1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveDebugVariables analysis. 10 // 11 // Remove all DBG_VALUE instructions referencing virtual registers and replace 12 // them with a data structure tracking where live user variables are kept - in a 13 // virtual register or in a stack slot. 14 // 15 // Allow the data structure to be updated during register allocation when values 16 // are moved between registers and stack slots. Finally emit new DBG_VALUE 17 // instructions after register allocation is complete. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/CodeGen/LiveDebugVariables.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/LexicalScopes.h" 33 #include "llvm/CodeGen/LiveInterval.h" 34 #include "llvm/CodeGen/LiveIntervals.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachinePassManager.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/SlotIndexes.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetOpcodes.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/CodeGen/VirtRegMap.h" 49 #include "llvm/Config/llvm-config.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <iterator> 62 #include <map> 63 #include <memory> 64 #include <optional> 65 #include <utility> 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "livedebugvars" 70 71 static cl::opt<bool> 72 EnableLDV("live-debug-variables", cl::init(true), 73 cl::desc("Enable the live debug variables pass"), cl::Hidden); 74 75 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 76 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); 77 78 char LiveDebugVariablesWrapperLegacy::ID = 0; 79 80 INITIALIZE_PASS_BEGIN(LiveDebugVariablesWrapperLegacy, DEBUG_TYPE, 81 "Debug Variable Analysis", false, false) 82 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 83 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 84 INITIALIZE_PASS_END(LiveDebugVariablesWrapperLegacy, DEBUG_TYPE, 85 "Debug Variable Analysis", false, true) 86 87 void LiveDebugVariablesWrapperLegacy::getAnalysisUsage( 88 AnalysisUsage &AU) const { 89 AU.addRequired<MachineDominatorTreeWrapperPass>(); 90 AU.addRequiredTransitive<LiveIntervalsWrapperPass>(); 91 AU.setPreservesAll(); 92 MachineFunctionPass::getAnalysisUsage(AU); 93 } 94 95 LiveDebugVariablesWrapperLegacy::LiveDebugVariablesWrapperLegacy() 96 : MachineFunctionPass(ID) { 97 initializeLiveDebugVariablesWrapperLegacyPass( 98 *PassRegistry::getPassRegistry()); 99 } 100 101 enum : unsigned { UndefLocNo = ~0U }; 102 103 namespace { 104 /// Describes a debug variable value by location number and expression along 105 /// with some flags about the original usage of the location. 106 class DbgVariableValue { 107 public: 108 DbgVariableValue(ArrayRef<unsigned> NewLocs, bool WasIndirect, bool WasList, 109 const DIExpression &Expr) 110 : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) { 111 assert(!(WasIndirect && WasList) && 112 "DBG_VALUE_LISTs should not be indirect."); 113 SmallVector<unsigned> LocNoVec; 114 for (unsigned LocNo : NewLocs) { 115 auto It = find(LocNoVec, LocNo); 116 if (It == LocNoVec.end()) 117 LocNoVec.push_back(LocNo); 118 else { 119 // Loc duplicates an element in LocNos; replace references to Op 120 // with references to the duplicating element. 121 unsigned OpIdx = LocNoVec.size(); 122 unsigned DuplicatingIdx = std::distance(LocNoVec.begin(), It); 123 Expression = 124 DIExpression::replaceArg(Expression, OpIdx, DuplicatingIdx); 125 } 126 } 127 // FIXME: Debug values referencing 64+ unique machine locations are rare and 128 // currently unsupported for performance reasons. If we can verify that 129 // performance is acceptable for such debug values, we can increase the 130 // bit-width of LocNoCount to 14 to enable up to 16384 unique machine 131 // locations. We will also need to verify that this does not cause issues 132 // with LiveDebugVariables' use of IntervalMap. 133 if (LocNoVec.size() < 64) { 134 LocNoCount = LocNoVec.size(); 135 if (LocNoCount > 0) { 136 LocNos = std::make_unique<unsigned[]>(LocNoCount); 137 std::copy(LocNoVec.begin(), LocNoVec.end(), loc_nos_begin()); 138 } 139 } else { 140 LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine " 141 "locations, dropping...\n"); 142 LocNoCount = 1; 143 // Turn this into an undef debug value list; right now, the simplest form 144 // of this is an expression with one arg, and an undef debug operand. 145 Expression = 146 DIExpression::get(Expr.getContext(), {dwarf::DW_OP_LLVM_arg, 0}); 147 if (auto FragmentInfoOpt = Expr.getFragmentInfo()) 148 Expression = *DIExpression::createFragmentExpression( 149 Expression, FragmentInfoOpt->OffsetInBits, 150 FragmentInfoOpt->SizeInBits); 151 LocNos = std::make_unique<unsigned[]>(LocNoCount); 152 LocNos[0] = UndefLocNo; 153 } 154 } 155 156 DbgVariableValue() : LocNoCount(0), WasIndirect(false), WasList(false) {} 157 DbgVariableValue(const DbgVariableValue &Other) 158 : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()), 159 WasList(Other.getWasList()), Expression(Other.getExpression()) { 160 if (Other.getLocNoCount()) { 161 LocNos.reset(new unsigned[Other.getLocNoCount()]); 162 std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); 163 } 164 } 165 166 DbgVariableValue &operator=(const DbgVariableValue &Other) { 167 if (this == &Other) 168 return *this; 169 if (Other.getLocNoCount()) { 170 LocNos.reset(new unsigned[Other.getLocNoCount()]); 171 std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); 172 } else { 173 LocNos.release(); 174 } 175 LocNoCount = Other.getLocNoCount(); 176 WasIndirect = Other.getWasIndirect(); 177 WasList = Other.getWasList(); 178 Expression = Other.getExpression(); 179 return *this; 180 } 181 182 const DIExpression *getExpression() const { return Expression; } 183 uint8_t getLocNoCount() const { return LocNoCount; } 184 bool containsLocNo(unsigned LocNo) const { 185 return is_contained(loc_nos(), LocNo); 186 } 187 bool getWasIndirect() const { return WasIndirect; } 188 bool getWasList() const { return WasList; } 189 bool isUndef() const { return LocNoCount == 0 || containsLocNo(UndefLocNo); } 190 191 DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const { 192 SmallVector<unsigned, 4> NewLocNos; 193 for (unsigned LocNo : loc_nos()) 194 NewLocNos.push_back(LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1 195 : LocNo); 196 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 197 } 198 199 DbgVariableValue remapLocNos(ArrayRef<unsigned> LocNoMap) const { 200 SmallVector<unsigned> NewLocNos; 201 for (unsigned LocNo : loc_nos()) 202 // Undef values don't exist in locations (and thus not in LocNoMap 203 // either) so skip over them. See getLocationNo(). 204 NewLocNos.push_back(LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]); 205 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 206 } 207 208 DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const { 209 SmallVector<unsigned> NewLocNos; 210 NewLocNos.assign(loc_nos_begin(), loc_nos_end()); 211 auto OldLocIt = find(NewLocNos, OldLocNo); 212 assert(OldLocIt != NewLocNos.end() && "Old location must be present."); 213 *OldLocIt = NewLocNo; 214 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 215 } 216 217 bool hasLocNoGreaterThan(unsigned LocNo) const { 218 return any_of(loc_nos(), 219 [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; }); 220 } 221 222 void printLocNos(llvm::raw_ostream &OS) const { 223 for (const unsigned &Loc : loc_nos()) 224 OS << (&Loc == loc_nos_begin() ? " " : ", ") << Loc; 225 } 226 227 friend inline bool operator==(const DbgVariableValue &LHS, 228 const DbgVariableValue &RHS) { 229 if (std::tie(LHS.LocNoCount, LHS.WasIndirect, LHS.WasList, 230 LHS.Expression) != 231 std::tie(RHS.LocNoCount, RHS.WasIndirect, RHS.WasList, RHS.Expression)) 232 return false; 233 return std::equal(LHS.loc_nos_begin(), LHS.loc_nos_end(), 234 RHS.loc_nos_begin()); 235 } 236 237 friend inline bool operator!=(const DbgVariableValue &LHS, 238 const DbgVariableValue &RHS) { 239 return !(LHS == RHS); 240 } 241 242 unsigned *loc_nos_begin() { return LocNos.get(); } 243 const unsigned *loc_nos_begin() const { return LocNos.get(); } 244 unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; } 245 const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; } 246 ArrayRef<unsigned> loc_nos() const { 247 return ArrayRef<unsigned>(LocNos.get(), LocNoCount); 248 } 249 250 private: 251 // IntervalMap requires the value object to be very small, to the extent 252 // that we do not have enough room for an std::vector. Using a C-style array 253 // (with a unique_ptr wrapper for convenience) allows us to optimize for this 254 // specific case by packing the array size into only 6 bits (it is highly 255 // unlikely that any debug value will need 64+ locations). 256 std::unique_ptr<unsigned[]> LocNos; 257 uint8_t LocNoCount : 6; 258 bool WasIndirect : 1; 259 bool WasList : 1; 260 const DIExpression *Expression = nullptr; 261 }; 262 } // namespace 263 264 /// Map of where a user value is live to that value. 265 using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>; 266 267 /// Map of stack slot offsets for spilled locations. 