1 //===- InterleavedAccessPass.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Interleaved Access pass, which identifies 10 // interleaved memory accesses and transforms them into target specific 11 // intrinsics. 12 // 13 // An interleaved load reads data from memory into several vectors, with 14 // DE-interleaving the data on a factor. An interleaved store writes several 15 // vectors to memory with RE-interleaving the data on a factor. 16 // 17 // As interleaved accesses are difficult to identified in CodeGen (mainly 18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector 19 // IR), we identify and transform them to intrinsics in this pass so the 20 // intrinsics can be easily matched into target specific instructions later in 21 // CodeGen. 22 // 23 // E.g. An interleaved load (Factor = 2): 24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr 25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6> 26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7> 27 // 28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 29 // intrinsic in ARM backend. 30 // 31 // In X86, this can be further optimized into a set of target 32 // specific loads followed by an optimized sequence of shuffles. 33 // 34 // E.g. An interleaved store (Factor = 3): 35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 37 // store <12 x i32> %i.vec, <12 x i32>* %ptr 38 // 39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 40 // intrinsic in ARM backend. 41 // 42 // Similarly, a set of interleaved stores can be transformed into an optimized 43 // sequence of shuffles followed by a set of target specific stores for X86. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/ADT/ArrayRef.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/SetVector.h" 50 #include "llvm/ADT/SmallVector.h" 51 #include "llvm/CodeGen/InterleavedAccess.h" 52 #include "llvm/CodeGen/TargetLowering.h" 53 #include "llvm/CodeGen/TargetPassConfig.h" 54 #include "llvm/CodeGen/TargetSubtargetInfo.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstIterator.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/PatternMatch.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Transforms/Utils/Local.h" 72 #include <cassert> 73 #include <utility> 74 75 using namespace llvm; 76 77 #define DEBUG_TYPE "interleaved-access" 78 79 static cl::opt<bool> LowerInterleavedAccesses( 80 "lower-interleaved-accesses", 81 cl::desc("Enable lowering interleaved accesses to intrinsics"), 82 cl::init(true), cl::Hidden); 83 84 namespace { 85 86 class InterleavedAccessImpl { 87 friend class InterleavedAccess; 88 89 public: 90 InterleavedAccessImpl() = default; 91 InterleavedAccessImpl(DominatorTree *DT, const TargetLowering *TLI) 92 : DT(DT), TLI(TLI), MaxFactor(TLI->getMaxSupportedInterleaveFactor()) {} 93 bool runOnFunction(Function &F); 94 95 private: 96 DominatorTree *DT = nullptr; 97 const TargetLowering *TLI = nullptr; 98 99 /// The maximum supported interleave factor. 100 unsigned MaxFactor = 0u; 101 102 /// Transform an interleaved load into target specific intrinsics. 103 bool lowerInterleavedLoad(LoadInst *LI, 104 SmallSetVector<Instruction *, 32> &DeadInsts); 105 106 /// Transform an interleaved store into target specific intrinsics. 107 bool lowerInterleavedStore(StoreInst *SI, 108 SmallSetVector<Instruction *, 32> &DeadInsts); 109 110 /// Transform a load and a deinterleave intrinsic into target specific 111 /// instructions. 112 bool lowerDeinterleaveIntrinsic(IntrinsicInst *II, 113 SmallSetVector<Instruction *, 32> &DeadInsts); 114 115 /// Transform an interleave intrinsic and a store into target specific 116 /// instructions. 117 bool lowerInterleaveIntrinsic(IntrinsicInst *II, 118 SmallSetVector<Instruction *, 32> &DeadInsts); 119 120 /// Returns true if the uses of an interleaved load by the 121 /// extractelement instructions in \p Extracts can be replaced by uses of the 122 /// shufflevector instructions in \p Shuffles instead. If so, the necessary 123 /// replacements are also performed. 