xref: /llvm-project/llvm/lib/CodeGen/InterleavedLoadCombinePass.cpp (revision 735ab61ac828bd61398e6847d60e308fdf2b54ec)
1 //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 //
11 // This file defines the interleaved-load-combine pass. The pass searches for
12 // ShuffleVectorInstruction that execute interleaving loads. If a matching
13 // pattern is found, it adds a combined load and further instructions in a
14 // pattern that is detectable by InterleavedAccesPass. The old instructions are
15 // left dead to be removed later. The pass is specifically designed to be
16 // executed just before InterleavedAccesPass to find any left-over instances
17 // that are not detected within former passes.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/MemorySSA.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/CodeGen/InterleavedLoadCombine.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetMachine.h"
42 
43 #include <algorithm>
44 #include <cassert>
45 #include <list>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "interleaved-load-combine"
50 
51 namespace {
52 
53 /// Statistic counter
54 STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");
55 
56 /// Option to disable the pass
57 static cl::opt<bool> DisableInterleavedLoadCombine(
58     "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden,
59     cl::desc("Disable combining of interleaved loads"));
60 
61 struct VectorInfo;
62 
63 struct InterleavedLoadCombineImpl {
64 public:
65   InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
66                              const TargetTransformInfo &TTI,
67                              const TargetMachine &TM)
68       : F(F), DT(DT), MSSA(MSSA),
69         TLI(*TM.getSubtargetImpl(F)->getTargetLowering()), TTI(TTI) {}
70 
71   /// Scan the function for interleaved load candidates and execute the
72   /// replacement if applicable.
73   bool run();
74 
75 private:
76   /// Function this pass is working on
77   Function &F;
78 
79   /// Dominator Tree Analysis
80   DominatorTree &DT;
81 
82   /// Memory Alias Analyses
83   MemorySSA &MSSA;
84 
85   /// Target Lowering Information
86   const TargetLowering &TLI;
87 
88   /// Target Transform Information
89   const TargetTransformInfo &TTI;
90 
91   /// Find the instruction in sets LIs that dominates all others, return nullptr
92   /// if there is none.
93   LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);
94 
95   /// Replace interleaved load candidates. It does additional
96   /// analyses if this makes sense. Returns true on success and false
97   /// of nothing has been changed.
98   bool combine(std::list<VectorInfo> &InterleavedLoad,
99                OptimizationRemarkEmitter &ORE);
100 
101   /// Given a set of VectorInfo containing candidates for a given interleave
102   /// factor, find a set that represents a 'factor' interleaved load.
103   bool findPattern(std::list<VectorInfo> &Candidates,
104                    std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
105                    const DataLayout &DL);
106 }; // InterleavedLoadCombine
107 
108 /// First Order Polynomial on an n-Bit Integer Value
109 ///
110 /// Polynomial(Value) = Value * B + A + E*2^(n-e)
111 ///
112 /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
113 /// significant bits. It is introduced if an exact computation cannot be proven
114 /// (e.q. division by 2).
115 ///
116 /// As part of this optimization multiple loads will be combined. It necessary
117 /// to prove that loads are within some relative offset to each other. This
118 /// class is used to prove relative offsets of values loaded from memory.
119 ///
120 /// Representing an integer in this form is sound since addition in two's
121 /// complement is associative (trivial) and multiplication distributes over the
122 /// addition (see Proof(1) in Polynomial::mul). Further, both operations
123 /// commute.
124 //
125 // Example:
126 // declare @fn(i64 %IDX, <4 x float>* %PTR) {
127 //   %Pa1 = add i64 %IDX, 2
128 //   %Pa2 = lshr i64 %Pa1, 1
129 //   %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
130 //   %Va = load <4 x float>, <4 x float>* %Pa3
131 //
132 //   %Pb1 = add i64 %IDX, 4
133 //   %Pb2 = lshr i64 %Pb1, 1
134 //   %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
135 //   %Vb = load <4 x float>, <4 x float>* %Pb3
136 // ... }
137 //
138 // The goal is to prove that two loads load consecutive addresses.
139 //
140 // In this case the polynomials are constructed by the following
141 // steps.
142 //
143 // The number tag #e specifies the error bits.
144 //
145 // Pa_0 = %IDX              #0
146 // Pa_1 = %IDX + 2          #0 | add 2
147 // Pa_2 = %IDX/2 + 1        #1 | lshr 1
148 // Pa_3 = %IDX/2 + 1        #1 | GEP, step signext to i64
149 // Pa_4 = (%IDX/2)*16 + 16  #0 | GEP, multiply index by sizeof(4) for floats
150 // Pa_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
151 //
152 // Pb_0 = %IDX              #0
153 // Pb_1 = %IDX + 4          #0 | add 2
154 // Pb_2 = %IDX/2 + 2        #1 | lshr 1
155 // Pb_3 = %IDX/2 + 2        #1 | GEP, step signext to i64
156 // Pb_4 = (%IDX/2)*16 + 32  #0 | GEP, multiply index by sizeof(4) for floats
157 // Pb_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
158 //
159 // Pb_5 - Pa_5 = 16         #0 | subtract to get the offset
160 //
161 // Remark: %PTR is not maintained within this class. So in this instance the
162 // offset of 16 can only be assumed if the pointers are equal.