268 /// Non-spilled locations are not added to the map. 269 using SpillOffsetMap = DenseMap<unsigned, unsigned>; 270 271 /// Cache to save the location where it can be used as the starting 272 /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug. 273 /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from 274 /// repeatedly searching the same set of PHIs/Labels/Debug instructions 275 /// if it is called many times for the same block. 276 using BlockSkipInstsMap = 277 DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>; 278 279 namespace { 280 281 /// A user value is a part of a debug info user variable. 282 /// 283 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 284 /// holds part of a user variable. The part is identified by a byte offset. 285 /// 286 /// UserValues are grouped into equivalence classes for easier searching. Two 287 /// user values are related if they are held by the same virtual register. The 288 /// equivalence class is the transitive closure of that relation. 289 class UserValue { 290 using LDVImpl = LiveDebugVariables::LDVImpl; 291 292 const DILocalVariable *Variable; ///< The debug info variable we are part of. 293 /// The part of the variable we describe. 294 const std::optional<DIExpression::FragmentInfo> Fragment; 295 DebugLoc dl; ///< The debug location for the variable. This is 296 ///< used by dwarf writer to find lexical scope. 297 UserValue *leader; ///< Equivalence class leader. 298 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 299 300 /// Numbered locations referenced by locmap. 301 SmallVector<MachineOperand, 4> locations; 302 303 /// Map of slot indices where this value is live. 304 LocMap locInts; 305 306 /// Set of interval start indexes that have been trimmed to the 307 /// lexical scope. 308 SmallSet<SlotIndex, 2> trimmedDefs; 309 310 /// Insert a DBG_VALUE into MBB at Idx for DbgValue. 311 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 312 SlotIndex StopIdx, DbgVariableValue DbgValue, 313 ArrayRef<bool> LocSpills, 314 ArrayRef<unsigned> SpillOffsets, LiveIntervals &LIS, 315 const TargetInstrInfo &TII, 316 const TargetRegisterInfo &TRI, 317 BlockSkipInstsMap &BBSkipInstsMap); 318 319 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs 320 /// is live. Returns true if any changes were made. 321 bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 322 LiveIntervals &LIS); 323 324 public: 325 /// Create a new UserValue. 326 UserValue(const DILocalVariable *var, 327 std::optional<DIExpression::FragmentInfo> Fragment, DebugLoc L, 328 LocMap::Allocator &alloc) 329 : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this), 330 locInts(alloc) {} 331 332 /// Get the leader of this value's equivalence class. 333 UserValue *getLeader() { 334 UserValue *l = leader; 335 while (l != l->leader) 336 l = l->leader; 337 return leader = l; 338 } 339 340 /// Return the next UserValue in the equivalence class. 341 UserValue *getNext() const { return next; } 342 343 /// Merge equivalence classes. 344 static UserValue *merge(UserValue *L1, UserValue *L2) { 345 L2 = L2->getLeader(); 346 if (!L1) 347 return L2; 348 L1 = L1->getLeader(); 349 if (L1 == L2) 350 return L1; 351 // Splice L2 before L1's members. 352 UserValue *End = L2; 353 while (End->next) { 354 End->leader = L1; 355 End = End->next; 356 } 357 End->leader = L1; 358 End->next = L1->next; 359 L1->next = L2; 360 return L1; 361 } 362 363 /// Return the location number that matches Loc. 364 /// 365 /// For undef values we always return location number UndefLocNo without 366 /// inserting anything in locations. Since locations is a vector and the 367 /// location number is the position in the vector and UndefLocNo is ~0, 368 /// we would need a very big vector to put the value at the right position. 369 unsigned getLocationNo(const MachineOperand &LocMO) { 370 if (LocMO.isReg()) { 371 if (LocMO.getReg() == 0) 372 return UndefLocNo; 373 // For register locations we dont care about use/def and other flags. 374 for (unsigned i = 0, e = locations.size(); i != e; ++i) 375 if (locations[i].isReg() && 376 locations[i].getReg() == LocMO.getReg() && 377 locations[i].getSubReg() == LocMO.getSubReg()) 378 return i; 379 } else 380 for (unsigned i = 0, e = locations.size(); i != e; ++i) 381 if (LocMO.isIdenticalTo(locations[i])) 382 return i; 383 locations.push_back(LocMO); 384 // We are storing a MachineOperand outside a MachineInstr. 385 locations.back().clearParent(); 386 // Don't store def operands. 387 if (locations.back().isReg()) { 388 if (locations.back().isDef()) 389 locations.back().setIsDead(false); 390 locations.back().setIsUse(); 391 } 392 return locations.size() - 1; 393 } 394 395 /// Remove (recycle) a location number. If \p LocNo still is used by the 396 /// locInts nothing is done. 397 void removeLocationIfUnused(unsigned LocNo) { 398 // Bail out if LocNo still is used. 399 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 400 const DbgVariableValue &DbgValue = I.value(); 401 if (DbgValue.containsLocNo(LocNo)) 402 return; 403 } 404 // Remove the entry in the locations vector, and adjust all references to 405 // location numbers above the removed entry. 406 locations.erase(locations.begin() + LocNo); 407 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 408 const DbgVariableValue &DbgValue = I.value(); 409 if (DbgValue.hasLocNoGreaterThan(LocNo)) 410 I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(LocNo)); 411 } 412 } 413 414 /// Ensure that all virtual register locations are mapped. 415 void mapVirtRegs(LDVImpl *LDV); 416 417 /// Add a definition point to this user value. 418 void addDef(SlotIndex Idx, ArrayRef<MachineOperand> LocMOs, bool IsIndirect, 419 bool IsList, const DIExpression &Expr) { 420 SmallVector<unsigned> Locs; 421 for (const MachineOperand &Op : LocMOs) 422 Locs.push_back(getLocationNo(Op)); 423 DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr); 424 // Add a singular (Idx,Idx) -> value mapping. 425 LocMap::iterator I = locInts.find(Idx); 426 if (!I.valid() || I.start() != Idx) 427 I.insert(Idx, Idx.getNextSlot(), std::move(DbgValue)); 428 else 429 // A later DBG_VALUE at the same SlotIndex overrides the old location. 430 I.setValue(std::move(DbgValue)); 431 } 432 433 /// Extend the current definition as far as possible down. 434 /// 435 /// Stop when meeting an existing def or when leaving the live 436 /// range of VNI. End points where VNI is no longer live are added to Kills. 437 /// 438 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 439 /// data-flow analysis to propagate them beyond basic block boundaries. 440 /// 441 /// \param Idx Starting point for the definition. 442 /// \param DbgValue value to propagate. 443 /// \param LiveIntervalInfo For each location number key in this map, 444 /// restricts liveness to where the LiveRange has the value equal to the\ 445 /// VNInfo. 446 /// \param [out] Kills Append end points of VNI's live range to Kills. 447 /// \param LIS Live intervals analysis. 448 void 449 extendDef(SlotIndex Idx, DbgVariableValue DbgValue, 450 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> 451 &LiveIntervalInfo, 452 std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, 453 LiveIntervals &LIS); 454 455 /// The value in LI may be copies to other registers. Determine if 456 /// any of the copies are available at the kill points, and add defs if 457 /// possible. 458 /// 459 /// \param DbgValue Location number of LI->reg, and DIExpression. 460 /// \param LocIntervals Scan for copies of the value for each location in the 461 /// corresponding LiveInterval->reg. 462 /// \param KilledAt The point where the range of DbgValue could be extended. 463 /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here. 464 void addDefsFromCopies( 465 DbgVariableValue DbgValue, 466 SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, 467 SlotIndex KilledAt, 468 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 469 MachineRegisterInfo &MRI, LiveIntervals &LIS); 470 471 /// Compute the live intervals of all locations after collecting all their 472 /// def points. 473 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 474 LiveIntervals &LIS, LexicalScopes &LS); 475 476 /// Replace OldReg ranges with NewRegs ranges where NewRegs is 477 /// live. Returns true if any changes were made. 478 bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 479 LiveIntervals &LIS); 480 481 /// Rewrite virtual register locations according to the provided virtual 482 /// register map. Record the stack slot offsets for the locations that 483 /// were spilled. 484 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 485 const TargetInstrInfo &TII, 486 const TargetRegisterInfo &TRI, 487 SpillOffsetMap &SpillOffsets); 488 489 /// Recreate DBG_VALUE instruction from data structures. 490 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 491 const TargetInstrInfo &TII, 492 const TargetRegisterInfo &TRI, 493 const SpillOffsetMap &SpillOffsets, 494 BlockSkipInstsMap &BBSkipInstsMap); 495 496 /// Return DebugLoc of this UserValue. 497 const DebugLoc &getDebugLoc() { return dl; } 498 499 void print(raw_ostream &, const TargetRegisterInfo *); 500 }; 501 502 /// A user label is a part of a debug info user label. 503 class UserLabel { 504 const DILabel *Label; ///< The debug info label we are part of. 505 DebugLoc dl; ///< The debug location for the label. This is 506 ///< used by dwarf writer to find lexical scope. 