (!CachedMCSymbol) { 53 const MachineFunction *MF = getParent(); 54 MCContext &Ctx = MF->getContext(); 55 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 56 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 57 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 58 Twine(MF->getFunctionNumber()) + 59 "_" + Twine(getNumber())); 60 } 61 62 return CachedMCSymbol; 63 } 64 65 66 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 67 MBB.print(OS); 68 return OS; 69 } 70 71 /// When an MBB is added to an MF, we need to update the parent pointer of the 72 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 73 /// operand list for registers. 74 /// 75 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 76 /// gets the next available unique MBB number. If it is removed from a 77 /// MachineFunction, it goes back to being #-1. 78 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 79 MachineBasicBlock *N) { 80 MachineFunction &MF = *N->getParent(); 81 N->Number = MF.addToMBBNumbering(N); 82 83 // Make sure the instructions have their operands in the reginfo lists. 84 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 85 for (MachineBasicBlock::instr_iterator 86 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 87 I->AddRegOperandsToUseLists(RegInfo); 88 } 89 90 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 91 MachineBasicBlock *N) { 92 N->getParent()->removeFromMBBNumbering(N->Number); 93 N->Number = -1; 94 } 95 96 /// When we add an instruction to a basic block list, we update its parent 97 /// pointer and add its operands from reg use/def lists if appropriate. 98 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 99 assert(!N->getParent() && "machine instruction already in a basic block"); 100 N->setParent(Parent); 101 102 // Add the instruction's register operands to their corresponding 103 // use/def lists. 104 MachineFunction *MF = Parent->getParent(); 105 N->AddRegOperandsToUseLists(MF->getRegInfo()); 106 } 107 108 /// When we remove an instruction from a basic block list, we update its parent 109 /// pointer and remove its operands from reg use/def lists if appropriate. 110 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 111 assert(N->getParent() && "machine instruction not in a basic block"); 112 113 // Remove from the use/def lists. 114 if (MachineFunction *MF = N->getParent()->getParent()) 115 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 116 117 N->setParent(nullptr); 118 } 119 120 /// When moving a range of instructions from one MBB list to another, we need to 121 /// update the parent pointers and the use/def lists. 122 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 123 instr_iterator First, 124 instr_iterator Last) { 125 assert(Parent->getParent() == FromList.Parent->getParent() && 126 "MachineInstr parent mismatch!"); 127 assert(this != &FromList && "Called without a real transfer..."); 128 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 129 130 // If splicing between two blocks within the same function, just update the 131 // parent pointers. 132 for (; First != Last; ++First) 133 First->setParent(Parent); 134 } 135 136 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 137 assert(!MI->getParent() && "MI is still in a block!"); 138 Parent->getParent()->DeleteMachineInstr(MI); 139 } 140 141 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 142 instr_iterator I = instr_begin(), E = instr_end(); 143 while (I != E && I->isPHI()) 144 ++I; 145 assert((I == E || !I->isInsideBundle()) && 146 "First non-phi MI cannot be inside a bundle!"); 147 return I; 148 } 149 150 MachineBasicBlock::iterator 151 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 152 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 153 154 iterator E = end(); 155 while (I != E && (I->isPHI() || I->isPosition() || 156 TII->isBasicBlockPrologue(*I))) 157 ++I; 158 // FIXME: This needs to change if we wish to bundle labels 159 // inside the bundle. 160 assert((I == E || !I->isInsideBundle()) && 161 "First non-phi / non-label instruction is inside a bundle!"); 162 return I; 163 } 164 165 MachineBasicBlock::iterator 166 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 167 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 168 169 iterator E = end(); 170 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() || 171 TII->isBasicBlockPrologue(*I))) 172 ++I; 173 // FIXME: This needs to change if we wish to bundle labels / dbg_values 174 // inside the bundle. 175 assert((I == E || !I->isInsideBundle()) && 176 "First non-phi / non-label / non-debug " 177 "instruction is inside a bundle!"); 178 return I; 179 } 180 181 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 182 iterator B = begin(), E = end(), I = E; 183 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 184 ; /*noop */ 185 while (I != E && !I->isTerminator()) 186 ++I; 187 return I; 188 } 189 190 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 191 instr_iterator B = instr_begin(), E = instr_end(), I = E; 192 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 193 ; /*noop */ 194 while (I != E && !I->isTerminator()) 195 ++I; 196 return I; 197 } 198 199 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 200 // Skip over begin-of-block dbg_value instructions. 201 return skipDebugInstructionsForward(begin(), end()); 202 } 203 204 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 205 // Skip over end-of-block dbg_value instructions. 