163 //
164 class Polynomial {
165   /// Operations on B
166   enum BOps {
167     LShr,
168     Mul,
169     SExt,
170     Trunc,
171   };
172 
173   /// Number of Error Bits e
174   unsigned ErrorMSBs = (unsigned)-1;
175 
176   /// Value
177   Value *V = nullptr;
178 
179   /// Coefficient B
180   SmallVector<std::pair<BOps, APInt>, 4> B;
181 
182   /// Coefficient A
183   APInt A;
184 
185 public:
186   Polynomial(Value *V) : V(V) {
187     IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
188     if (Ty) {
189       ErrorMSBs = 0;
190       this->V = V;
191       A = APInt(Ty->getBitWidth(), 0);
192     }
193   }
194 
195   Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
196       : ErrorMSBs(ErrorMSBs), A(A) {}
197 
198   Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
199       : ErrorMSBs(ErrorMSBs), A(BitWidth, A) {}
200 
201   Polynomial() = default;
202 
203   /// Increment and clamp the number of undefined bits.
204   void incErrorMSBs(unsigned amt) {
205     if (ErrorMSBs == (unsigned)-1)
206       return;
207 
208     ErrorMSBs += amt;
209     if (ErrorMSBs > A.getBitWidth())
210       ErrorMSBs = A.getBitWidth();
211   }
212 
213   /// Decrement and clamp the number of undefined bits.
214   void decErrorMSBs(unsigned amt) {
215     if (ErrorMSBs == (unsigned)-1)
216       return;
217 
218     if (ErrorMSBs > amt)
219       ErrorMSBs -= amt;
220     else
221       ErrorMSBs = 0;
222   }
223 
224   /// Apply an add on the polynomial
225   Polynomial &add(const APInt &C) {
226     // Note: Addition is associative in two's complement even when in case of
227     // signed overflow.
228     //
229     // Error bits can only propagate into higher significant bits. As these are
230     // already regarded as undefined, there is no change.
231     //
232     // Theorem: Adding a constant to a polynomial does not change the error
233     // term.
234     //
235     // Proof:
236     //
237     //   Since the addition is associative and commutes:
238     //
239     //   (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
240     // [qed]
241 
242     if (C.getBitWidth() != A.getBitWidth()) {
243       ErrorMSBs = (unsigned)-1;
244       return *this;
245     }
246 
247     A += C;
248     return *this;
249   }
250 
251   /// Apply a multiplication onto the polynomial.
252   Polynomial &mul(const APInt &C) {
253     // Note: Multiplication distributes over the addition
254     //
255     // Theorem: Multiplication distributes over the addition
256     //
257     // Proof(1):
258     //
259     //   (B+A)*C =-
260     //        = (B + A) + (B + A) + .. {C Times}
261     //         addition is associative and commutes, hence
262     //        = B + B + .. {C Times} .. + A + A + .. {C times}
263     //        = B*C + A*C
264     //   (see (function add) for signed values and overflows)
265     // [qed]
266     //
267     // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
268     // to the left.
269     //
270     // Proof(2):
271     //
272     //   Let B' and A' be the n-Bit inputs with some unknown errors EA,
273     //   EB at e leading bits. B' and A' can be written down as:
274     //
275     //     B' = B + 2^(n-e)*EB
276     //     A' = A + 2^(n-e)*EA
277     //
278     //   Let C' be an input with c trailing zero bits. C' can be written as
279     //
280     //     C' = C*2^c
281     //
282     //   Therefore we can compute the result by using distributivity and
283     //   commutativity.
284     //
285     //     (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
286     //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
287     //                     = (B'+A') * C' =
288     //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
289     //                     = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
290     //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
291     //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
292     //                     = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
293     //
294     //   Let EC be the final error with EC = C*(EB + EA)
295     //
296     //                     = (B + A)*C' + EC*2^(n-e)*2^c =
297     //                     = (B + A)*C' + EC*2^(n-(e-c))
298     //
299     //   Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
300     //   less error bits than the input. c bits are shifted out to the left.
301     // [qed]
302 
303     if (C.getBitWidth() != A.getBitWidth()) {
304       ErrorMSBs = (unsigned)-1;
305       return *this;
306     }
307 
308     // Multiplying by one is a no-op.
309     if (C.isOne()) {
310       return *this;
311     }
312 
313     // Multiplying by zero removes the coefficient B and defines all bits.
314     if (C.isZero()) {
315       ErrorMSBs = 0;
316       deleteB();
317     }
318 
319     // See Proof(2): Trailing zero bits indicate a left shift. This removes
320     // leading bits from the result even if they are undefined.
321     decErrorMSBs(C.countr_zero());
322 
323     A *= C;
324     pushBOperation(Mul, C);
325     return *this;
326   }
327 
328   /// Apply a logical shift right on the polynomial
329   Polynomial &lshr(const APInt &C) {
330     // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
331     //          where
332     //             e' = e + 1,
333     //             E is a e-bit number,
334     //             E' is a e'-bit number,
335     //   holds under the following precondition:
336     //          pre(1): A % 2 = 0
337     //          pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
338     //   where >> expresses a logical shift to the right, with adding zeros.
339     //
340     //  We need to show that for every, E there is a E'
341     //
342     //  B = b_h * 2^(n-1) + b_m * 2 + b_l
343     //  A = a_h * 2^(n-1) + a_m * 2         (pre(1))
344     //
345     //  where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
346     //
347     //  Let X = (B + A + E*2^(n-e)) >> 1
348     //  Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
349     //
350     //    X = [B + A + E*2^(n-e)] >> 1 =
351     //      = [  b_h * 2^(n-1) + b_m * 2 + b_l +
352     //         + a_h * 2^(n-1) + a_m * 2 +
353     //         + E * 2^(n-e) ] >> 1 =
354     //
355     //    The sum is built by putting the overflow of [a_m + b+n] into the term
356     //    2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
357     //    this bit is discarded. This is expressed by % 2.
