1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 27 #include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h" 28 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 29 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 30 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 31 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 32 #include "llvm/CodeGen/LowLevelTypeUtils.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineModuleInfo.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/StackProtector.h" 42 #include "llvm/CodeGen/SwitchLoweringUtils.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetOpcodes.h" 47 #include "llvm/CodeGen/TargetPassConfig.h" 48 #include "llvm/CodeGen/TargetRegisterInfo.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/CodeGenTypes/LowLevelType.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/CFG.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/DiagnosticInfo.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GetElementPtrTypeIterator.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/IntrinsicsAMDGPU.h" 66 #include "llvm/IR/LLVMContext.h" 67 #include "llvm/IR/Metadata.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CodeGen.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Target/TargetIntrinsicInfo.h" 83 #include "llvm/Target/TargetMachine.h" 84 #include "llvm/Transforms/Utils/Local.h" 85 #include "llvm/Transforms/Utils/MemoryOpRemark.h" 86 #include <algorithm> 87 #include <cassert> 88 #include <cstdint> 89 #include <iterator> 90 #include <optional> 91 #include <string> 92 #include <utility> 93 #include <vector> 94 95 #define DEBUG_TYPE "irtranslator" 96 97 using namespace llvm; 98 99 static cl::opt<bool> 100 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 101 cl::desc("Should enable CSE in irtranslator"), 102 cl::Optional, cl::init(false)); 103 char IRTranslator::ID = 0; 104 105 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 106 false, false) 107 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 108 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 109 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 110 INITIALIZE_PASS_DEPENDENCY(StackProtector) 111 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 112 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 113 false, false) 114 115 static void reportTranslationError(MachineFunction &MF, 116 const TargetPassConfig &TPC, 117 OptimizationRemarkEmitter &ORE, 118 OptimizationRemarkMissed &R) { 119 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 120 121 // Print the function name explicitly if we don't have a debug location (which 122 // makes the diagnostic less useful) or if we're going to emit a raw error. 123 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 124 R << (" (in function: " + MF.getName() + ")").str(); 125 126 if (TPC.isGlobalISelAbortEnabled()) 127 report_fatal_error(Twine(R.getMsg())); 128 else 129 ORE.emit(R); 130 } 131 132 IRTranslator::IRTranslator(CodeGenOptLevel optlevel) 133 : MachineFunctionPass(ID), OptLevel(optlevel) {} 134 135 #ifndef NDEBUG 136 namespace { 137 /// Verify that every instruction created has the same DILocation as the 138 /// instruction being translated. 139 class DILocationVerifier : public GISelChangeObserver { 140 const Instruction *CurrInst = nullptr; 141 142 public: 143 DILocationVerifier() = default; 144 ~DILocationVerifier() = default; 145 146 const Instruction *getCurrentInst() const { return CurrInst; } 147 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 148 149 void erasingInstr(MachineInstr &MI) override {} 150 void changingInstr(MachineInstr &MI) override {} 151 void changedInstr(MachineInstr &MI) override {} 152 153 void createdInstr(MachineInstr &MI) override { 154 assert(getCurrentInst() && "Inserted instruction without a current MI"); 155 156 // Only print the check message if we're actually checking it. 157 #ifndef NDEBUG 158 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 159 << " was copied to " << MI); 160 #endif 161 // We allow insts in the entry block to have no debug loc because 162 // they could have originated from constants, and we don't want a jumpy 163 // debug experience. 164 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 165 (MI.getParent()->isEntryBlock() && !MI.getDebugLoc()) || 166 (MI.isDebugInstr())) && 167 "Line info was not transferred to all instructions"); 168 } 169 }; 170 } // namespace 171 #endif // ifndef NDEBUG 172 173 174 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 175 AU.addRequired<StackProtector>(); 176 AU.addRequired<TargetPassConfig>(); 177 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 178 AU.addRequired<AssumptionCacheTracker>(); 179 if (OptLevel != CodeGenOptLevel::None) { 180 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 181 AU.addRequired<AAResultsWrapperPass>(); 182 } 183 AU.addRequired<TargetLibraryInfoWrapperPass>(); 184 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 185 getSelectionDAGFallbackAnalysisUsage(AU); 186 MachineFunctionPass::getAnalysisUsage(AU); 187 } 188 189 IRTranslator::ValueToVRegInfo::VRegListT & 190 IRTranslator::allocateVRegs(const Value &Val) { 191 auto VRegsIt = VMap.findVRegs(Val); 192 if (VRegsIt != VMap.vregs_end()) 193 return *VRegsIt->second; 194 auto *Regs = VMap.getVRegs(Val); 195 auto *Offsets = VMap.getOffsets(Val); 196 SmallVector<LLT, 4> SplitTys; 197 computeValueLLTs(*DL, *Val.getType(), SplitTys, 198 Offsets->empty() ? Offsets : nullptr); 199 for (unsigned i = 0; i < SplitTys.size(); ++i) 200 Regs->push_back(0); 201 return *Regs; 202 } 203 204 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 205 auto VRegsIt = VMap.findVRegs(Val); 206 if (VRegsIt != VMap.vregs_end()) 207 return *VRegsIt->second; 208 209 if (Val.getType()->isVoidTy()) 210 return *VMap.getVRegs(Val); 211 212 // Create entry for this type. 213 auto *VRegs = VMap.getVRegs(Val); 214 auto *Offsets = VMap.getOffsets(Val); 215 216 if (!Val.getType()->isTokenTy()) 217 assert(Val.getType()->isSized() && 218 "Don't know how to create an empty vreg"); 219 220 SmallVector<LLT, 4> SplitTys; 221 computeValueLLTs(*DL, *Val.getType(), SplitTys, 222 Offsets->empty() ? Offsets : nullptr); 223 224 if (!isa<Constant>(Val)) { 225 for (auto Ty : SplitTys) 226 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 227 return *VRegs; 228 } 229 230 if (Val.getType()->isAggregateType()) { 231 // UndefValue, ConstantAggregateZero 232 auto &C = cast<Constant>(Val); 233 unsigned Idx = 0; 234 while (auto Elt = C.getAggregateElement(Idx++)) { 235 auto EltRegs = getOrCreateVRegs(*Elt); 236 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 237 } 238 } else { 239 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 240 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 241 bool Success = translate(cast<Constant>(Val), VRegs->front()); 242 if (!Success) { 243 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 244 MF->getFunction().getSubprogram(), 245 &MF->getFunction().getEntryBlock()); 246 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 247 reportTranslationError(*MF, *TPC, *ORE, R); 248 return *VRegs; 249 } 250 } 251 252 return *VRegs; 253 } 254 255 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 256 auto MapEntry = FrameIndices.find(&AI); 257 if (MapEntry != FrameIndices.end()) 258 return MapEntry->second; 259 260 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 261 uint64_t Size = 262 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 263 264 // Always allocate at least one byte. 265 Size = std::max<uint64_t>(Size, 1u); 266 267 int &FI = FrameIndices[&AI]; 268 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 269 return FI; 270 } 271 272 Align IRTranslator::getMemOpAlign(const Instruction &I) { 273 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 274 return SI->getAlign(); 275 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) 276 return LI->getAlign(); 277 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 278 return AI->getAlign(); 279 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) 280 return AI->getAlign(); 281 282 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 283 R << "unable to translate memop: " << ore::NV("Opcode", &I); 284 reportTranslationError(*MF, *TPC, *ORE, R); 285 return Align(1); 286 } 287 288 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 289 MachineBasicBlock *MBB = FuncInfo.getMBB(&BB); 290 assert(MBB && "BasicBlock was not encountered before"); 291 return *MBB; 292 } 293 294 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 295 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 296 MachinePreds[Edge].push_back(NewPred); 297 } 298 299 static bool containsBF16Type(const User &U) { 300 // BF16 cannot currently be represented by LLT, to avoid miscompiles we 301 // prevent any instructions using them. FIXME: This can be removed once LLT 302 // supports bfloat. 303 return U.getType()->getScalarType()->isBFloatTy() || 304 any_of(U.operands(), [](Value *V) { 305 return V->getType()->getScalarType()->isBFloatTy(); 306 }); 307 } 308 309 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 310 MachineIRBuilder &MIRBuilder) { 311 if (containsBF16Type(U)) 312 return false; 313 314 // Get or create a virtual register for each value. 315 // Unless the value is a Constant => loadimm cst? 316 // or inline constant each time? 317 // Creation of a virtual register needs to have a size. 318 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 319 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 320 Register Res = getOrCreateVReg(U); 321 uint32_t Flags = 0; 322 if (isa<Instruction>(U)) { 323 const Instruction &I = cast<Instruction>(U); 324 Flags = MachineInstr::copyFlagsFromInstruction(I); 325 } 326 327 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 328 return true; 329 } 330 331 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U, 332 MachineIRBuilder &MIRBuilder) { 333 if (containsBF16Type(U)) 334 return false; 335 336 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 337 Register Res = getOrCreateVReg(U); 338 uint32_t Flags = 0; 339 if (isa<Instruction>(U)) { 340 const Instruction &I = cast<Instruction>(U); 341 Flags = MachineInstr::copyFlagsFromInstruction(I); 342 } 343 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags); 344 return true; 345 } 346 347 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 348 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder); 349 } 350 351 bool IRTranslator::translateCompare(const User &U, 352 MachineIRBuilder &MIRBuilder) { 353 if (containsBF16Type(U)) 354 return false; 355 356 auto *CI = cast<CmpInst>(&U); 357 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 358 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 359 Register Res = getOrCreateVReg(U); 360 CmpInst::Predicate Pred = CI->getPredicate(); 361 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(*CI); 362 if (CmpInst::isIntPredicate(Pred)) 363 MIRBuilder.buildICmp(Pred, Res, Op0, Op1, Flags); 364 else if (Pred == CmpInst::FCMP_FALSE) 365 MIRBuilder.buildCopy( 366 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 367 else if (Pred == CmpInst::FCMP_TRUE) 368 MIRBuilder.buildCopy( 369 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 370 else 371 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags); 372 373 return true; 374 } 375 376 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 377 const ReturnInst &RI = cast<ReturnInst>(U); 378 const Value *Ret = RI.getReturnValue(); 379 if (Ret && DL->getTypeStoreSize(Ret->getType()).isZero()) 380 Ret = nullptr; 381 382 ArrayRef<Register> VRegs; 383 if (Ret) 384 VRegs = getOrCreateVRegs(*Ret); 385 386 Register SwiftErrorVReg = 0; 387 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 388 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 389 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 390 } 391 392 // The target may mess up with the insertion point, but 393 // this is not important as a return is the last instruction 394 // of the block anyway. 395 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg); 396 } 397 398 void IRTranslator::emitBranchForMergedCondition( 399 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 400 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 401 BranchProbability TProb, BranchProbability FProb, bool InvertCond) { 402 // If the leaf of the tree is a comparison, merge the condition into 403 // the caseblock. 404 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 405 CmpInst::Predicate Condition; 406 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 407 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 408 } else { 409 const FCmpInst *FC = cast<FCmpInst>(Cond); 410 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 411 } 412 413 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0), 414 BOp->getOperand(1), nullptr, TBB, FBB, CurBB, 415 CurBuilder->getDebugLoc(), TProb, FProb); 416 SL->SwitchCases.push_back(CB); 417 return; 418 } 419 420 // Create a CaseBlock record representing this branch. 