206 instr_iterator B = instr_begin(), I = instr_end(); 207 while (I != B) { 208 --I; 209 // Return instruction that starts a bundle. 210 if (I->isDebugValue() || I->isInsideBundle()) 211 continue; 212 return I; 213 } 214 // The block is all debug values. 215 return end(); 216 } 217 218 bool MachineBasicBlock::hasEHPadSuccessor() const { 219 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 220 if ((*I)->isEHPad()) 221 return true; 222 return false; 223 } 224 225 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 226 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 227 print(dbgs()); 228 } 229 #endif 230 231 StringRef MachineBasicBlock::getName() const { 232 if (const BasicBlock *LBB = getBasicBlock()) 233 return LBB->getName(); 234 else 235 return "(null)"; 236 } 237 238 /// Return a hopefully unique identifier for this block. 239 std::string MachineBasicBlock::getFullName() const { 240 std::string Name; 241 if (getParent()) 242 Name = (getParent()->getName() + ":").str(); 243 if (getBasicBlock()) 244 Name += getBasicBlock()->getName(); 245 else 246 Name += ("BB" + Twine(getNumber())).str(); 247 return Name; 248 } 249 250 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes) 251 const { 252 const MachineFunction *MF = getParent(); 253 if (!MF) { 254 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 255 << " is null\n"; 256 return; 257 } 258 const Function *F = MF->getFunction(); 259 const Module *M = F ? F->getParent() : nullptr; 260 ModuleSlotTracker MST(M); 261 print(OS, MST, Indexes); 262 } 263 264 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 265 const SlotIndexes *Indexes) const { 266 const MachineFunction *MF = getParent(); 267 if (!MF) { 268 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 269 << " is null\n"; 270 return; 271 } 272 273 if (Indexes) 274 OS << Indexes->getMBBStartIdx(this) << '\t'; 275 276 OS << "BB#" << getNumber() << ": "; 277 278 const char *Comma = ""; 279 if (const BasicBlock *LBB = getBasicBlock()) { 280 OS << Comma << "derived from LLVM BB "; 281 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 282 Comma = ", "; 283 } 284 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 285 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 286 if (Alignment) 287 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 288 << " bytes)"; 289 290 OS << '\n'; 291 292 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 293 if (!livein_empty()) { 294 if (Indexes) OS << '\t'; 295 OS << " Live Ins:"; 296 for (const auto &LI : LiveIns) { 297 OS << ' ' << PrintReg(LI.PhysReg, TRI); 298 if (!LI.LaneMask.all()) 299 OS << ':' << PrintLaneMask(LI.LaneMask); 300 } 301 OS << '\n'; 302 } 303 // Print the preds of this block according to the CFG. 304 if (!pred_empty()) { 305 if (Indexes) OS << '\t'; 306 OS << " Predecessors according to CFG:"; 307 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 308 OS << " BB#" << (*PI)->getNumber(); 309 OS << '\n'; 310 } 311 312 for (auto &I : instrs()) { 313 if (Indexes) { 314 if (Indexes->hasIndex(I)) 315 OS << Indexes->getInstructionIndex(I); 316 OS << '\t'; 317 } 318 OS << '\t'; 319 if (I.isInsideBundle()) 320 OS << " * "; 321 I.print(OS, MST); 322 } 323 324 // Print the successors of this block according to the CFG. 325 if (!succ_empty()) { 326 if (Indexes) OS << '\t'; 327 OS << " Successors according to CFG:"; 328 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 329 OS << " BB#" << (*SI)->getNumber(); 330 if (!Probs.empty()) 331 OS << '(' << *getProbabilityIterator(SI) << ')'; 332 } 333 OS << '\n'; 334 } 335 } 336 337 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 338 bool /*PrintType*/) const { 339 OS << "BB#" << getNumber(); 340 } 341 342 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 343 LiveInVector::iterator I = find_if( 344 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 345 if (I == LiveIns.end()) 346 return; 347 348 I->LaneMask &= ~LaneMask; 349 if (I->LaneMask.none()) 350 LiveIns.erase(I); 351 } 352 353 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 354 livein_iterator I = find_if( 355 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 356 return I != livein_end() && (I->LaneMask & LaneMask).any(); 357 } 358 359 void MachineBasicBlock::sortUniqueLiveIns() { 360 std::sort(LiveIns.begin(), LiveIns.end(), 361 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 362 return LI0.PhysReg < LI1.PhysReg; 363 }); 364 // Liveins are sorted by physreg now we can merge their lanemasks. 365 LiveInVector::const_iterator I = LiveIns.begin(); 366 LiveInVector::const_iterator J; 367 LiveInVector::iterator Out = LiveIns.begin(); 368 for (; I != LiveIns.end(); ++Out, I = J) { 369 unsigned PhysReg = I->PhysReg; 370 LaneBitmask LaneMask = I->LaneMask; 371 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 372 LaneMask |= J->LaneMask; 373 Out->PhysReg = PhysReg; 374 Out->LaneMask = LaneMask; 375 } 376 LiveIns.erase(Out, LiveIns.end()); 377 } 378 379 unsigned 380 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 381 assert(getParent() && "MBB must be inserted in function"); 382 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 383 assert(RC && "Register class is required"); 384 assert((isEHPad() || this == &getParent()->front()) && 385 "Only the entry block and landing pads can have physreg live ins"); 386 387 bool LiveIn = isLiveIn(PhysReg); 388 iterator I = SkipPHIsAndLabels(begin()), E = end(); 389 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 390 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 391 392 // Look for an existing copy. 393 if (LiveIn) 394 for (;I != E && I->isCopy(); ++I) 395 if (I->getOperand(1).getReg() == PhysReg) { 396 unsigned VirtReg = I->getOperand(0).getReg(); 397 if (!MRI.constrainRegClass(VirtReg, RC)) 398 llvm_unreachable("Incompatible live-in register class."); 399 return VirtReg; 400 } 401 402 // No luck, create a virtual register. 