358     //
359     //    The bit in position 0 cannot overflow into the term (b_m + a_m).
360     //
361     //      = [  ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
362     //         + ((b_m + a_m) % 2^(n-2)) * 2 +
363     //         + b_l + E * 2^(n-e) ] >> 1 =
364     //
365     //    The shift is computed by dividing the terms by 2 and by cutting off
366     //    b_l.
367     //
368     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
369     //         + ((b_m + a_m) % 2^(n-2)) +
370     //         + E * 2^(n-(e+1)) =
371     //
372     //    by the definition in the Theorem e+1 = e'
373     //
374     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
375     //         + ((b_m + a_m) % 2^(n-2)) +
376     //         + E * 2^(n-e') =
377     //
378     //    Compute Y by applying distributivity first
379     //
380     //    Y =  (B >> 1) + (A >> 1) + E*2^(n-e') =
381     //      =    (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
382     //         + (a_h * 2^(n-1) + a_m * 2) >> 1 +
383     //         + E * 2^(n-e) >> 1 =
384     //
385     //    Again, the shift is computed by dividing the terms by 2 and by cutting
386     //    off b_l.
387     //
388     //      =     b_h * 2^(n-2) + b_m +
389     //         +  a_h * 2^(n-2) + a_m +
390     //         +  E * 2^(n-(e+1)) =
391     //
392     //    Again, the sum is built by putting the overflow of [a_m + b+n] into
393     //    the term 2^(n-1). But this time there is room for a second bit in the
394     //    term 2^(n-2) we add this bit to a new term and denote it o_h in a
395     //    second step.
396     //
397     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
398     //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
399     //         + ((b_m + a_m) % 2^(n-2)) +
400     //         + E * 2^(n-(e+1)) =
401     //
402     //    Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
403     //    Further replace e+1 by e'.
404     //
405     //      =    o_h * 2^(n-1) +
406     //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
407     //         + ((b_m + a_m) % 2^(n-2)) +
408     //         + E * 2^(n-e') =
409     //
410     //    Move o_h into the error term and construct E'. To ensure that there is
411     //    no 2^x with negative x, this step requires pre(2) (e < n).
412     //
413     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
414     //         + ((b_m + a_m) % 2^(n-2)) +
415     //         + o_h * 2^(e'-1) * 2^(n-e') +               | pre(2), move 2^(e'-1)
416     //                                                     | out of the old exponent
417     //         + E * 2^(n-e') =
418     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
419     //         + ((b_m + a_m) % 2^(n-2)) +
420     //         + [o_h * 2^(e'-1) + E] * 2^(n-e') +         | move 2^(e'-1) out of
421     //                                                     | the old exponent
422     //
423     //    Let E' = o_h * 2^(e'-1) + E
424     //
425     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
426     //         + ((b_m + a_m) % 2^(n-2)) +
427     //         + E' * 2^(n-e')
428     //
429     //    Because X and Y are distinct only in there error terms and E' can be
430     //    constructed as shown the theorem holds.
431     // [qed]
432     //
433     // For completeness in case of the case e=n it is also required to show that
434     // distributivity can be applied.
435     //
436     // In this case Theorem(1) transforms to (the pre-condition on A can also be
437     // dropped)
438     //
439     // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
440     //          where
441     //             A, B, E, E' are two's complement numbers with the same bit
442     //             width
443     //
444     //   Let A + B + E = X
445     //   Let (B >> 1) + (A >> 1) = Y
446     //
447     //   Therefore we need to show that for every X and Y there is an E' which
448     //   makes the equation
449     //
450     //     X = Y + E'
451     //
452     //   hold. This is trivially the case for E' = X - Y.
453     //
454     // [qed]
455     //
456     // Remark: Distributing lshr with and arbitrary number n can be expressed as
457     //   ((((B + A) lshr 1) lshr 1) ... ) {n times}.
458     // This construction induces n additional error bits at the left.
459 
460     if (C.getBitWidth() != A.getBitWidth()) {
461       ErrorMSBs = (unsigned)-1;
462       return *this;
463     }
464 
465     if (C.isZero())
466       return *this;
467 
468     // Test if the result will be zero
469     unsigned shiftAmt = C.getZExtValue();
470     if (shiftAmt >= C.getBitWidth())
471       return mul(APInt(C.getBitWidth(), 0));
472 
473     // The proof that shiftAmt LSBs are zero for at least one summand is only
474     // possible for the constant number.
475     //
476     // If this can be proven add shiftAmt to the error counter
477     // `ErrorMSBs`. Otherwise set all bits as undefined.
478     if (A.countr_zero() < shiftAmt)
479       ErrorMSBs = A.getBitWidth();
480     else
481       incErrorMSBs(shiftAmt);
482 
483     // Apply the operation.
484     pushBOperation(LShr, C);
485     A = A.lshr(shiftAmt);
486 
487     return *this;
488   }
489 
490   /// Apply a sign-extend or truncate operation on the polynomial.
491   Polynomial &sextOrTrunc(unsigned n) {
492     if (n < A.getBitWidth()) {
493       // Truncate: Clearly undefined Bits on the MSB side are removed
494       // if there are any.
495       decErrorMSBs(A.getBitWidth() - n);
496       A = A.trunc(n);
497       pushBOperation(Trunc, APInt(sizeof(n) * 8, n));
498     }
499     if (n > A.getBitWidth()) {
500       // Extend: Clearly extending first and adding later is different
501       // to adding first and extending later in all extended bits.
