1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 21 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 22 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/CodeGen/GlobalISel/Utils.h" 25 #include "llvm/CodeGen/LowLevelTypeUtils.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 30 #include "llvm/CodeGen/TargetFrameLowering.h" 31 #include "llvm/CodeGen/TargetInstrInfo.h" 32 #include "llvm/CodeGen/TargetLowering.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetSubtargetInfo.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetMachine.h" 40 #include <numeric> 41 #include <optional> 42 43 #define DEBUG_TYPE "legalizer" 44 45 using namespace llvm; 46 using namespace LegalizeActions; 47 using namespace MIPatternMatch; 48 49 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 50 /// 51 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 52 /// with any leftover piece as type \p LeftoverTy 53 /// 54 /// Returns -1 in the first element of the pair if the breakdown is not 55 /// satisfiable. 56 static std::pair<int, int> 57 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 58 assert(!LeftoverTy.isValid() && "this is an out argument"); 59 60 unsigned Size = OrigTy.getSizeInBits(); 61 unsigned NarrowSize = NarrowTy.getSizeInBits(); 62 unsigned NumParts = Size / NarrowSize; 63 unsigned LeftoverSize = Size - NumParts * NarrowSize; 64 assert(Size > NarrowSize); 65 66 if (LeftoverSize == 0) 67 return {NumParts, 0}; 68 69 if (NarrowTy.isVector()) { 70 unsigned EltSize = OrigTy.getScalarSizeInBits(); 71 if (LeftoverSize % EltSize != 0) 72 return {-1, -1}; 73 LeftoverTy = 74 LLT::scalarOrVector(ElementCount::getFixed(LeftoverSize / EltSize), 75 OrigTy.getElementType()); 76 } else { 77 LeftoverTy = LLT::scalar(LeftoverSize); 78 } 79 80 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 81 return std::make_pair(NumParts, NumLeftover); 82 } 83 84 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 85 86 if (!Ty.isScalar()) 87 return nullptr; 88 89 switch (Ty.getSizeInBits()) { 90 case 16: 91 return Type::getHalfTy(Ctx); 92 case 32: 93 return Type::getFloatTy(Ctx); 94 case 64: 95 return Type::getDoubleTy(Ctx); 96 case 80: 97 return Type::getX86_FP80Ty(Ctx); 98 case 128: 99 return Type::getFP128Ty(Ctx); 100 default: 101 return nullptr; 102 } 103 } 104 105 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 106 GISelChangeObserver &Observer, 107 MachineIRBuilder &Builder) 108 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 109 LI(*MF.getSubtarget().getLegalizerInfo()), 110 TLI(*MF.getSubtarget().getTargetLowering()), KB(nullptr) {} 111 112 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 113 GISelChangeObserver &Observer, 114 MachineIRBuilder &B, GISelKnownBits *KB) 115 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 116 TLI(*MF.getSubtarget().getTargetLowering()), KB(KB) {} 117 118 LegalizerHelper::LegalizeResult 119 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 120 LostDebugLocObserver &LocObserver) { 121 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 122 123 MIRBuilder.setInstrAndDebugLoc(MI); 124 125 if (isa<GIntrinsic>(MI)) 126 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 127 auto Step = LI.getAction(MI, MRI); 128 switch (Step.Action) { 129 case Legal: 130 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 131 return AlreadyLegal; 132 case Libcall: 133 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 134 return libcall(MI, LocObserver); 135 case NarrowScalar: 136 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 137 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 138 case WidenScalar: 139 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 140 return widenScalar(MI, Step.TypeIdx, Step.NewType); 141 case Bitcast: 142 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 143 return bitcast(MI, Step.TypeIdx, Step.NewType); 144 case Lower: 145 LLVM_DEBUG(dbgs() << ".. Lower\n"); 146 return lower(MI, Step.TypeIdx, Step.NewType); 147 case FewerElements: 148 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 149 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 150 case MoreElements: 151 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 152 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 153 case Custom: 154 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 155 return LI.legalizeCustom(*this, MI, LocObserver) ? Legalized 156 : UnableToLegalize; 157 default: 158 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 159 return UnableToLegalize; 160 } 161 } 162 163 void LegalizerHelper::insertParts(Register DstReg, 164 LLT ResultTy, LLT PartTy, 165 ArrayRef<Register> PartRegs, 166 LLT LeftoverTy, 167 ArrayRef<Register> LeftoverRegs) { 168 if (!LeftoverTy.isValid()) { 169 assert(LeftoverRegs.empty()); 170 171 if (!ResultTy.isVector()) { 172 MIRBuilder.buildMergeLikeInstr(DstReg, PartRegs); 173 return; 174 } 175 176 if (PartTy.isVector()) 177 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 178 else 179 MIRBuilder.buildBuildVector(DstReg, PartRegs); 180 return; 181 } 182 183 // Merge sub-vectors with different number of elements and insert into DstReg. 184 if (ResultTy.isVector()) { 185 assert(LeftoverRegs.size() == 1 && "Expected one leftover register"); 186 SmallVector<Register, 8> AllRegs(PartRegs.begin(), PartRegs.end()); 187 AllRegs.append(LeftoverRegs.begin(), LeftoverRegs.end()); 188 return mergeMixedSubvectors(DstReg, AllRegs); 189 } 190 191 SmallVector<Register> GCDRegs; 192 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); 193 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) 194 extractGCDType(GCDRegs, GCDTy, PartReg); 195 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 196 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 197 } 198 199 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts, 200 Register Reg) { 201 LLT Ty = MRI.getType(Reg); 202 SmallVector<Register, 8> RegElts; 203 extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts, 204 MIRBuilder, MRI); 205 Elts.append(RegElts); 206 } 207 208 /// Merge \p PartRegs with different types into \p DstReg. 209 void LegalizerHelper::mergeMixedSubvectors(Register DstReg, 210 ArrayRef<Register> PartRegs) { 211 SmallVector<Register, 8> AllElts; 212 for (unsigned i = 0; i < PartRegs.size() - 1; ++i) 213 appendVectorElts(AllElts, PartRegs[i]); 214 215 Register Leftover = PartRegs[PartRegs.size() - 1]; 216 if (!MRI.getType(Leftover).isVector()) 217 AllElts.push_back(Leftover); 218 else 219 appendVectorElts(AllElts, Leftover); 220 221 MIRBuilder.buildMergeLikeInstr(DstReg, AllElts); 222 } 223 224 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 225 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 226 const MachineInstr &MI) { 227 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 228 229 const int StartIdx = Regs.size(); 230 const int NumResults = MI.getNumOperands() - 1; 231 Regs.resize(Regs.size() + NumResults); 232 for (int I = 0; I != NumResults; ++I) 233 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 234 } 235 236 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 237 LLT GCDTy, Register SrcReg) { 238 LLT SrcTy = MRI.getType(SrcReg); 239 if (SrcTy == GCDTy) { 240 // If the source already evenly divides the result type, we don't need to do 241 // anything. 242 Parts.push_back(SrcReg); 243 } else { 244 // Need to split into common type sized pieces. 245 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 246 getUnmergeResults(Parts, *Unmerge); 247 } 248 } 249 250 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 251 LLT NarrowTy, Register SrcReg) { 252 LLT SrcTy = MRI.getType(SrcReg); 253 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 254 extractGCDType(Parts, GCDTy, SrcReg); 255 return GCDTy; 256 } 257 258 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 259 SmallVectorImpl<Register> &VRegs, 260 unsigned PadStrategy) { 261 LLT LCMTy = getLCMType(DstTy, NarrowTy); 262 263 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 264 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 265 int NumOrigSrc = VRegs.size(); 266 267 Register PadReg; 268 269 // Get a value we can use to pad the source value if the sources won't evenly 270 // cover the result type. 271 if (NumOrigSrc < NumParts * NumSubParts) { 272 if (PadStrategy == TargetOpcode::G_ZEXT) 273 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 274 else if (PadStrategy == TargetOpcode::G_ANYEXT) 275 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 276 else { 277 assert(PadStrategy == TargetOpcode::G_SEXT); 278 279 // Shift the sign bit of the low register through the high register. 280 auto ShiftAmt = 281 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 282 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 283 } 284 } 285 286 // Registers for the final merge to be produced. 287 SmallVector<Register, 4> Remerge(NumParts); 288 289 // Registers needed for intermediate merges, which will be merged into a 290 // source for Remerge. 291 SmallVector<Register, 4> SubMerge(NumSubParts); 292 293 // Once we've fully read off the end of the original source bits, we can reuse 294 // the same high bits for remaining padding elements. 295 Register AllPadReg; 296 297 // Build merges to the LCM type to cover the original result type. 298 for (int I = 0; I != NumParts; ++I) { 299 bool AllMergePartsArePadding = true; 300 301 // Build the requested merges to the requested type. 302 for (int J = 0; J != NumSubParts; ++J) { 303 int Idx = I * NumSubParts + J; 304 if (Idx >= NumOrigSrc) { 305 SubMerge[J] = PadReg; 306 continue; 307 } 308 309 SubMerge[J] = VRegs[Idx]; 310 311 // There are meaningful bits here we can't reuse later. 312 AllMergePartsArePadding = false; 313 } 314 315 // If we've filled up a complete piece with padding bits, we can directly 316 // emit the natural sized constant if applicable, rather than a merge of 317 // smaller constants. 318 if (AllMergePartsArePadding && !AllPadReg) { 319 if (PadStrategy == TargetOpcode::G_ANYEXT) 320 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 321 else if (PadStrategy == TargetOpcode::G_ZEXT) 322 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 323 324 // If this is a sign extension, we can't materialize a trivial constant 325 // with the right type and have to produce a merge. 326 } 327 328 if (AllPadReg) { 329 // Avoid creating additional instructions if we're just adding additional 330 // copies of padding bits. 331 Remerge[I] = AllPadReg; 332 continue; 333 } 334 335 if (NumSubParts == 1) 336 Remerge[I] = SubMerge[0]; 337 else 338 Remerge[I] = MIRBuilder.buildMergeLikeInstr(NarrowTy, SubMerge).getReg(0); 339 340 // In the sign extend padding case, re-use the first all-signbit merge. 341 if (AllMergePartsArePadding && !AllPadReg) 342 AllPadReg = Remerge[I]; 343 } 344 345 VRegs = std::move(Remerge); 346 return LCMTy; 347 } 348 349 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 350 ArrayRef<Register> RemergeRegs) { 351 LLT DstTy = MRI.getType(DstReg); 352 353 // Create the merge to the widened source, and extract the relevant bits into 354 // the result. 355 356 if (DstTy == LCMTy) { 357 MIRBuilder.buildMergeLikeInstr(DstReg, RemergeRegs); 358 return; 359 } 360 361 auto Remerge = MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs); 362 if (DstTy.isScalar() && LCMTy.isScalar()) { 363 MIRBuilder.buildTrunc(DstReg, Remerge); 364 return; 365 } 366 367 if (LCMTy.isVector()) { 368 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 369 SmallVector<Register, 8> UnmergeDefs(NumDefs); 370 UnmergeDefs[0] = DstReg; 371 for (unsigned I = 1; I != NumDefs; ++I) 372 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 373 374 MIRBuilder.buildUnmerge(UnmergeDefs, 375 MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs)); 376 return; 377 } 378 379 llvm_unreachable("unhandled case"); 380 } 381 382 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 383 #define RTLIBCASE_INT(LibcallPrefix) \ 384 do { \ 385 switch (Size) { \ 386 case 32: \ 387 return RTLIB::LibcallPrefix##32; \ 388 case 64: \ 389 return RTLIB::LibcallPrefix##64; \ 390 case 128: \ 391 return RTLIB::LibcallPrefix##128; \ 392 default: \ 393 llvm_unreachable("unexpected size"); \ 394 } \ 395 } while (0) 396 397 #define RTLIBCASE(LibcallPrefix) \ 398 do { \ 399 switch (Size) { \ 400 case 32: \ 401 return RTLIB::LibcallPrefix##32; \ 402 case 64: \ 403 return RTLIB::LibcallPrefix##64; \ 404 case 80: \ 405 return RTLIB::LibcallPrefix##80; \ 406 case 128: \ 407 return RTLIB::LibcallPrefix##128; \ 408 default: \ 409 llvm_unreachable("unexpected size"); \ 410 } \ 411 } while (0) 412 413 switch (Opcode) { 414 case TargetOpcode::G_MUL: 415 RTLIBCASE_INT(MUL_I); 416 case TargetOpcode::G_SDIV: 417 RTLIBCASE_INT(SDIV_I); 418 case TargetOpcode::G_UDIV: 419 RTLIBCASE_INT(UDIV_I); 420 case TargetOpcode::G_SREM: 421 RTLIBCASE_INT(SREM_I); 422 case TargetOpcode::G_UREM: 423 RTLIBCASE_INT(UREM_I); 424 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 425 RTLIBCASE_INT(CTLZ_I); 426 case TargetOpcode::G_FADD: 427 RTLIBCASE(ADD_F); 428 case TargetOpcode::G_FSUB: 429 RTLIBCASE(SUB_F); 430 case TargetOpcode::G_FMUL: 431 RTLIBCASE(MUL_F); 432 case TargetOpcode::G_FDIV: 433 RTLIBCASE(DIV_F); 434 case TargetOpcode::G_FEXP: 435 RTLIBCASE(EXP_F); 436 case TargetOpcode::G_FEXP2: 437 RTLIBCASE(EXP2_F); 438 case TargetOpcode::G_FEXP10: 439 RTLIBCASE(EXP10_F); 440 case TargetOpcode::G_FREM: 441 RTLIBCASE(REM_F); 442 case TargetOpcode::G_FPOW: 443 RTLIBCASE(POW_F); 444 case TargetOpcode::G_FPOWI: 445 RTLIBCASE(POWI_F); 446 case TargetOpcode::G_FMA: 447 RTLIBCASE(FMA_F); 448 case TargetOpcode::G_FSIN: 449 RTLIBCASE(SIN_F); 450 case TargetOpcode::G_FCOS: 451 RTLIBCASE(COS_F); 452 case TargetOpcode::G_FTAN: 453 RTLIBCASE(TAN_F); 454 case TargetOpcode::G_FASIN: 455 RTLIBCASE(ASIN_F); 456 case TargetOpcode::G_FACOS: 457 RTLIBCASE(ACOS_F); 458 case TargetOpcode::G_FATAN: 459 RTLIBCASE(ATAN_F); 460 case TargetOpcode::G_FATAN2: 461 RTLIBCASE(ATAN2_F); 462 case TargetOpcode::G_FSINH: 463 RTLIBCASE(SINH_F); 464 case TargetOpcode::G_FCOSH: 465 RTLIBCASE(COSH_F); 466 case TargetOpcode::G_FTANH: 467 RTLIBCASE(TANH_F); 468 case TargetOpcode::G_FLOG10: 469 RTLIBCASE(LOG10_F); 470 case TargetOpcode::G_FLOG: 471 RTLIBCASE(LOG_F); 472 case TargetOpcode::G_FLOG2: 473 RTLIBCASE(LOG2_F); 474 case TargetOpcode::G_FLDEXP: 475 RTLIBCASE(LDEXP_F); 476 case TargetOpcode::G_FCEIL: 477 RTLIBCASE(CEIL_F); 478 case TargetOpcode::G_FFLOOR: 479 RTLIBCASE(FLOOR_F); 480 case TargetOpcode::G_FMINNUM: 481 RTLIBCASE(FMIN_F); 482 case TargetOpcode::G_FMAXNUM: 483 RTLIBCASE(FMAX_F); 484 case TargetOpcode::G_FSQRT: 485 RTLIBCASE(SQRT_F); 486 case TargetOpcode::G_FRINT: 487 RTLIBCASE(RINT_F); 488 case TargetOpcode::G_FNEARBYINT: 489 RTLIBCASE(NEARBYINT_F); 490 case TargetOpcode::G_INTRINSIC_TRUNC: 491 RTLIBCASE(TRUNC_F); 492 case TargetOpcode::G_INTRINSIC_ROUND: 493 RTLIBCASE(ROUND_F); 494 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 495 RTLIBCASE(ROUNDEVEN_F); 496 case TargetOpcode::G_INTRINSIC_LRINT: 497 RTLIBCASE(LRINT_F); 498 case TargetOpcode::G_INTRINSIC_LLRINT: 499 RTLIBCASE(LLRINT_F); 500 } 501 llvm_unreachable("Unknown libcall function"); 502 #undef RTLIBCASE_INT 503 #undef RTLIBCASE 504 } 505 506 /// True if an instruction is in tail position in its caller. Intended for 507 /// legalizing libcalls as tail calls when possible. 508 static bool isLibCallInTailPosition(const CallLowering::ArgInfo &Result, 509 MachineInstr &MI, 510 const TargetInstrInfo &TII, 511 MachineRegisterInfo &MRI) { 512 MachineBasicBlock &MBB = *MI.getParent(); 513 const Function &F = MBB.getParent()->getFunction(); 514 515 // Conservatively require the attributes of the call to match those of 516 // the return. Ignore NoAlias and NonNull because they don't affect the 517 // call sequence. 518 AttributeList CallerAttrs = F.getAttributes(); 519 if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs()) 520 .removeAttribute(Attribute::NoAlias) 521 .removeAttribute(Attribute::NonNull) 522 .hasAttributes()) 523 return false; 524 525 // It's not safe to eliminate the sign / zero extension of the return value. 526 if (CallerAttrs.hasRetAttr(Attribute::ZExt) || 527 CallerAttrs.hasRetAttr(Attribute::SExt)) 528 return false; 529 530 // Only tail call if the following instruction is a standard return or if we 531 // have a `thisreturn` callee, and a sequence like: 532 // 533 // G_MEMCPY %0, %1, %2 534 // $x0 = COPY %0 535 // RET_ReallyLR implicit $x0 536 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 537 if (Next != MBB.instr_end() && Next->isCopy()) { 538 if (MI.getOpcode() == TargetOpcode::G_BZERO) 539 return false; 540 541 // For MEMCPY/MOMMOVE/MEMSET these will be the first use (the dst), as the 542 // mempy/etc routines return the same parameter. For other it will be the 543 // returned value. 544 Register VReg = MI.getOperand(0).getReg(); 545 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) 546 return false; 547 548 Register PReg = Next->getOperand(0).getReg(); 549 if (!PReg.isPhysical()) 550 return false; 551 552 auto Ret = next_nodbg(Next, MBB.instr_end()); 553 if (Ret == MBB.instr_end() || !Ret->isReturn()) 554 return false; 555 556 if (Ret->getNumImplicitOperands() != 1) 557 return false; 558 559 if (!Ret->getOperand(0).isReg() || PReg != Ret->getOperand(0).getReg()) 560 return false; 561 562 // Skip over the COPY that we just validated. 563 Next = Ret; 564 } 565 566 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 567 return false; 568 569 return true; 570 } 571 572 LegalizerHelper::LegalizeResult 573 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 574 const CallLowering::ArgInfo &Result, 575 ArrayRef<CallLowering::ArgInfo> Args, 576 const CallingConv::ID CC, LostDebugLocObserver &LocObserver, 577 MachineInstr *MI) { 578 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 579 580 CallLowering::CallLoweringInfo Info; 581 Info.CallConv = CC; 582 Info.Callee = MachineOperand::CreateES(Name); 583 Info.OrigRet = Result; 584 if (MI) 585 Info.IsTailCall = 586 (Result.Ty->isVoidTy() || 587 Result.Ty == MIRBuilder.getMF().getFunction().getReturnType()) && 588 isLibCallInTailPosition(Result, *MI, MIRBuilder.getTII(), 589 *MIRBuilder.getMRI()); 590 591 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 592 if (!CLI.lowerCall(MIRBuilder, Info)) 593 return LegalizerHelper::UnableToLegalize; 594 595 if (MI && Info.LoweredTailCall) { 596 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 597 598 // Check debug locations before removing the return. 599 LocObserver.checkpoint(true); 600 601 // We must have a return following the call (or debug insts) to get past 602 // isLibCallInTailPosition. 603 do { 604 MachineInstr *Next = MI->getNextNode(); 605 assert(Next && 606 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 607 "Expected instr following MI to be return or debug inst?"); 608 // We lowered a tail call, so the call is now the return from the block. 609 // Delete the old return. 610 Next->eraseFromParent(); 611 } while (MI->getNextNode()); 612 613 // We expect to lose the debug location from the return. 614 LocObserver.checkpoint(false); 615 } 616 return LegalizerHelper::Legalized; 617 } 618 619 LegalizerHelper::LegalizeResult 620 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 621 const CallLowering::ArgInfo &Result, 622 ArrayRef<CallLowering::ArgInfo> Args, 623 LostDebugLocObserver &LocObserver, MachineInstr *MI) { 624 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 625 const char *Name = TLI.getLibcallName(Libcall); 626 if (!Name) 627 return LegalizerHelper::UnableToLegalize; 628 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 629 return createLibcall(MIRBuilder, Name, Result, Args, CC, LocObserver, MI); 630 } 631 632 // Useful for libcalls where all operands have the same type. 633 static LegalizerHelper::LegalizeResult 634 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 635 Type *OpType, LostDebugLocObserver &LocObserver) { 636 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 637 638 // FIXME: What does the original arg index mean here? 639 SmallVector<CallLowering::ArgInfo, 3> Args; 640 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 641 Args.push_back({MO.getReg(), OpType, 0}); 642 return createLibcall(MIRBuilder, Libcall, 643 {MI.getOperand(0).getReg(), OpType, 0}, Args, 644 LocObserver, &MI); 645 } 646 647 LegalizerHelper::LegalizeResult 648 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 649 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 650 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 651 652 SmallVector<CallLowering::ArgInfo, 3> Args; 653 // Add all the args, except for the last which is an imm denoting 'tail'. 654 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 655 Register Reg = MI.getOperand(i).getReg(); 656 657 // Need derive an IR type for call lowering. 658 LLT OpLLT = MRI.getType(Reg); 659 Type *OpTy = nullptr; 660 if (OpLLT.isPointer()) 661 OpTy = PointerType::get(Ctx, OpLLT.getAddressSpace()); 662 else 663 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 664 Args.push_back({Reg, OpTy, 0}); 665 } 666 667 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 668 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 669 RTLIB::Libcall RTLibcall; 670 unsigned Opc = MI.getOpcode(); 671 switch (Opc) { 672 case TargetOpcode::G_BZERO: 673 RTLibcall = RTLIB::BZERO; 674 break; 675 case TargetOpcode::G_MEMCPY: 676 RTLibcall = RTLIB::MEMCPY; 677 Args[0].Flags[0].setReturned(); 678 break; 679 case TargetOpcode::G_MEMMOVE: 680 RTLibcall = RTLIB::MEMMOVE; 681 Args[0].Flags[0].setReturned(); 682 break; 683 case TargetOpcode::G_MEMSET: 684 RTLibcall = RTLIB::MEMSET; 685 Args[0].Flags[0].setReturned(); 686 break; 687 default: 688 llvm_unreachable("unsupported opcode"); 689 } 690 const char *Name = TLI.getLibcallName(RTLibcall); 691 692 // Unsupported libcall on the target. 693 if (!Name) { 694 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 695 << MIRBuilder.getTII().getName(Opc) << "\n"); 696 return LegalizerHelper::UnableToLegalize; 697 } 698 699 CallLowering::CallLoweringInfo Info; 700 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 701 Info.Callee = MachineOperand::CreateES(Name); 702 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); 703 Info.IsTailCall = 704 MI.getOperand(MI.getNumOperands() - 1).getImm() && 705 isLibCallInTailPosition(Info.OrigRet, MI, MIRBuilder.getTII(), MRI); 706 707 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 708 if (!CLI.lowerCall(MIRBuilder, Info)) 709 return LegalizerHelper::UnableToLegalize; 710 711 if (Info.LoweredTailCall) { 712 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 713 714 // Check debug locations before removing the return. 715 LocObserver.checkpoint(true); 716 717 // We must have a return following the call (or debug insts) to get past 718 // isLibCallInTailPosition. 719 do { 720 MachineInstr *Next = MI.getNextNode(); 721 assert(Next && 722 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 723 "Expected instr following MI to be return or debug inst?"); 724 // We lowered a tail call, so the call is now the return from the block. 725 // Delete the old return. 726 Next->eraseFromParent(); 727 } while (MI.getNextNode()); 728 729 // We expect to lose the debug location from the return. 730 LocObserver.checkpoint(false); 731 } 732 733 return LegalizerHelper::Legalized; 734 } 735 736 static RTLIB::Libcall getOutlineAtomicLibcall(MachineInstr &MI) { 737 unsigned Opc = MI.getOpcode(); 738 auto &AtomicMI = cast<GMemOperation>(MI); 739 auto &MMO = AtomicMI.getMMO(); 740 auto Ordering = MMO.getMergedOrdering(); 741 LLT MemType = MMO.getMemoryType(); 742 uint64_t MemSize = MemType.getSizeInBytes(); 743 if (MemType.isVector()) 744 return RTLIB::UNKNOWN_LIBCALL; 745 746 #define LCALLS(A, B) {A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL} 747 #define LCALL5(A) \ 748 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) 749 switch (Opc) { 750 case TargetOpcode::G_ATOMIC_CMPXCHG: 751 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 752 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_CAS)}; 753 return getOutlineAtomicHelper(LC, Ordering, MemSize); 754 } 755 case TargetOpcode::G_ATOMICRMW_XCHG: { 756 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_SWP)}; 757 return getOutlineAtomicHelper(LC, Ordering, MemSize); 758 } 759 case TargetOpcode::G_ATOMICRMW_ADD: 760 case TargetOpcode::G_ATOMICRMW_SUB: { 761 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDADD)}; 762 return getOutlineAtomicHelper(LC, Ordering, MemSize); 763 } 764 case TargetOpcode::G_ATOMICRMW_AND: { 765 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDCLR)}; 766 return getOutlineAtomicHelper(LC, Ordering, MemSize); 767 } 768 case TargetOpcode::G_ATOMICRMW_OR: { 769 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDSET)}; 770 return getOutlineAtomicHelper(LC, Ordering, MemSize); 771 } 772 case TargetOpcode::G_ATOMICRMW_XOR: { 773 const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDEOR)}; 774 return getOutlineAtomicHelper(LC, Ordering, MemSize); 775 } 776 default: 777 return RTLIB::UNKNOWN_LIBCALL; 778 } 779 #undef LCALLS 780 #undef LCALL5 781 } 782 783 static LegalizerHelper::LegalizeResult 784 createAtomicLibcall(MachineIRBuilder &MIRBuilder, MachineInstr &MI) { 785 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 786 787 Type *RetTy; 788 SmallVector<Register> RetRegs; 789 SmallVector<CallLowering::ArgInfo, 3> Args; 790 unsigned Opc = MI.getOpcode(); 791 switch (Opc) { 792 case TargetOpcode::G_ATOMIC_CMPXCHG: 793 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 794 Register Success; 795 LLT SuccessLLT; 796 auto [Ret, RetLLT, Mem, MemLLT, Cmp, CmpLLT, New, NewLLT] = 797 MI.getFirst4RegLLTs(); 798 RetRegs.push_back(Ret); 799 RetTy = IntegerType::get(Ctx, RetLLT.getSizeInBits()); 800 if (Opc == TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS) { 801 std::tie(Ret, RetLLT, Success, SuccessLLT, Mem, MemLLT, Cmp, CmpLLT, New, 802 NewLLT) = MI.getFirst5RegLLTs(); 803 RetRegs.push_back(Success); 804 RetTy = StructType::get( 805 Ctx, {RetTy, IntegerType::get(Ctx, SuccessLLT.getSizeInBits())}); 806 } 807 Args.push_back({Cmp, IntegerType::get(Ctx, CmpLLT.getSizeInBits()), 0}); 808 Args.push_back({New, IntegerType::get(Ctx, NewLLT.getSizeInBits()), 0}); 809 Args.push_back({Mem, PointerType::get(Ctx, MemLLT.getAddressSpace()), 0}); 810 break; 811 } 812 case TargetOpcode::G_ATOMICRMW_XCHG: 813 case TargetOpcode::G_ATOMICRMW_ADD: 814 case TargetOpcode::G_ATOMICRMW_SUB: 815 case TargetOpcode::G_ATOMICRMW_AND: 816 case TargetOpcode::G_ATOMICRMW_OR: 817 case TargetOpcode::G_ATOMICRMW_XOR: { 818 auto [Ret, RetLLT, Mem, MemLLT, Val, ValLLT] = MI.getFirst3RegLLTs(); 819 RetRegs.push_back(Ret); 820 RetTy = IntegerType::get(Ctx, RetLLT.getSizeInBits()); 821 if (Opc == TargetOpcode::G_ATOMICRMW_AND) 822 Val = 823 MIRBuilder.buildXor(ValLLT, MIRBuilder.buildConstant(ValLLT, -1), Val) 824 .getReg(0); 825 else if (Opc == TargetOpcode::G_ATOMICRMW_SUB) 826 Val = 827 MIRBuilder.buildSub(ValLLT, MIRBuilder.buildConstant(ValLLT, 0), Val) 828 .getReg(0); 829 Args.push_back({Val, IntegerType::get(Ctx, ValLLT.getSizeInBits()), 0}); 830 Args.push_back({Mem, PointerType::get(Ctx, MemLLT.getAddressSpace()), 0}); 831 break; 832 } 833 default: 834 llvm_unreachable("unsupported opcode"); 835 } 836 837 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 838 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 839 RTLIB::Libcall RTLibcall = getOutlineAtomicLibcall(MI); 840 const char *Name = TLI.getLibcallName(RTLibcall); 841 842 // Unsupported libcall on the target. 843 if (!Name) { 844 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 845 << MIRBuilder.getTII().getName(Opc) << "\n"); 846 return LegalizerHelper::UnableToLegalize; 847 } 848 849 CallLowering::CallLoweringInfo Info; 850 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 851 Info.Callee = MachineOperand::CreateES(Name); 852 Info.OrigRet = CallLowering::ArgInfo(RetRegs, RetTy, 0); 853 854 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 855 if (!CLI.lowerCall(MIRBuilder, Info)) 856 return LegalizerHelper::UnableToLegalize; 857 858 return LegalizerHelper::Legalized; 859 } 860 861 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 862 Type *FromType) { 863 auto ToMVT = MVT::getVT(ToType); 864 auto FromMVT = MVT::getVT(FromType); 865 866 switch (Opcode) { 867 case TargetOpcode::G_FPEXT: 868 return RTLIB::getFPEXT(FromMVT, ToMVT); 869 case TargetOpcode::G_FPTRUNC: 870 return RTLIB::getFPROUND(FromMVT, ToMVT); 871 case TargetOpcode::G_FPTOSI: 872 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 873 case TargetOpcode::G_FPTOUI: 874 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 875 case TargetOpcode::G_SITOFP: 876 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 877 case TargetOpcode::G_UITOFP: 878 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 879 } 880 llvm_unreachable("Unsupported libcall function"); 881 } 882 883 static LegalizerHelper::LegalizeResult 884 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 885 Type *FromType, LostDebugLocObserver &LocObserver, 886 const TargetLowering &TLI, bool IsSigned = false) { 887 CallLowering::ArgInfo Arg = {MI.getOperand(1).getReg(), FromType, 0}; 888 if (FromType->isIntegerTy()) { 889 if (TLI.shouldSignExtendTypeInLibCall(FromType, IsSigned)) 890 Arg.Flags[0].setSExt(); 891 else 892 Arg.Flags[0].setZExt(); 893 } 894 895 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 896 return createLibcall(MIRBuilder, Libcall, 897 {MI.getOperand(0).getReg(), ToType, 0}, Arg, LocObserver, 898 &MI); 899 } 900 901 static RTLIB::Libcall 902 getStateLibraryFunctionFor(MachineInstr &MI, const TargetLowering &TLI) { 903 RTLIB::Libcall RTLibcall; 904 switch (MI.getOpcode()) { 905 case TargetOpcode::G_GET_FPENV: 906 RTLibcall = RTLIB::FEGETENV; 907 break; 908 case TargetOpcode::G_SET_FPENV: 909 case TargetOpcode::G_RESET_FPENV: 910 RTLibcall = RTLIB::FESETENV; 911 break; 912 case TargetOpcode::G_GET_FPMODE: 913 RTLibcall = RTLIB::FEGETMODE; 914 break; 915 case TargetOpcode::G_SET_FPMODE: 916 case TargetOpcode::G_RESET_FPMODE: 917 RTLibcall = RTLIB::FESETMODE; 918 break; 919 default: 920 llvm_unreachable("Unexpected opcode"); 921 } 922 return RTLibcall; 923 } 924 925 // Some library functions that read FP state (fegetmode, fegetenv) write the 926 // state into a region in memory. IR intrinsics that do the same operations 927 // (get_fpmode, get_fpenv) return the state as integer value. To implement these 928 // intrinsics via the library functions, we need to use temporary variable, 929 // for example: 930 // 931 // %0:_(s32) = G_GET_FPMODE 932 // 933 // is transformed to: 934 // 935 // %1:_(p0) = G_FRAME_INDEX %stack.0 936 // BL &fegetmode 937 // %0:_(s32) = G_LOAD % 1 938 // 939 LegalizerHelper::LegalizeResult 940 LegalizerHelper::createGetStateLibcall(MachineIRBuilder &MIRBuilder, 941 MachineInstr &MI, 942 LostDebugLocObserver &LocObserver) { 943 const DataLayout &DL = MIRBuilder.getDataLayout(); 944 auto &MF = MIRBuilder.getMF(); 945 auto &MRI = *MIRBuilder.getMRI(); 946 auto &Ctx = MF.getFunction().getContext(); 947 948 // Create temporary, where library function will put the read state. 949 Register Dst = MI.getOperand(0).getReg(); 950 LLT StateTy = MRI.getType(Dst); 951 TypeSize StateSize = StateTy.getSizeInBytes(); 952 Align TempAlign = getStackTemporaryAlignment(StateTy); 953 MachinePointerInfo TempPtrInfo; 954 auto Temp = createStackTemporary(StateSize, TempAlign, TempPtrInfo); 955 956 // Create a call to library function, with the temporary as an argument. 957 unsigned TempAddrSpace = DL.getAllocaAddrSpace(); 958 Type *StatePtrTy = PointerType::get(Ctx, TempAddrSpace); 959 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI); 960 auto Res = 961 createLibcall(MIRBuilder, RTLibcall, 962 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0), 963 CallLowering::ArgInfo({Temp.getReg(0), StatePtrTy, 0}), 964 LocObserver, nullptr); 965 if (Res != LegalizerHelper::Legalized) 966 return Res; 967 968 // Create a load from the temporary. 969 MachineMemOperand *MMO = MF.getMachineMemOperand( 970 TempPtrInfo, MachineMemOperand::MOLoad, StateTy, TempAlign); 971 MIRBuilder.buildLoadInstr(TargetOpcode::G_LOAD, Dst, Temp, *MMO); 972 973 return LegalizerHelper::Legalized; 974 } 975 976 // Similar to `createGetStateLibcall` the function calls a library function 977 // using transient space in stack. In this case the library function reads 978 // content of memory region. 979 LegalizerHelper::LegalizeResult 980 LegalizerHelper::createSetStateLibcall(MachineIRBuilder &MIRBuilder, 981 MachineInstr &MI, 982 LostDebugLocObserver &LocObserver) { 983 const DataLayout &DL = MIRBuilder.getDataLayout(); 984 auto &MF = MIRBuilder.getMF(); 985 auto &MRI = *MIRBuilder.getMRI(); 986 auto &Ctx = MF.getFunction().getContext(); 987 988 // Create temporary, where library function will get the new state. 989 Register Src = MI.getOperand(0).getReg(); 990 LLT StateTy = MRI.getType(Src); 991 TypeSize StateSize = StateTy.getSizeInBytes(); 992 Align TempAlign = getStackTemporaryAlignment(StateTy); 993 MachinePointerInfo TempPtrInfo; 994 auto Temp = createStackTemporary(StateSize, TempAlign, TempPtrInfo); 995 996 // Put the new state into the temporary. 997 MachineMemOperand *MMO = MF.getMachineMemOperand( 998 TempPtrInfo, MachineMemOperand::MOStore, StateTy, TempAlign); 999 MIRBuilder.buildStore(Src, Temp, *MMO); 1000 1001 // Create a call to library function, with the temporary as an argument. 1002 unsigned TempAddrSpace = DL.getAllocaAddrSpace(); 1003 Type *StatePtrTy = PointerType::get(Ctx, TempAddrSpace); 1004 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI); 1005 return createLibcall(MIRBuilder, RTLibcall, 1006 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0), 1007 CallLowering::ArgInfo({Temp.getReg(0), StatePtrTy, 0}), 1008 LocObserver, nullptr); 1009 } 1010 1011 /// Returns the corresponding libcall for the given Pred and 1012 /// the ICMP predicate that should be generated to compare with #0 1013 /// after the libcall. 1014 static std::pair<RTLIB::Libcall, CmpInst::Predicate> 1015 getFCMPLibcallDesc(const CmpInst::Predicate Pred, unsigned Size) { 1016 #define RTLIBCASE_CMP(LibcallPrefix, ICmpPred) \ 1017 do { \ 1018 switch (Size) { \ 1019 case 32: \ 1020 return {RTLIB::LibcallPrefix##32, ICmpPred}; \ 1021 case 64: \ 1022 return {RTLIB::LibcallPrefix##64, ICmpPred}; \ 1023 case 128: \ 1024 return {RTLIB::LibcallPrefix##128, ICmpPred}; \ 1025 default: \ 1026 llvm_unreachable("unexpected size"); \ 1027 } \ 1028 } while (0) 1029 1030 switch (Pred) { 1031 case CmpInst::FCMP_OEQ: 1032 RTLIBCASE_CMP(OEQ_F, CmpInst::ICMP_EQ); 1033 case CmpInst::FCMP_UNE: 1034 RTLIBCASE_CMP(UNE_F, CmpInst::ICMP_NE); 1035 case CmpInst::FCMP_OGE: 1036 RTLIBCASE_CMP(OGE_F, CmpInst::ICMP_SGE); 1037 case CmpInst::FCMP_OLT: 1038 RTLIBCASE_CMP(OLT_F, CmpInst::ICMP_SLT); 1039 case CmpInst::FCMP_OLE: 1040 RTLIBCASE_CMP(OLE_F, CmpInst::ICMP_SLE); 1041 case CmpInst::FCMP_OGT: 1042 RTLIBCASE_CMP(OGT_F, CmpInst::ICMP_SGT); 1043 case CmpInst::FCMP_UNO: 1044 RTLIBCASE_CMP(UO_F, CmpInst::ICMP_NE); 1045 default: 1046 return {RTLIB::UNKNOWN_LIBCALL, CmpInst::BAD_ICMP_PREDICATE}; 1047 } 1048 } 1049 1050 LegalizerHelper::LegalizeResult 1051 LegalizerHelper::createFCMPLibcall(MachineIRBuilder &MIRBuilder, 1052 MachineInstr &MI, 1053 LostDebugLocObserver &LocObserver) { 1054 auto &MF = MIRBuilder.getMF(); 1055 auto &Ctx = MF.getFunction().getContext(); 1056 const GFCmp *Cmp = cast<GFCmp>(&MI); 1057 1058 LLT OpLLT = MRI.getType(Cmp->getLHSReg()); 1059 unsigned Size = OpLLT.getSizeInBits(); 1060 if ((Size != 32 && Size != 64 && Size != 128) || 1061 OpLLT != MRI.getType(Cmp->getRHSReg())) 1062 return UnableToLegalize; 1063 1064 Type *OpType = getFloatTypeForLLT(Ctx, OpLLT); 1065 1066 // DstReg type is s32 1067 const Register DstReg = Cmp->getReg(0); 1068 LLT DstTy = MRI.getType(DstReg); 1069 const auto Cond = Cmp->getCond(); 1070 1071 // Reference: 1072 // https://gcc.gnu.org/onlinedocs/gccint/Soft-float-library-routines.html#Comparison-functions-1 1073 // Generates a libcall followed by ICMP. 1074 const auto BuildLibcall = [&](const RTLIB::Libcall Libcall, 1075 const CmpInst::Predicate ICmpPred, 1076 const DstOp &Res) -> Register { 1077 // FCMP libcall always returns an i32, and needs an ICMP with #0. 1078 constexpr LLT TempLLT = LLT::scalar(32); 1079 Register Temp = MRI.createGenericVirtualRegister(TempLLT); 1080 // Generate libcall, holding result in Temp 1081 const auto Status = createLibcall( 1082 MIRBuilder, Libcall, {Temp, Type::getInt32Ty(Ctx), 0}, 1083 {{Cmp->getLHSReg(), OpType, 0}, {Cmp->getRHSReg(), OpType, 1}}, 1084 LocObserver, &MI); 1085 if (!Status) 1086 return {}; 1087 1088 // Compare temp with #0 to get the final result. 1089 return MIRBuilder 1090 .buildICmp(ICmpPred, Res, Temp, MIRBuilder.buildConstant(TempLLT, 0)) 1091 .getReg(0); 1092 }; 1093 1094 // Simple case if we have a direct mapping from predicate to libcall 1095 if (const auto [Libcall, ICmpPred] = getFCMPLibcallDesc(Cond, Size); 1096 Libcall != RTLIB::UNKNOWN_LIBCALL && 1097 ICmpPred != CmpInst::BAD_ICMP_PREDICATE) { 1098 if (BuildLibcall(Libcall, ICmpPred, DstReg)) { 1099 return Legalized; 1100 } 1101 return UnableToLegalize; 1102 } 1103 1104 // No direct mapping found, should be generated as combination of libcalls. 1105 1106 switch (Cond) { 1107 case CmpInst::FCMP_UEQ: { 1108 // FCMP_UEQ: unordered or equal 1109 // Convert into (FCMP_OEQ || FCMP_UNO). 1110 1111 const auto [OeqLibcall, OeqPred] = 1112 getFCMPLibcallDesc(CmpInst::FCMP_OEQ, Size); 1113 const auto Oeq = BuildLibcall(OeqLibcall, OeqPred, DstTy); 1114 1115 const auto [UnoLibcall, UnoPred] = 1116 getFCMPLibcallDesc(CmpInst::FCMP_UNO, Size); 1117 const auto Uno = BuildLibcall(UnoLibcall, UnoPred, DstTy); 1118 if (Oeq && Uno) 1119 MIRBuilder.buildOr(DstReg, Oeq, Uno); 1120 else 1121 return UnableToLegalize; 1122 1123 break; 1124 } 1125 case CmpInst::FCMP_ONE: { 1126 // FCMP_ONE: ordered and operands are unequal 1127 // Convert into (!FCMP_OEQ && !FCMP_UNO). 1128 1129 // We inverse the predicate instead of generating a NOT 1130 // to save one instruction. 1131 // On AArch64 isel can even select two cmp into a single ccmp. 1132 const auto [OeqLibcall, OeqPred] = 1133 getFCMPLibcallDesc(CmpInst::FCMP_OEQ, Size); 1134 const auto NotOeq = 1135 BuildLibcall(OeqLibcall, CmpInst::getInversePredicate(OeqPred), DstTy); 1136 1137 const auto [UnoLibcall, UnoPred] = 1138 getFCMPLibcallDesc(CmpInst::FCMP_UNO, Size); 1139 const auto NotUno = 1140 BuildLibcall(UnoLibcall, CmpInst::getInversePredicate(UnoPred), DstTy); 1141 1142 if (NotOeq && NotUno) 1143 MIRBuilder.buildAnd(DstReg, NotOeq, NotUno); 1144 else 1145 return UnableToLegalize; 1146 1147 break; 1148 } 1149 case CmpInst::FCMP_ULT: 1150 case CmpInst::FCMP_UGE: 1151 case CmpInst::FCMP_UGT: 1152 case CmpInst::FCMP_ULE: 1153 case CmpInst::FCMP_ORD: { 1154 // Convert into: !(inverse(Pred)) 1155 // E.g. FCMP_ULT becomes !FCMP_OGE 1156 // This is equivalent to the following, but saves some instructions. 1157 // MIRBuilder.buildNot( 1158 // PredTy, 1159 // MIRBuilder.buildFCmp(CmpInst::getInversePredicate(Pred), PredTy, 1160 // Op1, Op2)); 1161 const auto [InversedLibcall, InversedPred] = 1162 getFCMPLibcallDesc(CmpInst::getInversePredicate(Cond), Size); 1163 if (!BuildLibcall(InversedLibcall, 1164 CmpInst::getInversePredicate(InversedPred), DstReg)) 1165 return UnableToLegalize; 1166 break; 1167 } 1168 default: 1169 return UnableToLegalize; 1170 } 1171 1172 return Legalized; 1173 } 1174 1175 // The function is used to legalize operations that set default environment 1176 // state. In C library a call like `fesetmode(FE_DFL_MODE)` is used for that. 1177 // On most targets supported in glibc FE_DFL_MODE is defined as 1178 // `((const femode_t *) -1)`. Such assumption is used here. If for some target 1179 // it is not true, the target must provide custom lowering. 1180 LegalizerHelper::LegalizeResult 1181 LegalizerHelper::createResetStateLibcall(MachineIRBuilder &MIRBuilder, 1182 MachineInstr &MI, 1183 LostDebugLocObserver &LocObserver) { 1184 const DataLayout &DL = MIRBuilder.getDataLayout(); 1185 auto &MF = MIRBuilder.getMF(); 1186 auto &Ctx = MF.getFunction().getContext(); 1187 1188 // Create an argument for the library function. 1189 unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace(); 1190 Type *StatePtrTy = PointerType::get(Ctx, AddrSpace); 1191 unsigned PtrSize = DL.getPointerSizeInBits(AddrSpace); 1192 LLT MemTy = LLT::pointer(AddrSpace, PtrSize); 1193 auto DefValue = MIRBuilder.buildConstant(LLT::scalar(PtrSize), -1LL); 1194 DstOp Dest(MRI.createGenericVirtualRegister(MemTy)); 1195 MIRBuilder.buildIntToPtr(Dest, DefValue); 1196 1197 RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI); 1198 return createLibcall(MIRBuilder, RTLibcall, 1199 CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0), 1200 CallLowering::ArgInfo({Dest.getReg(), StatePtrTy, 0}), 1201 LocObserver, &MI); 1202 } 1203 1204 LegalizerHelper::LegalizeResult 1205 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 1206 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1207 1208 switch (MI.getOpcode()) { 1209 default: 1210 return UnableToLegalize; 1211 case TargetOpcode::G_MUL: 1212 case TargetOpcode::G_SDIV: 1213 case TargetOpcode::G_UDIV: 1214 case TargetOpcode::G_SREM: 1215 case TargetOpcode::G_UREM: 1216 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 1217 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 1218 unsigned Size = LLTy.getSizeInBits(); 1219 Type *HLTy = IntegerType::get(Ctx, Size); 1220 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy, LocObserver); 1221 if (Status != Legalized) 1222 return Status; 1223 break; 1224 } 1225 case TargetOpcode::G_FADD: 1226 case TargetOpcode::G_FSUB: 1227 case TargetOpcode::G_FMUL: 1228 case TargetOpcode::G_FDIV: 1229 case TargetOpcode::G_FMA: 1230 case TargetOpcode::G_FPOW: 1231 case TargetOpcode::G_FREM: 1232 case TargetOpcode::G_FCOS: 1233 case TargetOpcode::G_FSIN: 1234 case TargetOpcode::G_FTAN: 1235 case TargetOpcode::G_FACOS: 1236 case TargetOpcode::G_FASIN: 1237 case TargetOpcode::G_FATAN: 1238 case TargetOpcode::G_FATAN2: 1239 case TargetOpcode::G_FCOSH: 1240 case TargetOpcode::G_FSINH: 1241 case TargetOpcode::G_FTANH: 1242 case TargetOpcode::G_FLOG10: 1243 case TargetOpcode::G_FLOG: 1244 case TargetOpcode::G_FLOG2: 1245 case TargetOpcode::G_FEXP: 1246 case TargetOpcode::G_FEXP2: 1247 case TargetOpcode::G_FEXP10: 1248 case TargetOpcode::G_FCEIL: 1249 case TargetOpcode::G_FFLOOR: 1250 case TargetOpcode::G_FMINNUM: 1251 case TargetOpcode::G_FMAXNUM: 1252 case TargetOpcode::G_FSQRT: 1253 case TargetOpcode::G_FRINT: 1254 case TargetOpcode::G_FNEARBYINT: 1255 case TargetOpcode::G_INTRINSIC_TRUNC: 1256 case TargetOpcode::G_INTRINSIC_ROUND: 1257 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 1258 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 1259 unsigned Size = LLTy.getSizeInBits(); 1260 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 1261 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 1262 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 1263 return UnableToLegalize; 1264 } 1265 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy, LocObserver); 1266 if (Status != Legalized) 1267 return Status; 1268 break; 1269 } 1270 case TargetOpcode::G_INTRINSIC_LRINT: 1271 case TargetOpcode::G_INTRINSIC_LLRINT: { 1272 LLT LLTy = MRI.getType(MI.getOperand(1).getReg()); 1273 unsigned Size = LLTy.getSizeInBits(); 1274 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 1275 Type *ITy = IntegerType::get( 1276 Ctx, MRI.getType(MI.getOperand(0).getReg()).getSizeInBits()); 1277 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 1278 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 1279 return UnableToLegalize; 1280 } 1281 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 1282 LegalizeResult Status = 1283 createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ITy, 0}, 1284 {{MI.getOperand(1).getReg(), HLTy, 0}}, LocObserver, &MI); 1285 if (Status != Legalized) 1286 return Status; 1287 MI.eraseFromParent(); 1288 return Legalized; 1289 } 1290 case TargetOpcode::G_FPOWI: 1291 case TargetOpcode::G_FLDEXP: { 1292 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 1293 unsigned Size = LLTy.getSizeInBits(); 1294 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 1295 Type *ITy = IntegerType::get( 1296 Ctx, MRI.getType(MI.getOperand(2).getReg()).getSizeInBits()); 1297 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 1298 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 1299 return UnableToLegalize; 1300 } 1301 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 1302 SmallVector<CallLowering::ArgInfo, 2> Args = { 1303 {MI.getOperand(1).getReg(), HLTy, 0}, 1304 {MI.getOperand(2).getReg(), ITy, 1}}; 1305 Args[1].Flags[0].setSExt(); 1306 LegalizeResult Status = 1307 createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), HLTy, 0}, 1308 Args, LocObserver, &MI); 1309 if (Status != Legalized) 1310 return Status; 1311 break; 1312 } 1313 case TargetOpcode::G_FPEXT: 1314 case TargetOpcode::G_FPTRUNC: { 1315 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 1316 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 1317 if (!FromTy || !ToTy) 1318 return UnableToLegalize; 1319 LegalizeResult Status = 1320 conversionLibcall(MI, MIRBuilder, ToTy, FromTy, LocObserver, TLI); 1321 if (Status != Legalized) 1322 return Status; 1323 break; 1324 } 1325 case TargetOpcode::G_FCMP: { 1326 LegalizeResult Status = createFCMPLibcall(MIRBuilder, MI, LocObserver); 1327 if (Status != Legalized) 1328 return Status; 1329 MI.eraseFromParent(); 1330 return Status; 1331 } 1332 case TargetOpcode::G_FPTOSI: 1333 case TargetOpcode::G_FPTOUI: { 1334 // FIXME: Support other types 1335 Type *FromTy = 1336 getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 1337 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 1338 if ((ToSize != 32 && ToSize != 64 && ToSize != 128) || !FromTy) 1339 return UnableToLegalize; 1340 LegalizeResult Status = conversionLibcall( 1341 MI, MIRBuilder, Type::getIntNTy(Ctx, ToSize), FromTy, LocObserver, TLI); 1342 if (Status != Legalized) 1343 return Status; 1344 break; 1345 } 1346 case TargetOpcode::G_SITOFP: 1347 case TargetOpcode::G_UITOFP: { 1348 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 1349 Type *ToTy = 1350 getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 1351 if ((FromSize != 32 && FromSize != 64 && FromSize != 128) || !ToTy) 1352 return UnableToLegalize; 1353 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SITOFP; 1354 LegalizeResult Status = 1355 conversionLibcall(MI, MIRBuilder, ToTy, Type::getIntNTy(Ctx, FromSize), 1356 LocObserver, TLI, IsSigned); 1357 if (Status != Legalized) 1358 return Status; 1359 break; 1360 } 1361 case TargetOpcode::G_ATOMICRMW_XCHG: 1362 case TargetOpcode::G_ATOMICRMW_ADD: 1363 case TargetOpcode::G_ATOMICRMW_SUB: 1364 case TargetOpcode::G_ATOMICRMW_AND: 1365 case TargetOpcode::G_ATOMICRMW_OR: 1366 case TargetOpcode::G_ATOMICRMW_XOR: 1367 case TargetOpcode::G_ATOMIC_CMPXCHG: 1368 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1369 auto Status = createAtomicLibcall(MIRBuilder, MI); 1370 if (Status != Legalized) 1371 return Status; 1372 break; 1373 } 1374 case TargetOpcode::G_BZERO: 1375 case TargetOpcode::G_MEMCPY: 1376 case TargetOpcode::G_MEMMOVE: 1377 case TargetOpcode::G_MEMSET: { 1378 LegalizeResult Result = 1379 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 1380 if (Result != Legalized) 1381 return Result; 1382 MI.eraseFromParent(); 1383 return Result; 1384 } 1385 case TargetOpcode::G_GET_FPENV: 1386 case TargetOpcode::G_GET_FPMODE: { 1387 LegalizeResult Result = createGetStateLibcall(MIRBuilder, MI, LocObserver); 1388 if (Result != Legalized) 1389 return Result; 1390 break; 1391 } 1392 case TargetOpcode::G_SET_FPENV: 1393 case TargetOpcode::G_SET_FPMODE: { 1394 LegalizeResult Result = createSetStateLibcall(MIRBuilder, MI, LocObserver); 1395 if (Result != Legalized) 1396 return Result; 1397 break; 1398 } 1399 case TargetOpcode::G_RESET_FPENV: 1400 case TargetOpcode::G_RESET_FPMODE: { 1401 LegalizeResult Result = 1402 createResetStateLibcall(MIRBuilder, MI, LocObserver); 1403 if (Result != Legalized) 1404 return Result; 1405 break; 1406 } 1407 } 1408 1409 MI.eraseFromParent(); 1410 return Legalized; 1411 } 1412 1413 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 1414 unsigned TypeIdx, 1415 LLT NarrowTy) { 1416 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 1417 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 1418 1419 switch (MI.getOpcode()) { 1420 default: 1421 return UnableToLegalize; 1422 case TargetOpcode::G_IMPLICIT_DEF: { 1423 Register DstReg = MI.getOperand(0).getReg(); 1424 LLT DstTy = MRI.getType(DstReg); 1425 1426 // If SizeOp0 is not an exact multiple of NarrowSize, emit 1427 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 1428 // FIXME: Although this would also be legal for the general case, it causes 1429 // a lot of regressions in the emitted code (superfluous COPYs, artifact 1430 // combines not being hit). This seems to be a problem related to the 1431 // artifact combiner. 