403 unsigned VirtReg = MRI.createVirtualRegister(RC); 404 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 405 .addReg(PhysReg, RegState::Kill); 406 if (!LiveIn) 407 addLiveIn(PhysReg); 408 return VirtReg; 409 } 410 411 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 412 getParent()->splice(NewAfter->getIterator(), getIterator()); 413 } 414 415 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 416 getParent()->splice(++NewBefore->getIterator(), getIterator()); 417 } 418 419 void MachineBasicBlock::updateTerminator() { 420 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 421 // A block with no successors has no concerns with fall-through edges. 422 if (this->succ_empty()) 423 return; 424 425 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 426 SmallVector<MachineOperand, 4> Cond; 427 DebugLoc DL = findBranchDebugLoc(); 428 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 429 (void) B; 430 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 431 if (Cond.empty()) { 432 if (TBB) { 433 // The block has an unconditional branch. If its successor is now its 434 // layout successor, delete the branch. 435 if (isLayoutSuccessor(TBB)) 436 TII->removeBranch(*this); 437 } else { 438 // The block has an unconditional fallthrough. If its successor is not its 439 // layout successor, insert a branch. First we have to locate the only 440 // non-landing-pad successor, as that is the fallthrough block. 441 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 442 if ((*SI)->isEHPad()) 443 continue; 444 assert(!TBB && "Found more than one non-landing-pad successor!"); 445 TBB = *SI; 446 } 447 448 // If there is no non-landing-pad successor, the block has no fall-through 449 // edges to be concerned with. 450 if (!TBB) 451 return; 452 453 // Finally update the unconditional successor to be reached via a branch 454 // if it would not be reached by fallthrough. 455 if (!isLayoutSuccessor(TBB)) 456 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 457 } 458 return; 459 } 460 461 if (FBB) { 462 // The block has a non-fallthrough conditional branch. If one of its 463 // successors is its layout successor, rewrite it to a fallthrough 464 // conditional branch. 465 if (isLayoutSuccessor(TBB)) { 466 if (TII->reverseBranchCondition(Cond)) 467 return; 468 TII->removeBranch(*this); 469 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 470 } else if (isLayoutSuccessor(FBB)) { 471 TII->removeBranch(*this); 472 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 473 } 474 return; 475 } 476 477 // Walk through the successors and find the successor which is not a landing 478 // pad and is not the conditional branch destination (in TBB) as the 479 // fallthrough successor. 480 MachineBasicBlock *FallthroughBB = nullptr; 481 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 482 if ((*SI)->isEHPad() || *SI == TBB) 483 continue; 484 assert(!FallthroughBB && "Found more than one fallthrough successor."); 485 FallthroughBB = *SI; 486 } 487 488 if (!FallthroughBB) { 489 if (canFallThrough()) { 490 // We fallthrough to the same basic block as the conditional jump targets. 491 // Remove the conditional jump, leaving unconditional fallthrough. 492 // FIXME: This does not seem like a reasonable pattern to support, but it 493 // has been seen in the wild coming out of degenerate ARM test cases. 494 TII->removeBranch(*this); 495 496 // Finally update the unconditional successor to be reached via a branch if 497 // it would not be reached by fallthrough. 498 if (!isLayoutSuccessor(TBB)) 499 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 500 return; 501 } 502 503 // We enter here iff exactly one successor is TBB which cannot fallthrough 504 // and the rest successors if any are EHPads. In this case, we need to 505 // change the conditional branch into unconditional branch. 506 TII->removeBranch(*this); 507 Cond.clear(); 508 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 509 return; 510 } 511 512 // The block has a fallthrough conditional branch. 513 if (isLayoutSuccessor(TBB)) { 514 if (TII->reverseBranchCondition(Cond)) { 515 // We can't reverse the condition, add an unconditional branch. 516 Cond.clear(); 517 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 518 return; 519 } 520 TII->removeBranch(*this); 521 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 522 } else if (!isLayoutSuccessor(FallthroughBB)) { 523 TII->removeBranch(*this); 524 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 525 } 526 } 527 528 void MachineBasicBlock::validateSuccProbs() const { 529 #ifndef NDEBUG 530 int64_t Sum = 0; 531 for (auto Prob : Probs) 532 Sum += Prob.getNumerator(); 533 // Due to precision issue, we assume that the sum of probabilities is one if 534 // the difference between the sum of their numerators and the denominator is 535 // no greater than the number of successors. 536 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 537 Probs.size() && 538 "The sum of successors's probabilities exceeds one."); 539 #endif // NDEBUG 540 } 541 542 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 543 BranchProbability Prob) { 544 // Probability list is either empty (if successor list isn't empty, this means 545 // disabled optimization) or has the same size as successor list. 546 if (!