507 SlotIndex loc; ///< Slot used by the debug label. 508 509 /// Insert a DBG_LABEL into MBB at Idx. 510 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 511 LiveIntervals &LIS, const TargetInstrInfo &TII, 512 BlockSkipInstsMap &BBSkipInstsMap); 513 514 public: 515 /// Create a new UserLabel. 516 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) 517 : Label(label), dl(std::move(L)), loc(Idx) {} 518 519 /// Does this UserLabel match the parameters? 520 bool matches(const DILabel *L, const DILocation *IA, 521 const SlotIndex Index) const { 522 return Label == L && dl->getInlinedAt() == IA && loc == Index; 523 } 524 525 /// Recreate DBG_LABEL instruction from data structures. 526 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, 527 BlockSkipInstsMap &BBSkipInstsMap); 528 529 /// Return DebugLoc of this UserLabel. 530 const DebugLoc &getDebugLoc() { return dl; } 531 532 void print(raw_ostream &, const TargetRegisterInfo *); 533 }; 534 535 } // end anonymous namespace 536 537 namespace llvm { 538 539 /// Implementation of the LiveDebugVariables pass. 540 541 LiveDebugVariables::LiveDebugVariables() = default; 542 LiveDebugVariables::~LiveDebugVariables() = default; 543 LiveDebugVariables::LiveDebugVariables(LiveDebugVariables &&) = default; 544 545 class LiveDebugVariables::LDVImpl { 546 LocMap::Allocator allocator; 547 MachineFunction *MF = nullptr; 548 LiveIntervals *LIS; 549 const TargetRegisterInfo *TRI; 550 551 /// Position and VReg of a PHI instruction during register allocation. 552 struct PHIValPos { 553 SlotIndex SI; /// Slot where this PHI occurs. 554 Register Reg; /// VReg this PHI occurs in. 555 unsigned SubReg; /// Qualifiying subregister for Reg. 556 }; 557 558 /// Map from debug instruction number to PHI position during allocation. 559 std::map<unsigned, PHIValPos> PHIValToPos; 560 /// Index of, for each VReg, which debug instruction numbers and corresponding 561 /// PHIs are sensitive to splitting. Each VReg may have multiple PHI defs, 562 /// at different positions. 563 DenseMap<Register, std::vector<unsigned>> RegToPHIIdx; 564 565 /// Record for any debug instructions unlinked from their blocks during 566 /// regalloc. Stores the instr and it's location, so that they can be 567 /// re-inserted after regalloc is over. 568 struct InstrPos { 569 MachineInstr *MI; ///< Debug instruction, unlinked from it's block. 570 SlotIndex Idx; ///< Slot position where MI should be re-inserted. 571 MachineBasicBlock *MBB; ///< Block that MI was in. 572 }; 573 574 /// Collection of stored debug instructions, preserved until after regalloc. 575 SmallVector<InstrPos, 32> StashedDebugInstrs; 576 577 /// Whether emitDebugValues is called. 578 bool EmitDone = false; 579 580 /// Whether the machine function is modified during the pass. 581 bool ModifiedMF = false; 582 583 /// All allocated UserValue instances. 584 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 585 586 /// All allocated UserLabel instances. 587 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; 588 589 /// Map virtual register to eq class leader. 590 using VRMap = DenseMap<unsigned, UserValue *>; 591 VRMap virtRegToEqClass; 592 593 /// Map to find existing UserValue instances. 594 using UVMap = DenseMap<DebugVariable, UserValue *>; 595 UVMap userVarMap; 596 597 /// Find or create a UserValue. 598 UserValue *getUserValue(const DILocalVariable *Var, 599 std::optional<DIExpression::FragmentInfo> Fragment, 600 const DebugLoc &DL); 601 602 /// Find the EC leader for VirtReg or null. 603 UserValue *lookupVirtReg(Register VirtReg); 604 605 /// Add DBG_VALUE instruction to our maps. 606 /// 607 /// \param MI DBG_VALUE instruction 608 /// \param Idx Last valid SLotIndex before instruction. 609 /// 610 /// \returns True if the DBG_VALUE instruction should be deleted. 611 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 612 613 /// Track variable location debug instructions while using the instruction 614 /// referencing implementation. Such debug instructions do not need to be 615 /// updated during regalloc because they identify instructions rather than 616 /// register locations. However, they needs to be removed from the 617 /// MachineFunction during regalloc, then re-inserted later, to avoid 618 /// disrupting the allocator. 619 /// 620 /// \param MI Any DBG_VALUE / DBG_INSTR_REF / DBG_PHI instruction 621 /// \param Idx Last valid SlotIndex before instruction 622 /// 623 /// \returns Iterator to continue processing from after unlinking. 624 MachineBasicBlock::iterator handleDebugInstr(MachineInstr &MI, SlotIndex Idx); 625 626 /// Add DBG_LABEL instruction to UserLabel. 627 /// 628 /// \param MI DBG_LABEL instruction 629 /// \param Idx Last valid SlotIndex before instruction. 630 /// 631 /// \returns True if the DBG_LABEL instruction should be deleted. 632 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); 633 634 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def 635 /// for each instruction. 636 /// 637 /// \param mf MachineFunction to be scanned. 638 /// \param InstrRef Whether to operate in instruction referencing mode. If 639 /// true, most of LiveDebugVariables doesn't run. 640 /// 641 /// \returns True if any debug values were found. 642 bool collectDebugValues(MachineFunction &mf, bool InstrRef); 643 644 /// Compute the live intervals of all user values after collecting all 645 /// their def points. 646 void computeIntervals(); 647 648 public: 649 LDVImpl(LiveIntervals *LIS) : LIS(LIS) {} 650 651 bool runOnMachineFunction(MachineFunction &mf, bool InstrRef); 652 653 /// Release all memory. 654 void clear() { 655 MF = nullptr; 656 PHIValToPos.clear(); 657 RegToPHIIdx.clear(); 658 StashedDebugInstrs.clear(); 659 userValues.clear(); 660 userLabels.clear(); 661 virtRegToEqClass.clear(); 662 userVarMap.clear(); 663 // Make sure we call emitDebugValues if the machine function was modified. 664 assert((!ModifiedMF || EmitDone) && 665 "Dbg values are not emitted in LDV"); 666 EmitDone = false; 667 ModifiedMF = false; 668 } 669 670 /// Map virtual register to an equivalence class. 671 void mapVirtReg(Register VirtReg, UserValue *EC); 672 673 /// Replace any PHI referring to OldReg with its corresponding NewReg, if 674 /// present. 675 void splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs); 676 677 /// Replace all references to OldReg with NewRegs. 678 void splitRegister(Register OldReg, ArrayRef<Register> NewRegs); 679 680 /// Recreate DBG_VALUE instruction from data structures. 681 void emitDebugValues(VirtRegMap *VRM); 682 683 void print(raw_ostream&); 684 }; 685 686 } // namespace llvm 687 688 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 689 const LLVMContext &Ctx) { 690 if (!DL) 691 return; 692 693 auto *Scope = cast<DIScope>(DL.getScope()); 694 // Omit the directory, because it's likely to be long and uninteresting. 695 CommentOS << Scope->getFilename(); 696 CommentOS << ':' << DL.getLine(); 697 if (DL.getCol() != 0) 698 CommentOS << ':' << DL.getCol(); 699 700 DebugLoc InlinedAtDL = DL.getInlinedAt(); 701 if (!InlinedAtDL) 702 return; 703 704 CommentOS << " @[ "; 705 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 706 CommentOS << " ]"; 707 } 708 709 static void printExtendedName(raw_ostream &OS, const DINode *Node, 710 const DILocation *DL) { 711 const LLVMContext &Ctx = Node->getContext(); 712 StringRef Res; 713 unsigned Line = 0; 714 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { 715 Res = V->getName(); 716 Line = V->getLine(); 717 } else if (const auto *L = dyn_cast<const DILabel>(Node)) { 718 Res = L->getName(); 719 Line = L->getLine(); 720 } 721 722 if (!Res.empty()) 723 OS << Res << "," << Line; 724 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; 725 if (InlinedAt) { 726 if (DebugLoc InlinedAtDL = InlinedAt) { 727 OS << " @["; 728 printDebugLoc(InlinedAtDL, OS, Ctx); 729 OS << "]"; 730 } 731 } 732 } 733 734 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 735 OS << "!\""; 736 printExtendedName(OS, Variable, dl); 737 738 OS << "\"\t"; 739 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 740 OS << " [" << I.start() << ';' << I.stop() << "):"; 741 if (I.value().isUndef()) 742 OS << " undef"; 743 else { 744 I.value().printLocNos(OS); 745 if (I.value().getWasIndirect()) 746 OS << " ind"; 747 else if (I.value().getWasList()) 748 OS << " list"; 749 } 750 } 751 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 752 OS << " Loc" << i << '='; 753 locations[i].print(OS, TRI); 754 } 755 OS << '\n'; 756 } 757 758 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 759 OS << "!\""; 760 printExtendedName(OS, Label, dl); 761 762 OS << "\"\t"; 763 OS << loc; 764 OS << '\n'; 765 } 766 767 void LiveDebugVariables::LDVImpl::print(raw_ostream &OS) { 768 OS << "********** DEBUG VARIABLES **********\n"; 769 for (auto &userValue : userValues) 770 userValue->print(OS, TRI); 771 OS << "********** DEBUG LABELS **********\n"; 772 for (auto &userLabel : userLabels) 773 userLabel->print(OS, TRI); 774 } 775 776 void UserValue::mapVirtRegs(LiveDebugVariables::LDVImpl *LDV) { 777 for (const MachineOperand &MO : locations) 778 if (MO.isReg() && MO.getReg().isVirtual()) 779 LDV->mapVirtReg(MO.getReg(), this); 780 } 781 782 UserValue *LiveDebugVariables::LDVImpl::getUserValue( 783 const DILocalVariable *Var, 784 std::optional<DIExpression::FragmentInfo> Fragment, const DebugLoc &DL) { 785 // FIXME: Handle partially overlapping fragments. See 786 // https://reviews.llvm.org/D70121#1849741. 