1432 if (SizeOp0 % NarrowSize != 0) { 1433 LLT ImplicitTy = NarrowTy; 1434 if (DstTy.isVector()) 1435 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 1436 1437 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 1438 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 1439 1440 MI.eraseFromParent(); 1441 return Legalized; 1442 } 1443 1444 int NumParts = SizeOp0 / NarrowSize; 1445 1446 SmallVector<Register, 2> DstRegs; 1447 for (int i = 0; i < NumParts; ++i) 1448 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 1449 1450 if (DstTy.isVector()) 1451 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1452 else 1453 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 1454 MI.eraseFromParent(); 1455 return Legalized; 1456 } 1457 case TargetOpcode::G_CONSTANT: { 1458 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1459 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 1460 unsigned TotalSize = Ty.getSizeInBits(); 1461 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1462 int NumParts = TotalSize / NarrowSize; 1463 1464 SmallVector<Register, 4> PartRegs; 1465 for (int I = 0; I != NumParts; ++I) { 1466 unsigned Offset = I * NarrowSize; 1467 auto K = MIRBuilder.buildConstant(NarrowTy, 1468 Val.lshr(Offset).trunc(NarrowSize)); 1469 PartRegs.push_back(K.getReg(0)); 1470 } 1471 1472 LLT LeftoverTy; 1473 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 1474 SmallVector<Register, 1> LeftoverRegs; 1475 if (LeftoverBits != 0) { 1476 LeftoverTy = LLT::scalar(LeftoverBits); 1477 auto K = MIRBuilder.buildConstant( 1478 LeftoverTy, 1479 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 1480 LeftoverRegs.push_back(K.getReg(0)); 1481 } 1482 1483 insertParts(MI.getOperand(0).getReg(), 1484 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 1485 1486 MI.eraseFromParent(); 1487 return Legalized; 1488 } 1489 case TargetOpcode::G_SEXT: 1490 case TargetOpcode::G_ZEXT: 1491 case TargetOpcode::G_ANYEXT: 1492 return narrowScalarExt(MI, TypeIdx, NarrowTy); 1493 case TargetOpcode::G_TRUNC: { 1494 if (TypeIdx != 1) 1495 return UnableToLegalize; 1496 1497 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 1498 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 1499 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 1500 return UnableToLegalize; 1501 } 1502 1503 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 1504 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 1505 MI.eraseFromParent(); 1506 return Legalized; 1507 } 1508 case TargetOpcode::G_CONSTANT_FOLD_BARRIER: 1509 case TargetOpcode::G_FREEZE: { 1510 if (TypeIdx != 0) 1511 return UnableToLegalize; 1512 1513 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1514 // Should widen scalar first 1515 if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0) 1516 return UnableToLegalize; 1517 1518 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 1519 SmallVector<Register, 8> Parts; 1520 for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) { 1521 Parts.push_back( 1522 MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, {Unmerge.getReg(i)}) 1523 .getReg(0)); 1524 } 1525 1526 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0).getReg(), Parts); 1527 MI.eraseFromParent(); 1528 return Legalized; 1529 } 1530 case TargetOpcode::G_ADD: 1531 case TargetOpcode::G_SUB: 1532 case TargetOpcode::G_SADDO: 1533 case TargetOpcode::G_SSUBO: 1534 case TargetOpcode::G_SADDE: 1535 case TargetOpcode::G_SSUBE: 1536 case TargetOpcode::G_UADDO: 1537 case TargetOpcode::G_USUBO: 1538 case TargetOpcode::G_UADDE: 1539 case TargetOpcode::G_USUBE: 1540 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 1541 case TargetOpcode::G_MUL: 1542 case TargetOpcode::G_UMULH: 1543 return narrowScalarMul(MI, NarrowTy); 1544 case TargetOpcode::G_EXTRACT: 1545 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 1546 case TargetOpcode::G_INSERT: 1547 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 1548 case TargetOpcode::G_LOAD: { 1549 auto &LoadMI = cast<GLoad>(MI); 1550 Register DstReg = LoadMI.getDstReg(); 1551 LLT DstTy = MRI.getType(DstReg); 1552 if (DstTy.isVector()) 1553 return UnableToLegalize; 1554 1555 if (8 * LoadMI.getMemSize().getValue() != DstTy.getSizeInBits()) { 1556 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1557 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); 1558 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1559 LoadMI.eraseFromParent(); 1560 return Legalized; 1561 } 1562 1563 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); 1564 } 1565 case TargetOpcode::G_ZEXTLOAD: 1566 case TargetOpcode::G_SEXTLOAD: { 1567 auto &LoadMI = cast<GExtLoad>(MI); 1568 Register DstReg = LoadMI.getDstReg(); 1569 Register PtrReg = LoadMI.getPointerReg(); 1570 1571 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1572 auto &MMO = LoadMI.getMMO(); 1573 unsigned MemSize = MMO.getSizeInBits().getValue(); 1574 1575 if (MemSize == NarrowSize) { 1576 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1577 } else if (MemSize < NarrowSize) { 1578 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); 1579 } else if (MemSize > NarrowSize) { 1580 // FIXME: Need to split the load. 1581 return UnableToLegalize; 1582 } 1583 1584 if (isa<GZExtLoad>(LoadMI)) 1585 MIRBuilder.buildZExt(DstReg, TmpReg); 1586 else 1587 MIRBuilder.buildSExt(DstReg, TmpReg); 1588 1589 LoadMI.eraseFromParent(); 1590 return Legalized; 1591 } 1592 case TargetOpcode::G_STORE: { 1593 auto &StoreMI = cast<GStore>(MI); 1594 1595 Register SrcReg = StoreMI.getValueReg(); 1596 LLT SrcTy = MRI.getType(SrcReg); 1597 if (SrcTy.isVector()) 1598 return UnableToLegalize; 1599 1600 int NumParts = SizeOp0 / NarrowSize; 1601 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 1602 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 1603 if (SrcTy.isVector() && LeftoverBits != 0) 1604 return UnableToLegalize; 1605 1606 if (8 * StoreMI.getMemSize().getValue() != SrcTy.getSizeInBits()) { 1607 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1608 MIRBuilder.buildTrunc(TmpReg, SrcReg); 1609 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); 1610 StoreMI.eraseFromParent(); 1611 return Legalized; 1612 } 1613 1614 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); 1615 } 1616 case TargetOpcode::G_SELECT: 1617 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1618 case TargetOpcode::G_AND: 1619 case TargetOpcode::G_OR: 1620 case TargetOpcode::G_XOR: { 1621 // Legalize bitwise operation: 1622 // A = BinOp<Ty> B, C 1623 // into: 1624 // B1, ..., BN = G_UNMERGE_VALUES B 1625 // C1, ..., CN = G_UNMERGE_VALUES C 1626 // A1 = BinOp<Ty/N> B1, C2 1627 // ... 1628 // AN = BinOp<Ty/N> BN, CN 1629 // A = G_MERGE_VALUES A1, ..., AN 1630 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1631 } 1632 case TargetOpcode::G_SHL: 1633 case TargetOpcode::G_LSHR: 1634 case TargetOpcode::G_ASHR: 1635 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1636 case TargetOpcode::G_CTLZ: 1637 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1638 case TargetOpcode::G_CTTZ: 1639 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1640 case TargetOpcode::G_CTPOP: 1641 if (TypeIdx == 1) 1642 switch (MI.getOpcode()) { 1643 case TargetOpcode::G_CTLZ: 1644 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1645 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1646 case TargetOpcode::G_CTTZ: 1647 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1648 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1649 case TargetOpcode::G_CTPOP: 1650 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1651 default: 1652 return UnableToLegalize; 1653 } 1654 1655 Observer.changingInstr(MI); 1656 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1657 Observer.changedInstr(MI); 1658 return Legalized; 1659 case TargetOpcode::G_INTTOPTR: 1660 if (TypeIdx != 1) 1661 return UnableToLegalize; 1662 1663 Observer.changingInstr(MI); 1664 narrowScalarSrc(MI, NarrowTy, 1); 1665 Observer.changedInstr(MI); 1666 return Legalized; 1667 case TargetOpcode::G_PTRTOINT: 1668 if (TypeIdx != 0) 1669 return UnableToLegalize; 1670 1671 Observer.changingInstr(MI); 1672 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1673 Observer.changedInstr(MI); 1674 return Legalized; 1675 case TargetOpcode::G_PHI: { 1676 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1677 // NarrowSize. 1678 if (SizeOp0 % NarrowSize != 0) 1679 return UnableToLegalize; 1680 1681 unsigned NumParts = SizeOp0 / NarrowSize; 1682 SmallVector<Register, 2> DstRegs(NumParts); 1683 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1684 Observer.changingInstr(MI); 1685 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1686 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1687 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); 1688 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1689 SrcRegs[i / 2], MIRBuilder, MRI); 1690 } 1691 MachineBasicBlock &MBB = *MI.getParent(); 1692 MIRBuilder.setInsertPt(MBB, MI); 1693 for (unsigned i = 0; i < NumParts; ++i) { 1694 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1695 MachineInstrBuilder MIB = 1696 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1697 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1698 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1699 } 1700 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1701 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs); 1702 Observer.changedInstr(MI); 1703 MI.eraseFromParent(); 1704 return Legalized; 1705 } 1706 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1707 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1708 if (TypeIdx != 2) 1709 return UnableToLegalize; 1710 1711 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1712 Observer.changingInstr(MI); 1713 narrowScalarSrc(MI, NarrowTy, OpIdx); 1714 Observer.changedInstr(MI); 1715 return Legalized; 1716 } 1717 case TargetOpcode::G_ICMP: { 1718 Register LHS = MI.getOperand(2).getReg(); 1719 LLT SrcTy = MRI.getType(LHS); 1720 CmpInst::Predicate Pred = 1721 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1722 1723 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) 1724 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; 1725 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, 1726 LHSLeftoverRegs, MIRBuilder, MRI)) 1727 return UnableToLegalize; 1728 1729 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. 1730 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; 1731 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, 1732 RHSPartRegs, RHSLeftoverRegs, MIRBuilder, MRI)) 1733 return UnableToLegalize; 1734 1735 // We now have the LHS and RHS of the compare split into narrow-type 1736 // registers, plus potentially some leftover type. 1737 Register Dst = MI.getOperand(0).getReg(); 1738 LLT ResTy = MRI.getType(Dst); 1739 if (ICmpInst::isEquality(Pred)) { 1740 // For each part on the LHS and RHS, keep track of the result of XOR-ing 1741 // them together. For each equal part, the result should be all 0s. For 1742 // each non-equal part, we'll get at least one 1. 1743 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1744 SmallVector<Register, 4> Xors; 1745 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { 1746 auto LHS = std::get<0>(LHSAndRHS); 1747 auto RHS = std::get<1>(LHSAndRHS); 1748 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); 1749 Xors.push_back(Xor); 1750 } 1751 1752 // Build a G_XOR for each leftover register. Each G_XOR must be widened 1753 // to the desired narrow type so that we can OR them together later. 1754 SmallVector<Register, 4> WidenedXors; 1755 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { 1756 auto LHS = std::get<0>(LHSAndRHS); 1757 auto RHS = std::get<1>(LHSAndRHS); 1758 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); 1759 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); 1760 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, 1761 /* PadStrategy = */ TargetOpcode::G_ZEXT); 1762 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); 1763 } 1764 1765 // Now, for each part we broke up, we know if they are equal/not equal 1766 // based off the G_XOR. We can OR these all together and compare against 1767 // 0 to get the result. 1768 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); 1769 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); 1770 for (unsigned I = 2, E = Xors.size(); I < E; ++I) 1771 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); 1772 MIRBuilder.buildICmp(Pred, Dst, Or, Zero); 1773 } else { 1774 Register CmpIn; 1775 for (unsigned I = 0, E = LHSPartRegs.size(); I != E; ++I) { 1776 Register CmpOut; 1777 CmpInst::Predicate PartPred; 1778 1779 if (I == E - 1 && LHSLeftoverRegs.empty()) { 1780 PartPred = Pred; 1781 CmpOut = Dst; 1782 } else { 1783 PartPred = ICmpInst::getUnsignedPredicate(Pred); 1784 CmpOut = MRI.createGenericVirtualRegister(ResTy); 1785 } 1786 1787 if (!CmpIn) { 1788 MIRBuilder.buildICmp(PartPred, CmpOut, LHSPartRegs[I], 1789 RHSPartRegs[I]); 1790 } else { 1791 auto Cmp = MIRBuilder.buildICmp(PartPred, ResTy, LHSPartRegs[I], 1792 RHSPartRegs[I]); 1793 auto CmpEq = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, 1794 LHSPartRegs[I], RHSPartRegs[I]); 1795 MIRBuilder.buildSelect(CmpOut, CmpEq, CmpIn, Cmp); 1796 } 1797 1798 CmpIn = CmpOut; 1799 } 1800 1801 for (unsigned I = 0, E = LHSLeftoverRegs.size(); I != E; ++I) { 1802 Register CmpOut; 1803 CmpInst::Predicate PartPred; 1804 1805 if (I == E - 1 && LHSLeftoverRegs.empty()) { 1806 PartPred = Pred; 1807 CmpOut = Dst; 1808 } else { 1809 PartPred = ICmpInst::getUnsignedPredicate(Pred); 1810 CmpOut = MRI.createGenericVirtualRegister(ResTy); 1811 } 1812 1813 if (!CmpIn) { 1814 MIRBuilder.buildICmp(PartPred, CmpOut, LHSLeftoverRegs[I], 1815 RHSLeftoverRegs[I]); 1816 } else { 1817 auto Cmp = MIRBuilder.buildICmp(PartPred, ResTy, LHSLeftoverRegs[I], 1818 RHSLeftoverRegs[I]); 1819 auto CmpEq = 1820 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, 1821 LHSLeftoverRegs[I], RHSLeftoverRegs[I]); 1822 MIRBuilder.buildSelect(CmpOut, CmpEq, CmpIn, Cmp); 1823 } 1824 1825 CmpIn = CmpOut; 1826 } 1827 } 1828 MI.eraseFromParent(); 1829 return Legalized; 1830 } 1831 case TargetOpcode::G_FCMP: 1832 if (TypeIdx != 0) 1833 return UnableToLegalize; 1834 1835 Observer.changingInstr(MI); 1836 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1837 Observer.changedInstr(MI); 1838 return Legalized; 1839 1840 case TargetOpcode::G_SEXT_INREG: { 1841 if (TypeIdx != 0) 1842 return UnableToLegalize; 1843 1844 int64_t SizeInBits = MI.getOperand(2).getImm(); 1845 1846 // So long as the new type has more bits than the bits we're extending we 1847 // don't need to break it apart. 1848 if (NarrowTy.getScalarSizeInBits() > SizeInBits) { 1849 Observer.changingInstr(MI); 1850 // We don't lose any non-extension bits by truncating the src and 1851 // sign-extending the dst. 1852 MachineOperand &MO1 = MI.getOperand(1); 1853 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1854 MO1.setReg(TruncMIB.getReg(0)); 1855 1856 MachineOperand &MO2 = MI.getOperand(0); 1857 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1858 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1859 MIRBuilder.buildSExt(MO2, DstExt); 1860 MO2.setReg(DstExt); 1861 Observer.changedInstr(MI); 1862 return Legalized; 1863 } 1864 1865 // Break it apart. Components below the extension point are unmodified. The 1866 // component containing the extension point becomes a narrower SEXT_INREG. 1867 // Components above it are ashr'd from the component containing the 1868 // extension point. 1869 if (SizeOp0 % NarrowSize != 0) 1870 return UnableToLegalize; 1871 int NumParts = SizeOp0 / NarrowSize; 1872 1873 // List the registers where the destination will be scattered. 1874 SmallVector<Register, 2> DstRegs; 1875 // List the registers where the source will be split. 1876 SmallVector<Register, 2> SrcRegs; 1877 1878 // Create all the temporary registers. 1879 for (int i = 0; i < NumParts; ++i) { 1880 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1881 1882 SrcRegs.push_back(SrcReg); 1883 } 1884 1885 // Explode the big arguments into smaller chunks. 1886 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1887 1888 Register AshrCstReg = 1889 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1890 .getReg(0); 1891 Register FullExtensionReg; 1892 Register PartialExtensionReg; 1893 1894 // Do the operation on each small part. 1895 for (int i = 0; i < NumParts; ++i) { 1896 if ((i + 1) * NarrowTy.getScalarSizeInBits() <= SizeInBits) { 1897 DstRegs.push_back(SrcRegs[i]); 1898 PartialExtensionReg = DstRegs.back(); 1899 } else if (i * NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1900 assert(PartialExtensionReg && 1901 "Expected to visit partial extension before full"); 1902 if (FullExtensionReg) { 1903 DstRegs.push_back(FullExtensionReg); 1904 continue; 1905 } 1906 DstRegs.push_back( 1907 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1908 .getReg(0)); 1909 FullExtensionReg = DstRegs.back(); 1910 } else { 1911 DstRegs.push_back( 1912 MIRBuilder 1913 .buildInstr( 1914 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1915 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1916 .getReg(0)); 1917 PartialExtensionReg = DstRegs.back(); 1918 } 1919 } 1920 1921 // Gather the destination registers into the final destination. 1922 Register DstReg = MI.getOperand(0).getReg(); 1923 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 1924 MI.eraseFromParent(); 1925 return Legalized; 1926 } 1927 case TargetOpcode::G_BSWAP: 1928 case TargetOpcode::G_BITREVERSE: { 1929 if (SizeOp0 % NarrowSize != 0) 1930 return UnableToLegalize; 1931 1932 Observer.changingInstr(MI); 1933 SmallVector<Register, 2> SrcRegs, DstRegs; 1934 unsigned NumParts = SizeOp0 / NarrowSize; 1935 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs, 1936 MIRBuilder, MRI); 1937 1938 for (unsigned i = 0; i < NumParts; ++i) { 1939 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1940 {SrcRegs[NumParts - 1 - i]}); 1941 DstRegs.push_back(DstPart.getReg(0)); 1942 } 1943 1944 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs); 1945 1946 Observer.changedInstr(MI); 1947 MI.eraseFromParent(); 1948 return Legalized; 1949 } 1950 case TargetOpcode::G_PTR_ADD: 1951 case TargetOpcode::G_PTRMASK: { 1952 if (TypeIdx != 1) 1953 return UnableToLegalize; 1954 Observer.changingInstr(MI); 1955 narrowScalarSrc(MI, NarrowTy, 2); 1956 Observer.changedInstr(MI); 1957 return Legalized; 1958 } 1959 case TargetOpcode::G_FPTOUI: 1960 case TargetOpcode::G_FPTOSI: 1961 case TargetOpcode::G_FPTOUI_SAT: 1962 case TargetOpcode::G_FPTOSI_SAT: 1963 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1964 case TargetOpcode::G_FPEXT: 1965 if (TypeIdx != 0) 1966 return UnableToLegalize; 1967 Observer.changingInstr(MI); 1968 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1969 Observer.changedInstr(MI); 1970 return Legalized; 1971 case TargetOpcode::G_FLDEXP: 1972 case TargetOpcode::G_STRICT_FLDEXP: 1973 return narrowScalarFLDEXP(MI, TypeIdx, NarrowTy); 1974 case TargetOpcode::G_VSCALE: { 1975 Register Dst = MI.getOperand(0).getReg(); 1976 LLT Ty = MRI.getType(Dst); 1977 1978 // Assume VSCALE(1) fits into a legal integer 1979 const APInt One(NarrowTy.getSizeInBits(), 1); 1980 auto VScaleBase = MIRBuilder.buildVScale(NarrowTy, One); 1981 auto ZExt = MIRBuilder.buildZExt(Ty, VScaleBase); 1982 auto C = MIRBuilder.buildConstant(Ty, *MI.getOperand(1).getCImm()); 1983 MIRBuilder.buildMul(Dst, ZExt, C); 1984 1985 MI.eraseFromParent(); 1986 return Legalized; 1987 } 1988 } 1989 } 1990 1991 Register LegalizerHelper::coerceToScalar(Register Val) { 1992 LLT Ty = MRI.getType(Val); 1993 if (Ty.isScalar()) 1994 return Val; 1995 1996 const DataLayout &DL = MIRBuilder.getDataLayout(); 1997 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1998 if (Ty.isPointer()) { 1999 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 2000 return Register(); 2001 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 2002 } 2003 2004 Register NewVal = Val; 2005 2006 assert(Ty.isVector()); 2007 if (Ty.isPointerVector()) 2008 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 2009 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 2010 } 2011 2012 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 2013 unsigned OpIdx, unsigned ExtOpcode) { 2014 MachineOperand &MO = MI.getOperand(OpIdx); 2015 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 2016 MO.setReg(ExtB.getReg(0)); 2017 } 2018 2019 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 2020 unsigned OpIdx) { 2021 MachineOperand &MO = MI.getOperand(OpIdx); 2022 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 2023 MO.setReg(ExtB.getReg(0)); 2024 } 2025 2026 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 2027 unsigned OpIdx, unsigned TruncOpcode) { 2028 MachineOperand &MO = MI.getOperand(OpIdx); 2029 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2030 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2031 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 2032 MO.setReg(DstExt); 2033 } 2034 2035 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 2036 unsigned OpIdx, unsigned ExtOpcode) { 2037 MachineOperand &MO = MI.getOperand(OpIdx); 2038 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 2039 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2040 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 2041 MO.setReg(DstTrunc); 2042 } 2043 2044 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 2045 unsigned OpIdx) { 2046 MachineOperand &MO = MI.getOperand(OpIdx); 2047 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2048 Register Dst = MO.getReg(); 2049 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2050 MO.setReg(DstExt); 2051 MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt); 2052 } 2053 2054 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 2055 unsigned OpIdx) { 2056 MachineOperand &MO = MI.getOperand(OpIdx); 2057 SmallVector<Register, 8> Regs; 2058 MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0)); 2059 } 2060 2061 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 2062 MachineOperand &Op = MI.getOperand(OpIdx); 2063 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 2064 } 2065 2066 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 2067 MachineOperand &MO = MI.getOperand(OpIdx); 2068 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 2069 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2070 MIRBuilder.buildBitcast(MO, CastDst); 2071 MO.setReg(CastDst); 2072 } 2073 2074 LegalizerHelper::LegalizeResult 2075 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 2076 LLT WideTy) { 2077 if (TypeIdx != 1) 2078 return UnableToLegalize; 2079 2080 auto [DstReg, DstTy, Src1Reg, Src1Ty] = MI.getFirst2RegLLTs(); 2081 if (DstTy.isVector()) 2082 return UnableToLegalize; 2083 2084 LLT SrcTy = MRI.getType(Src1Reg); 2085 const int DstSize = DstTy.getSizeInBits(); 2086 const int SrcSize = SrcTy.getSizeInBits(); 2087 const int WideSize = WideTy.getSizeInBits(); 2088 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 2089 2090 unsigned NumOps = MI.getNumOperands(); 2091 unsigned NumSrc = MI.getNumOperands() - 1; 2092 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 2093 2094 if (WideSize >= DstSize) { 2095 // Directly pack the bits in the target type. 2096 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1Reg).getReg(0); 2097 2098 for (unsigned I = 2; I != NumOps; ++I) { 2099 const unsigned Offset = (I - 1) * PartSize; 2100 2101 Register SrcReg = MI.getOperand(I).getReg(); 2102 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 2103 2104 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 2105 2106 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 2107 MRI.createGenericVirtualRegister(WideTy); 2108 2109 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 2110 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 2111 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 2112 ResultReg = NextResult; 2113 } 2114 2115 if (WideSize > DstSize) 2116 MIRBuilder.buildTrunc(DstReg, ResultReg); 2117 else if (DstTy.isPointer()) 2118 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 2119 2120 MI.eraseFromParent(); 2121 return Legalized; 2122 } 2123 2124 // Unmerge the original values to the GCD type, and recombine to the next 2125 // multiple greater than the original type. 2126 // 2127 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 2128 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 2129 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 2130 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 2131 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 2132 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 2133 // %12:_(s12) = G_MERGE_VALUES %10, %11 2134 // 2135 // Padding with undef if necessary: 2136 // 2137 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 2138 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 2139 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 2140 // %7:_(s2) = G_IMPLICIT_DEF 2141 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 2142 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 2143 // %10:_(s12) = G_MERGE_VALUES %8, %9 2144 2145 const int GCD = std::gcd(SrcSize, WideSize); 2146 LLT GCDTy = LLT::scalar(GCD); 2147 2148 SmallVector<Register, 8> Parts; 2149 SmallVector<Register, 8> NewMergeRegs; 2150 SmallVector<Register, 8> Unmerges; 2151 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 2152 2153 // Decompose the original operands if they don't evenly divide. 2154 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 2155 Register SrcReg = MO.getReg(); 2156 if (GCD == SrcSize) { 2157 Unmerges.push_back(SrcReg); 2158 } else { 2159 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 2160 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 2161 Unmerges.push_back(Unmerge.getReg(J)); 2162 } 2163 } 2164 2165 // Pad with undef to the next size that is a multiple of the requested size. 2166 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 2167 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 2168 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 2169 Unmerges.push_back(UndefReg); 2170 } 2171 2172 const int PartsPerGCD = WideSize / GCD; 2173 2174 // Build merges of each piece. 2175 ArrayRef<Register> Slicer(Unmerges); 2176 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 2177 auto Merge = 2178 MIRBuilder.buildMergeLikeInstr(WideTy, Slicer.take_front(PartsPerGCD)); 2179 NewMergeRegs.push_back(Merge.getReg(0)); 2180 } 2181 2182 // A truncate may be necessary if the requested type doesn't evenly divide the 2183 // original result type. 2184 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 2185 MIRBuilder.buildMergeLikeInstr(DstReg, NewMergeRegs); 2186 } else { 2187 auto FinalMerge = MIRBuilder.buildMergeLikeInstr(WideDstTy, NewMergeRegs); 2188 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 2189 } 2190 2191 MI.eraseFromParent(); 2192 return Legalized; 2193 } 2194 2195 LegalizerHelper::LegalizeResult 2196 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 2197 LLT WideTy) { 2198 if (TypeIdx != 0) 2199 return UnableToLegalize; 2200 2201 int NumDst = MI.getNumOperands() - 1; 2202 Register SrcReg = MI.getOperand(NumDst).getReg(); 2203 LLT SrcTy = MRI.getType(SrcReg); 2204 if (SrcTy.isVector()) 2205 return UnableToLegalize; 2206 2207 Register Dst0Reg = MI.getOperand(0).getReg(); 2208 LLT DstTy = MRI.getType(Dst0Reg); 2209 if (!DstTy.isScalar()) 2210 return UnableToLegalize; 2211 2212 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 2213 if (SrcTy.isPointer()) { 2214 const DataLayout &DL = MIRBuilder.getDataLayout(); 2215 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 2216 LLVM_DEBUG( 2217 dbgs() << "Not casting non-integral address space integer\n"); 2218 return UnableToLegalize; 2219 } 2220 2221 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 2222 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 2223 } 2224 2225 // Widen SrcTy to WideTy. This does not affect the result, but since the 2226 // user requested this size, it is probably better handled than SrcTy and 2227 // should reduce the total number of legalization artifacts. 2228 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 2229 SrcTy = WideTy; 2230 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 2231 } 2232 2233 // Theres no unmerge type to target. Directly extract the bits from the 2234 // source type 2235 unsigned DstSize = DstTy.getSizeInBits(); 2236 2237 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 2238 for (int I = 1; I != NumDst; ++I) { 2239 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 2240 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 2241 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 2242 } 2243 2244 MI.eraseFromParent(); 2245 return Legalized; 2246 } 2247 2248 // Extend the source to a wider type. 2249 LLT LCMTy = getLCMType(SrcTy, WideTy); 2250 2251 Register WideSrc = SrcReg; 2252 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 2253 // TODO: If this is an integral address space, cast to integer and anyext. 2254 if (SrcTy.isPointer()) { 2255 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 2256 return UnableToLegalize; 2257 } 2258 2259 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 2260 } 2261 2262 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 2263 2264 // Create a sequence of unmerges and merges to the original results. Since we 2265 // may have widened the source, we will need to pad the results with dead defs 2266 // to cover the source register. 2267 // e.g. widen s48 to s64: 2268 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 2269 // 2270 // => 2271 // %4:_(s192) = G_ANYEXT %0:_(s96) 2272 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 2273 // ; unpack to GCD type, with extra dead defs 2274 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 2275 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 2276 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 2277 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 2278 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 2279 const LLT GCDTy = getGCDType(WideTy, DstTy); 2280 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2281 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 2282 2283 // Directly unmerge to the destination without going through a GCD type 2284 // if possible 2285 if (PartsPerRemerge == 1) { 2286 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 2287 2288 for (int I = 0; I != NumUnmerge; ++I) { 2289 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2290 2291 for (int J = 0; J != PartsPerUnmerge; ++J) { 2292 int Idx = I * PartsPerUnmerge + J; 2293 if (Idx < NumDst) 2294 MIB.addDef(MI.getOperand(Idx).getReg()); 2295 else { 2296 // Create dead def for excess components. 2297 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 2298 } 2299 } 2300 2301 MIB.addUse(Unmerge.getReg(I)); 2302 } 2303 } else { 2304 SmallVector<Register, 16> Parts; 2305 for (int J = 0; J != NumUnmerge; ++J) 2306 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 2307 2308 SmallVector<Register, 8> RemergeParts; 2309 for (int I = 0; I != NumDst; ++I) { 2310 for (int J = 0; J < PartsPerRemerge; ++J) { 2311 const int Idx = I * PartsPerRemerge + J; 2312 RemergeParts.emplace_back(Parts[Idx]); 2313 } 2314 2315 MIRBuilder.buildMergeLikeInstr(MI.getOperand(I).getReg(), RemergeParts); 2316 RemergeParts.clear(); 2317 } 2318 } 2319 2320 MI.eraseFromParent(); 2321 return Legalized; 2322 } 2323 2324 LegalizerHelper::LegalizeResult 2325 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 2326 LLT WideTy) { 2327 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 2328 unsigned Offset = MI.getOperand(2).getImm(); 2329 2330 if (TypeIdx == 0) { 2331 if (SrcTy.isVector() || DstTy.isVector()) 2332 return UnableToLegalize; 2333 2334 SrcOp Src(SrcReg); 2335 if (SrcTy.isPointer()) { 2336 // Extracts from pointers can be handled only if they are really just 2337 // simple integers. 2338 const DataLayout &DL = MIRBuilder.getDataLayout(); 2339 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 2340 return UnableToLegalize; 2341 2342 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 2343 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 2344 SrcTy = SrcAsIntTy; 2345 } 2346 2347 if (DstTy.isPointer()) 2348 return UnableToLegalize; 2349 2350 if (Offset == 0) { 2351 // Avoid a shift in the degenerate case. 2352 MIRBuilder.buildTrunc(DstReg, 2353 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 2354 MI.eraseFromParent(); 2355 return Legalized; 2356 } 2357 2358 // Do a shift in the source type. 2359 LLT ShiftTy = SrcTy; 2360 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 2361 Src = MIRBuilder.buildAnyExt(WideTy, Src); 2362 ShiftTy = WideTy; 2363 } 2364 2365 auto LShr = MIRBuilder.buildLShr( 2366 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 2367 MIRBuilder.buildTrunc(DstReg, LShr); 2368 MI.eraseFromParent(); 2369 return Legalized; 2370 } 2371 2372 if (SrcTy.isScalar()) { 2373 Observer.changingInstr(MI); 2374 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2375 Observer.changedInstr(MI); 2376 return Legalized; 2377 } 2378 2379 if (!SrcTy.isVector()) 2380 return UnableToLegalize; 2381 2382 if (DstTy != SrcTy.getElementType()) 2383 return UnableToLegalize; 2384 2385 if (Offset % SrcTy.getScalarSizeInBits() != 0) 2386 return UnableToLegalize; 2387 2388 Observer.changingInstr(MI); 2389 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2390 2391 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 2392 Offset); 2393 widenScalarDst(MI, WideTy.getScalarType(), 0); 2394 Observer.changedInstr(MI); 2395 return Legalized; 2396 } 2397 2398 LegalizerHelper::LegalizeResult 2399 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 2400 LLT WideTy) { 2401 if (TypeIdx != 0 || WideTy.isVector()) 2402 return UnableToLegalize; 2403 Observer.changingInstr(MI); 2404 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2405 widenScalarDst(MI, WideTy); 2406 Observer.changedInstr(MI); 2407 return Legalized; 2408 } 2409 2410 LegalizerHelper::LegalizeResult 2411 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 2412 LLT WideTy) { 2413 unsigned Opcode; 2414 unsigned ExtOpcode; 2415 std::optional<Register> CarryIn; 2416 switch (MI.getOpcode()) { 2417 default: 2418 llvm_unreachable("Unexpected opcode!"); 2419 case TargetOpcode::G_SADDO: 2420 Opcode = TargetOpcode::G_ADD; 2421 ExtOpcode = TargetOpcode::G_SEXT; 2422 break; 2423 case TargetOpcode::G_SSUBO: 2424 Opcode = TargetOpcode::G_SUB; 2425 ExtOpcode = TargetOpcode::G_SEXT; 2426 break; 2427 case TargetOpcode::G_UADDO: 2428 Opcode = TargetOpcode::G_ADD; 2429 ExtOpcode = TargetOpcode::G_ZEXT; 2430 break; 2431 case TargetOpcode::G_USUBO: 2432 Opcode = TargetOpcode::G_SUB; 2433 ExtOpcode = TargetOpcode::G_ZEXT; 2434 break; 2435 case TargetOpcode::G_SADDE: 2436 Opcode = TargetOpcode::G_UADDE; 2437 ExtOpcode = TargetOpcode::G_SEXT; 2438 CarryIn = MI.getOperand(4).getReg(); 2439 break; 2440 case TargetOpcode::G_SSUBE: 2441 Opcode = TargetOpcode::G_USUBE; 2442 ExtOpcode = TargetOpcode::G_SEXT; 2443 CarryIn = MI.getOperand(4).getReg(); 2444 break; 2445 case TargetOpcode::G_UADDE: 2446 Opcode = TargetOpcode::G_UADDE; 2447 ExtOpcode = TargetOpcode::G_ZEXT; 2448 CarryIn = MI.getOperand(4).getReg(); 2449 break; 2450 case TargetOpcode::G_USUBE: 2451 Opcode = TargetOpcode::G_USUBE; 2452 ExtOpcode = TargetOpcode::G_ZEXT; 2453 CarryIn = MI.getOperand(4).getReg(); 2454 break; 2455 } 2456 2457 if (TypeIdx == 1) { 2458 unsigned BoolExtOp = MIRBuilder.getBoolExtOp(WideTy.isVector(), false); 2459 2460 Observer.changingInstr(MI); 2461 if (CarryIn) 2462 widenScalarSrc(MI, WideTy, 4, BoolExtOp); 2463 widenScalarDst(MI, WideTy, 1); 2464 2465 Observer.changedInstr(MI); 2466 return Legalized; 2467 } 2468 2469 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 2470 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 2471 // Do the arithmetic in the larger type. 2472 Register NewOp; 2473 if (CarryIn) { 2474 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 2475 NewOp = MIRBuilder 2476 .buildInstr(Opcode, {WideTy, CarryOutTy}, 2477 {LHSExt, RHSExt, *CarryIn}) 2478 .getReg(0); 2479 } else { 2480 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 2481 } 2482 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 2483 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 2484 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 2485 // There is no overflow if the ExtOp is the same as NewOp. 2486 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 2487 // Now trunc the NewOp to the original result. 2488 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 2489 MI.eraseFromParent(); 2490 return Legalized; 2491 } 2492 2493 LegalizerHelper::LegalizeResult 2494 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 2495 LLT WideTy) { 2496 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 2497 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 2498 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 2499 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 2500 MI.getOpcode() == TargetOpcode::G_USHLSAT; 2501 // We can convert this to: 2502 // 1. Any extend iN to iM 2503 // 2. SHL by M-N 2504 // 3. [US][ADD|SUB|SHL]SAT 2505 // 4. L/ASHR by M-N 2506 // 2507 // It may be more efficient to lower this to a min and a max operation in 2508 // the higher precision arithmetic if the promoted operation isn't legal, 2509 // but this decision is up to the target's lowering request. 2510 Register DstReg = MI.getOperand(0).getReg(); 2511 2512 unsigned NewBits = WideTy.getScalarSizeInBits(); 2513 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 2514 2515 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 2516 // must not left shift the RHS to preserve the shift amount. 2517 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 2518 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 2519 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 2520 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 2521 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 2522 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 2523 2524 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 2525 {ShiftL, ShiftR}, MI.getFlags()); 2526 2527 // Use a shift that will preserve the number of sign bits when the trunc is 2528 // folded away. 2529 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 2530 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 2531 2532 MIRBuilder.buildTrunc(DstReg, Result); 2533 MI.eraseFromParent(); 2534 return Legalized; 2535 } 2536 2537 LegalizerHelper::LegalizeResult 2538 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 2539 LLT WideTy) { 2540 if (TypeIdx == 1) { 2541 Observer.changingInstr(MI); 2542 widenScalarDst(MI, WideTy, 1); 2543 Observer.changedInstr(MI); 2544 return Legalized; 2545 } 2546 2547 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 2548 auto [Result, OriginalOverflow, LHS, RHS] = MI.getFirst4Regs(); 2549 LLT SrcTy = MRI.getType(LHS); 2550 LLT OverflowTy = MRI.getType(OriginalOverflow); 2551 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 2552 2553 // To determine if the result overflowed in the larger type, we extend the 2554 // input to the larger type, do the multiply (checking if it overflows), 2555 // then also check the high bits of the result to see if overflow happened 2556 // there. 2557 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2558 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 2559 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 2560 2561 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 2562 // so we don't need to check the overflow result of larger type Mulo. 2563 bool WideMulCanOverflow = WideTy.getScalarSizeInBits() < 2 * SrcBitWidth; 2564 2565 unsigned MulOpc = 2566 WideMulCanOverflow ? MI.getOpcode() : (unsigned)TargetOpcode::G_MUL; 2567 2568 MachineInstrBuilder Mulo; 2569 if (WideMulCanOverflow) 2570 Mulo = MIRBuilder.buildInstr(MulOpc, {WideTy, OverflowTy}, 2571 {LeftOperand, RightOperand}); 2572 else 2573 Mulo = MIRBuilder.buildInstr(MulOpc, {WideTy}, {LeftOperand, RightOperand}); 2574 2575 auto Mul = Mulo->getOperand(0); 2576 MIRBuilder.buildTrunc(Result, Mul); 2577 2578 MachineInstrBuilder ExtResult; 2579 // Overflow occurred if it occurred in the larger type, or if the high part 2580 // of the result does not zero/sign-extend the low part. Check this second 2581 // possibility first. 