124 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts, 125 ArrayRef<ShuffleVectorInst *> Shuffles); 126 127 /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them 128 /// to binop(shuffle(x), shuffle(y)) to allow the formation of an 129 /// interleaving load. Any newly created shuffles that operate on \p LI will 130 /// be added to \p Shuffles. Returns true, if any changes to the IR have been 131 /// made. 132 bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles, 133 SmallVectorImpl<ShuffleVectorInst *> &Shuffles, 134 LoadInst *LI); 135 }; 136 137 class InterleavedAccess : public FunctionPass { 138 InterleavedAccessImpl Impl; 139 140 public: 141 static char ID; 142 143 InterleavedAccess() : FunctionPass(ID) { 144 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); 145 } 146 147 StringRef getPassName() const override { return "Interleaved Access Pass"; } 148 149 bool runOnFunction(Function &F) override; 150 151 void getAnalysisUsage(AnalysisUsage &AU) const override { 152 AU.addRequired<DominatorTreeWrapperPass>(); 153 AU.setPreservesCFG(); 154 } 155 }; 156 157 } // end anonymous namespace. 158 159 PreservedAnalyses InterleavedAccessPass::run(Function &F, 160 FunctionAnalysisManager &FAM) { 161 auto *DT = &FAM.getResult<DominatorTreeAnalysis>(F); 162 auto *TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 163 InterleavedAccessImpl Impl(DT, TLI); 164 bool Changed = Impl.runOnFunction(F); 165 166 if (!Changed) 167 return PreservedAnalyses::all(); 168 169 PreservedAnalyses PA; 170 PA.preserveSet<CFGAnalyses>(); 171 return PA; 172 } 173 174 char InterleavedAccess::ID = 0; 175 176 bool InterleavedAccess::runOnFunction(Function &F) { 177 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 178 if (!TPC || !LowerInterleavedAccesses) 179 return false; 180 181 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); 182 183 Impl.DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 184 auto &TM = TPC->getTM<TargetMachine>(); 185 Impl.TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 186 Impl.MaxFactor = Impl.TLI->getMaxSupportedInterleaveFactor(); 187 188 return Impl.runOnFunction(F); 189 } 190 191 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, 192 "Lower interleaved memory accesses to target specific intrinsics", false, 193 false) 194 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 195 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE, 196 "Lower interleaved memory accesses to target specific intrinsics", false, 197 false) 198 199 FunctionPass *llvm::createInterleavedAccessPass() { 200 return new InterleavedAccess(); 201 } 202 203 /// Check if the mask is a DE-interleave mask for an interleaved load. 204 /// 205 /// E.g. DE-interleave masks (Factor = 2) could be: 206 /// <0, 2, 4, 6> (mask of index 0 to extract even elements) 207 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements) 208 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, 209 unsigned &Index, unsigned MaxFactor, 210 unsigned NumLoadElements) { 211 if (Mask.size() < 2) 212 return false; 213 214 // Check potential Factors. 215 for (Factor = 2; Factor <= MaxFactor; Factor++) { 216 // Make sure we don't produce a load wider than the input load. 217 if (Mask.size() * Factor > NumLoadElements) 218 return false; 219 if (ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, Factor, Index)) 220 return true; 221 } 222 223 return false; 224 } 225 226 /// Check if the mask can be used in an interleaved store. 227 // 228 /// It checks for a more general pattern than the RE-interleave mask. 229 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...> 230 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> 231 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> 232 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> 233 /// 234 /// The particular case of an RE-interleave mask is: 235 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> 236 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> 237 static bool isReInterleaveMask(ShuffleVectorInst *SVI, unsigned &Factor, 238 unsigned MaxFactor) { 239 unsigned NumElts = SVI->getShuffleMask().size(); 240 if (NumElts < 4) 241 return false; 242 243 // Check potential Factors. 