(Probs.empty() && !Successors.empty())) 547 Probs.push_back(Prob); 548 Successors.push_back(Succ); 549 Succ->addPredecessor(this); 550 } 551 552 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 553 // We need to make sure probability list is either empty or has the same size 554 // of successor list. When this function is called, we can safely delete all 555 // probability in the list. 556 Probs.clear(); 557 Successors.push_back(Succ); 558 Succ->addPredecessor(this); 559 } 560 561 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 562 bool NormalizeSuccProbs) { 563 succ_iterator I = find(Successors, Succ); 564 removeSuccessor(I, NormalizeSuccProbs); 565 } 566 567 MachineBasicBlock::succ_iterator 568 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 569 assert(I != Successors.end() && "Not a current successor!"); 570 571 // If probability list is empty it means we don't use it (disabled 572 // optimization). 573 if (!Probs.empty()) { 574 probability_iterator WI = getProbabilityIterator(I); 575 Probs.erase(WI); 576 if (NormalizeSuccProbs) 577 normalizeSuccProbs(); 578 } 579 580 (*I)->removePredecessor(this); 581 return Successors.erase(I); 582 } 583 584 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 585 MachineBasicBlock *New) { 586 if (Old == New) 587 return; 588 589 succ_iterator E = succ_end(); 590 succ_iterator NewI = E; 591 succ_iterator OldI = E; 592 for (succ_iterator I = succ_begin(); I != E; ++I) { 593 if (*I == Old) { 594 OldI = I; 595 if (NewI != E) 596 break; 597 } 598 if (*I == New) { 599 NewI = I; 600 if (OldI != E) 601 break; 602 } 603 } 604 assert(OldI != E && "Old is not a successor of this block"); 605 606 // If New isn't already a successor, let it take Old's place. 607 if (NewI == E) { 608 Old->removePredecessor(this); 609 New->addPredecessor(this); 610 *OldI = New; 611 return; 612 } 613 614 // New is already a successor. 615 // Update its probability instead of adding a duplicate edge. 616 if (!Probs.empty()) { 617 auto ProbIter = getProbabilityIterator(NewI); 618 if (!ProbIter->isUnknown()) 619 *ProbIter += *getProbabilityIterator(OldI); 620 } 621 removeSuccessor(OldI); 622 } 623 624 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 625 Predecessors.push_back(Pred); 626 } 627 628 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 629 pred_iterator I = find(Predecessors, Pred); 630 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 631 Predecessors.erase(I); 632 } 633 634 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 635 if (this == FromMBB) 636 return; 637 638 while (!FromMBB->succ_empty()) { 639 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 640 641 // If probability list is empty it means we don't use it (disabled optimization). 642 if (!FromMBB->Probs.empty()) { 643 auto Prob = *FromMBB->Probs.begin(); 644 addSuccessor(Succ, Prob); 645 } else 646 addSuccessorWithoutProb(Succ); 647 648 FromMBB->removeSuccessor(Succ); 649 } 650 } 651 652 void 653 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 654 if (this == FromMBB) 655 return; 656 657 while (!FromMBB->succ_empty()) { 658 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 659 if (!FromMBB->Probs.empty()) { 660 auto Prob = *FromMBB->Probs.begin(); 661 addSuccessor(Succ, Prob); 662 } else 663 addSuccessorWithoutProb(Succ); 664 FromMBB->removeSuccessor(Succ); 665 666 // Fix up any PHI nodes in the successor. 667 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 668 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 669 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 670 MachineOperand &MO = MI->getOperand(i); 671 if (MO.getMBB() == FromMBB) 672 MO.setMBB(this); 673 } 674 } 675 normalizeSuccProbs(); 676 } 677 678 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 679 return is_contained(predecessors(), MBB); 680 } 681 682 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 683 return is_contained(successors(), MBB); 684 } 685 686 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 687 MachineFunction::const_iterator I(this); 688 return std::next(I) == MachineFunction::const_iterator(MBB); 689 } 690 691 bool MachineBasicBlock::canFallThrough() { 692 MachineFunction::iterator Fallthrough = getIterator(); 693 ++Fallthrough; 694 // If FallthroughBlock is off the end of the function, it can't fall through. 695 if (Fallthrough == getParent()->end()) 696 return false; 697 698 // If FallthroughBlock isn't a successor, no fallthrough is possible. 699 if (!isSuccessor(&*Fallthrough)) 700 return false; 701 702 // Analyze the branches, if any, at the end of the block. 703 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 704 SmallVector<MachineOperand, 4> Cond; 705 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 706 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 707 // If we couldn't analyze the branch, examine the last instruction. 708 // If the block doesn't end in a known control barrier, assume fallthrough 709 // is possible. The isPredicated check is needed because this code can be 710 // called during IfConversion, where an instruction which is normally a 711 // Barrier is predicated and thus no longer an actual control barrier. 712 return empty() || !back().isBarrier() || TII->isPredicated(back()); 713 } 714 715 // If there is no branch, control always falls through. 