xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/LoadStoreOpt.cpp (revision f01b62ad4881e61dc5d84e1faa984917ac43453c)
1 //===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the LoadStoreOpt optimization pass.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/MemoryLocation.h"
18 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
22 #include "llvm/CodeGen/GlobalISel/Utils.h"
23 #include "llvm/CodeGen/LowLevelTypeUtils.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Register.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Support/AtomicOrdering.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include <algorithm>
40 
41 #define DEBUG_TYPE "loadstore-opt"
42 
43 using namespace llvm;
44 using namespace ore;
45 using namespace MIPatternMatch;
46 
47 STATISTIC(NumStoresMerged, "Number of stores merged");
48 
49 const unsigned MaxStoreSizeToForm = 128;
50 
51 char LoadStoreOpt::ID = 0;
52 INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations",
53                       false, false)
54 INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations",
55                     false, false)
56 
57 LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F)
58     : MachineFunctionPass(ID), DoNotRunPass(F) {}
59 
60 LoadStoreOpt::LoadStoreOpt()
61     : LoadStoreOpt([](const MachineFunction &) { return false; }) {}
62 
63 void LoadStoreOpt::init(MachineFunction &MF) {
64   this->MF = &MF;
65   MRI = &MF.getRegInfo();
66   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
67   TLI = MF.getSubtarget().getTargetLowering();
68   LI = MF.getSubtarget().getLegalizerInfo();
69   Builder.setMF(MF);
70   IsPreLegalizer = !MF.getProperties().hasProperty(
71       MachineFunctionProperties::Property::Legalized);
72   InstsToErase.clear();
73 }
74 
75 void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const {
76   AU.addRequired<AAResultsWrapperPass>();
77   AU.setPreservesAll();
78   getSelectionDAGFallbackAnalysisUsage(AU);
79   MachineFunctionPass::getAnalysisUsage(AU);
80 }
81 
82 BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr,
83                                                 MachineRegisterInfo &MRI) {
84   BaseIndexOffset Info;
85   Register PtrAddRHS;
86   Register BaseReg;
87   if (!mi_match(Ptr, MRI, m_GPtrAdd(m_Reg(BaseReg), m_Reg(PtrAddRHS)))) {
88     Info.setBase(Ptr);
89     Info.setOffset(0);
90     return Info;
91   }
92   Info.setBase(BaseReg);
93   auto RHSCst = getIConstantVRegValWithLookThrough(PtrAddRHS, MRI);
94   if (RHSCst)
95     Info.setOffset(RHSCst->Value.getSExtValue());
96 
97   // Just recognize a simple case for now. In future we'll need to match
98   // indexing patterns for base + index + constant.
99   Info.setIndex(PtrAddRHS);
100   return Info;
101 }
102 
103 bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1,
104                                                const MachineInstr &MI2,
105                                                bool &IsAlias,
106                                                MachineRegisterInfo &MRI) {
107   auto *LdSt1 = dyn_cast<GLoadStore>(&MI1);
108   auto *LdSt2 = dyn_cast<GLoadStore>(&MI2);
109   if (!LdSt1 || !LdSt2)
110     return false;
111 
112   BaseIndexOffset BasePtr0 = getPointerInfo(LdSt1->getPointerReg(), MRI);
113   BaseIndexOffset BasePtr1 = getPointerInfo(LdSt2->getPointerReg(), MRI);
114 
115   if (!BasePtr0.getBase().isValid() || !BasePtr1.getBase().isValid())
116     return false;
117 
118   LocationSize Size1 = LdSt1->getMemSize();
119   LocationSize Size2 = LdSt2->getMemSize();
120 
121   int64_t PtrDiff;
122   if (BasePtr0.getBase() == BasePtr1.getBase() && BasePtr0.hasValidOffset() &&
123       BasePtr1.hasValidOffset()) {
124     PtrDiff = BasePtr1.getOffset() - BasePtr0.getOffset();
125     // If the size of memory access is unknown, do not use it to do analysis.
126     // One example of unknown size memory access is to load/store scalable
127     // vector objects on the stack.
128     // BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the
129     // following situations arise:
130     if (PtrDiff >= 0 && Size1.hasValue() && !Size1.isScalable()) {
131       // [----BasePtr0----]
132       //                         [---BasePtr1--]
133       // ========PtrDiff========>
134       IsAlias = !((int64_t)Size1.getValue() <= PtrDiff);
135       return true;
136     }
137     if (PtrDiff < 0 && Size2.hasValue() && !Size2.isScalable()) {
138       //                     [----BasePtr0----]
139       // [---BasePtr1--]
140       // =====(-PtrDiff)====>
141       IsAlias = !((PtrDiff + (int64_t)Size2.getValue()) <= 0);
142       return true;
143     }
144     return false;
145   }
146 
147   // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be
148   // able to calculate their relative offset if at least one arises
149   // from an alloca. However, these allocas cannot overlap and we
150   // can infer there is no alias.