421 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 422 SwitchCG::CaseBlock CB( 423 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()), 424 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb); 425 SL->SwitchCases.push_back(CB); 426 } 427 428 static bool isValInBlock(const Value *V, const BasicBlock *BB) { 429 if (const Instruction *I = dyn_cast<Instruction>(V)) 430 return I->getParent() == BB; 431 return true; 432 } 433 434 void IRTranslator::findMergedConditions( 435 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 436 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 437 Instruction::BinaryOps Opc, BranchProbability TProb, 438 BranchProbability FProb, bool InvertCond) { 439 using namespace PatternMatch; 440 assert((Opc == Instruction::And || Opc == Instruction::Or) && 441 "Expected Opc to be AND/OR"); 442 // Skip over not part of the tree and remember to invert op and operands at 443 // next level. 444 Value *NotCond; 445 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 446 isValInBlock(NotCond, CurBB->getBasicBlock())) { 447 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 448 !InvertCond); 449 return; 450 } 451 452 const Instruction *BOp = dyn_cast<Instruction>(Cond); 453 const Value *BOpOp0, *BOpOp1; 454 // Compute the effective opcode for Cond, taking into account whether it needs 455 // to be inverted, e.g. 456 // and (not (or A, B)), C 457 // gets lowered as 458 // and (and (not A, not B), C) 459 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 460 if (BOp) { 461 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 462 ? Instruction::And 463 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 464 ? Instruction::Or 465 : (Instruction::BinaryOps)0); 466 if (InvertCond) { 467 if (BOpc == Instruction::And) 468 BOpc = Instruction::Or; 469 else if (BOpc == Instruction::Or) 470 BOpc = Instruction::And; 471 } 472 } 473 474 // If this node is not part of the or/and tree, emit it as a branch. 475 // Note that all nodes in the tree should have same opcode. 476 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 477 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 478 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) || 479 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) { 480 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb, 481 InvertCond); 482 return; 483 } 484 485 // Create TmpBB after CurBB. 486 MachineFunction::iterator BBI(CurBB); 487 MachineBasicBlock *TmpBB = 488 MF->CreateMachineBasicBlock(CurBB->getBasicBlock()); 489 CurBB->getParent()->insert(++BBI, TmpBB); 490 491 if (Opc == Instruction::Or) { 492 // Codegen X | Y as: 493 // BB1: 494 // jmp_if_X TBB 495 // jmp TmpBB 496 // TmpBB: 497 // jmp_if_Y TBB 498 // jmp FBB 499 // 500 501 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 502 // The requirement is that 503 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 504 // = TrueProb for original BB. 505 // Assuming the original probabilities are A and B, one choice is to set 506 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 507 // A/(1+B) and 2B/(1+B). This choice assumes that 508 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 509 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 510 // TmpBB, but the math is more complicated. 511 512 auto NewTrueProb = TProb / 2; 513 auto NewFalseProb = TProb / 2 + FProb; 514 // Emit the LHS condition. 515 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 516 NewFalseProb, InvertCond); 517 518 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 519 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 520 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 521 // Emit the RHS condition into TmpBB. 522 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 523 Probs[1], InvertCond); 524 } else { 525 assert(Opc == Instruction::And && "Unknown merge op!"); 526 // Codegen X & Y as: 527 // BB1: 528 // jmp_if_X TmpBB 529 // jmp FBB 530 // TmpBB: 531 // jmp_if_Y TBB 532 // jmp FBB 533 // 534 // This requires creation of TmpBB after CurBB. 535 536 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 537 // The requirement is that 538 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 539 // = FalseProb for original BB. 540 // Assuming the original probabilities are A and B, one choice is to set 541 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 542 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 543 // TrueProb for BB1 * FalseProb for TmpBB. 544 545 auto NewTrueProb = TProb + FProb / 2; 546 auto NewFalseProb = FProb / 2; 547 // Emit the LHS condition. 548 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 549 NewFalseProb, InvertCond); 550 551 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 552 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 553 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 554 // Emit the RHS condition into TmpBB. 555 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 556 Probs[1], InvertCond); 557 } 558 } 559 560 bool IRTranslator::shouldEmitAsBranches( 561 const std::vector<SwitchCG::CaseBlock> &Cases) { 562 // For multiple cases, it's better to emit as branches. 563 if (Cases.size() != 2) 564 return true; 565 566 // If this is two comparisons of the same values or'd or and'd together, they 567 // will get folded into a single comparison, so don't emit two blocks. 568 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 569 Cases[0].CmpRHS == Cases[1].CmpRHS) || 570 (Cases[0].CmpRHS == Cases[1].CmpLHS && 571 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 572 return false; 573 } 574 575 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 576 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 577 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 578 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred && 579 isa<Constant>(Cases[0].CmpRHS) && 580 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 581 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ && 582 Cases[0].TrueBB == Cases[1].ThisBB) 583 return false; 584 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE && 585 Cases[0].FalseBB == Cases[1].ThisBB) 586 return false; 587 } 588 589 return true; 590 } 591 592 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 593 const BranchInst &BrInst = cast<BranchInst>(U); 594 auto &CurMBB = MIRBuilder.getMBB(); 595 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0)); 596 597 if (BrInst.isUnconditional()) { 598 // If the unconditional target is the layout successor, fallthrough. 599 if (OptLevel == CodeGenOptLevel::None || 600 !CurMBB.isLayoutSuccessor(Succ0MBB)) 601 MIRBuilder.buildBr(*Succ0MBB); 602 603 // Link successors. 604 for (const BasicBlock *Succ : successors(&BrInst)) 605 CurMBB.addSuccessor(&getMBB(*Succ)); 606 return true; 607 } 608 609 // If this condition is one of the special cases we handle, do special stuff 610 // now. 611 const Value *CondVal = BrInst.getCondition(); 612 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1)); 613 614 // If this is a series of conditions that are or'd or and'd together, emit 615 // this as a sequence of branches instead of setcc's with and/or operations. 616 // As long as jumps are not expensive (exceptions for multi-use logic ops, 617 // unpredictable branches, and vector extracts because those jumps are likely 618 // expensive for any target), this should improve performance. 619 // For example, instead of something like: 620 // cmp A, B 621 // C = seteq 622 // cmp D, E 623 // F = setle 624 // or C, F 625 // jnz foo 626 // Emit: 627 // cmp A, B 628 // je foo 629 // cmp D, E 630 // jle foo 631 using namespace PatternMatch; 632 const Instruction *CondI = dyn_cast<Instruction>(CondVal); 633 if (!TLI->isJumpExpensive() && CondI && CondI->hasOneUse() && 634 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) { 635 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 636 Value *Vec; 637 const Value *BOp0, *BOp1; 638 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 639 Opcode = Instruction::And; 640 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 641 Opcode = Instruction::Or; 642 643 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 644 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 645 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode, 646 getEdgeProbability(&CurMBB, Succ0MBB), 647 getEdgeProbability(&CurMBB, Succ1MBB), 648 /*InvertCond=*/false); 649 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!"); 650 651 // Allow some cases to be rejected. 652 if (shouldEmitAsBranches(SL->SwitchCases)) { 653 // Emit the branch for this block. 654 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder); 655 SL->SwitchCases.erase(SL->SwitchCases.begin()); 656 return true; 657 } 658 659 // Okay, we decided not to do this, remove any inserted MBB's and clear 660 // SwitchCases. 661 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I) 662 MF->erase(SL->SwitchCases[I].ThisBB); 663 664 SL->SwitchCases.clear(); 665 } 666 } 667 668 // Create a CaseBlock record representing this branch. 669 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal, 670 ConstantInt::getTrue(MF->getFunction().getContext()), 671 nullptr, Succ0MBB, Succ1MBB, &CurMBB, 672 CurBuilder->getDebugLoc()); 673 674 // Use emitSwitchCase to actually insert the fast branch sequence for this 675 // cond branch. 676 emitSwitchCase(CB, &CurMBB, *CurBuilder); 677 return true; 678 } 679 680 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 681 MachineBasicBlock *Dst, 682 BranchProbability Prob) { 683 if (!FuncInfo.BPI) { 684 Src->addSuccessorWithoutProb(Dst); 685 return; 686 } 687 if (Prob.isUnknown()) 688 Prob = getEdgeProbability(Src, Dst); 689 Src->addSuccessor(Dst, Prob); 690 } 691 692 BranchProbability 693 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 694 const MachineBasicBlock *Dst) const { 695 const BasicBlock *SrcBB = Src->getBasicBlock(); 696 const BasicBlock *DstBB = Dst->getBasicBlock(); 697 if (!FuncInfo.BPI) { 698 // If BPI is not available, set the default probability as 1 / N, where N is 699 // the number of successors. 700 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 701 return BranchProbability(1, SuccSize); 702 } 703 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 704 } 705 706 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 707 using namespace SwitchCG; 708 // Extract cases from the switch. 709 const SwitchInst &SI = cast<SwitchInst>(U); 710 BranchProbabilityInfo *BPI = FuncInfo.BPI; 711 CaseClusterVector Clusters; 712 Clusters.reserve(SI.getNumCases()); 713 for (const auto &I : SI.cases()) { 714 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 715 assert(Succ && "Could not find successor mbb in mapping"); 716 const ConstantInt *CaseVal = I.getCaseValue(); 717 BranchProbability Prob = 718 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 719 : BranchProbability(1, SI.getNumCases() + 1); 720 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 721 } 722 723 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 724 725 // Cluster adjacent cases with the same destination. We do this at all 726 // optimization levels because it's cheap to do and will make codegen faster 727 // if there are many clusters. 728 sortAndRangeify(Clusters); 729 730 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 731 732 // If there is only the default destination, jump there directly. 733 if (Clusters.empty()) { 734 SwitchMBB->addSuccessor(DefaultMBB); 735 if (DefaultMBB != SwitchMBB->getNextNode()) 736 MIB.buildBr(*DefaultMBB); 737 return true; 738 } 739 740 SL->findJumpTables(Clusters, &SI, std::nullopt, DefaultMBB, nullptr, nullptr); 741 SL->findBitTestClusters(Clusters, &SI); 742 743 LLVM_DEBUG({ 744 dbgs() << "Case clusters: "; 745 for (const CaseCluster &C : Clusters) { 746 if (C.Kind == CC_JumpTable) 747 dbgs() << "JT:"; 748 if (C.Kind == CC_BitTests) 749 dbgs() << "BT:"; 750 751 C.Low->getValue().print(dbgs(), true); 752 if (C.Low != C.High) { 753 dbgs() << '-'; 754 C.High->getValue().print(dbgs(), true); 755 } 756 dbgs() << ' '; 757 } 758 dbgs() << '\n'; 759 }); 760 761 assert(!Clusters.empty()); 762 SwitchWorkList WorkList; 763 CaseClusterIt First = Clusters.begin(); 764 CaseClusterIt Last = Clusters.end() - 1; 765 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 766 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 767 768 while (!WorkList.empty()) { 769 SwitchWorkListItem W = WorkList.pop_back_val(); 770 771 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 772 // For optimized builds, lower large range as a balanced binary tree. 773 if (NumClusters > 3 && 774 MF->getTarget().getOptLevel() != CodeGenOptLevel::None && 775 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 776 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB, MIB); 777 continue; 778 } 779 780 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 781 return false; 782 } 783 return true; 784 } 785 786 void IRTranslator::splitWorkItem(SwitchCG::SwitchWorkList &WorkList, 787 const SwitchCG::SwitchWorkListItem &W, 788 Value *Cond, MachineBasicBlock *SwitchMBB, 789 MachineIRBuilder &MIB) { 790 using namespace SwitchCG; 791 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 792 "Clusters not sorted?"); 793 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 794 795 auto [LastLeft, FirstRight, LeftProb, RightProb] = 796 SL->computeSplitWorkItemInfo(W); 797 798 // Use the first element on the right as pivot since we will make less-than 799 // comparisons against it. 800 CaseClusterIt PivotCluster = FirstRight; 801 assert(PivotCluster > W.FirstCluster); 802 assert(PivotCluster <= W.LastCluster); 803 804 CaseClusterIt FirstLeft = W.FirstCluster; 805 CaseClusterIt LastRight = W.LastCluster; 806 807 const ConstantInt *Pivot = PivotCluster->Low; 808 809 // New blocks will be inserted immediately after the current one. 810 MachineFunction::iterator BBI(W.MBB); 811 ++BBI; 812 813 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 814 // we can branch to its destination directly if it's squeezed exactly in 815 // between the known lower bound and Pivot - 1. 