502       incErrorMSBs(n - A.getBitWidth());
503       A = A.sext(n);
504       pushBOperation(SExt, APInt(sizeof(n) * 8, n));
505     }
506 
507     return *this;
508   }
509 
510   /// Test if there is a coefficient B.
511   bool isFirstOrder() const { return V != nullptr; }
512 
513   /// Test coefficient B of two Polynomials are equal.
514   bool isCompatibleTo(const Polynomial &o) const {
515     // The polynomial use different bit width.
516     if (A.getBitWidth() != o.A.getBitWidth())
517       return false;
518 
519     // If neither Polynomial has the Coefficient B.
520     if (!isFirstOrder() && !o.isFirstOrder())
521       return true;
522 
523     // The index variable is different.
524     if (V != o.V)
525       return false;
526 
527     // Check the operations.
528     if (B.size() != o.B.size())
529       return false;
530 
531     auto *ob = o.B.begin();
532     for (const auto &b : B) {
533       if (b != *ob)
534         return false;
535       ob++;
536     }
537 
538     return true;
539   }
540 
541   /// Subtract two polynomials, return an undefined polynomial if
542   /// subtraction is not possible.
543   Polynomial operator-(const Polynomial &o) const {
544     // Return an undefined polynomial if incompatible.
545     if (!isCompatibleTo(o))
546       return Polynomial();
547 
548     // If the polynomials are compatible (meaning they have the same
549     // coefficient on B), B is eliminated. Thus a polynomial solely
550     // containing A is returned
551     return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs));
552   }
553 
554   /// Subtract a constant from a polynomial,
555   Polynomial operator-(uint64_t C) const {
556     Polynomial Result(*this);
557     Result.A -= C;
558     return Result;
559   }
560 
561   /// Add a constant to a polynomial,
562   Polynomial operator+(uint64_t C) const {
563     Polynomial Result(*this);
564     Result.A += C;
565     return Result;
566   }
567 
568   /// Returns true if it can be proven that two Polynomials are equal.
569   bool isProvenEqualTo(const Polynomial &o) {
570     // Subtract both polynomials and test if it is fully defined and zero.
571     Polynomial r = *this - o;
572     return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isZero());
573   }
574 
575   /// Print the polynomial into a stream.
576   void print(raw_ostream &OS) const {
577     OS << "[{#ErrBits:" << ErrorMSBs << "} ";
578 
579     if (V) {
580       for (auto b : B)
581         OS << "(";
582       OS << "(" << *V << ") ";
583 
584       for (auto b : B) {
585         switch (b.first) {
586         case LShr:
587           OS << "LShr ";
588           break;
589         case Mul:
590           OS << "Mul ";
591           break;
592         case SExt:
593           OS << "SExt ";
594           break;
595         case Trunc:
596           OS << "Trunc ";
597           break;
598         }
599 
600         OS << b.second << ") ";
601       }
602     }
603 
604     OS << "+ " << A << "]";
605   }
606 
607 private:
608   void deleteB() {
609     V = nullptr;
610     B.clear();
611   }
612 
613   void pushBOperation(const BOps Op, const APInt &C) {
614     if (isFirstOrder()) {
615       B.push_back(std::make_pair(Op, C));
616       return;
617     }
618   }
619 };
620 
621 #ifndef NDEBUG
622 static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
623   S.print(OS);
624   return OS;
625 }
626 #endif
627 
628 /// VectorInfo stores abstract the following information for each vector
629 /// element:
630 ///
631 /// 1) The memory address loaded into the element as Polynomial
632 /// 2) a set of load instruction necessary to construct the vector,
633 /// 3) a set of all other instructions that are necessary to create the vector and
634 /// 4) a pointer value that can be used as relative base for all elements.
635 struct VectorInfo {
636 private:
637   VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
638     llvm_unreachable(
639         "Copying VectorInfo is neither implemented nor necessary,");
640   }
641 
642 public:
643   /// Information of a Vector Element
644   struct ElementInfo {
645     /// Offset Polynomial.
646     Polynomial Ofs;
647 
648     /// The Load Instruction used to Load the entry. LI is null if the pointer
649     /// of the load instruction does not point on to the entry
650     LoadInst *LI;
651 
652     ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
653         : Ofs(Offset), LI(LI) {}
654   };
655 
656   /// Basic-block the load instructions are within
657   BasicBlock *BB = nullptr;
658 
659   /// Pointer value of all participation load instructions
660   Value *PV = nullptr;
661 
662   /// Participating load instructions
663   std::set<LoadInst *> LIs;
664 
665   /// Participating instructions
666   std::set<Instruction *> Is;
667 
668   /// Final shuffle-vector instruction
669   ShuffleVectorInst *SVI = nullptr;
670 
671   /// Information of the offset for each vector element
672   ElementInfo *EI;
673 
674   /// Vector Type
675   FixedVectorType *const VTy;
676 
677   VectorInfo(FixedVectorType *VTy) : VTy(VTy) {
678     EI = new ElementInfo[VTy->getNumElements()];
679   }
680 
681   VectorInfo &operator=(const VectorInfo &other) = delete;
682 
683   virtual ~VectorInfo() { delete[] EI; }
684 
685   unsigned getDimension() const { return VTy->getNumElements(); }
686 
687   /// Test if the VectorInfo can be part of an interleaved load with the
688   /// specified factor.
689   ///
690   /// \param Factor of the interleave
691   /// \param DL Targets Datalayout
692   ///
693   /// \returns true if this is possible and false if not
694   bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
695     unsigned Size = DL.getTypeAllocSize(VTy->getElementType());
696     for (unsigned i = 1; i < getDimension(); i++) {
697       if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) {
698         return false;
699       }
700     }
701     return true;
702   }
703 
704   /// Recursively computes the vector information stored in V.