787 DebugVariable ID(Var, Fragment, DL->getInlinedAt()); 788 UserValue *&UV = userVarMap[ID]; 789 if (!UV) { 790 userValues.push_back( 791 std::make_unique<UserValue>(Var, Fragment, DL, allocator)); 792 UV = userValues.back().get(); 793 } 794 return UV; 795 } 796 797 void LiveDebugVariables::LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) { 798 assert(VirtReg.isVirtual() && "Only map VirtRegs"); 799 UserValue *&Leader = virtRegToEqClass[VirtReg]; 800 Leader = UserValue::merge(Leader, EC); 801 } 802 803 UserValue *LiveDebugVariables::LDVImpl::lookupVirtReg(Register VirtReg) { 804 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 805 return UV->getLeader(); 806 return nullptr; 807 } 808 809 bool LiveDebugVariables::LDVImpl::handleDebugValue(MachineInstr &MI, 810 SlotIndex Idx) { 811 // DBG_VALUE loc, offset, variable, expr 812 // DBG_VALUE_LIST variable, expr, locs... 813 if (!MI.isDebugValue()) { 814 LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI); 815 return false; 816 } 817 if (!MI.getDebugVariableOp().isMetadata()) { 818 LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: " 819 << MI); 820 return false; 821 } 822 if (MI.isNonListDebugValue() && 823 (MI.getNumOperands() != 4 || 824 !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) { 825 LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI); 826 return false; 827 } 828 829 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 830 // register that hasn't been defined yet. If we do not remove those here, then 831 // the re-insertion of the DBG_VALUE instruction after register allocation 832 // will be incorrect. 833 bool Discard = false; 834 for (const MachineOperand &Op : MI.debug_operands()) { 835 if (Op.isReg() && Op.getReg().isVirtual()) { 836 const Register Reg = Op.getReg(); 837 if (!LIS->hasInterval(Reg)) { 838 // The DBG_VALUE is described by a virtual register that does not have a 839 // live interval. Discard the DBG_VALUE. 840 Discard = true; 841 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 842 << " " << MI); 843 } else { 844 // The DBG_VALUE is only valid if either Reg is live out from Idx, or 845 // Reg is defined dead at Idx (where Idx is the slot index for the 846 // instruction preceding the DBG_VALUE). 847 const LiveInterval &LI = LIS->getInterval(Reg); 848 LiveQueryResult LRQ = LI.Query(Idx); 849 if (!LRQ.valueOutOrDead()) { 850 // We have found a DBG_VALUE with the value in a virtual register that 851 // is not live. Discard the DBG_VALUE. 852 Discard = true; 853 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 854 << " " << MI); 855 } 856 } 857 } 858 } 859 860 // Get or create the UserValue for (variable,offset) here. 861 bool IsIndirect = MI.isDebugOffsetImm(); 862 if (IsIndirect) 863 assert(MI.getDebugOffset().getImm() == 0 && 864 "DBG_VALUE with nonzero offset"); 865 bool IsList = MI.isDebugValueList(); 866 const DILocalVariable *Var = MI.getDebugVariable(); 867 const DIExpression *Expr = MI.getDebugExpression(); 868 UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc()); 869 if (!Discard) 870 UV->addDef(Idx, 871 ArrayRef<MachineOperand>(MI.debug_operands().begin(), 872 MI.debug_operands().end()), 873 IsIndirect, IsList, *Expr); 874 else { 875 MachineOperand MO = MachineOperand::CreateReg(0U, false); 876 MO.setIsDebug(); 877 // We should still pass a list the same size as MI.debug_operands() even if 878 // all MOs are undef, so that DbgVariableValue can correctly adjust the 879 // expression while removing the duplicated undefs. 880 SmallVector<MachineOperand, 4> UndefMOs(MI.getNumDebugOperands(), MO); 881 UV->addDef(Idx, UndefMOs, false, IsList, *Expr); 882 } 883 return true; 884 } 885 886 MachineBasicBlock::iterator 887 LiveDebugVariables::LDVImpl::handleDebugInstr(MachineInstr &MI, SlotIndex Idx) { 888 assert(MI.isDebugValueLike() || MI.isDebugPHI()); 889 890 // In instruction referencing mode, there should be no DBG_VALUE instructions 891 // that refer to virtual registers. They might still refer to constants. 892 if (MI.isDebugValueLike()) 893 assert(none_of(MI.debug_operands(), 894 [](const MachineOperand &MO) { 895 return MO.isReg() && MO.getReg().isVirtual(); 896 }) && 897 "MIs should not refer to Virtual Registers in InstrRef mode."); 898 899 // Unlink the instruction, store it in the debug instructions collection. 900 auto NextInst = std::next(MI.getIterator()); 901 auto *MBB = MI.getParent(); 902 MI.removeFromParent(); 903 StashedDebugInstrs.push_back({&MI, Idx, MBB}); 904 return NextInst; 905 } 906 907 bool LiveDebugVariables::LDVImpl::handleDebugLabel(MachineInstr &MI, 908 SlotIndex Idx) { 909 // DBG_LABEL label 910 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { 911 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 912 return false; 913 } 914 915 // Get or create the UserLabel for label here. 916 const DILabel *Label = MI.getDebugLabel(); 917 const DebugLoc &DL = MI.getDebugLoc(); 918 bool Found = false; 919 for (auto const &L : userLabels) { 920 if (L->matches(Label, DL->getInlinedAt(), Idx)) { 921 Found = true; 922 break; 923 } 924 } 925 if (!Found) 926 userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx)); 927 928 return true; 929 } 930 931 bool LiveDebugVariables::LDVImpl::collectDebugValues(MachineFunction &mf, 932 bool InstrRef) { 933 bool Changed = false; 934 for (MachineBasicBlock &MBB : mf) { 935 for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end(); 936 MBBI != MBBE;) { 937 // Use the first debug instruction in the sequence to get a SlotIndex 938 // for following consecutive debug instructions. 939 if (!MBBI->isDebugOrPseudoInstr()) { 940 ++MBBI; 941 continue; 942 } 943 // Debug instructions has no slot index. Use the previous 944 // non-debug instruction's SlotIndex as its SlotIndex. 945 SlotIndex Idx = 946 MBBI == MBB.begin() 947 ? LIS->getMBBStartIdx(&MBB) 948 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 949 // Handle consecutive debug instructions with the same slot index. 950 do { 951 // In instruction referencing mode, pass each instr to handleDebugInstr 952 // to be unlinked. Ignore DBG_VALUE_LISTs -- they refer to vregs, and 953 // need to go through the normal live interval splitting process. 954 if (InstrRef && (MBBI->isNonListDebugValue() || MBBI->isDebugPHI() || 955 MBBI->isDebugRef())) { 956 MBBI = handleDebugInstr(*MBBI, Idx); 957 Changed = true; 958 // In normal debug mode, use the dedicated DBG_VALUE / DBG_LABEL handler 959 // to track things through register allocation, and erase the instr. 960 } else if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || 961 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { 962 MBBI = MBB.erase(MBBI); 963 Changed = true; 964 } else 965 ++MBBI; 966 } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr()); 967 } 968 } 969 return Changed; 970 } 971 972 void UserValue::extendDef( 973 SlotIndex Idx, DbgVariableValue DbgValue, 974 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> 975 &LiveIntervalInfo, 976 std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, 977 LiveIntervals &LIS) { 978 SlotIndex Start = Idx; 979 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 980 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 981 LocMap::iterator I = locInts.find(Start); 982 983 // Limit to the intersection of the VNIs' live ranges. 984 for (auto &LII : LiveIntervalInfo) { 985 LiveRange *LR = LII.second.first; 986 assert(LR && LII.second.second && "Missing range info for Idx."); 987 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 988 assert(Segment && Segment->valno == LII.second.second && 989 "Invalid VNInfo for Idx given?"); 990 if (Segment->end < Stop) { 991 Stop = Segment->end; 992 Kills = {Stop, {LII.first}}; 993 } else if (Segment->end == Stop && Kills) { 994 // If multiple locations end at the same place, track all of them in 995 // Kills. 996 Kills->second.push_back(LII.first); 997 } 998 } 999 1000 // There could already be a short def at Start. 1001 if (I.valid() && I.start() <= Start) { 1002 // Stop when meeting a different location or an already extended interval. 1003 Start = Start.getNextSlot(); 1004 if (I.value() != DbgValue || I.stop() != Start) { 1005 // Clear `Kills`, as we have a new def available. 1006 Kills = std::nullopt; 1007 return; 1008 } 1009 // This is a one-slot placeholder. Just skip it. 1010 ++I; 1011 } 1012 1013 // Limited by the next def. 1014 if (I.valid() && I.start() < Stop) { 1015 Stop = I.start(); 1016 // Clear `Kills`, as we have a new def available. 