xref: /llvm-project/llvm/lib/CodeGen/LiveIntervals.cpp (revision ac1ba1f9dd7013852cd27f514467f57ee0e6ed16)
1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervalCalc.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBundle.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/MachineSizeOpts.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/SlotIndexes.h"
36 #include "llvm/CodeGen/StackMaps.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/VirtRegMap.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/ProfileSummary.h"
42 #include "llvm/IR/Statepoint.h"
43 #include "llvm/MC/LaneBitmask.h"
44 #include "llvm/MC/MCRegisterInfo.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstdint>
54 #include <iterator>
55 #include <tuple>
56 #include <utility>
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "regalloc"
61 
62 AnalysisKey LiveIntervalsAnalysis::Key;
63 
64 LiveIntervalsAnalysis::Result
65 LiveIntervalsAnalysis::run(MachineFunction &MF,
66                            MachineFunctionAnalysisManager &MFAM) {
67   return Result(MF, MFAM.getResult<SlotIndexesAnalysis>(MF),
68                 MFAM.getResult<MachineDominatorTreeAnalysis>(MF));
69 }
70 
71 PreservedAnalyses
72 LiveIntervalsPrinterPass::run(MachineFunction &MF,
73                               MachineFunctionAnalysisManager &MFAM) {
74   OS << "Live intervals for machine function: " << MF.getName() << ":\n";
75   MFAM.getResult<LiveIntervalsAnalysis>(MF).print(OS);
76   return PreservedAnalyses::all();
77 }
78 
79 char LiveIntervalsWrapperPass::ID = 0;
80 char &llvm::LiveIntervalsID = LiveIntervalsWrapperPass::ID;
81 INITIALIZE_PASS_BEGIN(LiveIntervalsWrapperPass, "liveintervals",
82                       "Live Interval Analysis", false, false)
83 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
84 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass)
85 INITIALIZE_PASS_END(LiveIntervalsWrapperPass, "liveintervals",
86                     "Live Interval Analysis", false, true)
87 
88 bool LiveIntervalsWrapperPass::runOnMachineFunction(MachineFunction &MF) {
89   LIS.Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI();
90   LIS.DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
91   LIS.analyze(MF);
92   LLVM_DEBUG(dump());
93   return false;
94 }
95 
96 #ifndef NDEBUG
97 static cl::opt<bool> EnablePrecomputePhysRegs(
98   "precompute-phys-liveness", cl::Hidden,
99   cl::desc("Eagerly compute live intervals for all physreg units."));
100 #else
101 static bool EnablePrecomputePhysRegs = false;
102 #endif // NDEBUG
103 
104 namespace llvm {
105 
106 cl::opt<bool> UseSegmentSetForPhysRegs(
107     "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
108     cl::desc(
109         "Use segment set for the computation of the live ranges of physregs."));
110 
111 } // end namespace llvm
112 
113 void LiveIntervalsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
114   AU.setPreservesCFG();
115   AU.addPreserved<LiveVariablesWrapperPass>();
116   AU.addPreservedID(MachineLoopInfoID);
117   AU.addRequiredTransitiveID(MachineDominatorsID);
118   AU.addPreservedID(MachineDominatorsID);
119   AU.addPreserved<SlotIndexesWrapperPass>();
120   AU.addRequiredTransitive<SlotIndexesWrapperPass>();
121   MachineFunctionPass::getAnalysisUsage(AU);
122 }
123 
124 LiveIntervalsWrapperPass::LiveIntervalsWrapperPass() : MachineFunctionPass(ID) {
125   initializeLiveIntervalsWrapperPassPass(*PassRegistry::getPassRegistry());
126 }
127 
128 LiveIntervals::~LiveIntervals() { clear(); }
129 
130 bool LiveIntervals::invalidate(
131     MachineFunction &MF, const PreservedAnalyses &PA,
132     MachineFunctionAnalysisManager::Invalidator &Inv) {
133   auto PAC = PA.getChecker<LiveIntervalsAnalysis>();
134 
135   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<MachineFunction>>())
136     return true;
137 
138   // LiveIntervals holds pointers to these results, so check for their
139   // invalidation.
140   return Inv.invalidate<SlotIndexesAnalysis>(MF, PA) ||
141          Inv.invalidate<MachineDominatorTreeAnalysis>(MF, PA);
142 }
143 
144 void LiveIntervals::clear() {
145   // Free the live intervals themselves.
146   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
147     delete VirtRegIntervals[Register::index2VirtReg(i)];
148   VirtRegIntervals.clear();
149   RegMaskSlots.clear();
150   RegMaskBits.clear();
151   RegMaskBlocks.clear();
152 
153   for (LiveRange *LR : RegUnitRanges)
154     delete LR;
155   RegUnitRanges.clear();
156 
157   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
158   VNInfoAllocator.Reset();
159 }
160 
161 void LiveIntervals::analyze(MachineFunction &fn) {
162   MF = &fn;
163   MRI = &MF->getRegInfo();
164   TRI = MF->getSubtarget().getRegisterInfo();
165   TII = MF->getSubtarget().getInstrInfo();
166 
167   if (!LICalc)
168     LICalc = std::make_unique<LiveIntervalCalc>();
169 
170   // Allocate space for all virtual registers.
171   VirtRegIntervals.resize(MRI->getNumVirtRegs());
172 
173   computeVirtRegs();
174   computeRegMasks();
175   computeLiveInRegUnits();
176 
177   if (EnablePrecomputePhysRegs) {
178     // For stress testing, precompute live ranges of all physical register
179     // units, including reserved registers.
180     for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
181       getRegUnit(i);
182   }
183 }
184 
185 void LiveIntervals::print(raw_ostream &OS) const {
186   OS << "********** INTERVALS **********\n";
187 
188   // Dump the regunits.
189   for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
190     if (LiveRange *LR = RegUnitRanges[Unit])
191       OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
192 
193   // Dump the virtregs.
194   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
195     Register Reg = Register::index2VirtReg(i);
196     if (hasInterval(Reg))
197       OS << getInterval(Reg) << '\n';
198   }
199 
200   OS << "RegMasks:";
201   for (SlotIndex Idx : RegMaskSlots)
202     OS << ' ' << Idx;
203   OS << '\n';
204 
205   printInstrs(OS);
206 }
207 
208 void LiveIntervals::printInstrs(raw_ostream &OS) const {
209   OS << "********** MACHINEINSTRS **********\n";
210   MF->print(OS, Indexes);
211 }
212 
213 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
214 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
215   printInstrs(dbgs());
216 }
217 #endif
218 
219 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
220 LLVM_DUMP_METHOD void LiveIntervals::dump() const { print(dbgs()); }
221 #endif
222 
223 LiveInterval *LiveIntervals::createInterval(Register reg) {
224   float Weight = reg.isPhysical() ? huge_valf : 0.0F;
225   return new LiveInterval(reg, Weight);
226 }
227 
228 /// Compute the live interval of a virtual register, based on defs and uses.
229 bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
230   assert(LICalc && "LICalc not initialized.");
231   assert(LI.empty() && "Should only compute empty intervals.");
232   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
233   LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg()));
234   return computeDeadValues(LI, nullptr);
235 }
236 
237 void LiveIntervals::computeVirtRegs() {
238   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
239     Register Reg = Register::index2VirtReg(i);
240     if (MRI->reg_nodbg_empty(Reg))
241       continue;
242     LiveInterval &LI = createEmptyInterval(Reg);
243     bool NeedSplit = computeVirtRegInterval(LI);
244     if (NeedSplit) {
245       SmallVector<LiveInterval*, 8> SplitLIs;
246       splitSeparateComponents(LI, SplitLIs);
247     }
248   }
249 }
250 
251 void LiveIntervals::computeRegMasks() {
252   RegMaskBlocks.resize(MF->getNumBlockIDs());
253 
254   // Find all instructions with regmask operands.
255   for (const MachineBasicBlock &MBB : *MF) {
256     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
257     RMB.first = RegMaskSlots.size();
258 
259     // Some block starts, such as EH funclets, create masks.