816 MachineBasicBlock *LeftMBB; 817 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 818 FirstLeft->Low == W.GE && 819 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 820 LeftMBB = FirstLeft->MBB; 821 } else { 822 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 823 FuncInfo.MF->insert(BBI, LeftMBB); 824 WorkList.push_back( 825 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 826 } 827 828 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 829 // single cluster, RHS.Low == Pivot, and we can branch to its destination 830 // directly if RHS.High equals the current upper bound. 831 MachineBasicBlock *RightMBB; 832 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && W.LT && 833 (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 834 RightMBB = FirstRight->MBB; 835 } else { 836 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 837 FuncInfo.MF->insert(BBI, RightMBB); 838 WorkList.push_back( 839 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 840 } 841 842 // Create the CaseBlock record that will be used to lower the branch. 843 CaseBlock CB(ICmpInst::Predicate::ICMP_SLT, false, Cond, Pivot, nullptr, 844 LeftMBB, RightMBB, W.MBB, MIB.getDebugLoc(), LeftProb, 845 RightProb); 846 847 if (W.MBB == SwitchMBB) 848 emitSwitchCase(CB, SwitchMBB, MIB); 849 else 850 SL->SwitchCases.push_back(CB); 851 } 852 853 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 854 MachineBasicBlock *MBB) { 855 // Emit the code for the jump table 856 assert(JT.Reg && "Should lower JT Header first!"); 857 MachineIRBuilder MIB(*MBB->getParent()); 858 MIB.setMBB(*MBB); 859 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 860 861 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext()); 862 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 863 864 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 865 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 866 } 867 868 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 869 SwitchCG::JumpTableHeader &JTH, 870 MachineBasicBlock *HeaderBB) { 871 MachineIRBuilder MIB(*HeaderBB->getParent()); 872 MIB.setMBB(*HeaderBB); 873 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 874 875 const Value &SValue = *JTH.SValue; 876 // Subtract the lowest switch case value from the value being switched on. 877 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 878 Register SwitchOpReg = getOrCreateVReg(SValue); 879 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 880 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 881 882 // This value may be smaller or larger than the target's pointer type, and 883 // therefore require extension or truncating. 884 auto *PtrIRTy = PointerType::getUnqual(SValue.getContext()); 885 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 886 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 887 888 JT.Reg = Sub.getReg(0); 889 890 if (JTH.FallthroughUnreachable) { 891 if (JT.MBB != HeaderBB->getNextNode()) 892 MIB.buildBr(*JT.MBB); 893 return true; 894 } 895 896 // Emit the range check for the jump table, and branch to the default block 897 // for the switch statement if the value being switched on exceeds the 898 // largest case in the switch. 899 auto Cst = getOrCreateVReg( 900 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 901 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 902 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 903 904 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 905 906 // Avoid emitting unnecessary branches to the next block. 907 if (JT.MBB != HeaderBB->getNextNode()) 908 BrCond = MIB.buildBr(*JT.MBB); 909 return true; 910 } 911 912 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 913 MachineBasicBlock *SwitchBB, 914 MachineIRBuilder &MIB) { 915 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 916 Register Cond; 917 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 918 MIB.setDebugLoc(CB.DbgLoc); 919 MIB.setMBB(*CB.ThisBB); 920 921 if (CB.PredInfo.NoCmp) { 922 // Branch or fall through to TrueBB. 923 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 924 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 925 CB.ThisBB); 926 CB.ThisBB->normalizeSuccProbs(); 927 if (CB.TrueBB != CB.ThisBB->getNextNode()) 928 MIB.buildBr(*CB.TrueBB); 929 MIB.setDebugLoc(OldDbgLoc); 930 return; 931 } 932 933 const LLT i1Ty = LLT::scalar(1); 934 // Build the compare. 935 if (!CB.CmpMHS) { 936 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS); 937 // For conditional branch lowering, we might try to do something silly like 938 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so, 939 // just re-use the existing condition vreg. 940 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && CI->isOne() && 941 CB.PredInfo.Pred == CmpInst::ICMP_EQ) { 942 Cond = CondLHS; 943 } else { 944 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 945 if (CmpInst::isFPPredicate(CB.PredInfo.Pred)) 946 Cond = 947 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 948 else 949 Cond = 950 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 951 } 952 } else { 953 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 954 "Can only handle SLE ranges"); 955 956 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 957 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 958 959 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 960 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 961 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 962 Cond = 963 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 964 } else { 965 const LLT CmpTy = MRI->getType(CmpOpReg); 966 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 967 auto Diff = MIB.buildConstant(CmpTy, High - Low); 968 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 969 } 970 } 971 972 // Update successor info 973 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 974 975 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 976 CB.ThisBB); 977 978 // TrueBB and FalseBB are always different unless the incoming IR is 979 // degenerate. This only happens when running llc on weird IR. 980 if (CB.TrueBB != CB.FalseBB) 981 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 982 CB.ThisBB->normalizeSuccProbs(); 983 984 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 985 CB.ThisBB); 986 987 MIB.buildBrCond(Cond, *CB.TrueBB); 988 MIB.buildBr(*CB.FalseBB); 989 MIB.setDebugLoc(OldDbgLoc); 990 } 991 992 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 993 MachineBasicBlock *SwitchMBB, 994 MachineBasicBlock *CurMBB, 995 MachineBasicBlock *DefaultMBB, 996 MachineIRBuilder &MIB, 997 MachineFunction::iterator BBI, 998 BranchProbability UnhandledProbs, 999 SwitchCG::CaseClusterIt I, 1000 MachineBasicBlock *Fallthrough, 1001 bool FallthroughUnreachable) { 1002 using namespace SwitchCG; 1003 MachineFunction *CurMF = SwitchMBB->getParent(); 1004 // FIXME: Optimize away range check based on pivot comparisons. 1005 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 1006 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 1007 BranchProbability DefaultProb = W.DefaultProb; 1008 1009 // The jump block hasn't been inserted yet; insert it here. 1010 MachineBasicBlock *JumpMBB = JT->MBB; 1011 CurMF->insert(BBI, JumpMBB); 1012 1013 // Since the jump table block is separate from the switch block, we need 1014 // to keep track of it as a machine predecessor to the default block, 1015 // otherwise we lose the phi edges. 1016 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 1017 CurMBB); 1018 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 1019 JumpMBB); 1020 1021 auto JumpProb = I->Prob; 1022 auto FallthroughProb = UnhandledProbs; 1023 1024 // If the default statement is a target of the jump table, we evenly 1025 // distribute the default probability to successors of CurMBB. Also 1026 // update the probability on the edge from JumpMBB to Fallthrough. 1027 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 1028 SE = JumpMBB->succ_end(); 1029 SI != SE; ++SI) { 1030 if (*SI == DefaultMBB) { 1031 JumpProb += DefaultProb / 2; 1032 FallthroughProb -= DefaultProb / 2; 1033 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 1034 JumpMBB->normalizeSuccProbs(); 1035 } else { 1036 // Also record edges from the jump table block to it's successors. 1037 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 1038 JumpMBB); 1039 } 1040 } 1041 1042 if (FallthroughUnreachable) 1043 JTH->FallthroughUnreachable = true; 1044 1045 if (!JTH->FallthroughUnreachable) 1046 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 1047 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 1048 CurMBB->normalizeSuccProbs(); 1049 1050 // The jump table header will be inserted in our current block, do the 1051 // range check, and fall through to our fallthrough block. 1052 JTH->HeaderBB = CurMBB; 1053 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 1054 1055 // If we're in the right place, emit the jump table header right now. 1056 if (CurMBB == SwitchMBB) { 1057 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 1058 return false; 1059 JTH->Emitted = true; 1060 } 1061 return true; 1062 } 1063 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 1064 Value *Cond, 1065 MachineBasicBlock *Fallthrough, 1066 bool FallthroughUnreachable, 1067 BranchProbability UnhandledProbs, 1068 MachineBasicBlock *CurMBB, 1069 MachineIRBuilder &MIB, 1070 MachineBasicBlock *SwitchMBB) { 1071 using namespace SwitchCG; 1072 const Value *RHS, *LHS, *MHS; 1073 CmpInst::Predicate Pred; 1074 if (I->Low == I->High) { 1075 // Check Cond == I->Low. 1076 Pred = CmpInst::ICMP_EQ; 1077 LHS = Cond; 1078 RHS = I->Low; 1079 MHS = nullptr; 1080 } else { 1081 // Check I->Low <= Cond <= I->High. 1082 Pred = CmpInst::ICMP_SLE; 1083 LHS = I->Low; 1084 MHS = Cond; 1085 RHS = I->High; 1086 } 1087 1088 // If Fallthrough is unreachable, fold away the comparison. 1089 // The false probability is the sum of all unhandled cases. 1090 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 1091 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 1092 1093 emitSwitchCase(CB, SwitchMBB, MIB); 1094 return true; 1095 } 1096 1097 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B, 1098 MachineBasicBlock *SwitchBB) { 1099 MachineIRBuilder &MIB = *CurBuilder; 1100 MIB.setMBB(*SwitchBB); 1101 1102 // Subtract the minimum value. 1103 Register SwitchOpReg = getOrCreateVReg(*B.SValue); 1104 1105 LLT SwitchOpTy = MRI->getType(SwitchOpReg); 1106 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0); 1107 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg); 1108 1109 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext()); 1110 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1111 1112 LLT MaskTy = SwitchOpTy; 1113 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() || 1114 !llvm::has_single_bit<uint32_t>(MaskTy.getSizeInBits())) 1115 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1116 else { 1117 // Ensure that the type will fit the mask value. 1118 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) { 1119 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) { 1120 // Switch table case range are encoded into series of masks. 1121 // Just use pointer type, it's guaranteed to fit. 1122 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1123 break; 1124 } 1125 } 1126 } 1127 Register SubReg = RangeSub.getReg(0); 1128 if (SwitchOpTy != MaskTy) 1129 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0); 1130 1131 B.RegVT = getMVTForLLT(MaskTy); 1132 B.Reg = SubReg; 1133 1134 MachineBasicBlock *MBB = B.Cases[0].ThisBB; 1135 1136 if (!B.FallthroughUnreachable) 1137 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 1138 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 1139 1140 SwitchBB->normalizeSuccProbs(); 1141 1142 if (!B.FallthroughUnreachable) { 1143 // Conditional branch to the default block. 1144 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range); 1145 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1), 1146 RangeSub, RangeCst); 1147 MIB.buildBrCond(RangeCmp, *B.Default); 1148 } 1149 1150 // Avoid emitting unnecessary branches to the next block. 1151 if (MBB != SwitchBB->getNextNode()) 1152 MIB.buildBr(*MBB); 1153 } 1154 1155 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB, 1156 MachineBasicBlock *NextMBB, 1157 BranchProbability BranchProbToNext, 1158 Register Reg, SwitchCG::BitTestCase &B, 1159 MachineBasicBlock *SwitchBB) { 1160 MachineIRBuilder &MIB = *CurBuilder; 1161 MIB.setMBB(*SwitchBB); 1162 1163 LLT SwitchTy = getLLTForMVT(BB.RegVT); 1164 Register Cmp; 1165 unsigned PopCount = llvm::popcount(B.Mask); 1166 if (PopCount == 1) { 1167 // Testing for a single bit; just compare the shift count with what it 1168 // would need to be to shift a 1 bit in that position. 