1017 Kills = std::nullopt; 1018 } 1019 1020 if (Start < Stop) { 1021 DbgVariableValue ExtDbgValue(DbgValue); 1022 I.insert(Start, Stop, std::move(ExtDbgValue)); 1023 } 1024 } 1025 1026 void UserValue::addDefsFromCopies( 1027 DbgVariableValue DbgValue, 1028 SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, 1029 SlotIndex KilledAt, 1030 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 1031 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 1032 // Don't track copies from physregs, there are too many uses. 1033 if (any_of(LocIntervals, 1034 [](auto LocI) { return !LocI.second->reg().isVirtual(); })) 1035 return; 1036 1037 // Collect all the (vreg, valno) pairs that are copies of LI. 1038 SmallDenseMap<unsigned, 1039 SmallVector<std::pair<LiveInterval *, const VNInfo *>, 4>> 1040 CopyValues; 1041 for (auto &LocInterval : LocIntervals) { 1042 unsigned LocNo = LocInterval.first; 1043 LiveInterval *LI = LocInterval.second; 1044 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) { 1045 MachineInstr *MI = MO.getParent(); 1046 // Copies of the full value. 1047 if (MO.getSubReg() || !MI->isCopy()) 1048 continue; 1049 Register DstReg = MI->getOperand(0).getReg(); 1050 1051 // Don't follow copies to physregs. These are usually setting up call 1052 // arguments, and the argument registers are always call clobbered. We are 1053 // better off in the source register which could be a callee-saved 1054 // register, or it could be spilled. 1055 if (!DstReg.isVirtual()) 1056 continue; 1057 1058 // Is the value extended to reach this copy? If not, another def may be 1059 // blocking it, or we are looking at a wrong value of LI. 1060 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1061 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 1062 if (!I.valid() || I.value() != DbgValue) 1063 continue; 1064 1065 if (!LIS.hasInterval(DstReg)) 1066 continue; 1067 LiveInterval *DstLI = &LIS.getInterval(DstReg); 1068 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 1069 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 1070 CopyValues[LocNo].push_back(std::make_pair(DstLI, DstVNI)); 1071 } 1072 } 1073 1074 if (CopyValues.empty()) 1075 return; 1076 1077 #if !defined(NDEBUG) 1078 for (auto &LocInterval : LocIntervals) 1079 LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size() 1080 << " copies of " << *LocInterval.second << '\n'); 1081 #endif 1082 1083 // Try to add defs of the copied values for the kill point. Check that there 1084 // isn't already a def at Idx. 1085 LocMap::iterator I = locInts.find(KilledAt); 1086 if (I.valid() && I.start() <= KilledAt) 1087 return; 1088 DbgVariableValue NewValue(DbgValue); 1089 for (auto &LocInterval : LocIntervals) { 1090 unsigned LocNo = LocInterval.first; 1091 bool FoundCopy = false; 1092 for (auto &LIAndVNI : CopyValues[LocNo]) { 1093 LiveInterval *DstLI = LIAndVNI.first; 1094 const VNInfo *DstVNI = LIAndVNI.second; 1095 if (DstLI->getVNInfoAt(KilledAt) != DstVNI) 1096 continue; 1097 LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #" 1098 << DstVNI->id << " in " << *DstLI << '\n'); 1099 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 1100 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 1101 unsigned NewLocNo = getLocationNo(CopyMI->getOperand(0)); 1102 NewValue = NewValue.changeLocNo(LocNo, NewLocNo); 1103 FoundCopy = true; 1104 break; 1105 } 1106 // If there are any killed locations we can't find a copy for, we can't 1107 // extend the variable value. 1108 if (!FoundCopy) 1109 return; 1110 } 1111 I.insert(KilledAt, KilledAt.getNextSlot(), NewValue); 1112 NewDefs.push_back(std::make_pair(KilledAt, NewValue)); 1113 } 1114 1115 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 1116 const TargetRegisterInfo &TRI, 1117 LiveIntervals &LIS, LexicalScopes &LS) { 1118 SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs; 1119 1120 // Collect all defs to be extended (Skipping undefs). 1121 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 1122 if (!I.value().isUndef()) 1123 Defs.push_back(std::make_pair(I.start(), I.value())); 1124 1125 // Extend all defs, and possibly add new ones along the way. 1126 for (unsigned i = 0; i != Defs.size(); ++i) { 1127 SlotIndex Idx = Defs[i].first; 1128 DbgVariableValue DbgValue = Defs[i].second; 1129 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> LIs; 1130 SmallVector<const VNInfo *, 4> VNIs; 1131 bool ShouldExtendDef = false; 1132 for (unsigned LocNo : DbgValue.loc_nos()) { 1133 const MachineOperand &LocMO = locations[LocNo]; 1134 if (!LocMO.isReg() || !LocMO.getReg().isVirtual()) { 1135 ShouldExtendDef |= !LocMO.isReg(); 1136 continue; 1137 } 1138 ShouldExtendDef = true; 1139 LiveInterval *LI = nullptr; 1140 const VNInfo *VNI = nullptr; 1141 if (LIS.hasInterval(LocMO.getReg())) { 1142 LI = &LIS.getInterval(LocMO.getReg()); 1143 VNI = LI->getVNInfoAt(Idx); 1144 } 1145 if (LI && VNI) 1146 LIs[LocNo] = {LI, VNI}; 1147 } 1148 if (ShouldExtendDef) { 1149 std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> Kills; 1150 extendDef(Idx, DbgValue, LIs, Kills, LIS); 1151 1152 if (Kills) { 1153 SmallVector<std::pair<unsigned, LiveInterval *>, 2> KilledLocIntervals; 1154 bool AnySubreg = false; 1155 for (unsigned LocNo : Kills->second) { 1156 const MachineOperand &LocMO = this->locations[LocNo]; 1157 if (LocMO.getSubReg()) { 1158 AnySubreg = true; 1159 break; 1160 } 1161 LiveInterval *LI = &LIS.getInterval(LocMO.getReg()); 1162 KilledLocIntervals.push_back({LocNo, LI}); 1163 } 1164 1165 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that 1166 // if the original location for example is %vreg0:sub_hi, and we find a 1167 // full register copy in addDefsFromCopies (at the moment it only 1168 // handles full register copies), then we must add the sub1 sub-register 1169 // index to the new location. However, that is only possible if the new 1170 // virtual register is of the same regclass (or if there is an 1171 // equivalent sub-register in that regclass). For now, simply skip 1172 // handling copies if a sub-register is involved. 1173 if (!AnySubreg) 1174 addDefsFromCopies(DbgValue, KilledLocIntervals, Kills->first, Defs, 1175 MRI, LIS); 1176 } 1177 } 1178 1179 // For physregs, we only mark the start slot idx. DwarfDebug will see it 1180 // as if the DBG_VALUE is valid up until the end of the basic block, or 1181 // the next def of the physical register. So we do not need to extend the 1182 // range. It might actually happen that the DBG_VALUE is the last use of 1183 // the physical register (e.g. if this is an unused input argument to a 1184 // function). 1185 } 1186 1187 // The computed intervals may extend beyond the range of the debug 1188 // location's lexical scope. In this case, splitting of an interval 1189 // can result in an interval outside of the scope being created, 1190 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 1191 // this, trim the intervals to the lexical scope in the case of inlined 1192 // variables, since heavy inlining may cause production of dramatically big 1193 // number of DBG_VALUEs to be generated. 1194 if (!dl.getInlinedAt()) 1195 return; 1196 1197 LexicalScope *Scope = LS.findLexicalScope(dl); 1198 if (!Scope) 1199 return; 1200 1201 SlotIndex PrevEnd; 1202 LocMap::iterator I = locInts.begin(); 1203 1204 // Iterate over the lexical scope ranges. Each time round the loop 1205 // we check the intervals for overlap with the end of the previous 1206 // range and the start of the next. The first range is handled as 1207 // a special case where there is no PrevEnd. 1208 for (const InsnRange &Range : Scope->getRanges()) { 1209 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 1210 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 1211 1212 // Variable locations at the first instruction of a block should be 1213 // based on the block's SlotIndex, not the first instruction's index. 1214 if (Range.first == Range.first->getParent()->begin()) 1215 RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first); 1216 1217 // At the start of each iteration I has been advanced so that 1218 // I.stop() >= PrevEnd. Check for overlap. 1219 if (PrevEnd && I.start() < PrevEnd) { 1220 SlotIndex IStop = I.stop(); 1221 DbgVariableValue DbgValue = I.value(); 1222 1223 // Stop overlaps previous end - trim the end of the interval to 1224 // the scope range. 1225 I.setStopUnchecked(PrevEnd); 1226 ++I; 1227 1228 // If the interval also overlaps the start of the "next" (i.e. 1229 // current) range create a new interval for the remainder (which 1230 // may be further trimmed). 1231 if (RStart < IStop) 1232 I.insert(RStart, IStop, DbgValue); 1233 } 1234 1235 // Advance I so that I.stop() >= RStart, and check for overlap. 1236 I.advanceTo(RStart); 1237 if (!I.valid()) 1238 return; 1239 1240 if (I.start() < RStart) { 1241 // Interval start overlaps range - trim to the scope range. 1242 I.setStartUnchecked(RStart); 1243 // Remember that this interval was trimmed. 1244 trimmedDefs.insert(RStart); 1245 } 1246 1247 // The end of a lexical scope range is the last instruction in the 1248 // range. To convert to an interval we need the index of the 1249 // instruction after it. 1250 REnd = REnd.getNextIndex(); 1251 1252 // Advance I to first interval outside current range. 1253 I.advanceTo(REnd); 1254 if (!I.valid()) 1255 return; 1256 1257 PrevEnd = REnd; 1258 } 1259 1260 // Check for overlap with end of final range. 