1 //===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the LoadStoreOpt optimization pass. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/MemoryLocation.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 22 #include "llvm/CodeGen/GlobalISel/Utils.h" 23 #include "llvm/CodeGen/LowLevelTypeUtils.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/Register.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetOpcodes.h" 33 #include "llvm/IR/DebugInfoMetadata.h" 34 #include "llvm/InitializePasses.h" 35 #include "llvm/Support/AtomicOrdering.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include <algorithm> 40 41 #define DEBUG_TYPE "loadstore-opt" 42 43 using namespace llvm; 44 using namespace ore; 45 using namespace MIPatternMatch; 46 47 STATISTIC(NumStoresMerged, "Number of stores merged"); 48 49 const unsigned MaxStoreSizeToForm = 128; 50 51 char LoadStoreOpt::ID = 0; 52 INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations", 53 false, false) 54 INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations", 55 false, false) 56 57 LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F) 58 : MachineFunctionPass(ID), DoNotRunPass(F) {} 59 60 LoadStoreOpt::LoadStoreOpt() 61 : LoadStoreOpt([](const MachineFunction &) { return false; }) {} 62 63 void LoadStoreOpt::init(MachineFunction &MF) { 64 this->MF = &MF; 65 MRI = &MF.getRegInfo(); 66 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 67 TLI = MF.getSubtarget().getTargetLowering(); 68 LI = MF.getSubtarget().getLegalizerInfo(); 69 Builder.setMF(MF); 70 IsPreLegalizer = !MF.getProperties().hasProperty( 71 MachineFunctionProperties::Property::Legalized); 72 InstsToErase.clear(); 73 } 74 75 void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const { 76 AU.addRequired<AAResultsWrapperPass>(); 77 AU.setPreservesAll(); 78 getSelectionDAGFallbackAnalysisUsage(AU); 79 MachineFunctionPass::getAnalysisUsage(AU); 80 } 81 82 BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr, 83 MachineRegisterInfo &MRI) { 84 BaseIndexOffset Info; 85 Register PtrAddRHS; 86 Register BaseReg; 87 if (!mi_match(Ptr, MRI, m_GPtrAdd(m_Reg(BaseReg), m_Reg(PtrAddRHS)))) { 88 Info.setBase(Ptr); 89 Info.setOffset(0); 90 return Info; 91 } 92 Info.setBase(BaseReg); 93 auto RHSCst = getIConstantVRegValWithLookThrough(PtrAddRHS, MRI); 94 if (RHSCst) 95 Info.setOffset(RHSCst->Value.getSExtValue()); 96 97 // Just recognize a simple case for now. In future we'll need to match 98 // indexing patterns for base + index + constant. 99 Info.setIndex(PtrAddRHS); 100 return Info; 101 } 102 103 bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1, 104 const MachineInstr &MI2, 105 bool &IsAlias, 106 MachineRegisterInfo &MRI) { 107 auto *LdSt1 = dyn_cast<GLoadStore>(&MI1); 108 auto *LdSt2 = dyn_cast<GLoadStore>(&MI2); 109 if (!LdSt1 || !LdSt2) 110 return false; 111 112 BaseIndexOffset BasePtr0 = getPointerInfo(LdSt1->getPointerReg(), MRI); 113 BaseIndexOffset BasePtr1 = getPointerInfo(LdSt2->getPointerReg(), MRI); 114 115 if (!BasePtr0.getBase().isValid() || !BasePtr1.getBase().isValid()) 116 return false; 117 118 LocationSize Size1 = LdSt1->getMemSize(); 119 LocationSize Size2 = LdSt2->getMemSize(); 120 121 int64_t PtrDiff; 122 if (BasePtr0.getBase() == BasePtr1.getBase() && BasePtr0.hasValidOffset() && 123 BasePtr1.hasValidOffset()) { 124 PtrDiff = BasePtr1.getOffset() - BasePtr0.getOffset(); 125 // If the size of memory access is unknown, do not use it to do analysis. 126 // One example of unknown size memory access is to load/store scalable 127 // vector objects on the stack. 128 // BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the 129 // following situations arise: 130 if (PtrDiff >= 0 && Size1.hasValue() && !Size1.isScalable()) { 131 // [----BasePtr0----] 132 // [---BasePtr1--] 133 // ========PtrDiff========> 134 IsAlias = !((int64_t)Size1.getValue() <= PtrDiff); 135 return true; 136 } 137 if (PtrDiff < 0 && Size2.hasValue() && !Size2.isScalable()) { 138 // [----BasePtr0----] 139 // [---BasePtr1--] 140 // =====(-PtrDiff)====> 141 IsAlias = !((PtrDiff + (int64_t)Size2.getValue()) <= 0); 142 return true; 143 } 144 return false; 145 } 146 147 // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be 148 // able to calculate their relative offset if at least one arises 149 // from an alloca. However, these allocas cannot overlap and we 150 // can infer there is no alias. 