151   auto *Base0Def = getDefIgnoringCopies(BasePtr0.getBase(), MRI);
152   auto *Base1Def = getDefIgnoringCopies(BasePtr1.getBase(), MRI);
153   if (!Base0Def || !Base1Def)
154     return false; // Couldn't tell anything.
155 
156 
157   if (Base0Def->getOpcode() != Base1Def->getOpcode())
158     return false;
159 
160   if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
161     MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo();
162     // If the bases have the same frame index but we couldn't find a
163     // constant offset, (indices are different) be conservative.
164     if (Base0Def != Base1Def &&
165         (!MFI.isFixedObjectIndex(Base0Def->getOperand(1).getIndex()) ||
166          !MFI.isFixedObjectIndex(Base1Def->getOperand(1).getIndex()))) {
167       IsAlias = false;
168       return true;
169     }
170   }
171 
172   // This implementation is a lot more primitive than the SDAG one for now.
173   // FIXME: what about constant pools?
174   if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
175     auto GV0 = Base0Def->getOperand(1).getGlobal();
176     auto GV1 = Base1Def->getOperand(1).getGlobal();
177     if (GV0 != GV1) {
178       IsAlias = false;
179       return true;
180     }
181   }
182 
183   // Can't tell anything about aliasing.
184   return false;
185 }
186 
187 bool GISelAddressing::instMayAlias(const MachineInstr &MI,
188                                    const MachineInstr &Other,
189                                    MachineRegisterInfo &MRI,
190                                    AliasAnalysis *AA) {
191   struct MemUseCharacteristics {
192     bool IsVolatile;
193     bool IsAtomic;
194     Register BasePtr;
195     int64_t Offset;
196     LocationSize NumBytes;
197     MachineMemOperand *MMO;
198   };
199 
200   auto getCharacteristics =
201       [&](const MachineInstr *MI) -> MemUseCharacteristics {
202     if (const auto *LS = dyn_cast<GLoadStore>(MI)) {
203       Register BaseReg;
204       int64_t Offset = 0;
205       // No pre/post-inc addressing modes are considered here, unlike in SDAG.
206       if (!mi_match(LS->getPointerReg(), MRI,
207                     m_GPtrAdd(m_Reg(BaseReg), m_ICst(Offset)))) {
208         BaseReg = LS->getPointerReg();
209         Offset = 0;
210       }
211 
212       LocationSize Size = LS->getMMO().getSize();
213       return {LS->isVolatile(),       LS->isAtomic(), BaseReg,
214               Offset /*base offset*/, Size,           &LS->getMMO()};
215     }
216     // FIXME: support recognizing lifetime instructions.
217     // Default.
218     return {false /*isvolatile*/,
219             /*isAtomic*/ false,
220             Register(),
221             (int64_t)0 /*offset*/,
222             LocationSize::beforeOrAfterPointer() /*size*/,
223             (MachineMemOperand *)nullptr};
224   };
225   MemUseCharacteristics MUC0 = getCharacteristics(&MI),
226                         MUC1 = getCharacteristics(&Other);
227 
228   // If they are to the same address, then they must be aliases.
229   if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr &&
230       MUC0.Offset == MUC1.Offset)
231     return true;
232 
233   // If they are both volatile then they cannot be reordered.
234   if (MUC0.IsVolatile && MUC1.IsVolatile)
235     return true;
236 
237   // Be conservative about atomics for the moment
238   // TODO: This is way overconservative for unordered atomics (see D66309)
239   if (MUC0.IsAtomic && MUC1.IsAtomic)
240     return true;
241 
242   // If one operation reads from invariant memory, and the other may store, they
243   // cannot alias.
244   if (MUC0.MMO && MUC1.MMO) {
245     if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
246         (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
247       return false;
248   }
249 
250   // If NumBytes is scalable and offset is not 0, conservatively return may
251   // alias
252   if ((MUC0.NumBytes.isScalable() && MUC0.Offset != 0) ||
253       (MUC1.NumBytes.isScalable() && MUC1.Offset != 0))
254     return true;
255 
256   const bool BothNotScalable =
257       !MUC0.NumBytes.isScalable() && !MUC1.NumBytes.isScalable();
258 
259   // Try to prove that there is aliasing, or that there is no aliasing. Either
260   // way, we can return now. If nothing can be proved, proceed with more tests.