1261 if (PrevEnd && I.start() < PrevEnd) 1262 I.setStopUnchecked(PrevEnd); 1263 } 1264 1265 void LiveDebugVariables::LDVImpl::computeIntervals() { 1266 LexicalScopes LS; 1267 LS.initialize(*MF); 1268 1269 for (const auto &UV : userValues) { 1270 UV->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 1271 UV->mapVirtRegs(this); 1272 } 1273 } 1274 1275 bool LiveDebugVariables::LDVImpl::runOnMachineFunction(MachineFunction &mf, 1276 bool InstrRef) { 1277 clear(); 1278 MF = &mf; 1279 TRI = mf.getSubtarget().getRegisterInfo(); 1280 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 1281 << mf.getName() << " **********\n"); 1282 1283 bool Changed = collectDebugValues(mf, InstrRef); 1284 computeIntervals(); 1285 LLVM_DEBUG(print(dbgs())); 1286 1287 // Collect the set of VReg / SlotIndexs where PHIs occur; index the sensitive 1288 // VRegs too, for when we're notified of a range split. 1289 SlotIndexes *Slots = LIS->getSlotIndexes(); 1290 for (const auto &PHIIt : MF->DebugPHIPositions) { 1291 const MachineFunction::DebugPHIRegallocPos &Position = PHIIt.second; 1292 MachineBasicBlock *MBB = Position.MBB; 1293 Register Reg = Position.Reg; 1294 unsigned SubReg = Position.SubReg; 1295 SlotIndex SI = Slots->getMBBStartIdx(MBB); 1296 PHIValPos VP = {SI, Reg, SubReg}; 1297 PHIValToPos.insert(std::make_pair(PHIIt.first, VP)); 1298 RegToPHIIdx[Reg].push_back(PHIIt.first); 1299 } 1300 1301 ModifiedMF = Changed; 1302 return Changed; 1303 } 1304 1305 static void removeDebugInstrs(MachineFunction &mf) { 1306 for (MachineBasicBlock &MBB : mf) { 1307 for (MachineInstr &MI : llvm::make_early_inc_range(MBB)) 1308 if (MI.isDebugInstr()) 1309 MBB.erase(&MI); 1310 } 1311 } 1312 1313 bool LiveDebugVariablesWrapperLegacy::runOnMachineFunction( 1314 MachineFunction &mf) { 1315 auto *LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 1316 1317 Impl = std::make_unique<LiveDebugVariables>(); 1318 Impl->analyze(mf, LIS); 1319 return false; 1320 } 1321 1322 AnalysisKey LiveDebugVariablesAnalysis::Key; 1323 1324 LiveDebugVariables 1325 LiveDebugVariablesAnalysis::run(MachineFunction &MF, 1326 MachineFunctionAnalysisManager &MFAM) { 1327 MFPropsModifier _(*this, MF); 1328 1329 auto *LIS = &MFAM.getResult<LiveIntervalsAnalysis>(MF); 1330 LiveDebugVariables LDV; 1331 LDV.analyze(MF, LIS); 1332 return LDV; 1333 } 1334 1335 PreservedAnalyses 1336 LiveDebugVariablesPrinterPass::run(MachineFunction &MF, 1337 MachineFunctionAnalysisManager &MFAM) { 1338 auto &LDV = MFAM.getResult<LiveDebugVariablesAnalysis>(MF); 1339 LDV.print(OS); 1340 return PreservedAnalyses::all(); 1341 } 1342 1343 void LiveDebugVariables::releaseMemory() { 1344 if (PImpl) 1345 PImpl->clear(); 1346 } 1347 1348 bool LiveDebugVariables::invalidate( 1349 MachineFunction &, const PreservedAnalyses &PA, 1350 MachineFunctionAnalysisManager::Invalidator &) { 1351 auto PAC = PA.getChecker<LiveDebugVariablesAnalysis>(); 1352 // Some architectures split the register allocation into multiple phases based 1353 // on register classes. This requires preserving analyses between the phases 1354 // by default. 1355 return !PAC.preservedWhenStateless(); 1356 } 1357 1358 void LiveDebugVariables::analyze(MachineFunction &MF, LiveIntervals *LIS) { 1359 if (!EnableLDV) 1360 return; 1361 if (!MF.getFunction().getSubprogram()) { 1362 removeDebugInstrs(MF); 1363 return; 1364 } 1365 1366 PImpl.reset(new LDVImpl(LIS)); 1367 1368 // Have we been asked to track variable locations using instruction 1369 // referencing? 1370 bool InstrRef = MF.useDebugInstrRef(); 1371 PImpl->runOnMachineFunction(MF, InstrRef); 1372 } 1373 1374 //===----------------------------------------------------------------------===// 1375 // Live Range Splitting 1376 //===----------------------------------------------------------------------===// 1377 1378 bool 1379 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 1380 LiveIntervals& LIS) { 1381 LLVM_DEBUG({ 1382 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 1383 print(dbgs(), nullptr); 1384 }); 1385 bool DidChange = false; 1386 LocMap::iterator LocMapI; 1387 LocMapI.setMap(locInts); 1388 for (Register NewReg : NewRegs) { 1389 LiveInterval *LI = &LIS.getInterval(NewReg); 1390 if (LI->empty()) 1391 continue; 1392 1393 // Don't allocate the new LocNo until it is needed. 1394 unsigned NewLocNo = UndefLocNo; 1395 1396 // Iterate over the overlaps between locInts and LI. 1397 LocMapI.find(LI->beginIndex()); 1398 if (!LocMapI.valid()) 1399 continue; 1400 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 1401 LiveInterval::iterator LIE = LI->end(); 1402 while (LocMapI.valid() && LII != LIE) { 1403 // At this point, we know that LocMapI.stop() > LII->start. 1404 LII = LI->advanceTo(LII, LocMapI.start()); 1405 if (LII == LIE) 1406 break; 1407 1408 // Now LII->end > LocMapI.start(). Do we have an overlap? 1409 if (LocMapI.value().containsLocNo(OldLocNo) && 1410 LII->start < LocMapI.stop()) { 1411 // Overlapping correct location. Allocate NewLocNo now. 1412 if (NewLocNo == UndefLocNo) { 1413 MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false); 1414 MO.setSubReg(locations[OldLocNo].getSubReg()); 1415 NewLocNo = getLocationNo(MO); 1416 DidChange = true; 1417 } 1418 1419 SlotIndex LStart = LocMapI.start(); 1420 SlotIndex LStop = LocMapI.stop(); 1421 DbgVariableValue OldDbgValue = LocMapI.value(); 1422 1423 // Trim LocMapI down to the LII overlap. 1424 if (LStart < LII->start) 1425 LocMapI.setStartUnchecked(LII->start); 1426 if (LStop > LII->end) 1427 LocMapI.setStopUnchecked(LII->end); 1428 1429 // Change the value in the overlap. This may trigger coalescing. 1430 LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo)); 1431 1432 // Re-insert any removed OldDbgValue ranges. 1433 if (LStart < LocMapI.start()) { 1434 LocMapI.insert(LStart, LocMapI.start(), OldDbgValue); 1435 ++LocMapI; 1436 assert(LocMapI.valid() && "Unexpected coalescing"); 1437 } 1438 if (LStop > LocMapI.stop()) { 1439 ++LocMapI; 1440 LocMapI.insert(LII->end, LStop, OldDbgValue); 1441 --LocMapI; 1442 } 1443 } 1444 1445 // Advance to the next overlap. 1446 if (LII->end < LocMapI.stop()) { 1447 if (++LII == LIE) 1448 break; 1449 LocMapI.advanceTo(LII->start); 1450 } else { 1451 ++LocMapI; 1452 if (!LocMapI.valid()) 1453 break; 1454 LII = LI->advanceTo(LII, LocMapI.start()); 1455 } 1456 } 1457 } 1458 1459 // Finally, remove OldLocNo unless it is still used by some interval in the 1460 // locInts map. One case when OldLocNo still is in use is when the register 1461 // has been spilled. In such situations the spilled register is kept as a 1462 // location until rewriteLocations is called (VirtRegMap is mapping the old 1463 // register to the spill slot). So for a while we can have locations that map 1464 // to virtual registers that have been removed from both the MachineFunction 1465 // and from LiveIntervals. 1466 // 1467 // We may also just be using the location for a value with a different 1468 // expression. 1469 removeLocationIfUnused(OldLocNo); 1470 1471 LLVM_DEBUG({ 1472 dbgs() << "Split result: \t"; 1473 print(dbgs(), nullptr); 1474 }); 1475 return DidChange; 1476 } 1477 1478 bool 1479 UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 1480 LiveIntervals &LIS) { 1481 bool DidChange = false; 1482 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1483 // safely erase unused locations. 1484 for (unsigned i = locations.size(); i ; --i) { 1485 unsigned LocNo = i-1; 1486 const MachineOperand *Loc = &locations[LocNo]; 1487 if (!Loc->isReg() || Loc->getReg() != OldReg) 1488 continue; 1489 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1490 } 1491 return DidChange; 1492 } 1493 1494 void LiveDebugVariables::LDVImpl::splitPHIRegister(Register OldReg, 1495 ArrayRef<Register> NewRegs) { 1496 auto RegIt = RegToPHIIdx.find(OldReg); 1497 if (RegIt == RegToPHIIdx.end()) 1498 return; 1499 1500 std::vector<std::pair<Register, unsigned>> NewRegIdxes; 1501 // Iterate over all the debug instruction numbers affected by this split. 1502 for (unsigned InstrID : RegIt->second) { 1503 auto PHIIt = PHIValToPos.find(InstrID); 1504 assert(PHIIt != PHIValToPos.end()); 1505 const SlotIndex &Slot = PHIIt->second.SI; 1506 assert(OldReg == PHIIt->second.Reg); 1507 1508 // Find the new register that covers this position. 1509 for (auto NewReg : NewRegs) { 1510 const LiveInterval &LI = LIS->getInterval(NewReg); 1511 auto LII = LI.find(Slot); 1512 if (LII != LI.end() && LII->start <= Slot) { 1513 // This new register covers this PHI position, record this for indexing. 1514 NewRegIdxes.push_back(std::make_pair(NewReg, InstrID)); 1515 // Record that this value lives in a different VReg now. 1516 PHIIt->second.Reg = NewReg; 1517 break; 1518 } 1519 } 1520 1521 // If we do not find a new register covering this PHI, then register 1522 // allocation has dropped its location, for example because it's not live. 1523 // The old VReg will not be mapped to a physreg, and the instruction 1524 // number will have been optimized out. 1525 } 1526 1527 // Re-create register index using the new register numbers. 1528 RegToPHIIdx.erase(RegIt); 1529 for (auto &RegAndInstr : NewRegIdxes) 1530 RegToPHIIdx[RegAndInstr.first].push_back(RegAndInstr.second); 1531 } 1532 1533 void LiveDebugVariables::LDVImpl::splitRegister(Register OldReg, 1534 ArrayRef<Register> NewRegs) { 1535 // Consider whether this split range affects any PHI locations. 1536 splitPHIRegister(OldReg, NewRegs); 1537 1538 // Check whether any intervals mapped by a DBG_VALUE were split and need 1539 // updating. 1540 bool DidChange = false; 1541 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1542 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1543 1544 if (!DidChange) 1545 return; 1546 1547 // Map all of the new virtual registers. 