705   ///
706   /// This function delegates the work to specialized implementations
707   ///
708   /// \param V Value to operate on
709   /// \param Result Result of the computation
710   ///
711   /// \returns false if no sensible information can be gathered.
712   static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
713     ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
714     if (SVI)
715       return computeFromSVI(SVI, Result, DL);
716     LoadInst *LI = dyn_cast<LoadInst>(V);
717     if (LI)
718       return computeFromLI(LI, Result, DL);
719     BitCastInst *BCI = dyn_cast<BitCastInst>(V);
720     if (BCI)
721       return computeFromBCI(BCI, Result, DL);
722     return false;
723   }
724 
725   /// BitCastInst specialization to compute the vector information.
726   ///
727   /// \param BCI BitCastInst to operate on
728   /// \param Result Result of the computation
729   ///
730   /// \returns false if no sensible information can be gathered.
731   static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
732                              const DataLayout &DL) {
733     Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0));
734 
735     if (!Op)
736       return false;
737 
738     FixedVectorType *VTy = dyn_cast<FixedVectorType>(Op->getType());
739     if (!VTy)
740       return false;
741 
742     // We can only cast from large to smaller vectors
743     if (Result.VTy->getNumElements() % VTy->getNumElements())
744       return false;
745 
746     unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
747     unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType());
748     unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType());
749 
750     if (NewSize * Factor != OldSize)
751       return false;
752 
753     VectorInfo Old(VTy);
754     if (!compute(Op, Old, DL))
755       return false;
756 
757     for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
758       for (unsigned j = 0; j < Factor; j++) {
759         Result.EI[i + j] =
760             ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
761                         j == 0 ? Old.EI[i / Factor].LI : nullptr);
762       }
763     }
764 
765     Result.BB = Old.BB;
766     Result.PV = Old.PV;
767     Result.LIs.insert(Old.LIs.begin(), Old.LIs.end());
768     Result.Is.insert(Old.Is.begin(), Old.Is.end());
769     Result.Is.insert(BCI);
770     Result.SVI = nullptr;
771 
772     return true;
773   }
774 
775   /// ShuffleVectorInst specialization to compute vector information.
776   ///
777   /// \param SVI ShuffleVectorInst to operate on
778   /// \param Result Result of the computation
779   ///
780   /// Compute the left and the right side vector information and merge them by
781   /// applying the shuffle operation. This function also ensures that the left
782   /// and right side have compatible loads. This means that all loads are with
783   /// in the same basic block and are based on the same pointer.
784   ///
785   /// \returns false if no sensible information can be gathered.
786   static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
787                              const DataLayout &DL) {
788     FixedVectorType *ArgTy =
789         cast<FixedVectorType>(SVI->getOperand(0)->getType());
790 
791     // Compute the left hand vector information.
792     VectorInfo LHS(ArgTy);
793     if (!compute(SVI->getOperand(0), LHS, DL))
794       LHS.BB = nullptr;
795 
796     // Compute the right hand vector information.
797     VectorInfo RHS(ArgTy);
798     if (!compute(SVI->getOperand(1), RHS, DL))
799       RHS.BB = nullptr;
800 
801     // Neither operand produced sensible results?
802     if (!LHS.BB && !RHS.BB)
803       return false;
804     // Only RHS produced sensible results?
805     else if (!LHS.BB) {
806       Result.BB = RHS.BB;
807       Result.PV = RHS.PV;
808     }
809     // Only LHS produced sensible results?
810     else if (!RHS.BB) {
811       Result.BB = LHS.BB;
812       Result.PV = LHS.PV;
813     }
814     // Both operands produced sensible results?
815     else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
816       Result.BB = LHS.BB;
817       Result.PV = LHS.PV;
818     }
819     // Both operands produced sensible results but they are incompatible.
820     else {
821       return false;
822     }
823 
824     // Merge and apply the operation on the offset information.
825     if (LHS.BB) {
826       Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end());
827       Result.Is.insert(LHS.Is.begin(), LHS.Is.end());
828     }
829     if (RHS.BB) {
830       Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end());
831       Result.Is.insert(RHS.Is.begin(), RHS.Is.end());
832     }
833     Result.Is.insert(SVI);
834     Result.SVI = SVI;
835 
836     int j = 0;
837     for (int i : SVI->getShuffleMask()) {
838       assert((i < 2 * (signed)ArgTy->getNumElements()) &&
839              "Invalid ShuffleVectorInst (index out of bounds)");
840 
841       if (i < 0)
842         Result.EI[j] = ElementInfo();
843       else if (i < (signed)ArgTy->getNumElements()) {
844         if (LHS.BB)
845           Result.EI[j] = LHS.EI[i];
846         else
847           Result.EI[j] = ElementInfo();
848       } else {
849         if (RHS.BB)
850           Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
851         else
852           Result.EI[j] = ElementInfo();
853       }
854       j++;
855     }
856 
857     return true;
858   }
859 
860   /// LoadInst specialization to compute vector information.
861   ///
862   /// This function also acts as abort condition to the recursion.
863   ///
864   /// \param LI LoadInst to operate on
865   /// \param Result Result of the computation
866   ///
867   /// \returns false if no sensible information can be gathered.