261   bool IsAlias;
262   if (BothNotScalable &&
263       GISelAddressing::aliasIsKnownForLoadStore(MI, Other, IsAlias, MRI))
264     return IsAlias;
265 
266   // The following all rely on MMO0 and MMO1 being valid.
267   if (!MUC0.MMO || !MUC1.MMO)
268     return true;
269 
270   // FIXME: port the alignment based alias analysis from SDAG's isAlias().
271   int64_t SrcValOffset0 = MUC0.MMO->getOffset();
272   int64_t SrcValOffset1 = MUC1.MMO->getOffset();
273   LocationSize Size0 = MUC0.NumBytes;
274   LocationSize Size1 = MUC1.NumBytes;
275   if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && Size0.hasValue() &&
276       Size1.hasValue()) {
277     // Use alias analysis information.
278     int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
279     int64_t Overlap0 =
280         Size0.getValue().getKnownMinValue() + SrcValOffset0 - MinOffset;
281     int64_t Overlap1 =
282         Size1.getValue().getKnownMinValue() + SrcValOffset1 - MinOffset;
283     LocationSize Loc0 =
284         Size0.isScalable() ? Size0 : LocationSize::precise(Overlap0);
285     LocationSize Loc1 =
286         Size1.isScalable() ? Size1 : LocationSize::precise(Overlap1);
287 
288     if (AA->isNoAlias(
289             MemoryLocation(MUC0.MMO->getValue(), Loc0, MUC0.MMO->getAAInfo()),
290             MemoryLocation(MUC1.MMO->getValue(), Loc1, MUC1.MMO->getAAInfo())))
291       return false;
292   }
293 
294   // Otherwise we have to assume they alias.
295   return true;
296 }
297 
298 /// Returns true if the instruction creates an unavoidable hazard that
299 /// forces a boundary between store merge candidates.
300 static bool isInstHardMergeHazard(MachineInstr &MI) {
301   return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef();
302 }
303 
304 bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) {
305   // Try to merge all the stores in the vector, splitting into separate segments
306   // as necessary.
307   assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge");
308   LLT OrigTy = MRI->getType(StoresToMerge[0]->getValueReg());
309   LLT PtrTy = MRI->getType(StoresToMerge[0]->getPointerReg());
310   unsigned AS = PtrTy.getAddressSpace();
311   // Ensure the legal store info is computed for this address space.
312   initializeStoreMergeTargetInfo(AS);
313   const auto &LegalSizes = LegalStoreSizes[AS];
314 
315 #ifndef NDEBUG
316   for (auto *StoreMI : StoresToMerge)
317     assert(MRI->getType(StoreMI->getValueReg()) == OrigTy);
318 #endif
319 
320   bool AnyMerged = false;
321   do {
322     unsigned NumPow2 = llvm::bit_floor(StoresToMerge.size());
323     unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedValue();
324     // Compute the biggest store we can generate to handle the number of stores.
325     unsigned MergeSizeBits;
326     for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) {
327       LLT StoreTy = LLT::scalar(MergeSizeBits);
328       EVT StoreEVT =
329           getApproximateEVTForLLT(StoreTy, MF->getFunction().getContext());
330       if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] &&
331           TLI->canMergeStoresTo(AS, StoreEVT, *MF) &&
332           (TLI->isTypeLegal(StoreEVT)))
333         break; // We can generate a MergeSize bits store.
334     }
335     if (MergeSizeBits <= OrigTy.getSizeInBits())
336       return AnyMerged; // No greater merge.
337 
338     unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits();
339     // Perform the actual merging.
340     SmallVector<GStore *, 8> SingleMergeStores(
341         StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge);
342     AnyMerged |= doSingleStoreMerge(SingleMergeStores);
343     StoresToMerge.erase(StoresToMerge.begin(),
344                         StoresToMerge.begin() + NumStoresToMerge);
345   } while (StoresToMerge.size() > 1);
346   return AnyMerged;
347 }
348 
349 bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query,
350                                             MachineFunction &MF) const {
351   auto Action = LI->getAction(Query).Action;
352   // If the instruction is unsupported, it can't be legalized at all.
353   if (Action == LegalizeActions::Unsupported)
354     return false;
355   return IsPreLegalizer || Action == LegalizeAction::Legal;
356 }
357 
358 bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) {
359   assert(Stores.size() > 1);
360   // We know that all the stores are consecutive and there are no aliasing
361   // operations in the range. However, the values that are being stored may be
362   // generated anywhere before each store. To ensure we have the values
363   // available, we materialize the wide value and new store at the place of the
364   // final store in the merge sequence.
365   GStore *FirstStore = Stores[0];
366   const unsigned NumStores = Stores.size();
367   LLT SmallTy = MRI->getType(FirstStore->getValueReg());
368   LLT WideValueTy =
369       LLT::scalar(NumStores * SmallTy.getSizeInBits().getFixedValue());
370 
371   // For each store, compute pairwise merged debug locs.