244 for (Factor = 2; Factor <= MaxFactor; Factor++) { 245 if (SVI->isInterleave(Factor)) 246 return true; 247 } 248 249 return false; 250 } 251 252 bool InterleavedAccessImpl::lowerInterleavedLoad( 253 LoadInst *LI, SmallSetVector<Instruction *, 32> &DeadInsts) { 254 if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType())) 255 return false; 256 257 // Check if all users of this load are shufflevectors. If we encounter any 258 // users that are extractelement instructions or binary operators, we save 259 // them to later check if they can be modified to extract from one of the 260 // shufflevectors instead of the load. 261 262 SmallVector<ShuffleVectorInst *, 4> Shuffles; 263 SmallVector<ExtractElementInst *, 4> Extracts; 264 // BinOpShuffles need to be handled a single time in case both operands of the 265 // binop are the same load. 266 SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles; 267 268 for (auto *User : LI->users()) { 269 auto *Extract = dyn_cast<ExtractElementInst>(User); 270 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) { 271 Extracts.push_back(Extract); 272 continue; 273 } 274 if (auto *BI = dyn_cast<BinaryOperator>(User)) { 275 if (!BI->user_empty() && all_of(BI->users(), [](auto *U) { 276 auto *SVI = dyn_cast<ShuffleVectorInst>(U); 277 return SVI && isa<UndefValue>(SVI->getOperand(1)); 278 })) { 279 for (auto *SVI : BI->users()) 280 BinOpShuffles.insert(cast<ShuffleVectorInst>(SVI)); 281 continue; 282 } 283 } 284 auto *SVI = dyn_cast<ShuffleVectorInst>(User); 285 if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) 286 return false; 287 288 Shuffles.push_back(SVI); 289 } 290 291 if (Shuffles.empty() && BinOpShuffles.empty()) 292 return false; 293 294 unsigned Factor, Index; 295 296 unsigned NumLoadElements = 297 cast<FixedVectorType>(LI->getType())->getNumElements(); 298 auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0]; 299 // Check if the first shufflevector is DE-interleave shuffle. 300 if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor, 301 NumLoadElements)) 302 return false; 303 304 // Holds the corresponding index for each DE-interleave shuffle. 305 SmallVector<unsigned, 4> Indices; 306 307 Type *VecTy = FirstSVI->getType(); 308 309 // Check if other shufflevectors are also DE-interleaved of the same type 310 // and factor as the first shufflevector. 311 for (auto *Shuffle : Shuffles) { 312 if (Shuffle->getType() != VecTy) 313 return false; 314 if (!ShuffleVectorInst::isDeInterleaveMaskOfFactor( 315 Shuffle->getShuffleMask(), Factor, Index)) 316 return false; 317 318 assert(Shuffle->getShuffleMask().size() <= NumLoadElements); 319 Indices.push_back(Index); 320 } 321 for (auto *Shuffle : BinOpShuffles) { 322 if (Shuffle->getType() != VecTy) 323 return false; 324 if (!ShuffleVectorInst::isDeInterleaveMaskOfFactor( 325 Shuffle->getShuffleMask(), Factor, Index)) 326 return false; 327 328 assert(Shuffle->getShuffleMask().size() <= NumLoadElements); 329 330 if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI) 331 Indices.push_back(Index); 332 if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI) 333 Indices.push_back(Index); 334 } 335 336 // Try and modify users of the load that are extractelement instructions to 337 // use the shufflevector instructions instead of the load. 338 if (!tryReplaceExtracts(Extracts, Shuffles)) 339 return false; 340 341 bool BinOpShuffleChanged = 342 replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI); 343 344 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); 345 346 // Try to create target specific intrinsics to replace the load and shuffles. 347 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) { 348 // If Extracts is not empty, tryReplaceExtracts made changes earlier. 