716 if (!TBB) return true; 717 718 // If there is some explicit branch to the fallthrough block, it can obviously 719 // reach, even though the branch should get folded to fall through implicitly. 720 if (MachineFunction::iterator(TBB) == Fallthrough || 721 MachineFunction::iterator(FBB) == Fallthrough) 722 return true; 723 724 // If it's an unconditional branch to some block not the fall through, it 725 // doesn't fall through. 726 if (Cond.empty()) return false; 727 728 // Otherwise, if it is conditional and has no explicit false block, it falls 729 // through. 730 return FBB == nullptr; 731 } 732 733 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 734 Pass &P) { 735 if (!canSplitCriticalEdge(Succ)) 736 return nullptr; 737 738 MachineFunction *MF = getParent(); 739 DebugLoc DL; // FIXME: this is nowhere 740 741 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 742 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 743 DEBUG(dbgs() << "Splitting critical edge:" 744 " BB#" << getNumber() 745 << " -- BB#" << NMBB->getNumber() 746 << " -- BB#" << Succ->getNumber() << '\n'); 747 748 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 749 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 750 if (LIS) 751 LIS->insertMBBInMaps(NMBB); 752 else if (Indexes) 753 Indexes->insertMBBInMaps(NMBB); 754 755 // On some targets like Mips, branches may kill virtual registers. Make sure 756 // that LiveVariables is properly updated after updateTerminator replaces the 757 // terminators. 758 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 759 760 // Collect a list of virtual registers killed by the terminators. 761 SmallVector<unsigned, 4> KilledRegs; 762 if (LV) 763 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 764 I != E; ++I) { 765 MachineInstr *MI = &*I; 766 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 767 OE = MI->operands_end(); OI != OE; ++OI) { 768 if (!OI->isReg() || OI->getReg() == 0 || 769 !OI->isUse() || !OI->isKill() || OI->isUndef()) 770 continue; 771 unsigned Reg = OI->getReg(); 772 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 773 LV->getVarInfo(Reg).removeKill(*MI)) { 774 KilledRegs.push_back(Reg); 775 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 776 OI->setIsKill(false); 777 } 778 } 779 } 780 781 SmallVector<unsigned, 4> UsedRegs; 782 if (LIS) { 783 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 784 I != E; ++I) { 785 MachineInstr *MI = &*I; 786 787 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 788 OE = MI->operands_end(); OI != OE; ++OI) { 789 if (!OI->isReg() || OI->getReg() == 0) 790 continue; 791 792 unsigned Reg = OI->getReg(); 793 if (!is_contained(UsedRegs, Reg)) 794 UsedRegs.push_back(Reg); 795 } 796 } 797 } 798 799 ReplaceUsesOfBlockWith(Succ, NMBB); 800 801 // If updateTerminator() removes instructions, we need to remove them from 802 // SlotIndexes. 803 SmallVector<MachineInstr*, 4> Terminators; 804 if (Indexes) { 805 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 806 I != E; ++I) 807 Terminators.push_back(&*I); 808 } 809 810 updateTerminator(); 811 812 if (Indexes) { 813 SmallVector<MachineInstr*, 4> NewTerminators; 814 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 815 I != E; ++I) 816 NewTerminators.push_back(&*I); 817 818 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 819 E = Terminators.end(); I != E; ++I) { 820 if (!is_contained(NewTerminators, *I)) 821 Indexes->removeMachineInstrFromMaps(**I); 822 } 823 } 824 825 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 826 NMBB->addSuccessor(Succ); 827 if (!NMBB->isLayoutSuccessor(Succ)) { 828 SmallVector<MachineOperand, 4> Cond; 829 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 830 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 831 832 if (Indexes) { 833 for (MachineInstr &MI : NMBB->instrs()) { 834 // Some instructions may have been moved to NMBB by updateTerminator(), 835 // so we first remove any instruction that already has an index. 836 if (Indexes->hasIndex(MI)) 837 Indexes->removeMachineInstrFromMaps(MI); 838 Indexes->insertMachineInstrInMaps(MI); 839 } 840 } 841 } 842 843 // Fix PHI nodes in Succ so they refer to NMBB instead of this 844 for (MachineBasicBlock::instr_iterator 845 i = Succ->instr_begin(),e = Succ->instr_end(); 846 i != e && i->isPHI(); ++i) 847 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 848 if (i->getOperand(ni+1).getMBB() == this) 849 i->getOperand(ni+1).setMBB(NMBB); 850 851 // Inherit live-ins from the successor 852 for (const auto &LI : Succ->liveins()) 853 NMBB->addLiveIn(LI); 854 855 // Update LiveVariables. 856 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 857 if (LV) { 858 // Restore kills of virtual registers that were killed by the terminators. 859 while (!KilledRegs.empty()) { 860 unsigned Reg = KilledRegs.pop_back_val(); 861 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 862 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 863 continue; 864 if (TargetRegisterInfo::isVirtualRegister(Reg)) 865 LV->getVarInfo(Reg).Kills.push_back(&*I); 866 DEBUG(dbgs() << "Restored terminator kill: " << *I); 867 break; 868 } 869 } 870 // Update relevant live-through information. 871 LV->addNewBlock(NMBB, this, Succ); 872 } 873 874 if (LIS) { 875 // After splitting the edge and updating SlotIndexes, live intervals may be 876 // in one of two situations, depending on whether this block was the last in 877 // the function. If the original block was the last in the function, all 878 // live intervals will end prior to the beginning of the new split block. If 879 // the original block was not at the end of the function, all live intervals 880 // will extend to the end of the new split block. 