372   DebugLoc MergedLoc = Stores.front()->getDebugLoc();
373   for (auto *Store : drop_begin(Stores))
374     MergedLoc = DILocation::getMergedLocation(MergedLoc, Store->getDebugLoc());
375 
376   Builder.setInstr(*Stores.back());
377   Builder.setDebugLoc(MergedLoc);
378 
379   // If all of the store values are constants, then create a wide constant
380   // directly. Otherwise, we need to generate some instructions to merge the
381   // existing values together into a wider type.
382   SmallVector<APInt, 8> ConstantVals;
383   for (auto *Store : Stores) {
384     auto MaybeCst =
385         getIConstantVRegValWithLookThrough(Store->getValueReg(), *MRI);
386     if (!MaybeCst) {
387       ConstantVals.clear();
388       break;
389     }
390     ConstantVals.emplace_back(MaybeCst->Value);
391   }
392 
393   Register WideReg;
394   auto *WideMMO =
395       MF->getMachineMemOperand(&FirstStore->getMMO(), 0, WideValueTy);
396   if (ConstantVals.empty()) {
397     // Mimic the SDAG behaviour here and don't try to do anything for unknown
398     // values. In future, we should also support the cases of loads and
399     // extracted vector elements.
400     return false;
401   }
402 
403   assert(ConstantVals.size() == NumStores);
404   // Check if our wide constant is legal.
405   if (!isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {WideValueTy}}, *MF))
406     return false;
407   APInt WideConst(WideValueTy.getSizeInBits(), 0);
408   for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) {
409     // Insert the smaller constant into the corresponding position in the
410     // wider one.
411     WideConst.insertBits(ConstantVals[Idx], Idx * SmallTy.getSizeInBits());
412   }
413   WideReg = Builder.buildConstant(WideValueTy, WideConst).getReg(0);
414   auto NewStore =
415       Builder.buildStore(WideReg, FirstStore->getPointerReg(), *WideMMO);
416   (void) NewStore;
417   LLVM_DEBUG(dbgs() << "Merged " << Stores.size()
418                     << " stores into merged store: " << *NewStore);
419   LLVM_DEBUG(for (auto *MI : Stores) dbgs() << "  " << *MI;);
420   NumStoresMerged += Stores.size();
421 
422   MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
423   MORE.emit([&]() {
424     MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore",
425                                 FirstStore->getDebugLoc(),
426                                 FirstStore->getParent());
427     R << "Merged " << NV("NumMerged", Stores.size()) << " stores of "
428       << NV("OrigWidth", SmallTy.getSizeInBytes())
429       << " bytes into a single store of "
430       << NV("NewWidth", WideValueTy.getSizeInBytes()) << " bytes";
431     return R;
432   });
433 
434   for (auto *MI : Stores)
435     InstsToErase.insert(MI);
436   return true;
437 }
438 
439 bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) {
440   if (C.Stores.size() < 2) {
441     C.reset();
442     return false;
443   }
444 
445   LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size()
446                     << " stores, starting with " << *C.Stores[0]);
447   // We know that the stores in the candidate are adjacent.
448   // Now we need to check if any potential aliasing instructions recorded
449   // during the search alias with load/stores added to the candidate after.
450   // For example, if we have the candidate:
451   //   C.Stores = [ST1, ST2, ST3, ST4]
452   // and after seeing ST2 we saw a load LD1, which did not alias with ST1 or
453   // ST2, then we would have recorded it into the PotentialAliases structure
454   // with the associated index value of "1". Then we see ST3 and ST4 and add
455   // them to the candidate group. We know that LD1 does not alias with ST1 or
456   // ST2, since we already did that check. However we don't yet know if it
457   // may alias ST3 and ST4, so we perform those checks now.
458   SmallVector<GStore *> StoresToMerge;
459 
460   auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) {
461     for (auto AliasInfo : reverse(C.PotentialAliases)) {
462       MachineInstr *PotentialAliasOp = AliasInfo.first;
463       unsigned PreCheckedIdx = AliasInfo.second;
464       if (static_cast<unsigned>(Idx) < PreCheckedIdx) {
465         // Once our store index is lower than the index associated with the
466         // potential alias, we know that we've already checked for this alias
467         // and all of the earlier potential aliases too.
468         return false;
469       }
470       // Need to check this alias.
471       if (GISelAddressing::instMayAlias(CheckStore, *PotentialAliasOp, *MRI,
472                                         AA)) {
473         LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp
474                           << " detected\n");
475         return true;
476       }
477     }
478     return false;
479   };
480   // Start from the last store in the group, and check if it aliases with any
481   // of the potential aliasing operations in the list.