260     if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
261       RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
262       RegMaskBits.push_back(Mask);
263     }
264 
265     // Unwinders may clobber additional registers.
266     // FIXME: This functionality can possibly be merged into
267     // MachineBasicBlock::getBeginClobberMask().
268     if (MBB.isEHPad())
269       if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) {
270         RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
271         RegMaskBits.push_back(Mask);
272       }
273 
274     for (const MachineInstr &MI : MBB) {
275       for (const MachineOperand &MO : MI.operands()) {
276         if (!MO.isRegMask())
277           continue;
278         RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
279         RegMaskBits.push_back(MO.getRegMask());
280       }
281     }
282 
283     // Some block ends, such as funclet returns, create masks. Put the mask on
284     // the last instruction of the block, because MBB slot index intervals are
285     // half-open.
286     if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
287       assert(!MBB.empty() && "empty return block?");
288       RegMaskSlots.push_back(
289           Indexes->getInstructionIndex(MBB.back()).getRegSlot());
290       RegMaskBits.push_back(Mask);
291     }
292 
293     // Compute the number of register mask instructions in this block.
294     RMB.second = RegMaskSlots.size() - RMB.first;
295   }
296 }
297 
298 //===----------------------------------------------------------------------===//
299 //                           Register Unit Liveness
300 //===----------------------------------------------------------------------===//
301 //
302 // Fixed interference typically comes from ABI boundaries: Function arguments
303 // and return values are passed in fixed registers, and so are exception
304 // pointers entering landing pads. Certain instructions require values to be
305 // present in specific registers. That is also represented through fixed
306 // interference.
307 //
308 
309 /// Compute the live range of a register unit, based on the uses and defs of
310 /// aliasing registers.  The range should be empty, or contain only dead
311 /// phi-defs from ABI blocks.
312 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
313   assert(LICalc && "LICalc not initialized.");
314   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
315 
316   // The physregs aliasing Unit are the roots and their super-registers.
317   // Create all values as dead defs before extending to uses. Note that roots
318   // may share super-registers. That's OK because createDeadDefs() is
319   // idempotent. It is very rare for a register unit to have multiple roots, so
320   // uniquing super-registers is probably not worthwhile.
321   bool IsReserved = false;
322   for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
323     bool IsRootReserved = true;
324     for (MCPhysReg Reg : TRI->superregs_inclusive(*Root)) {
325       if (!MRI->reg_empty(Reg))
326         LICalc->createDeadDefs(LR, Reg);
327       // A register unit is considered reserved if all its roots and all their
328       // super registers are reserved.
329       if (!MRI->isReserved(Reg))
330         IsRootReserved = false;
331     }
332     IsReserved |= IsRootReserved;
333   }
334   assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
335          "reserved computation mismatch");
336 
337   // Now extend LR to reach all uses.
338   // Ignore uses of reserved registers. We only track defs of those.
339   if (!IsReserved) {
340     for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
341       for (MCPhysReg Reg : TRI->superregs_inclusive(*Root)) {
342         if (!MRI->reg_empty(Reg))
343           LICalc->extendToUses(LR, Reg);
344       }
345     }
346   }
347 
348   // Flush the segment set to the segment vector.
349   if (UseSegmentSetForPhysRegs)
350     LR.flushSegmentSet();
351 }
352 
353 /// Precompute the live ranges of any register units that are live-in to an ABI
354 /// block somewhere. Register values can appear without a corresponding def when
355 /// entering the entry block or a landing pad.
356 void LiveIntervals::computeLiveInRegUnits() {
357   RegUnitRanges.resize(TRI->getNumRegUnits());
358   LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
359 
360   // Keep track of the live range sets allocated.
361   SmallVector<unsigned, 8> NewRanges;
362 
363   // Check all basic blocks for live-ins.
364   for (const MachineBasicBlock &MBB : *MF) {
365     // We only care about ABI blocks: Entry + landing pads.
366     if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
367       continue;
368 
369     // Create phi-defs at Begin for all live-in registers.
370     SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
371     LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
372     for (const auto &LI : MBB.liveins()) {
373       for (MCRegUnit Unit : TRI->regunits(LI.PhysReg)) {
374         LiveRange *LR = RegUnitRanges[Unit];
375         if (!LR) {
376           // Use segment set to speed-up initial computation of the live range.
377           LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
378           NewRanges.push_back(Unit);
379         }
380         VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
381         (void)VNI;
382         LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
383       }
384     }
385     LLVM_DEBUG(dbgs() << '\n');
386   }
387   LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
388 
389   // Compute the 'normal' part of the ranges.
390   for (unsigned Unit : NewRanges)
391     computeRegUnitRange(*RegUnitRanges[Unit], Unit);
392 }
393 
394 static void createSegmentsForValues(LiveRange &LR,
395     iterator_range<LiveInterval::vni_iterator> VNIs) {
396   for (VNInfo *VNI : VNIs) {
397     if (VNI->isUnused())
398       continue;
399     SlotIndex Def = VNI->def;
400     LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
401   }
402 }
403 
404 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
405                                          ShrinkToUsesWorkList &WorkList,
406                                          Register Reg, LaneBitmask LaneMask) {
407   // Keep track of the PHIs that are in use.
408   SmallPtrSet<VNInfo*, 8> UsedPHIs;
409   // Blocks that have already been added to WorkList as live-out.
410   SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
411 
412   auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
413         -> const LiveRange& {
414     if (M.none())
415       return I;
416     for (const LiveInterval::SubRange &SR : I.subranges()) {
417       if ((SR.LaneMask & M).any()) {
418         assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
419         return SR;
420       }
421     }
422     llvm_unreachable("Subrange for mask not found");
423   };
424 
425   const LiveInterval &LI = getInterval(Reg);
426   const LiveRange &OldRange = getSubRange(LI, LaneMask);
427 
428   // Extend intervals to reach all uses in WorkList.
429   while (!WorkList.empty()) {
430     SlotIndex Idx = WorkList.back().first;
431     VNInfo *VNI = WorkList.back().second;
432     WorkList.pop_back();
433     const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
434     SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
435 
436     // Extend the live range for VNI to be live at Idx.
437     if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
438       assert(ExtVNI == VNI && "Unexpected existing value number");
439       (void)ExtVNI;
440       // Is this a PHIDef we haven't seen before?
441       if (!VNI->isPHIDef() || VNI->def != BlockStart ||
442           !UsedPHIs.insert(VNI).second)
443         continue;
444       // The PHI is live, make sure the predecessors are live-out.
445       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
446         if (!LiveOut.insert(Pred).second)
447           continue;
448         SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
449         // A predecessor is not required to have a live-out value for a PHI.
450         if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
451           WorkList.push_back(std::make_pair(Stop, PVNI));
452       }
453       continue;
454     }
455 
456     // VNI is live-in to MBB.
457     LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
458     Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
459 
460     // Make sure VNI is live-out from the predecessors.
461     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
462       if (!LiveOut.insert(Pred).second)
463         continue;
464       SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
465       if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
466         assert(OldVNI == VNI && "Wrong value out of predecessor");
467         (void)OldVNI;
468         WorkList.push_back(std::make_pair(Stop, VNI));
469       } else {
470 #ifndef NDEBUG
471         // There was no old VNI. Verify that Stop is jointly dominated
472         // by <undef>s for this live range.
473         assert(LaneMask.any() &&
474                "Missing value out of predecessor for main range");
475         SmallVector<SlotIndex,8> Undefs;
476         LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
477         assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
478                "Missing value out of predecessor for subrange");
479 #endif
480       }
481     }
482   }
483 }
484 
485 bool LiveIntervals::shrinkToUses(LiveInterval *li,
486                                  SmallVectorImpl<MachineInstr*> *dead) {
487   LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
488   assert(li->reg().isVirtual() && "Can only shrink virtual registers");
489 
490   // Shrink subregister live ranges.