868   static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
869                             const DataLayout &DL) {
870     Value *BasePtr;
871     Polynomial Offset;
872 
873     if (LI->isVolatile())
874       return false;
875 
876     if (LI->isAtomic())
877       return false;
878 
879     if (!DL.typeSizeEqualsStoreSize(Result.VTy->getElementType()))
880       return false;
881 
882     // Get the base polynomial
883     computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL);
884 
885     Result.BB = LI->getParent();
886     Result.PV = BasePtr;
887     Result.LIs.insert(LI);
888     Result.Is.insert(LI);
889 
890     for (unsigned i = 0; i < Result.getDimension(); i++) {
891       Value *Idx[2] = {
892           ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0),
893           ConstantInt::get(Type::getInt32Ty(LI->getContext()), i),
894       };
895       int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, Idx);
896       Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
897     }
898 
899     return true;
900   }
901 
902   /// Recursively compute polynomial of a value.
903   ///
904   /// \param BO Input binary operation
905   /// \param Result Result polynomial
906   static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
907     Value *LHS = BO.getOperand(0);
908     Value *RHS = BO.getOperand(1);
909 
910     // Find the RHS Constant if any
911     ConstantInt *C = dyn_cast<ConstantInt>(RHS);
912     if ((!C) && BO.isCommutative()) {
913       C = dyn_cast<ConstantInt>(LHS);
914       if (C)
915         std::swap(LHS, RHS);
916     }
917 
918     switch (BO.getOpcode()) {
919     case Instruction::Add:
920       if (!C)
921         break;
922 
923       computePolynomial(*LHS, Result);
924       Result.add(C->getValue());
925       return;
926 
927     case Instruction::LShr:
928       if (!C)
929         break;
930 
931       computePolynomial(*LHS, Result);
932       Result.lshr(C->getValue());
933       return;
934 
935     default:
936       break;
937     }
938 
939     Result = Polynomial(&BO);
940   }
941 
942   /// Recursively compute polynomial of a value
943   ///
944   /// \param V input value
945   /// \param Result result polynomial
946   static void computePolynomial(Value &V, Polynomial &Result) {
947     if (auto *BO = dyn_cast<BinaryOperator>(&V))
948       computePolynomialBinOp(*BO, Result);
949     else
950       Result = Polynomial(&V);
951   }
952 
953   /// Compute the Polynomial representation of a Pointer type.
954   ///
955   /// \param Ptr input pointer value
956   /// \param Result result polynomial
957   /// \param BasePtr pointer the polynomial is based on
958   /// \param DL Datalayout of the target machine
959   static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
960                                            Value *&BasePtr,
961                                            const DataLayout &DL) {
962     // Not a pointer type? Return an undefined polynomial
963     PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType());
964     if (!PtrTy) {
965       Result = Polynomial();
966       BasePtr = nullptr;
967       return;
968     }
969     unsigned PointerBits =
970         DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace());
971 
972     /// Skip pointer casts. Return Zero polynomial otherwise
973     if (isa<CastInst>(&Ptr)) {
974       CastInst &CI = *cast<CastInst>(&Ptr);
975       switch (CI.getOpcode()) {
976       case Instruction::BitCast:
977         computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL);
978         break;
979       default:
980         BasePtr = &Ptr;
981         Polynomial(PointerBits, 0);
982         break;
983       }
984     }
985     /// Resolve GetElementPtrInst.
986     else if (isa<GetElementPtrInst>(&Ptr)) {
987       GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr);
988 
989       APInt BaseOffset(PointerBits, 0);
990 
991       // Check if we can compute the Offset with accumulateConstantOffset
992       if (GEP.accumulateConstantOffset(DL, BaseOffset)) {
993         Result = Polynomial(BaseOffset);
994         BasePtr = GEP.getPointerOperand();
995         return;
996       } else {
997         // Otherwise we allow that the last index operand of the GEP is
998         // non-constant.
999         unsigned idxOperand, e;
1000         SmallVector<Value *, 4> Indices;
1001         for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
1002              idxOperand++) {
1003           ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand));
1004           if (!IDX)
1005             break;
1006           Indices.push_back(IDX);
1007         }
1008 
1009         // It must also be the last operand.
1010         if (idxOperand + 1 != e) {
1011           Result = Polynomial();
1012           BasePtr = nullptr;
1013           return;
1014         }
1015 
1016         // Compute the polynomial of the index operand.
1017         computePolynomial(*GEP.getOperand(idxOperand), Result);
1018 
1019         // Compute base offset from zero based index, excluding the last
1020         // variable operand.
1021         BaseOffset =
1022             DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices);
1023 
1024         // Apply the operations of GEP to the polynomial.
1025         unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType());
1026         Result.sextOrTrunc(PointerBits);
1027         Result.mul(APInt(PointerBits, ResultSize));
1028         Result.add(BaseOffset);
1029         BasePtr = GEP.getPointerOperand();
1030       }
1031     }
1032     // All other instructions are handled by using the value as base pointer and
1033     // a zero polynomial.