1169 auto MaskTrailingZeros = 1170 MIB.buildConstant(SwitchTy, llvm::countr_zero(B.Mask)); 1171 Cmp = 1172 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros) 1173 .getReg(0); 1174 } else if (PopCount == BB.Range) { 1175 // There is only one zero bit in the range, test for it directly. 1176 auto MaskTrailingOnes = 1177 MIB.buildConstant(SwitchTy, llvm::countr_one(B.Mask)); 1178 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes) 1179 .getReg(0); 1180 } else { 1181 // Make desired shift. 1182 auto CstOne = MIB.buildConstant(SwitchTy, 1); 1183 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg); 1184 1185 // Emit bit tests and jumps. 1186 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask); 1187 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask); 1188 auto CstZero = MIB.buildConstant(SwitchTy, 0); 1189 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero) 1190 .getReg(0); 1191 } 1192 1193 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 1194 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 1195 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 1196 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 1197 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 1198 // one as they are relative probabilities (and thus work more like weights), 1199 // and hence we need to normalize them to let the sum of them become one. 1200 SwitchBB->normalizeSuccProbs(); 1201 1202 // Record the fact that the IR edge from the header to the bit test target 1203 // will go through our new block. Neeeded for PHIs to have nodes added. 1204 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()}, 1205 SwitchBB); 1206 1207 MIB.buildBrCond(Cmp, *B.TargetBB); 1208 1209 // Avoid emitting unnecessary branches to the next block. 1210 if (NextMBB != SwitchBB->getNextNode()) 1211 MIB.buildBr(*NextMBB); 1212 } 1213 1214 bool IRTranslator::lowerBitTestWorkItem( 1215 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB, 1216 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB, 1217 MachineIRBuilder &MIB, MachineFunction::iterator BBI, 1218 BranchProbability DefaultProb, BranchProbability UnhandledProbs, 1219 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough, 1220 bool FallthroughUnreachable) { 1221 using namespace SwitchCG; 1222 MachineFunction *CurMF = SwitchMBB->getParent(); 1223 // FIXME: Optimize away range check based on pivot comparisons. 1224 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 1225 // The bit test blocks haven't been inserted yet; insert them here. 1226 for (BitTestCase &BTC : BTB->Cases) 1227 CurMF->insert(BBI, BTC.ThisBB); 1228 1229 // Fill in fields of the BitTestBlock. 1230 BTB->Parent = CurMBB; 1231 BTB->Default = Fallthrough; 1232 1233 BTB->DefaultProb = UnhandledProbs; 1234 // If the cases in bit test don't form a contiguous range, we evenly 1235 // distribute the probability on the edge to Fallthrough to two 1236 // successors of CurMBB. 1237 if (!BTB->ContiguousRange) { 1238 BTB->Prob += DefaultProb / 2; 1239 BTB->DefaultProb -= DefaultProb / 2; 1240 } 1241 1242 if (FallthroughUnreachable) 1243 BTB->FallthroughUnreachable = true; 1244 1245 // If we're in the right place, emit the bit test header right now. 1246 if (CurMBB == SwitchMBB) { 1247 emitBitTestHeader(*BTB, SwitchMBB); 1248 BTB->Emitted = true; 1249 } 1250 return true; 1251 } 1252 1253 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 1254 Value *Cond, 1255 MachineBasicBlock *SwitchMBB, 1256 MachineBasicBlock *DefaultMBB, 1257 MachineIRBuilder &MIB) { 1258 using namespace SwitchCG; 1259 MachineFunction *CurMF = FuncInfo.MF; 1260 MachineBasicBlock *NextMBB = nullptr; 1261 MachineFunction::iterator BBI(W.MBB); 1262 if (++BBI != FuncInfo.MF->end()) 1263 NextMBB = &*BBI; 1264 1265 if (EnableOpts) { 1266 // Here, we order cases by probability so the most likely case will be 1267 // checked first. However, two clusters can have the same probability in 1268 // which case their relative ordering is non-deterministic. So we use Low 1269 // as a tie-breaker as clusters are guaranteed to never overlap. 1270 llvm::sort(W.FirstCluster, W.LastCluster + 1, 1271 [](const CaseCluster &a, const CaseCluster &b) { 1272 return a.Prob != b.Prob 1273 ? a.Prob > b.Prob 1274 : a.Low->getValue().slt(b.Low->getValue()); 1275 }); 1276 1277 // Rearrange the case blocks so that the last one falls through if possible 1278 // without changing the order of probabilities. 1279 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 1280 --I; 1281 if (I->Prob > W.LastCluster->Prob) 1282 break; 1283 if (I->Kind == CC_Range && I->MBB == NextMBB) { 1284 std::swap(*I, *W.LastCluster); 1285 break; 1286 } 1287 } 1288 } 1289 1290 // Compute total probability. 1291 BranchProbability DefaultProb = W.DefaultProb; 1292 BranchProbability UnhandledProbs = DefaultProb; 1293 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 1294 UnhandledProbs += I->Prob; 1295 1296 MachineBasicBlock *CurMBB = W.MBB; 1297 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 1298 bool FallthroughUnreachable = false; 1299 MachineBasicBlock *Fallthrough; 1300 if (I == W.LastCluster) { 1301 // For the last cluster, fall through to the default destination. 1302 Fallthrough = DefaultMBB; 1303 FallthroughUnreachable = isa<UnreachableInst>( 1304 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 1305 } else { 1306 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 1307 CurMF->insert(BBI, Fallthrough); 1308 } 1309 UnhandledProbs -= I->Prob; 1310 1311 switch (I->Kind) { 1312 case CC_BitTests: { 1313 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1314 DefaultProb, UnhandledProbs, I, Fallthrough, 1315 FallthroughUnreachable)) { 1316 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch"); 1317 return false; 1318 } 1319 break; 1320 } 1321 1322 case CC_JumpTable: { 1323 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1324 UnhandledProbs, I, Fallthrough, 1325 FallthroughUnreachable)) { 1326 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 1327 return false; 1328 } 1329 break; 1330 } 1331 case CC_Range: { 1332 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 1333 FallthroughUnreachable, UnhandledProbs, 1334 CurMBB, MIB, SwitchMBB)) { 1335 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 1336 return false; 1337 } 1338 break; 1339 } 1340 } 1341 CurMBB = Fallthrough; 1342 } 1343 1344 return true; 1345 } 1346 1347 bool IRTranslator::translateIndirectBr(const User &U, 1348 MachineIRBuilder &MIRBuilder) { 1349 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 1350 1351 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 1352 MIRBuilder.buildBrIndirect(Tgt); 1353 1354 // Link successors. 1355 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 1356 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 1357 for (const BasicBlock *Succ : successors(&BrInst)) { 1358 // It's legal for indirectbr instructions to have duplicate blocks in the 1359 // destination list. We don't allow this in MIR. Skip anything that's 1360 // already a successor. 1361 if (!AddedSuccessors.insert(Succ).second) 1362 continue; 1363 CurBB.addSuccessor(&getMBB(*Succ)); 1364 } 1365 1366 return true; 1367 } 1368 1369 static bool isSwiftError(const Value *V) { 1370 if (auto Arg = dyn_cast<Argument>(V)) 1371 return Arg->hasSwiftErrorAttr(); 1372 if (auto AI = dyn_cast<AllocaInst>(V)) 1373 return AI->isSwiftError(); 1374 return false; 1375 } 1376 1377 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 1378 const LoadInst &LI = cast<LoadInst>(U); 1379 TypeSize StoreSize = DL->getTypeStoreSize(LI.getType()); 1380 if (StoreSize.isZero()) 1381 return true; 1382 1383 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 1384 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 1385 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 1386 AAMDNodes AAInfo = LI.getAAMetadata(); 1387 1388 const Value *Ptr = LI.getPointerOperand(); 1389 Type *OffsetIRTy = DL->getIndexType(Ptr->getType()); 1390 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1391 1392 if (CLI->supportSwiftError() && isSwiftError(Ptr)) { 1393 assert(Regs.size() == 1 && "swifterror should be single pointer"); 1394 Register VReg = 1395 SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr); 1396 MIRBuilder.buildCopy(Regs[0], VReg); 1397 return true; 1398 } 1399 1400 MachineMemOperand::Flags Flags = 1401 TLI->getLoadMemOperandFlags(LI, *DL, AC, LibInfo); 1402 if (AA && !(Flags & MachineMemOperand::MOInvariant)) { 1403 if (AA->pointsToConstantMemory( 1404 MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) { 1405 Flags |= MachineMemOperand::MOInvariant; 1406 } 1407 } 1408 1409 const MDNode *Ranges = 1410 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 1411 for (unsigned i = 0; i < Regs.size(); ++i) { 1412 Register Addr; 1413 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1414 1415 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 1416 Align BaseAlign = getMemOpAlign(LI); 1417 auto MMO = MF->getMachineMemOperand( 1418 Ptr, Flags, MRI->getType(Regs[i]), 1419 commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges, 1420 LI.getSyncScopeID(), LI.getOrdering()); 1421 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 1422 } 1423 1424 return true; 1425 } 1426 1427 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 1428 const StoreInst &SI = cast<StoreInst>(U); 1429 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()).isZero()) 1430 return true; 1431 1432 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 1433 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 1434 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 1435 1436 Type *OffsetIRTy = DL->getIndexType(SI.getPointerOperandType()); 1437 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1438 1439 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 1440 assert(Vals.size() == 1 && "swifterror should be single pointer"); 1441 1442 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 1443 SI.getPointerOperand()); 1444 MIRBuilder.buildCopy(VReg, Vals[0]); 1445 return true; 1446 } 1447 1448 MachineMemOperand::Flags Flags = TLI->getStoreMemOperandFlags(SI, *DL); 1449 1450 for (unsigned i = 0; i < Vals.size(); ++i) { 1451 Register Addr; 1452 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1453 1454 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 1455 Align BaseAlign = getMemOpAlign(SI); 1456 auto MMO = MF->getMachineMemOperand( 1457 Ptr, Flags, MRI->getType(Vals[i]), 1458 commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr, 1459 SI.getSyncScopeID(), SI.getOrdering()); 1460 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 1461 } 1462 return true; 1463 } 1464 1465 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 1466 const Value *Src = U.getOperand(0); 1467 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 1468 1469 // getIndexedOffsetInType is designed for GEPs, so the first index is the 1470 // usual array element rather than looking into the actual aggregate. 1471 SmallVector<Value *, 1> Indices; 1472 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 1473 1474 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 1475 for (auto Idx : EVI->indices()) 1476 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1477 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 1478 for (auto Idx : IVI->indices()) 1479 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1480 } else { 1481 for (Value *Op : drop_begin(U.operands())) 1482 Indices.push_back(Op); 1483 } 1484 1485 return 8 * static_cast<uint64_t>( 1486 DL.getIndexedOffsetInType(Src->getType(), Indices)); 1487 } 1488 1489 bool IRTranslator::translateExtractValue(const User &U, 1490 MachineIRBuilder &MIRBuilder) { 1491 const Value *Src = U.getOperand(0); 1492 uint64_t Offset = getOffsetFromIndices(U, *DL); 1493 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1494 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 1495 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 1496 auto &DstRegs = allocateVRegs(U); 1497 1498 for (unsigned i = 0; i < DstRegs.size(); ++i) 1499 DstRegs[i] = SrcRegs[Idx++]; 1500 1501 return true; 1502 } 1503 1504 bool IRTranslator::translateInsertValue(const User &U, 1505 MachineIRBuilder &MIRBuilder) { 1506 const Value *Src = U.getOperand(0); 1507 uint64_t Offset = getOffsetFromIndices(U, *DL); 1508 auto &DstRegs = allocateVRegs(U); 1509 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 1510 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1511 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 1512 auto *InsertedIt = InsertedRegs.begin(); 1513 1514 for (unsigned i = 0; i < DstRegs.size(); ++i) { 1515 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 1516 DstRegs[i] = *InsertedIt++; 1517 else 1518 DstRegs[i] = SrcRegs[i]; 1519 } 1520 1521 return true; 1522 } 1523 1524 bool IRTranslator::translateSelect(const User &U, 1525 MachineIRBuilder &MIRBuilder) { 1526 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1527 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1528 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1529 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1530 1531 uint32_t Flags = 0; 1532 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1533 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1534 1535 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1536 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1537 } 1538 1539 return true; 1540 } 1541 1542 bool IRTranslator::translateCopy(const User &U, const Value &V, 1543 MachineIRBuilder &MIRBuilder) { 1544 Register Src = getOrCreateVReg(V); 1545 auto &Regs = *VMap.getVRegs(U); 1546 if (Regs.empty()) { 1547 Regs.push_back(Src); 1548 VMap.getOffsets(U)->push_back(0); 1549 } else { 1550 // If we already assigned a vreg for this instruction, we can't change that. 1551 // Emit a copy to satisfy the users we already emitted. 