349 return !Extracts.empty() || BinOpShuffleChanged; 350 } 351 352 DeadInsts.insert(Shuffles.begin(), Shuffles.end()); 353 354 DeadInsts.insert(LI); 355 return true; 356 } 357 358 bool InterleavedAccessImpl::replaceBinOpShuffles( 359 ArrayRef<ShuffleVectorInst *> BinOpShuffles, 360 SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) { 361 for (auto *SVI : BinOpShuffles) { 362 BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0)); 363 Type *BIOp0Ty = BI->getOperand(0)->getType(); 364 ArrayRef<int> Mask = SVI->getShuffleMask(); 365 assert(all_of(Mask, [&](int Idx) { 366 return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements(); 367 })); 368 369 BasicBlock::iterator insertPos = SVI->getIterator(); 370 auto *NewSVI1 = 371 new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty), 372 Mask, SVI->getName(), insertPos); 373 auto *NewSVI2 = new ShuffleVectorInst( 374 BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask, 375 SVI->getName(), insertPos); 376 BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags( 377 BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), insertPos); 378 SVI->replaceAllUsesWith(NewBI); 379 LLVM_DEBUG(dbgs() << " Replaced: " << *BI << "\n And : " << *SVI 380 << "\n With : " << *NewSVI1 << "\n And : " 381 << *NewSVI2 << "\n And : " << *NewBI << "\n"); 382 RecursivelyDeleteTriviallyDeadInstructions(SVI); 383 if (NewSVI1->getOperand(0) == LI) 384 Shuffles.push_back(NewSVI1); 385 if (NewSVI2->getOperand(0) == LI) 386 Shuffles.push_back(NewSVI2); 387 } 388 389 return !BinOpShuffles.empty(); 390 } 391 392 bool InterleavedAccessImpl::tryReplaceExtracts( 393 ArrayRef<ExtractElementInst *> Extracts, 394 ArrayRef<ShuffleVectorInst *> Shuffles) { 395 // If there aren't any extractelement instructions to modify, there's nothing 396 // to do. 397 if (Extracts.empty()) 398 return true; 399 400 // Maps extractelement instructions to vector-index pairs. The extractlement 401 // instructions will be modified to use the new vector and index operands. 402 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; 403 404 for (auto *Extract : Extracts) { 405 // The vector index that is extracted. 406 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand()); 407 auto Index = IndexOperand->getSExtValue(); 408 409 // Look for a suitable shufflevector instruction. The goal is to modify the 410 // extractelement instruction (which uses an interleaved load) to use one 411 // of the shufflevector instructions instead of the load. 412 for (auto *Shuffle : Shuffles) { 413 // If the shufflevector instruction doesn't dominate the extract, we 414 // can't create a use of it. 415 if (!DT->dominates(Shuffle, Extract)) 416 continue; 417 418 // Inspect the indices of the shufflevector instruction. If the shuffle 419 // selects the same index that is extracted, we can modify the 420 // extractelement instruction. 421 SmallVector<int, 4> Indices; 422 Shuffle->getShuffleMask(Indices); 423 for (unsigned I = 0; I < Indices.size(); ++I) 424 if (Indices[I] == Index) { 425 assert(Extract->getOperand(0) == Shuffle->getOperand(0) && 426 "Vector operations do not match"); 427 ReplacementMap[Extract] = std::make_pair(Shuffle, I); 428 break; 429 } 430 431 // If we found a suitable shufflevector instruction, stop looking. 432 if (ReplacementMap.count(Extract)) 433 break; 434 } 435 436 // If we did not find a suitable shufflevector instruction, the 437 // extractelement instruction cannot be modified, so we must give up. 438 if (!ReplacementMap.count(Extract)) 439 return false; 440 } 441 442 // Finally, perform the replacements. 443 IRBuilder<> Builder(Extracts[0]->getContext()); 444 for (auto &Replacement : ReplacementMap) { 445 auto *Extract = Replacement.first; 446 auto *Vector = Replacement.second.first; 447 auto Index = Replacement.second.second; 448 Builder.SetInsertPoint(Extract); 449 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); 450 Extract->eraseFromParent(); 451 } 452 453 return true; 454 } 455 456 bool InterleavedAccessImpl::lowerInterleavedStore( 457 StoreInst *SI, SmallSetVector<Instruction *, 32> &DeadInsts) { 458 if (!SI->isSimple()) 459 return false; 460 461 auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); 462 if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType())) 463 return false; 464 465 // Check if the shufflevector is RE-interleave shuffle. 