491   bool NeedsCleanup = false;
492   for (LiveInterval::SubRange &S : li->subranges()) {
493     shrinkToUses(S, li->reg());
494     if (S.empty())
495       NeedsCleanup = true;
496   }
497   if (NeedsCleanup)
498     li->removeEmptySubRanges();
499 
500   // Find all the values used, including PHI kills.
501   ShrinkToUsesWorkList WorkList;
502 
503   // Visit all instructions reading li->reg().
504   Register Reg = li->reg();
505   for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
506     if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg))
507       continue;
508     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
509     LiveQueryResult LRQ = li->Query(Idx);
510     VNInfo *VNI = LRQ.valueIn();
511     if (!VNI) {
512       // This shouldn't happen: readsVirtualRegister returns true, but there is
513       // no live value. It is likely caused by a target getting <undef> flags
514       // wrong.
515       LLVM_DEBUG(
516           dbgs() << Idx << '\t' << UseMI
517                  << "Warning: Instr claims to read non-existent value in "
518                  << *li << '\n');
519       continue;
520     }
521     // Special case: An early-clobber tied operand reads and writes the
522     // register one slot early.
523     if (VNInfo *DefVNI = LRQ.valueDefined())
524       Idx = DefVNI->def;
525 
526     WorkList.push_back(std::make_pair(Idx, VNI));
527   }
528 
529   // Create new live ranges with only minimal live segments per def.
530   LiveRange NewLR;
531   createSegmentsForValues(NewLR, li->vnis());
532   extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
533 
534   // Move the trimmed segments back.
535   li->segments.swap(NewLR.segments);
536 
537   // Handle dead values.
538   bool CanSeparate = computeDeadValues(*li, dead);
539   LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
540   return CanSeparate;
541 }
542 
543 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
544                                       SmallVectorImpl<MachineInstr*> *dead) {
545   bool MayHaveSplitComponents = false;
546 
547   for (VNInfo *VNI : LI.valnos) {
548     if (VNI->isUnused())
549       continue;
550     SlotIndex Def = VNI->def;
551     LiveRange::iterator I = LI.FindSegmentContaining(Def);
552     assert(I != LI.end() && "Missing segment for VNI");
553 
554     // Is the register live before? Otherwise we may have to add a read-undef
555     // flag for subregister defs.
556     Register VReg = LI.reg();
557     if (MRI->shouldTrackSubRegLiveness(VReg)) {
558       if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
559         MachineInstr *MI = getInstructionFromIndex(Def);
560         MI->setRegisterDefReadUndef(VReg);
561       }
562     }
563 
564     if (I->end != Def.getDeadSlot())
565       continue;
566     if (VNI->isPHIDef()) {
567       // This is a dead PHI. Remove it.
568       VNI->markUnused();
569       LI.removeSegment(I);
570       LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
571     } else {
572       // This is a dead def. Make sure the instruction knows.
573       MachineInstr *MI = getInstructionFromIndex(Def);
574       assert(MI && "No instruction defining live value");
575       MI->addRegisterDead(LI.reg(), TRI);
576 
577       if (dead && MI->allDefsAreDead()) {
578         LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
579         dead->push_back(MI);
580       }
581     }
582     MayHaveSplitComponents = true;
583   }
584   return MayHaveSplitComponents;
585 }
586 
587 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) {
588   LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
589   assert(Reg.isVirtual() && "Can only shrink virtual registers");
590   // Find all the values used, including PHI kills.
591   ShrinkToUsesWorkList WorkList;
592 
593   // Visit all instructions reading Reg.
594   SlotIndex LastIdx;
595   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
596     // Skip "undef" uses.
597     if (!MO.readsReg())
598       continue;
599     // Maybe the operand is for a subregister we don't care about.
600     unsigned SubReg = MO.getSubReg();
601     if (SubReg != 0) {
602       LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
603       if ((LaneMask & SR.LaneMask).none())
604         continue;
605     }
606     // We only need to visit each instruction once.
607     MachineInstr *UseMI = MO.getParent();
608     SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
609     if (Idx == LastIdx)
610       continue;
611     LastIdx = Idx;
612 
613     LiveQueryResult LRQ = SR.Query(Idx);
614     VNInfo *VNI = LRQ.valueIn();
615     // For Subranges it is possible that only undef values are left in that
616     // part of the subregister, so there is no real liverange at the use
617     if (!VNI)
618       continue;
619 
620     // Special case: An early-clobber tied operand reads and writes the
621     // register one slot early.
622     if (VNInfo *DefVNI = LRQ.valueDefined())
623       Idx = DefVNI->def;
624 
625     WorkList.push_back(std::make_pair(Idx, VNI));
626   }
627 
628   // Create a new live ranges with only minimal live segments per def.
629   LiveRange NewLR;
630   createSegmentsForValues(NewLR, SR.vnis());
631   extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
632 
633   // Move the trimmed ranges back.
634   SR.segments.swap(NewLR.segments);
635 
636   // Remove dead PHI value numbers
637   for (VNInfo *VNI : SR.valnos) {
638     if (VNI->isUnused())
639       continue;
640     const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
641     assert(Segment != nullptr && "Missing segment for VNI");
642     if (Segment->end != VNI->def.getDeadSlot())
643       continue;
644     if (VNI->isPHIDef()) {
645       // This is a dead PHI. Remove it.
646       LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
647                         << " may separate interval\n");
648       VNI->markUnused();
649       SR.removeSegment(*Segment);
650     }
651   }
652 
653   LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
654 }
655 
656 void LiveIntervals::extendToIndices(LiveRange &LR,
657                                     ArrayRef<SlotIndex> Indices,
658                                     ArrayRef<SlotIndex> Undefs) {
659   assert(LICalc && "LICalc not initialized.");
660   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
661   for (SlotIndex Idx : Indices)
662     LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
663 }
664 
665 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
666                                SmallVectorImpl<SlotIndex> *EndPoints) {
667   LiveQueryResult LRQ = LR.Query(Kill);
668   VNInfo *VNI = LRQ.valueOutOrDead();
669   if (!VNI)
670     return;
671 
672   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
673   SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
674 
675   // If VNI isn't live out from KillMBB, the value is trivially pruned.
676   if (LRQ.endPoint() < MBBEnd) {
677     LR.removeSegment(Kill, LRQ.endPoint());
678     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
679     return;
680   }
681 
682   // VNI is live out of KillMBB.
683   LR.removeSegment(Kill, MBBEnd);
684   if (EndPoints) EndPoints->push_back(MBBEnd);
685 
686   // Find all blocks that are reachable from KillMBB without leaving VNI's live
687   // range. It is possible that KillMBB itself is reachable, so start a DFS
688   // from each successor.
689   using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
690   VisitedTy Visited;
691   for (MachineBasicBlock *Succ : KillMBB->successors()) {
692     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
693          I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
694          I != E;) {
695       MachineBasicBlock *MBB = *I;
696 
697       // Check if VNI is live in to MBB.
698       SlotIndex MBBStart, MBBEnd;
699       std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
700       LiveQueryResult LRQ = LR.Query(MBBStart);
701       if (LRQ.valueIn() != VNI) {
702         // This block isn't part of the VNI segment. Prune the search.
703         I.skipChildren();
704         continue;
705       }
706 
707       // Prune the search if VNI is killed in MBB.
708       if (LRQ.endPoint() < MBBEnd) {
709         LR.removeSegment(MBBStart, LRQ.endPoint());
710         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
711         I.skipChildren();
712         continue;
713       }
714 
715       // VNI is live through MBB.
716       LR.removeSegment(MBBStart, MBBEnd);
717       if (EndPoints) EndPoints->push_back(MBBEnd);
718       ++I;
719     }
720   }
721 }
722 
723 //===----------------------------------------------------------------------===//
724 // Register allocator hooks.
725 //
726 
727 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
728   // Keep track of regunit ranges.
729   SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
730 
731   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
732     Register Reg = Register::index2VirtReg(i);
733     if (MRI->reg_nodbg_empty(Reg))
734       continue;
735     const LiveInterval &LI = getInterval(Reg);
736     if (LI.empty())
737       continue;
738 
739     // Target may have not allocated this yet.