1034     else {
1035       BasePtr = &Ptr;
1036       Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0);
1037     }
1038   }
1039 
1040 #ifndef NDEBUG
1041   void print(raw_ostream &OS) const {
1042     if (PV)
1043       OS << *PV;
1044     else
1045       OS << "(none)";
1046     OS << " + ";
1047     for (unsigned i = 0; i < getDimension(); i++)
1048       OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
1049     OS << "]";
1050   }
1051 #endif
1052 };
1053 
1054 } // anonymous namespace
1055 
1056 bool InterleavedLoadCombineImpl::findPattern(
1057     std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
1058     unsigned Factor, const DataLayout &DL) {
1059   for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
1060     unsigned i;
1061     // Try to find an interleaved load using the front of Worklist as first line
1062     unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType());
1063 
1064     // List containing iterators pointing to the VectorInfos of the candidates
1065     std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());
1066 
1067     for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
1068       if (C->VTy != C0->VTy)
1069         continue;
1070       if (C->BB != C0->BB)
1071         continue;
1072       if (C->PV != C0->PV)
1073         continue;
1074 
1075       // Check the current value matches any of factor - 1 remaining lines
1076       for (i = 1; i < Factor; i++) {
1077         if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) {
1078           Res[i] = C;
1079         }
1080       }
1081 
1082       for (i = 1; i < Factor; i++) {
1083         if (Res[i] == Candidates.end())
1084           break;
1085       }
1086       if (i == Factor) {
1087         Res[0] = C0;
1088         break;
1089       }
1090     }
1091 
1092     if (Res[0] != Candidates.end()) {
1093       // Move the result into the output
1094       for (unsigned i = 0; i < Factor; i++) {
1095         InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]);
1096       }
1097 
1098       return true;
1099     }
1100   }
1101   return false;
1102 }
1103 
1104 LoadInst *
1105 InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
1106   assert(!LIs.empty() && "No load instructions given.");
1107 
1108   // All LIs are within the same BB. Select the first for a reference.
1109   BasicBlock *BB = (*LIs.begin())->getParent();
1110   BasicBlock::iterator FLI = llvm::find_if(
1111       *BB, [&LIs](Instruction &I) -> bool { return is_contained(LIs, &I); });
1112   assert(FLI != BB->end());
1113 
1114   return cast<LoadInst>(FLI);
1115 }
1116 
1117 bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
1118                                          OptimizationRemarkEmitter &ORE) {
1119   LLVM_DEBUG(dbgs() << "Checking interleaved load\n");
1120 
1121   // The insertion point is the LoadInst which loads the first values. The
1122   // following tests are used to proof that the combined load can be inserted
1123   // just before InsertionPoint.
1124   LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;
1125 
1126   // Test if the offset is computed
1127   if (!InsertionPoint)
1128     return false;
1129 
1130   std::set<LoadInst *> LIs;
1131   std::set<Instruction *> Is;
1132   std::set<Instruction *> SVIs;
1133 
1134   InstructionCost InterleavedCost;
1135   InstructionCost InstructionCost = 0;
1136   const TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency;
1137 
1138   // Get the interleave factor
1139   unsigned Factor = InterleavedLoad.size();
1140 
1141   // Merge all input sets used in analysis
1142   for (auto &VI : InterleavedLoad) {
1143     // Generate a set of all load instructions to be combined
1144     LIs.insert(VI.LIs.begin(), VI.LIs.end());
1145 
1146     // Generate a set of all instructions taking part in load
1147     // interleaved. This list excludes the instructions necessary for the
1148     // polynomial construction.
1149     Is.insert(VI.Is.begin(), VI.Is.end());
1150 
1151     // Generate the set of the final ShuffleVectorInst.
1152     SVIs.insert(VI.SVI);
1153   }
1154 
1155   // There is nothing to combine.
1156   if (LIs.size() < 2)
1157     return false;
1158 
1159   // Test if all participating instruction will be dead after the
1160   // transformation. If intermediate results are used, no performance gain can
1161   // be expected. Also sum the cost of the Instructions beeing left dead.
1162   for (const auto &I : Is) {
1163     // Compute the old cost
1164     InstructionCost += TTI.getInstructionCost(I, CostKind);
1165 
1166     // The final SVIs are allowed not to be dead, all uses will be replaced
1167     if (SVIs.find(I) != SVIs.end())
1168       continue;
1169 
1170     // If there are users outside the set to be eliminated, we abort the
1171     // transformation. No gain can be expected.
1172     for (auto *U : I->users()) {
1173       if (Is.find(dyn_cast<Instruction>(U)) == Is.end())
1174         return false;
1175     }
1176   }
1177 
1178   // We need to have a valid cost in order to proceed.
1179   if (!InstructionCost.isValid())
1180     return false;
1181 
1182   // We know that all LoadInst are within the same BB. This guarantees that
1183   // either everything or nothing is loaded.
1184   LoadInst *First = findFirstLoad(LIs);
1185 
1186   // To be safe that the loads can be combined, iterate over all loads and test
1187   // that the corresponding defining access dominates first LI. This guarantees
1188   // that there are no aliasing stores in between the loads.
1189   auto FMA = MSSA.getMemoryAccess(First);
1190   for (auto *LI : LIs) {
1191     auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess();
1192     if (!MSSA.dominates(MADef, FMA))
1193       return false;
1194   }
1195   assert(!LIs.empty() && "There are no LoadInst to combine");
1196 
1197   // It is necessary that insertion point dominates all final ShuffleVectorInst.
1198   for (auto &VI : InterleavedLoad) {
1199     if (!DT.dominates(InsertionPoint, VI.SVI))
1200       return false;
1201   }
1202 
1203   // All checks are done. Add instructions detectable by InterleavedAccessPass
1204   // The old instruction will are left dead.
1205   IRBuilder<> Builder(InsertionPoint);
1206   Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
1207   unsigned ElementsPerSVI =
1208       cast<FixedVectorType>(InterleavedLoad.front().SVI->getType())
1209           ->getNumElements();
1210   FixedVectorType *ILTy = FixedVectorType::get(ETy, Factor * ElementsPerSVI);
1211 
1212   auto Indices = llvm::to_vector<4>(llvm::seq<unsigned>(0, Factor));
1213   InterleavedCost = TTI.getInterleavedMemoryOpCost(
1214       Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlign(),
1215       InsertionPoint->getPointerAddressSpace(), CostKind);
1216 
1217   if (InterleavedCost >= InstructionCost) {
1218     return false;
1219   }
1220 
1221   // Create the wide load and update the MemorySSA.