482   for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) {
483     auto *CheckStore = C.Stores[StoreIdx];
484     if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore))
485       continue;
486     StoresToMerge.emplace_back(CheckStore);
487   }
488 
489   LLVM_DEBUG(dbgs() << StoresToMerge.size()
490                     << " stores remaining after alias checks. Merging...\n");
491 
492   // Now we've checked for aliasing hazards, merge any stores left.
493   C.reset();
494   if (StoresToMerge.size() < 2)
495     return false;
496   return mergeStores(StoresToMerge);
497 }
498 
499 bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI,
500                                                  StoreMergeCandidate &C) {
501   if (C.Stores.empty())
502     return false;
503   return llvm::any_of(C.Stores, [&](MachineInstr *OtherMI) {
504     return instMayAlias(MI, *OtherMI, *MRI, AA);
505   });
506 }
507 
508 void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) {
509   PotentialAliases.emplace_back(std::make_pair(&MI, Stores.size() - 1));
510 }
511 
512 bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI,
513                                        StoreMergeCandidate &C) {
514   // Check if the given store writes to an adjacent address, and other
515   // requirements.
516   LLT ValueTy = MRI->getType(StoreMI.getValueReg());
517   LLT PtrTy = MRI->getType(StoreMI.getPointerReg());
518 
519   // Only handle scalars.
520   if (!ValueTy.isScalar())
521     return false;
522 
523   // Don't allow truncating stores for now.
524   if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits())
525     return false;
526 
527   // Avoid adding volatile or ordered stores to the candidate. We already have a
528   // check for this in instMayAlias() but that only get's called later between
529   // potential aliasing hazards.
530   if (!StoreMI.isSimple())
531     return false;
532 
533   Register StoreAddr = StoreMI.getPointerReg();
534   auto BIO = getPointerInfo(StoreAddr, *MRI);
535   Register StoreBase = BIO.getBase();
536   if (C.Stores.empty()) {
537     C.BasePtr = StoreBase;
538     if (!BIO.hasValidOffset()) {
539       C.CurrentLowestOffset = 0;
540     } else {
541       C.CurrentLowestOffset = BIO.getOffset();
542     }
543     // This is the first store of the candidate.
544     // If the offset can't possibly allow for a lower addressed store with the
545     // same base, don't bother adding it.
546     if (BIO.hasValidOffset() &&
547         BIO.getOffset() < static_cast<int64_t>(ValueTy.getSizeInBytes()))
548       return false;
549     C.Stores.emplace_back(&StoreMI);
550     LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: "
551                       << StoreMI);
552     return true;
553   }
554 
555   // Check the store is the same size as the existing ones in the candidate.
556   if (MRI->getType(C.Stores[0]->getValueReg()).getSizeInBits() !=
557       ValueTy.getSizeInBits())
558     return false;
559 
560   if (MRI->getType(C.Stores[0]->getPointerReg()).getAddressSpace() !=
561       PtrTy.getAddressSpace())
562     return false;
563 
564   // There are other stores in the candidate. Check that the store address
565   // writes to the next lowest adjacent address.
566   if (C.BasePtr != StoreBase)
567     return false;
568   // If we don't have a valid offset, we can't guarantee to be an adjacent
569   // offset.
570   if (!BIO.hasValidOffset())
571     return false;
572   if ((C.CurrentLowestOffset -
573        static_cast<int64_t>(ValueTy.getSizeInBytes())) != BIO.getOffset())
574     return false;
575 
576   // This writes to an adjacent address. Allow it.
577   C.Stores.emplace_back(&StoreMI);
578   C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes();
579   LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI);
580   return true;
581 }
582 
583 bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) {
584   bool Changed = false;
585   // Walk through the block bottom-up, looking for merging candidates.
586   StoreMergeCandidate Candidate;
587   for (MachineInstr &MI : llvm::reverse(MBB)) {
588     if (InstsToErase.contains(&MI))
589       continue;
590 
591     if (auto *StoreMI = dyn_cast<GStore>(&MI)) {
592       // We have a G_STORE. Add it to the candidate if it writes to an adjacent
593       // address.
594       if (!addStoreToCandidate(*StoreMI, Candidate)) {
595         // Store wasn't eligible to be added. May need to record it as a
596         // potential alias.
597         if (operationAliasesWithCandidate(*StoreMI, Candidate)) {
598           Changed |= processMergeCandidate(Candidate);
599           continue;
600         }
601         Candidate.addPotentialAlias(*StoreMI);
602       }
603       continue;
604     }
605 
606     // If we don't have any stores yet, this instruction can't pose a problem.