740     Register PhysReg = VRM->getPhys(Reg);
741     if (!PhysReg)
742       continue;
743 
744     // Find the regunit intervals for the assigned register. They may overlap
745     // the virtual register live range, cancelling any kills.
746     RU.clear();
747     LaneBitmask ArtificialLanes;
748     for (MCRegUnitMaskIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
749       auto [Unit, Bitmask] = *UI;
750       // Record lane mask for all artificial RegUnits for this physreg.
751       if (TRI->isArtificialRegUnit(Unit))
752         ArtificialLanes |= Bitmask;
753       const LiveRange &RURange = getRegUnit(Unit);
754       if (RURange.empty())
755         continue;
756       RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
757     }
758     // Every instruction that kills Reg corresponds to a segment range end
759     // point.
760     for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
761          ++RI) {
762       // A block index indicates an MBB edge.
763       if (RI->end.isBlock())
764         continue;
765       MachineInstr *MI = getInstructionFromIndex(RI->end);
766       if (!MI)
767         continue;
768 
769       // Check if any of the regunits are live beyond the end of RI. That could
770       // happen when a physreg is defined as a copy of a virtreg:
771       //
772       //   %eax = COPY %5
773       //   FOO %5             <--- MI, cancel kill because %eax is live.
774       //   BAR killed %eax
775       //
776       // There should be no kill flag on FOO when %5 is rewritten as %eax.
777       for (auto &RUP : RU) {
778         const LiveRange &RURange = *RUP.first;
779         LiveRange::const_iterator &I = RUP.second;
780         if (I == RURange.end())
781           continue;
782         I = RURange.advanceTo(I, RI->end);
783         if (I == RURange.end() || I->start >= RI->end)
784           continue;
785         // I is overlapping RI.
786         goto CancelKill;
787       }
788 
789       if (MRI->subRegLivenessEnabled()) {
790         // When reading a partial undefined value we must not add a kill flag.
791         // The regalloc might have used the undef lane for something else.
792         // Example:
793         //     %1 = ...                  ; R32: %1
794         //     %2:high16 = ...           ; R64: %2
795         //        = read killed %2        ; R64: %2
796         //        = read %1              ; R32: %1
797         // The <kill> flag is correct for %2, but the register allocator may
798         // assign R0L to %1, and R0 to %2 because the low 32bits of R0
799         // are actually never written by %2. After assignment the <kill>
800         // flag at the read instruction is invalid.
801         LaneBitmask DefinedLanesMask;
802         if (LI.hasSubRanges()) {
803           // Compute a mask of lanes that are defined.
804           // Artificial regunits are not independently allocatable so the
805           // register allocator cannot have used them to represent any other
806           // values. That's why we mark them as 'defined' here, as this
807           // otherwise prevents kill flags from being added.
808           DefinedLanesMask = ArtificialLanes;
809           for (const LiveInterval::SubRange &SR : LI.subranges())
810             for (const LiveRange::Segment &Segment : SR.segments) {
811               if (Segment.start >= RI->end)
812                 break;
813               if (Segment.end == RI->end) {
814                 DefinedLanesMask |= SR.LaneMask;
815                 break;
816               }
817             }
818         } else
819           DefinedLanesMask = LaneBitmask::getAll();
820 
821         bool IsFullWrite = false;
822         for (const MachineOperand &MO : MI->operands()) {
823           if (!MO.isReg() || MO.getReg() != Reg)
824             continue;
825           if (MO.isUse()) {
826             // Reading any undefined lanes?
827             unsigned SubReg = MO.getSubReg();
828             LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
829                                          : MRI->getMaxLaneMaskForVReg(Reg);
830             if ((UseMask & ~DefinedLanesMask).any())
831               goto CancelKill;
832           } else if (MO.getSubReg() == 0) {
833             // Writing to the full register?
834             assert(MO.isDef());
835             IsFullWrite = true;
836           }
837         }
838 
839         // If an instruction writes to a subregister, a new segment starts in
840         // the LiveInterval. But as this is only overriding part of the register
841         // adding kill-flags is not correct here after registers have been
842         // assigned.
843         if (!IsFullWrite) {
844           // Next segment has to be adjacent in the subregister write case.
845           LiveRange::const_iterator N = std::next(RI);
846           if (N != LI.end() && N->start == RI->end)
847             goto CancelKill;
848         }
849       }
850 
851       MI->addRegisterKilled(Reg, nullptr);
852       continue;
853 CancelKill:
854       MI->clearRegisterKills(Reg, nullptr);
855     }
856   }
857 }
858 
859 MachineBasicBlock*
860 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
861   assert(!LI.empty() && "LiveInterval is empty.");
862 
863   // A local live range must be fully contained inside the block, meaning it is
864   // defined and killed at instructions, not at block boundaries. It is not
865   // live in or out of any block.
866   //
867   // It is technically possible to have a PHI-defined live range identical to a
868   // single block, but we are going to return false in that case.
869 
870   SlotIndex Start = LI.beginIndex();
871   if (Start.isBlock())
872     return nullptr;
873 
874   SlotIndex Stop = LI.endIndex();
875   if (Stop.isBlock())
876     return nullptr;
877 
878   // getMBBFromIndex doesn't need to search the MBB table when both indexes
879   // belong to proper instructions.
880   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
881   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
882   return MBB1 == MBB2 ? MBB1 : nullptr;
883 }
884 
885 bool
886 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
887   for (const VNInfo *PHI : LI.valnos) {
888     if (PHI->isUnused() || !PHI->isPHIDef())
889       continue;
890     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
891     // Conservatively return true instead of scanning huge predecessor lists.
892     if (PHIMBB->pred_size() > 100)
893       return true;
894     for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
895       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
896         return true;
897   }
898   return false;
899 }
900 
901 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
902                                     const MachineBlockFrequencyInfo *MBFI,
903                                     const MachineInstr &MI,
904                                     ProfileSummaryInfo *PSI) {
905   return getSpillWeight(isDef, isUse, MBFI, MI.getParent(), PSI);
906 }
907 
908 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
909                                     const MachineBlockFrequencyInfo *MBFI,
910                                     const MachineBasicBlock *MBB,
911                                     ProfileSummaryInfo *PSI) {
912   float Weight = isDef + isUse;
913   const auto *MF = MBB->getParent();
914   // When optimizing for size we only consider the codesize impact of spilling
915   // the register, not the runtime impact.
916   if (PSI && llvm::shouldOptimizeForSize(MF, PSI, MBFI))
917     return Weight;
918   return Weight * MBFI->getBlockFreqRelativeToEntryBlock(MBB);
919 }
920 
921 LiveRange::Segment
922 LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) {
923   LiveInterval &Interval = getOrCreateEmptyInterval(Reg);
924   VNInfo *VN = Interval.getNextValue(
925       SlotIndex(getInstructionIndex(startInst).getRegSlot()),
926       getVNInfoAllocator());
927   LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
928                        getMBBEndIdx(startInst.getParent()), VN);
929   Interval.addSegment(S);
930 
931   return S;
932 }
933 
934 //===----------------------------------------------------------------------===//
935 //                          Register mask functions
936 //===----------------------------------------------------------------------===//
937 /// Check whether use of reg in MI is live-through. Live-through means that
938 /// the value is alive on exit from Machine instruction. The example of such
939 /// use is a deopt value in statepoint instruction.
940 static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) {
941   if (MI->getOpcode() != TargetOpcode::STATEPOINT)
942     return false;
943   StatepointOpers SO(MI);
944   if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn)
945     return false;
946   for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E;
947        ++Idx) {
948     const MachineOperand &MO = MI->getOperand(Idx);
949     if (MO.isReg() && MO.getReg() == Reg)
950       return true;
951   }
952   return false;
953 }
954 
955 bool LiveIntervals::checkRegMaskInterference(const LiveInterval &LI,
956                                              BitVector &UsableRegs) {
957   if (LI.empty())
958     return false;
959   LiveInterval::const_iterator LiveI = LI.begin(), LiveE = LI.end();
960 
961   // Use a smaller arrays for local live ranges.