2582 if (IsSigned) { 2583 // For signed, overflow occurred when the high part does not sign-extend 2584 // the low part. 2585 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 2586 } else { 2587 // Unsigned overflow occurred when the high part does not zero-extend the 2588 // low part. 2589 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 2590 } 2591 2592 if (WideMulCanOverflow) { 2593 auto Overflow = 2594 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 2595 // Finally check if the multiplication in the larger type itself overflowed. 2596 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 2597 } else { 2598 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 2599 } 2600 MI.eraseFromParent(); 2601 return Legalized; 2602 } 2603 2604 LegalizerHelper::LegalizeResult 2605 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 2606 unsigned Opcode = MI.getOpcode(); 2607 switch (Opcode) { 2608 default: 2609 return UnableToLegalize; 2610 case TargetOpcode::G_ATOMICRMW_XCHG: 2611 case TargetOpcode::G_ATOMICRMW_ADD: 2612 case TargetOpcode::G_ATOMICRMW_SUB: 2613 case TargetOpcode::G_ATOMICRMW_AND: 2614 case TargetOpcode::G_ATOMICRMW_OR: 2615 case TargetOpcode::G_ATOMICRMW_XOR: 2616 case TargetOpcode::G_ATOMICRMW_MIN: 2617 case TargetOpcode::G_ATOMICRMW_MAX: 2618 case TargetOpcode::G_ATOMICRMW_UMIN: 2619 case TargetOpcode::G_ATOMICRMW_UMAX: 2620 assert(TypeIdx == 0 && "atomicrmw with second scalar type"); 2621 Observer.changingInstr(MI); 2622 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2623 widenScalarDst(MI, WideTy, 0); 2624 Observer.changedInstr(MI); 2625 return Legalized; 2626 case TargetOpcode::G_ATOMIC_CMPXCHG: 2627 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); 2628 Observer.changingInstr(MI); 2629 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2630 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2631 widenScalarDst(MI, WideTy, 0); 2632 Observer.changedInstr(MI); 2633 return Legalized; 2634 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: 2635 if (TypeIdx == 0) { 2636 Observer.changingInstr(MI); 2637 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2638 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); 2639 widenScalarDst(MI, WideTy, 0); 2640 Observer.changedInstr(MI); 2641 return Legalized; 2642 } 2643 assert(TypeIdx == 1 && 2644 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); 2645 Observer.changingInstr(MI); 2646 widenScalarDst(MI, WideTy, 1); 2647 Observer.changedInstr(MI); 2648 return Legalized; 2649 case TargetOpcode::G_EXTRACT: 2650 return widenScalarExtract(MI, TypeIdx, WideTy); 2651 case TargetOpcode::G_INSERT: 2652 return widenScalarInsert(MI, TypeIdx, WideTy); 2653 case TargetOpcode::G_MERGE_VALUES: 2654 return widenScalarMergeValues(MI, TypeIdx, WideTy); 2655 case TargetOpcode::G_UNMERGE_VALUES: 2656 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 2657 case TargetOpcode::G_SADDO: 2658 case TargetOpcode::G_SSUBO: 2659 case TargetOpcode::G_UADDO: 2660 case TargetOpcode::G_USUBO: 2661 case TargetOpcode::G_SADDE: 2662 case TargetOpcode::G_SSUBE: 2663 case TargetOpcode::G_UADDE: 2664 case TargetOpcode::G_USUBE: 2665 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 2666 case TargetOpcode::G_UMULO: 2667 case TargetOpcode::G_SMULO: 2668 return widenScalarMulo(MI, TypeIdx, WideTy); 2669 case TargetOpcode::G_SADDSAT: 2670 case TargetOpcode::G_SSUBSAT: 2671 case TargetOpcode::G_SSHLSAT: 2672 case TargetOpcode::G_UADDSAT: 2673 case TargetOpcode::G_USUBSAT: 2674 case TargetOpcode::G_USHLSAT: 2675 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 2676 case TargetOpcode::G_CTTZ: 2677 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2678 case TargetOpcode::G_CTLZ: 2679 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2680 case TargetOpcode::G_CTPOP: { 2681 if (TypeIdx == 0) { 2682 Observer.changingInstr(MI); 2683 widenScalarDst(MI, WideTy, 0); 2684 Observer.changedInstr(MI); 2685 return Legalized; 2686 } 2687 2688 Register SrcReg = MI.getOperand(1).getReg(); 2689 2690 // First extend the input. 2691 unsigned ExtOpc = Opcode == TargetOpcode::G_CTTZ || 2692 Opcode == TargetOpcode::G_CTTZ_ZERO_UNDEF 2693 ? TargetOpcode::G_ANYEXT 2694 : TargetOpcode::G_ZEXT; 2695 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg}); 2696 LLT CurTy = MRI.getType(SrcReg); 2697 unsigned NewOpc = Opcode; 2698 if (NewOpc == TargetOpcode::G_CTTZ) { 2699 // The count is the same in the larger type except if the original 2700 // value was zero. This can be handled by setting the bit just off 2701 // the top of the original type. 2702 auto TopBit = 2703 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 2704 MIBSrc = MIRBuilder.buildOr( 2705 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 2706 // Now we know the operand is non-zero, use the more relaxed opcode. 2707 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF; 2708 } 2709 2710 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 2711 2712 if (Opcode == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 2713 // An optimization where the result is the CTLZ after the left shift by 2714 // (Difference in widety and current ty), that is, 2715 // MIBSrc = MIBSrc << (sizeinbits(WideTy) - sizeinbits(CurTy)) 2716 // Result = ctlz MIBSrc 2717 MIBSrc = MIRBuilder.buildShl(WideTy, MIBSrc, 2718 MIRBuilder.buildConstant(WideTy, SizeDiff)); 2719 } 2720 2721 // Perform the operation at the larger size. 2722 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc}); 2723 // This is already the correct result for CTPOP and CTTZs 2724 if (Opcode == TargetOpcode::G_CTLZ) { 2725 // The correct result is NewOp - (Difference in widety and current ty). 2726 MIBNewOp = MIRBuilder.buildSub( 2727 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 2728 } 2729 2730 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 2731 MI.eraseFromParent(); 2732 return Legalized; 2733 } 2734 case TargetOpcode::G_BSWAP: { 2735 Observer.changingInstr(MI); 2736 Register DstReg = MI.getOperand(0).getReg(); 2737 2738 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 2739 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2740 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 2741 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2742 2743 MI.getOperand(0).setReg(DstExt); 2744 2745 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2746 2747 LLT Ty = MRI.getType(DstReg); 2748 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2749 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 2750 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 2751 2752 MIRBuilder.buildTrunc(DstReg, ShrReg); 2753 Observer.changedInstr(MI); 2754 return Legalized; 2755 } 2756 case TargetOpcode::G_BITREVERSE: { 2757 Observer.changingInstr(MI); 2758 2759 Register DstReg = MI.getOperand(0).getReg(); 2760 LLT Ty = MRI.getType(DstReg); 2761 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2762 2763 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2764 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2765 MI.getOperand(0).setReg(DstExt); 2766 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2767 2768 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2769 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2770 MIRBuilder.buildTrunc(DstReg, Shift); 2771 Observer.changedInstr(MI); 2772 return Legalized; 2773 } 2774 case TargetOpcode::G_FREEZE: 2775 case TargetOpcode::G_CONSTANT_FOLD_BARRIER: 2776 Observer.changingInstr(MI); 2777 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2778 widenScalarDst(MI, WideTy); 2779 Observer.changedInstr(MI); 2780 return Legalized; 2781 2782 case TargetOpcode::G_ABS: 2783 Observer.changingInstr(MI); 2784 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2785 widenScalarDst(MI, WideTy); 2786 Observer.changedInstr(MI); 2787 return Legalized; 2788 2789 case TargetOpcode::G_ADD: 2790 case TargetOpcode::G_AND: 2791 case TargetOpcode::G_MUL: 2792 case TargetOpcode::G_OR: 2793 case TargetOpcode::G_XOR: 2794 case TargetOpcode::G_SUB: 2795 case TargetOpcode::G_SHUFFLE_VECTOR: 2796 // Perform operation at larger width (any extension is fines here, high bits 2797 // don't affect the result) and then truncate the result back to the 2798 // original type. 2799 Observer.changingInstr(MI); 2800 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2801 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2802 widenScalarDst(MI, WideTy); 2803 Observer.changedInstr(MI); 2804 return Legalized; 2805 2806 case TargetOpcode::G_SBFX: 2807 case TargetOpcode::G_UBFX: 2808 Observer.changingInstr(MI); 2809 2810 if (TypeIdx == 0) { 2811 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2812 widenScalarDst(MI, WideTy); 2813 } else { 2814 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2815 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2816 } 2817 2818 Observer.changedInstr(MI); 2819 return Legalized; 2820 2821 case TargetOpcode::G_SHL: 2822 Observer.changingInstr(MI); 2823 2824 if (TypeIdx == 0) { 2825 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2826 widenScalarDst(MI, WideTy); 2827 } else { 2828 assert(TypeIdx == 1); 2829 // The "number of bits to shift" operand must preserve its value as an 2830 // unsigned integer: 2831 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2832 } 2833 2834 Observer.changedInstr(MI); 2835 return Legalized; 2836 2837 case TargetOpcode::G_ROTR: 2838 case TargetOpcode::G_ROTL: 2839 if (TypeIdx != 1) 2840 return UnableToLegalize; 2841 2842 Observer.changingInstr(MI); 2843 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2844 Observer.changedInstr(MI); 2845 return Legalized; 2846 2847 case TargetOpcode::G_SDIV: 2848 case TargetOpcode::G_SREM: 2849 case TargetOpcode::G_SMIN: 2850 case TargetOpcode::G_SMAX: 2851 Observer.changingInstr(MI); 2852 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2853 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2854 widenScalarDst(MI, WideTy); 2855 Observer.changedInstr(MI); 2856 return Legalized; 2857 2858 case TargetOpcode::G_SDIVREM: 2859 Observer.changingInstr(MI); 2860 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2861 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2862 widenScalarDst(MI, WideTy); 2863 widenScalarDst(MI, WideTy, 1); 2864 Observer.changedInstr(MI); 2865 return Legalized; 2866 2867 case TargetOpcode::G_ASHR: 2868 case TargetOpcode::G_LSHR: 2869 Observer.changingInstr(MI); 2870 2871 if (TypeIdx == 0) { 2872 unsigned CvtOp = Opcode == TargetOpcode::G_ASHR ? TargetOpcode::G_SEXT 2873 : TargetOpcode::G_ZEXT; 2874 2875 widenScalarSrc(MI, WideTy, 1, CvtOp); 2876 widenScalarDst(MI, WideTy); 2877 } else { 2878 assert(TypeIdx == 1); 2879 // The "number of bits to shift" operand must preserve its value as an 2880 // unsigned integer: 2881 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2882 } 2883 2884 Observer.changedInstr(MI); 2885 return Legalized; 2886 case TargetOpcode::G_UDIV: 2887 case TargetOpcode::G_UREM: 2888 Observer.changingInstr(MI); 2889 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2890 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2891 widenScalarDst(MI, WideTy); 2892 Observer.changedInstr(MI); 2893 return Legalized; 2894 case TargetOpcode::G_UDIVREM: 2895 Observer.changingInstr(MI); 2896 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2897 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2898 widenScalarDst(MI, WideTy); 2899 widenScalarDst(MI, WideTy, 1); 2900 Observer.changedInstr(MI); 2901 return Legalized; 2902 case TargetOpcode::G_UMIN: 2903 case TargetOpcode::G_UMAX: { 2904 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2905 2906 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2907 unsigned ExtOpc = 2908 TLI.isSExtCheaperThanZExt(getApproximateEVTForLLT(Ty, Ctx), 2909 getApproximateEVTForLLT(WideTy, Ctx)) 2910 ? TargetOpcode::G_SEXT 2911 : TargetOpcode::G_ZEXT; 2912 2913 Observer.changingInstr(MI); 2914 widenScalarSrc(MI, WideTy, 1, ExtOpc); 2915 widenScalarSrc(MI, WideTy, 2, ExtOpc); 2916 widenScalarDst(MI, WideTy); 2917 Observer.changedInstr(MI); 2918 return Legalized; 2919 } 2920 2921 case TargetOpcode::G_SELECT: 2922 Observer.changingInstr(MI); 2923 if (TypeIdx == 0) { 2924 // Perform operation at larger width (any extension is fine here, high 2925 // bits don't affect the result) and then truncate the result back to the 2926 // original type. 2927 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2928 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2929 widenScalarDst(MI, WideTy); 2930 } else { 2931 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2932 // Explicit extension is required here since high bits affect the result. 2933 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2934 } 2935 Observer.changedInstr(MI); 2936 return Legalized; 2937 2938 case TargetOpcode::G_FPTOSI: 2939 case TargetOpcode::G_FPTOUI: 2940 case TargetOpcode::G_INTRINSIC_LRINT: 2941 case TargetOpcode::G_INTRINSIC_LLRINT: 2942 case TargetOpcode::G_IS_FPCLASS: 2943 Observer.changingInstr(MI); 2944 2945 if (TypeIdx == 0) 2946 widenScalarDst(MI, WideTy); 2947 else 2948 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2949 2950 Observer.changedInstr(MI); 2951 return Legalized; 2952 case TargetOpcode::G_SITOFP: 2953 Observer.changingInstr(MI); 2954 2955 if (TypeIdx == 0) 2956 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2957 else 2958 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2959 2960 Observer.changedInstr(MI); 2961 return Legalized; 2962 case TargetOpcode::G_UITOFP: 2963 Observer.changingInstr(MI); 2964 2965 if (TypeIdx == 0) 2966 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2967 else 2968 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2969 2970 Observer.changedInstr(MI); 2971 return Legalized; 2972 case TargetOpcode::G_FPTOSI_SAT: 2973 case TargetOpcode::G_FPTOUI_SAT: 2974 Observer.changingInstr(MI); 2975 2976 if (TypeIdx == 0) { 2977 Register OldDst = MI.getOperand(0).getReg(); 2978 LLT Ty = MRI.getType(OldDst); 2979 Register ExtReg = MRI.createGenericVirtualRegister(WideTy); 2980 Register NewDst; 2981 MI.getOperand(0).setReg(ExtReg); 2982 uint64_t ShortBits = Ty.getScalarSizeInBits(); 2983 uint64_t WideBits = WideTy.getScalarSizeInBits(); 2984 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2985 if (Opcode == TargetOpcode::G_FPTOSI_SAT) { 2986 // z = i16 fptosi_sat(a) 2987 // -> 2988 // x = i32 fptosi_sat(a) 2989 // y = smin(x, 32767) 2990 // z = smax(y, -32768) 2991 auto MaxVal = MIRBuilder.buildConstant( 2992 WideTy, APInt::getSignedMaxValue(ShortBits).sext(WideBits)); 2993 auto MinVal = MIRBuilder.buildConstant( 2994 WideTy, APInt::getSignedMinValue(ShortBits).sext(WideBits)); 2995 Register MidReg = 2996 MIRBuilder.buildSMin(WideTy, ExtReg, MaxVal).getReg(0); 2997 NewDst = MIRBuilder.buildSMax(WideTy, MidReg, MinVal).getReg(0); 2998 } else { 2999 // z = i16 fptoui_sat(a) 3000 // -> 3001 // x = i32 fptoui_sat(a) 3002 // y = smin(x, 65535) 3003 auto MaxVal = MIRBuilder.buildConstant( 3004 WideTy, APInt::getAllOnes(ShortBits).zext(WideBits)); 3005 NewDst = MIRBuilder.buildUMin(WideTy, ExtReg, MaxVal).getReg(0); 3006 } 3007 MIRBuilder.buildTrunc(OldDst, NewDst); 3008 } else 3009 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 3010 3011 Observer.changedInstr(MI); 3012 return Legalized; 3013 case TargetOpcode::G_LOAD: 3014 case TargetOpcode::G_SEXTLOAD: 3015 case TargetOpcode::G_ZEXTLOAD: 3016 Observer.changingInstr(MI); 3017 widenScalarDst(MI, WideTy); 3018 Observer.changedInstr(MI); 3019 return Legalized; 3020 3021 case TargetOpcode::G_STORE: { 3022 if (TypeIdx != 0) 3023 return UnableToLegalize; 3024 3025 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3026 assert(!Ty.isPointerOrPointerVector() && "Can't widen type"); 3027 if (!Ty.isScalar()) { 3028 // We need to widen the vector element type. 3029 Observer.changingInstr(MI); 3030 widenScalarSrc(MI, WideTy, 0, TargetOpcode::G_ANYEXT); 3031 // We also need to adjust the MMO to turn this into a truncating store. 3032 MachineMemOperand &MMO = **MI.memoperands_begin(); 3033 MachineFunction &MF = MIRBuilder.getMF(); 3034 auto *NewMMO = MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), Ty); 3035 MI.setMemRefs(MF, {NewMMO}); 3036 Observer.changedInstr(MI); 3037 return Legalized; 3038 } 3039 3040 Observer.changingInstr(MI); 3041 3042 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 3043 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 3044 widenScalarSrc(MI, WideTy, 0, ExtType); 3045 3046 Observer.changedInstr(MI); 3047 return Legalized; 3048 } 3049 case TargetOpcode::G_CONSTANT: { 3050 MachineOperand &SrcMO = MI.getOperand(1); 3051 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 3052 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 3053 MRI.getType(MI.getOperand(0).getReg())); 3054 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 3055 ExtOpc == TargetOpcode::G_ANYEXT) && 3056 "Illegal Extend"); 3057 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 3058 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 3059 ? SrcVal.sext(WideTy.getSizeInBits()) 3060 : SrcVal.zext(WideTy.getSizeInBits()); 3061 Observer.changingInstr(MI); 3062 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 3063 3064 widenScalarDst(MI, WideTy); 3065 Observer.changedInstr(MI); 3066 return Legalized; 3067 } 3068 case TargetOpcode::G_FCONSTANT: { 3069 // To avoid changing the bits of the constant due to extension to a larger 3070 // type and then using G_FPTRUNC, we simply convert to a G_CONSTANT. 3071 MachineOperand &SrcMO = MI.getOperand(1); 3072 APInt Val = SrcMO.getFPImm()->getValueAPF().bitcastToAPInt(); 3073 MIRBuilder.setInstrAndDebugLoc(MI); 3074 auto IntCst = MIRBuilder.buildConstant(MI.getOperand(0).getReg(), Val); 3075 widenScalarDst(*IntCst, WideTy, 0, TargetOpcode::G_TRUNC); 3076 MI.eraseFromParent(); 3077 return Legalized; 3078 } 3079 case TargetOpcode::G_IMPLICIT_DEF: { 3080 Observer.changingInstr(MI); 3081 widenScalarDst(MI, WideTy); 3082 Observer.changedInstr(MI); 3083 return Legalized; 3084 } 3085 case TargetOpcode::G_BRCOND: 3086 Observer.changingInstr(MI); 3087 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 3088 Observer.changedInstr(MI); 3089 return Legalized; 3090 3091 case TargetOpcode::G_FCMP: 3092 Observer.changingInstr(MI); 3093 if (TypeIdx == 0) 3094 widenScalarDst(MI, WideTy); 3095 else { 3096 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 3097 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 3098 } 3099 Observer.changedInstr(MI); 3100 return Legalized; 3101 3102 case TargetOpcode::G_ICMP: 3103 Observer.changingInstr(MI); 3104 if (TypeIdx == 0) 3105 widenScalarDst(MI, WideTy); 3106 else { 3107 LLT SrcTy = MRI.getType(MI.getOperand(2).getReg()); 3108 CmpInst::Predicate Pred = 3109 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3110 3111 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 3112 unsigned ExtOpcode = 3113 (CmpInst::isSigned(Pred) || 3114 TLI.isSExtCheaperThanZExt(getApproximateEVTForLLT(SrcTy, Ctx), 3115 getApproximateEVTForLLT(WideTy, Ctx))) 3116 ? TargetOpcode::G_SEXT 3117 : TargetOpcode::G_ZEXT; 3118 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 3119 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 3120 } 3121 Observer.changedInstr(MI); 3122 return Legalized; 3123 3124 case TargetOpcode::G_PTR_ADD: 3125 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 3126 Observer.changingInstr(MI); 3127 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 3128 Observer.changedInstr(MI); 3129 return Legalized; 3130 3131 case TargetOpcode::G_PHI: { 3132 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3133 3134 Observer.changingInstr(MI); 3135 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 3136 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3137 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); 3138 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 3139 } 3140 3141 MachineBasicBlock &MBB = *MI.getParent(); 3142 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3143 widenScalarDst(MI, WideTy); 3144 Observer.changedInstr(MI); 3145 return Legalized; 3146 } 3147 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 3148 if (TypeIdx == 0) { 3149 Register VecReg = MI.getOperand(1).getReg(); 3150 LLT VecTy = MRI.getType(VecReg); 3151 Observer.changingInstr(MI); 3152 3153 widenScalarSrc( 3154 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 3155 TargetOpcode::G_ANYEXT); 3156 3157 widenScalarDst(MI, WideTy, 0); 3158 Observer.changedInstr(MI); 3159 return Legalized; 3160 } 3161 3162 if (TypeIdx != 2) 3163 return UnableToLegalize; 3164 Observer.changingInstr(MI); 3165 // TODO: Probably should be zext 3166 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 3167 Observer.changedInstr(MI); 3168 return Legalized; 3169 } 3170 case TargetOpcode::G_INSERT_VECTOR_ELT: { 3171 if (TypeIdx == 0) { 3172 Observer.changingInstr(MI); 3173 const LLT WideEltTy = WideTy.getElementType(); 3174 3175 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 3176 widenScalarSrc(MI, WideEltTy, 2, TargetOpcode::G_ANYEXT); 3177 widenScalarDst(MI, WideTy, 0); 3178 Observer.changedInstr(MI); 3179 return Legalized; 3180 } 3181 3182 if (TypeIdx == 1) { 3183 Observer.changingInstr(MI); 3184 3185 Register VecReg = MI.getOperand(1).getReg(); 3186 LLT VecTy = MRI.getType(VecReg); 3187 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 3188 3189 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 3190 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 3191 widenScalarDst(MI, WideVecTy, 0); 3192 Observer.changedInstr(MI); 3193 return Legalized; 3194 } 3195 3196 if (TypeIdx == 2) { 3197 Observer.changingInstr(MI); 3198 // TODO: Probably should be zext 3199 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 3200 Observer.changedInstr(MI); 3201 return Legalized; 3202 } 3203 3204 return UnableToLegalize; 3205 } 3206 case TargetOpcode::G_FADD: 3207 case TargetOpcode::G_FMUL: 3208 case TargetOpcode::G_FSUB: 3209 case TargetOpcode::G_FMA: 3210 case TargetOpcode::G_FMAD: 3211 case TargetOpcode::G_FNEG: 3212 case TargetOpcode::G_FABS: 3213 case TargetOpcode::G_FCANONICALIZE: 3214 case TargetOpcode::G_FMINNUM: 3215 case TargetOpcode::G_FMAXNUM: 3216 case TargetOpcode::G_FMINNUM_IEEE: 3217 case TargetOpcode::G_FMAXNUM_IEEE: 3218 case TargetOpcode::G_FMINIMUM: 3219 case TargetOpcode::G_FMAXIMUM: 3220 case TargetOpcode::G_FDIV: 3221 case TargetOpcode::G_FREM: 3222 case TargetOpcode::G_FCEIL: 3223 case TargetOpcode::G_FFLOOR: 3224 case TargetOpcode::G_FCOS: 3225 case TargetOpcode::G_FSIN: 3226 case TargetOpcode::G_FTAN: 3227 case TargetOpcode::G_FACOS: 3228 case TargetOpcode::G_FASIN: 3229 case TargetOpcode::G_FATAN: 3230 case TargetOpcode::G_FATAN2: 3231 case TargetOpcode::G_FCOSH: 3232 case TargetOpcode::G_FSINH: 3233 case TargetOpcode::G_FTANH: 3234 case TargetOpcode::G_FLOG10: 3235 case TargetOpcode::G_FLOG: 3236 case TargetOpcode::G_FLOG2: 3237 case TargetOpcode::G_FRINT: 3238 case TargetOpcode::G_FNEARBYINT: 3239 case TargetOpcode::G_FSQRT: 3240 case TargetOpcode::G_FEXP: 3241 case TargetOpcode::G_FEXP2: 3242 case TargetOpcode::G_FEXP10: 3243 case TargetOpcode::G_FPOW: 3244 case TargetOpcode::G_INTRINSIC_TRUNC: 3245 case TargetOpcode::G_INTRINSIC_ROUND: 3246 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 3247 assert(TypeIdx == 0); 3248 Observer.changingInstr(MI); 3249 3250 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3251 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 3252 3253 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 3254 Observer.changedInstr(MI); 3255 return Legalized; 3256 case TargetOpcode::G_FPOWI: 3257 case TargetOpcode::G_FLDEXP: 3258 case TargetOpcode::G_STRICT_FLDEXP: { 3259 if (TypeIdx == 0) { 3260 if (Opcode == TargetOpcode::G_STRICT_FLDEXP) 3261 return UnableToLegalize; 3262 3263 Observer.changingInstr(MI); 3264 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 3265 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 3266 Observer.changedInstr(MI); 3267 return Legalized; 3268 } 3269 3270 if (TypeIdx == 1) { 3271 // For some reason SelectionDAG tries to promote to a libcall without 3272 // actually changing the integer type for promotion. 3273 Observer.changingInstr(MI); 3274 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 3275 Observer.changedInstr(MI); 3276 return Legalized; 3277 } 3278 3279 return UnableToLegalize; 3280 } 3281 case TargetOpcode::G_FFREXP: { 3282 Observer.changingInstr(MI); 3283 3284 if (TypeIdx == 0) { 3285 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 3286 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 3287 } else { 3288 widenScalarDst(MI, WideTy, 1); 3289 } 3290 3291 Observer.changedInstr(MI); 3292 return Legalized; 3293 } 3294 case TargetOpcode::G_INTTOPTR: 3295 if (TypeIdx != 1) 3296 return UnableToLegalize; 3297 3298 Observer.changingInstr(MI); 3299 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 3300 Observer.changedInstr(MI); 3301 return Legalized; 3302 case TargetOpcode::G_PTRTOINT: 3303 if (TypeIdx != 0) 3304 return UnableToLegalize; 3305 3306 Observer.changingInstr(MI); 3307 widenScalarDst(MI, WideTy, 0); 3308 Observer.changedInstr(MI); 3309 return Legalized; 3310 case TargetOpcode::G_BUILD_VECTOR: { 3311 Observer.changingInstr(MI); 3312 3313 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 3314 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 3315 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 3316 3317 // Avoid changing the result vector type if the source element type was 3318 // requested. 3319 if (TypeIdx == 1) { 3320 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 3321 } else { 3322 widenScalarDst(MI, WideTy, 0); 3323 } 3324 3325 Observer.changedInstr(MI); 3326 return Legalized; 3327 } 3328 case TargetOpcode::G_SEXT_INREG: 3329 if (TypeIdx != 0) 3330 return UnableToLegalize; 3331 3332 Observer.changingInstr(MI); 3333 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 3334 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 3335 Observer.changedInstr(MI); 3336 return Legalized; 3337 case TargetOpcode::G_PTRMASK: { 3338 if (TypeIdx != 1) 3339 return UnableToLegalize; 3340 Observer.changingInstr(MI); 3341 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 3342 Observer.changedInstr(MI); 3343 return Legalized; 3344 } 3345 case TargetOpcode::G_VECREDUCE_FADD: 3346 case TargetOpcode::G_VECREDUCE_FMUL: 3347 case TargetOpcode::G_VECREDUCE_FMIN: 3348 case TargetOpcode::G_VECREDUCE_FMAX: 3349 case TargetOpcode::G_VECREDUCE_FMINIMUM: 3350 case TargetOpcode::G_VECREDUCE_FMAXIMUM: { 3351 if (TypeIdx != 0) 3352 return UnableToLegalize; 3353 Observer.changingInstr(MI); 3354 Register VecReg = MI.getOperand(1).getReg(); 3355 LLT VecTy = MRI.getType(VecReg); 3356 LLT WideVecTy = VecTy.isVector() 3357 ? LLT::vector(VecTy.getElementCount(), WideTy) 3358 : WideTy; 3359 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_FPEXT); 3360 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 3361 Observer.changedInstr(MI); 3362 return Legalized; 3363 } 3364 case TargetOpcode::G_VSCALE: { 3365 MachineOperand &SrcMO = MI.getOperand(1); 3366 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 3367 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 3368 // The CImm is always a signed value 3369 const APInt Val = SrcVal.sext(WideTy.getSizeInBits()); 3370 Observer.changingInstr(MI); 3371 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 3372 widenScalarDst(MI, WideTy); 3373 Observer.changedInstr(MI); 3374 return Legalized; 3375 } 3376 case TargetOpcode::G_SPLAT_VECTOR: { 3377 if (TypeIdx != 1) 3378 return UnableToLegalize; 3379 3380 Observer.changingInstr(MI); 3381 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 3382 Observer.changedInstr(MI); 3383 return Legalized; 3384 } 3385 case TargetOpcode::G_INSERT_SUBVECTOR: { 3386 if (TypeIdx != 0) 3387 return UnableToLegalize; 3388 3389 GInsertSubvector &IS = cast<GInsertSubvector>(MI); 3390 Register BigVec = IS.getBigVec(); 3391 Register SubVec = IS.getSubVec(); 3392 3393 LLT SubVecTy = MRI.getType(SubVec); 3394 LLT SubVecWideTy = SubVecTy.changeElementType(WideTy.getElementType()); 3395 3396 // Widen the G_INSERT_SUBVECTOR 3397 auto BigZExt = MIRBuilder.buildZExt(WideTy, BigVec); 3398 auto SubZExt = MIRBuilder.buildZExt(SubVecWideTy, SubVec); 3399 auto WideInsert = MIRBuilder.buildInsertSubvector(WideTy, BigZExt, SubZExt, 3400 IS.getIndexImm()); 3401 3402 // Truncate back down 3403 auto SplatZero = MIRBuilder.buildSplatVector( 3404 WideTy, MIRBuilder.buildConstant(WideTy.getElementType(), 0)); 3405 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_NE, IS.getReg(0), WideInsert, 3406 SplatZero); 3407 3408 MI.eraseFromParent(); 3409 3410 return Legalized; 3411 } 3412 } 3413 } 3414 3415 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 3416 MachineIRBuilder &B, Register Src, LLT Ty) { 3417 auto Unmerge = B.buildUnmerge(Ty, Src); 3418 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 3419 Pieces.push_back(Unmerge.getReg(I)); 3420 } 3421 3422 static void emitLoadFromConstantPool(Register DstReg, const Constant *ConstVal, 3423 MachineIRBuilder &MIRBuilder) { 3424 MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); 3425 MachineFunction &MF = MIRBuilder.getMF(); 3426 const DataLayout &DL = MIRBuilder.getDataLayout(); 3427 unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace(); 3428 LLT AddrPtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3429 LLT DstLLT = MRI.getType(DstReg); 3430 3431 Align Alignment(DL.getABITypeAlign(ConstVal->getType())); 3432 3433 auto Addr = MIRBuilder.buildConstantPool( 3434 AddrPtrTy, 3435 MF.getConstantPool()->getConstantPoolIndex(ConstVal, Alignment)); 3436 3437 MachineMemOperand *MMO = 3438 MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF), 3439 MachineMemOperand::MOLoad, DstLLT, Alignment); 3440 3441 MIRBuilder.buildLoadInstr(TargetOpcode::G_LOAD, DstReg, Addr, *MMO); 3442 } 3443 3444 LegalizerHelper::LegalizeResult 3445 LegalizerHelper::lowerConstant(MachineInstr &MI) { 3446 const MachineOperand &ConstOperand = MI.getOperand(1); 3447 const Constant *ConstantVal = ConstOperand.getCImm(); 3448 3449 emitLoadFromConstantPool(MI.getOperand(0).getReg(), ConstantVal, MIRBuilder); 3450 MI.eraseFromParent(); 3451 3452 return Legalized; 3453 } 3454 3455 LegalizerHelper::LegalizeResult 3456 LegalizerHelper::lowerFConstant(MachineInstr &MI) { 3457 const MachineOperand &ConstOperand = MI.getOperand(1); 3458 const Constant *ConstantVal = ConstOperand.getFPImm(); 3459 3460 emitLoadFromConstantPool(MI.getOperand(0).getReg(), ConstantVal, MIRBuilder); 3461 MI.eraseFromParent(); 3462 3463 return Legalized; 3464 } 3465 3466 LegalizerHelper::LegalizeResult 3467 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 3468 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 3469 if (SrcTy.isVector()) { 3470 LLT SrcEltTy = SrcTy.getElementType(); 3471 SmallVector<Register, 8> SrcRegs; 3472 3473 if (DstTy.isVector()) { 3474 int NumDstElt = DstTy.getNumElements(); 3475 int NumSrcElt = SrcTy.getNumElements(); 3476 3477 LLT DstEltTy = DstTy.getElementType(); 3478 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 3479 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 3480 3481 // If there's an element size mismatch, insert intermediate casts to match 3482 // the result element type. 3483 if (NumSrcElt < NumDstElt) { // Source element type is larger. 3484 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 3485 // 3486 // => 3487 // 3488 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 3489 // %3:_(<2 x s8>) = G_BITCAST %2 3490 // %4:_(<2 x s8>) = G_BITCAST %3 3491 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 3492 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 3493 SrcPartTy = SrcEltTy; 3494 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 3495 // 3496 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 3497 // 3498 // => 3499 // 3500 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 3501 // %3:_(s16) = G_BITCAST %2 3502 // %4:_(s16) = G_BITCAST %3 3503 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 3504 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 3505 DstCastTy = DstEltTy; 3506 } 3507 3508 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 3509 for (Register &SrcReg : SrcRegs) 3510 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 3511 } else 3512 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 3513 3514 MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs); 3515 MI.eraseFromParent(); 3516 return Legalized; 3517 } 3518 3519 if (DstTy.isVector()) { 3520 SmallVector<Register, 8> SrcRegs; 3521 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 3522 MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs); 3523 MI.eraseFromParent(); 3524 return Legalized; 3525 } 3526 3527 return UnableToLegalize; 3528 } 3529 3530 /// Figure out the bit offset into a register when coercing a vector index for 3531 /// the wide element type. This is only for the case when promoting vector to 3532 /// one with larger elements. 3533 // 3534 /// 3535 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 3536 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 3537 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 3538 Register Idx, 3539 unsigned NewEltSize, 3540 unsigned OldEltSize) { 3541 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 3542 LLT IdxTy = B.getMRI()->getType(Idx); 3543 3544 // Now figure out the amount we need to shift to get the target bits. 3545 auto OffsetMask = B.buildConstant( 3546 IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio)); 3547 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 3548 return B.buildShl(IdxTy, OffsetIdx, 3549 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 3550 } 3551 3552 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 3553 /// is casting to a vector with a smaller element size, perform multiple element 3554 /// extracts and merge the results. If this is coercing to a vector with larger 3555 /// elements, index the bitcasted vector and extract the target element with bit 3556 /// operations. This is intended to force the indexing in the native register 3557 /// size for architectures that can dynamically index the register file. 3558 LegalizerHelper::LegalizeResult 3559 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 3560 LLT CastTy) { 3561 if (TypeIdx != 1) 3562 return UnableToLegalize; 3563 3564 auto [Dst, DstTy, SrcVec, SrcVecTy, Idx, IdxTy] = MI.getFirst3RegLLTs(); 3565 3566 LLT SrcEltTy = SrcVecTy.getElementType(); 3567 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 3568 unsigned OldNumElts = SrcVecTy.getNumElements(); 3569 3570 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 3571 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 3572 3573 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 3574 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 3575 if (NewNumElts > OldNumElts) { 3576 // Decreasing the vector element size 3577 // 3578 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 3579 // => 3580 // v4i32:castx = bitcast x:v2i64 3581 // 3582 // i64 = bitcast 3583 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 3584 // (i32 (extract_vector_elt castx, (2 * y + 1))) 3585 // 3586 if (NewNumElts % OldNumElts != 0) 3587 return UnableToLegalize; 3588 3589 // Type of the intermediate result vector. 3590 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 3591 LLT MidTy = 3592 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 3593 3594 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 3595 3596 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 3597 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 3598 3599 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 3600 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 3601 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 3602 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 3603 NewOps[I] = Elt.getReg(0); 3604 } 3605 3606 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 3607 MIRBuilder.buildBitcast(Dst, NewVec); 3608 MI.eraseFromParent(); 3609 return Legalized; 3610 } 3611 3612 if (NewNumElts < OldNumElts) { 3613 if (NewEltSize % OldEltSize != 0) 3614 return UnableToLegalize; 3615 3616 // This only depends on powers of 2 because we use bit tricks to figure out 3617 // the bit offset we need to shift to get the target element. A general 3618 // expansion could emit division/multiply. 3619 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 3620 return UnableToLegalize; 3621 3622 // Increasing the vector element size. 3623 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 3624 // 3625 // => 3626 // 3627 // %cast = G_BITCAST %vec 3628 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 3629 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 3630 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 3631 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 3632 // %elt_bits = G_LSHR %wide_elt, %offset_bits 3633 // %elt = G_TRUNC %elt_bits 3634 3635 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 3636 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 3637 3638 // Divide to get the index in the wider element type. 3639 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 3640 3641 Register WideElt = CastVec; 3642 if (CastTy.isVector()) { 3643 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 3644 ScaledIdx).getReg(0); 3645 } 3646 3647 // Compute the bit offset into the register of the target element. 3648 Register OffsetBits = getBitcastWiderVectorElementOffset( 3649 MIRBuilder, Idx, NewEltSize, OldEltSize); 3650 3651 // Shift the wide element to get the target element. 3652 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 3653 MIRBuilder.buildTrunc(Dst, ExtractedBits); 3654 MI.eraseFromParent(); 3655 return Legalized; 3656 } 3657 3658 return UnableToLegalize; 3659 } 3660 3661 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 3662 /// TargetReg, while preserving other bits in \p TargetReg. 3663 /// 3664 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 3665 static Register buildBitFieldInsert(MachineIRBuilder &B, 3666 Register TargetReg, Register InsertReg, 3667 Register OffsetBits) { 3668 LLT TargetTy = B.getMRI()->getType(TargetReg); 3669 LLT InsertTy = B.getMRI()->getType(InsertReg); 3670 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 3671 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 3672 3673 // Produce a bitmask of the value to insert 3674 auto EltMask = B.buildConstant( 3675 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 3676 InsertTy.getSizeInBits())); 3677 // Shift it into position 3678 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 3679 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 3680 3681 // Clear out the bits in the wide element 3682 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 3683 3684 // The value to insert has all zeros already, so stick it into the masked 3685 // wide element. 3686 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 3687 } 3688 3689 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 3690 /// is increasing the element size, perform the indexing in the target element 3691 /// type, and use bit operations to insert at the element position. This is 3692 /// intended for architectures that can dynamically index the register file and 3693 /// want to force indexing in the native register size. 3694 LegalizerHelper::LegalizeResult 3695 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 3696 LLT CastTy) { 3697 if (TypeIdx != 0) 3698 return UnableToLegalize; 3699 3700 auto [Dst, DstTy, SrcVec, SrcVecTy, Val, ValTy, Idx, IdxTy] = 3701 MI.getFirst4RegLLTs(); 3702 LLT VecTy = DstTy; 3703 3704 LLT VecEltTy = VecTy.getElementType(); 3705 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 3706 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 3707 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 3708 3709 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 3710 unsigned OldNumElts = VecTy.getNumElements(); 3711 3712 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 3713 if (NewNumElts < OldNumElts) { 3714 if (NewEltSize % OldEltSize != 0) 3715 return UnableToLegalize; 3716 3717 // This only depends on powers of 2 because we use bit tricks to figure out 3718 // the bit offset we need to shift to get the target element. A general 3719 // expansion could emit division/multiply. 3720 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 3721 return UnableToLegalize; 3722 3723 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 3724 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 3725 3726 // Divide to get the index in the wider element type. 3727 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 3728 3729 Register ExtractedElt = CastVec; 3730 if (CastTy.isVector()) { 3731 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 3732 ScaledIdx).getReg(0); 3733 } 3734 3735 // Compute the bit offset into the register of the target element. 3736 Register OffsetBits = getBitcastWiderVectorElementOffset( 3737 MIRBuilder, Idx, NewEltSize, OldEltSize); 3738 3739 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 3740 Val, OffsetBits); 3741 if (CastTy.isVector()) { 3742 InsertedElt = MIRBuilder.buildInsertVectorElement( 3743 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 3744 } 3745 3746 MIRBuilder.buildBitcast(Dst, InsertedElt); 3747 MI.eraseFromParent(); 3748 return Legalized; 3749 } 3750 3751 return UnableToLegalize; 3752 } 3753 3754 // This attempts to handle G_CONCAT_VECTORS with illegal operands, particularly 3755 // those that have smaller than legal operands. 3756 // 3757 // <16 x s8> = G_CONCAT_VECTORS <4 x s8>, <4 x s8>, <4 x s8>, <4 x s8> 3758 // 3759 // ===> 3760 // 3761 // s32 = G_BITCAST <4 x s8> 3762 // s32 = G_BITCAST <4 x s8> 3763 // s32 = G_BITCAST <4 x s8> 3764 // s32 = G_BITCAST <4 x s8> 3765 // <4 x s32> = G_BUILD_VECTOR s32, s32, s32, s32 3766 // <16 x s8> = G_BITCAST <4 x s32> 3767 LegalizerHelper::LegalizeResult 3768 LegalizerHelper::bitcastConcatVector(MachineInstr &MI, unsigned TypeIdx, 3769 LLT CastTy) { 3770 // Convert it to CONCAT instruction 3771 auto ConcatMI = dyn_cast<GConcatVectors>(&MI); 3772 if (!ConcatMI) { 3773 return UnableToLegalize; 3774 } 3775 3776 // Check if bitcast is Legal 3777 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 3778 LLT SrcScalTy = LLT::scalar(SrcTy.getSizeInBits()); 3779 3780 // Check if the build vector is Legal 3781 if (!LI.isLegal({TargetOpcode::G_BUILD_VECTOR, {CastTy, SrcScalTy}})) { 3782 return UnableToLegalize; 3783 } 3784 3785 // Bitcast the sources 3786 SmallVector<Register> BitcastRegs; 3787 for (unsigned i = 0; i < ConcatMI->getNumSources(); i++) { 3788 BitcastRegs.push_back( 3789 MIRBuilder.buildBitcast(SrcScalTy, ConcatMI->getSourceReg(i)) 3790 .getReg(0)); 3791 } 3792 3793 // Build the scalar values into a vector 3794 Register BuildReg = 3795 MIRBuilder.buildBuildVector(CastTy, BitcastRegs).getReg(0); 3796 MIRBuilder.buildBitcast(DstReg, BuildReg); 3797 3798 MI.eraseFromParent(); 3799 return Legalized; 3800 } 3801 3802 // This bitcasts a shuffle vector to a different type currently of the same 3803 // element size. Mostly used to legalize ptr vectors, where ptrtoint/inttoptr 3804 // will be used instead. 3805 // 3806 // <16 x p0> = G_CONCAT_VECTORS <4 x p0>, <4 x p0>, mask 3807 // ===> 3808 // <4 x s64> = G_PTRTOINT <4 x p0> 3809 // <4 x s64> = G_PTRTOINT <4 x p0> 3810 // <16 x s64> = G_CONCAT_VECTORS <4 x s64>, <4 x s64>, mask 3811 // <16 x p0> = G_INTTOPTR <16 x s64> 3812 LegalizerHelper::LegalizeResult 3813 LegalizerHelper::bitcastShuffleVector(MachineInstr &MI, unsigned TypeIdx, 3814 LLT CastTy) { 3815 auto ShuffleMI = cast<GShuffleVector>(&MI); 3816 LLT DstTy = MRI.getType(ShuffleMI->getReg(0)); 3817 LLT SrcTy = MRI.getType(ShuffleMI->getReg(1)); 3818 3819 // We currently only handle vectors of the same size. 3820 if (TypeIdx != 0 || 3821 CastTy.getScalarSizeInBits() != DstTy.getScalarSizeInBits() || 3822 CastTy.getElementCount() != DstTy.getElementCount()) 3823 return UnableToLegalize; 3824 3825 LLT NewSrcTy = SrcTy.changeElementType(CastTy.getScalarType()); 3826 3827 auto Inp1 = MIRBuilder.buildCast(NewSrcTy, ShuffleMI->getReg(1)); 3828 auto Inp2 = MIRBuilder.buildCast(NewSrcTy, ShuffleMI->getReg(2)); 3829 auto Shuf = 3830 MIRBuilder.buildShuffleVector(CastTy, Inp1, Inp2, ShuffleMI->getMask()); 3831 MIRBuilder.buildCast(ShuffleMI->getReg(0), Shuf); 3832 3833 MI.eraseFromParent(); 3834 return Legalized; 3835 } 3836 3837 /// This attempts to bitcast G_EXTRACT_SUBVECTOR to CastTy. 