607     if (Candidate.Stores.empty())
608       continue;
609 
610     // We're dealing with some other kind of instruction.
611     if (isInstHardMergeHazard(MI)) {
612       Changed |= processMergeCandidate(Candidate);
613       Candidate.Stores.clear();
614       continue;
615     }
616 
617     if (!MI.mayLoadOrStore())
618       continue;
619 
620     if (operationAliasesWithCandidate(MI, Candidate)) {
621       // We have a potential alias, so process the current candidate if we can
622       // and then continue looking for a new candidate.
623       Changed |= processMergeCandidate(Candidate);
624       continue;
625     }
626 
627     // Record this instruction as a potential alias for future stores that are
628     // added to the candidate.
629     Candidate.addPotentialAlias(MI);
630   }
631 
632   // Process any candidate left after finishing searching the entire block.
633   Changed |= processMergeCandidate(Candidate);
634 
635   // Erase instructions now that we're no longer iterating over the block.
636   for (auto *MI : InstsToErase)
637     MI->eraseFromParent();
638   InstsToErase.clear();
639   return Changed;
640 }
641 
642 /// Check if the store \p Store is a truncstore that can be merged. That is,
643 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty
644 /// Register then it does not need to match and SrcVal is set to the source
645 /// value found.
646 /// On match, returns the start byte offset of the \p SrcVal that is being
647 /// stored.
648 static std::optional<int64_t>
649 getTruncStoreByteOffset(GStore &Store, Register &SrcVal,
650                         MachineRegisterInfo &MRI) {
651   Register TruncVal;
652   if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal))))
653     return std::nullopt;
654 
655   // The shift amount must be a constant multiple of the narrow type.
656   // It is translated to the offset address in the wide source value "y".
657   //
658   // x = G_LSHR y, ShiftAmtC
659   // s8 z = G_TRUNC x
660   // store z, ...
661   Register FoundSrcVal;
662   int64_t ShiftAmt;
663   if (!mi_match(TruncVal, MRI,
664                 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)),
665                          m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) {
666     if (!SrcVal.isValid() || TruncVal == SrcVal) {
667       if (!SrcVal.isValid())
668         SrcVal = TruncVal;
669       return 0; // If it's the lowest index store.
670     }
671     return std::nullopt;
672   }
673 
674   unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits();
675   if (ShiftAmt % NarrowBits != 0)
676     return std::nullopt;
677   const unsigned Offset = ShiftAmt / NarrowBits;
678 
679   if (SrcVal.isValid() && FoundSrcVal != SrcVal)
680     return std::nullopt;
681 
682   if (!SrcVal.isValid())
683     SrcVal = FoundSrcVal;
684   else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal))
685     return std::nullopt;
686   return Offset;
687 }
688 
689 /// Match a pattern where a wide type scalar value is stored by several narrow
690 /// stores. Fold it into a single store or a BSWAP and a store if the targets
691 /// supports it.
692 ///
693 /// Assuming little endian target:
694 ///  i8 *p = ...
695 ///  i32 val = ...
696 ///  p[0] = (val >> 0) & 0xFF;
697 ///  p[1] = (val >> 8) & 0xFF;
698 ///  p[2] = (val >> 16) & 0xFF;
699 ///  p[3] = (val >> 24) & 0xFF;
700 /// =>
701 ///  *((i32)p) = val;
702 ///
703 ///  i8 *p = ...
704 ///  i32 val = ...
705 ///  p[0] = (val >> 24) & 0xFF;
706 ///  p[1] = (val >> 16) & 0xFF;
707 ///  p[2] = (val >> 8) & 0xFF;
708 ///  p[3] = (val >> 0) & 0xFF;
709 /// =>
710 ///  *((i32)p) = BSWAP(val);
711 bool LoadStoreOpt::mergeTruncStore(GStore &StoreMI,
712                                    SmallPtrSetImpl<GStore *> &DeletedStores) {
713   LLT MemTy = StoreMI.getMMO().getMemoryType();
714 
715   // We only handle merging simple stores of 1-4 bytes.
716   if (!MemTy.isScalar())
717     return false;
718   switch (MemTy.getSizeInBits()) {
719   case 8:
720   case 16:
721   case 32:
722     break;
723   default:
724     return false;
725   }
726   if (!StoreMI.isSimple())
727     return false;
728 
729   // We do a simple search for mergeable stores prior to this one.
730   // Any potential alias hazard along the way terminates the search.
731   SmallVector<GStore *> FoundStores;
732 
733   // We're looking for:
734   // 1) a (store(trunc(...)))
735   // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get
736   //    the partial value stored.
737   // 3) where the offsets form either a little or big-endian sequence.