881 882 bool isLastMBB = 883 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 884 885 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 886 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 887 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 888 889 // Find the registers used from NMBB in PHIs in Succ. 890 SmallSet<unsigned, 8> PHISrcRegs; 891 for (MachineBasicBlock::instr_iterator 892 I = Succ->instr_begin(), E = Succ->instr_end(); 893 I != E && I->isPHI(); ++I) { 894 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 895 if (I->getOperand(ni+1).getMBB() == NMBB) { 896 MachineOperand &MO = I->getOperand(ni); 897 unsigned Reg = MO.getReg(); 898 PHISrcRegs.insert(Reg); 899 if (MO.isUndef()) 900 continue; 901 902 LiveInterval &LI = LIS->getInterval(Reg); 903 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 904 assert(VNI && 905 "PHI sources should be live out of their predecessors."); 906 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 907 } 908 } 909 } 910 911 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 912 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 913 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 914 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 915 continue; 916 917 LiveInterval &LI = LIS->getInterval(Reg); 918 if (!LI.liveAt(PrevIndex)) 919 continue; 920 921 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 922 if (isLiveOut && isLastMBB) { 923 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 924 assert(VNI && "LiveInterval should have VNInfo where it is live."); 925 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 926 } else if (!isLiveOut && !isLastMBB) { 927 LI.removeSegment(StartIndex, EndIndex); 928 } 929 } 930 931 // Update all intervals for registers whose uses may have been modified by 932 // updateTerminator(). 933 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 934 } 935 936 if (MachineDominatorTree *MDT = 937 P.getAnalysisIfAvailable<MachineDominatorTree>()) 938 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 939 940 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 941 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 942 // If one or the other blocks were not in a loop, the new block is not 943 // either, and thus LI doesn't need to be updated. 944 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 945 if (TIL == DestLoop) { 946 // Both in the same loop, the NMBB joins loop. 947 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 948 } else if (TIL->contains(DestLoop)) { 949 // Edge from an outer loop to an inner loop. Add to the outer loop. 950 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 951 } else if (DestLoop->contains(TIL)) { 952 // Edge from an inner loop to an outer loop. Add to the outer loop. 953 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 954 } else { 955 // Edge from two loops with no containment relation. Because these 956 // are natural loops, we know that the destination block must be the 957 // header of its loop (adding a branch into a loop elsewhere would 958 // create an irreducible loop). 959 assert(DestLoop->getHeader() == Succ && 960 "Should not create irreducible loops!"); 961 if (MachineLoop *P = DestLoop->getParentLoop()) 962 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 963 } 964 } 965 } 966 967 return NMBB; 968 } 969 970 bool MachineBasicBlock::canSplitCriticalEdge( 971 const MachineBasicBlock *Succ) const { 972 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 973 // it in this generic function. 974 if (Succ->isEHPad()) 975 return false; 976 977 const MachineFunction *MF = getParent(); 978 979 // Performance might be harmed on HW that implements branching using exec mask 980 // where both sides of the branches are always executed. 981 if (MF->getTarget().requiresStructuredCFG()) 982 return false; 983 984 // We may need to update this's terminator, but we can't do that if 985 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 986 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 987 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 988 SmallVector<MachineOperand, 4> Cond; 989 // AnalyzeBanch should modify this, since we did not allow modification. 990 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 991 /*AllowModify*/ false)) 992 return false; 993 994 // Avoid bugpoint weirdness: A block may end with a conditional branch but 995 // jumps to the same MBB is either case. We have duplicate CFG edges in that 996 // case that we can't handle. Since this never happens in properly optimized 997 // code, just skip those edges. 998 if (TBB && TBB == FBB) { 999 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 1000 << getNumber() << '\n'); 1001 return false; 1002 } 1003 return true; 1004 } 1005 1006 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1007 /// neighboring instructions so the bundle won't be broken by removing MI. 1008 static void unbundleSingleMI(MachineInstr *MI) { 1009 // Removing the first instruction in a bundle. 1010 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1011 MI->unbundleFromSucc(); 1012 // Removing the last instruction in a bundle. 