3838 /// 3839 /// <vscale x 8 x i1> = G_EXTRACT_SUBVECTOR <vscale x 16 x i1>, N 3840 /// 3841 /// ===> 3842 /// 3843 /// <vscale x 2 x i1> = G_BITCAST <vscale x 16 x i1> 3844 /// <vscale x 1 x i8> = G_EXTRACT_SUBVECTOR <vscale x 2 x i1>, N / 8 3845 /// <vscale x 8 x i1> = G_BITCAST <vscale x 1 x i8> 3846 LegalizerHelper::LegalizeResult 3847 LegalizerHelper::bitcastExtractSubvector(MachineInstr &MI, unsigned TypeIdx, 3848 LLT CastTy) { 3849 auto ES = cast<GExtractSubvector>(&MI); 3850 3851 if (!CastTy.isVector()) 3852 return UnableToLegalize; 3853 3854 if (TypeIdx != 0) 3855 return UnableToLegalize; 3856 3857 Register Dst = ES->getReg(0); 3858 Register Src = ES->getSrcVec(); 3859 uint64_t Idx = ES->getIndexImm(); 3860 3861 MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); 3862 3863 LLT DstTy = MRI.getType(Dst); 3864 LLT SrcTy = MRI.getType(Src); 3865 ElementCount DstTyEC = DstTy.getElementCount(); 3866 ElementCount SrcTyEC = SrcTy.getElementCount(); 3867 auto DstTyMinElts = DstTyEC.getKnownMinValue(); 3868 auto SrcTyMinElts = SrcTyEC.getKnownMinValue(); 3869 3870 if (DstTy == CastTy) 3871 return Legalized; 3872 3873 if (DstTy.getSizeInBits() != CastTy.getSizeInBits()) 3874 return UnableToLegalize; 3875 3876 unsigned CastEltSize = CastTy.getElementType().getSizeInBits(); 3877 unsigned DstEltSize = DstTy.getElementType().getSizeInBits(); 3878 if (CastEltSize < DstEltSize) 3879 return UnableToLegalize; 3880 3881 auto AdjustAmt = CastEltSize / DstEltSize; 3882 if (Idx % AdjustAmt != 0 || DstTyMinElts % AdjustAmt != 0 || 3883 SrcTyMinElts % AdjustAmt != 0) 3884 return UnableToLegalize; 3885 3886 Idx /= AdjustAmt; 3887 SrcTy = LLT::vector(SrcTyEC.divideCoefficientBy(AdjustAmt), AdjustAmt); 3888 auto CastVec = MIRBuilder.buildBitcast(SrcTy, Src); 3889 auto PromotedES = MIRBuilder.buildExtractSubvector(CastTy, CastVec, Idx); 3890 MIRBuilder.buildBitcast(Dst, PromotedES); 3891 3892 ES->eraseFromParent(); 3893 return Legalized; 3894 } 3895 3896 /// This attempts to bitcast G_INSERT_SUBVECTOR to CastTy. 3897 /// 3898 /// <vscale x 16 x i1> = G_INSERT_SUBVECTOR <vscale x 16 x i1>, 3899 /// <vscale x 8 x i1>, 3900 /// N 3901 /// 3902 /// ===> 3903 /// 3904 /// <vscale x 2 x i8> = G_BITCAST <vscale x 16 x i1> 3905 /// <vscale x 1 x i8> = G_BITCAST <vscale x 8 x i1> 3906 /// <vscale x 2 x i8> = G_INSERT_SUBVECTOR <vscale x 2 x i8>, 3907 /// <vscale x 1 x i8>, N / 8 3908 /// <vscale x 16 x i1> = G_BITCAST <vscale x 2 x i8> 3909 LegalizerHelper::LegalizeResult 3910 LegalizerHelper::bitcastInsertSubvector(MachineInstr &MI, unsigned TypeIdx, 3911 LLT CastTy) { 3912 auto ES = cast<GInsertSubvector>(&MI); 3913 3914 if (!CastTy.isVector()) 3915 return UnableToLegalize; 3916 3917 if (TypeIdx != 0) 3918 return UnableToLegalize; 3919 3920 Register Dst = ES->getReg(0); 3921 Register BigVec = ES->getBigVec(); 3922 Register SubVec = ES->getSubVec(); 3923 uint64_t Idx = ES->getIndexImm(); 3924 3925 MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); 3926 3927 LLT DstTy = MRI.getType(Dst); 3928 LLT BigVecTy = MRI.getType(BigVec); 3929 LLT SubVecTy = MRI.getType(SubVec); 3930 3931 if (DstTy == CastTy) 3932 return Legalized; 3933 3934 if (DstTy.getSizeInBits() != CastTy.getSizeInBits()) 3935 return UnableToLegalize; 3936 3937 ElementCount DstTyEC = DstTy.getElementCount(); 3938 ElementCount BigVecTyEC = BigVecTy.getElementCount(); 3939 ElementCount SubVecTyEC = SubVecTy.getElementCount(); 3940 auto DstTyMinElts = DstTyEC.getKnownMinValue(); 3941 auto BigVecTyMinElts = BigVecTyEC.getKnownMinValue(); 3942 auto SubVecTyMinElts = SubVecTyEC.getKnownMinValue(); 3943 3944 unsigned CastEltSize = CastTy.getElementType().getSizeInBits(); 3945 unsigned DstEltSize = DstTy.getElementType().getSizeInBits(); 3946 if (CastEltSize < DstEltSize) 3947 return UnableToLegalize; 3948 3949 auto AdjustAmt = CastEltSize / DstEltSize; 3950 if (Idx % AdjustAmt != 0 || DstTyMinElts % AdjustAmt != 0 || 3951 BigVecTyMinElts % AdjustAmt != 0 || SubVecTyMinElts % AdjustAmt != 0) 3952 return UnableToLegalize; 3953 3954 Idx /= AdjustAmt; 3955 BigVecTy = LLT::vector(BigVecTyEC.divideCoefficientBy(AdjustAmt), AdjustAmt); 3956 SubVecTy = LLT::vector(SubVecTyEC.divideCoefficientBy(AdjustAmt), AdjustAmt); 3957 auto CastBigVec = MIRBuilder.buildBitcast(BigVecTy, BigVec); 3958 auto CastSubVec = MIRBuilder.buildBitcast(SubVecTy, SubVec); 3959 auto PromotedIS = 3960 MIRBuilder.buildInsertSubvector(CastTy, CastBigVec, CastSubVec, Idx); 3961 MIRBuilder.buildBitcast(Dst, PromotedIS); 3962 3963 ES->eraseFromParent(); 3964 return Legalized; 3965 } 3966 3967 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { 3968 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 3969 Register DstReg = LoadMI.getDstReg(); 3970 Register PtrReg = LoadMI.getPointerReg(); 3971 LLT DstTy = MRI.getType(DstReg); 3972 MachineMemOperand &MMO = LoadMI.getMMO(); 3973 LLT MemTy = MMO.getMemoryType(); 3974 MachineFunction &MF = MIRBuilder.getMF(); 3975 3976 unsigned MemSizeInBits = MemTy.getSizeInBits(); 3977 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3978 3979 if (MemSizeInBits != MemStoreSizeInBits) { 3980 if (MemTy.isVector()) 3981 return UnableToLegalize; 3982 3983 // Promote to a byte-sized load if not loading an integral number of 3984 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 3985 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 3986 MachineMemOperand *NewMMO = 3987 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 3988 3989 Register LoadReg = DstReg; 3990 LLT LoadTy = DstTy; 3991 3992 // If this wasn't already an extending load, we need to widen the result 3993 // register to avoid creating a load with a narrower result than the source. 3994 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 3995 LoadTy = WideMemTy; 3996 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 3997 } 3998 3999 if (isa<GSExtLoad>(LoadMI)) { 4000 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 4001 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 4002 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) { 4003 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 4004 // The extra bits are guaranteed to be zero, since we stored them that 4005 // way. A zext load from Wide thus automatically gives zext from MemVT. 4006 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 4007 } else { 4008 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 4009 } 4010 4011 if (DstTy != LoadTy) 4012 MIRBuilder.buildTrunc(DstReg, LoadReg); 4013 4014 LoadMI.eraseFromParent(); 4015 return Legalized; 4016 } 4017 4018 // Big endian lowering not implemented. 4019 if (MIRBuilder.getDataLayout().isBigEndian()) 4020 return UnableToLegalize; 4021 4022 // This load needs splitting into power of 2 sized loads. 4023 // 4024 // Our strategy here is to generate anyextending loads for the smaller 4025 // types up to next power-2 result type, and then combine the two larger 4026 // result values together, before truncating back down to the non-pow-2 4027 // type. 4028 // E.g. v1 = i24 load => 4029 // v2 = i32 zextload (2 byte) 4030 // v3 = i32 load (1 byte) 4031 // v4 = i32 shl v3, 16 4032 // v5 = i32 or v4, v2 4033 // v1 = i24 trunc v5 4034 // By doing this we generate the correct truncate which should get 4035 // combined away as an artifact with a matching extend. 4036 4037 uint64_t LargeSplitSize, SmallSplitSize; 4038 4039 if (!isPowerOf2_32(MemSizeInBits)) { 4040 // This load needs splitting into power of 2 sized loads. 4041 LargeSplitSize = llvm::bit_floor(MemSizeInBits); 4042 SmallSplitSize = MemSizeInBits - LargeSplitSize; 4043 } else { 4044 // This is already a power of 2, but we still need to split this in half. 4045 // 4046 // Assume we're being asked to decompose an unaligned load. 4047 // TODO: If this requires multiple splits, handle them all at once. 4048 auto &Ctx = MF.getFunction().getContext(); 4049 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 4050 return UnableToLegalize; 4051 4052 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 4053 } 4054 4055 if (MemTy.isVector()) { 4056 // TODO: Handle vector extloads 4057 if (MemTy != DstTy) 4058 return UnableToLegalize; 4059 4060 // TODO: We can do better than scalarizing the vector and at least split it 4061 // in half. 4062 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); 4063 } 4064 4065 MachineMemOperand *LargeMMO = 4066 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 4067 MachineMemOperand *SmallMMO = 4068 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 4069 4070 LLT PtrTy = MRI.getType(PtrReg); 4071 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); 4072 LLT AnyExtTy = LLT::scalar(AnyExtSize); 4073 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, 4074 PtrReg, *LargeMMO); 4075 4076 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), 4077 LargeSplitSize / 8); 4078 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 4079 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 4080 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, 4081 SmallPtr, *SmallMMO); 4082 4083 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 4084 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 4085 4086 if (AnyExtTy == DstTy) 4087 MIRBuilder.buildOr(DstReg, Shift, LargeLoad); 4088 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { 4089 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 4090 MIRBuilder.buildTrunc(DstReg, {Or}); 4091 } else { 4092 assert(DstTy.isPointer() && "expected pointer"); 4093 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 4094 4095 // FIXME: We currently consider this to be illegal for non-integral address 4096 // spaces, but we need still need a way to reinterpret the bits. 4097 MIRBuilder.buildIntToPtr(DstReg, Or); 4098 } 4099 4100 LoadMI.eraseFromParent(); 4101 return Legalized; 4102 } 4103 4104 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { 4105 // Lower a non-power of 2 store into multiple pow-2 stores. 4106 // E.g. split an i24 store into an i16 store + i8 store. 4107 // We do this by first extending the stored value to the next largest power 4108 // of 2 type, and then using truncating stores to store the components. 4109 // By doing this, likewise with G_LOAD, generate an extend that can be 4110 // artifact-combined away instead of leaving behind extracts. 4111 Register SrcReg = StoreMI.getValueReg(); 4112 Register PtrReg = StoreMI.getPointerReg(); 4113 LLT SrcTy = MRI.getType(SrcReg); 4114 MachineFunction &MF = MIRBuilder.getMF(); 4115 MachineMemOperand &MMO = **StoreMI.memoperands_begin(); 4116 LLT MemTy = MMO.getMemoryType(); 4117 4118 unsigned StoreWidth = MemTy.getSizeInBits(); 4119 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 4120 4121 if (StoreWidth != StoreSizeInBits && !SrcTy.isVector()) { 4122 // Promote to a byte-sized store with upper bits zero if not 4123 // storing an integral number of bytes. For example, promote 4124 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 4125 LLT WideTy = LLT::scalar(StoreSizeInBits); 4126 4127 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 4128 // Avoid creating a store with a narrower source than result. 4129 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 4130 SrcTy = WideTy; 4131 } 4132 4133 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 4134 4135 MachineMemOperand *NewMMO = 4136 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 4137 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 4138 StoreMI.eraseFromParent(); 4139 return Legalized; 4140 } 4141 4142 if (MemTy.isVector()) { 4143 if (MemTy != SrcTy) 4144 return scalarizeVectorBooleanStore(StoreMI); 4145 4146 // TODO: We can do better than scalarizing the vector and at least split it 4147 // in half. 4148 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); 4149 } 4150 4151 unsigned MemSizeInBits = MemTy.getSizeInBits(); 4152 uint64_t LargeSplitSize, SmallSplitSize; 4153 4154 if (!isPowerOf2_32(MemSizeInBits)) { 4155 LargeSplitSize = llvm::bit_floor<uint64_t>(MemTy.getSizeInBits()); 4156 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; 4157 } else { 4158 auto &Ctx = MF.getFunction().getContext(); 4159 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 4160 return UnableToLegalize; // Don't know what we're being asked to do. 4161 4162 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 4163 } 4164 4165 // Extend to the next pow-2. If this store was itself the result of lowering, 4166 // e.g. an s56 store being broken into s32 + s24, we might have a stored type 4167 // that's wider than the stored size. 4168 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); 4169 const LLT NewSrcTy = LLT::scalar(AnyExtSize); 4170 4171 if (SrcTy.isPointer()) { 4172 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); 4173 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); 4174 } 4175 4176 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); 4177 4178 // Obtain the smaller value by shifting away the larger value. 4179 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); 4180 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); 4181 4182 // Generate the PtrAdd and truncating stores. 4183 LLT PtrTy = MRI.getType(PtrReg); 4184 auto OffsetCst = MIRBuilder.buildConstant( 4185 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 4186 auto SmallPtr = 4187 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); 4188 4189 MachineMemOperand *LargeMMO = 4190 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 4191 MachineMemOperand *SmallMMO = 4192 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 4193 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 4194 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 4195 StoreMI.eraseFromParent(); 4196 return Legalized; 4197 } 4198 4199 LegalizerHelper::LegalizeResult 4200 LegalizerHelper::scalarizeVectorBooleanStore(GStore &StoreMI) { 4201 Register SrcReg = StoreMI.getValueReg(); 4202 Register PtrReg = StoreMI.getPointerReg(); 4203 LLT SrcTy = MRI.getType(SrcReg); 4204 MachineMemOperand &MMO = **StoreMI.memoperands_begin(); 4205 LLT MemTy = MMO.getMemoryType(); 4206 LLT MemScalarTy = MemTy.getElementType(); 4207 MachineFunction &MF = MIRBuilder.getMF(); 4208 4209 assert(SrcTy.isVector() && "Expect a vector store type"); 4210 4211 if (!MemScalarTy.isByteSized()) { 4212 // We need to build an integer scalar of the vector bit pattern. 4213 // It's not legal for us to add padding when storing a vector. 4214 unsigned NumBits = MemTy.getSizeInBits(); 4215 LLT IntTy = LLT::scalar(NumBits); 4216 auto CurrVal = MIRBuilder.buildConstant(IntTy, 0); 4217 LLT IdxTy = getLLTForMVT(TLI.getVectorIdxTy(MF.getDataLayout())); 4218 4219 for (unsigned I = 0, E = MemTy.getNumElements(); I < E; ++I) { 4220 auto Elt = MIRBuilder.buildExtractVectorElement( 4221 SrcTy.getElementType(), SrcReg, MIRBuilder.buildConstant(IdxTy, I)); 4222 auto Trunc = MIRBuilder.buildTrunc(MemScalarTy, Elt); 4223 auto ZExt = MIRBuilder.buildZExt(IntTy, Trunc); 4224 unsigned ShiftIntoIdx = MF.getDataLayout().isBigEndian() 4225 ? (MemTy.getNumElements() - 1) - I 4226 : I; 4227 auto ShiftAmt = MIRBuilder.buildConstant( 4228 IntTy, ShiftIntoIdx * MemScalarTy.getSizeInBits()); 4229 auto Shifted = MIRBuilder.buildShl(IntTy, ZExt, ShiftAmt); 4230 CurrVal = MIRBuilder.buildOr(IntTy, CurrVal, Shifted); 4231 } 4232 auto PtrInfo = MMO.getPointerInfo(); 4233 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, IntTy); 4234 MIRBuilder.buildStore(CurrVal, PtrReg, *NewMMO); 4235 StoreMI.eraseFromParent(); 4236 return Legalized; 4237 } 4238 4239 // TODO: implement simple scalarization. 4240 return UnableToLegalize; 4241 } 4242 4243 LegalizerHelper::LegalizeResult 4244 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 4245 switch (MI.getOpcode()) { 4246 case TargetOpcode::G_LOAD: { 4247 if (TypeIdx != 0) 4248 return UnableToLegalize; 4249 MachineMemOperand &MMO = **MI.memoperands_begin(); 4250 4251 // Not sure how to interpret a bitcast of an extending load. 4252 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 4253 return UnableToLegalize; 4254 4255 Observer.changingInstr(MI); 4256 bitcastDst(MI, CastTy, 0); 4257 MMO.setType(CastTy); 4258 // The range metadata is no longer valid when reinterpreted as a different 4259 // type. 4260 MMO.clearRanges(); 4261 Observer.changedInstr(MI); 4262 return Legalized; 4263 } 4264 case TargetOpcode::G_STORE: { 4265 if (TypeIdx != 0) 4266 return UnableToLegalize; 4267 4268 MachineMemOperand &MMO = **MI.memoperands_begin(); 4269 4270 // Not sure how to interpret a bitcast of a truncating store. 4271 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 4272 return UnableToLegalize; 4273 4274 Observer.changingInstr(MI); 4275 bitcastSrc(MI, CastTy, 0); 4276 MMO.setType(CastTy); 4277 Observer.changedInstr(MI); 4278 return Legalized; 4279 } 4280 case TargetOpcode::G_SELECT: { 4281 if (TypeIdx != 0) 4282 return UnableToLegalize; 4283 4284 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 4285 LLVM_DEBUG( 4286 dbgs() << "bitcast action not implemented for vector select\n"); 4287 return UnableToLegalize; 4288 } 4289 4290 Observer.changingInstr(MI); 4291 bitcastSrc(MI, CastTy, 2); 4292 bitcastSrc(MI, CastTy, 3); 4293 bitcastDst(MI, CastTy, 0); 4294 Observer.changedInstr(MI); 4295 return Legalized; 4296 } 4297 case TargetOpcode::G_AND: 4298 case TargetOpcode::G_OR: 4299 case TargetOpcode::G_XOR: { 4300 Observer.changingInstr(MI); 4301 bitcastSrc(MI, CastTy, 1); 4302 bitcastSrc(MI, CastTy, 2); 4303 bitcastDst(MI, CastTy, 0); 4304 Observer.changedInstr(MI); 4305 return Legalized; 4306 } 4307 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 4308 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 4309 case TargetOpcode::G_INSERT_VECTOR_ELT: 4310 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 4311 case TargetOpcode::G_CONCAT_VECTORS: 4312 return bitcastConcatVector(MI, TypeIdx, CastTy); 4313 case TargetOpcode::G_SHUFFLE_VECTOR: 4314 return bitcastShuffleVector(MI, TypeIdx, CastTy); 4315 case TargetOpcode::G_EXTRACT_SUBVECTOR: 4316 return bitcastExtractSubvector(MI, TypeIdx, CastTy); 4317 case TargetOpcode::G_INSERT_SUBVECTOR: 4318 return bitcastInsertSubvector(MI, TypeIdx, CastTy); 4319 default: 4320 return UnableToLegalize; 4321 } 4322 } 4323 4324 // Legalize an instruction by changing the opcode in place. 4325 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 4326 Observer.changingInstr(MI); 4327 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 4328 Observer.changedInstr(MI); 4329 } 4330 4331 LegalizerHelper::LegalizeResult 4332 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 4333 using namespace TargetOpcode; 4334 4335 switch(MI.getOpcode()) { 4336 default: 4337 return UnableToLegalize; 4338 case TargetOpcode::G_FCONSTANT: 4339 return lowerFConstant(MI); 4340 case TargetOpcode::G_BITCAST: 4341 return lowerBitcast(MI); 4342 case TargetOpcode::G_SREM: 4343 case TargetOpcode::G_UREM: { 4344 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4345 auto Quot = 4346 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 4347 {MI.getOperand(1), MI.getOperand(2)}); 4348 4349 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 4350 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 4351 MI.eraseFromParent(); 4352 return Legalized; 4353 } 4354 case TargetOpcode::G_SADDO: 4355 case TargetOpcode::G_SSUBO: 4356 return lowerSADDO_SSUBO(MI); 4357 case TargetOpcode::G_UMULH: 4358 case TargetOpcode::G_SMULH: 4359 return lowerSMULH_UMULH(MI); 4360 case TargetOpcode::G_SMULO: 4361 case TargetOpcode::G_UMULO: { 4362 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 4363 // result. 4364 auto [Res, Overflow, LHS, RHS] = MI.getFirst4Regs(); 4365 LLT Ty = MRI.getType(Res); 4366 4367 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 4368 ? TargetOpcode::G_SMULH 4369 : TargetOpcode::G_UMULH; 4370 4371 Observer.changingInstr(MI); 4372 const auto &TII = MIRBuilder.getTII(); 4373 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 4374 MI.removeOperand(1); 4375 Observer.changedInstr(MI); 4376 4377 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 4378 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4379 4380 // Move insert point forward so we can use the Res register if needed. 4381 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 4382 4383 // For *signed* multiply, overflow is detected by checking: 4384 // (hi != (lo >> bitwidth-1)) 4385 if (Opcode == TargetOpcode::G_SMULH) { 4386 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 4387 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 4388 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 4389 } else { 4390 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 4391 } 4392 return Legalized; 4393 } 4394 case TargetOpcode::G_FNEG: { 4395 auto [Res, SubByReg] = MI.getFirst2Regs(); 4396 LLT Ty = MRI.getType(Res); 4397 4398 auto SignMask = MIRBuilder.buildConstant( 4399 Ty, APInt::getSignMask(Ty.getScalarSizeInBits())); 4400 MIRBuilder.buildXor(Res, SubByReg, SignMask); 4401 MI.eraseFromParent(); 4402 return Legalized; 4403 } 4404 case TargetOpcode::G_FSUB: 4405 case TargetOpcode::G_STRICT_FSUB: { 4406 auto [Res, LHS, RHS] = MI.getFirst3Regs(); 4407 LLT Ty = MRI.getType(Res); 4408 4409 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 4410 auto Neg = MIRBuilder.buildFNeg(Ty, RHS); 4411 4412 if (MI.getOpcode() == TargetOpcode::G_STRICT_FSUB) 4413 MIRBuilder.buildStrictFAdd(Res, LHS, Neg, MI.getFlags()); 4414 else 4415 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 4416 4417 MI.eraseFromParent(); 4418 return Legalized; 4419 } 4420 case TargetOpcode::G_FMAD: 4421 return lowerFMad(MI); 4422 case TargetOpcode::G_FFLOOR: 4423 return lowerFFloor(MI); 4424 case TargetOpcode::G_LROUND: 4425 case TargetOpcode::G_LLROUND: { 4426 Register DstReg = MI.getOperand(0).getReg(); 4427 Register SrcReg = MI.getOperand(1).getReg(); 4428 LLT SrcTy = MRI.getType(SrcReg); 4429 auto Round = MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_ROUND, {SrcTy}, 4430 {SrcReg}); 4431 MIRBuilder.buildFPTOSI(DstReg, Round); 4432 MI.eraseFromParent(); 4433 return Legalized; 4434 } 4435 case TargetOpcode::G_INTRINSIC_ROUND: 4436 return lowerIntrinsicRound(MI); 4437 case TargetOpcode::G_FRINT: { 4438 // Since round even is the assumed rounding mode for unconstrained FP 4439 // operations, rint and roundeven are the same operation. 4440 changeOpcode(MI, TargetOpcode::G_INTRINSIC_ROUNDEVEN); 4441 return Legalized; 4442 } 4443 case TargetOpcode::G_INTRINSIC_LRINT: 4444 case TargetOpcode::G_INTRINSIC_LLRINT: { 4445 Register DstReg = MI.getOperand(0).getReg(); 4446 Register SrcReg = MI.getOperand(1).getReg(); 4447 LLT SrcTy = MRI.getType(SrcReg); 4448 auto Round = 4449 MIRBuilder.buildInstr(TargetOpcode::G_FRINT, {SrcTy}, {SrcReg}); 4450 MIRBuilder.buildFPTOSI(DstReg, Round); 4451 MI.eraseFromParent(); 4452 return Legalized; 4453 } 4454 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 4455 auto [OldValRes, SuccessRes, Addr, CmpVal, NewVal] = MI.getFirst5Regs(); 4456 Register NewOldValRes = MRI.cloneVirtualRegister(OldValRes); 4457 MIRBuilder.buildAtomicCmpXchg(NewOldValRes, Addr, CmpVal, NewVal, 4458 **MI.memoperands_begin()); 4459 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, NewOldValRes, CmpVal); 4460 MIRBuilder.buildCopy(OldValRes, NewOldValRes); 4461 MI.eraseFromParent(); 4462 return Legalized; 4463 } 4464 case TargetOpcode::G_LOAD: 4465 case TargetOpcode::G_SEXTLOAD: 4466 case TargetOpcode::G_ZEXTLOAD: 4467 return lowerLoad(cast<GAnyLoad>(MI)); 4468 case TargetOpcode::G_STORE: 4469 return lowerStore(cast<GStore>(MI)); 4470 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 4471 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 4472 case TargetOpcode::G_CTLZ: 4473 case TargetOpcode::G_CTTZ: 4474 case TargetOpcode::G_CTPOP: 4475 return lowerBitCount(MI); 4476 case G_UADDO: { 4477 auto [Res, CarryOut, LHS, RHS] = MI.getFirst4Regs(); 4478 4479 Register NewRes = MRI.cloneVirtualRegister(Res); 4480 4481 MIRBuilder.buildAdd(NewRes, LHS, RHS); 4482 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, NewRes, RHS); 4483 4484 MIRBuilder.buildCopy(Res, NewRes); 4485 4486 MI.eraseFromParent(); 4487 return Legalized; 4488 } 4489 case G_UADDE: { 4490 auto [Res, CarryOut, LHS, RHS, CarryIn] = MI.getFirst5Regs(); 4491 const LLT CondTy = MRI.getType(CarryOut); 4492 const LLT Ty = MRI.getType(Res); 4493 4494 Register NewRes = MRI.cloneVirtualRegister(Res); 4495 4496 // Initial add of the two operands. 4497 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 4498 4499 // Initial check for carry. 4500 auto Carry = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, TmpRes, LHS); 4501 4502 // Add the sum and the carry. 4503 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 4504 MIRBuilder.buildAdd(NewRes, TmpRes, ZExtCarryIn); 4505 4506 // Second check for carry. We can only carry if the initial sum is all 1s 4507 // and the carry is set, resulting in a new sum of 0. 4508 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4509 auto ResEqZero = 4510 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, NewRes, Zero); 4511 auto Carry2 = MIRBuilder.buildAnd(CondTy, ResEqZero, CarryIn); 4512 MIRBuilder.buildOr(CarryOut, Carry, Carry2); 4513 4514 MIRBuilder.buildCopy(Res, NewRes); 4515 4516 MI.eraseFromParent(); 4517 return Legalized; 4518 } 4519 case G_USUBO: { 4520 auto [Res, BorrowOut, LHS, RHS] = MI.getFirst4Regs(); 4521 4522 MIRBuilder.buildSub(Res, LHS, RHS); 4523 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 4524 4525 MI.eraseFromParent(); 4526 return Legalized; 4527 } 4528 case G_USUBE: { 4529 auto [Res, BorrowOut, LHS, RHS, BorrowIn] = MI.getFirst5Regs(); 4530 const LLT CondTy = MRI.getType(BorrowOut); 4531 const LLT Ty = MRI.getType(Res); 4532 4533 // Initial subtract of the two operands. 4534 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 4535 4536 // Initial check for borrow. 4537 auto Borrow = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, CondTy, TmpRes, LHS); 4538 4539 // Subtract the borrow from the first subtract. 4540 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 4541 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 4542 4543 // Second check for borrow. We can only borrow if the initial difference is 4544 // 0 and the borrow is set, resulting in a new difference of all 1s. 4545 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4546 auto TmpResEqZero = 4547 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, TmpRes, Zero); 4548 auto Borrow2 = MIRBuilder.buildAnd(CondTy, TmpResEqZero, BorrowIn); 4549 MIRBuilder.buildOr(BorrowOut, Borrow, Borrow2); 4550 4551 MI.eraseFromParent(); 4552 return Legalized; 4553 } 4554 case G_UITOFP: 4555 return lowerUITOFP(MI); 4556 case G_SITOFP: 4557 return lowerSITOFP(MI); 4558 case G_FPTOUI: 4559 return lowerFPTOUI(MI); 4560 case G_FPTOSI: 4561 return lowerFPTOSI(MI); 4562 case G_FPTOUI_SAT: 4563 case G_FPTOSI_SAT: 4564 return lowerFPTOINT_SAT(MI); 4565 case G_FPTRUNC: 4566 return lowerFPTRUNC(MI); 4567 case G_FPOWI: 4568 return lowerFPOWI(MI); 4569 case G_SMIN: 4570 case G_SMAX: 4571 case G_UMIN: 4572 case G_UMAX: 4573 return lowerMinMax(MI); 4574 case G_SCMP: 4575 case G_UCMP: 4576 return lowerThreewayCompare(MI); 4577 case G_FCOPYSIGN: 4578 return lowerFCopySign(MI); 4579 case G_FMINNUM: 4580 case G_FMAXNUM: 4581 return lowerFMinNumMaxNum(MI); 4582 case G_MERGE_VALUES: 4583 return lowerMergeValues(MI); 4584 case G_UNMERGE_VALUES: 4585 return lowerUnmergeValues(MI); 4586 case TargetOpcode::G_SEXT_INREG: { 4587 assert(MI.getOperand(2).isImm() && "Expected immediate"); 4588 int64_t SizeInBits = MI.getOperand(2).getImm(); 4589 4590 auto [DstReg, SrcReg] = MI.getFirst2Regs(); 4591 LLT DstTy = MRI.getType(DstReg); 4592 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 4593 4594 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 4595 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 4596 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 4597 MI.eraseFromParent(); 4598 return Legalized; 4599 } 4600 case G_EXTRACT_VECTOR_ELT: 4601 case G_INSERT_VECTOR_ELT: 4602 return lowerExtractInsertVectorElt(MI); 4603 case G_SHUFFLE_VECTOR: 4604 return lowerShuffleVector(MI); 4605 case G_VECTOR_COMPRESS: 4606 return lowerVECTOR_COMPRESS(MI); 4607 case G_DYN_STACKALLOC: 4608 return lowerDynStackAlloc(MI); 4609 case G_STACKSAVE: 4610 return lowerStackSave(MI); 4611 case G_STACKRESTORE: 4612 return lowerStackRestore(MI); 4613 case G_EXTRACT: 4614 return lowerExtract(MI); 4615 case G_INSERT: 4616 return lowerInsert(MI); 4617 case G_BSWAP: 4618 return lowerBswap(MI); 4619 case G_BITREVERSE: 4620 return lowerBitreverse(MI); 4621 case G_READ_REGISTER: 4622 case G_WRITE_REGISTER: 4623 return lowerReadWriteRegister(MI); 4624 case G_UADDSAT: 4625 case G_USUBSAT: { 4626 // Try to make a reasonable guess about which lowering strategy to use. The 4627 // target can override this with custom lowering and calling the 4628 // implementation functions. 4629 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4630 if (LI.isLegalOrCustom({G_UMIN, Ty})) 4631 return lowerAddSubSatToMinMax(MI); 4632 return lowerAddSubSatToAddoSubo(MI); 4633 } 4634 case G_SADDSAT: 4635 case G_SSUBSAT: { 4636 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4637 4638 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 4639 // since it's a shorter expansion. However, we would need to figure out the 4640 // preferred boolean type for the carry out for the query. 4641 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 4642 return lowerAddSubSatToMinMax(MI); 4643 return lowerAddSubSatToAddoSubo(MI); 4644 } 4645 case G_SSHLSAT: 4646 case G_USHLSAT: 4647 return lowerShlSat(MI); 4648 case G_ABS: 4649 return lowerAbsToAddXor(MI); 4650 case G_FABS: 4651 return lowerFAbs(MI); 4652 case G_SELECT: 4653 return lowerSelect(MI); 4654 case G_IS_FPCLASS: 4655 return lowerISFPCLASS(MI); 4656 case G_SDIVREM: 4657 case G_UDIVREM: 4658 return lowerDIVREM(MI); 4659 case G_FSHL: 4660 case G_FSHR: 4661 return lowerFunnelShift(MI); 4662 case G_ROTL: 4663 case G_ROTR: 4664 return lowerRotate(MI); 4665 case G_MEMSET: 4666 case G_MEMCPY: 4667 case G_MEMMOVE: 4668 return lowerMemCpyFamily(MI); 4669 case G_MEMCPY_INLINE: 4670 return lowerMemcpyInline(MI); 4671 case G_ZEXT: 4672 case G_SEXT: 4673 case G_ANYEXT: 4674 return lowerEXT(MI); 4675 case G_TRUNC: 4676 return lowerTRUNC(MI); 4677 GISEL_VECREDUCE_CASES_NONSEQ 4678 return lowerVectorReduction(MI); 4679 case G_VAARG: 4680 return lowerVAArg(MI); 4681 } 4682 } 4683 4684 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 4685 Align MinAlign) const { 4686 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 4687 // datalayout for the preferred alignment. Also there should be a target hook 4688 // for this to allow targets to reduce the alignment and ignore the 4689 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 4690 // the type. 4691 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 4692 } 4693 4694 MachineInstrBuilder 4695 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 4696 MachinePointerInfo &PtrInfo) { 4697 MachineFunction &MF = MIRBuilder.getMF(); 4698 const DataLayout &DL = MIRBuilder.getDataLayout(); 4699 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 4700 4701 unsigned AddrSpace = DL.getAllocaAddrSpace(); 4702 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 4703 4704 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 4705 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 4706 } 4707 4708 MachineInstrBuilder LegalizerHelper::createStackStoreLoad(const DstOp &Res, 4709 const SrcOp &Val) { 4710 LLT SrcTy = Val.getLLTTy(MRI); 4711 Align StackTypeAlign = 4712 std::max(getStackTemporaryAlignment(SrcTy), 4713 getStackTemporaryAlignment(Res.getLLTTy(MRI))); 4714 MachinePointerInfo PtrInfo; 4715 auto StackTemp = 4716 createStackTemporary(SrcTy.getSizeInBytes(), StackTypeAlign, PtrInfo); 4717 4718 MIRBuilder.buildStore(Val, StackTemp, PtrInfo, StackTypeAlign); 4719 return MIRBuilder.buildLoad(Res, StackTemp, PtrInfo, StackTypeAlign); 4720 } 4721 4722 static Register clampVectorIndex(MachineIRBuilder &B, Register IdxReg, 4723 LLT VecTy) { 4724 LLT IdxTy = B.getMRI()->getType(IdxReg); 4725 unsigned NElts = VecTy.getNumElements(); 4726 4727 int64_t IdxVal; 4728 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) { 4729 if (IdxVal < VecTy.getNumElements()) 4730 return IdxReg; 4731 // If a constant index would be out of bounds, clamp it as well. 4732 } 4733 4734 if (isPowerOf2_32(NElts)) { 4735 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 4736 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 4737 } 4738 4739 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 4740 .getReg(0); 4741 } 4742 4743 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 4744 Register Index) { 4745 LLT EltTy = VecTy.getElementType(); 4746 4747 // Calculate the element offset and add it to the pointer. 4748 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 4749 assert(EltSize * 8 == EltTy.getSizeInBits() && 4750 "Converting bits to bytes lost precision"); 4751 4752 Index = clampVectorIndex(MIRBuilder, Index, VecTy); 4753 4754 // Convert index to the correct size for the address space. 4755 const DataLayout &DL = MIRBuilder.getDataLayout(); 4756 unsigned AS = MRI.getType(VecPtr).getAddressSpace(); 4757 unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8; 4758 LLT IdxTy = MRI.getType(Index).changeElementSize(IndexSizeInBits); 4759 if (IdxTy != MRI.getType(Index)) 4760 Index = MIRBuilder.buildSExtOrTrunc(IdxTy, Index).getReg(0); 4761 4762 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 4763 MIRBuilder.buildConstant(IdxTy, EltSize)); 4764 4765 LLT PtrTy = MRI.getType(VecPtr); 4766 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 4767 } 4768 4769 #ifndef NDEBUG 4770 /// Check that all vector operands have same number of elements. Other operands 4771 /// should be listed in NonVecOp. 4772 static bool hasSameNumEltsOnAllVectorOperands( 4773 GenericMachineInstr &MI, MachineRegisterInfo &MRI, 4774 std::initializer_list<unsigned> NonVecOpIndices) { 4775 if (MI.getNumMemOperands() != 0) 4776 return false; 4777 4778 LLT VecTy = MRI.getType(MI.getReg(0)); 4779 if (!VecTy.isVector()) 4780 return false; 4781 unsigned NumElts = VecTy.getNumElements(); 4782 4783 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) { 4784 MachineOperand &Op = MI.getOperand(OpIdx); 4785 if (!Op.isReg()) { 4786 if (!is_contained(NonVecOpIndices, OpIdx)) 4787 return false; 4788 continue; 4789 } 4790 4791 LLT Ty = MRI.getType(Op.getReg()); 4792 if (!Ty.isVector()) { 4793 if (!is_contained(NonVecOpIndices, OpIdx)) 4794 return false; 4795 continue; 4796 } 4797 4798 if (Ty.getNumElements() != NumElts) 4799 return false; 4800 } 4801 4802 return true; 4803 } 4804 #endif 4805 4806 /// Fill \p DstOps with DstOps that have same number of elements combined as 4807 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are 4808 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple 4809 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements. 4810 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty, 4811 unsigned NumElts) { 4812 LLT LeftoverTy; 4813 assert(Ty.isVector() && "Expected vector type"); 4814 LLT EltTy = Ty.getElementType(); 4815 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 4816 int NumParts, NumLeftover; 4817 std::tie(NumParts, NumLeftover) = 4818 getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy); 4819 4820 assert(NumParts > 0 && "Error in getNarrowTypeBreakDown"); 4821 for (int i = 0; i < NumParts; ++i) { 4822 DstOps.push_back(NarrowTy); 4823 } 4824 4825 if (LeftoverTy.isValid()) { 4826 assert(NumLeftover == 1 && "expected exactly one leftover"); 4827 DstOps.push_back(LeftoverTy); 4828 } 4829 } 4830 4831 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps 4832 /// made from \p Op depending on operand type. 4833 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N, 4834 MachineOperand &Op) { 4835 for (unsigned i = 0; i < N; ++i) { 4836 if (Op.isReg()) 4837 Ops.push_back(Op.getReg()); 4838 else if (Op.isImm()) 4839 Ops.push_back(Op.getImm()); 4840 else if (Op.isPredicate()) 4841 Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate())); 4842 else 4843 llvm_unreachable("Unsupported type"); 4844 } 4845 } 4846 4847 // Handle splitting vector operations which need to have the same number of 4848 // elements in each type index, but each type index may have a different element 4849 // type. 4850 // 4851 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 4852 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 4853 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 4854 // 4855 // Also handles some irregular breakdown cases, e.g. 4856 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 4857 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 4858 // s64 = G_SHL s64, s32 4859 LegalizerHelper::LegalizeResult 4860 LegalizerHelper::fewerElementsVectorMultiEltType( 4861 GenericMachineInstr &MI, unsigned NumElts, 4862 std::initializer_list<unsigned> NonVecOpIndices) { 4863 assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && 4864 "Non-compatible opcode or not specified non-vector operands"); 4865 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 4866 4867 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 4868 unsigned NumDefs = MI.getNumDefs(); 4869 4870 // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output. 4871 // Build instructions with DstOps to use instruction found by CSE directly. 4872 // CSE copies found instruction into given vreg when building with vreg dest. 4873 SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs); 4874 // Output registers will be taken from created instructions. 4875 SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs); 4876 for (unsigned i = 0; i < NumDefs; ++i) { 4877 makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts); 4878 } 4879 4880 // Split vector input operands into sub-vectors with NumElts elts + Leftover. 4881 // Operands listed in NonVecOpIndices will be used as is without splitting; 4882 // examples: compare predicate in icmp and fcmp (op 1), vector select with i1 4883 // scalar condition (op 1), immediate in sext_inreg (op 2). 4884 SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs); 4885 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 4886 ++UseIdx, ++UseNo) { 4887 if (is_contained(NonVecOpIndices, UseIdx)) { 4888 broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(), 4889 MI.getOperand(UseIdx)); 4890 } else { 4891 SmallVector<Register, 8> SplitPieces; 4892 extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces, MIRBuilder, 4893 MRI); 4894 for (auto Reg : SplitPieces) 4895 InputOpsPieces[UseNo].push_back(Reg); 4896 } 4897 } 4898 4899 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 4900 4901 // Take i-th piece of each input operand split and build sub-vector/scalar 4902 // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s). 4903 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 4904 SmallVector<DstOp, 2> Defs; 4905 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 4906 Defs.push_back(OutputOpsPieces[DstNo][i]); 4907 4908 SmallVector<SrcOp, 3> Uses; 4909 for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo) 4910 Uses.push_back(InputOpsPieces[InputNo][i]); 4911 4912 auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags()); 4913 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 4914 OutputRegs[DstNo].push_back(I.getReg(DstNo)); 4915 } 4916 4917 // Merge small outputs into MI's output for each def operand. 4918 if (NumLeftovers) { 4919 for (unsigned i = 0; i < NumDefs; ++i) 4920 mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]); 4921 } else { 4922 for (unsigned i = 0; i < NumDefs; ++i) 4923 MIRBuilder.buildMergeLikeInstr(MI.getReg(i), OutputRegs[i]); 4924 } 4925 4926 MI.eraseFromParent(); 4927 return Legalized; 4928 } 4929 4930 LegalizerHelper::LegalizeResult 4931 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI, 4932 unsigned NumElts) { 4933 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 4934 4935 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 4936 unsigned NumDefs = MI.getNumDefs(); 4937 4938 SmallVector<DstOp, 8> OutputOpsPieces; 4939 SmallVector<Register, 8> OutputRegs; 4940 makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts); 4941 4942 // Instructions that perform register split will be inserted in basic block 4943 // where register is defined (basic block is in the next operand). 4944 SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2); 4945 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 4946 UseIdx += 2, ++UseNo) { 4947 MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB(); 4948 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); 4949 extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo], 4950 MIRBuilder, MRI); 4951 } 4952 4953 // Build PHIs with fewer elements. 4954 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 4955 MIRBuilder.setInsertPt(*MI.getParent(), MI); 4956 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 4957 auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI); 4958 Phi.addDef( 4959 MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI))); 4960 OutputRegs.push_back(Phi.getReg(0)); 4961 4962 for (unsigned j = 0; j < NumInputs / 2; ++j) { 4963 Phi.addUse(InputOpsPieces[j][i]); 4964 Phi.add(MI.getOperand(1 + j * 2 + 1)); 4965 } 4966 } 4967 4968 // Set the insert point after the existing PHIs 4969 MachineBasicBlock &MBB = *MI.getParent(); 4970 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 4971 4972 // Merge small outputs into MI's def. 4973 if (NumLeftovers) { 4974 mergeMixedSubvectors(MI.getReg(0), OutputRegs); 4975 } else { 4976 MIRBuilder.buildMergeLikeInstr(MI.getReg(0), OutputRegs); 4977 } 4978 4979 MI.eraseFromParent(); 4980 return Legalized; 4981 } 4982 4983 LegalizerHelper::LegalizeResult 4984 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 4985 unsigned TypeIdx, 4986 LLT NarrowTy) { 4987 const int NumDst = MI.getNumOperands() - 1; 4988 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4989 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4990 LLT SrcTy = MRI.getType(SrcReg); 4991 4992 if (TypeIdx != 1 || NarrowTy == DstTy) 4993 return UnableToLegalize; 4994 4995 // Requires compatible types. Otherwise SrcReg should have been defined by 4996 // merge-like instruction that would get artifact combined. Most likely 4997 // instruction that defines SrcReg has to perform more/fewer elements 4998 // legalization compatible with NarrowTy. 4999 assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 5000 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 5001 5002 if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 5003 (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0)) 5004 return UnableToLegalize; 5005 5006 // This is most likely DstTy (smaller then register size) packed in SrcTy 5007 // (larger then register size) and since unmerge was not combined it will be 5008 // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy 5009 // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy. 5010 5011 // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy) 5012 // 5013 // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence 5014 // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg 5015 // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy) 5016 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg); 5017 const int NumUnmerge = Unmerge->getNumOperands() - 1; 5018 const int PartsPerUnmerge = NumDst / NumUnmerge; 5019 5020 for (int I = 0; I != NumUnmerge; ++I) { 5021 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 5022 5023 for (int J = 0; J != PartsPerUnmerge; ++J) 5024 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 5025 MIB.addUse(Unmerge.getReg(I)); 5026 } 5027 5028 MI.eraseFromParent(); 5029 return Legalized; 5030 } 5031 5032 LegalizerHelper::LegalizeResult 5033 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 5034 LLT NarrowTy) { 5035 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 5036 // Requires compatible types. Otherwise user of DstReg did not perform unmerge 5037 // that should have been artifact combined. Most likely instruction that uses 5038 // DstReg has to do more/fewer elements legalization compatible with NarrowTy. 5039 assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 5040 assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 5041 if (NarrowTy == SrcTy) 5042 return UnableToLegalize; 5043 5044 // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use 5045 // is for old mir tests. Since the changes to more/fewer elements it should no 5046 // longer be possible to generate MIR like this when starting from llvm-ir 5047 // because LCMTy approach was replaced with merge/unmerge to vector elements. 