466 unsigned Factor; 467 if (!isReInterleaveMask(SVI, Factor, MaxFactor)) 468 return false; 469 470 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); 471 472 // Try to create target specific intrinsics to replace the store and shuffle. 473 if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) 474 return false; 475 476 // Already have a new target specific interleaved store. Erase the old store. 477 DeadInsts.insert(SI); 478 DeadInsts.insert(SVI); 479 return true; 480 } 481 482 // For an (de)interleave tree like this: 483 // 484 // A C B D 485 // |___| |___| 486 // |_____| 487 // | 488 // A B C D 489 // 490 // We will get ABCD at the end while the leaf operands/results 491 // are ACBD, which are also what we initially collected in 492 // getVectorInterleaveFactor / getVectorDeinterleaveFactor. But TLI 493 // hooks (e.g. lowerDeinterleaveIntrinsicToLoad) expect ABCD, so we need 494 // to reorder them by interleaving these values. 495 static void interleaveLeafValues(MutableArrayRef<Value *> SubLeaves) { 496 unsigned NumLeaves = SubLeaves.size(); 497 if (NumLeaves == 2) 498 return; 499 500 assert(isPowerOf2_32(NumLeaves) && NumLeaves > 1); 501 502 const unsigned HalfLeaves = NumLeaves / 2; 503 // Visit the sub-trees. 504 interleaveLeafValues(SubLeaves.take_front(HalfLeaves)); 505 interleaveLeafValues(SubLeaves.drop_front(HalfLeaves)); 506 507 SmallVector<Value *, 8> Buffer; 508 // a0 a1 a2 a3 b0 b1 b2 b3 509 // -> a0 b0 a1 b1 a2 b2 a3 b3 510 for (unsigned i = 0U; i < NumLeaves; ++i) 511 Buffer.push_back(SubLeaves[i / 2 + (i % 2 ? HalfLeaves : 0)]); 512 513 llvm::copy(Buffer, SubLeaves.begin()); 514 } 515 516 static bool 517 getVectorInterleaveFactor(IntrinsicInst *II, SmallVectorImpl<Value *> &Operands, 518 SmallVectorImpl<Instruction *> &DeadInsts) { 519 assert(II->getIntrinsicID() == Intrinsic::vector_interleave2); 520 521 // Visit with BFS 522 SmallVector<IntrinsicInst *, 8> Queue; 523 Queue.push_back(II); 524 while (!Queue.empty()) { 525 IntrinsicInst *Current = Queue.front(); 526 Queue.erase(Queue.begin()); 527 528 // All the intermediate intrinsics will be deleted. 529 DeadInsts.push_back(Current); 530 531 for (unsigned I = 0; I < 2; ++I) { 532 Value *Op = Current->getOperand(I); 533 if (auto *OpII = dyn_cast<IntrinsicInst>(Op)) 534 if (OpII->getIntrinsicID() == Intrinsic::vector_interleave2) { 535 Queue.push_back(OpII); 536 continue; 537 } 538 539 // If this is not a perfectly balanced tree, the leaf 540 // result types would be different. 541 if (!Operands.empty() && Op->getType() != Operands.back()->getType()) 542 return false; 543 544 Operands.push_back(Op); 545 } 546 } 547 548 const unsigned Factor = Operands.size(); 549 // Currently we only recognize power-of-two factors. 550 // FIXME: should we assert here instead? 551 if (Factor <= 1 || !isPowerOf2_32(Factor)) 552 return false; 553 554 interleaveLeafValues(Operands); 555 return true; 556 } 557 558 static bool 559 getVectorDeinterleaveFactor(IntrinsicInst *II, 560 SmallVectorImpl<Value *> &Results, 561 SmallVectorImpl<Instruction *> &DeadInsts) { 562 assert(II->getIntrinsicID() == Intrinsic::vector_deinterleave2); 563 using namespace PatternMatch; 564 if (!II->hasNUses(2)) 565 return false; 566 567 // Visit with BFS 568 SmallVector<IntrinsicInst *, 8> Queue; 569 Queue.push_back(II); 570 while (!Queue.empty()) { 571 IntrinsicInst *Current = Queue.front(); 572 Queue.erase(Queue.begin()); 573 assert(Current->hasNUses(2)); 574 575 // All the intermediate intrinsics will be deleted from the bottom-up. 576 DeadInsts.insert(DeadInsts.begin(), Current); 577 578 ExtractValueInst *LHS = nullptr, *RHS = nullptr; 579 for (User *Usr : Current->users()) { 580 if (!isa<ExtractValueInst>(Usr)) 581 return 0; 582 583 auto *EV = cast<ExtractValueInst>(Usr); 584 // Intermediate ExtractValue instructions will also be deleted. 585 DeadInsts.insert(DeadInsts.begin(), EV); 586 ArrayRef<unsigned> Indices = EV->getIndices(); 587 if (Indices.size() != 1) 588 return false; 589 590 if (Indices[0] == 0 && !LHS) 591 LHS = EV; 592 else if (Indices[0] == 1 && !RHS) 593 RHS = EV; 594 else 595 return false; 596 } 597 598 // We have legal indices. At this point we're either going 599 // to continue the traversal or push the leaf values into Results. 