151 auto *Base0Def = getDefIgnoringCopies(BasePtr0.getBase(), MRI); 152 auto *Base1Def = getDefIgnoringCopies(BasePtr1.getBase(), MRI); 153 if (!Base0Def || !Base1Def) 154 return false; // Couldn't tell anything. 155 156 157 if (Base0Def->getOpcode() != Base1Def->getOpcode()) 158 return false; 159 160 if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 161 MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo(); 162 // If the bases have the same frame index but we couldn't find a 163 // constant offset, (indices are different) be conservative. 164 if (Base0Def != Base1Def && 165 (!MFI.isFixedObjectIndex(Base0Def->getOperand(1).getIndex()) || 166 !MFI.isFixedObjectIndex(Base1Def->getOperand(1).getIndex()))) { 167 IsAlias = false; 168 return true; 169 } 170 } 171 172 // This implementation is a lot more primitive than the SDAG one for now. 173 // FIXME: what about constant pools? 174 if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) { 175 auto GV0 = Base0Def->getOperand(1).getGlobal(); 176 auto GV1 = Base1Def->getOperand(1).getGlobal(); 177 if (GV0 != GV1) { 178 IsAlias = false; 179 return true; 180 } 181 } 182 183 // Can't tell anything about aliasing. 184 return false; 185 } 186 187 bool GISelAddressing::instMayAlias(const MachineInstr &MI, 188 const MachineInstr &Other, 189 MachineRegisterInfo &MRI, 190 AliasAnalysis *AA) { 191 struct MemUseCharacteristics { 192 bool IsVolatile; 193 bool IsAtomic; 194 Register BasePtr; 195 int64_t Offset; 196 LocationSize NumBytes; 197 MachineMemOperand *MMO; 198 }; 199 200 auto getCharacteristics = 201 [&](const MachineInstr *MI) -> MemUseCharacteristics { 202 if (const auto *LS = dyn_cast<GLoadStore>(MI)) { 203 Register BaseReg; 204 int64_t Offset = 0; 205 // No pre/post-inc addressing modes are considered here, unlike in SDAG. 206 if (!mi_match(LS->getPointerReg(), MRI, 207 m_GPtrAdd(m_Reg(BaseReg), m_ICst(Offset)))) { 208 BaseReg = LS->getPointerReg(); 209 Offset = 0; 210 } 211 212 LocationSize Size = LS->getMMO().getSize(); 213 return {LS->isVolatile(), LS->isAtomic(), BaseReg, 214 Offset /*base offset*/, Size, &LS->getMMO()}; 215 } 216 // FIXME: support recognizing lifetime instructions. 217 // Default. 218 return {false /*isvolatile*/, 219 /*isAtomic*/ false, 220 Register(), 221 (int64_t)0 /*offset*/, 222 LocationSize::beforeOrAfterPointer() /*size*/, 223 (MachineMemOperand *)nullptr}; 224 }; 225 MemUseCharacteristics MUC0 = getCharacteristics(&MI), 226 MUC1 = getCharacteristics(&Other); 227 228 // If they are to the same address, then they must be aliases. 229 if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr && 230 MUC0.Offset == MUC1.Offset) 231 return true; 232 233 // If they are both volatile then they cannot be reordered. 234 if (MUC0.IsVolatile && MUC1.IsVolatile) 235 return true; 236 237 // Be conservative about atomics for the moment 238 // TODO: This is way overconservative for unordered atomics (see D66309) 239 if (MUC0.IsAtomic && MUC1.IsAtomic) 240 return true; 241 242 // If one operation reads from invariant memory, and the other may store, they 243 // cannot alias. 244 if (MUC0.MMO && MUC1.MMO) { 245 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || 246 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) 247 return false; 248 } 249 250 // If NumBytes is scalable and offset is not 0, conservatively return may 251 // alias 252 if ((MUC0.NumBytes.isScalable() && MUC0.Offset != 0) || 253 (MUC1.NumBytes.isScalable() && MUC1.Offset != 0)) 254 return true; 255 256 const bool BothNotScalable = 257 !MUC0.NumBytes.isScalable() && !MUC1.NumBytes.isScalable(); 258 259 // Try to prove that there is aliasing, or that there is no aliasing. Either 260 // way, we can return now. If nothing can be proved, proceed with more tests. 261 bool IsAlias; 262 if (BothNotScalable && 263 GISelAddressing::aliasIsKnownForLoadStore(MI, Other, IsAlias, MRI)) 264 return IsAlias; 265 266 // The following all rely on MMO0 and MMO1 being valid. 267 if (!MUC0.MMO || !MUC1.MMO) 268 return true; 269 270 // FIXME: port the alignment based alias analysis from SDAG's isAlias(). 