5048 if (TypeIdx == 1) { 5049 assert(SrcTy.isVector() && "Expected vector types"); 5050 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 5051 if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 5052 (NarrowTy.getNumElements() >= SrcTy.getNumElements())) 5053 return UnableToLegalize; 5054 // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy) 5055 // 5056 // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy) 5057 // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy) 5058 // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4 5059 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6 5060 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8 5061 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11 5062 5063 SmallVector<Register, 8> Elts; 5064 LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType(); 5065 for (unsigned i = 1; i < MI.getNumOperands(); ++i) { 5066 auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg()); 5067 for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j) 5068 Elts.push_back(Unmerge.getReg(j)); 5069 } 5070 5071 SmallVector<Register, 8> NarrowTyElts; 5072 unsigned NumNarrowTyElts = NarrowTy.getNumElements(); 5073 unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts; 5074 for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces; 5075 ++i, Offset += NumNarrowTyElts) { 5076 ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts); 5077 NarrowTyElts.push_back( 5078 MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0)); 5079 } 5080 5081 MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts); 5082 MI.eraseFromParent(); 5083 return Legalized; 5084 } 5085 5086 assert(TypeIdx == 0 && "Bad type index"); 5087 if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) || 5088 (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0)) 5089 return UnableToLegalize; 5090 5091 // This is most likely SrcTy (smaller then register size) packed in DstTy 5092 // (larger then register size) and since merge was not combined it will be 5093 // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy 5094 // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy. 5095 5096 // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4 5097 // 5098 // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg 5099 // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4 5100 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence 5101 SmallVector<Register, 8> NarrowTyElts; 5102 unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 5103 unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1; 5104 unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts; 5105 for (unsigned i = 0; i < NumParts; ++i) { 5106 SmallVector<Register, 8> Sources; 5107 for (unsigned j = 0; j < NumElts; ++j) 5108 Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg()); 5109 NarrowTyElts.push_back( 5110 MIRBuilder.buildMergeLikeInstr(NarrowTy, Sources).getReg(0)); 5111 } 5112 5113 MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts); 5114 MI.eraseFromParent(); 5115 return Legalized; 5116 } 5117 5118 LegalizerHelper::LegalizeResult 5119 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 5120 unsigned TypeIdx, 5121 LLT NarrowVecTy) { 5122 auto [DstReg, SrcVec] = MI.getFirst2Regs(); 5123 Register InsertVal; 5124 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 5125 5126 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 5127 if (IsInsert) 5128 InsertVal = MI.getOperand(2).getReg(); 5129 5130 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5131 5132 // TODO: Handle total scalarization case. 5133 if (!NarrowVecTy.isVector()) 5134 return UnableToLegalize; 5135 5136 LLT VecTy = MRI.getType(SrcVec); 5137 5138 // If the index is a constant, we can really break this down as you would 5139 // expect, and index into the target size pieces. 5140 int64_t IdxVal; 5141 auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI); 5142 if (MaybeCst) { 5143 IdxVal = MaybeCst->Value.getSExtValue(); 5144 // Avoid out of bounds indexing the pieces. 5145 if (IdxVal >= VecTy.getNumElements()) { 5146 MIRBuilder.buildUndef(DstReg); 5147 MI.eraseFromParent(); 5148 return Legalized; 5149 } 5150 5151 SmallVector<Register, 8> VecParts; 5152 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 5153 5154 // Build a sequence of NarrowTy pieces in VecParts for this operand. 5155 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 5156 TargetOpcode::G_ANYEXT); 5157 5158 unsigned NewNumElts = NarrowVecTy.getNumElements(); 5159 5160 LLT IdxTy = MRI.getType(Idx); 5161 int64_t PartIdx = IdxVal / NewNumElts; 5162 auto NewIdx = 5163 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 5164 5165 if (IsInsert) { 5166 LLT PartTy = MRI.getType(VecParts[PartIdx]); 5167 5168 // Use the adjusted index to insert into one of the subvectors. 5169 auto InsertPart = MIRBuilder.buildInsertVectorElement( 5170 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 5171 VecParts[PartIdx] = InsertPart.getReg(0); 5172 5173 // Recombine the inserted subvector with the others to reform the result 5174 // vector. 5175 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 5176 } else { 5177 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 5178 } 5179 5180 MI.eraseFromParent(); 5181 return Legalized; 5182 } 5183 5184 // With a variable index, we can't perform the operation in a smaller type, so 5185 // we're forced to expand this. 5186 // 5187 // TODO: We could emit a chain of compare/select to figure out which piece to 5188 // index. 5189 return lowerExtractInsertVectorElt(MI); 5190 } 5191 5192 LegalizerHelper::LegalizeResult 5193 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, 5194 LLT NarrowTy) { 5195 // FIXME: Don't know how to handle secondary types yet. 5196 if (TypeIdx != 0) 5197 return UnableToLegalize; 5198 5199 // This implementation doesn't work for atomics. Give up instead of doing 5200 // something invalid. 5201 if (LdStMI.isAtomic()) 5202 return UnableToLegalize; 5203 5204 bool IsLoad = isa<GLoad>(LdStMI); 5205 Register ValReg = LdStMI.getReg(0); 5206 Register AddrReg = LdStMI.getPointerReg(); 5207 LLT ValTy = MRI.getType(ValReg); 5208 5209 // FIXME: Do we need a distinct NarrowMemory legalize action? 5210 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize().getValue()) { 5211 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 5212 return UnableToLegalize; 5213 } 5214 5215 int NumParts = -1; 5216 int NumLeftover = -1; 5217 LLT LeftoverTy; 5218 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 5219 if (IsLoad) { 5220 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 5221 } else { 5222 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 5223 NarrowLeftoverRegs, MIRBuilder, MRI)) { 5224 NumParts = NarrowRegs.size(); 5225 NumLeftover = NarrowLeftoverRegs.size(); 5226 } 5227 } 5228 5229 if (NumParts == -1) 5230 return UnableToLegalize; 5231 5232 LLT PtrTy = MRI.getType(AddrReg); 5233 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 5234 5235 unsigned TotalSize = ValTy.getSizeInBits(); 5236 5237 // Split the load/store into PartTy sized pieces starting at Offset. If this 5238 // is a load, return the new registers in ValRegs. For a store, each elements 5239 // of ValRegs should be PartTy. Returns the next offset that needs to be 5240 // handled. 5241 bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian(); 5242 auto MMO = LdStMI.getMMO(); 5243 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 5244 unsigned NumParts, unsigned Offset) -> unsigned { 5245 MachineFunction &MF = MIRBuilder.getMF(); 5246 unsigned PartSize = PartTy.getSizeInBits(); 5247 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 5248 ++Idx) { 5249 unsigned ByteOffset = Offset / 8; 5250 Register NewAddrReg; 5251 5252 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 5253 5254 MachineMemOperand *NewMMO = 5255 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); 5256 5257 if (IsLoad) { 5258 Register Dst = MRI.createGenericVirtualRegister(PartTy); 5259 ValRegs.push_back(Dst); 5260 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 5261 } else { 5262 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 5263 } 5264 Offset = isBigEndian ? Offset - PartSize : Offset + PartSize; 5265 } 5266 5267 return Offset; 5268 }; 5269 5270 unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0; 5271 unsigned HandledOffset = 5272 splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset); 5273 5274 // Handle the rest of the register if this isn't an even type breakdown. 5275 if (LeftoverTy.isValid()) 5276 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset); 5277 5278 if (IsLoad) { 5279 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 5280 LeftoverTy, NarrowLeftoverRegs); 5281 } 5282 5283 LdStMI.eraseFromParent(); 5284 return Legalized; 5285 } 5286 5287 LegalizerHelper::LegalizeResult 5288 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 5289 LLT NarrowTy) { 5290 using namespace TargetOpcode; 5291 GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI); 5292 unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 5293 5294 switch (MI.getOpcode()) { 5295 case G_IMPLICIT_DEF: 5296 case G_TRUNC: 5297 case G_AND: 5298 case G_OR: 5299 case G_XOR: 5300 case G_ADD: 5301 case G_SUB: 5302 case G_MUL: 5303 case G_PTR_ADD: 5304 case G_SMULH: 5305 case G_UMULH: 5306 case G_FADD: 5307 case G_FMUL: 5308 case G_FSUB: 5309 case G_FNEG: 5310 case G_FABS: 5311 case G_FCANONICALIZE: 5312 case G_FDIV: 5313 case G_FREM: 5314 case G_FMA: 5315 case G_FMAD: 5316 case G_FPOW: 5317 case G_FEXP: 5318 case G_FEXP2: 5319 case G_FEXP10: 5320 case G_FLOG: 5321 case G_FLOG2: 5322 case G_FLOG10: 5323 case G_FLDEXP: 5324 case G_FNEARBYINT: 5325 case G_FCEIL: 5326 case G_FFLOOR: 5327 case G_FRINT: 5328 case G_INTRINSIC_LRINT: 5329 case G_INTRINSIC_LLRINT: 5330 case G_INTRINSIC_ROUND: 5331 case G_INTRINSIC_ROUNDEVEN: 5332 case G_LROUND: 5333 case G_LLROUND: 5334 case G_INTRINSIC_TRUNC: 5335 case G_FCOS: 5336 case G_FSIN: 5337 case G_FTAN: 5338 case G_FACOS: 5339 case G_FASIN: 5340 case G_FATAN: 5341 case G_FATAN2: 5342 case G_FCOSH: 5343 case G_FSINH: 5344 case G_FTANH: 5345 case G_FSQRT: 5346 case G_BSWAP: 5347 case G_BITREVERSE: 5348 case G_SDIV: 5349 case G_UDIV: 5350 case G_SREM: 5351 case G_UREM: 5352 case G_SDIVREM: 5353 case G_UDIVREM: 5354 case G_SMIN: 5355 case G_SMAX: 5356 case G_UMIN: 5357 case G_UMAX: 5358 case G_ABS: 5359 case G_FMINNUM: 5360 case G_FMAXNUM: 5361 case G_FMINNUM_IEEE: 5362 case G_FMAXNUM_IEEE: 5363 case G_FMINIMUM: 5364 case G_FMAXIMUM: 5365 case G_FSHL: 5366 case G_FSHR: 5367 case G_ROTL: 5368 case G_ROTR: 5369 case G_FREEZE: 5370 case G_SADDSAT: 5371 case G_SSUBSAT: 5372 case G_UADDSAT: 5373 case G_USUBSAT: 5374 case G_UMULO: 5375 case G_SMULO: 5376 case G_SHL: 5377 case G_LSHR: 5378 case G_ASHR: 5379 case G_SSHLSAT: 5380 case G_USHLSAT: 5381 case G_CTLZ: 5382 case G_CTLZ_ZERO_UNDEF: 5383 case G_CTTZ: 5384 case G_CTTZ_ZERO_UNDEF: 5385 case G_CTPOP: 5386 case G_FCOPYSIGN: 5387 case G_ZEXT: 5388 case G_SEXT: 5389 case G_ANYEXT: 5390 case G_FPEXT: 5391 case G_FPTRUNC: 5392 case G_SITOFP: 5393 case G_UITOFP: 5394 case G_FPTOSI: 5395 case G_FPTOUI: 5396 case G_FPTOSI_SAT: 5397 case G_FPTOUI_SAT: 5398 case G_INTTOPTR: 5399 case G_PTRTOINT: 5400 case G_ADDRSPACE_CAST: 5401 case G_UADDO: 5402 case G_USUBO: 5403 case G_UADDE: 5404 case G_USUBE: 5405 case G_SADDO: 5406 case G_SSUBO: 5407 case G_SADDE: 5408 case G_SSUBE: 5409 case G_STRICT_FADD: 5410 case G_STRICT_FSUB: 5411 case G_STRICT_FMUL: 5412 case G_STRICT_FMA: 5413 case G_STRICT_FLDEXP: 5414 case G_FFREXP: 5415 return fewerElementsVectorMultiEltType(GMI, NumElts); 5416 case G_ICMP: 5417 case G_FCMP: 5418 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/}); 5419 case G_IS_FPCLASS: 5420 return fewerElementsVectorMultiEltType(GMI, NumElts, {2, 3 /*mask,fpsem*/}); 5421 case G_SELECT: 5422 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 5423 return fewerElementsVectorMultiEltType(GMI, NumElts); 5424 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/}); 5425 case G_PHI: 5426 return fewerElementsVectorPhi(GMI, NumElts); 5427 case G_UNMERGE_VALUES: 5428 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 5429 case G_BUILD_VECTOR: 5430 assert(TypeIdx == 0 && "not a vector type index"); 5431 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 5432 case G_CONCAT_VECTORS: 5433 if (TypeIdx != 1) // TODO: This probably does work as expected already. 5434 return UnableToLegalize; 5435 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 5436 case G_EXTRACT_VECTOR_ELT: 5437 case G_INSERT_VECTOR_ELT: 5438 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 5439 case G_LOAD: 5440 case G_STORE: 5441 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); 5442 case G_SEXT_INREG: 5443 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/}); 5444 GISEL_VECREDUCE_CASES_NONSEQ 5445 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 5446 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 5447 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: 5448 return fewerElementsVectorSeqReductions(MI, TypeIdx, NarrowTy); 5449 case G_SHUFFLE_VECTOR: 5450 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 5451 case G_FPOWI: 5452 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*pow*/}); 5453 case G_BITCAST: 5454 return fewerElementsBitcast(MI, TypeIdx, NarrowTy); 5455 case G_INTRINSIC_FPTRUNC_ROUND: 5456 return fewerElementsVectorMultiEltType(GMI, NumElts, {2}); 5457 default: 5458 return UnableToLegalize; 5459 } 5460 } 5461 5462 LegalizerHelper::LegalizeResult 5463 LegalizerHelper::fewerElementsBitcast(MachineInstr &MI, unsigned int TypeIdx, 5464 LLT NarrowTy) { 5465 assert(MI.getOpcode() == TargetOpcode::G_BITCAST && 5466 "Not a bitcast operation"); 5467 5468 if (TypeIdx != 0) 5469 return UnableToLegalize; 5470 5471 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 5472 5473 unsigned NewElemCount = 5474 NarrowTy.getSizeInBits() / SrcTy.getScalarSizeInBits(); 5475 LLT SrcNarrowTy = LLT::fixed_vector(NewElemCount, SrcTy.getElementType()); 5476 5477 // Split the Src and Dst Reg into smaller registers 5478 SmallVector<Register> SrcVRegs, BitcastVRegs; 5479 if (extractGCDType(SrcVRegs, DstTy, SrcNarrowTy, SrcReg) != SrcNarrowTy) 5480 return UnableToLegalize; 5481 5482 // Build new smaller bitcast instructions 5483 // Not supporting Leftover types for now but will have to 5484 for (unsigned i = 0; i < SrcVRegs.size(); i++) 5485 BitcastVRegs.push_back( 5486 MIRBuilder.buildBitcast(NarrowTy, SrcVRegs[i]).getReg(0)); 5487 5488 MIRBuilder.buildMergeLikeInstr(DstReg, BitcastVRegs); 5489 MI.eraseFromParent(); 5490 return Legalized; 5491 } 5492 5493 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 5494 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 5495 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 5496 if (TypeIdx != 0) 5497 return UnableToLegalize; 5498 5499 auto [DstReg, DstTy, Src1Reg, Src1Ty, Src2Reg, Src2Ty] = 5500 MI.getFirst3RegLLTs(); 5501 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5502 // The shuffle should be canonicalized by now. 5503 if (DstTy != Src1Ty) 5504 return UnableToLegalize; 5505 if (DstTy != Src2Ty) 5506 return UnableToLegalize; 5507 5508 if (!isPowerOf2_32(DstTy.getNumElements())) 5509 return UnableToLegalize; 5510 5511 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 5512 // Further legalization attempts will be needed to do split further. 5513 NarrowTy = 5514 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 5515 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 5516 5517 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 5518 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs, MIRBuilder, MRI); 5519 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs, MIRBuilder, MRI); 5520 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 5521 SplitSrc2Regs[1]}; 5522 5523 Register Hi, Lo; 5524 5525 // If Lo or Hi uses elements from at most two of the four input vectors, then 5526 // express it as a vector shuffle of those two inputs. Otherwise extract the 5527 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 5528 SmallVector<int, 16> Ops; 5529 for (unsigned High = 0; High < 2; ++High) { 5530 Register &Output = High ? Hi : Lo; 5531 5532 // Build a shuffle mask for the output, discovering on the fly which 5533 // input vectors to use as shuffle operands (recorded in InputUsed). 5534 // If building a suitable shuffle vector proves too hard, then bail 5535 // out with useBuildVector set. 5536 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 5537 unsigned FirstMaskIdx = High * NewElts; 5538 bool UseBuildVector = false; 5539 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 5540 // The mask element. This indexes into the input. 5541 int Idx = Mask[FirstMaskIdx + MaskOffset]; 5542 5543 // The input vector this mask element indexes into. 5544 unsigned Input = (unsigned)Idx / NewElts; 5545 5546 if (Input >= std::size(Inputs)) { 5547 // The mask element does not index into any input vector. 5548 Ops.push_back(-1); 5549 continue; 5550 } 5551 5552 // Turn the index into an offset from the start of the input vector. 5553 Idx -= Input * NewElts; 5554 5555 // Find or create a shuffle vector operand to hold this input. 5556 unsigned OpNo; 5557 for (OpNo = 0; OpNo < std::size(InputUsed); ++OpNo) { 5558 if (InputUsed[OpNo] == Input) { 5559 // This input vector is already an operand. 5560 break; 5561 } else if (InputUsed[OpNo] == -1U) { 5562 // Create a new operand for this input vector. 5563 InputUsed[OpNo] = Input; 5564 break; 5565 } 5566 } 5567 5568 if (OpNo >= std::size(InputUsed)) { 5569 // More than two input vectors used! Give up on trying to create a 5570 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 5571 UseBuildVector = true; 5572 break; 5573 } 5574 5575 // Add the mask index for the new shuffle vector. 5576 Ops.push_back(Idx + OpNo * NewElts); 5577 } 5578 5579 if (UseBuildVector) { 5580 LLT EltTy = NarrowTy.getElementType(); 5581 SmallVector<Register, 16> SVOps; 5582 5583 // Extract the input elements by hand. 5584 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 5585 // The mask element. This indexes into the input. 5586 int Idx = Mask[FirstMaskIdx + MaskOffset]; 5587 5588 // The input vector this mask element indexes into. 5589 unsigned Input = (unsigned)Idx / NewElts; 5590 5591 if (Input >= std::size(Inputs)) { 5592 // The mask element is "undef" or indexes off the end of the input. 5593 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 5594 continue; 5595 } 5596 5597 // Turn the index into an offset from the start of the input vector. 5598 Idx -= Input * NewElts; 5599 5600 // Extract the vector element by hand. 5601 SVOps.push_back(MIRBuilder 5602 .buildExtractVectorElement( 5603 EltTy, Inputs[Input], 5604 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 5605 .getReg(0)); 5606 } 5607 5608 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 5609 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 5610 } else if (InputUsed[0] == -1U) { 5611 // No input vectors were used! The result is undefined. 5612 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 5613 } else { 5614 Register Op0 = Inputs[InputUsed[0]]; 5615 // If only one input was used, use an undefined vector for the other. 5616 Register Op1 = InputUsed[1] == -1U 5617 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 5618 : Inputs[InputUsed[1]]; 5619 // At least one input vector was used. Create a new shuffle vector. 5620 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 5621 } 5622 5623 Ops.clear(); 5624 } 5625 5626 MIRBuilder.buildMergeLikeInstr(DstReg, {Lo, Hi}); 5627 MI.eraseFromParent(); 5628 return Legalized; 5629 } 5630 5631 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 5632 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 5633 auto &RdxMI = cast<GVecReduce>(MI); 5634 5635 if (TypeIdx != 1) 5636 return UnableToLegalize; 5637 5638 // The semantics of the normal non-sequential reductions allow us to freely 5639 // re-associate the operation. 5640 auto [DstReg, DstTy, SrcReg, SrcTy] = RdxMI.getFirst2RegLLTs(); 5641 5642 if (NarrowTy.isVector() && 5643 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)) 5644 return UnableToLegalize; 5645 5646 unsigned ScalarOpc = RdxMI.getScalarOpcForReduction(); 5647 SmallVector<Register> SplitSrcs; 5648 // If NarrowTy is a scalar then we're being asked to scalarize. 5649 const unsigned NumParts = 5650 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements() 5651 : SrcTy.getNumElements(); 5652 5653 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs, MIRBuilder, MRI); 5654 if (NarrowTy.isScalar()) { 5655 if (DstTy != NarrowTy) 5656 return UnableToLegalize; // FIXME: handle implicit extensions. 5657 5658 if (isPowerOf2_32(NumParts)) { 5659 // Generate a tree of scalar operations to reduce the critical path. 5660 SmallVector<Register> PartialResults; 5661 unsigned NumPartsLeft = NumParts; 5662 while (NumPartsLeft > 1) { 5663 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) { 5664 PartialResults.emplace_back( 5665 MIRBuilder 5666 .buildInstr(ScalarOpc, {NarrowTy}, 5667 {SplitSrcs[Idx], SplitSrcs[Idx + 1]}) 5668 .getReg(0)); 5669 } 5670 SplitSrcs = PartialResults; 5671 PartialResults.clear(); 5672 NumPartsLeft = SplitSrcs.size(); 5673 } 5674 assert(SplitSrcs.size() == 1); 5675 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]); 5676 MI.eraseFromParent(); 5677 return Legalized; 5678 } 5679 // If we can't generate a tree, then just do sequential operations. 5680 Register Acc = SplitSrcs[0]; 5681 for (unsigned Idx = 1; Idx < NumParts; ++Idx) 5682 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]}) 5683 .getReg(0); 5684 MIRBuilder.buildCopy(DstReg, Acc); 5685 MI.eraseFromParent(); 5686 return Legalized; 5687 } 5688 SmallVector<Register> PartialReductions; 5689 for (unsigned Part = 0; Part < NumParts; ++Part) { 5690 PartialReductions.push_back( 5691 MIRBuilder.buildInstr(RdxMI.getOpcode(), {DstTy}, {SplitSrcs[Part]}) 5692 .getReg(0)); 5693 } 5694 5695 // If the types involved are powers of 2, we can generate intermediate vector 5696 // ops, before generating a final reduction operation. 5697 if (isPowerOf2_32(SrcTy.getNumElements()) && 5698 isPowerOf2_32(NarrowTy.getNumElements())) { 5699 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 5700 } 5701 5702 Register Acc = PartialReductions[0]; 5703 for (unsigned Part = 1; Part < NumParts; ++Part) { 5704 if (Part == NumParts - 1) { 5705 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 5706 {Acc, PartialReductions[Part]}); 5707 } else { 5708 Acc = MIRBuilder 5709 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 5710 .getReg(0); 5711 } 5712 } 5713 MI.eraseFromParent(); 5714 return Legalized; 5715 } 5716 5717 LegalizerHelper::LegalizeResult 5718 LegalizerHelper::fewerElementsVectorSeqReductions(MachineInstr &MI, 5719 unsigned int TypeIdx, 5720 LLT NarrowTy) { 5721 auto [DstReg, DstTy, ScalarReg, ScalarTy, SrcReg, SrcTy] = 5722 MI.getFirst3RegLLTs(); 5723 if (!NarrowTy.isScalar() || TypeIdx != 2 || DstTy != ScalarTy || 5724 DstTy != NarrowTy) 5725 return UnableToLegalize; 5726 5727 assert((MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FADD || 5728 MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FMUL) && 5729 "Unexpected vecreduce opcode"); 5730 unsigned ScalarOpc = MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FADD 5731 ? TargetOpcode::G_FADD 5732 : TargetOpcode::G_FMUL; 5733 5734 SmallVector<Register> SplitSrcs; 5735 unsigned NumParts = SrcTy.getNumElements(); 5736 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs, MIRBuilder, MRI); 5737 Register Acc = ScalarReg; 5738 for (unsigned i = 0; i < NumParts; i++) 5739 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[i]}) 5740 .getReg(0); 5741 5742 MIRBuilder.buildCopy(DstReg, Acc); 5743 MI.eraseFromParent(); 5744 return Legalized; 5745 } 5746 5747 LegalizerHelper::LegalizeResult 5748 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 5749 LLT SrcTy, LLT NarrowTy, 5750 unsigned ScalarOpc) { 5751 SmallVector<Register> SplitSrcs; 5752 // Split the sources into NarrowTy size pieces. 5753 extractParts(SrcReg, NarrowTy, 5754 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs, 5755 MIRBuilder, MRI); 5756 // We're going to do a tree reduction using vector operations until we have 5757 // one NarrowTy size value left. 5758 while (SplitSrcs.size() > 1) { 5759 SmallVector<Register> PartialRdxs; 5760 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 5761 Register LHS = SplitSrcs[Idx]; 5762 Register RHS = SplitSrcs[Idx + 1]; 5763 // Create the intermediate vector op. 5764 Register Res = 5765 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 5766 PartialRdxs.push_back(Res); 5767 } 5768 SplitSrcs = std::move(PartialRdxs); 5769 } 5770 // Finally generate the requested NarrowTy based reduction. 5771 Observer.changingInstr(MI); 5772 MI.getOperand(1).setReg(SplitSrcs[0]); 5773 Observer.changedInstr(MI); 5774 return Legalized; 5775 } 5776 5777 LegalizerHelper::LegalizeResult 5778 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 5779 const LLT HalfTy, const LLT AmtTy) { 5780 5781 Register InL = MRI.createGenericVirtualRegister(HalfTy); 5782 Register InH = MRI.createGenericVirtualRegister(HalfTy); 5783 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 5784 5785 if (Amt.isZero()) { 5786 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {InL, InH}); 5787 MI.eraseFromParent(); 5788 return Legalized; 5789 } 5790 5791 LLT NVT = HalfTy; 5792 unsigned NVTBits = HalfTy.getSizeInBits(); 5793 unsigned VTBits = 2 * NVTBits; 5794 5795 SrcOp Lo(Register(0)), Hi(Register(0)); 5796 if (MI.getOpcode() == TargetOpcode::G_SHL) { 5797 if (Amt.ugt(VTBits)) { 5798 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 5799 } else if (Amt.ugt(NVTBits)) { 5800 Lo = MIRBuilder.buildConstant(NVT, 0); 5801 Hi = MIRBuilder.buildShl(NVT, InL, 5802 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 5803 } else if (Amt == NVTBits) { 5804 Lo = MIRBuilder.buildConstant(NVT, 0); 5805 Hi = InL; 5806 } else { 5807 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 5808 auto OrLHS = 5809 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 5810 auto OrRHS = MIRBuilder.buildLShr( 5811 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 5812 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 5813 } 5814 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 5815 if (Amt.ugt(VTBits)) { 5816 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 5817 } else if (Amt.ugt(NVTBits)) { 5818 Lo = MIRBuilder.buildLShr(NVT, InH, 5819 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 5820 Hi = MIRBuilder.buildConstant(NVT, 0); 5821 } else if (Amt == NVTBits) { 5822 Lo = InH; 5823 Hi = MIRBuilder.buildConstant(NVT, 0); 5824 } else { 5825 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 5826 5827 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 5828 auto OrRHS = MIRBuilder.buildShl( 5829 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 5830 5831 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 5832 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 5833 } 5834 } else { 5835 if (Amt.ugt(VTBits)) { 5836 Hi = Lo = MIRBuilder.buildAShr( 5837 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 5838 } else if (Amt.ugt(NVTBits)) { 5839 Lo = MIRBuilder.buildAShr(NVT, InH, 5840 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 5841 Hi = MIRBuilder.buildAShr(NVT, InH, 5842 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 5843 } else if (Amt == NVTBits) { 5844 Lo = InH; 5845 Hi = MIRBuilder.buildAShr(NVT, InH, 5846 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 5847 } else { 5848 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 5849 5850 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 5851 auto OrRHS = MIRBuilder.buildShl( 5852 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 5853 5854 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 5855 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 5856 } 5857 } 5858 5859 MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {Lo, Hi}); 5860 MI.eraseFromParent(); 5861 5862 return Legalized; 5863 } 5864 5865 // TODO: Optimize if constant shift amount. 5866 LegalizerHelper::LegalizeResult 5867 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 5868 LLT RequestedTy) { 5869 if (TypeIdx == 1) { 5870 Observer.changingInstr(MI); 5871 narrowScalarSrc(MI, RequestedTy, 2); 5872 Observer.changedInstr(MI); 5873 return Legalized; 5874 } 5875 5876 Register DstReg = MI.getOperand(0).getReg(); 5877 LLT DstTy = MRI.getType(DstReg); 5878 if (DstTy.isVector()) 5879 return UnableToLegalize; 5880 5881 Register Amt = MI.getOperand(2).getReg(); 5882 LLT ShiftAmtTy = MRI.getType(Amt); 5883 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 5884 if (DstEltSize % 2 != 0) 5885 return UnableToLegalize; 5886 5887 // Ignore the input type. We can only go to exactly half the size of the 5888 // input. If that isn't small enough, the resulting pieces will be further 5889 // legalized. 5890 const unsigned NewBitSize = DstEltSize / 2; 5891 const LLT HalfTy = LLT::scalar(NewBitSize); 5892 const LLT CondTy = LLT::scalar(1); 5893 5894 if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) { 5895 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy, 5896 ShiftAmtTy); 5897 } 5898 5899 // TODO: Expand with known bits. 5900 5901 // Handle the fully general expansion by an unknown amount. 5902 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 5903 5904 Register InL = MRI.createGenericVirtualRegister(HalfTy); 5905 Register InH = MRI.createGenericVirtualRegister(HalfTy); 5906 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 5907 5908 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 5909 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 5910 5911 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 5912 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 5913 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 5914 5915 Register ResultRegs[2]; 5916 switch (MI.getOpcode()) { 5917 case TargetOpcode::G_SHL: { 5918 // Short: ShAmt < NewBitSize 5919 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 5920 5921 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 5922 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 5923 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 5924 5925 // Long: ShAmt >= NewBitSize 5926 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 5927 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 5928 5929 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 5930 auto Hi = MIRBuilder.buildSelect( 5931 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 5932 5933 ResultRegs[0] = Lo.getReg(0); 5934 ResultRegs[1] = Hi.getReg(0); 5935 break; 5936 } 5937 case TargetOpcode::G_LSHR: 5938 case TargetOpcode::G_ASHR: { 5939 // Short: ShAmt < NewBitSize 5940 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 5941 5942 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 5943 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 5944 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 5945 5946 // Long: ShAmt >= NewBitSize 5947 MachineInstrBuilder HiL; 5948 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 5949 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 5950 } else { 5951 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 5952 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 5953 } 5954 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 5955 {InH, AmtExcess}); // Lo from Hi part. 5956 5957 auto Lo = MIRBuilder.buildSelect( 5958 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 5959 5960 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 5961 5962 ResultRegs[0] = Lo.getReg(0); 5963 ResultRegs[1] = Hi.getReg(0); 5964 break; 5965 } 5966 default: 5967 llvm_unreachable("not a shift"); 5968 } 5969 5970 MIRBuilder.buildMergeLikeInstr(DstReg, ResultRegs); 5971 MI.eraseFromParent(); 5972 return Legalized; 5973 } 5974 5975 LegalizerHelper::LegalizeResult 5976 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 5977 LLT MoreTy) { 5978 assert(TypeIdx == 0 && "Expecting only Idx 0"); 5979 5980 Observer.changingInstr(MI); 5981 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 5982 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 5983 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 5984 moreElementsVectorSrc(MI, MoreTy, I); 5985 } 5986 5987 MachineBasicBlock &MBB = *MI.getParent(); 5988 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 5989 moreElementsVectorDst(MI, MoreTy, 0); 5990 Observer.changedInstr(MI); 5991 return Legalized; 5992 } 5993 5994 MachineInstrBuilder LegalizerHelper::getNeutralElementForVecReduce( 5995 unsigned Opcode, MachineIRBuilder &MIRBuilder, LLT Ty) { 5996 assert(Ty.isScalar() && "Expected scalar type to make neutral element for"); 5997 5998 switch (Opcode) { 5999 default: 6000 llvm_unreachable( 6001 "getNeutralElementForVecReduce called with invalid opcode!"); 6002 case TargetOpcode::G_VECREDUCE_ADD: 6003 case TargetOpcode::G_VECREDUCE_OR: 6004 case TargetOpcode::G_VECREDUCE_XOR: 6005 case TargetOpcode::G_VECREDUCE_UMAX: 6006 return MIRBuilder.buildConstant(Ty, 0); 6007 case TargetOpcode::G_VECREDUCE_MUL: 6008 return MIRBuilder.buildConstant(Ty, 1); 6009 case TargetOpcode::G_VECREDUCE_AND: 6010 case TargetOpcode::G_VECREDUCE_UMIN: 6011 return MIRBuilder.buildConstant( 6012 Ty, APInt::getAllOnes(Ty.getScalarSizeInBits())); 6013 case TargetOpcode::G_VECREDUCE_SMAX: 6014 return MIRBuilder.buildConstant( 6015 Ty, APInt::getSignedMinValue(Ty.getSizeInBits())); 6016 case TargetOpcode::G_VECREDUCE_SMIN: 6017 return MIRBuilder.buildConstant( 6018 Ty, APInt::getSignedMaxValue(Ty.getSizeInBits())); 6019 case TargetOpcode::G_VECREDUCE_FADD: 6020 return MIRBuilder.buildFConstant(Ty, -0.0); 6021 case TargetOpcode::G_VECREDUCE_FMUL: 6022 return MIRBuilder.buildFConstant(Ty, 1.0); 6023 case TargetOpcode::G_VECREDUCE_FMINIMUM: 6024 case TargetOpcode::G_VECREDUCE_FMAXIMUM: 6025 assert(false && "getNeutralElementForVecReduce unimplemented for " 6026 "G_VECREDUCE_FMINIMUM and G_VECREDUCE_FMAXIMUM!"); 6027 } 6028 llvm_unreachable("switch expected to return!"); 6029 } 6030 6031 LegalizerHelper::LegalizeResult 6032 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 6033 LLT MoreTy) { 6034 unsigned Opc = MI.getOpcode(); 6035 switch (Opc) { 6036 case TargetOpcode::G_IMPLICIT_DEF: 6037 case TargetOpcode::G_LOAD: { 6038 if (TypeIdx != 0) 6039 return UnableToLegalize; 6040 Observer.changingInstr(MI); 6041 moreElementsVectorDst(MI, MoreTy, 0); 6042 Observer.changedInstr(MI); 6043 return Legalized; 6044 } 6045 case TargetOpcode::G_STORE: 6046 if (TypeIdx != 0) 6047 return UnableToLegalize; 6048 Observer.changingInstr(MI); 6049 moreElementsVectorSrc(MI, MoreTy, 0); 6050 Observer.changedInstr(MI); 6051 return Legalized; 6052 case TargetOpcode::G_AND: 6053 case TargetOpcode::G_OR: 6054 case TargetOpcode::G_XOR: 6055 case TargetOpcode::G_ADD: 6056 case TargetOpcode::G_SUB: 6057 case TargetOpcode::G_MUL: 6058 case TargetOpcode::G_FADD: 6059 case TargetOpcode::G_FSUB: 6060 case TargetOpcode::G_FMUL: 6061 case TargetOpcode::G_FDIV: 6062 case TargetOpcode::G_FCOPYSIGN: 6063 case TargetOpcode::G_UADDSAT: 6064 case TargetOpcode::G_USUBSAT: 6065 case TargetOpcode::G_SADDSAT: 6066 case TargetOpcode::G_SSUBSAT: 6067 case TargetOpcode::G_SMIN: 6068 case TargetOpcode::G_SMAX: 6069 case TargetOpcode::G_UMIN: 6070 case TargetOpcode::G_UMAX: 6071 case TargetOpcode::G_FMINNUM: 6072 case TargetOpcode::G_FMAXNUM: 6073 case TargetOpcode::G_FMINNUM_IEEE: 6074 case TargetOpcode::G_FMAXNUM_IEEE: 6075 case TargetOpcode::G_FMINIMUM: 6076 case TargetOpcode::G_FMAXIMUM: 6077 case TargetOpcode::G_STRICT_FADD: 6078 case TargetOpcode::G_STRICT_FSUB: 6079 case TargetOpcode::G_STRICT_FMUL: 6080 case TargetOpcode::G_SHL: 6081 case TargetOpcode::G_ASHR: 6082 case TargetOpcode::G_LSHR: { 6083 Observer.changingInstr(MI); 6084 moreElementsVectorSrc(MI, MoreTy, 1); 6085 moreElementsVectorSrc(MI, MoreTy, 2); 6086 moreElementsVectorDst(MI, MoreTy, 0); 6087 Observer.changedInstr(MI); 6088 return Legalized; 6089 } 6090 case TargetOpcode::G_FMA: 6091 case TargetOpcode::G_STRICT_FMA: 6092 case TargetOpcode::G_FSHR: 6093 case TargetOpcode::G_FSHL: { 6094 Observer.changingInstr(MI); 6095 moreElementsVectorSrc(MI, MoreTy, 1); 6096 moreElementsVectorSrc(MI, MoreTy, 2); 6097 moreElementsVectorSrc(MI, MoreTy, 3); 6098 moreElementsVectorDst(MI, MoreTy, 0); 6099 Observer.changedInstr(MI); 6100 return Legalized; 6101 } 6102 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 6103 case TargetOpcode::G_EXTRACT: 6104 if (TypeIdx != 1) 6105 return UnableToLegalize; 6106 Observer.changingInstr(MI); 6107 moreElementsVectorSrc(MI, MoreTy, 1); 6108 Observer.changedInstr(MI); 6109 return Legalized; 6110 case TargetOpcode::G_INSERT: 6111 case TargetOpcode::G_INSERT_VECTOR_ELT: 6112 case TargetOpcode::G_FREEZE: 6113 case TargetOpcode::G_FNEG: 6114 case TargetOpcode::G_FABS: 6115 case TargetOpcode::G_FSQRT: 6116 case TargetOpcode::G_FCEIL: 6117 case TargetOpcode::G_FFLOOR: 6118 case TargetOpcode::G_FNEARBYINT: 6119 case TargetOpcode::G_FRINT: 6120 case TargetOpcode::G_INTRINSIC_ROUND: 6121 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 6122 case TargetOpcode::G_INTRINSIC_TRUNC: 6123 case TargetOpcode::G_BSWAP: 6124 case TargetOpcode::G_FCANONICALIZE: 6125 case TargetOpcode::G_SEXT_INREG: 6126 case TargetOpcode::G_ABS: 6127 if (TypeIdx != 0) 6128 return UnableToLegalize; 6129 Observer.changingInstr(MI); 6130 moreElementsVectorSrc(MI, MoreTy, 1); 6131 moreElementsVectorDst(MI, MoreTy, 0); 6132 Observer.changedInstr(MI); 6133 return Legalized; 6134 case TargetOpcode::G_SELECT: { 6135 auto [DstReg, DstTy, CondReg, CondTy] = MI.getFirst2RegLLTs(); 6136 if (TypeIdx == 1) { 6137 if (!CondTy.isScalar() || 6138 DstTy.getElementCount() != MoreTy.getElementCount()) 6139 return UnableToLegalize; 6140 6141 // This is turning a scalar select of vectors into a vector 6142 // select. Broadcast the select condition. 6143 auto ShufSplat = MIRBuilder.buildShuffleSplat(MoreTy, CondReg); 6144 Observer.changingInstr(MI); 6145 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6146 Observer.changedInstr(MI); 6147 return Legalized; 6148 } 6149 6150 if (CondTy.isVector()) 6151 return UnableToLegalize; 6152 6153 Observer.changingInstr(MI); 6154 moreElementsVectorSrc(MI, MoreTy, 2); 6155 moreElementsVectorSrc(MI, MoreTy, 3); 6156 moreElementsVectorDst(MI, MoreTy, 0); 6157 Observer.changedInstr(MI); 6158 return Legalized; 6159 } 6160 case TargetOpcode::G_UNMERGE_VALUES: 6161 return UnableToLegalize; 6162 case TargetOpcode::G_PHI: 6163 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 6164 case TargetOpcode::G_SHUFFLE_VECTOR: 6165 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); 6166 case TargetOpcode::G_BUILD_VECTOR: { 6167 SmallVector<SrcOp, 8> Elts; 6168 for (auto Op : MI.uses()) { 6169 Elts.push_back(Op.getReg()); 6170 } 6171 6172 for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) { 6173 Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType())); 6174 } 6175 6176 MIRBuilder.buildDeleteTrailingVectorElements( 6177 MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts)); 6178 MI.eraseFromParent(); 6179 return Legalized; 6180 } 6181 case TargetOpcode::G_SEXT: 6182 case TargetOpcode::G_ZEXT: 6183 case TargetOpcode::G_ANYEXT: 6184 case TargetOpcode::G_TRUNC: 6185 case TargetOpcode::G_FPTRUNC: 6186 case TargetOpcode::G_FPEXT: 6187 case TargetOpcode::G_FPTOSI: 6188 case TargetOpcode::G_FPTOUI: 6189 case TargetOpcode::G_FPTOSI_SAT: 6190 case TargetOpcode::G_FPTOUI_SAT: 6191 case TargetOpcode::G_SITOFP: 6192 case TargetOpcode::G_UITOFP: { 6193 Observer.changingInstr(MI); 6194 LLT SrcExtTy; 6195 LLT DstExtTy; 6196 if (TypeIdx == 0) { 6197 DstExtTy = MoreTy; 6198 SrcExtTy = LLT::fixed_vector( 6199 MoreTy.getNumElements(), 6200 MRI.getType(MI.getOperand(1).getReg()).getElementType()); 6201 } else { 6202 DstExtTy = LLT::fixed_vector( 6203 MoreTy.getNumElements(), 6204 MRI.getType(MI.getOperand(0).getReg()).getElementType()); 6205 SrcExtTy = MoreTy; 6206 } 6207 moreElementsVectorSrc(MI, SrcExtTy, 1); 6208 moreElementsVectorDst(MI, DstExtTy, 0); 6209 Observer.changedInstr(MI); 6210 return Legalized; 6211 } 6212 case TargetOpcode::G_ICMP: 6213 case TargetOpcode::G_FCMP: { 6214 if (TypeIdx != 1) 6215 return UnableToLegalize; 6216 6217 Observer.changingInstr(MI); 6218 moreElementsVectorSrc(MI, MoreTy, 2); 6219 moreElementsVectorSrc(MI, MoreTy, 3); 6220 LLT CondTy = LLT::fixed_vector( 6221 MoreTy.getNumElements(), 6222 MRI.getType(MI.getOperand(0).getReg()).getElementType()); 6223 moreElementsVectorDst(MI, CondTy, 0); 6224 Observer.changedInstr(MI); 6225 return Legalized; 6226 } 6227 case TargetOpcode::G_BITCAST: { 6228 if (TypeIdx != 0) 6229 return UnableToLegalize; 6230 6231 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 6232 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 6233 6234 unsigned coefficient = SrcTy.getNumElements() * MoreTy.getNumElements(); 6235 if (coefficient % DstTy.getNumElements() != 0) 6236 return UnableToLegalize; 6237 6238 coefficient = coefficient / DstTy.getNumElements(); 6239 6240 LLT NewTy = SrcTy.changeElementCount( 6241 ElementCount::get(coefficient, MoreTy.isScalable())); 6242 Observer.changingInstr(MI); 6243 moreElementsVectorSrc(MI, NewTy, 1); 6244 moreElementsVectorDst(MI, MoreTy, 0); 6245 Observer.changedInstr(MI); 6246 return Legalized; 6247 } 6248 case TargetOpcode::G_VECREDUCE_FADD: 6249 case TargetOpcode::G_VECREDUCE_FMUL: 6250 case TargetOpcode::G_VECREDUCE_ADD: 6251 case TargetOpcode::G_VECREDUCE_MUL: 6252 case TargetOpcode::G_VECREDUCE_AND: 6253 case TargetOpcode::G_VECREDUCE_OR: 6254 case TargetOpcode::G_VECREDUCE_XOR: 6255 case TargetOpcode::G_VECREDUCE_SMAX: 6256 case TargetOpcode::G_VECREDUCE_SMIN: 6257 case TargetOpcode::G_VECREDUCE_UMAX: 6258 case TargetOpcode::G_VECREDUCE_UMIN: { 6259 LLT OrigTy = MRI.getType(MI.getOperand(1).getReg()); 6260 MachineOperand &MO = MI.getOperand(1); 6261 auto NewVec = MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO); 6262 auto NeutralElement = getNeutralElementForVecReduce( 6263 MI.getOpcode(), MIRBuilder, MoreTy.getElementType()); 6264 6265 LLT IdxTy(TLI.getVectorIdxTy(MIRBuilder.getDataLayout())); 6266 for (size_t i = OrigTy.getNumElements(), e = MoreTy.getNumElements(); 6267 i != e; i++) { 6268 auto Idx = MIRBuilder.buildConstant(IdxTy, i); 6269 NewVec = MIRBuilder.buildInsertVectorElement(MoreTy, NewVec, 6270 NeutralElement, Idx); 6271 } 6272 6273 Observer.changingInstr(MI); 6274 MO.setReg(NewVec.getReg(0)); 6275 Observer.changedInstr(MI); 6276 return Legalized; 6277 } 6278 6279 default: 6280 return UnableToLegalize; 6281 } 6282 } 6283 6284 LegalizerHelper::LegalizeResult 6285 LegalizerHelper::equalizeVectorShuffleLengths(MachineInstr &MI) { 6286 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 6287 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6288 unsigned MaskNumElts = Mask.size(); 6289 unsigned SrcNumElts = SrcTy.getNumElements(); 6290 LLT DestEltTy = DstTy.getElementType(); 6291 6292 if (MaskNumElts == SrcNumElts) 6293 return Legalized; 6294 6295 if (MaskNumElts < SrcNumElts) { 6296 // Extend mask to match new destination vector size with 6297 // undef values. 6298 SmallVector<int, 16> NewMask(SrcNumElts, -1); 6299 llvm::copy(Mask, NewMask.begin()); 6300 6301 moreElementsVectorDst(MI, SrcTy, 0); 6302 MIRBuilder.setInstrAndDebugLoc(MI); 6303 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 6304 MI.getOperand(1).getReg(), 6305 MI.getOperand(2).getReg(), NewMask); 6306 MI.eraseFromParent(); 6307 6308 return Legalized; 6309 } 6310 6311 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 6312 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 6313 LLT PaddedTy = LLT::fixed_vector(PaddedMaskNumElts, DestEltTy); 6314 6315 // Create new source vectors by concatenating the initial 6316 // source vectors with undefined vectors of the same size. 6317 auto Undef = MIRBuilder.buildUndef(SrcTy); 6318 SmallVector<Register, 8> MOps1(NumConcat, Undef.getReg(0)); 6319 SmallVector<Register, 8> MOps2(NumConcat, Undef.getReg(0)); 6320 MOps1[0] = MI.getOperand(1).getReg(); 6321 MOps2[0] = MI.getOperand(2).getReg(); 6322 6323 auto Src1 = MIRBuilder.buildConcatVectors(PaddedTy, MOps1); 6324 auto Src2 = MIRBuilder.buildConcatVectors(PaddedTy, MOps2); 6325 6326 // Readjust mask for new input vector length. 6327 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 6328 for (unsigned I = 0; I != MaskNumElts; ++I) { 6329 int Idx = Mask[I]; 6330 if (Idx >= static_cast<int>(SrcNumElts)) 6331 Idx += PaddedMaskNumElts - SrcNumElts; 6332 MappedOps[I] = Idx; 6333 } 6334 6335 // If we got more elements than required, extract subvector. 