962   ArrayRef<SlotIndex> Slots;
963   ArrayRef<const uint32_t*> Bits;
964   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
965     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
966     Bits = getRegMaskBitsInBlock(MBB->getNumber());
967   } else {
968     Slots = getRegMaskSlots();
969     Bits = getRegMaskBits();
970   }
971 
972   // We are going to enumerate all the register mask slots contained in LI.
973   // Start with a binary search of RegMaskSlots to find a starting point.
974   ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
975   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
976 
977   // No slots in range, LI begins after the last call.
978   if (SlotI == SlotE)
979     return false;
980 
981   bool Found = false;
982   // Utility to union regmasks.
983   auto unionBitMask = [&](unsigned Idx) {
984       if (!Found) {
985         // This is the first overlap. Initialize UsableRegs to all ones.
986         UsableRegs.clear();
987         UsableRegs.resize(TRI->getNumRegs(), true);
988         Found = true;
989       }
990       // Remove usable registers clobbered by this mask.
991       UsableRegs.clearBitsNotInMask(Bits[Idx]);
992   };
993   while (true) {
994     assert(*SlotI >= LiveI->start);
995     // Loop over all slots overlapping this segment.
996     while (*SlotI < LiveI->end) {
997       // *SlotI overlaps LI. Collect mask bits.
998       unionBitMask(SlotI - Slots.begin());
999       if (++SlotI == SlotE)
1000         return Found;
1001     }
1002     // If segment ends with live-through use we need to collect its regmask.
1003     if (*SlotI == LiveI->end)
1004       if (MachineInstr *MI = getInstructionFromIndex(*SlotI))
1005         if (hasLiveThroughUse(MI, LI.reg()))
1006           unionBitMask(SlotI++ - Slots.begin());
1007     // *SlotI is beyond the current LI segment.
1008     // Special advance implementation to not miss next LiveI->end.
1009     if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex())
1010       return Found;
1011     while (LiveI->end < *SlotI)
1012       ++LiveI;
1013     // Advance SlotI until it overlaps.
1014     while (*SlotI < LiveI->start)
1015       if (++SlotI == SlotE)
1016         return Found;
1017   }
1018 }
1019 
1020 //===----------------------------------------------------------------------===//
1021 //                         IntervalUpdate class.
1022 //===----------------------------------------------------------------------===//
1023 
1024 /// Toolkit used by handleMove to trim or extend live intervals.
1025 class LiveIntervals::HMEditor {
1026 private:
1027   LiveIntervals& LIS;
1028   const MachineRegisterInfo& MRI;
1029   const TargetRegisterInfo& TRI;
1030   SlotIndex OldIdx;
1031   SlotIndex NewIdx;
1032   SmallPtrSet<LiveRange*, 8> Updated;
1033   bool UpdateFlags;
1034 
1035 public:
1036   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
1037            const TargetRegisterInfo& TRI,
1038            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
1039     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
1040       UpdateFlags(UpdateFlags) {}
1041 
1042   // FIXME: UpdateFlags is a workaround that creates live intervals for all
1043   // physregs, even those that aren't needed for regalloc, in order to update
1044   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
1045   // flags, and postRA passes will use a live register utility instead.
1046   LiveRange *getRegUnitLI(unsigned Unit) {
1047     if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
1048       return &LIS.getRegUnit(Unit);
1049     return LIS.getCachedRegUnit(Unit);
1050   }
1051 
1052   /// Update all live ranges touched by MI, assuming a move from OldIdx to
1053   /// NewIdx.
1054   void updateAllRanges(MachineInstr *MI) {
1055     LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
1056                       << *MI);
1057     bool hasRegMask = false;
1058     for (MachineOperand &MO : MI->operands()) {
1059       if (MO.isRegMask())
1060         hasRegMask = true;
1061       if (!MO.isReg())
1062         continue;
1063       if (MO.isUse()) {
1064         if (!MO.readsReg())
1065           continue;
1066         // Aggressively clear all kill flags.
1067         // They are reinserted by VirtRegRewriter.
1068         MO.setIsKill(false);
1069       }
1070 
1071       Register Reg = MO.getReg();
1072       if (!Reg)
1073         continue;
1074       if (Reg.isVirtual()) {
1075         LiveInterval &LI = LIS.getInterval(Reg);
1076         if (LI.hasSubRanges()) {
1077           unsigned SubReg = MO.getSubReg();
1078           LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1079                                         : MRI.getMaxLaneMaskForVReg(Reg);
1080           for (LiveInterval::SubRange &S : LI.subranges()) {
1081             if ((S.LaneMask & LaneMask).none())
1082               continue;
1083             updateRange(S, VirtRegOrUnit(Reg), S.LaneMask);
1084           }
1085         }
1086         updateRange(LI, VirtRegOrUnit(Reg), LaneBitmask::getNone());
1087         // If main range has a hole and we are moving a subrange use across
1088         // the hole updateRange() cannot properly handle it since it only
1089         // gets the LiveRange and not the whole LiveInterval. As a result
1090         // we may end up with a main range not covering all subranges.
1091         // This is extremely rare case, so let's check and reconstruct the
1092         // main range.
1093         if (LI.hasSubRanges()) {
1094           unsigned SubReg = MO.getSubReg();
1095           LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1096                                         : MRI.getMaxLaneMaskForVReg(Reg);
1097           for (LiveInterval::SubRange &S : LI.subranges()) {
1098             if ((S.LaneMask & LaneMask).none() || LI.covers(S))
1099               continue;
1100             LI.clear();
1101             LIS.constructMainRangeFromSubranges(LI);
1102             break;
1103           }
1104         }
1105 
1106         continue;
1107       }
1108 
1109       // For physregs, only update the regunits that actually have a
1110       // precomputed live range.
1111       for (MCRegUnit Unit : TRI.regunits(Reg.asMCReg()))
1112         if (LiveRange *LR = getRegUnitLI(Unit))
1113           updateRange(*LR, VirtRegOrUnit(Unit), LaneBitmask::getNone());
1114     }
1115     if (hasRegMask)
1116       updateRegMaskSlots();
1117   }
1118 
1119 private:
1120   /// Update a single live range, assuming an instruction has been moved from
1121   /// OldIdx to NewIdx.
1122   void updateRange(LiveRange &LR, VirtRegOrUnit VRegOrUnit,
1123                    LaneBitmask LaneMask) {
1124     if (!Updated.insert(&LR).second)
1125       return;
1126     LLVM_DEBUG({
1127       dbgs() << "     ";
1128       if (VRegOrUnit.isVirtualReg()) {
1129         dbgs() << printReg(VRegOrUnit.asVirtualReg());
1130         if (LaneMask.any())
1131           dbgs() << " L" << PrintLaneMask(LaneMask);
1132       } else {
1133         dbgs() << printRegUnit(VRegOrUnit.asMCRegUnit(), &TRI);
1134       }
1135       dbgs() << ":\t" << LR << '\n';
1136     });
1137     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1138       handleMoveDown(LR);
1139     else
1140       handleMoveUp(LR, VRegOrUnit, LaneMask);
1141     LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n');
1142     assert(LR.verify());
1143   }
1144 
1145   /// Update LR to reflect an instruction has been moved downwards from OldIdx
1146   /// to NewIdx (OldIdx < NewIdx).
1147   void handleMoveDown(LiveRange &LR) {
1148     LiveRange::iterator E = LR.end();
1149     // Segment going into OldIdx.
1150     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1151 
1152     // No value live before or after OldIdx? Nothing to do.
1153     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1154       return;
1155 
1156     LiveRange::iterator OldIdxOut;
1157     // Do we have a value live-in to OldIdx?
1158     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1159       // If the live-in value already extends to NewIdx, there is nothing to do.
1160       if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1161         return;
1162       // Aggressively remove all kill flags from the old kill point.