271 int64_t SrcValOffset0 = MUC0.MMO->getOffset(); 272 int64_t SrcValOffset1 = MUC1.MMO->getOffset(); 273 LocationSize Size0 = MUC0.NumBytes; 274 LocationSize Size1 = MUC1.NumBytes; 275 if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && Size0.hasValue() && 276 Size1.hasValue()) { 277 // Use alias analysis information. 278 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); 279 int64_t Overlap0 = 280 Size0.getValue().getKnownMinValue() + SrcValOffset0 - MinOffset; 281 int64_t Overlap1 = 282 Size1.getValue().getKnownMinValue() + SrcValOffset1 - MinOffset; 283 LocationSize Loc0 = 284 Size0.isScalable() ? Size0 : LocationSize::precise(Overlap0); 285 LocationSize Loc1 = 286 Size1.isScalable() ? Size1 : LocationSize::precise(Overlap1); 287 288 if (AA->isNoAlias( 289 MemoryLocation(MUC0.MMO->getValue(), Loc0, MUC0.MMO->getAAInfo()), 290 MemoryLocation(MUC1.MMO->getValue(), Loc1, MUC1.MMO->getAAInfo()))) 291 return false; 292 } 293 294 // Otherwise we have to assume they alias. 295 return true; 296 } 297 298 /// Returns true if the instruction creates an unavoidable hazard that 299 /// forces a boundary between store merge candidates. 300 static bool isInstHardMergeHazard(MachineInstr &MI) { 301 return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef(); 302 } 303 304 bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) { 305 // Try to merge all the stores in the vector, splitting into separate segments 306 // as necessary. 307 assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge"); 308 LLT OrigTy = MRI->getType(StoresToMerge[0]->getValueReg()); 309 LLT PtrTy = MRI->getType(StoresToMerge[0]->getPointerReg()); 310 unsigned AS = PtrTy.getAddressSpace(); 311 // Ensure the legal store info is computed for this address space. 312 initializeStoreMergeTargetInfo(AS); 313 const auto &LegalSizes = LegalStoreSizes[AS]; 314 315 #ifndef NDEBUG 316 for (auto *StoreMI : StoresToMerge) 317 assert(MRI->getType(StoreMI->getValueReg()) == OrigTy); 318 #endif 319 320 bool AnyMerged = false; 321 do { 322 unsigned NumPow2 = llvm::bit_floor(StoresToMerge.size()); 323 unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedValue(); 324 // Compute the biggest store we can generate to handle the number of stores. 325 unsigned MergeSizeBits; 326 for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) { 327 LLT StoreTy = LLT::scalar(MergeSizeBits); 328 EVT StoreEVT = 329 getApproximateEVTForLLT(StoreTy, MF->getFunction().getContext()); 330 if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] && 331 TLI->canMergeStoresTo(AS, StoreEVT, *MF) && 332 (TLI->isTypeLegal(StoreEVT))) 333 break; // We can generate a MergeSize bits store. 334 } 335 if (MergeSizeBits <= OrigTy.getSizeInBits()) 336 return AnyMerged; // No greater merge. 337 338 unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits(); 339 // Perform the actual merging. 340 SmallVector<GStore *, 8> SingleMergeStores( 341 StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge); 342 AnyMerged |= doSingleStoreMerge(SingleMergeStores); 343 StoresToMerge.erase(StoresToMerge.begin(), 344 StoresToMerge.begin() + NumStoresToMerge); 345 } while (StoresToMerge.size() > 1); 346 return AnyMerged; 347 } 348 349 bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query, 350 MachineFunction &MF) const { 351 auto Action = LI->getAction(Query).Action; 352 // If the instruction is unsupported, it can't be legalized at all. 353 if (Action == LegalizeActions::Unsupported) 354 return false; 355 return IsPreLegalizer || Action == LegalizeAction::Legal; 356 } 357 358 bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) { 359 assert(Stores.size() > 1); 360 // We know that all the stores are consecutive and there are no aliasing 361 // operations in the range. However, the values that are being stored may be 362 // generated anywhere before each store. To ensure we have the values 363 // available, we materialize the wide value and new store at the place of the 364 // final store in the merge sequence. 