6336 if (MaskNumElts != PaddedMaskNumElts) { 6337 auto Shuffle = 6338 MIRBuilder.buildShuffleVector(PaddedTy, Src1, Src2, MappedOps); 6339 6340 SmallVector<Register, 16> Elts(MaskNumElts); 6341 for (unsigned I = 0; I < MaskNumElts; ++I) { 6342 Elts[I] = 6343 MIRBuilder.buildExtractVectorElementConstant(DestEltTy, Shuffle, I) 6344 .getReg(0); 6345 } 6346 MIRBuilder.buildBuildVector(DstReg, Elts); 6347 } else { 6348 MIRBuilder.buildShuffleVector(DstReg, Src1, Src2, MappedOps); 6349 } 6350 6351 MI.eraseFromParent(); 6352 return LegalizerHelper::LegalizeResult::Legalized; 6353 } 6354 6355 LegalizerHelper::LegalizeResult 6356 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, 6357 unsigned int TypeIdx, LLT MoreTy) { 6358 auto [DstTy, Src1Ty, Src2Ty] = MI.getFirst3LLTs(); 6359 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6360 unsigned NumElts = DstTy.getNumElements(); 6361 unsigned WidenNumElts = MoreTy.getNumElements(); 6362 6363 if (DstTy.isVector() && Src1Ty.isVector() && 6364 DstTy.getNumElements() != Src1Ty.getNumElements()) { 6365 return equalizeVectorShuffleLengths(MI); 6366 } 6367 6368 if (TypeIdx != 0) 6369 return UnableToLegalize; 6370 6371 // Expect a canonicalized shuffle. 6372 if (DstTy != Src1Ty || DstTy != Src2Ty) 6373 return UnableToLegalize; 6374 6375 moreElementsVectorSrc(MI, MoreTy, 1); 6376 moreElementsVectorSrc(MI, MoreTy, 2); 6377 6378 // Adjust mask based on new input vector length. 6379 SmallVector<int, 16> NewMask(WidenNumElts, -1); 6380 for (unsigned I = 0; I != NumElts; ++I) { 6381 int Idx = Mask[I]; 6382 if (Idx < static_cast<int>(NumElts)) 6383 NewMask[I] = Idx; 6384 else 6385 NewMask[I] = Idx - NumElts + WidenNumElts; 6386 } 6387 moreElementsVectorDst(MI, MoreTy, 0); 6388 MIRBuilder.setInstrAndDebugLoc(MI); 6389 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 6390 MI.getOperand(1).getReg(), 6391 MI.getOperand(2).getReg(), NewMask); 6392 MI.eraseFromParent(); 6393 return Legalized; 6394 } 6395 6396 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 6397 ArrayRef<Register> Src1Regs, 6398 ArrayRef<Register> Src2Regs, 6399 LLT NarrowTy) { 6400 MachineIRBuilder &B = MIRBuilder; 6401 unsigned SrcParts = Src1Regs.size(); 6402 unsigned DstParts = DstRegs.size(); 6403 6404 unsigned DstIdx = 0; // Low bits of the result. 6405 Register FactorSum = 6406 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 6407 DstRegs[DstIdx] = FactorSum; 6408 6409 unsigned CarrySumPrevDstIdx; 6410 SmallVector<Register, 4> Factors; 6411 6412 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 6413 // Collect low parts of muls for DstIdx. 6414 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 6415 i <= std::min(DstIdx, SrcParts - 1); ++i) { 6416 MachineInstrBuilder Mul = 6417 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 6418 Factors.push_back(Mul.getReg(0)); 6419 } 6420 // Collect high parts of muls from previous DstIdx. 6421 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 6422 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 6423 MachineInstrBuilder Umulh = 6424 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 6425 Factors.push_back(Umulh.getReg(0)); 6426 } 6427 // Add CarrySum from additions calculated for previous DstIdx. 6428 if (DstIdx != 1) { 6429 Factors.push_back(CarrySumPrevDstIdx); 6430 } 6431 6432 Register CarrySum; 6433 // Add all factors and accumulate all carries into CarrySum. 6434 if (DstIdx != DstParts - 1) { 6435 MachineInstrBuilder Uaddo = 6436 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 6437 FactorSum = Uaddo.getReg(0); 6438 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 6439 for (unsigned i = 2; i < Factors.size(); ++i) { 6440 MachineInstrBuilder Uaddo = 6441 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 6442 FactorSum = Uaddo.getReg(0); 6443 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 6444 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 6445 } 6446 } else { 6447 // Since value for the next index is not calculated, neither is CarrySum. 6448 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 6449 for (unsigned i = 2; i < Factors.size(); ++i) 6450 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 6451 } 6452 6453 CarrySumPrevDstIdx = CarrySum; 6454 DstRegs[DstIdx] = FactorSum; 6455 Factors.clear(); 6456 } 6457 } 6458 6459 LegalizerHelper::LegalizeResult 6460 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 6461 LLT NarrowTy) { 6462 if (TypeIdx != 0) 6463 return UnableToLegalize; 6464 6465 Register DstReg = MI.getOperand(0).getReg(); 6466 LLT DstType = MRI.getType(DstReg); 6467 // FIXME: add support for vector types 6468 if (DstType.isVector()) 6469 return UnableToLegalize; 6470 6471 unsigned Opcode = MI.getOpcode(); 6472 unsigned OpO, OpE, OpF; 6473 switch (Opcode) { 6474 case TargetOpcode::G_SADDO: 6475 case TargetOpcode::G_SADDE: 6476 case TargetOpcode::G_UADDO: 6477 case TargetOpcode::G_UADDE: 6478 case TargetOpcode::G_ADD: 6479 OpO = TargetOpcode::G_UADDO; 6480 OpE = TargetOpcode::G_UADDE; 6481 OpF = TargetOpcode::G_UADDE; 6482 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 6483 OpF = TargetOpcode::G_SADDE; 6484 break; 6485 case TargetOpcode::G_SSUBO: 6486 case TargetOpcode::G_SSUBE: 6487 case TargetOpcode::G_USUBO: 6488 case TargetOpcode::G_USUBE: 6489 case TargetOpcode::G_SUB: 6490 OpO = TargetOpcode::G_USUBO; 6491 OpE = TargetOpcode::G_USUBE; 6492 OpF = TargetOpcode::G_USUBE; 6493 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 6494 OpF = TargetOpcode::G_SSUBE; 6495 break; 6496 default: 6497 llvm_unreachable("Unexpected add/sub opcode!"); 6498 } 6499 6500 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 6501 unsigned NumDefs = MI.getNumExplicitDefs(); 6502 Register Src1 = MI.getOperand(NumDefs).getReg(); 6503 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 6504 Register CarryDst, CarryIn; 6505 if (NumDefs == 2) 6506 CarryDst = MI.getOperand(1).getReg(); 6507 if (MI.getNumOperands() == NumDefs + 3) 6508 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 6509 6510 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 6511 LLT LeftoverTy, DummyTy; 6512 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 6513 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left, 6514 MIRBuilder, MRI); 6515 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left, MIRBuilder, 6516 MRI); 6517 6518 int NarrowParts = Src1Regs.size(); 6519 Src1Regs.append(Src1Left); 6520 Src2Regs.append(Src2Left); 6521 DstRegs.reserve(Src1Regs.size()); 6522 6523 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 6524 Register DstReg = 6525 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 6526 Register CarryOut; 6527 // Forward the final carry-out to the destination register 6528 if (i == e - 1 && CarryDst) 6529 CarryOut = CarryDst; 6530 else 6531 CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 6532 6533 if (!CarryIn) { 6534 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 6535 {Src1Regs[i], Src2Regs[i]}); 6536 } else if (i == e - 1) { 6537 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 6538 {Src1Regs[i], Src2Regs[i], CarryIn}); 6539 } else { 6540 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 6541 {Src1Regs[i], Src2Regs[i], CarryIn}); 6542 } 6543 6544 DstRegs.push_back(DstReg); 6545 CarryIn = CarryOut; 6546 } 6547 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 6548 ArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 6549 ArrayRef(DstRegs).drop_front(NarrowParts)); 6550 6551 MI.eraseFromParent(); 6552 return Legalized; 6553 } 6554 6555 LegalizerHelper::LegalizeResult 6556 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 6557 auto [DstReg, Src1, Src2] = MI.getFirst3Regs(); 6558 6559 LLT Ty = MRI.getType(DstReg); 6560 if (Ty.isVector()) 6561 return UnableToLegalize; 6562 6563 unsigned Size = Ty.getSizeInBits(); 6564 unsigned NarrowSize = NarrowTy.getSizeInBits(); 6565 if (Size % NarrowSize != 0) 6566 return UnableToLegalize; 6567 6568 unsigned NumParts = Size / NarrowSize; 6569 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 6570 unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1); 6571 6572 SmallVector<Register, 2> Src1Parts, Src2Parts; 6573 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 6574 extractParts(Src1, NarrowTy, NumParts, Src1Parts, MIRBuilder, MRI); 6575 extractParts(Src2, NarrowTy, NumParts, Src2Parts, MIRBuilder, MRI); 6576 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 6577 6578 // Take only high half of registers if this is high mul. 6579 ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts); 6580 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 6581 MI.eraseFromParent(); 6582 return Legalized; 6583 } 6584 6585 LegalizerHelper::LegalizeResult 6586 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 6587 LLT NarrowTy) { 6588 if (TypeIdx != 0) 6589 return UnableToLegalize; 6590 6591 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 6592 6593 Register Src = MI.getOperand(1).getReg(); 6594 LLT SrcTy = MRI.getType(Src); 6595 6596 // If all finite floats fit into the narrowed integer type, we can just swap 6597 // out the result type. This is practically only useful for conversions from 6598 // half to at least 16-bits, so just handle the one case. 6599 if (SrcTy.getScalarType() != LLT::scalar(16) || 6600 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 6601 return UnableToLegalize; 6602 6603 Observer.changingInstr(MI); 6604 narrowScalarDst(MI, NarrowTy, 0, 6605 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 6606 Observer.changedInstr(MI); 6607 return Legalized; 6608 } 6609 6610 LegalizerHelper::LegalizeResult 6611 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 6612 LLT NarrowTy) { 6613 if (TypeIdx != 1) 6614 return UnableToLegalize; 6615 6616 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 6617 6618 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 6619 // FIXME: add support for when SizeOp1 isn't an exact multiple of 6620 // NarrowSize. 6621 if (SizeOp1 % NarrowSize != 0) 6622 return UnableToLegalize; 6623 int NumParts = SizeOp1 / NarrowSize; 6624 6625 SmallVector<Register, 2> SrcRegs, DstRegs; 6626 SmallVector<uint64_t, 2> Indexes; 6627 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs, 6628 MIRBuilder, MRI); 6629 6630 Register OpReg = MI.getOperand(0).getReg(); 6631 uint64_t OpStart = MI.getOperand(2).getImm(); 6632 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 6633 for (int i = 0; i < NumParts; ++i) { 6634 unsigned SrcStart = i * NarrowSize; 6635 6636 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 6637 // No part of the extract uses this subregister, ignore it. 6638 continue; 6639 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 6640 // The entire subregister is extracted, forward the value. 6641 DstRegs.push_back(SrcRegs[i]); 6642 continue; 6643 } 6644 6645 // OpSegStart is where this destination segment would start in OpReg if it 6646 // extended infinitely in both directions. 6647 int64_t ExtractOffset; 6648 uint64_t SegSize; 6649 if (OpStart < SrcStart) { 6650 ExtractOffset = 0; 6651 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 6652 } else { 6653 ExtractOffset = OpStart - SrcStart; 6654 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 6655 } 6656 6657 Register SegReg = SrcRegs[i]; 6658 if (ExtractOffset != 0 || SegSize != NarrowSize) { 6659 // A genuine extract is needed. 6660 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 6661 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 6662 } 6663 6664 DstRegs.push_back(SegReg); 6665 } 6666 6667 Register DstReg = MI.getOperand(0).getReg(); 6668 if (MRI.getType(DstReg).isVector()) 6669 MIRBuilder.buildBuildVector(DstReg, DstRegs); 6670 else if (DstRegs.size() > 1) 6671 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 6672 else 6673 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 6674 MI.eraseFromParent(); 6675 return Legalized; 6676 } 6677 6678 LegalizerHelper::LegalizeResult 6679 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 6680 LLT NarrowTy) { 6681 // FIXME: Don't know how to handle secondary types yet. 6682 if (TypeIdx != 0) 6683 return UnableToLegalize; 6684 6685 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 6686 SmallVector<uint64_t, 2> Indexes; 6687 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 6688 LLT LeftoverTy; 6689 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 6690 LeftoverRegs, MIRBuilder, MRI); 6691 6692 SrcRegs.append(LeftoverRegs); 6693 6694 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 6695 Register OpReg = MI.getOperand(2).getReg(); 6696 uint64_t OpStart = MI.getOperand(3).getImm(); 6697 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 6698 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 6699 unsigned DstStart = I * NarrowSize; 6700 6701 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 6702 // The entire subregister is defined by this insert, forward the new 6703 // value. 6704 DstRegs.push_back(OpReg); 6705 continue; 6706 } 6707 6708 Register SrcReg = SrcRegs[I]; 6709 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 6710 // The leftover reg is smaller than NarrowTy, so we need to extend it. 6711 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 6712 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 6713 } 6714 6715 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 6716 // No part of the insert affects this subregister, forward the original. 6717 DstRegs.push_back(SrcReg); 6718 continue; 6719 } 6720 6721 // OpSegStart is where this destination segment would start in OpReg if it 6722 // extended infinitely in both directions. 6723 int64_t ExtractOffset, InsertOffset; 6724 uint64_t SegSize; 6725 if (OpStart < DstStart) { 6726 InsertOffset = 0; 6727 ExtractOffset = DstStart - OpStart; 6728 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 6729 } else { 6730 InsertOffset = OpStart - DstStart; 6731 ExtractOffset = 0; 6732 SegSize = 6733 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 6734 } 6735 6736 Register SegReg = OpReg; 6737 if (ExtractOffset != 0 || SegSize != OpSize) { 6738 // A genuine extract is needed. 6739 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 6740 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 6741 } 6742 6743 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 6744 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 6745 DstRegs.push_back(DstReg); 6746 } 6747 6748 uint64_t WideSize = DstRegs.size() * NarrowSize; 6749 Register DstReg = MI.getOperand(0).getReg(); 6750 if (WideSize > RegTy.getSizeInBits()) { 6751 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 6752 MIRBuilder.buildMergeLikeInstr(MergeReg, DstRegs); 6753 MIRBuilder.buildTrunc(DstReg, MergeReg); 6754 } else 6755 MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); 6756 6757 MI.eraseFromParent(); 6758 return Legalized; 6759 } 6760 6761 LegalizerHelper::LegalizeResult 6762 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 6763 LLT NarrowTy) { 6764 Register DstReg = MI.getOperand(0).getReg(); 6765 LLT DstTy = MRI.getType(DstReg); 6766 6767 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 6768 6769 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 6770 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 6771 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 6772 LLT LeftoverTy; 6773 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 6774 Src0Regs, Src0LeftoverRegs, MIRBuilder, MRI)) 6775 return UnableToLegalize; 6776 6777 LLT Unused; 6778 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 6779 Src1Regs, Src1LeftoverRegs, MIRBuilder, MRI)) 6780 llvm_unreachable("inconsistent extractParts result"); 6781 6782 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 6783 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 6784 {Src0Regs[I], Src1Regs[I]}); 6785 DstRegs.push_back(Inst.getReg(0)); 6786 } 6787 6788 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 6789 auto Inst = MIRBuilder.buildInstr( 6790 MI.getOpcode(), 6791 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 6792 DstLeftoverRegs.push_back(Inst.getReg(0)); 6793 } 6794 6795 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 6796 LeftoverTy, DstLeftoverRegs); 6797 6798 MI.eraseFromParent(); 6799 return Legalized; 6800 } 6801 6802 LegalizerHelper::LegalizeResult 6803 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 6804 LLT NarrowTy) { 6805 if (TypeIdx != 0) 6806 return UnableToLegalize; 6807 6808 auto [DstReg, SrcReg] = MI.getFirst2Regs(); 6809 6810 LLT DstTy = MRI.getType(DstReg); 6811 if (DstTy.isVector()) 6812 return UnableToLegalize; 6813 6814 SmallVector<Register, 8> Parts; 6815 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 6816 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 6817 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 6818 6819 MI.eraseFromParent(); 6820 return Legalized; 6821 } 6822 6823 LegalizerHelper::LegalizeResult 6824 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 6825 LLT NarrowTy) { 6826 if (TypeIdx != 0) 6827 return UnableToLegalize; 6828 6829 Register CondReg = MI.getOperand(1).getReg(); 6830 LLT CondTy = MRI.getType(CondReg); 6831 if (CondTy.isVector()) // TODO: Handle vselect 6832 return UnableToLegalize; 6833 6834 Register DstReg = MI.getOperand(0).getReg(); 6835 LLT DstTy = MRI.getType(DstReg); 6836 6837 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 6838 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 6839 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 6840 LLT LeftoverTy; 6841 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 6842 Src1Regs, Src1LeftoverRegs, MIRBuilder, MRI)) 6843 return UnableToLegalize; 6844 6845 LLT Unused; 6846 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 6847 Src2Regs, Src2LeftoverRegs, MIRBuilder, MRI)) 6848 llvm_unreachable("inconsistent extractParts result"); 6849 6850 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 6851 auto Select = MIRBuilder.buildSelect(NarrowTy, 6852 CondReg, Src1Regs[I], Src2Regs[I]); 6853 DstRegs.push_back(Select.getReg(0)); 6854 } 6855 6856 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 6857 auto Select = MIRBuilder.buildSelect( 6858 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 6859 DstLeftoverRegs.push_back(Select.getReg(0)); 6860 } 6861 6862 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 6863 LeftoverTy, DstLeftoverRegs); 6864 6865 MI.eraseFromParent(); 6866 return Legalized; 6867 } 6868 6869 LegalizerHelper::LegalizeResult 6870 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 6871 LLT NarrowTy) { 6872 if (TypeIdx != 1) 6873 return UnableToLegalize; 6874 6875 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 6876 unsigned NarrowSize = NarrowTy.getSizeInBits(); 6877 6878 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 6879 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 6880 6881 MachineIRBuilder &B = MIRBuilder; 6882 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 6883 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 6884 auto C_0 = B.buildConstant(NarrowTy, 0); 6885 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 6886 UnmergeSrc.getReg(1), C_0); 6887 auto LoCTLZ = IsUndef ? 6888 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 6889 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 6890 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 6891 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 6892 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 6893 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 6894 6895 MI.eraseFromParent(); 6896 return Legalized; 6897 } 6898 6899 return UnableToLegalize; 6900 } 6901 6902 LegalizerHelper::LegalizeResult 6903 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 6904 LLT NarrowTy) { 6905 if (TypeIdx != 1) 6906 return UnableToLegalize; 6907 6908 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 6909 unsigned NarrowSize = NarrowTy.getSizeInBits(); 6910 6911 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 6912 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 6913 6914 MachineIRBuilder &B = MIRBuilder; 6915 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 6916 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 6917 auto C_0 = B.buildConstant(NarrowTy, 0); 6918 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 6919 UnmergeSrc.getReg(0), C_0); 6920 auto HiCTTZ = IsUndef ? 6921 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 6922 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 6923 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 6924 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 6925 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 6926 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 6927 6928 MI.eraseFromParent(); 6929 return Legalized; 6930 } 6931 6932 return UnableToLegalize; 6933 } 6934 6935 LegalizerHelper::LegalizeResult 6936 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 6937 LLT NarrowTy) { 6938 if (TypeIdx != 1) 6939 return UnableToLegalize; 6940 6941 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 6942 unsigned NarrowSize = NarrowTy.getSizeInBits(); 6943 6944 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 6945 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 6946 6947 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 6948 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 6949 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 6950 6951 MI.eraseFromParent(); 6952 return Legalized; 6953 } 6954 6955 return UnableToLegalize; 6956 } 6957 6958 LegalizerHelper::LegalizeResult 6959 LegalizerHelper::narrowScalarFLDEXP(MachineInstr &MI, unsigned TypeIdx, 6960 LLT NarrowTy) { 6961 if (TypeIdx != 1) 6962 return UnableToLegalize; 6963 6964 MachineIRBuilder &B = MIRBuilder; 6965 Register ExpReg = MI.getOperand(2).getReg(); 6966 LLT ExpTy = MRI.getType(ExpReg); 6967 6968 unsigned ClampSize = NarrowTy.getScalarSizeInBits(); 6969 6970 // Clamp the exponent to the range of the target type. 6971 auto MinExp = B.buildConstant(ExpTy, minIntN(ClampSize)); 6972 auto ClampMin = B.buildSMax(ExpTy, ExpReg, MinExp); 6973 auto MaxExp = B.buildConstant(ExpTy, maxIntN(ClampSize)); 6974 auto Clamp = B.buildSMin(ExpTy, ClampMin, MaxExp); 6975 6976 auto Trunc = B.buildTrunc(NarrowTy, Clamp); 6977 Observer.changingInstr(MI); 6978 MI.getOperand(2).setReg(Trunc.getReg(0)); 6979 Observer.changedInstr(MI); 6980 return Legalized; 6981 } 6982 6983 LegalizerHelper::LegalizeResult 6984 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 6985 unsigned Opc = MI.getOpcode(); 6986 const auto &TII = MIRBuilder.getTII(); 6987 auto isSupported = [this](const LegalityQuery &Q) { 6988 auto QAction = LI.getAction(Q).Action; 6989 return QAction == Legal || QAction == Libcall || QAction == Custom; 6990 }; 6991 switch (Opc) { 6992 default: 6993 return UnableToLegalize; 6994 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 6995 // This trivially expands to CTLZ. 6996 Observer.changingInstr(MI); 6997 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 6998 Observer.changedInstr(MI); 6999 return Legalized; 7000 } 7001 case TargetOpcode::G_CTLZ: { 7002 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 7003 unsigned Len = SrcTy.getSizeInBits(); 7004 7005 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 7006 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 7007 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 7008 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 7009 auto ICmp = MIRBuilder.buildICmp( 7010 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 7011 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 7012 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 7013 MI.eraseFromParent(); 7014 return Legalized; 7015 } 7016 // for now, we do this: 7017 // NewLen = NextPowerOf2(Len); 7018 // x = x | (x >> 1); 7019 // x = x | (x >> 2); 7020 // ... 7021 // x = x | (x >>16); 7022 // x = x | (x >>32); // for 64-bit input 7023 // Upto NewLen/2 7024 // return Len - popcount(x); 7025 // 7026 // Ref: "Hacker's Delight" by Henry Warren 7027 Register Op = SrcReg; 7028 unsigned NewLen = PowerOf2Ceil(Len); 7029 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 7030 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 7031 auto MIBOp = MIRBuilder.buildOr( 7032 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 7033 Op = MIBOp.getReg(0); 7034 } 7035 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 7036 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 7037 MIBPop); 7038 MI.eraseFromParent(); 7039 return Legalized; 7040 } 7041 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 7042 // This trivially expands to CTTZ. 7043 Observer.changingInstr(MI); 7044 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 7045 Observer.changedInstr(MI); 7046 return Legalized; 7047 } 7048 case TargetOpcode::G_CTTZ: { 7049 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 7050 7051 unsigned Len = SrcTy.getSizeInBits(); 7052 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 7053 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 7054 // zero. 7055 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 7056 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 7057 auto ICmp = MIRBuilder.buildICmp( 7058 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 7059 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 7060 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 7061 MI.eraseFromParent(); 7062 return Legalized; 7063 } 7064 // for now, we use: { return popcount(~x & (x - 1)); } 7065 // unless the target has ctlz but not ctpop, in which case we use: 7066 // { return 32 - nlz(~x & (x-1)); } 7067 // Ref: "Hacker's Delight" by Henry Warren 7068 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 7069 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 7070 auto MIBTmp = MIRBuilder.buildAnd( 7071 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 7072 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 7073 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 7074 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 7075 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 7076 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 7077 MI.eraseFromParent(); 7078 return Legalized; 7079 } 7080 Observer.changingInstr(MI); 7081 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 7082 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 7083 Observer.changedInstr(MI); 7084 return Legalized; 7085 } 7086 case TargetOpcode::G_CTPOP: { 7087 Register SrcReg = MI.getOperand(1).getReg(); 7088 LLT Ty = MRI.getType(SrcReg); 7089 unsigned Size = Ty.getSizeInBits(); 7090 MachineIRBuilder &B = MIRBuilder; 7091 7092 // Count set bits in blocks of 2 bits. Default approach would be 7093 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 7094 // We use following formula instead: 7095 // B2Count = val - { (val >> 1) & 0x55555555 } 7096 // since it gives same result in blocks of 2 with one instruction less. 7097 auto C_1 = B.buildConstant(Ty, 1); 7098 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 7099 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 7100 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 7101 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 7102 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 7103 7104 // In order to get count in blocks of 4 add values from adjacent block of 2. 7105 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 7106 auto C_2 = B.buildConstant(Ty, 2); 7107 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 7108 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 7109 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 7110 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 7111 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 7112 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 7113 7114 // For count in blocks of 8 bits we don't have to mask high 4 bits before 7115 // addition since count value sits in range {0,...,8} and 4 bits are enough 7116 // to hold such binary values. After addition high 4 bits still hold count 7117 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 7118 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 7119 auto C_4 = B.buildConstant(Ty, 4); 7120 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 7121 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 7122 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 7123 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 7124 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 7125 7126 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 7127 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 7128 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 7129 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 7130 7131 // Shift count result from 8 high bits to low bits. 7132 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 7133 7134 auto IsMulSupported = [this](const LLT Ty) { 7135 auto Action = LI.getAction({TargetOpcode::G_MUL, {Ty}}).Action; 7136 return Action == Legal || Action == WidenScalar || Action == Custom; 7137 }; 7138 if (IsMulSupported(Ty)) { 7139 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 7140 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 7141 } else { 7142 auto ResTmp = B8Count; 7143 for (unsigned Shift = 8; Shift < Size; Shift *= 2) { 7144 auto ShiftC = B.buildConstant(Ty, Shift); 7145 auto Shl = B.buildShl(Ty, ResTmp, ShiftC); 7146 ResTmp = B.buildAdd(Ty, ResTmp, Shl); 7147 } 7148 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 7149 } 7150 MI.eraseFromParent(); 7151 return Legalized; 7152 } 7153 } 7154 } 7155 7156 // Check that (every element of) Reg is undef or not an exact multiple of BW. 7157 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 7158 Register Reg, unsigned BW) { 7159 return matchUnaryPredicate( 7160 MRI, Reg, 7161 [=](const Constant *C) { 7162 // Null constant here means an undef. 7163 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 7164 return !CI || CI->getValue().urem(BW) != 0; 7165 }, 7166 /*AllowUndefs*/ true); 7167 } 7168 7169 LegalizerHelper::LegalizeResult 7170 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 7171 auto [Dst, X, Y, Z] = MI.getFirst4Regs(); 7172 LLT Ty = MRI.getType(Dst); 7173 LLT ShTy = MRI.getType(Z); 7174 7175 unsigned BW = Ty.getScalarSizeInBits(); 7176 7177 if (!isPowerOf2_32(BW)) 7178 return UnableToLegalize; 7179 7180 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 7181 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 7182 7183 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 7184 // fshl X, Y, Z -> fshr X, Y, -Z 7185 // fshr X, Y, Z -> fshl X, Y, -Z 7186 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 7187 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 7188 } else { 7189 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 7190 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 7191 auto One = MIRBuilder.buildConstant(ShTy, 1); 7192 if (IsFSHL) { 7193 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 7194 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 7195 } else { 7196 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 7197 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 7198 } 7199 7200 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 7201 } 7202 7203 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 7204 MI.eraseFromParent(); 7205 return Legalized; 7206 } 7207 7208 LegalizerHelper::LegalizeResult 7209 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 7210 auto [Dst, X, Y, Z] = MI.getFirst4Regs(); 7211 LLT Ty = MRI.getType(Dst); 7212 LLT ShTy = MRI.getType(Z); 7213 7214 const unsigned BW = Ty.getScalarSizeInBits(); 7215 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 7216 7217 Register ShX, ShY; 7218 Register ShAmt, InvShAmt; 7219 7220 // FIXME: Emit optimized urem by constant instead of letting it expand later. 7221 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 7222 // fshl: X << C | Y >> (BW - C) 7223 // fshr: X << (BW - C) | Y >> C 7224 // where C = Z % BW is not zero 7225 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 7226 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 7227 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 7228 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 7229 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 7230 } else { 7231 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7232 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7233 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 7234 if (isPowerOf2_32(BW)) { 7235 // Z % BW -> Z & (BW - 1) 7236 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 7237 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7238 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 7239 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 7240 } else { 7241 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 7242 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 7243 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 7244 } 7245 7246 auto One = MIRBuilder.buildConstant(ShTy, 1); 7247 if (IsFSHL) { 7248 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 7249 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 7250 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 7251 } else { 7252 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 7253 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 7254 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 7255 } 7256 } 7257 7258 MIRBuilder.buildOr(Dst, ShX, ShY); 7259 MI.eraseFromParent(); 7260 return Legalized; 7261 } 7262 7263 LegalizerHelper::LegalizeResult 7264 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 7265 // These operations approximately do the following (while avoiding undefined 7266 // shifts by BW): 7267 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 7268 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 7269 Register Dst = MI.getOperand(0).getReg(); 7270 LLT Ty = MRI.getType(Dst); 7271 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 7272 7273 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 7274 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 7275 7276 // TODO: Use smarter heuristic that accounts for vector legalization. 7277 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 7278 return lowerFunnelShiftAsShifts(MI); 7279 7280 // This only works for powers of 2, fallback to shifts if it fails. 7281 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 7282 if (Result == UnableToLegalize) 7283 return lowerFunnelShiftAsShifts(MI); 7284 return Result; 7285 } 7286 7287 LegalizerHelper::LegalizeResult LegalizerHelper::lowerEXT(MachineInstr &MI) { 7288 auto [Dst, Src] = MI.getFirst2Regs(); 7289 LLT DstTy = MRI.getType(Dst); 7290 LLT SrcTy = MRI.getType(Src); 7291 7292 uint32_t DstTySize = DstTy.getSizeInBits(); 7293 uint32_t DstTyScalarSize = DstTy.getScalarSizeInBits(); 7294 uint32_t SrcTyScalarSize = SrcTy.getScalarSizeInBits(); 7295 7296 if (!isPowerOf2_32(DstTySize) || !isPowerOf2_32(DstTyScalarSize) || 7297 !isPowerOf2_32(SrcTyScalarSize)) 7298 return UnableToLegalize; 7299 7300 // The step between extend is too large, split it by creating an intermediate 7301 // extend instruction 7302 if (SrcTyScalarSize * 2 < DstTyScalarSize) { 7303 LLT MidTy = SrcTy.changeElementSize(SrcTyScalarSize * 2); 7304 // If the destination type is illegal, split it into multiple statements 7305 // zext x -> zext(merge(zext(unmerge), zext(unmerge))) 7306 auto NewExt = MIRBuilder.buildInstr(MI.getOpcode(), {MidTy}, {Src}); 7307 // Unmerge the vector 7308 LLT EltTy = MidTy.changeElementCount( 7309 MidTy.getElementCount().divideCoefficientBy(2)); 7310 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, NewExt); 7311 7312 // ZExt the vectors 7313 LLT ZExtResTy = DstTy.changeElementCount( 7314 DstTy.getElementCount().divideCoefficientBy(2)); 7315 auto ZExtRes1 = MIRBuilder.buildInstr(MI.getOpcode(), {ZExtResTy}, 7316 {UnmergeSrc.getReg(0)}); 7317 auto ZExtRes2 = MIRBuilder.buildInstr(MI.getOpcode(), {ZExtResTy}, 7318 {UnmergeSrc.getReg(1)}); 7319 7320 // Merge the ending vectors 7321 MIRBuilder.buildMergeLikeInstr(Dst, {ZExtRes1, ZExtRes2}); 7322 7323 MI.eraseFromParent(); 7324 return Legalized; 7325 } 7326 return UnableToLegalize; 7327 } 7328 7329 LegalizerHelper::LegalizeResult LegalizerHelper::lowerTRUNC(MachineInstr &MI) { 7330 // MachineIRBuilder &MIRBuilder = Helper.MIRBuilder; 7331 MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); 7332 // Similar to how operand splitting is done in SelectiondDAG, we can handle 7333 // %res(v8s8) = G_TRUNC %in(v8s32) by generating: 7334 // %inlo(<4x s32>), %inhi(<4 x s32>) = G_UNMERGE %in(<8 x s32>) 7335 // %lo16(<4 x s16>) = G_TRUNC %inlo 7336 // %hi16(<4 x s16>) = G_TRUNC %inhi 7337 // %in16(<8 x s16>) = G_CONCAT_VECTORS %lo16, %hi16 7338 // %res(<8 x s8>) = G_TRUNC %in16 7339 7340 assert(MI.getOpcode() == TargetOpcode::G_TRUNC); 7341 7342 Register DstReg = MI.getOperand(0).getReg(); 7343 Register SrcReg = MI.getOperand(1).getReg(); 7344 LLT DstTy = MRI.getType(DstReg); 7345 LLT SrcTy = MRI.getType(SrcReg); 7346 7347 if (DstTy.isVector() && isPowerOf2_32(DstTy.getNumElements()) && 7348 isPowerOf2_32(DstTy.getScalarSizeInBits()) && 7349 isPowerOf2_32(SrcTy.getNumElements()) && 7350 isPowerOf2_32(SrcTy.getScalarSizeInBits())) { 7351 // Split input type. 7352 LLT SplitSrcTy = SrcTy.changeElementCount( 7353 SrcTy.getElementCount().divideCoefficientBy(2)); 7354 7355 // First, split the source into two smaller vectors. 7356 SmallVector<Register, 2> SplitSrcs; 7357 extractParts(SrcReg, SplitSrcTy, 2, SplitSrcs, MIRBuilder, MRI); 7358 7359 // Truncate the splits into intermediate narrower elements. 7360 LLT InterTy; 7361 if (DstTy.getScalarSizeInBits() * 2 < SrcTy.getScalarSizeInBits()) 7362 InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2); 7363 else 7364 InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits()); 7365 for (unsigned I = 0; I < SplitSrcs.size(); ++I) { 7366 SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0); 7367 } 7368 7369 // Combine the new truncates into one vector 7370 auto Merge = MIRBuilder.buildMergeLikeInstr( 7371 DstTy.changeElementSize(InterTy.getScalarSizeInBits()), SplitSrcs); 7372 7373 // Truncate the new vector to the final result type 7374 if (DstTy.getScalarSizeInBits() * 2 < SrcTy.getScalarSizeInBits()) 7375 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), Merge.getReg(0)); 7376 else 7377 MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Merge.getReg(0)); 7378 7379 MI.eraseFromParent(); 7380 7381 return Legalized; 7382 } 7383 return UnableToLegalize; 7384 } 7385 7386 LegalizerHelper::LegalizeResult 7387 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 7388 auto [Dst, DstTy, Src, SrcTy, Amt, AmtTy] = MI.getFirst3RegLLTs(); 7389 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 7390 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 7391 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 7392 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 7393 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 7394 MI.eraseFromParent(); 7395 return Legalized; 7396 } 7397 7398 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 7399 auto [Dst, DstTy, Src, SrcTy, Amt, AmtTy] = MI.getFirst3RegLLTs(); 7400 7401 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 7402 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 7403 7404 MIRBuilder.setInstrAndDebugLoc(MI); 7405 7406 // If a rotate in the other direction is supported, use it. 7407 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 7408 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 7409 isPowerOf2_32(EltSizeInBits)) 7410 return lowerRotateWithReverseRotate(MI); 7411 7412 // If a funnel shift is supported, use it. 7413 unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 7414 unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 7415 bool IsFShLegal = false; 7416 if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) || 7417 LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) { 7418 auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2, 7419 Register R3) { 7420 MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3}); 7421 MI.eraseFromParent(); 7422 return Legalized; 7423 }; 7424 // If a funnel shift in the other direction is supported, use it. 7425 if (IsFShLegal) { 7426 return buildFunnelShift(FShOpc, Dst, Src, Amt); 7427 } else if (isPowerOf2_32(EltSizeInBits)) { 7428 Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0); 7429 return buildFunnelShift(RevFsh, Dst, Src, Amt); 7430 } 7431 } 7432 7433 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 7434 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 7435 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 7436 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 7437 Register ShVal; 7438 Register RevShiftVal; 7439 if (isPowerOf2_32(EltSizeInBits)) { 7440 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 7441 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 7442 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 7443 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 7444 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 7445 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 7446 RevShiftVal = 7447 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 7448 } else { 7449 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 7450 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 7451 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 7452 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 7453 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 7454 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 7455 auto One = MIRBuilder.buildConstant(AmtTy, 1); 7456 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 7457 RevShiftVal = 7458 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 7459 } 7460 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 7461 MI.eraseFromParent(); 7462 return Legalized; 7463 } 7464 7465 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 7466 // representation. 7467 LegalizerHelper::LegalizeResult 7468 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 7469 auto [Dst, Src] = MI.getFirst2Regs(); 7470 const LLT S64 = LLT::scalar(64); 7471 const LLT S32 = LLT::scalar(32); 7472 const LLT S1 = LLT::scalar(1); 7473 7474 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 7475 7476 // unsigned cul2f(ulong u) { 7477 // uint lz = clz(u); 7478 // uint e = (u != 0) ? 127U + 63U - lz : 0; 7479 // u = (u << lz) & 0x7fffffffffffffffUL; 7480 // ulong t = u & 0xffffffffffUL; 7481 // uint v = (e << 23) | (uint)(u >> 40); 7482 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 7483 // return as_float(v + r); 7484 // } 7485 7486 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 7487 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 7488 7489 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 7490 7491 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 7492 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 7493 7494 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 7495 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 7496 7497 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 7498 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 7499 7500 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 7501 7502 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 7503 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 7504 7505 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 7506 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 7507 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 7508 7509 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 7510 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 7511 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 7512 auto One = MIRBuilder.buildConstant(S32, 1); 7513 7514 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 7515 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 7516 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 7517 MIRBuilder.buildAdd(Dst, V, R); 7518 7519 MI.eraseFromParent(); 7520 return Legalized; 7521 } 7522 7523 // Expand s32 = G_UITOFP s64 to an IEEE float representation using bit 7524 // operations and G_SITOFP 7525 LegalizerHelper::LegalizeResult 7526 LegalizerHelper::lowerU64ToF32WithSITOFP(MachineInstr &MI) { 7527 auto [Dst, Src] = MI.getFirst2Regs(); 7528 const LLT S64 = LLT::scalar(64); 7529 const LLT S32 = LLT::scalar(32); 7530 const LLT S1 = LLT::scalar(1); 7531 7532 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 7533 7534 // For i64 < INT_MAX we simply reuse SITOFP. 7535 // Otherwise, divide i64 by 2, round result by ORing with the lowest bit 7536 // saved before division, convert to float by SITOFP, multiply the result 7537 // by 2. 