738 
739   auto &LastStore = StoreMI;
740 
741   // The single base pointer that all stores must use.
742   Register BaseReg;
743   int64_t LastOffset;
744   if (!mi_match(LastStore.getPointerReg(), *MRI,
745                 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) {
746     BaseReg = LastStore.getPointerReg();
747     LastOffset = 0;
748   }
749 
750   GStore *LowestIdxStore = &LastStore;
751   int64_t LowestIdxOffset = LastOffset;
752 
753   Register WideSrcVal;
754   auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, *MRI);
755   if (!LowestShiftAmt)
756     return false; // Didn't match a trunc.
757   assert(WideSrcVal.isValid());
758 
759   LLT WideStoreTy = MRI->getType(WideSrcVal);
760   // The wide type might not be a multiple of the memory type, e.g. s48 and s32.
761   if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0)
762     return false;
763   const unsigned NumStoresRequired =
764       WideStoreTy.getSizeInBits() / MemTy.getSizeInBits();
765 
766   SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX);
767   OffsetMap[*LowestShiftAmt] = LastOffset;
768   FoundStores.emplace_back(&LastStore);
769 
770   const int MaxInstsToCheck = 10;
771   int NumInstsChecked = 0;
772   for (auto II = ++LastStore.getReverseIterator();
773        II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck;
774        ++II) {
775     NumInstsChecked++;
776     GStore *NewStore;
777     if ((NewStore = dyn_cast<GStore>(&*II))) {
778       if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple())
779         break;
780     } else if (II->isLoadFoldBarrier() || II->mayLoad()) {
781       break;
782     } else {
783       continue; // This is a safe instruction we can look past.
784     }
785 
786     Register NewBaseReg;
787     int64_t MemOffset;
788     // Check we're storing to the same base + some offset.
789     if (!mi_match(NewStore->getPointerReg(), *MRI,
790                   m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) {
791       NewBaseReg = NewStore->getPointerReg();
792       MemOffset = 0;
793     }
794     if (BaseReg != NewBaseReg)
795       break;
796 
797     auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, *MRI);
798     if (!ShiftByteOffset)
799       break;
800     if (MemOffset < LowestIdxOffset) {
801       LowestIdxOffset = MemOffset;
802       LowestIdxStore = NewStore;
803     }
804 
805     // Map the offset in the store and the offset in the combined value, and
806     // early return if it has been set before.
807     if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired ||
808         OffsetMap[*ShiftByteOffset] != INT64_MAX)
809       break;
810     OffsetMap[*ShiftByteOffset] = MemOffset;
811 
812     FoundStores.emplace_back(NewStore);
813     // Reset counter since we've found a matching inst.
814     NumInstsChecked = 0;
815     if (FoundStores.size() == NumStoresRequired)
816       break;
817   }
818 
819   if (FoundStores.size() != NumStoresRequired) {
820     if (FoundStores.size() == 1)
821       return false;
822     // We didn't find enough stores to merge into the size of the original
823     // source value, but we may be able to generate a smaller store if we
824     // truncate the source value.
825     WideStoreTy = LLT::scalar(FoundStores.size() * MemTy.getScalarSizeInBits());
826   }
827 
828   unsigned NumStoresFound = FoundStores.size();
829 
830   const auto &DL = LastStore.getMF()->getDataLayout();
831   auto &C = LastStore.getMF()->getFunction().getContext();
832   // Check that a store of the wide type is both allowed and fast on the target
833   unsigned Fast = 0;
834   bool Allowed = TLI->allowsMemoryAccess(
835       C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast);
836   if (!Allowed || !Fast)
837     return false;
838 
839   // Check if the pieces of the value are going to the expected places in memory
840   // to merge the stores.
841   unsigned NarrowBits = MemTy.getScalarSizeInBits();
842   auto checkOffsets = [&](bool MatchLittleEndian) {
843     if (MatchLittleEndian) {
844       for (unsigned i = 0; i != NumStoresFound; ++i)
845         if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset)
846           return false;
847     } else { // MatchBigEndian by reversing loop counter.
848       for (unsigned i = 0, j = NumStoresFound - 1; i != NumStoresFound;
849            ++i, --j)
850         if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset)
851           return false;
852     }
853     return true;
854   };
855 
856   // Check if the offsets line up for the native data layout of this target.
857   bool NeedBswap = false;
858   bool NeedRotate = false;
859   if (!checkOffsets(DL.isLittleEndian())) {
860     // Special-case: check if byte offsets line up for the opposite endian.