1222   auto Ptr = InsertionPoint->getPointerOperand();
1223   auto LI = Builder.CreateAlignedLoad(ILTy, Ptr, InsertionPoint->getAlign(),
1224                                       "interleaved.wide.load");
1225   auto MSSAU = MemorySSAUpdater(&MSSA);
1226   MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore(
1227       LI, nullptr, MSSA.getMemoryAccess(InsertionPoint)));
1228   MSSAU.insertUse(MSSALoad, /*RenameUses=*/ true);
1229 
1230   // Create the final SVIs and replace all uses.
1231   int i = 0;
1232   for (auto &VI : InterleavedLoad) {
1233     SmallVector<int, 4> Mask;
1234     for (unsigned j = 0; j < ElementsPerSVI; j++)
1235       Mask.push_back(i + j * Factor);
1236 
1237     Builder.SetInsertPoint(VI.SVI);
1238     auto SVI = Builder.CreateShuffleVector(LI, Mask, "interleaved.shuffle");
1239     VI.SVI->replaceAllUsesWith(SVI);
1240     i++;
1241   }
1242 
1243   NumInterleavedLoadCombine++;
1244   ORE.emit([&]() {
1245     return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
1246            << "Load interleaved combined with factor "
1247            << ore::NV("Factor", Factor);
1248   });
1249 
1250   return true;
1251 }
1252 
1253 bool InterleavedLoadCombineImpl::run() {
1254   OptimizationRemarkEmitter ORE(&F);
1255   bool changed = false;
1256   unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();
1257 
1258   auto &DL = F.getDataLayout();
1259 
1260   // Start with the highest factor to avoid combining and recombining.
1261   for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
1262     std::list<VectorInfo> Candidates;
1263 
1264     for (BasicBlock &BB : F) {
1265       for (Instruction &I : BB) {
1266         if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) {
1267           // We don't support scalable vectors in this pass.
1268           if (isa<ScalableVectorType>(SVI->getType()))
1269             continue;
1270 
1271           Candidates.emplace_back(cast<FixedVectorType>(SVI->getType()));
1272 
1273           if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) {
1274             Candidates.pop_back();
1275             continue;
1276           }
1277 
1278           if (!Candidates.back().isInterleaved(Factor, DL)) {
1279             Candidates.pop_back();
1280           }
1281         }
1282       }
1283     }
1284 
1285     std::list<VectorInfo> InterleavedLoad;
1286     while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
1287       if (combine(InterleavedLoad, ORE)) {
1288         changed = true;
1289       } else {
1290         // Remove the first element of the Interleaved Load but put the others
1291         // back on the list and continue searching
1292         Candidates.splice(Candidates.begin(), InterleavedLoad,
1293                           std::next(InterleavedLoad.begin()),
1294                           InterleavedLoad.end());
1295       }
1296       InterleavedLoad.clear();
1297     }
1298   }
1299 
1300   return changed;
1301 }
1302 
1303 namespace {
1304 /// This pass combines interleaved loads into a pattern detectable by
1305 /// InterleavedAccessPass.
1306 struct InterleavedLoadCombine : public FunctionPass {
1307   static char ID;
1308 
1309   InterleavedLoadCombine() : FunctionPass(ID) {
1310     initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
1311   }
1312 
1313   StringRef getPassName() const override {
1314     return "Interleaved Load Combine Pass";
1315   }
1316 
1317   bool runOnFunction(Function &F) override {
1318     if (DisableInterleavedLoadCombine)
1319       return false;
1320 
1321     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1322     if (!TPC)
1323       return false;
1324 
1325     LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
1326                       << "\n");
1327 
1328     return InterleavedLoadCombineImpl(
1329                F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
1330                getAnalysis<MemorySSAWrapperPass>().getMSSA(),
1331                getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1332                TPC->getTM<TargetMachine>())
1333         .run();
1334   }
1335 
1336   void getAnalysisUsage(AnalysisUsage &AU) const override {
1337     AU.addRequired<MemorySSAWrapperPass>();
1338     AU.addRequired<DominatorTreeWrapperPass>();
1339     AU.addRequired<TargetTransformInfoWrapperPass>();
1340     FunctionPass::getAnalysisUsage(AU);
1341   }
1342 
1343 private:
1344 };
1345 } // anonymous namespace
1346 
1347 PreservedAnalyses
1348 InterleavedLoadCombinePass::run(Function &F, FunctionAnalysisManager &FAM) {
1349 
1350   auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
1351   auto &MemSSA = FAM.getResult<MemorySSAAnalysis>(F).getMSSA();
1352   auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
1353   bool Changed = InterleavedLoadCombineImpl(F, DT, MemSSA, TTI, *TM).run();
1354   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1355 }
1356 
1357 char InterleavedLoadCombine::ID = 0;
1358 
1359 INITIALIZE_PASS_BEGIN(
1360     InterleavedLoadCombine, DEBUG_TYPE,
1361     "Combine interleaved loads into wide loads and shufflevector instructions",
1362     false, false)
1363 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1364 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1365 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1366 INITIALIZE_PASS_END(
1367     InterleavedLoadCombine, DEBUG_TYPE,
1368     "Combine interleaved loads into wide loads and shufflevector instructions",
1369     false, false)
1370 
1371 FunctionPass *
1372 llvm::createInterleavedLoadCombinePass() {
1373   auto P = new InterleavedLoadCombine();
1374   return P;
1375 }
1376