7538 auto One = MIRBuilder.buildConstant(S64, 1); 7539 auto Zero = MIRBuilder.buildConstant(S64, 0); 7540 // Result if Src < INT_MAX 7541 auto SmallResult = MIRBuilder.buildSITOFP(S32, Src); 7542 // Result if Src >= INT_MAX 7543 auto Halved = MIRBuilder.buildLShr(S64, Src, One); 7544 auto LowerBit = MIRBuilder.buildAnd(S64, Src, One); 7545 auto RoundedHalved = MIRBuilder.buildOr(S64, Halved, LowerBit); 7546 auto HalvedFP = MIRBuilder.buildSITOFP(S32, RoundedHalved); 7547 auto LargeResult = MIRBuilder.buildFAdd(S32, HalvedFP, HalvedFP); 7548 // Check if the original value is larger than INT_MAX by comparing with 7549 // zero to pick one of the two conversions. 7550 auto IsLarge = 7551 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_SLT, S1, Src, Zero); 7552 MIRBuilder.buildSelect(Dst, IsLarge, LargeResult, SmallResult); 7553 7554 MI.eraseFromParent(); 7555 return Legalized; 7556 } 7557 7558 // Expand s64 = G_UITOFP s64 using bit and float arithmetic operations to an 7559 // IEEE double representation. 7560 LegalizerHelper::LegalizeResult 7561 LegalizerHelper::lowerU64ToF64BitFloatOps(MachineInstr &MI) { 7562 auto [Dst, Src] = MI.getFirst2Regs(); 7563 const LLT S64 = LLT::scalar(64); 7564 const LLT S32 = LLT::scalar(32); 7565 7566 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64); 7567 7568 // We create double value from 32 bit parts with 32 exponent difference. 7569 // Note that + and - are float operations that adjust the implicit leading 7570 // one, the bases 2^52 and 2^84 are for illustrative purposes. 7571 // 7572 // X = 2^52 * 1.0...LowBits 7573 // Y = 2^84 * 1.0...HighBits 7574 // Scratch = 2^84 * 1.0...HighBits - 2^84 * 1.0 - 2^52 * 1.0 7575 // = - 2^52 * 1.0...HighBits 7576 // Result = - 2^52 * 1.0...HighBits + 2^52 * 1.0...LowBits 7577 auto TwoP52 = MIRBuilder.buildConstant(S64, UINT64_C(0x4330000000000000)); 7578 auto TwoP84 = MIRBuilder.buildConstant(S64, UINT64_C(0x4530000000000000)); 7579 auto TwoP52P84 = llvm::bit_cast<double>(UINT64_C(0x4530000000100000)); 7580 auto TwoP52P84FP = MIRBuilder.buildFConstant(S64, TwoP52P84); 7581 auto HalfWidth = MIRBuilder.buildConstant(S64, 32); 7582 7583 auto LowBits = MIRBuilder.buildTrunc(S32, Src); 7584 LowBits = MIRBuilder.buildZExt(S64, LowBits); 7585 auto LowBitsFP = MIRBuilder.buildOr(S64, TwoP52, LowBits); 7586 auto HighBits = MIRBuilder.buildLShr(S64, Src, HalfWidth); 7587 auto HighBitsFP = MIRBuilder.buildOr(S64, TwoP84, HighBits); 7588 auto Scratch = MIRBuilder.buildFSub(S64, HighBitsFP, TwoP52P84FP); 7589 MIRBuilder.buildFAdd(Dst, Scratch, LowBitsFP); 7590 7591 MI.eraseFromParent(); 7592 return Legalized; 7593 } 7594 7595 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 7596 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 7597 7598 if (SrcTy == LLT::scalar(1)) { 7599 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 7600 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 7601 MIRBuilder.buildSelect(Dst, Src, True, False); 7602 MI.eraseFromParent(); 7603 return Legalized; 7604 } 7605 7606 if (SrcTy != LLT::scalar(64)) 7607 return UnableToLegalize; 7608 7609 if (DstTy == LLT::scalar(32)) 7610 // TODO: SelectionDAG has several alternative expansions to port which may 7611 // be more reasonable depending on the available instructions. We also need 7612 // a more advanced mechanism to choose an optimal version depending on 7613 // target features such as sitofp or CTLZ availability. 7614 return lowerU64ToF32WithSITOFP(MI); 7615 7616 if (DstTy == LLT::scalar(64)) 7617 return lowerU64ToF64BitFloatOps(MI); 7618 7619 return UnableToLegalize; 7620 } 7621 7622 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 7623 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 7624 7625 const LLT S64 = LLT::scalar(64); 7626 const LLT S32 = LLT::scalar(32); 7627 const LLT S1 = LLT::scalar(1); 7628 7629 if (SrcTy == S1) { 7630 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 7631 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 7632 MIRBuilder.buildSelect(Dst, Src, True, False); 7633 MI.eraseFromParent(); 7634 return Legalized; 7635 } 7636 7637 if (SrcTy != S64) 7638 return UnableToLegalize; 7639 7640 if (DstTy == S32) { 7641 // signed cl2f(long l) { 7642 // long s = l >> 63; 7643 // float r = cul2f((l + s) ^ s); 7644 // return s ? -r : r; 7645 // } 7646 Register L = Src; 7647 auto SignBit = MIRBuilder.buildConstant(S64, 63); 7648 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 7649 7650 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 7651 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 7652 auto R = MIRBuilder.buildUITOFP(S32, Xor); 7653 7654 auto RNeg = MIRBuilder.buildFNeg(S32, R); 7655 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 7656 MIRBuilder.buildConstant(S64, 0)); 7657 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 7658 MI.eraseFromParent(); 7659 return Legalized; 7660 } 7661 7662 return UnableToLegalize; 7663 } 7664 7665 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 7666 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 7667 const LLT S64 = LLT::scalar(64); 7668 const LLT S32 = LLT::scalar(32); 7669 7670 if (SrcTy != S64 && SrcTy != S32) 7671 return UnableToLegalize; 7672 if (DstTy != S32 && DstTy != S64) 7673 return UnableToLegalize; 7674 7675 // FPTOSI gives same result as FPTOUI for positive signed integers. 7676 // FPTOUI needs to deal with fp values that convert to unsigned integers 7677 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 7678 7679 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 7680 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 7681 : APFloat::IEEEdouble(), 7682 APInt::getZero(SrcTy.getSizeInBits())); 7683 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 7684 7685 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 7686 7687 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 7688 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 7689 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 7690 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 7691 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 7692 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 7693 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 7694 7695 const LLT S1 = LLT::scalar(1); 7696 7697 MachineInstrBuilder FCMP = 7698 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 7699 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 7700 7701 MI.eraseFromParent(); 7702 return Legalized; 7703 } 7704 7705 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 7706 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 7707 const LLT S64 = LLT::scalar(64); 7708 const LLT S32 = LLT::scalar(32); 7709 7710 // FIXME: Only f32 to i64 conversions are supported. 7711 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 7712 return UnableToLegalize; 7713 7714 // Expand f32 -> i64 conversion 7715 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7716 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7717 7718 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 7719 7720 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 7721 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 7722 7723 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 7724 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 7725 7726 auto SignMask = MIRBuilder.buildConstant(SrcTy, 7727 APInt::getSignMask(SrcEltBits)); 7728 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 7729 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 7730 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 7731 Sign = MIRBuilder.buildSExt(DstTy, Sign); 7732 7733 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 7734 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 7735 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 7736 7737 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 7738 R = MIRBuilder.buildZExt(DstTy, R); 7739 7740 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 7741 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 7742 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 7743 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 7744 7745 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 7746 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 7747 7748 const LLT S1 = LLT::scalar(1); 7749 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 7750 S1, Exponent, ExponentLoBit); 7751 7752 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 7753 7754 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 7755 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 7756 7757 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 7758 7759 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 7760 S1, Exponent, ZeroSrcTy); 7761 7762 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 7763 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 7764 7765 MI.eraseFromParent(); 7766 return Legalized; 7767 } 7768 7769 LegalizerHelper::LegalizeResult 7770 LegalizerHelper::lowerFPTOINT_SAT(MachineInstr &MI) { 7771 auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); 7772 7773 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI_SAT; 7774 unsigned SatWidth = DstTy.getScalarSizeInBits(); 7775 7776 // Determine minimum and maximum integer values and their corresponding 7777 // floating-point values. 7778 APInt MinInt, MaxInt; 7779 if (IsSigned) { 7780 MinInt = APInt::getSignedMinValue(SatWidth); 7781 MaxInt = APInt::getSignedMaxValue(SatWidth); 7782 } else { 7783 MinInt = APInt::getMinValue(SatWidth); 7784 MaxInt = APInt::getMaxValue(SatWidth); 7785 } 7786 7787 const fltSemantics &Semantics = getFltSemanticForLLT(SrcTy.getScalarType()); 7788 APFloat MinFloat(Semantics); 7789 APFloat MaxFloat(Semantics); 7790 7791 APFloat::opStatus MinStatus = 7792 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 7793 APFloat::opStatus MaxStatus = 7794 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 7795 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 7796 !(MaxStatus & APFloat::opStatus::opInexact); 7797 7798 // If the integer bounds are exactly representable as floats, emit a 7799 // min+max+fptoi sequence. Otherwise we have to use a sequence of comparisons 7800 // and selects. 7801 if (AreExactFloatBounds) { 7802 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 7803 auto MaxC = MIRBuilder.buildFConstant(SrcTy, MinFloat); 7804 auto MaxP = MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, 7805 SrcTy.changeElementSize(1), Src, MaxC); 7806 auto Max = MIRBuilder.buildSelect(SrcTy, MaxP, Src, MaxC); 7807 // Clamp by MaxFloat from above. NaN cannot occur. 7808 auto MinC = MIRBuilder.buildFConstant(SrcTy, MaxFloat); 7809 auto MinP = 7810 MIRBuilder.buildFCmp(CmpInst::FCMP_OGT, SrcTy.changeElementSize(1), Max, 7811 MinC, MachineInstr::FmNoNans); 7812 auto Min = 7813 MIRBuilder.buildSelect(SrcTy, MinP, Max, MinC, MachineInstr::FmNoNans); 7814 // Convert clamped value to integer. In the unsigned case we're done, 7815 // because we mapped NaN to MinFloat, which will cast to zero. 7816 if (!IsSigned) { 7817 MIRBuilder.buildFPTOUI(Dst, Min); 7818 MI.eraseFromParent(); 7819 return Legalized; 7820 } 7821 7822 // Otherwise, select 0 if Src is NaN. 7823 auto FpToInt = MIRBuilder.buildFPTOSI(DstTy, Min); 7824 auto IsZero = MIRBuilder.buildFCmp(CmpInst::FCMP_UNO, 7825 DstTy.changeElementSize(1), Src, Src); 7826 MIRBuilder.buildSelect(Dst, IsZero, MIRBuilder.buildConstant(DstTy, 0), 7827 FpToInt); 7828 MI.eraseFromParent(); 7829 return Legalized; 7830 } 7831 7832 // Result of direct conversion. The assumption here is that the operation is 7833 // non-trapping and it's fine to apply it to an out-of-range value if we 7834 // select it away later. 7835 auto FpToInt = IsSigned ? MIRBuilder.buildFPTOSI(DstTy, Src) 7836 : MIRBuilder.buildFPTOUI(DstTy, Src); 7837 7838 // If Src ULT MinFloat, select MinInt. In particular, this also selects 7839 // MinInt if Src is NaN. 7840 auto ULT = 7841 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, SrcTy.changeElementSize(1), Src, 7842 MIRBuilder.buildFConstant(SrcTy, MinFloat)); 7843 auto Max = MIRBuilder.buildSelect( 7844 DstTy, ULT, MIRBuilder.buildConstant(DstTy, MinInt), FpToInt); 7845 // If Src OGT MaxFloat, select MaxInt. 7846 auto OGT = 7847 MIRBuilder.buildFCmp(CmpInst::FCMP_OGT, SrcTy.changeElementSize(1), Src, 7848 MIRBuilder.buildFConstant(SrcTy, MaxFloat)); 7849 7850 // In the unsigned case we are done, because we mapped NaN to MinInt, which 7851 // is already zero. 7852 if (!IsSigned) { 7853 MIRBuilder.buildSelect(Dst, OGT, MIRBuilder.buildConstant(DstTy, MaxInt), 7854 Max); 7855 MI.eraseFromParent(); 7856 return Legalized; 7857 } 7858 7859 // Otherwise, select 0 if Src is NaN. 7860 auto Min = MIRBuilder.buildSelect( 7861 DstTy, OGT, MIRBuilder.buildConstant(DstTy, MaxInt), Max); 7862 auto IsZero = MIRBuilder.buildFCmp(CmpInst::FCMP_UNO, 7863 DstTy.changeElementSize(1), Src, Src); 7864 MIRBuilder.buildSelect(Dst, IsZero, MIRBuilder.buildConstant(DstTy, 0), Min); 7865 MI.eraseFromParent(); 7866 return Legalized; 7867 } 7868 7869 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 7870 LegalizerHelper::LegalizeResult 7871 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 7872 const LLT S1 = LLT::scalar(1); 7873 const LLT S32 = LLT::scalar(32); 7874 7875 auto [Dst, Src] = MI.getFirst2Regs(); 7876 assert(MRI.getType(Dst).getScalarType() == LLT::scalar(16) && 7877 MRI.getType(Src).getScalarType() == LLT::scalar(64)); 7878 7879 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 7880 return UnableToLegalize; 7881 7882 if (MIRBuilder.getMF().getTarget().Options.UnsafeFPMath) { 7883 unsigned Flags = MI.getFlags(); 7884 auto Src32 = MIRBuilder.buildFPTrunc(S32, Src, Flags); 7885 MIRBuilder.buildFPTrunc(Dst, Src32, Flags); 7886 MI.eraseFromParent(); 7887 return Legalized; 7888 } 7889 7890 const unsigned ExpMask = 0x7ff; 7891 const unsigned ExpBiasf64 = 1023; 7892 const unsigned ExpBiasf16 = 15; 7893 7894 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 7895 Register U = Unmerge.getReg(0); 7896 Register UH = Unmerge.getReg(1); 7897 7898 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 7899 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 7900 7901 // Subtract the fp64 exponent bias (1023) to get the real exponent and 7902 // add the f16 bias (15) to get the biased exponent for the f16 format. 7903 E = MIRBuilder.buildAdd( 7904 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 7905 7906 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 7907 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 7908 7909 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 7910 MIRBuilder.buildConstant(S32, 0x1ff)); 7911 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 7912 7913 auto Zero = MIRBuilder.buildConstant(S32, 0); 7914 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 7915 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 7916 M = MIRBuilder.buildOr(S32, M, Lo40Set); 7917 7918 // (M != 0 ? 0x0200 : 0) | 0x7c00; 7919 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 7920 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 7921 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 7922 7923 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 7924 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 7925 7926 // N = M | (E << 12); 7927 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 7928 auto N = MIRBuilder.buildOr(S32, M, EShl12); 7929 7930 // B = clamp(1-E, 0, 13); 7931 auto One = MIRBuilder.buildConstant(S32, 1); 7932 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 7933 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 7934 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 7935 7936 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 7937 MIRBuilder.buildConstant(S32, 0x1000)); 7938 7939 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 7940 auto D0 = MIRBuilder.buildShl(S32, D, B); 7941 7942 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 7943 D0, SigSetHigh); 7944 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 7945 D = MIRBuilder.buildOr(S32, D, D1); 7946 7947 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 7948 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 7949 7950 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 7951 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 7952 7953 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 7954 MIRBuilder.buildConstant(S32, 3)); 7955 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 7956 7957 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 7958 MIRBuilder.buildConstant(S32, 5)); 7959 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 7960 7961 V1 = MIRBuilder.buildOr(S32, V0, V1); 7962 V = MIRBuilder.buildAdd(S32, V, V1); 7963 7964 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 7965 E, MIRBuilder.buildConstant(S32, 30)); 7966 V = MIRBuilder.buildSelect(S32, CmpEGt30, 7967 MIRBuilder.buildConstant(S32, 0x7c00), V); 7968 7969 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 7970 E, MIRBuilder.buildConstant(S32, 1039)); 7971 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 7972 7973 // Extract the sign bit. 7974 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 7975 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 7976 7977 // Insert the sign bit 7978 V = MIRBuilder.buildOr(S32, Sign, V); 7979 7980 MIRBuilder.buildTrunc(Dst, V); 7981 MI.eraseFromParent(); 7982 return Legalized; 7983 } 7984 7985 LegalizerHelper::LegalizeResult 7986 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 7987 auto [DstTy, SrcTy] = MI.getFirst2LLTs(); 7988 const LLT S64 = LLT::scalar(64); 7989 const LLT S16 = LLT::scalar(16); 7990 7991 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 7992 return lowerFPTRUNC_F64_TO_F16(MI); 7993 7994 return UnableToLegalize; 7995 } 7996 7997 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 7998 auto [Dst, Src0, Src1] = MI.getFirst3Regs(); 7999 LLT Ty = MRI.getType(Dst); 8000 8001 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 8002 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 8003 MI.eraseFromParent(); 8004 return Legalized; 8005 } 8006 8007 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 8008 switch (Opc) { 8009 case TargetOpcode::G_SMIN: 8010 return CmpInst::ICMP_SLT; 8011 case TargetOpcode::G_SMAX: 8012 return CmpInst::ICMP_SGT; 8013 case TargetOpcode::G_UMIN: 8014 return CmpInst::ICMP_ULT; 8015 case TargetOpcode::G_UMAX: 8016 return CmpInst::ICMP_UGT; 8017 default: 8018 llvm_unreachable("not in integer min/max"); 8019 } 8020 } 8021 8022 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 8023 auto [Dst, Src0, Src1] = MI.getFirst3Regs(); 8024 8025 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 8026 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 8027 8028 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 8029 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 8030 8031 MI.eraseFromParent(); 8032 return Legalized; 8033 } 8034 8035 LegalizerHelper::LegalizeResult 8036 LegalizerHelper::lowerThreewayCompare(MachineInstr &MI) { 8037 GSUCmp *Cmp = cast<GSUCmp>(&MI); 8038 8039 Register Dst = Cmp->getReg(0); 8040 LLT DstTy = MRI.getType(Dst); 8041 LLT SrcTy = MRI.getType(Cmp->getReg(1)); 8042 LLT CmpTy = DstTy.changeElementSize(1); 8043 8044 CmpInst::Predicate LTPredicate = Cmp->isSigned() 8045 ? CmpInst::Predicate::ICMP_SLT 8046 : CmpInst::Predicate::ICMP_ULT; 8047 CmpInst::Predicate GTPredicate = Cmp->isSigned() 8048 ? CmpInst::Predicate::ICMP_SGT 8049 : CmpInst::Predicate::ICMP_UGT; 8050 8051 auto Zero = MIRBuilder.buildConstant(DstTy, 0); 8052 auto IsGT = MIRBuilder.buildICmp(GTPredicate, CmpTy, Cmp->getLHSReg(), 8053 Cmp->getRHSReg()); 8054 auto IsLT = MIRBuilder.buildICmp(LTPredicate, CmpTy, Cmp->getLHSReg(), 8055 Cmp->getRHSReg()); 8056 8057 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 8058 auto BC = TLI.getBooleanContents(DstTy.isVector(), /*isFP=*/false); 8059 if (TLI.shouldExpandCmpUsingSelects(getApproximateEVTForLLT(SrcTy, Ctx)) || 8060 BC == TargetLowering::UndefinedBooleanContent) { 8061 auto One = MIRBuilder.buildConstant(DstTy, 1); 8062 auto SelectZeroOrOne = MIRBuilder.buildSelect(DstTy, IsGT, One, Zero); 8063 8064 auto MinusOne = MIRBuilder.buildConstant(DstTy, -1); 8065 MIRBuilder.buildSelect(Dst, IsLT, MinusOne, SelectZeroOrOne); 8066 } else { 8067 if (BC == TargetLowering::ZeroOrNegativeOneBooleanContent) 8068 std::swap(IsGT, IsLT); 8069 // Extend boolean results to DstTy, which is at least i2, before subtracting 8070 // them. 8071 unsigned BoolExtOp = 8072 MIRBuilder.getBoolExtOp(DstTy.isVector(), /*isFP=*/false); 8073 IsGT = MIRBuilder.buildInstr(BoolExtOp, {DstTy}, {IsGT}); 8074 IsLT = MIRBuilder.buildInstr(BoolExtOp, {DstTy}, {IsLT}); 8075 MIRBuilder.buildSub(Dst, IsGT, IsLT); 8076 } 8077 8078 MI.eraseFromParent(); 8079 return Legalized; 8080 } 8081 8082 LegalizerHelper::LegalizeResult 8083 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 8084 auto [Dst, DstTy, Src0, Src0Ty, Src1, Src1Ty] = MI.getFirst3RegLLTs(); 8085 const int Src0Size = Src0Ty.getScalarSizeInBits(); 8086 const int Src1Size = Src1Ty.getScalarSizeInBits(); 8087 8088 auto SignBitMask = MIRBuilder.buildConstant( 8089 Src0Ty, APInt::getSignMask(Src0Size)); 8090 8091 auto NotSignBitMask = MIRBuilder.buildConstant( 8092 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 8093 8094 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 8095 Register And1; 8096 if (Src0Ty == Src1Ty) { 8097 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 8098 } else if (Src0Size > Src1Size) { 8099 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 8100 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 8101 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 8102 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 8103 } else { 8104 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 8105 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 8106 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 8107 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 8108 } 8109 8110 // Be careful about setting nsz/nnan/ninf on every instruction, since the 8111 // constants are a nan and -0.0, but the final result should preserve 8112 // everything. 8113 unsigned Flags = MI.getFlags(); 8114 8115 // We masked the sign bit and the not-sign bit, so these are disjoint. 8116 Flags |= MachineInstr::Disjoint; 8117 8118 MIRBuilder.buildOr(Dst, And0, And1, Flags); 8119 8120 MI.eraseFromParent(); 8121 return Legalized; 8122 } 8123 8124 LegalizerHelper::LegalizeResult 8125 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 8126 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 8127 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 8128 8129 auto [Dst, Src0, Src1] = MI.getFirst3Regs(); 8130 LLT Ty = MRI.getType(Dst); 8131 8132 if (!MI.getFlag(MachineInstr::FmNoNans)) { 8133 // Insert canonicalizes if it's possible we need to quiet to get correct 8134 // sNaN behavior. 8135 8136 // Note this must be done here, and not as an optimization combine in the 8137 // absence of a dedicate quiet-snan instruction as we're using an 8138 // omni-purpose G_FCANONICALIZE. 8139 if (!isKnownNeverSNaN(Src0, MRI)) 8140 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 8141 8142 if (!isKnownNeverSNaN(Src1, MRI)) 8143 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 8144 } 8145 8146 // If there are no nans, it's safe to simply replace this with the non-IEEE 8147 // version. 8148 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 8149 MI.eraseFromParent(); 8150 return Legalized; 8151 } 8152 8153 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 8154 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 8155 Register DstReg = MI.getOperand(0).getReg(); 8156 LLT Ty = MRI.getType(DstReg); 8157 unsigned Flags = MI.getFlags(); 8158 8159 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 8160 Flags); 8161 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 8162 MI.eraseFromParent(); 8163 return Legalized; 8164 } 8165 8166 LegalizerHelper::LegalizeResult 8167 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 8168 auto [DstReg, X] = MI.getFirst2Regs(); 8169 const unsigned Flags = MI.getFlags(); 8170 const LLT Ty = MRI.getType(DstReg); 8171 const LLT CondTy = Ty.changeElementSize(1); 8172 8173 // round(x) => 8174 // t = trunc(x); 8175 // d = fabs(x - t); 8176 // o = copysign(d >= 0.5 ? 1.0 : 0.0, x); 8177 // return t + o; 8178 8179 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 8180 8181 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 8182 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 8183 8184 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 8185 auto Cmp = 8186 MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, Flags); 8187 8188 // Could emit G_UITOFP instead 8189 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 8190 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 8191 auto BoolFP = MIRBuilder.buildSelect(Ty, Cmp, One, Zero); 8192 auto SignedOffset = MIRBuilder.buildFCopysign(Ty, BoolFP, X); 8193 8194 MIRBuilder.buildFAdd(DstReg, T, SignedOffset, Flags); 8195 8196 MI.eraseFromParent(); 8197 return Legalized; 8198 } 8199 8200 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFFloor(MachineInstr &MI) { 8201 auto [DstReg, SrcReg] = MI.getFirst2Regs(); 8202 unsigned Flags = MI.getFlags(); 8203 LLT Ty = MRI.getType(DstReg); 8204 const LLT CondTy = Ty.changeElementSize(1); 8205 8206 // result = trunc(src); 8207 // if (src < 0.0 && src != result) 8208 // result += -1.0. 8209 8210 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 8211 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 8212 8213 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 8214 SrcReg, Zero, Flags); 8215 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 8216 SrcReg, Trunc, Flags); 8217 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 8218 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 8219 8220 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 8221 MI.eraseFromParent(); 8222 return Legalized; 8223 } 8224 8225 LegalizerHelper::LegalizeResult 8226 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 8227 const unsigned NumOps = MI.getNumOperands(); 8228 auto [DstReg, DstTy, Src0Reg, Src0Ty] = MI.getFirst2RegLLTs(); 8229 unsigned PartSize = Src0Ty.getSizeInBits(); 8230 8231 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 8232 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 8233 8234 for (unsigned I = 2; I != NumOps; ++I) { 8235 const unsigned Offset = (I - 1) * PartSize; 8236 8237 Register SrcReg = MI.getOperand(I).getReg(); 8238 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 8239 8240 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 8241 MRI.createGenericVirtualRegister(WideTy); 8242 8243 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 8244 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 8245 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 8246 ResultReg = NextResult; 8247 } 8248 8249 if (DstTy.isPointer()) { 8250 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 8251 DstTy.getAddressSpace())) { 8252 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 8253 return UnableToLegalize; 8254 } 8255 8256 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 8257 } 8258 8259 MI.eraseFromParent(); 8260 return Legalized; 8261 } 8262 8263 LegalizerHelper::LegalizeResult 8264 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 8265 const unsigned NumDst = MI.getNumOperands() - 1; 8266 Register SrcReg = MI.getOperand(NumDst).getReg(); 8267 Register Dst0Reg = MI.getOperand(0).getReg(); 8268 LLT DstTy = MRI.getType(Dst0Reg); 8269 if (DstTy.isPointer()) 8270 return UnableToLegalize; // TODO 8271 8272 SrcReg = coerceToScalar(SrcReg); 8273 if (!SrcReg) 8274 return UnableToLegalize; 8275 8276 // Expand scalarizing unmerge as bitcast to integer and shift. 8277 LLT IntTy = MRI.getType(SrcReg); 8278 8279 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 8280 8281 const unsigned DstSize = DstTy.getSizeInBits(); 8282 unsigned Offset = DstSize; 8283 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 8284 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 8285 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 8286 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 8287 } 8288 8289 MI.eraseFromParent(); 8290 return Legalized; 8291 } 8292 8293 /// Lower a vector extract or insert by writing the vector to a stack temporary 8294 /// and reloading the element or vector. 8295 /// 8296 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 8297 /// => 8298 /// %stack_temp = G_FRAME_INDEX 8299 /// G_STORE %vec, %stack_temp 8300 /// %idx = clamp(%idx, %vec.getNumElements()) 8301 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 8302 /// %dst = G_LOAD %element_ptr 8303 LegalizerHelper::LegalizeResult 8304 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 8305 Register DstReg = MI.getOperand(0).getReg(); 8306 Register SrcVec = MI.getOperand(1).getReg(); 8307 Register InsertVal; 8308 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 8309 InsertVal = MI.getOperand(2).getReg(); 8310 8311 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 8312 8313 LLT VecTy = MRI.getType(SrcVec); 8314 LLT EltTy = VecTy.getElementType(); 8315 unsigned NumElts = VecTy.getNumElements(); 8316 8317 int64_t IdxVal; 8318 if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) { 8319 SmallVector<Register, 8> SrcRegs; 8320 extractParts(SrcVec, EltTy, NumElts, SrcRegs, MIRBuilder, MRI); 8321 8322 if (InsertVal) { 8323 SrcRegs[IdxVal] = MI.getOperand(2).getReg(); 8324 MIRBuilder.buildMergeLikeInstr(DstReg, SrcRegs); 8325 } else { 8326 MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]); 8327 } 8328 8329 MI.eraseFromParent(); 8330 return Legalized; 8331 } 8332 8333 if (!EltTy.isByteSized()) { // Not implemented. 8334 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 8335 return UnableToLegalize; 8336 } 8337 8338 unsigned EltBytes = EltTy.getSizeInBytes(); 8339 Align VecAlign = getStackTemporaryAlignment(VecTy); 8340 Align EltAlign; 8341 8342 MachinePointerInfo PtrInfo; 8343 auto StackTemp = createStackTemporary( 8344 TypeSize::getFixed(VecTy.getSizeInBytes()), VecAlign, PtrInfo); 8345 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 8346 8347 // Get the pointer to the element, and be sure not to hit undefined behavior 8348 // if the index is out of bounds. 8349 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 8350 8351 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 8352 int64_t Offset = IdxVal * EltBytes; 8353 PtrInfo = PtrInfo.getWithOffset(Offset); 8354 EltAlign = commonAlignment(VecAlign, Offset); 8355 } else { 8356 // We lose information with a variable offset. 8357 EltAlign = getStackTemporaryAlignment(EltTy); 8358 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 8359 } 8360 8361 if (InsertVal) { 8362 // Write the inserted element 8363 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 8364 8365 // Reload the whole vector. 8366 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 8367 } else { 8368 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 8369 } 8370 8371 MI.eraseFromParent(); 8372 return Legalized; 8373 } 8374 8375 LegalizerHelper::LegalizeResult 8376 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 8377 auto [DstReg, DstTy, Src0Reg, Src0Ty, Src1Reg, Src1Ty] = 8378 MI.getFirst3RegLLTs(); 8379 LLT IdxTy = LLT::scalar(32); 8380 8381 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 8382 Register Undef; 8383 SmallVector<Register, 32> BuildVec; 8384 LLT EltTy = DstTy.getScalarType(); 8385 8386 for (int Idx : Mask) { 8387 if (Idx < 0) { 8388 if (!Undef.isValid()) 8389 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 8390 BuildVec.push_back(Undef); 8391 continue; 8392 } 8393 8394 if (Src0Ty.isScalar()) { 8395 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 8396 } else { 8397 int NumElts = Src0Ty.getNumElements(); 8398 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 8399 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 8400 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 8401 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 8402 BuildVec.push_back(Extract.getReg(0)); 8403 } 8404 } 8405 8406 if (DstTy.isScalar()) 8407 MIRBuilder.buildCopy(DstReg, BuildVec[0]); 8408 else 8409 MIRBuilder.buildBuildVector(DstReg, BuildVec); 8410 MI.eraseFromParent(); 8411 return Legalized; 8412 } 8413 8414 LegalizerHelper::LegalizeResult 8415 LegalizerHelper::lowerVECTOR_COMPRESS(llvm::MachineInstr &MI) { 8416 auto [Dst, DstTy, Vec, VecTy, Mask, MaskTy, Passthru, PassthruTy] = 8417 MI.getFirst4RegLLTs(); 8418 8419 if (VecTy.isScalableVector()) 8420 report_fatal_error("Cannot expand masked_compress for scalable vectors."); 8421 8422 Align VecAlign = getStackTemporaryAlignment(VecTy); 8423 MachinePointerInfo PtrInfo; 8424 Register StackPtr = 8425 createStackTemporary(TypeSize::getFixed(VecTy.getSizeInBytes()), VecAlign, 8426 PtrInfo) 8427 .getReg(0); 8428 MachinePointerInfo ValPtrInfo = 8429 MachinePointerInfo::getUnknownStack(*MI.getMF()); 8430 8431 LLT IdxTy = LLT::scalar(32); 8432 LLT ValTy = VecTy.getElementType(); 8433 Align ValAlign = getStackTemporaryAlignment(ValTy); 8434 8435 auto OutPos = MIRBuilder.buildConstant(IdxTy, 0); 8436 8437 bool HasPassthru = 8438 MRI.getVRegDef(Passthru)->getOpcode() != TargetOpcode::G_IMPLICIT_DEF; 8439 8440 if (HasPassthru) 8441 MIRBuilder.buildStore(Passthru, StackPtr, PtrInfo, VecAlign); 8442 8443 Register LastWriteVal; 8444 std::optional<APInt> PassthruSplatVal = 8445 isConstantOrConstantSplatVector(*MRI.getVRegDef(Passthru), MRI); 8446 8447 if (PassthruSplatVal.has_value()) { 8448 LastWriteVal = 8449 MIRBuilder.buildConstant(ValTy, PassthruSplatVal.value()).getReg(0); 8450 } else if (HasPassthru) { 8451 auto Popcount = MIRBuilder.buildZExt(MaskTy.changeElementSize(32), Mask); 8452 Popcount = MIRBuilder.buildInstr(TargetOpcode::G_VECREDUCE_ADD, 8453 {LLT::scalar(32)}, {Popcount}); 8454 8455 Register LastElmtPtr = 8456 getVectorElementPointer(StackPtr, VecTy, Popcount.getReg(0)); 8457 LastWriteVal = 8458 MIRBuilder.buildLoad(ValTy, LastElmtPtr, ValPtrInfo, ValAlign) 8459 .getReg(0); 8460 } 8461 8462 unsigned NumElmts = VecTy.getNumElements(); 8463 for (unsigned I = 0; I < NumElmts; ++I) { 8464 auto Idx = MIRBuilder.buildConstant(IdxTy, I); 8465 auto Val = MIRBuilder.buildExtractVectorElement(ValTy, Vec, Idx); 8466 Register ElmtPtr = 8467 getVectorElementPointer(StackPtr, VecTy, OutPos.getReg(0)); 8468 MIRBuilder.buildStore(Val, ElmtPtr, ValPtrInfo, ValAlign); 8469 8470 LLT MaskITy = MaskTy.getElementType(); 8471 auto MaskI = MIRBuilder.buildExtractVectorElement(MaskITy, Mask, Idx); 8472 if (MaskITy.getSizeInBits() > 1) 8473 MaskI = MIRBuilder.buildTrunc(LLT::scalar(1), MaskI); 8474 8475 MaskI = MIRBuilder.buildZExt(IdxTy, MaskI); 8476 OutPos = MIRBuilder.buildAdd(IdxTy, OutPos, MaskI); 8477 8478 if (HasPassthru && I == NumElmts - 1) { 8479 auto EndOfVector = 8480 MIRBuilder.buildConstant(IdxTy, VecTy.getNumElements() - 1); 8481 auto AllLanesSelected = MIRBuilder.buildICmp( 8482 CmpInst::ICMP_UGT, LLT::scalar(1), OutPos, EndOfVector); 8483 OutPos = MIRBuilder.buildInstr(TargetOpcode::G_UMIN, {IdxTy}, 8484 {OutPos, EndOfVector}); 8485 ElmtPtr = getVectorElementPointer(StackPtr, VecTy, OutPos.getReg(0)); 8486 8487 LastWriteVal = 8488 MIRBuilder.buildSelect(ValTy, AllLanesSelected, Val, LastWriteVal) 8489 .getReg(0); 8490 MIRBuilder.buildStore(LastWriteVal, ElmtPtr, ValPtrInfo, ValAlign); 8491 } 8492 } 8493 8494 // TODO: Use StackPtr's FrameIndex alignment. 8495 MIRBuilder.buildLoad(Dst, StackPtr, PtrInfo, VecAlign); 8496 8497 MI.eraseFromParent(); 8498 return Legalized; 8499 } 8500 8501 Register LegalizerHelper::getDynStackAllocTargetPtr(Register SPReg, 8502 Register AllocSize, 8503 Align Alignment, 8504 LLT PtrTy) { 8505 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 8506 8507 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 8508 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 8509 8510 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 8511 // have to generate an extra instruction to negate the alloc and then use 8512 // G_PTR_ADD to add the negative offset. 8513 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 8514 if (Alignment > Align(1)) { 8515 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 8516 AlignMask.negate(); 8517 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 8518 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 8519 } 8520 8521 return MIRBuilder.buildCast(PtrTy, Alloc).getReg(0); 8522 } 8523 8524 LegalizerHelper::LegalizeResult 8525 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 8526 const auto &MF = *MI.getMF(); 8527 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 8528 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 8529 return UnableToLegalize; 8530 8531 Register Dst = MI.getOperand(0).getReg(); 8532 Register AllocSize = MI.getOperand(1).getReg(); 8533 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 8534 8535 LLT PtrTy = MRI.getType(Dst); 8536 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 8537 Register SPTmp = 8538 getDynStackAllocTargetPtr(SPReg, AllocSize, Alignment, PtrTy); 8539 8540 MIRBuilder.buildCopy(SPReg, SPTmp); 8541 MIRBuilder.buildCopy(Dst, SPTmp); 8542 8543 MI.eraseFromParent(); 8544 return Legalized; 8545 } 8546 8547 LegalizerHelper::LegalizeResult 8548 LegalizerHelper::lowerStackSave(MachineInstr &MI) { 8549 Register StackPtr = TLI.getStackPointerRegisterToSaveRestore(); 8550 if (!StackPtr) 8551 return UnableToLegalize; 8552 8553 MIRBuilder.buildCopy(MI.getOperand(0), StackPtr); 8554 MI.eraseFromParent(); 8555 return Legalized; 8556 } 8557 8558 LegalizerHelper::LegalizeResult 8559 LegalizerHelper::lowerStackRestore(MachineInstr &MI) { 8560 Register StackPtr = TLI.getStackPointerRegisterToSaveRestore(); 8561 if (!StackPtr) 8562 return UnableToLegalize; 8563 8564 MIRBuilder.buildCopy(StackPtr, MI.getOperand(0)); 8565 MI.eraseFromParent(); 8566 return Legalized; 8567 } 8568 8569 LegalizerHelper::LegalizeResult 8570 LegalizerHelper::lowerExtract(MachineInstr &MI) { 8571 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 8572 unsigned Offset = MI.getOperand(2).getImm(); 8573 8574 // Extract sub-vector or one element 8575 if (SrcTy.isVector()) { 8576 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); 8577 unsigned DstSize = DstTy.getSizeInBits(); 8578 8579 if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) && 8580 (Offset + DstSize <= SrcTy.getSizeInBits())) { 8581 // Unmerge and allow access to each Src element for the artifact combiner. 8582 auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), SrcReg); 8583 8584 // Take element(s) we need to extract and copy it (merge them). 8585 SmallVector<Register, 8> SubVectorElts; 8586 for (unsigned Idx = Offset / SrcEltSize; 8587 Idx < (Offset + DstSize) / SrcEltSize; ++Idx) { 8588 SubVectorElts.push_back(Unmerge.getReg(Idx)); 8589 } 8590 if (SubVectorElts.size() == 1) 8591 MIRBuilder.buildCopy(DstReg, SubVectorElts[0]); 8592 else 8593 MIRBuilder.buildMergeLikeInstr(DstReg, SubVectorElts); 8594 8595 MI.eraseFromParent(); 8596 return Legalized; 8597 } 8598 } 8599 8600 if (DstTy.isScalar() && 8601 (SrcTy.isScalar() || 8602 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 8603 LLT SrcIntTy = SrcTy; 8604 if (!SrcTy.isScalar()) { 8605 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 8606 SrcReg = MIRBuilder.buildBitcast(SrcIntTy, SrcReg).getReg(0); 8607 } 8608 8609 if (Offset == 0) 8610 MIRBuilder.buildTrunc(DstReg, SrcReg); 8611 else { 8612 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 8613 auto Shr = MIRBuilder.buildLShr(SrcIntTy, SrcReg, ShiftAmt); 8614 MIRBuilder.buildTrunc(DstReg, Shr); 8615 } 8616 8617 MI.eraseFromParent(); 8618 return Legalized; 8619 } 8620 8621 return UnableToLegalize; 8622 } 8623 8624 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 8625 auto [Dst, Src, InsertSrc] = MI.getFirst3Regs(); 8626 uint64_t Offset = MI.getOperand(3).getImm(); 8627 8628 LLT DstTy = MRI.getType(Src); 8629 LLT InsertTy = MRI.getType(InsertSrc); 8630 8631 // Insert sub-vector or one element 8632 if (DstTy.isVector() && !InsertTy.isPointer()) { 8633 LLT EltTy = DstTy.getElementType(); 8634 unsigned EltSize = EltTy.getSizeInBits(); 8635 unsigned InsertSize = InsertTy.getSizeInBits(); 8636 8637 if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) && 8638 (Offset + InsertSize <= DstTy.getSizeInBits())) { 8639 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src); 8640 SmallVector<Register, 8> DstElts; 8641 unsigned Idx = 0; 8642 // Elements from Src before insert start Offset 8643 for (; Idx < Offset / EltSize; ++Idx) { 8644 DstElts.push_back(UnmergeSrc.getReg(Idx)); 8645 } 8646 8647 // Replace elements in Src with elements from InsertSrc 8648 if (InsertTy.getSizeInBits() > EltSize) { 8649 auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc); 8650 for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize; 8651 ++Idx, ++i) { 8652 DstElts.push_back(UnmergeInsertSrc.getReg(i)); 8653 } 8654 } else { 8655 DstElts.push_back(InsertSrc); 8656 ++Idx; 8657 } 8658 8659 // Remaining elements from Src after insert 8660 for (; Idx < DstTy.getNumElements(); ++Idx) { 8661 DstElts.push_back(UnmergeSrc.getReg(Idx)); 8662 } 8663 8664 MIRBuilder.buildMergeLikeInstr(Dst, DstElts); 8665 MI.eraseFromParent(); 8666 return Legalized; 8667 } 8668 } 8669 8670 if (InsertTy.isVector() || 8671 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 8672 return UnableToLegalize; 8673 8674 const DataLayout &DL = MIRBuilder.getDataLayout(); 8675 if ((DstTy.isPointer() && 8676 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 8677 (InsertTy.isPointer() && 8678 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 8679 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 8680 return UnableToLegalize; 8681 } 8682 8683 LLT IntDstTy = DstTy; 8684 8685 if (!DstTy.isScalar()) { 8686 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 8687 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 8688 } 8689 8690 if (!InsertTy.isScalar()) { 8691 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 8692 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 8693 } 8694 8695 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 8696 if (Offset != 0) { 8697 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 8698 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 8699 } 8700 8701 APInt MaskVal = APInt::getBitsSetWithWrap( 8702 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 8703 8704 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 8705 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 8706 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 8707 8708 MIRBuilder.buildCast(Dst, Or); 8709 MI.eraseFromParent(); 8710 return Legalized; 8711 } 8712 8713 LegalizerHelper::LegalizeResult 8714 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 8715 auto [Dst0, Dst0Ty, Dst1, Dst1Ty, LHS, LHSTy, RHS, RHSTy] = 8716 MI.getFirst4RegLLTs(); 8717 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 8718 8719 LLT Ty = Dst0Ty; 8720 LLT BoolTy = Dst1Ty; 8721 8722 Register NewDst0 = MRI.cloneVirtualRegister(Dst0); 8723 8724 if (IsAdd) 8725 MIRBuilder.buildAdd(NewDst0, LHS, RHS); 8726 else 8727 MIRBuilder.buildSub(NewDst0, LHS, RHS); 8728 8729 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8730 8731 auto Zero = MIRBuilder.buildConstant(Ty, 0); 8732 8733 // For an addition, the result should be less than one of the operands (LHS) 8734 // if and only if the other operand (RHS) is negative, otherwise there will 8735 // be overflow. 8736 // For a subtraction, the result should be less than one of the operands 8737 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8738 // otherwise there will be overflow. 