365 GStore *FirstStore = Stores[0]; 366 const unsigned NumStores = Stores.size(); 367 LLT SmallTy = MRI->getType(FirstStore->getValueReg()); 368 LLT WideValueTy = 369 LLT::scalar(NumStores * SmallTy.getSizeInBits().getFixedValue()); 370 371 // For each store, compute pairwise merged debug locs. 372 DebugLoc MergedLoc = Stores.front()->getDebugLoc(); 373 for (auto *Store : drop_begin(Stores)) 374 MergedLoc = DILocation::getMergedLocation(MergedLoc, Store->getDebugLoc()); 375 376 Builder.setInstr(*Stores.back()); 377 Builder.setDebugLoc(MergedLoc); 378 379 // If all of the store values are constants, then create a wide constant 380 // directly. Otherwise, we need to generate some instructions to merge the 381 // existing values together into a wider type. 382 SmallVector<APInt, 8> ConstantVals; 383 for (auto *Store : Stores) { 384 auto MaybeCst = 385 getIConstantVRegValWithLookThrough(Store->getValueReg(), *MRI); 386 if (!MaybeCst) { 387 ConstantVals.clear(); 388 break; 389 } 390 ConstantVals.emplace_back(MaybeCst->Value); 391 } 392 393 Register WideReg; 394 auto *WideMMO = 395 MF->getMachineMemOperand(&FirstStore->getMMO(), 0, WideValueTy); 396 if (ConstantVals.empty()) { 397 // Mimic the SDAG behaviour here and don't try to do anything for unknown 398 // values. In future, we should also support the cases of loads and 399 // extracted vector elements. 400 return false; 401 } 402 403 assert(ConstantVals.size() == NumStores); 404 // Check if our wide constant is legal. 405 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {WideValueTy}}, *MF)) 406 return false; 407 APInt WideConst(WideValueTy.getSizeInBits(), 0); 408 for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) { 409 // Insert the smaller constant into the corresponding position in the 410 // wider one. 411 WideConst.insertBits(ConstantVals[Idx], Idx * SmallTy.getSizeInBits()); 412 } 413 WideReg = Builder.buildConstant(WideValueTy, WideConst).getReg(0); 414 auto NewStore = 415 Builder.buildStore(WideReg, FirstStore->getPointerReg(), *WideMMO); 416 (void) NewStore; 417 LLVM_DEBUG(dbgs() << "Merged " << Stores.size() 418 << " stores into merged store: " << *NewStore); 419 LLVM_DEBUG(for (auto *MI : Stores) dbgs() << " " << *MI;); 420 NumStoresMerged += Stores.size(); 421 422 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 423 MORE.emit([&]() { 424 MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore", 425 FirstStore->getDebugLoc(), 426 FirstStore->getParent()); 427 R << "Merged " << NV("NumMerged", Stores.size()) << " stores of " 428 << NV("OrigWidth", SmallTy.getSizeInBytes()) 429 << " bytes into a single store of " 430 << NV("NewWidth", WideValueTy.getSizeInBytes()) << " bytes"; 431 return R; 432 }); 433 434 for (auto *MI : Stores) 435 InstsToErase.insert(MI); 436 return true; 437 } 438 439 bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) { 440 if (C.Stores.size() < 2) { 441 C.reset(); 442 return false; 443 } 444 445 LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size() 446 << " stores, starting with " << *C.Stores[0]); 447 // We know that the stores in the candidate are adjacent. 448 // Now we need to check if any potential aliasing instructions recorded 449 // during the search alias with load/stores added to the candidate after. 450 // For example, if we have the candidate: 451 // C.Stores = [ST1, ST2, ST3, ST4] 452 // and after seeing ST2 we saw a load LD1, which did not alias with ST1 or 453 // ST2, then we would have recorded it into the PotentialAliases structure 454 // with the associated index value of "1". Then we see ST3 and ST4 and add 455 // them to the candidate group. We know that LD1 does not alias with ST1 or 456 // ST2, since we already did that check. However we don't yet know if it 457 // may alias ST3 and ST4, so we perform those checks now. 458 SmallVector<GStore *> StoresToMerge; 459 460 auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) { 461 for (auto AliasInfo : reverse(C.PotentialAliases)) { 462 MachineInstr *PotentialAliasOp = AliasInfo.first; 463 unsigned PreCheckedIdx = AliasInfo.second; 464 if (static_cast<unsigned>(Idx) < PreCheckedIdx) { 465 // Once our store index is lower than the index associated with the 466 // potential alias, we know that we've already checked for this alias 467 // and all of the earlier potential aliases too. 468 return false; 469 } 470 // Need to check this alias. 