1552 MIRBuilder.buildCopy(Regs[0], Src); 1553 } 1554 return true; 1555 } 1556 1557 bool IRTranslator::translateBitCast(const User &U, 1558 MachineIRBuilder &MIRBuilder) { 1559 // If we're bitcasting to the source type, we can reuse the source vreg. 1560 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1561 getLLTForType(*U.getType(), *DL)) { 1562 // If the source is a ConstantInt then it was probably created by 1563 // ConstantHoisting and we should leave it alone. 1564 if (isa<ConstantInt>(U.getOperand(0))) 1565 return translateCast(TargetOpcode::G_CONSTANT_FOLD_BARRIER, U, 1566 MIRBuilder); 1567 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1568 } 1569 1570 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1571 } 1572 1573 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1574 MachineIRBuilder &MIRBuilder) { 1575 if (containsBF16Type(U)) 1576 return false; 1577 1578 uint32_t Flags = 0; 1579 if (const Instruction *I = dyn_cast<Instruction>(&U)) 1580 Flags = MachineInstr::copyFlagsFromInstruction(*I); 1581 1582 Register Op = getOrCreateVReg(*U.getOperand(0)); 1583 Register Res = getOrCreateVReg(U); 1584 MIRBuilder.buildInstr(Opcode, {Res}, {Op}, Flags); 1585 return true; 1586 } 1587 1588 bool IRTranslator::translateGetElementPtr(const User &U, 1589 MachineIRBuilder &MIRBuilder) { 1590 Value &Op0 = *U.getOperand(0); 1591 Register BaseReg = getOrCreateVReg(Op0); 1592 Type *PtrIRTy = Op0.getType(); 1593 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1594 Type *OffsetIRTy = DL->getIndexType(PtrIRTy); 1595 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1596 1597 uint32_t Flags = 0; 1598 if (const Instruction *I = dyn_cast<Instruction>(&U)) 1599 Flags = MachineInstr::copyFlagsFromInstruction(*I); 1600 1601 // Normalize Vector GEP - all scalar operands should be converted to the 1602 // splat vector. 1603 unsigned VectorWidth = 0; 1604 1605 // True if we should use a splat vector; using VectorWidth alone is not 1606 // sufficient. 1607 bool WantSplatVector = false; 1608 if (auto *VT = dyn_cast<VectorType>(U.getType())) { 1609 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1610 // We don't produce 1 x N vectors; those are treated as scalars. 1611 WantSplatVector = VectorWidth > 1; 1612 } 1613 1614 // We might need to splat the base pointer into a vector if the offsets 1615 // are vectors. 1616 if (WantSplatVector && !PtrTy.isVector()) { 1617 BaseReg = MIRBuilder 1618 .buildSplatBuildVector(LLT::fixed_vector(VectorWidth, PtrTy), 1619 BaseReg) 1620 .getReg(0); 1621 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1622 PtrTy = getLLTForType(*PtrIRTy, *DL); 1623 OffsetIRTy = DL->getIndexType(PtrIRTy); 1624 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1625 } 1626 1627 int64_t Offset = 0; 1628 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1629 GTI != E; ++GTI) { 1630 const Value *Idx = GTI.getOperand(); 1631 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1632 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1633 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1634 continue; 1635 } else { 1636 uint64_t ElementSize = GTI.getSequentialElementStride(*DL); 1637 1638 // If this is a scalar constant or a splat vector of constants, 1639 // handle it quickly. 1640 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1641 if (std::optional<int64_t> Val = CI->getValue().trySExtValue()) { 1642 Offset += ElementSize * *Val; 1643 continue; 1644 } 1645 } 1646 1647 if (Offset != 0) { 1648 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1649 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1650 .getReg(0); 1651 Offset = 0; 1652 } 1653 1654 Register IdxReg = getOrCreateVReg(*Idx); 1655 LLT IdxTy = MRI->getType(IdxReg); 1656 if (IdxTy != OffsetTy) { 1657 if (!IdxTy.isVector() && WantSplatVector) { 1658 IdxReg = MIRBuilder 1659 .buildSplatBuildVector(OffsetTy.changeElementType(IdxTy), 1660 IdxReg) 1661 .getReg(0); 1662 } 1663 1664 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1665 } 1666 1667 // N = N + Idx * ElementSize; 1668 // Avoid doing it for ElementSize of 1. 1669 Register GepOffsetReg; 1670 if (ElementSize != 1) { 1671 auto ElementSizeMIB = MIRBuilder.buildConstant( 1672 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1673 GepOffsetReg = 1674 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1675 } else 1676 GepOffsetReg = IdxReg; 1677 1678 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1679 } 1680 } 1681 1682 if (Offset != 0) { 1683 auto OffsetMIB = 1684 MIRBuilder.buildConstant(OffsetTy, Offset); 1685 1686 if (int64_t(Offset) >= 0 && cast<GEPOperator>(U).isInBounds()) 1687 Flags |= MachineInstr::MIFlag::NoUWrap; 1688 1689 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0), 1690 Flags); 1691 return true; 1692 } 1693 1694 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1695 return true; 1696 } 1697 1698 bool IRTranslator::translateMemFunc(const CallInst &CI, 1699 MachineIRBuilder &MIRBuilder, 1700 unsigned Opcode) { 1701 const Value *SrcPtr = CI.getArgOperand(1); 1702 // If the source is undef, then just emit a nop. 1703 if (isa<UndefValue>(SrcPtr)) 1704 return true; 1705 1706 SmallVector<Register, 3> SrcRegs; 1707 1708 unsigned MinPtrSize = UINT_MAX; 1709 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) { 1710 Register SrcReg = getOrCreateVReg(**AI); 1711 LLT SrcTy = MRI->getType(SrcReg); 1712 if (SrcTy.isPointer()) 1713 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize); 1714 SrcRegs.push_back(SrcReg); 1715 } 1716 1717 LLT SizeTy = LLT::scalar(MinPtrSize); 1718 1719 // The size operand should be the minimum of the pointer sizes. 1720 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1]; 1721 if (MRI->getType(SizeOpReg) != SizeTy) 1722 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0); 1723 1724 auto ICall = MIRBuilder.buildInstr(Opcode); 1725 for (Register SrcReg : SrcRegs) 1726 ICall.addUse(SrcReg); 1727 1728 Align DstAlign; 1729 Align SrcAlign; 1730 unsigned IsVol = 1731 cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue(); 1732 1733 ConstantInt *CopySize = nullptr; 1734 1735 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1736 DstAlign = MCI->getDestAlign().valueOrOne(); 1737 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1738 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2)); 1739 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) { 1740 DstAlign = MCI->getDestAlign().valueOrOne(); 1741 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1742 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2)); 1743 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1744 DstAlign = MMI->getDestAlign().valueOrOne(); 1745 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1746 CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2)); 1747 } else { 1748 auto *MSI = cast<MemSetInst>(&CI); 1749 DstAlign = MSI->getDestAlign().valueOrOne(); 1750 } 1751 1752 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) { 1753 // We need to propagate the tail call flag from the IR inst as an argument. 1754 // Otherwise, we have to pessimize and assume later that we cannot tail call 1755 // any memory intrinsics. 1756 ICall.addImm(CI.isTailCall() ? 1 : 0); 1757 } 1758 1759 // Create mem operands to store the alignment and volatile info. 1760 MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad; 1761 MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore; 1762 if (IsVol) { 1763 LoadFlags |= MachineMemOperand::MOVolatile; 1764 StoreFlags |= MachineMemOperand::MOVolatile; 1765 } 1766 1767 AAMDNodes AAInfo = CI.getAAMetadata(); 1768 if (AA && CopySize && 1769 AA->pointsToConstantMemory(MemoryLocation( 1770 SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) { 1771 LoadFlags |= MachineMemOperand::MOInvariant; 1772 1773 // FIXME: pointsToConstantMemory probably does not imply dereferenceable, 1774 // but the previous usage implied it did. Probably should check 1775 // isDereferenceableAndAlignedPointer. 1776 LoadFlags |= MachineMemOperand::MODereferenceable; 1777 } 1778 1779 ICall.addMemOperand( 1780 MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)), 1781 StoreFlags, 1, DstAlign, AAInfo)); 1782 if (Opcode != TargetOpcode::G_MEMSET) 1783 ICall.addMemOperand(MF->getMachineMemOperand( 1784 MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo)); 1785 1786 return true; 1787 } 1788 1789 bool IRTranslator::translateTrap(const CallInst &CI, 1790 MachineIRBuilder &MIRBuilder, 1791 unsigned Opcode) { 1792 StringRef TrapFuncName = 1793 CI.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 1794 if (TrapFuncName.empty()) { 1795 if (Opcode == TargetOpcode::G_UBSANTRAP) { 1796 uint64_t Code = cast<ConstantInt>(CI.getOperand(0))->getZExtValue(); 1797 MIRBuilder.buildInstr(Opcode, {}, ArrayRef<llvm::SrcOp>{Code}); 1798 } else { 1799 MIRBuilder.buildInstr(Opcode); 1800 } 1801 return true; 1802 } 1803 1804 CallLowering::CallLoweringInfo Info; 1805 if (Opcode == TargetOpcode::G_UBSANTRAP) 1806 Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)), 1807 CI.getArgOperand(0)->getType(), 0}); 1808 1809 Info.Callee = MachineOperand::CreateES(TrapFuncName.data()); 1810 Info.CB = &CI; 1811 Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0}; 1812 return CLI->lowerCall(MIRBuilder, Info); 1813 } 1814 1815 bool IRTranslator::translateVectorInterleave2Intrinsic( 1816 const CallInst &CI, MachineIRBuilder &MIRBuilder) { 1817 assert(CI.getIntrinsicID() == Intrinsic::vector_interleave2 && 1818 "This function can only be called on the interleave2 intrinsic!"); 1819 // Canonicalize interleave2 to G_SHUFFLE_VECTOR (similar to SelectionDAG). 1820 Register Op0 = getOrCreateVReg(*CI.getOperand(0)); 1821 Register Op1 = getOrCreateVReg(*CI.getOperand(1)); 1822 Register Res = getOrCreateVReg(CI); 1823 1824 LLT OpTy = MRI->getType(Op0); 1825 MIRBuilder.buildShuffleVector(Res, Op0, Op1, 1826 createInterleaveMask(OpTy.getNumElements(), 2)); 1827 1828 return true; 1829 } 1830 1831 bool IRTranslator::translateVectorDeinterleave2Intrinsic( 1832 const CallInst &CI, MachineIRBuilder &MIRBuilder) { 1833 assert(CI.getIntrinsicID() == Intrinsic::vector_deinterleave2 && 1834 "This function can only be called on the deinterleave2 intrinsic!"); 1835 // Canonicalize deinterleave2 to shuffles that extract sub-vectors (similar to 1836 // SelectionDAG). 1837 Register Op = getOrCreateVReg(*CI.getOperand(0)); 1838 auto Undef = MIRBuilder.buildUndef(MRI->getType(Op)); 1839 ArrayRef<Register> Res = getOrCreateVRegs(CI); 1840 1841 LLT ResTy = MRI->getType(Res[0]); 1842 MIRBuilder.buildShuffleVector(Res[0], Op, Undef, 1843 createStrideMask(0, 2, ResTy.getNumElements())); 1844 MIRBuilder.buildShuffleVector(Res[1], Op, Undef, 1845 createStrideMask(1, 2, ResTy.getNumElements())); 1846 1847 return true; 1848 } 1849 1850 void IRTranslator::getStackGuard(Register DstReg, 1851 MachineIRBuilder &MIRBuilder) { 1852 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1853 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1854 auto MIB = 1855 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1856 1857 Value *Global = TLI->getSDagStackGuard(*MF->getFunction().getParent()); 1858 if (!Global) 1859 return; 1860 1861 unsigned AddrSpace = Global->getType()->getPointerAddressSpace(); 1862 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace)); 1863 1864 MachinePointerInfo MPInfo(Global); 1865 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1866 MachineMemOperand::MODereferenceable; 1867 MachineMemOperand *MemRef = MF->getMachineMemOperand( 1868 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace)); 1869 MIB.setMemRefs({MemRef}); 1870 } 1871 1872 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1873 MachineIRBuilder &MIRBuilder) { 1874 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1875 MIRBuilder.buildInstr( 1876 Op, {ResRegs[0], ResRegs[1]}, 1877 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1878 1879 return true; 1880 } 1881 1882 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1883 MachineIRBuilder &MIRBuilder) { 1884 Register Dst = getOrCreateVReg(CI); 1885 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1886 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1887 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1888 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1889 return true; 1890 } 1891 1892 