1163       // Kill flags shouldn't be used while live intervals exist, they will be
1164       // reinserted by VirtRegRewriter.
1165       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1166         for (MachineOperand &MOP : mi_bundle_ops(*KillMI))
1167           if (MOP.isReg() && MOP.isUse())
1168             MOP.setIsKill(false);
1169 
1170       // Is there a def before NewIdx which is not OldIdx?
1171       LiveRange::iterator Next = std::next(OldIdxIn);
1172       if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1173           SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1174         // If we are here then OldIdx was just a use but not a def. We only have
1175         // to ensure liveness extends to NewIdx.
1176         LiveRange::iterator NewIdxIn =
1177           LR.advanceTo(Next, NewIdx.getBaseIndex());
1178         // Extend the segment before NewIdx if necessary.
1179         if (NewIdxIn == E ||
1180             !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1181           LiveRange::iterator Prev = std::prev(NewIdxIn);
1182           Prev->end = NewIdx.getRegSlot();
1183         }
1184         // Extend OldIdxIn.
1185         OldIdxIn->end = Next->start;
1186         return;
1187       }
1188 
1189       // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1190       // invalid by overlapping ranges.
1191       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1192       OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1193       // If this was not a kill, then there was no def and we're done.
1194       if (!isKill)
1195         return;
1196 
1197       // Did we have a Def at OldIdx?
1198       OldIdxOut = Next;
1199       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1200         return;
1201     } else {
1202       OldIdxOut = OldIdxIn;
1203     }
1204 
1205     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1206     // to the segment starting there.
1207     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1208            "No def?");
1209     VNInfo *OldIdxVNI = OldIdxOut->valno;
1210     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1211 
1212     // If the defined value extends beyond NewIdx, just move the beginning
1213     // of the segment to NewIdx.
1214     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1215     if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1216       OldIdxVNI->def = NewIdxDef;
1217       OldIdxOut->start = OldIdxVNI->def;
1218       return;
1219     }
1220 
1221     // If we are here then we have a Definition at OldIdx which ends before
1222     // NewIdx.
1223 
1224     // Is there an existing Def at NewIdx?
1225     LiveRange::iterator AfterNewIdx
1226       = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1227     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1228     if (!OldIdxDefIsDead &&
1229         SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1230       // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1231       VNInfo *DefVNI;
1232       if (OldIdxOut != LR.begin() &&
1233           !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1234                                      OldIdxOut->start)) {
1235         // There is no gap between OldIdxOut and its predecessor anymore,
1236         // merge them.
1237         LiveRange::iterator IPrev = std::prev(OldIdxOut);
1238         DefVNI = OldIdxVNI;
1239         IPrev->end = OldIdxOut->end;
1240       } else {
1241         // The value is live in to OldIdx
1242         LiveRange::iterator INext = std::next(OldIdxOut);
1243         assert(INext != E && "Must have following segment");
1244         // We merge OldIdxOut and its successor. As we're dealing with subreg
1245         // reordering, there is always a successor to OldIdxOut in the same BB
1246         // We don't need INext->valno anymore and will reuse for the new segment
1247         // we create later.
1248         DefVNI = OldIdxVNI;
1249         INext->start = OldIdxOut->end;
1250         INext->valno->def = INext->start;
1251       }
1252       // If NewIdx is behind the last segment, extend that and append a new one.
1253       if (AfterNewIdx == E) {
1254         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1255         // one position.
1256         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1257         // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1258         std::copy(std::next(OldIdxOut), E, OldIdxOut);
1259         // The last segment is undefined now, reuse it for a dead def.
1260         LiveRange::iterator NewSegment = std::prev(E);
1261         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1262                                          DefVNI);
1263         DefVNI->def = NewIdxDef;
1264 
1265         LiveRange::iterator Prev = std::prev(NewSegment);
1266         Prev->end = NewIdxDef;
1267       } else {
1268         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1269         // one position.
1270         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1271         // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1272         std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1273         LiveRange::iterator Prev = std::prev(AfterNewIdx);
1274         // We have two cases:
1275         if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1276           // Case 1: NewIdx is inside a liverange. Split this liverange at
1277           // NewIdxDef into the segment "Prev" followed by "NewSegment".
1278           LiveRange::iterator NewSegment = AfterNewIdx;
1279           *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1280           Prev->valno->def = NewIdxDef;
1281 
1282           *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1283           DefVNI->def = Prev->start;
1284         } else {
1285           // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1286           // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1287           *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1288           DefVNI->def = NewIdxDef;
1289           assert(DefVNI != AfterNewIdx->valno);
1290         }
1291       }
1292       return;
1293     }
1294 
1295     if (AfterNewIdx != E &&
1296         SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1297       // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1298       // that value.
1299       assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1300       LR.removeValNo(OldIdxVNI);
1301     } else {
1302       // There was no existing def at NewIdx. We need to create a dead def
1303       // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1304       // a new segment at the place where we want to construct the dead def.
1305       //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1306       // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1307       assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1308       std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1309       // We can reuse OldIdxVNI now.
1310       LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1311       VNInfo *NewSegmentVNI = OldIdxVNI;
1312       NewSegmentVNI->def = NewIdxDef;
1313       *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1314                                        NewSegmentVNI);
1315     }
1316   }
1317 
1318   /// Update LR to reflect an instruction has been moved upwards from OldIdx
1319   /// to NewIdx (NewIdx < OldIdx).
1320   void handleMoveUp(LiveRange &LR, VirtRegOrUnit VRegOrUnit,
1321                     LaneBitmask LaneMask) {
1322     LiveRange::iterator E = LR.end();
1323     // Segment going into OldIdx.
1324     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1325 
1326     // No value live before or after OldIdx? Nothing to do.
1327     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1328       return;
1329 
1330     LiveRange::iterator OldIdxOut;
1331     // Do we have a value live-in to OldIdx?
1332     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1333       // If the live-in value isn't killed here, then we have no Def at
1334       // OldIdx, moreover the value must be live at NewIdx so there is nothing
1335       // to do.
1336       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1337       if (!isKill)
1338         return;
1339 
1340       // At this point we have to move OldIdxIn->end back to the nearest
1341       // previous use or (dead-)def but no further than NewIdx.
1342       SlotIndex DefBeforeOldIdx
1343         = std::max(OldIdxIn->start.getDeadSlot(),
1344                    NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1345       OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, VRegOrUnit, LaneMask);
1346 
1347       // Did we have a Def at OldIdx? If not we are done now.
1348       OldIdxOut = std::next(OldIdxIn);
1349       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1350         return;
1351     } else {
1352       OldIdxOut = OldIdxIn;
1353       OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1354     }
1355 
1356     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1357     // to the segment starting there.
1358     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1359            "No def?");
1360     VNInfo *OldIdxVNI = OldIdxOut->valno;
1361     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1362     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1363 
1364     // Is there an existing def at NewIdx?
1365     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1366     LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1367     if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1368       assert(NewIdxOut->valno != OldIdxVNI &&
1369              "Same value defined more than once?");
1370       // If OldIdx was a dead def remove it.
1371       if (!OldIdxDefIsDead) {
1372         // Remove segment starting at NewIdx and move begin of OldIdxOut to
1373         // NewIdx so it can take its place.
1374         OldIdxVNI->def = NewIdxDef;
1375         OldIdxOut->start = NewIdxDef;
1376         LR.removeValNo(NewIdxOut->valno);
1377       } else {
1378         // Simply remove the dead def at OldIdx.
1379         LR.removeValNo(OldIdxVNI);
1380       }
1381     } else {
1382       // Previously nothing was live after NewIdx, so all we have to do now is
1383       // move the begin of OldIdxOut to NewIdx.
1384       if (!OldIdxDefIsDead) {
1385         // Do we have any intermediate Defs between OldIdx and NewIdx?
1386         if (OldIdxIn != E &&
1387             SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1388           // OldIdx is not a dead def and NewIdx is before predecessor start.