1013 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1014 MI->unbundleFromPred(); 1015 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1016 // are already fine. 1017 } 1018 1019 MachineBasicBlock::instr_iterator 1020 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1021 unbundleSingleMI(&*I); 1022 return Insts.erase(I); 1023 } 1024 1025 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1026 unbundleSingleMI(MI); 1027 MI->clearFlag(MachineInstr::BundledPred); 1028 MI->clearFlag(MachineInstr::BundledSucc); 1029 return Insts.remove(MI); 1030 } 1031 1032 MachineBasicBlock::instr_iterator 1033 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1034 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1035 "Cannot insert instruction with bundle flags"); 1036 // Set the bundle flags when inserting inside a bundle. 1037 if (I != instr_end() && I->isBundledWithPred()) { 1038 MI->setFlag(MachineInstr::BundledPred); 1039 MI->setFlag(MachineInstr::BundledSucc); 1040 } 1041 return Insts.insert(I, MI); 1042 } 1043 1044 /// This method unlinks 'this' from the containing function, and returns it, but 1045 /// does not delete it. 1046 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1047 assert(getParent() && "Not embedded in a function!"); 1048 getParent()->remove(this); 1049 return this; 1050 } 1051 1052 /// This method unlinks 'this' from the containing function, and deletes it. 1053 void MachineBasicBlock::eraseFromParent() { 1054 assert(getParent() && "Not embedded in a function!"); 1055 getParent()->erase(this); 1056 } 1057 1058 /// Given a machine basic block that branched to 'Old', change the code and CFG 1059 /// so that it branches to 'New' instead. 1060 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1061 MachineBasicBlock *New) { 1062 assert(Old != New && "Cannot replace self with self!"); 1063 1064 MachineBasicBlock::instr_iterator I = instr_end(); 1065 while (I != instr_begin()) { 1066 --I; 1067 if (!I->isTerminator()) break; 1068 1069 // Scan the operands of this machine instruction, replacing any uses of Old 1070 // with New. 1071 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1072 if (I->getOperand(i).isMBB() && 1073 I->getOperand(i).getMBB() == Old) 1074 I->getOperand(i).setMBB(New); 1075 } 1076 1077 // Update the successor information. 1078 replaceSuccessor(Old, New); 1079 } 1080 1081 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1082 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1083 /// MBB successors from the CFG. DestA and DestB can be null. 1084 /// 1085 /// Besides DestA and DestB, retain other edges leading to LandingPads 1086 /// (currently there can be only one; we don't check or require that here). 1087 /// Note it is possible that DestA and/or DestB are LandingPads. 1088 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1089 MachineBasicBlock *DestB, 1090 bool IsCond) { 1091 // The values of DestA and DestB frequently come from a call to the 1092 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1093 // values from there. 1094 // 1095 // 1. If both DestA and DestB are null, then the block ends with no branches 1096 // (it falls through to its successor). 1097 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1098 // with only an unconditional branch. 1099 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1100 // with a conditional branch that falls through to a successor (DestB). 1101 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1102 // conditional branch followed by an unconditional branch. DestA is the 1103 // 'true' destination and DestB is the 'false' destination. 1104 1105 bool Changed = false; 1106 1107 MachineBasicBlock *FallThru = getNextNode(); 1108 1109 if (!DestA && !DestB) { 1110 // Block falls through to successor. 1111 DestA = FallThru; 1112 DestB = FallThru; 1113 } else if (DestA && !DestB) { 1114 if (IsCond) 1115 // Block ends in conditional jump that falls through to successor. 1116 DestB = FallThru; 1117 } else { 1118 assert(DestA && DestB && IsCond && 1119 "CFG in a bad state. Cannot correct CFG edges"); 1120 } 1121 1122 // Remove superfluous edges. I.e., those which aren't destinations of this 1123 // basic block, duplicate edges, or landing pads. 1124 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1125 MachineBasicBlock::succ_iterator SI = succ_begin(); 1126 while (SI != succ_end()) { 1127 const MachineBasicBlock *MBB = *SI; 1128 if (!SeenMBBs.insert(MBB).second || 1129 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1130 // This is a superfluous edge, remove it. 1131 SI = removeSuccessor(SI); 1132 Changed = true; 1133 } else { 1134 ++SI; 1135 } 1136 } 1137 1138 if (Changed) 1139 normalizeSuccProbs(); 1140 return Changed; 1141 } 1142 1143 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1144 /// instructions. Return UnknownLoc if there is none. 1145 DebugLoc 1146 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1147 // Skip debug declarations, we don't want a DebugLoc from them. 1148 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1149 if (MBBI != instr_end()) 1150 return MBBI->getDebugLoc(); 1151 return {}; 1152 } 1153 1154 /// Find and return the merged DebugLoc of the branch instructions of the block. 1155 /// Return UnknownLoc if there is none. 1156 DebugLoc 1157 MachineBasicBlock::findBranchDebugLoc() { 1158 DebugLoc DL {}; 1159 auto TI = getFirstTerminator(); 1160 while (TI != end() && !TI->isBranch()) 1161 ++TI; 1162 1163 if (TI != end()) { 1164 DL = TI->getDebugLoc(); 1165 for (++TI ; TI != end() ; ++TI) 1166 if (TI->isBranch()) 1167 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1168 } 1169 return DL; 1170 } 1171 1172 /// Return probability of the edge from this block to MBB. 1173 BranchProbability 1174 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1175 if (Probs.empty()) 1176 return BranchProbability(1, succ_size()); 1177 1178 const auto &Prob = *getProbabilityIterator(Succ); 1179 if (Prob.isUnknown()) { 1180 // For unknown probabilities, collect the sum of all known ones, and evenly 1181 // ditribute the complemental of the sum to each unknown probability. 