1548 UserValue *UV = lookupVirtReg(OldReg); 1549 for (Register NewReg : NewRegs) 1550 mapVirtReg(NewReg, UV); 1551 } 1552 1553 void LiveDebugVariables:: 1554 splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) { 1555 if (PImpl) 1556 PImpl->splitRegister(OldReg, NewRegs); 1557 } 1558 1559 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 1560 const TargetInstrInfo &TII, 1561 const TargetRegisterInfo &TRI, 1562 SpillOffsetMap &SpillOffsets) { 1563 // Build a set of new locations with new numbers so we can coalesce our 1564 // IntervalMap if two vreg intervals collapse to the same physical location. 1565 // Use MapVector instead of SetVector because MapVector::insert returns the 1566 // position of the previously or newly inserted element. The boolean value 1567 // tracks if the location was produced by a spill. 1568 // FIXME: This will be problematic if we ever support direct and indirect 1569 // frame index locations, i.e. expressing both variables in memory and 1570 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1571 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; 1572 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1573 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1574 bool Spilled = false; 1575 unsigned SpillOffset = 0; 1576 MachineOperand Loc = locations[I]; 1577 // Only virtual registers are rewritten. 1578 if (Loc.isReg() && Loc.getReg() && Loc.getReg().isVirtual()) { 1579 Register VirtReg = Loc.getReg(); 1580 if (VRM.isAssignedReg(VirtReg) && VRM.hasPhys(VirtReg)) { 1581 // This can create a %noreg operand in rare cases when the sub-register 1582 // index is no longer available. That means the user value is in a 1583 // non-existent sub-register, and %noreg is exactly what we want. 1584 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1585 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1586 // Retrieve the stack slot offset. 1587 unsigned SpillSize; 1588 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1589 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); 1590 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, 1591 SpillOffset, MF); 1592 1593 // FIXME: Invalidate the location if the offset couldn't be calculated. 1594 (void)Success; 1595 1596 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1597 Spilled = true; 1598 } else { 1599 Loc.setReg(0); 1600 Loc.setSubReg(0); 1601 } 1602 } 1603 1604 // Insert this location if it doesn't already exist and record a mapping 1605 // from the old number to the new number. 1606 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); 1607 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1608 LocNoMap[I] = NewLocNo; 1609 } 1610 1611 // Rewrite the locations and record the stack slot offsets for spills. 1612 locations.clear(); 1613 SpillOffsets.clear(); 1614 for (auto &Pair : NewLocations) { 1615 bool Spilled; 1616 unsigned SpillOffset; 1617 std::tie(Spilled, SpillOffset) = Pair.second; 1618 locations.push_back(Pair.first); 1619 if (Spilled) { 1620 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1621 SpillOffsets[NewLocNo] = SpillOffset; 1622 } 1623 } 1624 1625 // Update the interval map, but only coalesce left, since intervals to the 1626 // right use the old location numbers. This should merge two contiguous 1627 // DBG_VALUE intervals with different vregs that were allocated to the same 1628 // physical register. 1629 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1630 I.setValueUnchecked(I.value().remapLocNos(LocNoMap)); 1631 I.setStart(I.start()); 1632 } 1633 } 1634 1635 /// Find an iterator for inserting a DBG_VALUE instruction. 1636 static MachineBasicBlock::iterator 1637 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS, 1638 BlockSkipInstsMap &BBSkipInstsMap) { 1639 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1640 Idx = Idx.getBaseIndex(); 1641 1642 // Try to find an insert location by going backwards from Idx. 1643 MachineInstr *MI; 1644 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1645 // We've reached the beginning of MBB. 1646 if (Idx == Start) { 1647 // Retrieve the last PHI/Label/Debug location found when calling 1648 // SkipPHIsLabelsAndDebug last time. Start searching from there. 1649 // 1650 // Note the iterator kept in BBSkipInstsMap is one step back based 1651 // on the iterator returned by SkipPHIsLabelsAndDebug last time. 1652 // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(), 1653 // BBSkipInstsMap won't save it. This is to consider the case that 1654 // new instructions may be inserted at the beginning of MBB after 1655 // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in 1656 // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions 1657 // are inserted at the beginning of the MBB, the iterator in 1658 // BBSkipInstsMap won't point to the beginning of the MBB anymore. 1659 // Therefore The next search in SkipPHIsLabelsAndDebug will skip those 1660 // newly added instructions and that is unwanted. 1661 MachineBasicBlock::iterator BeginIt; 1662 auto MapIt = BBSkipInstsMap.find(MBB); 1663 if (MapIt == BBSkipInstsMap.end()) 1664 BeginIt = MBB->begin(); 1665 else 1666 BeginIt = std::next(MapIt->second); 1667 auto I = MBB->SkipPHIsLabelsAndDebug(BeginIt); 1668 if (I != BeginIt) 1669 BBSkipInstsMap[MBB] = std::prev(I); 1670 return I; 1671 } 1672 Idx = Idx.getPrevIndex(); 1673 } 1674 1675 // Don't insert anything after the first terminator, though. 1676 auto It = MI->isTerminator() ? MBB->getFirstTerminator() 1677 : std::next(MachineBasicBlock::iterator(MI)); 1678 return skipDebugInstructionsForward(It, MBB->end()); 1679 } 1680 1681 /// Find an iterator for inserting the next DBG_VALUE instruction 1682 /// (or end if no more insert locations found). 1683 static MachineBasicBlock::iterator 1684 findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, 1685 SlotIndex StopIdx, ArrayRef<MachineOperand> LocMOs, 1686 LiveIntervals &LIS, const TargetRegisterInfo &TRI) { 1687 SmallVector<Register, 4> Regs; 1688 for (const MachineOperand &LocMO : LocMOs) 1689 if (LocMO.isReg()) 1690 Regs.push_back(LocMO.getReg()); 1691 if (Regs.empty()) 1692 return MBB->instr_end(); 1693 1694 // Find the next instruction in the MBB that define the register Reg. 1695 while (I != MBB->end() && !I->isTerminator()) { 1696 if (!LIS.isNotInMIMap(*I) && 1697 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1698 break; 1699 if (any_of(Regs, [&I, &TRI](Register &Reg) { 1700 return I->definesRegister(Reg, &TRI); 1701 })) 1702 // The insert location is directly after the instruction/bundle. 1703 return std::next(I); 1704 ++I; 1705 } 1706 return MBB->end(); 1707 } 1708 1709 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1710 SlotIndex StopIdx, DbgVariableValue DbgValue, 1711 ArrayRef<bool> LocSpills, 1712 ArrayRef<unsigned> SpillOffsets, 1713 LiveIntervals &LIS, const TargetInstrInfo &TII, 1714 const TargetRegisterInfo &TRI, 1715 BlockSkipInstsMap &BBSkipInstsMap) { 1716 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1717 // Only search within the current MBB. 1718 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1719 MachineBasicBlock::iterator I = 1720 findInsertLocation(MBB, StartIdx, LIS, BBSkipInstsMap); 1721 // Undef values don't exist in locations so create new "noreg" register MOs 1722 // for them. See getLocationNo(). 1723 SmallVector<MachineOperand, 8> MOs; 1724 if (DbgValue.isUndef()) { 1725 MOs.assign(DbgValue.loc_nos().size(), 1726 MachineOperand::CreateReg( 1727 /* Reg */ 0, /* isDef */ false, /* isImp */ false, 1728 /* isKill */ false, /* isDead */ false, 1729 /* isUndef */ false, /* isEarlyClobber */ false, 1730 /* SubReg */ 0, /* isDebug */ true)); 1731 } else { 1732 for (unsigned LocNo : DbgValue.loc_nos()) 1733 MOs.push_back(locations[LocNo]); 1734 } 1735 1736 ++NumInsertedDebugValues; 1737 1738 assert(cast<DILocalVariable>(Variable) 1739 ->isValidLocationForIntrinsic(getDebugLoc()) && 1740 "Expected inlined-at fields to agree"); 1741 1742 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1743 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1744 // that the original virtual register was a pointer. Also, add the stack slot 1745 // offset for the spilled register to the expression. 