471 if (GISelAddressing::instMayAlias(CheckStore, *PotentialAliasOp, *MRI, 472 AA)) { 473 LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp 474 << " detected\n"); 475 return true; 476 } 477 } 478 return false; 479 }; 480 // Start from the last store in the group, and check if it aliases with any 481 // of the potential aliasing operations in the list. 482 for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) { 483 auto *CheckStore = C.Stores[StoreIdx]; 484 if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore)) 485 continue; 486 StoresToMerge.emplace_back(CheckStore); 487 } 488 489 LLVM_DEBUG(dbgs() << StoresToMerge.size() 490 << " stores remaining after alias checks. Merging...\n"); 491 492 // Now we've checked for aliasing hazards, merge any stores left. 493 C.reset(); 494 if (StoresToMerge.size() < 2) 495 return false; 496 return mergeStores(StoresToMerge); 497 } 498 499 bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI, 500 StoreMergeCandidate &C) { 501 if (C.Stores.empty()) 502 return false; 503 return llvm::any_of(C.Stores, [&](MachineInstr *OtherMI) { 504 return instMayAlias(MI, *OtherMI, *MRI, AA); 505 }); 506 } 507 508 void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) { 509 PotentialAliases.emplace_back(std::make_pair(&MI, Stores.size() - 1)); 510 } 511 512 bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI, 513 StoreMergeCandidate &C) { 514 // Check if the given store writes to an adjacent address, and other 515 // requirements. 516 LLT ValueTy = MRI->getType(StoreMI.getValueReg()); 517 LLT PtrTy = MRI->getType(StoreMI.getPointerReg()); 518 519 // Only handle scalars. 520 if (!ValueTy.isScalar()) 521 return false; 522 523 // Don't allow truncating stores for now. 524 if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits()) 525 return false; 526 527 // Avoid adding volatile or ordered stores to the candidate. We already have a 528 // check for this in instMayAlias() but that only get's called later between 529 // potential aliasing hazards. 530 if (!StoreMI.isSimple()) 531 return false; 532 533 Register StoreAddr = StoreMI.getPointerReg(); 534 auto BIO = getPointerInfo(StoreAddr, *MRI); 535 Register StoreBase = BIO.getBase(); 536 if (C.Stores.empty()) { 537 C.BasePtr = StoreBase; 538 if (!BIO.hasValidOffset()) { 539 C.CurrentLowestOffset = 0; 540 } else { 541 C.CurrentLowestOffset = BIO.getOffset(); 542 } 543 // This is the first store of the candidate. 544 // If the offset can't possibly allow for a lower addressed store with the 545 // same base, don't bother adding it. 546 if (BIO.hasValidOffset() && 547 BIO.getOffset() < static_cast<int64_t>(ValueTy.getSizeInBytes())) 548 return false; 549 C.Stores.emplace_back(&StoreMI); 550 LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: " 551 << StoreMI); 552 return true; 553 } 554 555 // Check the store is the same size as the existing ones in the candidate. 556 if (MRI->getType(C.Stores[0]->getValueReg()).getSizeInBits() != 557 ValueTy.getSizeInBits()) 558 return false; 559 560 if (MRI->getType(C.Stores[0]->getPointerReg()).getAddressSpace() != 561 PtrTy.getAddressSpace()) 562 return false; 563 564 // There are other stores in the candidate. Check that the store address 565 // writes to the next lowest adjacent address. 566 if (C.BasePtr != StoreBase) 567 return false; 568 // If we don't have a valid offset, we can't guarantee to be an adjacent 569 // offset. 570 if (!BIO.hasValidOffset()) 571 return false; 572 if ((C.CurrentLowestOffset - 573 static_cast<int64_t>(ValueTy.getSizeInBytes())) != BIO.getOffset()) 574 return false; 575 576 // This writes to an adjacent address. Allow it. 577 C.Stores.emplace_back(&StoreMI); 578 C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes(); 579 LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI); 580 return true; 581 } 582 583 bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) { 584 bool Changed = false; 585 // Walk through the block bottom-up, looking for merging candidates. 586 StoreMergeCandidate Candidate; 587 for (MachineInstr &MI : llvm::reverse(MBB)) { 588 if (InstsToErase.contains(&MI)) 589 continue; 590 591 if (auto *StoreMI = dyn_cast<GStore>(&MI)) { 592 // We have a G_STORE. Add it to the candidate if it writes to an adjacent 593 // address. 594 if (!addStoreToCandidate(*StoreMI, Candidate)) { 595 // Store wasn't eligible to be added. May need to record it as a 596 // potential alias. 597 if (operationAliasesWithCandidate(*StoreMI, Candidate)) { 598 Changed |= processMergeCandidate(Candidate); 599 continue; 600 } 601 Candidate.addPotentialAlias(*StoreMI); 602 } 603 continue; 604 } 605 606 // If we don't have any stores yet, this instruction can't pose a problem. 