600 for (ExtractValueInst *EV : {LHS, RHS}) { 601 // Continue the traversal. We're playing safe here and matching only the 602 // expression consisting of a perfectly balanced binary tree in which all 603 // intermediate values are only used once. 604 if (EV->hasOneUse() && 605 match(EV->user_back(), 606 m_Intrinsic<Intrinsic::vector_deinterleave2>()) && 607 EV->user_back()->hasNUses(2)) { 608 auto *EVUsr = cast<IntrinsicInst>(EV->user_back()); 609 Queue.push_back(EVUsr); 610 continue; 611 } 612 613 // If this is not a perfectly balanced tree, the leaf 614 // result types would be different. 615 if (!Results.empty() && EV->getType() != Results.back()->getType()) 616 return false; 617 618 // Save the leaf value. 619 Results.push_back(EV); 620 } 621 } 622 623 const unsigned Factor = Results.size(); 624 // Currently we only recognize power-of-two factors. 625 // FIXME: should we assert here instead? 626 if (Factor <= 1 || !isPowerOf2_32(Factor)) 627 return 0; 628 629 interleaveLeafValues(Results); 630 return true; 631 } 632 633 bool InterleavedAccessImpl::lowerDeinterleaveIntrinsic( 634 IntrinsicInst *DI, SmallSetVector<Instruction *, 32> &DeadInsts) { 635 LoadInst *LI = dyn_cast<LoadInst>(DI->getOperand(0)); 636 637 if (!LI || !LI->hasOneUse() || !LI->isSimple()) 638 return false; 639 640 SmallVector<Value *, 8> DeinterleaveValues; 641 SmallVector<Instruction *, 8> DeinterleaveDeadInsts; 642 if (!getVectorDeinterleaveFactor(DI, DeinterleaveValues, 643 DeinterleaveDeadInsts)) 644 return false; 645 646 LLVM_DEBUG(dbgs() << "IA: Found a deinterleave intrinsic: " << *DI 647 << " with factor = " << DeinterleaveValues.size() << "\n"); 648 649 // Try and match this with target specific intrinsics. 650 if (!TLI->lowerDeinterleaveIntrinsicToLoad(LI, DeinterleaveValues)) 651 return false; 652 653 DeadInsts.insert(DeinterleaveDeadInsts.begin(), DeinterleaveDeadInsts.end()); 654 // We now have a target-specific load, so delete the old one. 655 DeadInsts.insert(LI); 656 return true; 657 } 658 659 bool InterleavedAccessImpl::lowerInterleaveIntrinsic( 660 IntrinsicInst *II, SmallSetVector<Instruction *, 32> &DeadInsts) { 661 if (!II->hasOneUse()) 662 return false; 663 664 StoreInst *SI = dyn_cast<StoreInst>(*(II->users().begin())); 665 666 if (!SI || !SI->isSimple()) 667 return false; 668 669 SmallVector<Value *, 8> InterleaveValues; 670 SmallVector<Instruction *, 8> InterleaveDeadInsts; 671 if (!getVectorInterleaveFactor(II, InterleaveValues, InterleaveDeadInsts)) 672 return false; 673 674 LLVM_DEBUG(dbgs() << "IA: Found an interleave intrinsic: " << *II 675 << " with factor = " << InterleaveValues.size() << "\n"); 676 677 // Try and match this with target specific intrinsics. 678 if (!TLI->lowerInterleaveIntrinsicToStore(SI, InterleaveValues)) 679 return false; 680 681 // We now have a target-specific store, so delete the old one. 682 DeadInsts.insert(SI); 683 DeadInsts.insert(InterleaveDeadInsts.begin(), InterleaveDeadInsts.end()); 684 return true; 685 } 686 687 bool InterleavedAccessImpl::runOnFunction(Function &F) { 688 // Holds dead instructions that will be erased later. 689 SmallSetVector<Instruction *, 32> DeadInsts; 690 bool Changed = false; 691 692 for (auto &I : instructions(F)) { 693 if (auto *LI = dyn_cast<LoadInst>(&I)) 694 Changed |= lowerInterleavedLoad(LI, DeadInsts); 695 696 if (auto *SI = dyn_cast<StoreInst>(&I)) 697 Changed |= lowerInterleavedStore(SI, DeadInsts); 698 699 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 700 // At present, we only have intrinsics to represent (de)interleaving 701 // with a factor of 2. 702 if (II->getIntrinsicID() == Intrinsic::vector_deinterleave2) 703 Changed |= lowerDeinterleaveIntrinsic(II, DeadInsts); 704 else if (II->getIntrinsicID() == Intrinsic::vector_interleave2) 705 Changed |= lowerInterleaveIntrinsic(II, DeadInsts); 706 } 707 } 708 709 for (auto *I : DeadInsts) 710 I->eraseFromParent(); 711 712 return Changed; 713 } 714