1389           LiveRange::iterator NewIdxIn = NewIdxOut;
1390           assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1391           const SlotIndex SplitPos = NewIdxDef;
1392           OldIdxVNI = OldIdxIn->valno;
1393 
1394           SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
1395           LiveRange::iterator Prev = std::prev(OldIdxIn);
1396           if (OldIdxIn != LR.begin() &&
1397               SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
1398             // If the segment before OldIdx read a value defined earlier than
1399             // NewIdx, the moved instruction also reads and forwards that
1400             // value. Extend the lifetime of the new def point.
1401 
1402             // Extend to where the previous range started, unless there is
1403             // another redef first.
1404             NewDefEndPoint = std::min(OldIdxIn->start,
1405                                       std::next(NewIdxOut)->start);
1406           }
1407 
1408           // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1409           OldIdxOut->valno->def = OldIdxIn->start;
1410           *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1411                                           OldIdxOut->valno);
1412           // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1413           // We Slide [NewIdxIn, OldIdxIn) down one position.
1414           //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1415           // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1416           std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1417           // NewIdxIn is now considered undef so we can reuse it for the moved
1418           // value.
1419           LiveRange::iterator NewSegment = NewIdxIn;
1420           LiveRange::iterator Next = std::next(NewSegment);
1421           if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1422             // There is no gap between NewSegment and its predecessor.
1423             *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1424                                              Next->valno);
1425 
1426             *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
1427             Next->valno->def = SplitPos;
1428           } else {
1429             // There is a gap between NewSegment and its predecessor
1430             // Value becomes live in.
1431             *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1432             NewSegment->valno->def = SplitPos;
1433           }
1434         } else {
1435           // Leave the end point of a live def.
1436           OldIdxOut->start = NewIdxDef;
1437           OldIdxVNI->def = NewIdxDef;
1438           if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1439             OldIdxIn->end = NewIdxDef;
1440         }
1441       } else if (OldIdxIn != E
1442           && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1443           && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1444         // OldIdxVNI is a dead def that has been moved into the middle of
1445         // another value in LR. That can happen when LR is a whole register,
1446         // but the dead def is a write to a subreg that is dead at NewIdx.
1447         // The dead def may have been moved across other values
1448         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1449         // down one position.
1450         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1451         // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1452         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1453         // Modify the segment at NewIdxOut and the following segment to meet at
1454         // the point of the dead def, with the following segment getting
1455         // OldIdxVNI as its value number.
1456         *NewIdxOut = LiveRange::Segment(
1457             NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1458         *(NewIdxOut + 1) = LiveRange::Segment(
1459             NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1460         OldIdxVNI->def = NewIdxDef;
1461         // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1462         for (auto *Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1463           Idx->valno = OldIdxVNI;
1464         // Aggressively remove all dead flags from the former dead definition.
1465         // Kill/dead flags shouldn't be used while live intervals exist; they
1466         // will be reinserted by VirtRegRewriter.
1467         if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1468           for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1469             if (MO->isReg() && !MO->isUse())
1470               MO->setIsDead(false);
1471       } else {
1472         // OldIdxVNI is a dead def. It may have been moved across other values
1473         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1474         // down one position.
1475         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1476         // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1477         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1478         // OldIdxVNI can be reused now to build a new dead def segment.
1479         LiveRange::iterator NewSegment = NewIdxOut;
1480         VNInfo *NewSegmentVNI = OldIdxVNI;
1481         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1482                                          NewSegmentVNI);
1483         NewSegmentVNI->def = NewIdxDef;
1484       }
1485     }
1486   }
1487 
1488   void updateRegMaskSlots() {
1489     SmallVectorImpl<SlotIndex>::iterator RI =
1490         llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1491     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1492            "No RegMask at OldIdx.");
1493     *RI = NewIdx.getRegSlot();
1494     assert((RI == LIS.RegMaskSlots.begin() ||
1495             SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1496            "Cannot move regmask instruction above another call");
1497     assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1498             SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1499            "Cannot move regmask instruction below another call");
1500   }
1501 
1502   // Return the last use of reg between NewIdx and OldIdx.
1503   SlotIndex findLastUseBefore(SlotIndex Before, VirtRegOrUnit VRegOrUnit,
1504                               LaneBitmask LaneMask) {
1505     if (VRegOrUnit.isVirtualReg()) {
1506       SlotIndex LastUse = Before;
1507       for (MachineOperand &MO :
1508            MRI.use_nodbg_operands(VRegOrUnit.asVirtualReg())) {
1509         if (MO.isUndef())
1510           continue;
1511         unsigned SubReg = MO.getSubReg();
1512         if (SubReg != 0 && LaneMask.any()
1513             && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1514           continue;
1515 
1516         const MachineInstr &MI = *MO.getParent();
1517         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1518         if (InstSlot > LastUse && InstSlot < OldIdx)
1519           LastUse = InstSlot.getRegSlot();
1520       }
1521       return LastUse;
1522     }
1523 
1524     // This is a regunit interval, so scanning the use list could be very
1525     // expensive. Scan upwards from OldIdx instead.
1526     assert(Before < OldIdx && "Expected upwards move");
1527     SlotIndexes *Indexes = LIS.getSlotIndexes();
1528     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1529 
1530     // OldIdx may not correspond to an instruction any longer, so set MII to
1531     // point to the next instruction after OldIdx, or MBB->end().
1532     MachineBasicBlock::iterator MII = MBB->end();
1533     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1534                            Indexes->getNextNonNullIndex(OldIdx)))
1535       if (MI->getParent() == MBB)
1536         MII = MI;
1537 
1538     MachineBasicBlock::iterator Begin = MBB->begin();
1539     while (MII != Begin) {
1540       if ((--MII)->isDebugOrPseudoInstr())
1541         continue;
1542       SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1543 
1544       // Stop searching when Before is reached.
1545       if (!SlotIndex::isEarlierInstr(Before, Idx))
1546         return Before;
1547 
1548       // Check if MII uses Reg.
1549       for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1550         if (MO->isReg() && !MO->isUndef() && MO->getReg().isPhysical() &&
1551             TRI.hasRegUnit(MO->getReg(), VRegOrUnit.asMCRegUnit()))
1552           return Idx.getRegSlot();
1553     }
1554     // Didn't reach Before. It must be the first instruction in the block.
1555     return Before;
1556   }
1557 };
1558 
1559 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1560   // It is fine to move a bundle as a whole, but not an individual instruction
1561   // inside it.
1562   assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1563          "Cannot move instruction in bundle");
1564   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1565   Indexes->removeMachineInstrFromMaps(MI);
1566   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1567   assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1568          OldIndex < getMBBEndIdx(MI.getParent()) &&
1569          "Cannot handle moves across basic block boundaries.");
1570 
1571   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1572   HME.updateAllRanges(&MI);
1573 }
1574 
1575 void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart,
1576                                             bool UpdateFlags) {
1577   assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) &&
1578          "Bundle start is not a bundle");
1579   SmallVector<SlotIndex, 16> ToProcess;
1580   const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart);
1581   auto BundleEnd = getBundleEnd(BundleStart.getIterator());
1582 
1583   auto I = BundleStart.getIterator();
1584   I++;
1585   while (I != BundleEnd) {
1586     if (!Indexes->hasIndex(*I))
1587       continue;
1588     SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true);
1589     ToProcess.push_back(OldIndex);
1590     Indexes->removeMachineInstrFromMaps(*I, true);
1591     I++;
1592   }
1593   for (SlotIndex OldIndex : ToProcess) {
1594     HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1595     HME.updateAllRanges(&BundleStart);
1596   }
1597 
1598   // Fix up dead defs
1599   const SlotIndex Index = getInstructionIndex(BundleStart);
1600   for (MachineOperand &MO : BundleStart.operands()) {
1601     if (!MO.isReg())
1602       continue;
1603     Register Reg = MO.getReg();
1604     if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) {
1605       LiveInterval &LI = getInterval(Reg);
1606       LiveQueryResult LRQ = LI.Query(Index);
1607       if (LRQ.isDeadDef())
1608         MO.setIsDead();
1609     }
1610   }
1611 }
1612 
1613 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1614                                         const MachineBasicBlock::iterator End,
1615                                         const SlotIndex EndIdx, LiveRange &LR,
1616                                         const Register Reg,
1617                                         LaneBitmask LaneMask) {
1618   LiveInterval::iterator LII = LR.find(EndIdx);
1619   SlotIndex lastUseIdx;
1620   if (LII != LR.end() && LII->start < EndIdx) {
1621     lastUseIdx = LII->end;
1622   } else if (LII == LR.begin()) {
1623     // We may not have a liverange at all if this is a subregister untouched
1624     // between \p Begin and \p End.