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1893 switch (ID) { 1894 default: 1895 break; 1896 case Intrinsic::acos: 1897 return TargetOpcode::G_FACOS; 1898 case Intrinsic::asin: 1899 return TargetOpcode::G_FASIN; 1900 case Intrinsic::atan: 1901 return TargetOpcode::G_FATAN; 1902 case Intrinsic::atan2: 1903 return TargetOpcode::G_FATAN2; 1904 case Intrinsic::bswap: 1905 return TargetOpcode::G_BSWAP; 1906 case Intrinsic::bitreverse: 1907 return TargetOpcode::G_BITREVERSE; 1908 case Intrinsic::fshl: 1909 return TargetOpcode::G_FSHL; 1910 case Intrinsic::fshr: 1911 return TargetOpcode::G_FSHR; 1912 case Intrinsic::ceil: 1913 return TargetOpcode::G_FCEIL; 1914 case Intrinsic::cos: 1915 return TargetOpcode::G_FCOS; 1916 case Intrinsic::cosh: 1917 return TargetOpcode::G_FCOSH; 1918 case Intrinsic::ctpop: 1919 return TargetOpcode::G_CTPOP; 1920 case Intrinsic::exp: 1921 return TargetOpcode::G_FEXP; 1922 case Intrinsic::exp2: 1923 return TargetOpcode::G_FEXP2; 1924 case Intrinsic::exp10: 1925 return TargetOpcode::G_FEXP10; 1926 case Intrinsic::fabs: 1927 return TargetOpcode::G_FABS; 1928 case Intrinsic::copysign: 1929 return TargetOpcode::G_FCOPYSIGN; 1930 case Intrinsic::minnum: 1931 return TargetOpcode::G_FMINNUM; 1932 case Intrinsic::maxnum: 1933 return TargetOpcode::G_FMAXNUM; 1934 case Intrinsic::minimum: 1935 return TargetOpcode::G_FMINIMUM; 1936 case Intrinsic::maximum: 1937 return TargetOpcode::G_FMAXIMUM; 1938 case Intrinsic::canonicalize: 1939 return TargetOpcode::G_FCANONICALIZE; 1940 case Intrinsic::floor: 1941 return TargetOpcode::G_FFLOOR; 1942 case Intrinsic::fma: 1943 return TargetOpcode::G_FMA; 1944 case Intrinsic::log: 1945 return TargetOpcode::G_FLOG; 1946 case Intrinsic::log2: 1947 return TargetOpcode::G_FLOG2; 1948 case Intrinsic::log10: 1949 return TargetOpcode::G_FLOG10; 1950 case Intrinsic::ldexp: 1951 return TargetOpcode::G_FLDEXP; 1952 case Intrinsic::nearbyint: 1953 return TargetOpcode::G_FNEARBYINT; 1954 case Intrinsic::pow: 1955 return TargetOpcode::G_FPOW; 1956 case Intrinsic::powi: 1957 return TargetOpcode::G_FPOWI; 1958 case Intrinsic::rint: 1959 return TargetOpcode::G_FRINT; 1960 case Intrinsic::round: 1961 return TargetOpcode::G_INTRINSIC_ROUND; 1962 case Intrinsic::roundeven: 1963 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1964 case Intrinsic::sin: 1965 return TargetOpcode::G_FSIN; 1966 case Intrinsic::sinh: 1967 return TargetOpcode::G_FSINH; 1968 case Intrinsic::sqrt: 1969 return TargetOpcode::G_FSQRT; 1970 case Intrinsic::tan: 1971 return TargetOpcode::G_FTAN; 1972 case Intrinsic::tanh: 1973 return TargetOpcode::G_FTANH; 1974 case Intrinsic::trunc: 1975 return TargetOpcode::G_INTRINSIC_TRUNC; 1976 case Intrinsic::readcyclecounter: 1977 return TargetOpcode::G_READCYCLECOUNTER; 1978 case Intrinsic::readsteadycounter: 1979 return TargetOpcode::G_READSTEADYCOUNTER; 1980 case Intrinsic::ptrmask: 1981 return TargetOpcode::G_PTRMASK; 1982 case Intrinsic::lrint: 1983 return TargetOpcode::G_INTRINSIC_LRINT; 1984 case Intrinsic::llrint: 1985 return TargetOpcode::G_INTRINSIC_LLRINT; 1986 // FADD/FMUL require checking the FMF, so are handled elsewhere. 1987 case Intrinsic::vector_reduce_fmin: 1988 return TargetOpcode::G_VECREDUCE_FMIN; 1989 case Intrinsic::vector_reduce_fmax: 1990 return TargetOpcode::G_VECREDUCE_FMAX; 1991 case Intrinsic::vector_reduce_fminimum: 1992 return TargetOpcode::G_VECREDUCE_FMINIMUM; 1993 case Intrinsic::vector_reduce_fmaximum: 1994 return TargetOpcode::G_VECREDUCE_FMAXIMUM; 1995 case Intrinsic::vector_reduce_add: 1996 return TargetOpcode::G_VECREDUCE_ADD; 1997 case Intrinsic::vector_reduce_mul: 1998 return TargetOpcode::G_VECREDUCE_MUL; 1999 case Intrinsic::vector_reduce_and: 2000 return TargetOpcode::G_VECREDUCE_AND; 2001 case Intrinsic::vector_reduce_or: 2002 return TargetOpcode::G_VECREDUCE_OR; 2003 case Intrinsic::vector_reduce_xor: 2004 return TargetOpcode::G_VECREDUCE_XOR; 2005 case Intrinsic::vector_reduce_smax: 2006 return TargetOpcode::G_VECREDUCE_SMAX; 2007 case Intrinsic::vector_reduce_smin: 2008 return TargetOpcode::G_VECREDUCE_SMIN; 2009 case Intrinsic::vector_reduce_umax: 2010 return TargetOpcode::G_VECREDUCE_UMAX; 2011 case Intrinsic::vector_reduce_umin: 2012 return TargetOpcode::G_VECREDUCE_UMIN; 2013 case Intrinsic::experimental_vector_compress: 2014 return TargetOpcode::G_VECTOR_COMPRESS; 2015 case Intrinsic::lround: 2016 return TargetOpcode::G_LROUND; 2017 case Intrinsic::llround: 2018 return TargetOpcode::G_LLROUND; 2019 case Intrinsic::get_fpenv: 2020 return TargetOpcode::G_GET_FPENV; 2021 case Intrinsic::get_fpmode: 2022 return TargetOpcode::G_GET_FPMODE; 2023 } 2024 return Intrinsic::not_intrinsic; 2025 } 2026 2027 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 2028 Intrinsic::ID ID, 2029 MachineIRBuilder &MIRBuilder) { 2030 2031 unsigned Op = getSimpleIntrinsicOpcode(ID); 2032 2033 // Is this a simple intrinsic? 2034 if (Op == Intrinsic::not_intrinsic) 2035 return false; 2036 2037 // Yes. Let's translate it. 2038 SmallVector<llvm::SrcOp, 4> VRegs; 2039 for (const auto &Arg : CI.args()) 2040 VRegs.push_back(getOrCreateVReg(*Arg)); 2041 2042 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 2043 MachineInstr::copyFlagsFromInstruction(CI)); 2044 return true; 2045 } 2046 2047 // TODO: Include ConstainedOps.def when all strict instructions are defined. 2048 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 2049 switch (ID) { 2050 case Intrinsic::experimental_constrained_fadd: 2051 return TargetOpcode::G_STRICT_FADD; 2052 case Intrinsic::experimental_constrained_fsub: 2053 return TargetOpcode::G_STRICT_FSUB; 2054 case Intrinsic::experimental_constrained_fmul: 2055 return TargetOpcode::G_STRICT_FMUL; 2056 case Intrinsic::experimental_constrained_fdiv: 2057 return TargetOpcode::G_STRICT_FDIV; 2058 case Intrinsic::experimental_constrained_frem: 2059 return TargetOpcode::G_STRICT_FREM; 2060 case Intrinsic::experimental_constrained_fma: 2061 return TargetOpcode::G_STRICT_FMA; 2062 case Intrinsic::experimental_constrained_sqrt: 2063 return TargetOpcode::G_STRICT_FSQRT; 2064 case Intrinsic::experimental_constrained_ldexp: 2065 return TargetOpcode::G_STRICT_FLDEXP; 2066 default: 2067 return 0; 2068 } 2069 } 2070 2071 bool IRTranslator::translateConstrainedFPIntrinsic( 2072 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 2073 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 2074 2075 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 2076 if (!Opcode) 2077 return false; 2078 2079 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(FPI); 2080 if (EB == fp::ExceptionBehavior::ebIgnore) 2081 Flags |= MachineInstr::NoFPExcept; 2082 2083 SmallVector<llvm::SrcOp, 4> VRegs; 2084 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 2085 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(I))); 2086 2087 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 2088 return true; 2089 } 2090 2091 std::optional<MCRegister> IRTranslator::getArgPhysReg(Argument &Arg) { 2092 auto VRegs = getOrCreateVRegs(Arg); 2093 if (VRegs.size() != 1) 2094 return std::nullopt; 2095 2096 // Arguments are lowered as a copy of a livein physical register. 2097 auto *VRegDef = MF->getRegInfo().getVRegDef(VRegs[0]); 2098 if (!VRegDef || !VRegDef->isCopy()) 2099 return std::nullopt; 2100 return VRegDef->getOperand(1).getReg().asMCReg(); 2101 } 2102 2103 bool IRTranslator::translateIfEntryValueArgument(bool isDeclare, Value *Val, 2104 const DILocalVariable *Var, 2105 const DIExpression *Expr, 2106 const DebugLoc &DL, 2107 MachineIRBuilder &MIRBuilder) { 2108 auto *Arg = dyn_cast<Argument>(Val); 2109 if (!Arg) 2110 return false; 2111 2112 if (!Expr->isEntryValue()) 2113 return false; 2114 2115 std::optional<MCRegister> PhysReg = getArgPhysReg(*Arg); 2116 if (!PhysReg) { 2117 LLVM_DEBUG(dbgs() << "Dropping dbg." << (isDeclare ? "declare" : "value") 2118 << ": expression is entry_value but " 2119 << "couldn't find a physical register\n"); 2120 LLVM_DEBUG(dbgs() << *Var << "\n"); 2121 return true; 2122 } 2123 2124 if (isDeclare) { 2125 // Append an op deref to account for the fact that this is a dbg_declare. 2126 Expr = DIExpression::append(Expr, dwarf::DW_OP_deref); 2127 MF->setVariableDbgInfo(Var, Expr, *PhysReg, DL); 2128 } else { 2129 MIRBuilder.buildDirectDbgValue(*PhysReg, Var, Expr); 2130 } 2131 2132 return true; 2133 } 2134 2135 static unsigned getConvOpcode(Intrinsic::ID ID) { 2136 switch (ID) { 2137 default: 2138 llvm_unreachable("Unexpected intrinsic"); 2139 case Intrinsic::experimental_convergence_anchor: 2140 return TargetOpcode::CONVERGENCECTRL_ANCHOR; 2141 case Intrinsic::experimental_convergence_entry: 2142 return TargetOpcode::CONVERGENCECTRL_ENTRY; 2143 case Intrinsic::experimental_convergence_loop: 2144 return TargetOpcode::CONVERGENCECTRL_LOOP; 2145 } 2146 } 2147 2148 bool IRTranslator::translateConvergenceControlIntrinsic( 2149 const CallInst &CI, Intrinsic::ID ID, MachineIRBuilder &MIRBuilder) { 2150 MachineInstrBuilder MIB = MIRBuilder.buildInstr(getConvOpcode(ID)); 2151 Register OutputReg = getOrCreateConvergenceTokenVReg(CI); 2152 MIB.addDef(OutputReg); 2153 2154 if (ID == Intrinsic::experimental_convergence_loop) { 2155 auto Bundle = CI.getOperandBundle(LLVMContext::OB_convergencectrl); 2156 assert(Bundle && "Expected a convergence control token."); 2157 Register InputReg = 2158 getOrCreateConvergenceTokenVReg(*Bundle->Inputs[0].get()); 2159 MIB.addUse(InputReg); 2160 } 2161 2162 return true; 2163 } 2164 2165 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 2166 MachineIRBuilder &MIRBuilder) { 2167 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) { 2168 if (ORE->enabled()) { 2169 if (MemoryOpRemark::canHandle(MI, *LibInfo)) { 2170 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo); 2171 R.visit(MI); 2172 } 2173 } 2174 } 2175 2176 // If this is a simple intrinsic (that is, we just need to add a def of 2177 // a vreg, and uses for each arg operand, then translate it. 2178 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 2179 return true; 2180 2181 switch (ID) { 2182 default: 2183 break; 2184 case Intrinsic::lifetime_start: 2185 case Intrinsic::lifetime_end: { 2186 // No stack colouring in O0, discard region information. 2187 if (MF->getTarget().getOptLevel() == CodeGenOptLevel::None || 2188 MF->getFunction().hasOptNone()) 2189 return true; 2190 2191 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 2192 : TargetOpcode::LIFETIME_END; 2193 2194 // Get the underlying objects for the location passed on the lifetime 2195 // marker. 2196 SmallVector<const Value *, 4> Allocas; 2197 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 2198 2199 // Iterate over each underlying object, creating lifetime markers for each 2200 // static alloca. Quit if we find a non-static alloca. 2201 for (const Value *V : Allocas) { 2202 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 2203 if (!AI) 2204 continue; 2205 2206 if (!AI->isStaticAlloca()) 2207 return true; 2208 2209 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 2210 } 2211 return true; 2212 } 2213 case Intrinsic::fake_use: { 2214 SmallVector<llvm::SrcOp, 4> VRegs; 2215 for (const auto &Arg : CI.args()) 2216 for (auto VReg : getOrCreateVRegs(*Arg)) 2217 VRegs.push_back(VReg); 2218 MIRBuilder.buildInstr(TargetOpcode::FAKE_USE, {}, VRegs); 2219 MF->setHasFakeUses(true); 2220 return true; 2221 } 2222 case Intrinsic::dbg_declare: { 2223 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 2224 assert(DI.getVariable() && "Missing variable"); 2225 translateDbgDeclareRecord(DI.getAddress(), DI.hasArgList(), DI.getVariable(), 2226 DI.getExpression(), DI.getDebugLoc(), MIRBuilder); 2227 return true; 2228 } 2229 case Intrinsic::dbg_label: { 2230 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 2231 assert(DI.getLabel() && "Missing label"); 2232 2233 assert(DI.getLabel()->isValidLocationForIntrinsic( 2234 MIRBuilder.getDebugLoc()) && 2235 "Expected inlined-at fields to agree"); 2236 2237 MIRBuilder.buildDbgLabel(DI.getLabel()); 2238 return true; 2239 } 2240 case Intrinsic::vaend: 2241 // No target I know of cares about va_end. Certainly no in-tree target 2242 // does. Simplest intrinsic ever! 2243 return true; 2244 case Intrinsic::vastart: { 2245 Value *Ptr = CI.getArgOperand(0); 2246 unsigned ListSize = TLI->getVaListSizeInBits(*DL) / 8; 2247 Align Alignment = getKnownAlignment(Ptr, *DL); 2248 2249 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 2250 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 2251 MachineMemOperand::MOStore, 2252 ListSize, Alignment)); 2253 return true; 2254 } 2255 case Intrinsic::dbg_assign: 2256 // A dbg.assign is a dbg.value with more information about stack locations, 2257 // typically produced during optimisation of variables with leaked 2258 // addresses. We can treat it like a normal dbg_value intrinsic here; to 2259 // benefit from the full analysis of stack/SSA locations, GlobalISel would 2260 // need to register for and use the AssignmentTrackingAnalysis pass. 2261 [[fallthrough]]; 2262 case Intrinsic::dbg_value: { 2263 // This form of DBG_VALUE is target-independent. 