607 if (Candidate.Stores.empty()) 608 continue; 609 610 // We're dealing with some other kind of instruction. 611 if (isInstHardMergeHazard(MI)) { 612 Changed |= processMergeCandidate(Candidate); 613 Candidate.Stores.clear(); 614 continue; 615 } 616 617 if (!MI.mayLoadOrStore()) 618 continue; 619 620 if (operationAliasesWithCandidate(MI, Candidate)) { 621 // We have a potential alias, so process the current candidate if we can 622 // and then continue looking for a new candidate. 623 Changed |= processMergeCandidate(Candidate); 624 continue; 625 } 626 627 // Record this instruction as a potential alias for future stores that are 628 // added to the candidate. 629 Candidate.addPotentialAlias(MI); 630 } 631 632 // Process any candidate left after finishing searching the entire block. 633 Changed |= processMergeCandidate(Candidate); 634 635 // Erase instructions now that we're no longer iterating over the block. 636 for (auto *MI : InstsToErase) 637 MI->eraseFromParent(); 638 InstsToErase.clear(); 639 return Changed; 640 } 641 642 /// Check if the store \p Store is a truncstore that can be merged. That is, 643 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 644 /// Register then it does not need to match and SrcVal is set to the source 645 /// value found. 646 /// On match, returns the start byte offset of the \p SrcVal that is being 647 /// stored. 648 static std::optional<int64_t> 649 getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 650 MachineRegisterInfo &MRI) { 651 Register TruncVal; 652 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 653 return std::nullopt; 654 655 // The shift amount must be a constant multiple of the narrow type. 656 // It is translated to the offset address in the wide source value "y". 657 // 658 // x = G_LSHR y, ShiftAmtC 659 // s8 z = G_TRUNC x 660 // store z, ... 661 Register FoundSrcVal; 662 int64_t ShiftAmt; 663 if (!mi_match(TruncVal, MRI, 664 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 665 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 666 if (!SrcVal.isValid() || TruncVal == SrcVal) { 667 if (!SrcVal.isValid()) 668 SrcVal = TruncVal; 669 return 0; // If it's the lowest index store. 670 } 671 return std::nullopt; 672 } 673 674 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 675 if (ShiftAmt % NarrowBits != 0) 676 return std::nullopt; 677 const unsigned Offset = ShiftAmt / NarrowBits; 678 679 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 680 return std::nullopt; 681 682 if (!SrcVal.isValid()) 683 SrcVal = FoundSrcVal; 684 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 685 return std::nullopt; 686 return Offset; 687 } 688 689 /// Match a pattern where a wide type scalar value is stored by several narrow 690 /// stores. Fold it into a single store or a BSWAP and a store if the targets 691 /// supports it. 692 /// 693 /// Assuming little endian target: 694 /// i8 *p = ... 695 /// i32 val = ... 696 /// p[0] = (val >> 0) & 0xFF; 697 /// p[1] = (val >> 8) & 0xFF; 698 /// p[2] = (val >> 16) & 0xFF; 699 /// p[3] = (val >> 24) & 0xFF; 700 /// => 701 /// *((i32)p) = val; 702 /// 703 /// i8 *p = ... 704 /// i32 val = ... 705 /// p[0] = (val >> 24) & 0xFF; 706 /// p[1] = (val >> 16) & 0xFF; 707 /// p[2] = (val >> 8) & 0xFF; 708 /// p[3] = (val >> 0) & 0xFF; 709 /// => 710 /// *((i32)p) = BSWAP(val); 711 bool LoadStoreOpt::mergeTruncStore(GStore &StoreMI, 712 SmallPtrSetImpl<GStore *> &DeletedStores) { 713 LLT MemTy = StoreMI.getMMO().getMemoryType(); 714 715 // We only handle merging simple stores of 1-4 bytes. 716 if (!MemTy.isScalar()) 717 return false; 718 switch (MemTy.getSizeInBits()) { 719 case 8: 720 case 16: 721 case 32: 722 break; 723 default: 724 return false; 725 } 726 if (!StoreMI.isSimple()) 727 return false; 728 729 // We do a simple search for mergeable stores prior to this one. 730 // Any potential alias hazard along the way terminates the search. 731 SmallVector<GStore *> FoundStores; 732 733 // We're looking for: 734 // 1) a (store(trunc(...))) 735 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 736 // the partial value stored. 737 // 3) where the offsets form either a little or big-endian sequence. 