1746 const DIExpression *Expr = DbgValue.getExpression(); 1747 bool IsIndirect = DbgValue.getWasIndirect(); 1748 bool IsList = DbgValue.getWasList(); 1749 for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) { 1750 if (LocSpills[I]) { 1751 if (!IsList) { 1752 uint8_t DIExprFlags = DIExpression::ApplyOffset; 1753 if (IsIndirect) 1754 DIExprFlags |= DIExpression::DerefAfter; 1755 Expr = DIExpression::prepend(Expr, DIExprFlags, SpillOffsets[I]); 1756 IsIndirect = true; 1757 } else { 1758 SmallVector<uint64_t, 4> Ops; 1759 DIExpression::appendOffset(Ops, SpillOffsets[I]); 1760 Ops.push_back(dwarf::DW_OP_deref); 1761 Expr = DIExpression::appendOpsToArg(Expr, Ops, I); 1762 } 1763 } 1764 1765 assert((!LocSpills[I] || MOs[I].isFI()) && 1766 "a spilled location must be a frame index"); 1767 } 1768 1769 unsigned DbgValueOpcode = 1770 IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE; 1771 do { 1772 BuildMI(*MBB, I, getDebugLoc(), TII.get(DbgValueOpcode), IsIndirect, MOs, 1773 Variable, Expr); 1774 1775 // Continue and insert DBG_VALUES after every redefinition of a register 1776 // associated with the debug value within the range 1777 I = findNextInsertLocation(MBB, I, StopIdx, MOs, LIS, TRI); 1778 } while (I != MBB->end()); 1779 } 1780 1781 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 1782 LiveIntervals &LIS, const TargetInstrInfo &TII, 1783 BlockSkipInstsMap &BBSkipInstsMap) { 1784 MachineBasicBlock::iterator I = 1785 findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap); 1786 ++NumInsertedDebugLabels; 1787 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) 1788 .addMetadata(Label); 1789 } 1790 1791 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1792 const TargetInstrInfo &TII, 1793 const TargetRegisterInfo &TRI, 1794 const SpillOffsetMap &SpillOffsets, 1795 BlockSkipInstsMap &BBSkipInstsMap) { 1796 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1797 1798 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1799 SlotIndex Start = I.start(); 1800 SlotIndex Stop = I.stop(); 1801 DbgVariableValue DbgValue = I.value(); 1802 1803 SmallVector<bool> SpilledLocs; 1804 SmallVector<unsigned> LocSpillOffsets; 1805 for (unsigned LocNo : DbgValue.loc_nos()) { 1806 auto SpillIt = 1807 !DbgValue.isUndef() ? SpillOffsets.find(LocNo) : SpillOffsets.end(); 1808 bool Spilled = SpillIt != SpillOffsets.end(); 1809 SpilledLocs.push_back(Spilled); 1810 LocSpillOffsets.push_back(Spilled ? SpillIt->second : 0); 1811 } 1812 1813 // If the interval start was trimmed to the lexical scope insert the 1814 // DBG_VALUE at the previous index (otherwise it appears after the 1815 // first instruction in the range). 1816 if (trimmedDefs.count(Start)) 1817 Start = Start.getPrevIndex(); 1818 1819 LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):"; 1820 DbgValue.printLocNos(dbg)); 1821 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1822 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1823 1824 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1825 insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, LocSpillOffsets, 1826 LIS, TII, TRI, BBSkipInstsMap); 1827 // This interval may span multiple basic blocks. 1828 // Insert a DBG_VALUE into each one. 1829 while (Stop > MBBEnd) { 1830 // Move to the next block. 1831 Start = MBBEnd; 1832 if (++MBB == MFEnd) 1833 break; 1834 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1835 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1836 insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, 1837 LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap); 1838 } 1839 LLVM_DEBUG(dbgs() << '\n'); 1840 if (MBB == MFEnd) 1841 break; 1842 1843 ++I; 1844 } 1845 } 1846 1847 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, 1848 BlockSkipInstsMap &BBSkipInstsMap) { 1849 LLVM_DEBUG(dbgs() << "\t" << loc); 1850 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); 1851 1852 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); 1853 insertDebugLabel(&*MBB, loc, LIS, TII, BBSkipInstsMap); 1854 1855 LLVM_DEBUG(dbgs() << '\n'); 1856 } 1857 1858 void LiveDebugVariables::LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1859 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1860 if (!MF) 1861 return; 1862 1863 BlockSkipInstsMap BBSkipInstsMap; 1864 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1865 SpillOffsetMap SpillOffsets; 1866 for (auto &userValue : userValues) { 1867 LLVM_DEBUG(userValue->print(dbgs(), TRI)); 1868 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); 1869 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets, 1870 BBSkipInstsMap); 1871 } 1872 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); 1873 for (auto &userLabel : userLabels) { 1874 LLVM_DEBUG(userLabel->print(dbgs(), TRI)); 1875 userLabel->emitDebugLabel(*LIS, *TII, BBSkipInstsMap); 1876 } 1877 1878 LLVM_DEBUG(dbgs() << "********** EMITTING DEBUG PHIS **********\n"); 1879 1880 auto Slots = LIS->getSlotIndexes(); 1881 for (auto &It : PHIValToPos) { 1882 // For each ex-PHI, identify its physreg location or stack slot, and emit 1883 // a DBG_PHI for it. 1884 unsigned InstNum = It.first; 1885 auto Slot = It.second.SI; 1886 Register Reg = It.second.Reg; 1887 unsigned SubReg = It.second.SubReg; 1888 1889 MachineBasicBlock *OrigMBB = Slots->getMBBFromIndex(Slot); 1890 if (VRM->isAssignedReg(Reg) && VRM->hasPhys(Reg)) { 1891 unsigned PhysReg = VRM->getPhys(Reg); 1892 if (SubReg != 0) 1893 PhysReg = TRI->getSubReg(PhysReg, SubReg); 1894 1895 auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(), 1896 TII->get(TargetOpcode::DBG_PHI)); 1897 Builder.addReg(PhysReg); 1898 Builder.addImm(InstNum); 1899 } else if (VRM->getStackSlot(Reg) != VirtRegMap::NO_STACK_SLOT) { 1900 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1901 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 1902 unsigned SpillSize, SpillOffset; 1903 1904 unsigned regSizeInBits = TRI->getRegSizeInBits(*TRC); 1905 if (SubReg) 1906 regSizeInBits = TRI->getSubRegIdxSize(SubReg); 1907 1908 // Test whether this location is legal with the given subreg. If the 1909 // subregister has a nonzero offset, drop this location, it's too complex 1910 // to describe. (TODO: future work). 1911 bool Success = 1912 TII->getStackSlotRange(TRC, SubReg, SpillSize, SpillOffset, *MF); 1913 1914 if (Success && SpillOffset == 0) { 1915 auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(), 1916 TII->get(TargetOpcode::DBG_PHI)); 1917 Builder.addFrameIndex(VRM->getStackSlot(Reg)); 1918 Builder.addImm(InstNum); 1919 // Record how large the original value is. The stack slot might be 1920 // merged and altered during optimisation, but we will want to know how 1921 // large the value is, at this DBG_PHI. 1922 Builder.addImm(regSizeInBits); 1923 } 1924 1925 LLVM_DEBUG(if (SpillOffset != 0) { 1926 dbgs() << "DBG_PHI for " << printReg(Reg, TRI, SubReg) 1927 << " has nonzero offset\n"; 1928 }); 1929 } 1930 // If there was no mapping for a value ID, it's optimized out. Create no 1931 // DBG_PHI, and any variables using this value will become optimized out. 1932 } 1933 MF->DebugPHIPositions.clear(); 1934 1935 LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n"); 1936 1937 // Re-insert any debug instrs back in the position they were. We must 1938 // re-insert in the same order to ensure that debug instructions don't swap, 1939 // which could re-order assignments. Do so in a batch -- once we find the 1940 // insert position, insert all instructions at the same SlotIdx. They are 1941 // guaranteed to appear in-sequence in StashedDebugInstrs because we insert 1942 // them in order. 1943 for (auto *StashIt = StashedDebugInstrs.begin(); 1944 StashIt != StashedDebugInstrs.end(); ++StashIt) { 1945 SlotIndex Idx = StashIt->Idx; 1946 MachineBasicBlock *MBB = StashIt->MBB; 1947 MachineInstr *MI = StashIt->MI; 1948 1949 auto EmitInstsHere = [this, &StashIt, MBB, Idx, 1950 MI](MachineBasicBlock::iterator InsertPos) { 1951 // Insert this debug instruction. 1952 MBB->insert(InsertPos, MI); 1953 1954 // Look at subsequent stashed debug instructions: if they're at the same 1955 // index, insert those too. 1956 auto NextItem = std::next(StashIt); 1957 while (NextItem != StashedDebugInstrs.end() && NextItem->Idx == Idx) { 1958 assert(NextItem->MBB == MBB && "Instrs with same slot index should be" 1959 "in the same block"); 1960 MBB->insert(InsertPos, NextItem->MI); 1961 StashIt = NextItem; 1962 NextItem = std::next(StashIt); 1963 }; 1964 }; 1965 1966 // Start block index: find the first non-debug instr in the block, and 1967 // insert before it. 1968 if (Idx == Slots->getMBBStartIdx(MBB)) { 1969 MachineBasicBlock::iterator InsertPos = 1970 findInsertLocation(MBB, Idx, *LIS, BBSkipInstsMap); 1971 EmitInstsHere(InsertPos); 1972 continue; 1973 } 1974 1975 if (MachineInstr *Pos = Slots->getInstructionFromIndex(Idx)) { 1976 // Insert at the end of any debug instructions. 1977 auto PostDebug = std::next(Pos->getIterator()); 1978 PostDebug = skipDebugInstructionsForward(PostDebug, MBB->instr_end()); 1979 EmitInstsHere(PostDebug); 1980 } else { 1981 // Insert position disappeared; walk forwards through slots until we 1982 // find a new one. 1983 SlotIndex End = Slots->getMBBEndIdx(MBB); 1984 for (; Idx < End; Idx = Slots->getNextNonNullIndex(Idx)) { 1985 Pos = Slots->getInstructionFromIndex(Idx); 1986 if (Pos) { 1987 EmitInstsHere(Pos->getIterator()); 1988 break; 1989 } 1990 } 1991 1992 // We have reached the end of the block and didn't find anywhere to 1993 // insert! It's not safe to discard any debug instructions; place them 1994 // in front of the first terminator, or in front of end(). 1995 if (Idx >= End) { 1996 auto TermIt = MBB->getFirstTerminator(); 1997 EmitInstsHere(TermIt); 1998 } 1999 } 2000 } 2001 2002 EmitDone = true; 2003 BBSkipInstsMap.clear(); 2004 } 2005 2006 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 2007 if (PImpl) 2008 PImpl->emitDebugValues(VRM); 2009 } 2010 2011 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2012 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { print(dbgs()); } 2013 #endif 2014 2015 void LiveDebugVariables::print(raw_ostream &OS) const { 2016 if (PImpl) 2017 PImpl->print(OS); 2018 } 2019