2264 const DbgValueInst &DI = cast<DbgValueInst>(CI); 2265 translateDbgValueRecord(DI.getValue(), DI.hasArgList(), DI.getVariable(), 2266 DI.getExpression(), DI.getDebugLoc(), MIRBuilder); 2267 return true; 2268 } 2269 case Intrinsic::uadd_with_overflow: 2270 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 2271 case Intrinsic::sadd_with_overflow: 2272 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 2273 case Intrinsic::usub_with_overflow: 2274 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 2275 case Intrinsic::ssub_with_overflow: 2276 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 2277 case Intrinsic::umul_with_overflow: 2278 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 2279 case Intrinsic::smul_with_overflow: 2280 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 2281 case Intrinsic::uadd_sat: 2282 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 2283 case Intrinsic::sadd_sat: 2284 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 2285 case Intrinsic::usub_sat: 2286 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 2287 case Intrinsic::ssub_sat: 2288 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 2289 case Intrinsic::ushl_sat: 2290 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder); 2291 case Intrinsic::sshl_sat: 2292 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder); 2293 case Intrinsic::umin: 2294 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 2295 case Intrinsic::umax: 2296 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 2297 case Intrinsic::smin: 2298 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 2299 case Intrinsic::smax: 2300 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 2301 case Intrinsic::abs: 2302 // TODO: Preserve "int min is poison" arg in GMIR? 2303 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder); 2304 case Intrinsic::smul_fix: 2305 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 2306 case Intrinsic::umul_fix: 2307 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 2308 case Intrinsic::smul_fix_sat: 2309 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 2310 case Intrinsic::umul_fix_sat: 2311 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 2312 case Intrinsic::sdiv_fix: 2313 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 2314 case Intrinsic::udiv_fix: 2315 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 2316 case Intrinsic::sdiv_fix_sat: 2317 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 2318 case Intrinsic::udiv_fix_sat: 2319 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 2320 case Intrinsic::fmuladd: { 2321 const TargetMachine &TM = MF->getTarget(); 2322 Register Dst = getOrCreateVReg(CI); 2323 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 2324 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 2325 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 2326 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 2327 TLI->isFMAFasterThanFMulAndFAdd(*MF, 2328 TLI->getValueType(*DL, CI.getType()))) { 2329 // TODO: Revisit this to see if we should move this part of the 2330 // lowering to the combiner. 2331 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 2332 MachineInstr::copyFlagsFromInstruction(CI)); 2333 } else { 2334 LLT Ty = getLLTForType(*CI.getType(), *DL); 2335 auto FMul = MIRBuilder.buildFMul( 2336 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 2337 MIRBuilder.buildFAdd(Dst, FMul, Op2, 2338 MachineInstr::copyFlagsFromInstruction(CI)); 2339 } 2340 return true; 2341 } 2342 case Intrinsic::convert_from_fp16: 2343 // FIXME: This intrinsic should probably be removed from the IR. 2344 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 2345 getOrCreateVReg(*CI.getArgOperand(0)), 2346 MachineInstr::copyFlagsFromInstruction(CI)); 2347 return true; 2348 case Intrinsic::convert_to_fp16: 2349 // FIXME: This intrinsic should probably be removed from the IR. 2350 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 2351 getOrCreateVReg(*CI.getArgOperand(0)), 2352 MachineInstr::copyFlagsFromInstruction(CI)); 2353 return true; 2354 case Intrinsic::frexp: { 2355 ArrayRef<Register> VRegs = getOrCreateVRegs(CI); 2356 MIRBuilder.buildFFrexp(VRegs[0], VRegs[1], 2357 getOrCreateVReg(*CI.getArgOperand(0)), 2358 MachineInstr::copyFlagsFromInstruction(CI)); 2359 return true; 2360 } 2361 case Intrinsic::sincos: { 2362 ArrayRef<Register> VRegs = getOrCreateVRegs(CI); 2363 MIRBuilder.buildFSincos(VRegs[0], VRegs[1], 2364 getOrCreateVReg(*CI.getArgOperand(0)), 2365 MachineInstr::copyFlagsFromInstruction(CI)); 2366 return true; 2367 } 2368 case Intrinsic::fptosi_sat: 2369 MIRBuilder.buildFPTOSI_SAT(getOrCreateVReg(CI), 2370 getOrCreateVReg(*CI.getArgOperand(0))); 2371 return true; 2372 case Intrinsic::fptoui_sat: 2373 MIRBuilder.buildFPTOUI_SAT(getOrCreateVReg(CI), 2374 getOrCreateVReg(*CI.getArgOperand(0))); 2375 return true; 2376 case Intrinsic::memcpy_inline: 2377 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE); 2378 case Intrinsic::memcpy: 2379 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY); 2380 case Intrinsic::memmove: 2381 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE); 2382 case Intrinsic::memset: 2383 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET); 2384 case Intrinsic::eh_typeid_for: { 2385 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 2386 Register Reg = getOrCreateVReg(CI); 2387 unsigned TypeID = MF->getTypeIDFor(GV); 2388 MIRBuilder.buildConstant(Reg, TypeID); 2389 return true; 2390 } 2391 case Intrinsic::objectsize: 2392 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2393 2394 case Intrinsic::is_constant: 2395 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2396 2397 case Intrinsic::stackguard: 2398 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 2399 return true; 2400 case Intrinsic::stackprotector: { 2401 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2402 Register GuardVal; 2403 if (TLI->useLoadStackGuardNode(*CI.getModule())) { 2404 GuardVal = MRI->createGenericVirtualRegister(PtrTy); 2405 getStackGuard(GuardVal, MIRBuilder); 2406 } else 2407 GuardVal = getOrCreateVReg(*CI.getArgOperand(0)); // The guard's value. 2408 2409 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 2410 int FI = getOrCreateFrameIndex(*Slot); 2411 MF->getFrameInfo().setStackProtectorIndex(FI); 2412 2413 MIRBuilder.buildStore( 2414 GuardVal, getOrCreateVReg(*Slot), 2415 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 2416 MachineMemOperand::MOStore | 2417 MachineMemOperand::MOVolatile, 2418 PtrTy, Align(8))); 2419 return true; 2420 } 2421 case Intrinsic::stacksave: { 2422 MIRBuilder.buildInstr(TargetOpcode::G_STACKSAVE, {getOrCreateVReg(CI)}, {}); 2423 return true; 2424 } 2425 case Intrinsic::stackrestore: { 2426 MIRBuilder.buildInstr(TargetOpcode::G_STACKRESTORE, {}, 2427 {getOrCreateVReg(*CI.getArgOperand(0))}); 2428 return true; 2429 } 2430 case Intrinsic::cttz: 2431 case Intrinsic::ctlz: { 2432 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 2433 bool isTrailing = ID == Intrinsic::cttz; 2434 unsigned Opcode = isTrailing 2435 ? Cst->isZero() ? TargetOpcode::G_CTTZ 2436 : TargetOpcode::G_CTTZ_ZERO_UNDEF 2437 : Cst->isZero() ? TargetOpcode::G_CTLZ 2438 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 2439 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 2440 {getOrCreateVReg(*CI.getArgOperand(0))}); 2441 return true; 2442 } 2443 case Intrinsic::invariant_start: { 2444 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2445 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 2446 MIRBuilder.buildUndef(Undef); 2447 return true; 2448 } 2449 case Intrinsic::invariant_end: 2450 return true; 2451 case Intrinsic::expect: 2452 case Intrinsic::expect_with_probability: 2453 case Intrinsic::annotation: 2454 case Intrinsic::ptr_annotation: 2455 case Intrinsic::launder_invariant_group: 2456 case Intrinsic::strip_invariant_group: { 2457 // Drop the intrinsic, but forward the value. 2458 MIRBuilder.buildCopy(getOrCreateVReg(CI), 2459 getOrCreateVReg(*CI.getArgOperand(0))); 2460 return true; 2461 } 2462 case Intrinsic::assume: 2463 case Intrinsic::experimental_noalias_scope_decl: 2464 case Intrinsic::var_annotation: 2465 case Intrinsic::sideeffect: 2466 // Discard annotate attributes, assumptions, and artificial side-effects. 2467 return true; 2468 case Intrinsic::read_volatile_register: 2469 case Intrinsic::read_register: { 2470 Value *Arg = CI.getArgOperand(0); 2471 MIRBuilder 2472 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 2473 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 2474 return true; 2475 } 2476 case Intrinsic::write_register: { 2477 Value *Arg = CI.getArgOperand(0); 2478 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 2479 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 2480 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 2481 return true; 2482 } 2483 case Intrinsic::localescape: { 2484 MachineBasicBlock &EntryMBB = MF->front(); 2485 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 2486 2487 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 2488 // is the same on all targets. 2489 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) { 2490 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 2491 if (isa<ConstantPointerNull>(Arg)) 2492 continue; // Skip null pointers. They represent a hole in index space. 2493 2494 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 2495 MCSymbol *FrameAllocSym = 2496 MF->getContext().getOrCreateFrameAllocSymbol(EscapedName, Idx); 2497 2498 // This should be inserted at the start of the entry block. 2499 auto LocalEscape = 2500 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 2501 .addSym(FrameAllocSym) 2502 .addFrameIndex(FI); 2503 2504 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 2505 } 2506 2507 return true; 2508 } 2509 case Intrinsic::vector_reduce_fadd: 2510 case Intrinsic::vector_reduce_fmul: { 2511 // Need to check for the reassoc flag to decide whether we want a 2512 // sequential reduction opcode or not. 2513 Register Dst = getOrCreateVReg(CI); 2514 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0)); 2515 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1)); 2516 unsigned Opc = 0; 2517 if (!CI.hasAllowReassoc()) { 2518 // The sequential ordering case. 2519 Opc = ID == Intrinsic::vector_reduce_fadd 2520 ? TargetOpcode::G_VECREDUCE_SEQ_FADD 2521 : TargetOpcode::G_VECREDUCE_SEQ_FMUL; 2522 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc}, 2523 MachineInstr::copyFlagsFromInstruction(CI)); 2524 return true; 2525 } 2526 // We split the operation into a separate G_FADD/G_FMUL + the reduce, 2527 // since the associativity doesn't matter. 2528 unsigned ScalarOpc; 2529 if (ID == Intrinsic::vector_reduce_fadd) { 2530 Opc = TargetOpcode::G_VECREDUCE_FADD; 2531 ScalarOpc = TargetOpcode::G_FADD; 2532 } else { 2533 Opc = TargetOpcode::G_VECREDUCE_FMUL; 2534 ScalarOpc = TargetOpcode::G_FMUL; 2535 } 2536 LLT DstTy = MRI->getType(Dst); 2537 auto Rdx = MIRBuilder.buildInstr( 2538 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI)); 2539 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx}, 2540 MachineInstr::copyFlagsFromInstruction(CI)); 2541 2542 return true; 2543 } 2544 case Intrinsic::trap: 2545 return translateTrap(CI, MIRBuilder, TargetOpcode::G_TRAP); 2546 case Intrinsic::debugtrap: 2547 return translateTrap(CI, MIRBuilder, TargetOpcode::G_DEBUGTRAP); 2548 case Intrinsic::ubsantrap: 2549 return translateTrap(CI, MIRBuilder, TargetOpcode::G_UBSANTRAP); 2550 case Intrinsic::allow_runtime_check: 2551 case Intrinsic::allow_ubsan_check: 2552 MIRBuilder.buildCopy(getOrCreateVReg(CI), 2553 getOrCreateVReg(*ConstantInt::getTrue(CI.getType()))); 2554 return true; 2555 case Intrinsic::amdgcn_cs_chain: 2556 return translateCallBase(CI, MIRBuilder); 2557 case Intrinsic::fptrunc_round: { 2558 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(CI); 2559 2560 // Convert the metadata argument to a constant integer 2561 Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata(); 2562 std::optional<RoundingMode> RoundMode = 2563 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 2564 2565 // Add the Rounding mode as an integer 2566 MIRBuilder 2567 .