738 739 auto &LastStore = StoreMI; 740 741 // The single base pointer that all stores must use. 742 Register BaseReg; 743 int64_t LastOffset; 744 if (!mi_match(LastStore.getPointerReg(), *MRI, 745 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 746 BaseReg = LastStore.getPointerReg(); 747 LastOffset = 0; 748 } 749 750 GStore *LowestIdxStore = &LastStore; 751 int64_t LowestIdxOffset = LastOffset; 752 753 Register WideSrcVal; 754 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, *MRI); 755 if (!LowestShiftAmt) 756 return false; // Didn't match a trunc. 757 assert(WideSrcVal.isValid()); 758 759 LLT WideStoreTy = MRI->getType(WideSrcVal); 760 // The wide type might not be a multiple of the memory type, e.g. s48 and s32. 761 if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) 762 return false; 763 const unsigned NumStoresRequired = 764 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 765 766 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 767 OffsetMap[*LowestShiftAmt] = LastOffset; 768 FoundStores.emplace_back(&LastStore); 769 770 const int MaxInstsToCheck = 10; 771 int NumInstsChecked = 0; 772 for (auto II = ++LastStore.getReverseIterator(); 773 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 774 ++II) { 775 NumInstsChecked++; 776 GStore *NewStore; 777 if ((NewStore = dyn_cast<GStore>(&*II))) { 778 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 779 break; 780 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 781 break; 782 } else { 783 continue; // This is a safe instruction we can look past. 784 } 785 786 Register NewBaseReg; 787 int64_t MemOffset; 788 // Check we're storing to the same base + some offset. 789 if (!mi_match(NewStore->getPointerReg(), *MRI, 790 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 791 NewBaseReg = NewStore->getPointerReg(); 792 MemOffset = 0; 793 } 794 if (BaseReg != NewBaseReg) 795 break; 796 797 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, *MRI); 798 if (!ShiftByteOffset) 799 break; 800 if (MemOffset < LowestIdxOffset) { 801 LowestIdxOffset = MemOffset; 802 LowestIdxStore = NewStore; 803 } 804 805 // Map the offset in the store and the offset in the combined value, and 806 // early return if it has been set before. 807 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 808 OffsetMap[*ShiftByteOffset] != INT64_MAX) 809 break; 810 OffsetMap[*ShiftByteOffset] = MemOffset; 811 812 FoundStores.emplace_back(NewStore); 813 // Reset counter since we've found a matching inst. 814 NumInstsChecked = 0; 815 if (FoundStores.size() == NumStoresRequired) 816 break; 817 } 818 819 if (FoundStores.size() != NumStoresRequired) { 820 if (FoundStores.size() == 1) 821 return false; 822 // We didn't find enough stores to merge into the size of the original 823 // source value, but we may be able to generate a smaller store if we 824 // truncate the source value. 825 WideStoreTy = LLT::scalar(FoundStores.size() * MemTy.getScalarSizeInBits()); 826 } 827 828 unsigned NumStoresFound = FoundStores.size(); 829 830 const auto &DL = LastStore.getMF()->getDataLayout(); 831 auto &C = LastStore.getMF()->getFunction().getContext(); 832 // Check that a store of the wide type is both allowed and fast on the target 833 unsigned Fast = 0; 834 bool Allowed = TLI->allowsMemoryAccess( 835 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 836 if (!Allowed || !Fast) 837 return false; 838 839 // Check if the pieces of the value are going to the expected places in memory 840 // to merge the stores. 841 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 842 auto checkOffsets = [&](bool MatchLittleEndian) { 843 if (MatchLittleEndian) { 844 for (unsigned i = 0; i != NumStoresFound; ++i) 845 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 846 return false; 847 } else { // MatchBigEndian by reversing loop counter. 848 for (unsigned i = 0, j = NumStoresFound - 1; i != NumStoresFound; 849 ++i, --j) 850 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 851 return false; 852 } 853 return true; 854 }; 855 856 // Check if the offsets line up for the native data layout of this target. 857 bool NeedBswap = false; 858 bool NeedRotate = false; 859 if (!checkOffsets(DL.isLittleEndian())) { 860 // Special-case: check if byte offsets line up for the opposite endian. 