1182 unsigned KnownProbNum = 0; 1183 auto Sum = BranchProbability::getZero(); 1184 for (auto &P : Probs) { 1185 if (!P.isUnknown()) { 1186 Sum += P; 1187 KnownProbNum++; 1188 } 1189 } 1190 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1191 } else 1192 return Prob; 1193 } 1194 1195 /// Set successor probability of a given iterator. 1196 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1197 BranchProbability Prob) { 1198 assert(!Prob.isUnknown()); 1199 if (Probs.empty()) 1200 return; 1201 *getProbabilityIterator(I) = Prob; 1202 } 1203 1204 /// Return probability iterator corresonding to the I successor iterator 1205 MachineBasicBlock::const_probability_iterator 1206 MachineBasicBlock::getProbabilityIterator( 1207 MachineBasicBlock::const_succ_iterator I) const { 1208 assert(Probs.size() == Successors.size() && "Async probability list!"); 1209 const size_t index = std::distance(Successors.begin(), I); 1210 assert(index < Probs.size() && "Not a current successor!"); 1211 return Probs.begin() + index; 1212 } 1213 1214 /// Return probability iterator corresonding to the I successor iterator. 1215 MachineBasicBlock::probability_iterator 1216 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1217 assert(Probs.size() == Successors.size() && "Async probability list!"); 1218 const size_t index = std::distance(Successors.begin(), I); 1219 assert(index < Probs.size() && "Not a current successor!"); 1220 return Probs.begin() + index; 1221 } 1222 1223 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1224 /// as of just before "MI". 1225 /// 1226 /// Search is localised to a neighborhood of 1227 /// Neighborhood instructions before (searching for defs or kills) and N 1228 /// instructions after (searching just for defs) MI. 1229 MachineBasicBlock::LivenessQueryResult 1230 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1231 unsigned Reg, const_iterator Before, 1232 unsigned Neighborhood) const { 1233 unsigned N = Neighborhood; 1234 1235 // Start by searching backwards from Before, looking for kills, reads or defs. 1236 const_iterator I(Before); 1237 // If this is the first insn in the block, don't search backwards. 1238 if (I != begin()) { 1239 do { 1240 --I; 1241 1242 MachineOperandIteratorBase::PhysRegInfo Info = 1243 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1244 1245 // Defs happen after uses so they take precedence if both are present. 1246 1247 // Register is dead after a dead def of the full register. 1248 if (Info.DeadDef) 1249 return LQR_Dead; 1250 // Register is (at least partially) live after a def. 1251 if (Info.Defined) { 1252 if (!Info.PartialDeadDef) 1253 return LQR_Live; 1254 // As soon as we saw a partial definition (dead or not), 1255 // we cannot tell if the value is partial live without 1256 // tracking the lanemasks. We are not going to do this, 1257 // so fall back on the remaining of the analysis. 1258 break; 1259 } 1260 // Register is dead after a full kill or clobber and no def. 1261 if (Info.Killed || Info.Clobbered) 1262 return LQR_Dead; 1263 // Register must be live if we read it. 1264 if (Info.Read) 1265 return LQR_Live; 1266 } while (I != begin() && --N > 0); 1267 } 1268 1269 // Did we get to the start of the block? 1270 if (I == begin()) { 1271 // If so, the register's state is definitely defined by the live-in state. 1272 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1273 ++RAI) 1274 if (isLiveIn(*RAI)) 1275 return LQR_Live; 1276 1277 return LQR_Dead; 1278 } 1279 1280 N = Neighborhood; 1281 1282 // Try searching forwards from Before, looking for reads or defs. 1283 I = const_iterator(Before); 1284 // If this is the last insn in the block, don't search forwards. 1285 if (I != end()) { 1286 for (++I; I != end() && N > 0; ++I, --N) { 1287 MachineOperandIteratorBase::PhysRegInfo Info = 1288 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1289 1290 // Register is live when we read it here. 1291 if (Info.Read) 1292 return LQR_Live; 1293 // Register is dead if we can fully overwrite or clobber it here. 1294 if (Info.FullyDefined || Info.Clobbered) 1295 return LQR_Dead; 1296 } 1297 } 1298 1299 // At this point we have no idea of the liveness of the register. 1300 return LQR_Unknown; 1301 } 1302 1303 const uint32_t * 1304 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1305 // EH funclet entry does not preserve any registers. 1306 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1307 } 1308 1309 const uint32_t * 1310 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1311 // If we see a return block with successors, this must be a funclet return, 1312 // which does not preserve any registers. If there are no successors, we don't 1313 // care what kind of return it is, putting a mask after it is a no-op. 1314 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1315 } 1316 1317 void MachineBasicBlock::clearLiveIns() { 1318 LiveIns.clear(); 1319 } 1320 1321 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1322 assert(getParent()->getProperties().hasProperty( 1323 MachineFunctionProperties::Property::TracksLiveness) && 1324 "Liveness information is accurate"); 1325 return LiveIns.begin(); 1326 } 1327