1625   } else {
1626     --LII;
1627   }
1628 
1629   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1630     --I;
1631     MachineInstr &MI = *I;
1632     if (MI.isDebugOrPseudoInstr())
1633       continue;
1634 
1635     SlotIndex instrIdx = getInstructionIndex(MI);
1636     bool isStartValid = getInstructionFromIndex(LII->start);
1637     bool isEndValid = getInstructionFromIndex(LII->end);
1638 
1639     // FIXME: This doesn't currently handle early-clobber or multiple removed
1640     // defs inside of the region to repair.
1641     for (const MachineOperand &MO : MI.operands()) {
1642       if (!MO.isReg() || MO.getReg() != Reg)
1643         continue;
1644 
1645       unsigned SubReg = MO.getSubReg();
1646       LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1647       if ((Mask & LaneMask).none())
1648         continue;
1649 
1650       if (MO.isDef()) {
1651         if (!isStartValid) {
1652           if (LII->end.isDead()) {
1653             LII = LR.removeSegment(LII, true);
1654             if (LII != LR.begin())
1655               --LII;
1656           } else {
1657             LII->start = instrIdx.getRegSlot();
1658             LII->valno->def = instrIdx.getRegSlot();
1659             if (MO.getSubReg() && !MO.isUndef())
1660               lastUseIdx = instrIdx.getRegSlot();
1661             else
1662               lastUseIdx = SlotIndex();
1663             continue;
1664           }
1665         }
1666 
1667         if (!lastUseIdx.isValid()) {
1668           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1669           LiveRange::Segment S(instrIdx.getRegSlot(),
1670                                instrIdx.getDeadSlot(), VNI);
1671           LII = LR.addSegment(S);
1672         } else if (LII->start != instrIdx.getRegSlot()) {
1673           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1674           LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1675           LII = LR.addSegment(S);
1676         }
1677 
1678         if (MO.getSubReg() && !MO.isUndef())
1679           lastUseIdx = instrIdx.getRegSlot();
1680         else
1681           lastUseIdx = SlotIndex();
1682       } else if (MO.isUse()) {
1683         // FIXME: This should probably be handled outside of this branch,
1684         // either as part of the def case (for defs inside of the region) or
1685         // after the loop over the region.
1686         if (!isEndValid && !LII->end.isBlock())
1687           LII->end = instrIdx.getRegSlot();
1688         if (!lastUseIdx.isValid())
1689           lastUseIdx = instrIdx.getRegSlot();
1690       }
1691     }
1692   }
1693 
1694   bool isStartValid = getInstructionFromIndex(LII->start);
1695   if (!isStartValid && LII->end.isDead())
1696     LR.removeSegment(*LII, true);
1697 }
1698 
1699 void
1700 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1701                                       MachineBasicBlock::iterator Begin,
1702                                       MachineBasicBlock::iterator End,
1703                                       ArrayRef<Register> OrigRegs) {
1704   // Find anchor points, which are at the beginning/end of blocks or at
1705   // instructions that already have indexes.
1706   while (Begin != MBB->begin() && !Indexes->hasIndex(*std::prev(Begin)))
1707     --Begin;
1708   while (End != MBB->end() && !Indexes->hasIndex(*End))
1709     ++End;
1710 
1711   SlotIndex EndIdx;
1712   if (End == MBB->end())
1713     EndIdx = getMBBEndIdx(MBB).getPrevSlot();
1714   else
1715     EndIdx = getInstructionIndex(*End);
1716 
1717   Indexes->repairIndexesInRange(MBB, Begin, End);
1718 
1719   // Make sure a live interval exists for all register operands in the range.
1720   SmallVector<Register> RegsToRepair(OrigRegs);
1721   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1722     --I;
1723     MachineInstr &MI = *I;
1724     if (MI.isDebugOrPseudoInstr())
1725       continue;
1726     for (const MachineOperand &MO : MI.operands()) {
1727       if (MO.isReg() && MO.getReg().isVirtual()) {
1728         Register Reg = MO.getReg();
1729         if (MO.getSubReg() && hasInterval(Reg) &&
1730             MRI->shouldTrackSubRegLiveness(Reg)) {
1731           LiveInterval &LI = getInterval(Reg);
1732           if (!LI.hasSubRanges()) {
1733             // If the new instructions refer to subregs but the old instructions
1734             // did not, throw away any old live interval so it will be
1735             // recomputed with subranges.
1736             removeInterval(Reg);
1737           } else if (MO.isDef()) {
1738             // Similarly if a subreg def has no precise subrange match then
1739             // assume we need to recompute all subranges.
1740             unsigned SubReg = MO.getSubReg();
1741             LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1742             if (llvm::none_of(LI.subranges(),
1743                               [Mask](LiveInterval::SubRange &SR) {
1744                                 return SR.LaneMask == Mask;
1745                               })) {
1746               removeInterval(Reg);
1747             }
1748           }
1749         }
1750         if (!hasInterval(Reg)) {
1751           createAndComputeVirtRegInterval(Reg);
1752           // Don't bother to repair a freshly calculated live interval.
1753           llvm::erase(RegsToRepair, Reg);
1754         }
1755       }
1756     }
1757   }
1758 
1759   for (Register Reg : RegsToRepair) {
1760     if (!Reg.isVirtual())
1761       continue;
1762 
1763     LiveInterval &LI = getInterval(Reg);
1764     // FIXME: Should we support undefs that gain defs?
1765     if (!LI.hasAtLeastOneValue())
1766       continue;
1767 
1768     for (LiveInterval::SubRange &S : LI.subranges())
1769       repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask);
1770     LI.removeEmptySubRanges();
1771 
1772     repairOldRegInRange(Begin, End, EndIdx, LI, Reg);
1773   }
1774 }
1775 
1776 void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) {
1777   for (MCRegUnit Unit : TRI->regunits(Reg)) {
1778     if (LiveRange *LR = getCachedRegUnit(Unit))
1779       if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1780         LR->removeValNo(VNI);
1781   }
1782 }
1783 
1784 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1785   // LI may not have the main range computed yet, but its subranges may
1786   // be present.
1787   VNInfo *VNI = LI.getVNInfoAt(Pos);
1788   if (VNI != nullptr) {
1789     assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1790     LI.removeValNo(VNI);
1791   }
1792 
1793   // Also remove the value defined in subranges.
1794   for (LiveInterval::SubRange &S : LI.subranges()) {
1795     if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1796       if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1797         S.removeValNo(SVNI);
1798   }
1799   LI.removeEmptySubRanges();
1800 }
1801 
1802 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1803     SmallVectorImpl<LiveInterval*> &SplitLIs) {
1804   ConnectedVNInfoEqClasses ConEQ(*this);
1805   unsigned NumComp = ConEQ.Classify(LI);
1806   if (NumComp <= 1)
1807     return;
1808   LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
1809   Register Reg = LI.reg();
1810   for (unsigned I = 1; I < NumComp; ++I) {
1811     Register NewVReg = MRI->cloneVirtualRegister(Reg);
1812     LiveInterval &NewLI = createEmptyInterval(NewVReg);
1813     SplitLIs.push_back(&NewLI);
1814   }
1815   ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1816 }
1817 
1818 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1819   assert(LICalc && "LICalc not initialized.");
1820   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1821   LICalc->constructMainRangeFromSubranges(LI);
1822 }
1823