861 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 862 NeedBswap = true; 863 else if (NumStoresFound == 2 && checkOffsets(DL.isBigEndian())) 864 NeedRotate = true; 865 else 866 return false; 867 } 868 869 if (NeedBswap && 870 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}}, *MF)) 871 return false; 872 if (NeedRotate && 873 !isLegalOrBeforeLegalizer( 874 {TargetOpcode::G_ROTR, {WideStoreTy, WideStoreTy}}, *MF)) 875 return false; 876 877 Builder.setInstrAndDebugLoc(StoreMI); 878 879 if (WideStoreTy != MRI->getType(WideSrcVal)) 880 WideSrcVal = Builder.buildTrunc(WideStoreTy, WideSrcVal).getReg(0); 881 882 if (NeedBswap) { 883 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 884 } else if (NeedRotate) { 885 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 886 "Unexpected type for rotate"); 887 auto RotAmt = 888 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 889 WideSrcVal = 890 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 891 } 892 893 Builder.buildStore(WideSrcVal, LowestIdxStore->getPointerReg(), 894 LowestIdxStore->getMMO().getPointerInfo(), 895 LowestIdxStore->getMMO().getAlign()); 896 897 // Erase the old stores. 898 for (auto *ST : FoundStores) { 899 ST->eraseFromParent(); 900 DeletedStores.insert(ST); 901 } 902 return true; 903 } 904 905 bool LoadStoreOpt::mergeTruncStoresBlock(MachineBasicBlock &BB) { 906 bool Changed = false; 907 SmallVector<GStore *, 16> Stores; 908 SmallPtrSet<GStore *, 8> DeletedStores; 909 // Walk up the block so we can see the most eligible stores. 910 for (MachineInstr &MI : llvm::reverse(BB)) 911 if (auto *StoreMI = dyn_cast<GStore>(&MI)) 912 Stores.emplace_back(StoreMI); 913 914 for (auto *StoreMI : Stores) { 915 if (DeletedStores.count(StoreMI)) 916 continue; 917 if (mergeTruncStore(*StoreMI, DeletedStores)) 918 Changed = true; 919 } 920 return Changed; 921 } 922 923 bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) { 924 bool Changed = false; 925 for (auto &BB : MF){ 926 Changed |= mergeBlockStores(BB); 927 Changed |= mergeTruncStoresBlock(BB); 928 } 929 930 // Erase all dead instructions left over by the merging. 931 if (Changed) { 932 for (auto &BB : MF) { 933 for (auto &I : make_early_inc_range(make_range(BB.rbegin(), BB.rend()))) { 934 if (isTriviallyDead(I, *MRI)) 935 I.eraseFromParent(); 936 } 937 } 938 } 939 940 return Changed; 941 } 942 943 void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) { 944 // Query the legalizer info to record what store types are legal. 945 // We record this because we don't want to bother trying to merge stores into 946 // illegal ones, which would just result in being split again. 947 948 if (LegalStoreSizes.count(AddrSpace)) { 949 assert(LegalStoreSizes[AddrSpace].any()); 950 return; // Already cached sizes for this address space. 951 } 952 953 // Need to reserve at least MaxStoreSizeToForm + 1 bits. 954 BitVector LegalSizes(MaxStoreSizeToForm * 2); 955 const auto &LI = *MF->getSubtarget().getLegalizerInfo(); 956 const auto &DL = MF->getFunction().getDataLayout(); 957 Type *IRPtrTy = PointerType::get(MF->getFunction().getContext(), AddrSpace); 958 LLT PtrTy = getLLTForType(*IRPtrTy, DL); 959 // We assume that we're not going to be generating any stores wider than 960 // MaxStoreSizeToForm bits for now. 961 for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) { 962 LLT Ty = LLT::scalar(Size); 963 SmallVector<LegalityQuery::MemDesc, 2> MemDescrs( 964 {{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}}); 965 SmallVector<LLT> StoreTys({Ty, PtrTy}); 966 LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs); 967 LegalizeActionStep ActionStep = LI.getAction(Q); 968 if (ActionStep.Action == LegalizeActions::Legal) 969 LegalSizes.set(Size); 970 } 971 assert(LegalSizes.any() && "Expected some store sizes to be legal!"); 972 LegalStoreSizes[AddrSpace] = LegalSizes; 973 } 974 975 bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) { 976 // If the ISel pipeline failed, do not bother running that pass. 977 if (MF.getProperties().hasProperty( 978 MachineFunctionProperties::Property::FailedISel)) 979 return false; 980 981 LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName() 982 << '\n'); 983 984 init(MF); 985 bool Changed = false; 986 Changed |= mergeFunctionStores(MF); 987 988 LegalStoreSizes.clear(); 989 return Changed; 990 } 991