861     if (NarrowBits == 8 && checkOffsets(DL.isBigEndian()))
862       NeedBswap = true;
863     else if (NumStoresFound == 2 && checkOffsets(DL.isBigEndian()))
864       NeedRotate = true;
865     else
866       return false;
867   }
868 
869   if (NeedBswap &&
870       !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}}, *MF))
871     return false;
872   if (NeedRotate &&
873       !isLegalOrBeforeLegalizer(
874           {TargetOpcode::G_ROTR, {WideStoreTy, WideStoreTy}}, *MF))
875     return false;
876 
877   Builder.setInstrAndDebugLoc(StoreMI);
878 
879   if (WideStoreTy != MRI->getType(WideSrcVal))
880     WideSrcVal = Builder.buildTrunc(WideStoreTy, WideSrcVal).getReg(0);
881 
882   if (NeedBswap) {
883     WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0);
884   } else if (NeedRotate) {
885     assert(WideStoreTy.getSizeInBits() % 2 == 0 &&
886            "Unexpected type for rotate");
887     auto RotAmt =
888         Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2);
889     WideSrcVal =
890         Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0);
891   }
892 
893   Builder.buildStore(WideSrcVal, LowestIdxStore->getPointerReg(),
894                      LowestIdxStore->getMMO().getPointerInfo(),
895                      LowestIdxStore->getMMO().getAlign());
896 
897   // Erase the old stores.
898   for (auto *ST : FoundStores) {
899     ST->eraseFromParent();
900     DeletedStores.insert(ST);
901   }
902   return true;
903 }
904 
905 bool LoadStoreOpt::mergeTruncStoresBlock(MachineBasicBlock &BB) {
906   bool Changed = false;
907   SmallVector<GStore *, 16> Stores;
908   SmallPtrSet<GStore *, 8> DeletedStores;
909   // Walk up the block so we can see the most eligible stores.
910   for (MachineInstr &MI : llvm::reverse(BB))
911     if (auto *StoreMI = dyn_cast<GStore>(&MI))
912       Stores.emplace_back(StoreMI);
913 
914   for (auto *StoreMI : Stores) {
915     if (DeletedStores.count(StoreMI))
916       continue;
917     if (mergeTruncStore(*StoreMI, DeletedStores))
918       Changed = true;
919   }
920   return Changed;
921 }
922 
923 bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) {
924   bool Changed = false;
925   for (auto &BB : MF){
926     Changed |= mergeBlockStores(BB);
927     Changed |= mergeTruncStoresBlock(BB);
928   }
929 
930   // Erase all dead instructions left over by the merging.
931   if (Changed) {
932     for (auto &BB : MF) {
933       for (auto &I : make_early_inc_range(make_range(BB.rbegin(), BB.rend()))) {
934         if (isTriviallyDead(I, *MRI))
935           I.eraseFromParent();
936       }
937     }
938   }
939 
940   return Changed;
941 }
942 
943 void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) {
944   // Query the legalizer info to record what store types are legal.
945   // We record this because we don't want to bother trying to merge stores into
946   // illegal ones, which would just result in being split again.
947 
948   if (LegalStoreSizes.count(AddrSpace)) {
949     assert(LegalStoreSizes[AddrSpace].any());
950     return; // Already cached sizes for this address space.
951   }
952 
953   // Need to reserve at least MaxStoreSizeToForm + 1 bits.
954   BitVector LegalSizes(MaxStoreSizeToForm * 2);
955   const auto &LI = *MF->getSubtarget().getLegalizerInfo();
956   const auto &DL = MF->getFunction().getDataLayout();
957   Type *IRPtrTy = PointerType::get(MF->getFunction().getContext(), AddrSpace);
958   LLT PtrTy = getLLTForType(*IRPtrTy, DL);
959   // We assume that we're not going to be generating any stores wider than
960   // MaxStoreSizeToForm bits for now.
961   for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) {
962     LLT Ty = LLT::scalar(Size);
963     SmallVector<LegalityQuery::MemDesc, 2> MemDescrs(
964         {{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}});
965     SmallVector<LLT> StoreTys({Ty, PtrTy});
966     LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs);
967     LegalizeActionStep ActionStep = LI.getAction(Q);
968     if (ActionStep.Action == LegalizeActions::Legal)
969       LegalSizes.set(Size);
970   }
971   assert(LegalSizes.any() && "Expected some store sizes to be legal!");
972   LegalStoreSizes[AddrSpace] = LegalSizes;
973 }
974 
975 bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) {
976   // If the ISel pipeline failed, do not bother running that pass.
977   if (MF.getProperties().hasProperty(
978           MachineFunctionProperties::Property::FailedISel))
979     return false;
980 
981   LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName()
982                     << '\n');
983 
984   init(MF);
985   bool Changed = false;
986   Changed |= mergeFunctionStores(MF);
987 
988   LegalStoreSizes.clear();
989   return Changed;
990 }
991