8739 auto ResultLowerThanLHS = 8740 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, NewDst0, LHS); 8741 auto ConditionRHS = MIRBuilder.buildICmp( 8742 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 8743 8744 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 8745 8746 MIRBuilder.buildCopy(Dst0, NewDst0); 8747 MI.eraseFromParent(); 8748 8749 return Legalized; 8750 } 8751 8752 LegalizerHelper::LegalizeResult 8753 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 8754 auto [Res, LHS, RHS] = MI.getFirst3Regs(); 8755 LLT Ty = MRI.getType(Res); 8756 bool IsSigned; 8757 bool IsAdd; 8758 unsigned BaseOp; 8759 switch (MI.getOpcode()) { 8760 default: 8761 llvm_unreachable("unexpected addsat/subsat opcode"); 8762 case TargetOpcode::G_UADDSAT: 8763 IsSigned = false; 8764 IsAdd = true; 8765 BaseOp = TargetOpcode::G_ADD; 8766 break; 8767 case TargetOpcode::G_SADDSAT: 8768 IsSigned = true; 8769 IsAdd = true; 8770 BaseOp = TargetOpcode::G_ADD; 8771 break; 8772 case TargetOpcode::G_USUBSAT: 8773 IsSigned = false; 8774 IsAdd = false; 8775 BaseOp = TargetOpcode::G_SUB; 8776 break; 8777 case TargetOpcode::G_SSUBSAT: 8778 IsSigned = true; 8779 IsAdd = false; 8780 BaseOp = TargetOpcode::G_SUB; 8781 break; 8782 } 8783 8784 if (IsSigned) { 8785 // sadd.sat(a, b) -> 8786 // hi = 0x7fffffff - smax(a, 0) 8787 // lo = 0x80000000 - smin(a, 0) 8788 // a + smin(smax(lo, b), hi) 8789 // ssub.sat(a, b) -> 8790 // lo = smax(a, -1) - 0x7fffffff 8791 // hi = smin(a, -1) - 0x80000000 8792 // a - smin(smax(lo, b), hi) 8793 // TODO: AMDGPU can use a "median of 3" instruction here: 8794 // a +/- med3(lo, b, hi) 8795 uint64_t NumBits = Ty.getScalarSizeInBits(); 8796 auto MaxVal = 8797 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 8798 auto MinVal = 8799 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 8800 MachineInstrBuilder Hi, Lo; 8801 if (IsAdd) { 8802 auto Zero = MIRBuilder.buildConstant(Ty, 0); 8803 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 8804 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 8805 } else { 8806 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 8807 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 8808 MaxVal); 8809 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 8810 MinVal); 8811 } 8812 auto RHSClamped = 8813 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 8814 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 8815 } else { 8816 // uadd.sat(a, b) -> a + umin(~a, b) 8817 // usub.sat(a, b) -> a - umin(a, b) 8818 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 8819 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 8820 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 8821 } 8822 8823 MI.eraseFromParent(); 8824 return Legalized; 8825 } 8826 8827 LegalizerHelper::LegalizeResult 8828 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 8829 auto [Res, LHS, RHS] = MI.getFirst3Regs(); 8830 LLT Ty = MRI.getType(Res); 8831 LLT BoolTy = Ty.changeElementSize(1); 8832 bool IsSigned; 8833 bool IsAdd; 8834 unsigned OverflowOp; 8835 switch (MI.getOpcode()) { 8836 default: 8837 llvm_unreachable("unexpected addsat/subsat opcode"); 8838 case TargetOpcode::G_UADDSAT: 8839 IsSigned = false; 8840 IsAdd = true; 8841 OverflowOp = TargetOpcode::G_UADDO; 8842 break; 8843 case TargetOpcode::G_SADDSAT: 8844 IsSigned = true; 8845 IsAdd = true; 8846 OverflowOp = TargetOpcode::G_SADDO; 8847 break; 8848 case TargetOpcode::G_USUBSAT: 8849 IsSigned = false; 8850 IsAdd = false; 8851 OverflowOp = TargetOpcode::G_USUBO; 8852 break; 8853 case TargetOpcode::G_SSUBSAT: 8854 IsSigned = true; 8855 IsAdd = false; 8856 OverflowOp = TargetOpcode::G_SSUBO; 8857 break; 8858 } 8859 8860 auto OverflowRes = 8861 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 8862 Register Tmp = OverflowRes.getReg(0); 8863 Register Ov = OverflowRes.getReg(1); 8864 MachineInstrBuilder Clamp; 8865 if (IsSigned) { 8866 // sadd.sat(a, b) -> 8867 // {tmp, ov} = saddo(a, b) 8868 // ov ? (tmp >>s 31) + 0x80000000 : r 8869 // ssub.sat(a, b) -> 8870 // {tmp, ov} = ssubo(a, b) 8871 // ov ? (tmp >>s 31) + 0x80000000 : r 8872 uint64_t NumBits = Ty.getScalarSizeInBits(); 8873 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 8874 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 8875 auto MinVal = 8876 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 8877 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 8878 } else { 8879 // uadd.sat(a, b) -> 8880 // {tmp, ov} = uaddo(a, b) 8881 // ov ? 0xffffffff : tmp 8882 // usub.sat(a, b) -> 8883 // {tmp, ov} = usubo(a, b) 8884 // ov ? 0 : tmp 8885 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 8886 } 8887 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 8888 8889 MI.eraseFromParent(); 8890 return Legalized; 8891 } 8892 8893 LegalizerHelper::LegalizeResult 8894 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 8895 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 8896 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 8897 "Expected shlsat opcode!"); 8898 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 8899 auto [Res, LHS, RHS] = MI.getFirst3Regs(); 8900 LLT Ty = MRI.getType(Res); 8901 LLT BoolTy = Ty.changeElementSize(1); 8902 8903 unsigned BW = Ty.getScalarSizeInBits(); 8904 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 8905 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 8906 : MIRBuilder.buildLShr(Ty, Result, RHS); 8907 8908 MachineInstrBuilder SatVal; 8909 if (IsSigned) { 8910 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 8911 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 8912 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 8913 MIRBuilder.buildConstant(Ty, 0)); 8914 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 8915 } else { 8916 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 8917 } 8918 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 8919 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 8920 8921 MI.eraseFromParent(); 8922 return Legalized; 8923 } 8924 8925 LegalizerHelper::LegalizeResult LegalizerHelper::lowerBswap(MachineInstr &MI) { 8926 auto [Dst, Src] = MI.getFirst2Regs(); 8927 const LLT Ty = MRI.getType(Src); 8928 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 8929 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 8930 8931 // Swap most and least significant byte, set remaining bytes in Res to zero. 8932 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 8933 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 8934 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 8935 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 8936 8937 // Set i-th high/low byte in Res to i-th low/high byte from Src. 8938 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 8939 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 8940 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 8941 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 8942 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 8943 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 8944 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 8945 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 8946 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 8947 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 8948 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 8949 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 8950 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 8951 } 8952 Res.getInstr()->getOperand(0).setReg(Dst); 8953 8954 MI.eraseFromParent(); 8955 return Legalized; 8956 } 8957 8958 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 8959 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 8960 MachineInstrBuilder Src, const APInt &Mask) { 8961 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 8962 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 8963 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 8964 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 8965 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 8966 return B.buildOr(Dst, LHS, RHS); 8967 } 8968 8969 LegalizerHelper::LegalizeResult 8970 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 8971 auto [Dst, Src] = MI.getFirst2Regs(); 8972 const LLT Ty = MRI.getType(Src); 8973 unsigned Size = Ty.getScalarSizeInBits(); 8974 8975 if (Size >= 8) { 8976 MachineInstrBuilder BSWAP = 8977 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 8978 8979 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 8980 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 8981 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 8982 MachineInstrBuilder Swap4 = 8983 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 8984 8985 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 8986 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 8987 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 8988 MachineInstrBuilder Swap2 = 8989 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 8990 8991 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 8992 // 6|7 8993 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 8994 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 8995 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 8996 } else { 8997 // Expand bitreverse for types smaller than 8 bits. 8998 MachineInstrBuilder Tmp; 8999 for (unsigned I = 0, J = Size - 1; I < Size; ++I, --J) { 9000 MachineInstrBuilder Tmp2; 9001 if (I < J) { 9002 auto ShAmt = MIRBuilder.buildConstant(Ty, J - I); 9003 Tmp2 = MIRBuilder.buildShl(Ty, Src, ShAmt); 9004 } else { 9005 auto ShAmt = MIRBuilder.buildConstant(Ty, I - J); 9006 Tmp2 = MIRBuilder.buildLShr(Ty, Src, ShAmt); 9007 } 9008 9009 auto Mask = MIRBuilder.buildConstant(Ty, 1ULL << J); 9010 Tmp2 = MIRBuilder.buildAnd(Ty, Tmp2, Mask); 9011 if (I == 0) 9012 Tmp = Tmp2; 9013 else 9014 Tmp = MIRBuilder.buildOr(Ty, Tmp, Tmp2); 9015 } 9016 MIRBuilder.buildCopy(Dst, Tmp); 9017 } 9018 9019 MI.eraseFromParent(); 9020 return Legalized; 9021 } 9022 9023 LegalizerHelper::LegalizeResult 9024 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 9025 MachineFunction &MF = MIRBuilder.getMF(); 9026 9027 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 9028 int NameOpIdx = IsRead ? 1 : 0; 9029 int ValRegIndex = IsRead ? 0 : 1; 9030 9031 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 9032 const LLT Ty = MRI.getType(ValReg); 9033 const MDString *RegStr = cast<MDString>( 9034 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 9035 9036 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 9037 if (!PhysReg.isValid()) 9038 return UnableToLegalize; 9039 9040 if (IsRead) 9041 MIRBuilder.buildCopy(ValReg, PhysReg); 9042 else 9043 MIRBuilder.buildCopy(PhysReg, ValReg); 9044 9045 MI.eraseFromParent(); 9046 return Legalized; 9047 } 9048 9049 LegalizerHelper::LegalizeResult 9050 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 9051 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 9052 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 9053 Register Result = MI.getOperand(0).getReg(); 9054 LLT OrigTy = MRI.getType(Result); 9055 auto SizeInBits = OrigTy.getScalarSizeInBits(); 9056 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 9057 9058 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 9059 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 9060 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 9061 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 9062 9063 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 9064 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 9065 MIRBuilder.buildTrunc(Result, Shifted); 9066 9067 MI.eraseFromParent(); 9068 return Legalized; 9069 } 9070 9071 LegalizerHelper::LegalizeResult 9072 LegalizerHelper::lowerISFPCLASS(MachineInstr &MI) { 9073 auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); 9074 FPClassTest Mask = static_cast<FPClassTest>(MI.getOperand(2).getImm()); 9075 9076 if (Mask == fcNone) { 9077 MIRBuilder.buildConstant(DstReg, 0); 9078 MI.eraseFromParent(); 9079 return Legalized; 9080 } 9081 if (Mask == fcAllFlags) { 9082 MIRBuilder.buildConstant(DstReg, 1); 9083 MI.eraseFromParent(); 9084 return Legalized; 9085 } 9086 9087 // TODO: Try inverting the test with getInvertedFPClassTest like the DAG 9088 // version 9089 9090 unsigned BitSize = SrcTy.getScalarSizeInBits(); 9091 const fltSemantics &Semantics = getFltSemanticForLLT(SrcTy.getScalarType()); 9092 9093 LLT IntTy = LLT::scalar(BitSize); 9094 if (SrcTy.isVector()) 9095 IntTy = LLT::vector(SrcTy.getElementCount(), IntTy); 9096 auto AsInt = MIRBuilder.buildCopy(IntTy, SrcReg); 9097 9098 // Various masks. 9099 APInt SignBit = APInt::getSignMask(BitSize); 9100 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 9101 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 9102 APInt ExpMask = Inf; 9103 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 9104 APInt QNaNBitMask = 9105 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 9106 APInt InvertionMask = APInt::getAllOnes(DstTy.getScalarSizeInBits()); 9107 9108 auto SignBitC = MIRBuilder.buildConstant(IntTy, SignBit); 9109 auto ValueMaskC = MIRBuilder.buildConstant(IntTy, ValueMask); 9110 auto InfC = MIRBuilder.buildConstant(IntTy, Inf); 9111 auto ExpMaskC = MIRBuilder.buildConstant(IntTy, ExpMask); 9112 auto ZeroC = MIRBuilder.buildConstant(IntTy, 0); 9113 9114 auto Abs = MIRBuilder.buildAnd(IntTy, AsInt, ValueMaskC); 9115 auto Sign = 9116 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_NE, DstTy, AsInt, Abs); 9117 9118 auto Res = MIRBuilder.buildConstant(DstTy, 0); 9119 // Clang doesn't support capture of structured bindings: 9120 LLT DstTyCopy = DstTy; 9121 const auto appendToRes = [&](MachineInstrBuilder ToAppend) { 9122 Res = MIRBuilder.buildOr(DstTyCopy, Res, ToAppend); 9123 }; 9124 9125 // Tests that involve more than one class should be processed first. 9126 if ((Mask & fcFinite) == fcFinite) { 9127 // finite(V) ==> abs(V) u< exp_mask 9128 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs, 9129 ExpMaskC)); 9130 Mask &= ~fcFinite; 9131 } else if ((Mask & fcFinite) == fcPosFinite) { 9132 // finite(V) && V > 0 ==> V u< exp_mask 9133 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, AsInt, 9134 ExpMaskC)); 9135 Mask &= ~fcPosFinite; 9136 } else if ((Mask & fcFinite) == fcNegFinite) { 9137 // finite(V) && V < 0 ==> abs(V) u< exp_mask && signbit == 1 9138 auto Cmp = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs, 9139 ExpMaskC); 9140 auto And = MIRBuilder.buildAnd(DstTy, Cmp, Sign); 9141 appendToRes(And); 9142 Mask &= ~fcNegFinite; 9143 } 9144 9145 if (FPClassTest PartialCheck = Mask & (fcZero | fcSubnormal)) { 9146 // fcZero | fcSubnormal => test all exponent bits are 0 9147 // TODO: Handle sign bit specific cases 9148 // TODO: Handle inverted case 9149 if (PartialCheck == (fcZero | fcSubnormal)) { 9150 auto ExpBits = MIRBuilder.buildAnd(IntTy, AsInt, ExpMaskC); 9151 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 9152 ExpBits, ZeroC)); 9153 Mask &= ~PartialCheck; 9154 } 9155 } 9156 9157 // Check for individual classes. 9158 if (FPClassTest PartialCheck = Mask & fcZero) { 9159 if (PartialCheck == fcPosZero) 9160 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 9161 AsInt, ZeroC)); 9162 else if (PartialCheck == fcZero) 9163 appendToRes( 9164 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, ZeroC)); 9165 else // fcNegZero 9166 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 9167 AsInt, SignBitC)); 9168 } 9169 9170 if (FPClassTest PartialCheck = Mask & fcSubnormal) { 9171 // issubnormal(V) ==> unsigned(abs(V) - 1) u< (all mantissa bits set) 9172 // issubnormal(V) && V>0 ==> unsigned(V - 1) u< (all mantissa bits set) 9173 auto V = (PartialCheck == fcPosSubnormal) ? AsInt : Abs; 9174 auto OneC = MIRBuilder.buildConstant(IntTy, 1); 9175 auto VMinusOne = MIRBuilder.buildSub(IntTy, V, OneC); 9176 auto SubnormalRes = 9177 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, VMinusOne, 9178 MIRBuilder.buildConstant(IntTy, AllOneMantissa)); 9179 if (PartialCheck == fcNegSubnormal) 9180 SubnormalRes = MIRBuilder.buildAnd(DstTy, SubnormalRes, Sign); 9181 appendToRes(SubnormalRes); 9182 } 9183 9184 if (FPClassTest PartialCheck = Mask & fcInf) { 9185 if (PartialCheck == fcPosInf) 9186 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 9187 AsInt, InfC)); 9188 else if (PartialCheck == fcInf) 9189 appendToRes( 9190 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, InfC)); 9191 else { // fcNegInf 9192 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 9193 auto NegInfC = MIRBuilder.buildConstant(IntTy, NegInf); 9194 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, 9195 AsInt, NegInfC)); 9196 } 9197 } 9198 9199 if (FPClassTest PartialCheck = Mask & fcNan) { 9200 auto InfWithQnanBitC = MIRBuilder.buildConstant(IntTy, Inf | QNaNBitMask); 9201 if (PartialCheck == fcNan) { 9202 // isnan(V) ==> abs(V) u> int(inf) 9203 appendToRes( 9204 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC)); 9205 } else if (PartialCheck == fcQNan) { 9206 // isquiet(V) ==> abs(V) u>= (unsigned(Inf) | quiet_bit) 9207 appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGE, DstTy, Abs, 9208 InfWithQnanBitC)); 9209 } else { // fcSNan 9210 // issignaling(V) ==> abs(V) u> unsigned(Inf) && 9211 // abs(V) u< (unsigned(Inf) | quiet_bit) 9212 auto IsNan = 9213 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC); 9214 auto IsNotQnan = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, 9215 Abs, InfWithQnanBitC); 9216 appendToRes(MIRBuilder.buildAnd(DstTy, IsNan, IsNotQnan)); 9217 } 9218 } 9219 9220 if (FPClassTest PartialCheck = Mask & fcNormal) { 9221 // isnormal(V) ==> (0 u< exp u< max_exp) ==> (unsigned(exp-1) u< 9222 // (max_exp-1)) 9223 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 9224 auto ExpMinusOne = MIRBuilder.buildSub( 9225 IntTy, Abs, MIRBuilder.buildConstant(IntTy, ExpLSB)); 9226 APInt MaxExpMinusOne = ExpMask - ExpLSB; 9227 auto NormalRes = 9228 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, ExpMinusOne, 9229 MIRBuilder.buildConstant(IntTy, MaxExpMinusOne)); 9230 if (PartialCheck == fcNegNormal) 9231 NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, Sign); 9232 else if (PartialCheck == fcPosNormal) { 9233 auto PosSign = MIRBuilder.buildXor( 9234 DstTy, Sign, MIRBuilder.buildConstant(DstTy, InvertionMask)); 9235 NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, PosSign); 9236 } 9237 appendToRes(NormalRes); 9238 } 9239 9240 MIRBuilder.buildCopy(DstReg, Res); 9241 MI.eraseFromParent(); 9242 return Legalized; 9243 } 9244 9245 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 9246 // Implement G_SELECT in terms of XOR, AND, OR. 9247 auto [DstReg, DstTy, MaskReg, MaskTy, Op1Reg, Op1Ty, Op2Reg, Op2Ty] = 9248 MI.getFirst4RegLLTs(); 9249 9250 bool IsEltPtr = DstTy.isPointerOrPointerVector(); 9251 if (IsEltPtr) { 9252 LLT ScalarPtrTy = LLT::scalar(DstTy.getScalarSizeInBits()); 9253 LLT NewTy = DstTy.changeElementType(ScalarPtrTy); 9254 Op1Reg = MIRBuilder.buildPtrToInt(NewTy, Op1Reg).getReg(0); 9255 Op2Reg = MIRBuilder.buildPtrToInt(NewTy, Op2Reg).getReg(0); 9256 DstTy = NewTy; 9257 } 9258 9259 if (MaskTy.isScalar()) { 9260 // Turn the scalar condition into a vector condition mask if needed. 9261 9262 Register MaskElt = MaskReg; 9263 9264 // The condition was potentially zero extended before, but we want a sign 9265 // extended boolean. 9266 if (MaskTy != LLT::scalar(1)) 9267 MaskElt = MIRBuilder.buildSExtInReg(MaskTy, MaskElt, 1).getReg(0); 9268 9269 // Continue the sign extension (or truncate) to match the data type. 9270 MaskElt = 9271 MIRBuilder.buildSExtOrTrunc(DstTy.getScalarType(), MaskElt).getReg(0); 9272 9273 if (DstTy.isVector()) { 9274 // Generate a vector splat idiom. 9275 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 9276 MaskReg = ShufSplat.getReg(0); 9277 } else { 9278 MaskReg = MaskElt; 9279 } 9280 MaskTy = DstTy; 9281 } else if (!DstTy.isVector()) { 9282 // Cannot handle the case that mask is a vector and dst is a scalar. 9283 return UnableToLegalize; 9284 } 9285 9286 if (MaskTy.getSizeInBits() != DstTy.getSizeInBits()) { 9287 return UnableToLegalize; 9288 } 9289 9290 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 9291 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 9292 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 9293 if (IsEltPtr) { 9294 auto Or = MIRBuilder.buildOr(DstTy, NewOp1, NewOp2); 9295 MIRBuilder.buildIntToPtr(DstReg, Or); 9296 } else { 9297 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 9298 } 9299 MI.eraseFromParent(); 9300 return Legalized; 9301 } 9302 9303 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 9304 // Split DIVREM into individual instructions. 9305 unsigned Opcode = MI.getOpcode(); 9306 9307 MIRBuilder.buildInstr( 9308 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 9309 : TargetOpcode::G_UDIV, 9310 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 9311 MIRBuilder.buildInstr( 9312 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 9313 : TargetOpcode::G_UREM, 9314 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 9315 MI.eraseFromParent(); 9316 return Legalized; 9317 } 9318 9319 LegalizerHelper::LegalizeResult 9320 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 9321 // Expand %res = G_ABS %a into: 9322 // %v1 = G_ASHR %a, scalar_size-1 9323 // %v2 = G_ADD %a, %v1 9324 // %res = G_XOR %v2, %v1 9325 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 9326 Register OpReg = MI.getOperand(1).getReg(); 9327 auto ShiftAmt = 9328 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 9329 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 9330 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 9331 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 9332 MI.eraseFromParent(); 9333 return Legalized; 9334 } 9335 9336 LegalizerHelper::LegalizeResult 9337 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 9338 // Expand %res = G_ABS %a into: 9339 // %v1 = G_CONSTANT 0 9340 // %v2 = G_SUB %v1, %a 9341 // %res = G_SMAX %a, %v2 9342 Register SrcReg = MI.getOperand(1).getReg(); 9343 LLT Ty = MRI.getType(SrcReg); 9344 auto Zero = MIRBuilder.buildConstant(Ty, 0); 9345 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg); 9346 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 9347 MI.eraseFromParent(); 9348 return Legalized; 9349 } 9350 9351 LegalizerHelper::LegalizeResult 9352 LegalizerHelper::lowerAbsToCNeg(MachineInstr &MI) { 9353 Register SrcReg = MI.getOperand(1).getReg(); 9354 Register DestReg = MI.getOperand(0).getReg(); 9355 LLT Ty = MRI.getType(SrcReg), IType = LLT::scalar(1); 9356 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 9357 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 9358 auto ICmp = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, IType, SrcReg, Zero); 9359 MIRBuilder.buildSelect(DestReg, ICmp, SrcReg, Sub); 9360 MI.eraseFromParent(); 9361 return Legalized; 9362 } 9363 9364 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFAbs(MachineInstr &MI) { 9365 Register SrcReg = MI.getOperand(1).getReg(); 9366 Register DstReg = MI.getOperand(0).getReg(); 9367 9368 LLT Ty = MRI.getType(DstReg); 9369 9370 // Reset sign bit 9371 MIRBuilder.buildAnd( 9372 DstReg, SrcReg, 9373 MIRBuilder.buildConstant( 9374 Ty, APInt::getSignedMaxValue(Ty.getScalarSizeInBits()))); 9375 9376 MI.eraseFromParent(); 9377 return Legalized; 9378 } 9379 9380 LegalizerHelper::LegalizeResult 9381 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) { 9382 Register SrcReg = MI.getOperand(1).getReg(); 9383 LLT SrcTy = MRI.getType(SrcReg); 9384 LLT DstTy = MRI.getType(SrcReg); 9385 9386 // The source could be a scalar if the IR type was <1 x sN>. 9387 if (SrcTy.isScalar()) { 9388 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits()) 9389 return UnableToLegalize; // FIXME: handle extension. 9390 // This can be just a plain copy. 9391 Observer.changingInstr(MI); 9392 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY)); 9393 Observer.changedInstr(MI); 9394 return Legalized; 9395 } 9396 return UnableToLegalize; 9397 } 9398 9399 LegalizerHelper::LegalizeResult LegalizerHelper::lowerVAArg(MachineInstr &MI) { 9400 MachineFunction &MF = *MI.getMF(); 9401 const DataLayout &DL = MIRBuilder.getDataLayout(); 9402 LLVMContext &Ctx = MF.getFunction().getContext(); 9403 Register ListPtr = MI.getOperand(1).getReg(); 9404 LLT PtrTy = MRI.getType(ListPtr); 9405 9406 // LstPtr is a pointer to the head of the list. Get the address 9407 // of the head of the list. 9408 Align PtrAlignment = DL.getABITypeAlign(getTypeForLLT(PtrTy, Ctx)); 9409 MachineMemOperand *PtrLoadMMO = MF.getMachineMemOperand( 9410 MachinePointerInfo(), MachineMemOperand::MOLoad, PtrTy, PtrAlignment); 9411 auto VAList = MIRBuilder.buildLoad(PtrTy, ListPtr, *PtrLoadMMO).getReg(0); 9412 9413 const Align A(MI.getOperand(2).getImm()); 9414 LLT PtrTyAsScalarTy = LLT::scalar(PtrTy.getSizeInBits()); 9415 if (A > TLI.getMinStackArgumentAlignment()) { 9416 Register AlignAmt = 9417 MIRBuilder.buildConstant(PtrTyAsScalarTy, A.value() - 1).getReg(0); 9418 auto AddDst = MIRBuilder.buildPtrAdd(PtrTy, VAList, AlignAmt); 9419 auto AndDst = MIRBuilder.buildMaskLowPtrBits(PtrTy, AddDst, Log2(A)); 9420 VAList = AndDst.getReg(0); 9421 } 9422 9423 // Increment the pointer, VAList, to the next vaarg 9424 // The list should be bumped by the size of element in the current head of 9425 // list. 9426 Register Dst = MI.getOperand(0).getReg(); 9427 LLT LLTTy = MRI.getType(Dst); 9428 Type *Ty = getTypeForLLT(LLTTy, Ctx); 9429 auto IncAmt = 9430 MIRBuilder.buildConstant(PtrTyAsScalarTy, DL.getTypeAllocSize(Ty)); 9431 auto Succ = MIRBuilder.buildPtrAdd(PtrTy, VAList, IncAmt); 9432 9433 // Store the increment VAList to the legalized pointer 9434 MachineMemOperand *StoreMMO = MF.getMachineMemOperand( 9435 MachinePointerInfo(), MachineMemOperand::MOStore, PtrTy, PtrAlignment); 9436 MIRBuilder.buildStore(Succ, ListPtr, *StoreMMO); 9437 // Load the actual argument out of the pointer VAList 9438 Align EltAlignment = DL.getABITypeAlign(Ty); 9439 MachineMemOperand *EltLoadMMO = MF.getMachineMemOperand( 9440 MachinePointerInfo(), MachineMemOperand::MOLoad, LLTTy, EltAlignment); 9441 MIRBuilder.buildLoad(Dst, VAList, *EltLoadMMO); 9442 9443 MI.eraseFromParent(); 9444 return Legalized; 9445 } 9446 9447 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 9448 // On Darwin, -Os means optimize for size without hurting performance, so 9449 // only really optimize for size when -Oz (MinSize) is used. 9450 if (MF.getTarget().getTargetTriple().isOSDarwin()) 9451 return MF.getFunction().hasMinSize(); 9452 return MF.getFunction().hasOptSize(); 9453 } 9454 9455 // Returns a list of types to use for memory op lowering in MemOps. A partial 9456 // port of findOptimalMemOpLowering in TargetLowering. 9457 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 9458 unsigned Limit, const MemOp &Op, 9459 unsigned DstAS, unsigned SrcAS, 9460 const AttributeList &FuncAttributes, 9461 const TargetLowering &TLI) { 9462 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 9463 return false; 9464 9465 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 9466 9467 if (Ty == LLT()) { 9468 // Use the largest scalar type whose alignment constraints are satisfied. 9469 // We only need to check DstAlign here as SrcAlign is always greater or 9470 // equal to DstAlign (or zero). 9471 Ty = LLT::scalar(64); 9472 if (Op.isFixedDstAlign()) 9473 while (Op.getDstAlign() < Ty.getSizeInBytes() && 9474 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 9475 Ty = LLT::scalar(Ty.getSizeInBytes()); 9476 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 9477 // FIXME: check for the largest legal type we can load/store to. 9478 } 9479 9480 unsigned NumMemOps = 0; 9481 uint64_t Size = Op.size(); 9482 while (Size) { 9483 unsigned TySize = Ty.getSizeInBytes(); 9484 while (TySize > Size) { 9485 // For now, only use non-vector load / store's for the left-over pieces. 9486 LLT NewTy = Ty; 9487 // FIXME: check for mem op safety and legality of the types. Not all of 9488 // SDAGisms map cleanly to GISel concepts. 9489 if (NewTy.isVector()) 9490 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 9491 NewTy = LLT::scalar(llvm::bit_floor(NewTy.getSizeInBits() - 1)); 9492 unsigned NewTySize = NewTy.getSizeInBytes(); 9493 assert(NewTySize > 0 && "Could not find appropriate type"); 9494 9495 // If the new LLT cannot cover all of the remaining bits, then consider 9496 // issuing a (or a pair of) unaligned and overlapping load / store. 9497 unsigned Fast; 9498 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 9499 MVT VT = getMVTForLLT(Ty); 9500 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 9501 TLI.allowsMisalignedMemoryAccesses( 9502 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 9503 MachineMemOperand::MONone, &Fast) && 9504 Fast) 9505 TySize = Size; 9506 else { 9507 Ty = NewTy; 9508 TySize = NewTySize; 9509 } 9510 } 9511 9512 if (++NumMemOps > Limit) 9513 return false; 9514 9515 MemOps.push_back(Ty); 9516 Size -= TySize; 9517 } 9518 9519 return true; 9520 } 9521 9522 // Get a vectorized representation of the memset value operand, GISel edition. 9523 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 9524 MachineRegisterInfo &MRI = *MIB.getMRI(); 9525 unsigned NumBits = Ty.getScalarSizeInBits(); 9526 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 9527 if (!Ty.isVector() && ValVRegAndVal) { 9528 APInt Scalar = ValVRegAndVal->Value.trunc(8); 9529 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 9530 return MIB.buildConstant(Ty, SplatVal).getReg(0); 9531 } 9532 9533 // Extend the byte value to the larger type, and then multiply by a magic 9534 // value 0x010101... in order to replicate it across every byte. 9535 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 9536 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 9537 return MIB.buildConstant(Ty, 0).getReg(0); 9538 } 9539 9540 LLT ExtType = Ty.getScalarType(); 9541 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 9542 if (NumBits > 8) { 9543 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 9544 auto MagicMI = MIB.buildConstant(ExtType, Magic); 9545 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 9546 } 9547 9548 // For vector types create a G_BUILD_VECTOR. 9549 if (Ty.isVector()) 9550 Val = MIB.buildSplatBuildVector(Ty, Val).getReg(0); 9551 9552 return Val; 9553 } 9554 9555 LegalizerHelper::LegalizeResult 9556 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val, 9557 uint64_t KnownLen, Align Alignment, 9558 bool IsVolatile) { 9559 auto &MF = *MI.getParent()->getParent(); 9560 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 9561 auto &DL = MF.getDataLayout(); 9562 LLVMContext &C = MF.getFunction().getContext(); 9563 9564 assert(KnownLen != 0 && "Have a zero length memset length!"); 9565 9566 bool DstAlignCanChange = false; 9567 MachineFrameInfo &MFI = MF.getFrameInfo(); 9568 bool OptSize = shouldLowerMemFuncForSize(MF); 9569 9570 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 9571 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 9572 DstAlignCanChange = true; 9573 9574 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 9575 std::vector<LLT> MemOps; 9576 9577 const auto &DstMMO = **MI.memoperands_begin(); 9578 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 9579 9580 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 9581 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 9582 9583 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 9584 MemOp::Set(KnownLen, DstAlignCanChange, 9585 Alignment, 9586 /*IsZeroMemset=*/IsZeroVal, 9587 /*IsVolatile=*/IsVolatile), 9588 DstPtrInfo.getAddrSpace(), ~0u, 9589 MF.getFunction().getAttributes(), TLI)) 9590 return UnableToLegalize; 9591 9592 if (DstAlignCanChange) { 9593 // Get an estimate of the type from the LLT. 9594 Type *IRTy = getTypeForLLT(MemOps[0], C); 9595 Align NewAlign = DL.getABITypeAlign(IRTy); 9596 if (NewAlign > Alignment) { 9597 Alignment = NewAlign; 9598 unsigned FI = FIDef->getOperand(1).getIndex(); 9599 // Give the stack frame object a larger alignment if needed. 9600 if (MFI.getObjectAlign(FI) < Alignment) 9601 MFI.setObjectAlignment(FI, Alignment); 9602 } 9603 } 9604 9605 MachineIRBuilder MIB(MI); 9606 // Find the largest store and generate the bit pattern for it. 9607 LLT LargestTy = MemOps[0]; 9608 for (unsigned i = 1; i < MemOps.size(); i++) 9609 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 9610 LargestTy = MemOps[i]; 9611 9612 // The memset stored value is always defined as an s8, so in order to make it 9613 // work with larger store types we need to repeat the bit pattern across the 9614 // wider type. 9615 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 9616 9617 if (!MemSetValue) 9618 return UnableToLegalize; 9619 9620 // Generate the stores. For each store type in the list, we generate the 9621 // matching store of that type to the destination address. 9622 LLT PtrTy = MRI.getType(Dst); 9623 unsigned DstOff = 0; 9624 unsigned Size = KnownLen; 9625 for (unsigned I = 0; I < MemOps.size(); I++) { 9626 LLT Ty = MemOps[I]; 9627 unsigned TySize = Ty.getSizeInBytes(); 9628 if (TySize > Size) { 9629 // Issuing an unaligned load / store pair that overlaps with the previous 9630 // pair. Adjust the offset accordingly. 9631 assert(I == MemOps.size() - 1 && I != 0); 9632 DstOff -= TySize - Size; 9633 } 9634 9635 // If this store is smaller than the largest store see whether we can get 9636 // the smaller value for free with a truncate. 9637 Register Value = MemSetValue; 9638 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 9639 MVT VT = getMVTForLLT(Ty); 9640 MVT LargestVT = getMVTForLLT(LargestTy); 9641 if (!LargestTy.isVector() && !Ty.isVector() && 9642 TLI.isTruncateFree(LargestVT, VT)) 9643 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 9644 else 9645 Value = getMemsetValue(Val, Ty, MIB); 9646 if (!Value) 9647 return UnableToLegalize; 9648 } 9649 9650 auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 9651 9652 Register Ptr = Dst; 9653 if (DstOff != 0) { 9654 auto Offset = 9655 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 9656 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 9657 } 9658 9659 MIB.buildStore(Value, Ptr, *StoreMMO); 9660 DstOff += Ty.getSizeInBytes(); 9661 Size -= TySize; 9662 } 9663 9664 MI.eraseFromParent(); 9665 return Legalized; 9666 } 9667 9668 LegalizerHelper::LegalizeResult 9669 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) { 9670 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 9671 9672 auto [Dst, Src, Len] = MI.getFirst3Regs(); 9673 9674 const auto *MMOIt = MI.memoperands_begin(); 9675 const MachineMemOperand *MemOp = *MMOIt; 9676 bool IsVolatile = MemOp->isVolatile(); 9677 9678 // See if this is a constant length copy 9679 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 9680 // FIXME: support dynamically sized G_MEMCPY_INLINE 9681 assert(LenVRegAndVal && 9682 "inline memcpy with dynamic size is not yet supported"); 9683 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 9684 if (KnownLen == 0) { 9685 MI.eraseFromParent(); 9686 return Legalized; 9687 } 9688 9689 const auto &DstMMO = **MI.memoperands_begin(); 9690 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 9691 Align DstAlign = DstMMO.getBaseAlign(); 9692 Align SrcAlign = SrcMMO.getBaseAlign(); 9693 9694 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 9695 IsVolatile); 9696 } 9697 9698 LegalizerHelper::LegalizeResult 9699 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src, 9700 uint64_t KnownLen, Align DstAlign, 9701 Align SrcAlign, bool IsVolatile) { 9702 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 9703 return lowerMemcpy(MI, Dst, Src, KnownLen, 9704 std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign, 9705 IsVolatile); 9706 } 9707 9708 LegalizerHelper::LegalizeResult 9709 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src, 9710 uint64_t KnownLen, uint64_t Limit, Align DstAlign, 9711 Align SrcAlign, bool IsVolatile) { 9712 auto &MF = *MI.getParent()->getParent(); 9713 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 9714 auto &DL = MF.getDataLayout(); 9715 LLVMContext &C = MF.getFunction().getContext(); 9716 9717 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 9718 9719 bool DstAlignCanChange = false; 9720 MachineFrameInfo &MFI = MF.getFrameInfo(); 9721 Align Alignment = std::min(DstAlign, SrcAlign); 9722 9723 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 9724 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 9725 DstAlignCanChange = true; 9726 9727 // FIXME: infer better src pointer alignment like SelectionDAG does here. 9728 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 9729 // if the memcpy is in a tail call position. 9730 9731 std::vector<LLT> MemOps; 9732 9733 const auto &DstMMO = **MI.memoperands_begin(); 9734 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 9735 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 9736 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 9737 9738 if (!findGISelOptimalMemOpLowering( 9739 MemOps, Limit, 9740 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 9741 IsVolatile), 9742 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 9743 MF.getFunction().getAttributes(), TLI)) 9744 return UnableToLegalize; 9745 9746 if (DstAlignCanChange) { 9747 // Get an estimate of the type from the LLT. 9748 Type *IRTy = getTypeForLLT(MemOps[0], C); 9749 Align NewAlign = DL.getABITypeAlign(IRTy); 9750 9751 // Don't promote to an alignment that would require dynamic stack 9752 // realignment. 9753 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 9754 if (!TRI->hasStackRealignment(MF)) 9755 if (MaybeAlign StackAlign = DL.getStackAlignment()) 9756 NewAlign = std::min(NewAlign, *StackAlign); 9757 9758 if (NewAlign > Alignment) { 9759 Alignment = NewAlign; 9760 unsigned FI = FIDef->getOperand(1).getIndex(); 9761 // Give the stack frame object a larger alignment if needed. 9762 if (MFI.getObjectAlign(FI) < Alignment) 9763 MFI.setObjectAlignment(FI, Alignment); 9764 } 9765 } 9766 9767 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 9768 9769 MachineIRBuilder MIB(MI); 9770 // Now we need to emit a pair of load and stores for each of the types we've 9771 // collected. I.e. for each type, generate a load from the source pointer of 9772 // that type width, and then generate a corresponding store to the dest buffer 9773 // of that value loaded. This can result in a sequence of loads and stores 9774 // mixed types, depending on what the target specifies as good types to use. 9775 unsigned CurrOffset = 0; 9776 unsigned Size = KnownLen; 9777 for (auto CopyTy : MemOps) { 9778 // Issuing an unaligned load / store pair that overlaps with the previous 9779 // pair. Adjust the offset accordingly. 9780 if (CopyTy.getSizeInBytes() > Size) 9781 CurrOffset -= CopyTy.getSizeInBytes() - Size; 9782 9783 // Construct MMOs for the accesses. 9784 auto *LoadMMO = 9785 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 9786 auto *StoreMMO = 9787 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 9788 9789 // Create the load. 9790 Register LoadPtr = Src; 9791 Register Offset; 9792 if (CurrOffset != 0) { 9793 LLT SrcTy = MRI.getType(Src); 9794 Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset) 9795 .getReg(0); 9796 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 9797 } 9798 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 9799 9800 // Create the store. 9801 Register StorePtr = Dst; 9802 if (CurrOffset != 0) { 9803 LLT DstTy = MRI.getType(Dst); 9804 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 9805 } 9806 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 9807 CurrOffset += CopyTy.getSizeInBytes(); 9808 Size -= CopyTy.getSizeInBytes(); 9809 } 9810 9811 MI.eraseFromParent(); 9812 return Legalized; 9813 } 9814 9815 LegalizerHelper::LegalizeResult 9816 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src, 9817 uint64_t KnownLen, Align DstAlign, Align SrcAlign, 9818 bool IsVolatile) { 9819 auto &MF = *MI.getParent()->getParent(); 9820 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 9821 auto &DL = MF.getDataLayout(); 9822 LLVMContext &C = MF.getFunction().getContext(); 9823 9824 assert(KnownLen != 0 && "Have a zero length memmove length!"); 9825 9826 bool DstAlignCanChange = false; 9827 MachineFrameInfo &MFI = MF.getFrameInfo(); 9828 bool OptSize = shouldLowerMemFuncForSize(MF); 9829 Align Alignment = std::min(DstAlign, SrcAlign); 9830 9831 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 9832 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 9833 DstAlignCanChange = true; 9834 9835 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 9836 std::vector<LLT> MemOps; 9837 9838 const auto &DstMMO = **MI.memoperands_begin(); 9839 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 9840 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 9841 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 9842 9843 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 9844 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 9845 // same thing here. 9846 if (!findGISelOptimalMemOpLowering( 9847 MemOps, Limit, 9848 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 9849 /*IsVolatile*/ true), 9850 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 9851 MF.getFunction().getAttributes(), TLI)) 9852 return UnableToLegalize; 9853 9854 if (DstAlignCanChange) { 9855 // Get an estimate of the type from the LLT. 9856 Type *IRTy = getTypeForLLT(MemOps[0], C); 9857 Align NewAlign = DL.getABITypeAlign(IRTy); 9858 9859 // Don't promote to an alignment that would require dynamic stack 9860 // realignment. 9861 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 9862 if (!TRI->hasStackRealignment(MF)) 9863 if (MaybeAlign StackAlign = DL.getStackAlignment()) 9864 NewAlign = std::min(NewAlign, *StackAlign); 9865 9866 if (NewAlign > Alignment) { 9867 Alignment = NewAlign; 9868 unsigned FI = FIDef->getOperand(1).getIndex(); 9869 // Give the stack frame object a larger alignment if needed. 9870 if (MFI.getObjectAlign(FI) < Alignment) 9871 MFI.setObjectAlignment(FI, Alignment); 9872 } 9873 } 9874 9875 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 9876 9877 MachineIRBuilder MIB(MI); 9878 // Memmove requires that we perform the loads first before issuing the stores. 9879 // Apart from that, this loop is pretty much doing the same thing as the 9880 // memcpy codegen function. 9881 unsigned CurrOffset = 0; 9882 SmallVector<Register, 16> LoadVals; 9883 for (auto CopyTy : MemOps) { 9884 // Construct MMO for the load. 9885 auto *LoadMMO = 9886 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 9887 9888 // Create the load. 9889 Register LoadPtr = Src; 9890 if (CurrOffset != 0) { 9891 LLT SrcTy = MRI.getType(Src); 9892 auto Offset = 9893 MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset); 9894 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 9895 } 9896 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 9897 CurrOffset += CopyTy.getSizeInBytes(); 9898 } 9899 9900 CurrOffset = 0; 9901 for (unsigned I = 0; I < MemOps.size(); ++I) { 9902 LLT CopyTy = MemOps[I]; 9903 // Now store the values loaded. 9904 auto *StoreMMO = 9905 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 9906 9907 Register StorePtr = Dst; 9908 if (CurrOffset != 0) { 9909 LLT DstTy = MRI.getType(Dst); 9910 auto Offset = 9911 MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset); 9912 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 9913 } 9914 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 9915 CurrOffset += CopyTy.getSizeInBytes(); 9916 } 9917 MI.eraseFromParent(); 9918 return Legalized; 9919 } 9920 9921 LegalizerHelper::LegalizeResult 9922 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 9923 const unsigned Opc = MI.getOpcode(); 9924 // This combine is fairly complex so it's not written with a separate 9925 // matcher function. 9926 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 9927 Opc == TargetOpcode::G_MEMSET) && 9928 "Expected memcpy like instruction"); 9929 9930 auto MMOIt = MI.memoperands_begin(); 9931 const MachineMemOperand *MemOp = *MMOIt; 9932 9933 Align DstAlign = MemOp->getBaseAlign(); 9934 Align SrcAlign; 9935 auto [Dst, Src, Len] = MI.getFirst3Regs(); 9936 9937 if (Opc != TargetOpcode::G_MEMSET) { 9938 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 9939 MemOp = *(++MMOIt); 9940 SrcAlign = MemOp->getBaseAlign(); 9941 } 9942 9943 // See if this is a constant length copy 9944 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 9945 if (!LenVRegAndVal) 9946 return UnableToLegalize; 9947 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 9948 9949 if (KnownLen == 0) { 9950 MI.eraseFromParent(); 9951 return Legalized; 9952 } 9953 9954 bool IsVolatile = MemOp->isVolatile(); 9955 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 9956 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 9957 IsVolatile); 9958 9959 // Don't try to optimize volatile. 9960 if (IsVolatile) 9961 return UnableToLegalize; 9962 9963 if (MaxLen && KnownLen > MaxLen) 9964 return UnableToLegalize; 9965 9966 if (Opc == TargetOpcode::G_MEMCPY) { 9967 auto &MF = *MI.getParent()->getParent(); 9968 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 9969 bool OptSize = shouldLowerMemFuncForSize(MF); 9970 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 9971 return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 9972 IsVolatile); 9973 } 9974 if (Opc == TargetOpcode::G_MEMMOVE) 9975 return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 9976 if (Opc == TargetOpcode::G_MEMSET) 9977 return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 9978 return UnableToLegalize; 9979 } 9980