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND, 2568 {getOrCreateVReg(CI)}, 2569 {getOrCreateVReg(*CI.getArgOperand(0))}, Flags) 2570 .addImm((int)*RoundMode); 2571 2572 return true; 2573 } 2574 case Intrinsic::is_fpclass: { 2575 Value *FpValue = CI.getOperand(0); 2576 ConstantInt *TestMaskValue = cast<ConstantInt>(CI.getOperand(1)); 2577 2578 MIRBuilder 2579 .buildInstr(TargetOpcode::G_IS_FPCLASS, {getOrCreateVReg(CI)}, 2580 {getOrCreateVReg(*FpValue)}) 2581 .addImm(TestMaskValue->getZExtValue()); 2582 2583 return true; 2584 } 2585 case Intrinsic::set_fpenv: { 2586 Value *FPEnv = CI.getOperand(0); 2587 MIRBuilder.buildSetFPEnv(getOrCreateVReg(*FPEnv)); 2588 return true; 2589 } 2590 case Intrinsic::reset_fpenv: 2591 MIRBuilder.buildResetFPEnv(); 2592 return true; 2593 case Intrinsic::set_fpmode: { 2594 Value *FPState = CI.getOperand(0); 2595 MIRBuilder.buildSetFPMode(getOrCreateVReg(*FPState)); 2596 return true; 2597 } 2598 case Intrinsic::reset_fpmode: 2599 MIRBuilder.buildResetFPMode(); 2600 return true; 2601 case Intrinsic::vscale: { 2602 MIRBuilder.buildVScale(getOrCreateVReg(CI), 1); 2603 return true; 2604 } 2605 case Intrinsic::scmp: 2606 MIRBuilder.buildSCmp(getOrCreateVReg(CI), 2607 getOrCreateVReg(*CI.getOperand(0)), 2608 getOrCreateVReg(*CI.getOperand(1))); 2609 return true; 2610 case Intrinsic::ucmp: 2611 MIRBuilder.buildUCmp(getOrCreateVReg(CI), 2612 getOrCreateVReg(*CI.getOperand(0)), 2613 getOrCreateVReg(*CI.getOperand(1))); 2614 return true; 2615 case Intrinsic::vector_extract: 2616 return translateExtractVector(CI, MIRBuilder); 2617 case Intrinsic::vector_insert: 2618 return translateInsertVector(CI, MIRBuilder); 2619 case Intrinsic::stepvector: { 2620 MIRBuilder.buildStepVector(getOrCreateVReg(CI), 1); 2621 return true; 2622 } 2623 case Intrinsic::prefetch: { 2624 Value *Addr = CI.getOperand(0); 2625 unsigned RW = cast<ConstantInt>(CI.getOperand(1))->getZExtValue(); 2626 unsigned Locality = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 2627 unsigned CacheType = cast<ConstantInt>(CI.getOperand(3))->getZExtValue(); 2628 2629 auto Flags = RW ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad; 2630 auto &MMO = *MF->getMachineMemOperand(MachinePointerInfo(Addr), Flags, 2631 LLT(), Align()); 2632 2633 MIRBuilder.buildPrefetch(getOrCreateVReg(*Addr), RW, Locality, CacheType, 2634 MMO); 2635 2636 return true; 2637 } 2638 2639 case Intrinsic::vector_interleave2: 2640 case Intrinsic::vector_deinterleave2: { 2641 // Both intrinsics have at least one operand. 2642 Value *Op0 = CI.getOperand(0); 2643 LLT ResTy = getLLTForType(*Op0->getType(), MIRBuilder.getDataLayout()); 2644 if (!ResTy.isFixedVector()) 2645 return false; 2646 2647 if (CI.getIntrinsicID() == Intrinsic::vector_interleave2) 2648 return translateVectorInterleave2Intrinsic(CI, MIRBuilder); 2649 2650 return translateVectorDeinterleave2Intrinsic(CI, MIRBuilder); 2651 } 2652 2653 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 2654 case Intrinsic::INTRINSIC: 2655 #include "llvm/IR/ConstrainedOps.def" 2656 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 2657 MIRBuilder); 2658 case Intrinsic::experimental_convergence_anchor: 2659 case Intrinsic::experimental_convergence_entry: 2660 case Intrinsic::experimental_convergence_loop: 2661 return translateConvergenceControlIntrinsic(CI, ID, MIRBuilder); 2662 } 2663 return false; 2664 } 2665 2666 bool IRTranslator::translateInlineAsm(const CallBase &CB, 2667 MachineIRBuilder &MIRBuilder) { 2668 if (containsBF16Type(CB)) 2669 return false; 2670 2671 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 2672 2673 if (!ALI) { 2674 LLVM_DEBUG( 2675 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 2676 return false; 2677 } 2678 2679 return ALI->lowerInlineAsm( 2680 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 2681 } 2682 2683 bool IRTranslator::translateCallBase(const CallBase &CB, 2684 MachineIRBuilder &MIRBuilder) { 2685 ArrayRef<Register> Res = getOrCreateVRegs(CB); 2686 2687 SmallVector<ArrayRef<Register>, 8> Args; 2688 Register SwiftInVReg = 0; 2689 Register SwiftErrorVReg = 0; 2690 for (const auto &Arg : CB.args()) { 2691 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 2692 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 2693 LLT Ty = getLLTForType(*Arg->getType(), *DL); 2694 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 2695 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 2696 &CB, &MIRBuilder.getMBB(), Arg)); 2697 Args.emplace_back(ArrayRef(SwiftInVReg)); 2698 SwiftErrorVReg = 2699 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 2700 continue; 2701 } 2702 Args.push_back(getOrCreateVRegs(*Arg)); 2703 } 2704 2705 if (auto *CI = dyn_cast<CallInst>(&CB)) { 2706 if (ORE->enabled()) { 2707 if (MemoryOpRemark::canHandle(CI, *LibInfo)) { 2708 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo); 2709 R.visit(CI); 2710 } 2711 } 2712 } 2713 2714 std::optional<CallLowering::PtrAuthInfo> PAI; 2715 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_ptrauth)) { 2716 // Functions should never be ptrauth-called directly. 2717 assert(!CB.getCalledFunction() && "invalid direct ptrauth call"); 2718 2719 const Value *Key = Bundle->Inputs[0]; 2720 const Value *Discriminator = Bundle->Inputs[1]; 2721 2722 // Look through ptrauth constants to try to eliminate the matching bundle 2723 // and turn this into a direct call with no ptrauth. 2724 // CallLowering will use the raw pointer if it doesn't find the PAI. 2725 const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CB.getCalledOperand()); 2726 if (!CalleeCPA || !isa<Function>(CalleeCPA->getPointer()) || 2727 !CalleeCPA->isKnownCompatibleWith(Key, Discriminator, *DL)) { 2728 // If we can't make it direct, package the bundle into PAI. 2729 Register DiscReg = getOrCreateVReg(*Discriminator); 2730 PAI = CallLowering::PtrAuthInfo{cast<ConstantInt>(Key)->getZExtValue(), 2731 DiscReg}; 2732 } 2733 } 2734 2735 Register ConvergenceCtrlToken = 0; 2736 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 2737 const auto &Token = *Bundle->Inputs[0].get(); 2738 ConvergenceCtrlToken = getOrCreateConvergenceTokenVReg(Token); 2739 } 2740 2741 // We don't set HasCalls on MFI here yet because call lowering may decide to 2742 // optimize into tail calls. Instead, we defer that to selection where a final 2743 // scan is done to check if any instructions are calls. 2744 bool Success = CLI->lowerCall( 2745 MIRBuilder, CB, Res, Args, SwiftErrorVReg, PAI, ConvergenceCtrlToken, 2746 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 2747 2748 // Check if we just inserted a tail call. 2749 if (Success) { 2750 assert(!HasTailCall && "Can't tail call return twice from block?"); 2751 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2752 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 2753 } 2754 2755 return Success; 2756 } 2757 2758 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 2759 if (containsBF16Type(U)) 2760 return false; 2761 2762 const CallInst &CI = cast<CallInst>(U); 2763 auto TII = MF->getTarget().getIntrinsicInfo(); 2764 const Function *F = CI.getCalledFunction(); 2765 2766 // FIXME: support Windows dllimport function calls and calls through 2767 // weak symbols. 2768 if (F && (F->hasDLLImportStorageClass() || 2769 (MF->getTarget().getTargetTriple().isOSWindows() && 2770 F->hasExternalWeakLinkage()))) 2771 return false; 2772 2773 // FIXME: support control flow guard targets. 2774 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2775 return false; 2776 2777 // FIXME: support statepoints and related. 2778 if (isa<GCStatepointInst, GCRelocateInst, GCResultInst>(U)) 2779 return false; 2780 2781 if (CI.isInlineAsm()) 2782 return translateInlineAsm(CI, MIRBuilder); 2783 2784 diagnoseDontCall(CI); 2785 2786 Intrinsic::ID ID = Intrinsic::not_intrinsic; 2787 if (F && F->isIntrinsic()) { 2788 ID = F->getIntrinsicID(); 2789 if (TII && ID == Intrinsic::not_intrinsic) 2790 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 2791 } 2792 2793 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 2794 return translateCallBase(CI, MIRBuilder); 2795 2796 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 2797 2798 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 2799 return true; 2800 2801 ArrayRef<Register> ResultRegs; 2802 if (!CI.getType()->isVoidTy()) 2803 ResultRegs = getOrCreateVRegs(CI); 2804 2805 // Ignore the callsite attributes. Backend code is most likely not expecting 2806 // an intrinsic to sometimes have side effects and sometimes not. 2807 MachineInstrBuilder MIB = MIRBuilder.buildIntrinsic(ID, ResultRegs); 2808 if (isa<FPMathOperator>(CI)) 2809 MIB->copyIRFlags(CI); 2810 2811 for (const auto &Arg : enumerate(CI.args())) { 2812 // If this is required to be an immediate, don't materialize it in a 2813 // register. 2814 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 2815 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 2816 // imm arguments are more convenient than cimm (and realistically 2817 // probably sufficient), so use them. 2818 assert(CI->getBitWidth() <= 64 && 2819 "large intrinsic immediates not handled"); 2820 MIB.addImm(CI->getSExtValue()); 2821 } else { 2822 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 2823 } 2824 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) { 2825 auto *MD = MDVal->getMetadata(); 2826 auto *MDN = dyn_cast<MDNode>(MD); 2827 if (!MDN) { 2828 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD)) 2829 MDN = MDNode::get(MF->getFunction().getContext(), ConstMD); 2830 else // This was probably an MDString. 2831 return false; 2832 } 2833 MIB.addMetadata(MDN); 2834 } else { 2835 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 2836 if (VRegs.size() > 1) 2837 return false; 2838 MIB.addUse(VRegs[0]); 2839 } 2840 } 2841 2842 // Add a MachineMemOperand if it is a target mem intrinsic. 2843 TargetLowering::IntrinsicInfo Info; 2844 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 2845 if (TLI->getTgtMemIntrinsic(Info, CI, *MF, ID)) { 2846 Align Alignment = Info.align.value_or( 2847 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 2848 LLT MemTy = Info.memVT.isSimple() 2849 ? getLLTForMVT(Info.memVT.getSimpleVT()) 2850 : LLT::scalar(Info.memVT.getStoreSizeInBits()); 2851 2852 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 2853 // didn't yield anything useful. 2854 MachinePointerInfo MPI; 2855 if (Info.ptrVal) 2856 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 2857 else if (Info.fallbackAddressSpace) 2858 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 2859 MIB.addMemOperand( 2860 MF->getMachineMemOperand(MPI, Info.flags, MemTy, Alignment, CI.getAAMetadata())); 2861 } 2862 2863 if (CI.isConvergent()) { 2864 if (auto Bundle = CI.getOperandBundle(LLVMContext::OB_convergencectrl)) { 2865 auto *Token = Bundle->Inputs[0].get(); 2866 Register TokenReg = getOrCreateVReg(*Token); 2867 MIB.addUse(TokenReg, RegState::Implicit); 2868 } 2869 } 2870 2871 return true; 2872 } 2873 2874 bool IRTranslator::findUnwindDestinations( 2875 const BasicBlock *EHPadBB, 2876 BranchProbability Prob, 2877 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2878 &UnwindDests) { 2879 EHPersonality Personality = classifyEHPersonality( 2880 EHPadBB->getParent()->getFunction().getPersonalityFn()); 2881 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2882 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2883 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2884 bool IsSEH = isAsynchronousEHPersonality(Personality); 2885 2886 if (IsWasmCXX) { 2887 // Ignore this for now. 2888 return false; 2889 } 2890 2891 while (EHPadBB) { 2892 BasicBlock::const_iterator Pad = EHPadBB->getFirstNonPHIIt(); 2893 BasicBlock *NewEHPadBB = nullptr; 2894 if (isa<LandingPadInst>(Pad)) { 2895 // Stop on landingpads. They are not funclets. 2896 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2897 break; 2898 } 2899 if (isa<CleanupPadInst>(Pad)) { 2900 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2901 // personalities. 2902 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2903 UnwindDests.back().first->setIsEHScopeEntry(); 2904 UnwindDests.back().first->setIsEHFuncletEntry(); 2905 break; 2906 } 2907 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2908 // Add the catchpad handlers to the possible destinations. 2909 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2910 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob); 2911 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2912 if (IsMSVCCXX || IsCoreCLR) 2913 UnwindDests.back().first->setIsEHFuncletEntry(); 2914 if (!IsSEH) 2915 UnwindDests.back().first->setIsEHScopeEntry(); 2916 } 2917 NewEHPadBB = CatchSwitch->getUnwindDest(); 2918 } else { 2919 continue; 2920 } 2921 2922 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2923 if (BPI && NewEHPadBB) 2924 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2925 EHPadBB = NewEHPadBB; 2926 } 2927 return true; 2928 } 2929 2930 bool IRTranslator::translateInvoke(const User &U, 2931 MachineIRBuilder &MIRBuilder) { 2932 const InvokeInst &I = cast<InvokeInst>(U); 2933 MCContext &Context = MF->getContext(); 2934 2935 const BasicBlock *ReturnBB = I.getSuccessor(0); 2936 const BasicBlock *EHPadBB = I.getSuccessor(1); 2937 2938 const Function *Fn = I.getCalledFunction(); 2939 2940 // FIXME: support invoking patchpoint and statepoint intrinsics. 2941 if (Fn && Fn->isIntrinsic()) 2942 return false; 2943 2944 // FIXME: support whatever these are. 2945 if (I.hasDeoptState()) 2946 return false; 2947 2948 // FIXME: support control flow guard targets. 2949 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2950 return false; 2951 2952 // FIXME: support Windows exception handling. 2953 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHIIt())) 2954 return false; 2955 2956 // FIXME: support Windows dllimport function calls and calls through 2957 // weak symbols. 2958 if (Fn && (Fn->hasDLLImportStorageClass() || 2959 (MF->getTarget().getTargetTriple().isOSWindows() && 2960 Fn->hasExternalWeakLinkage()))) 2961 return false; 2962 2963 bool LowerInlineAsm = I.isInlineAsm(); 2964 bool NeedEHLabel = true; 2965 2966 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 2967 // the region covered by the try. 2968 MCSymbol *BeginSymbol = nullptr; 2969 if (NeedEHLabel) { 2970 MIRBuilder.buildInstr(TargetOpcode::G_INVOKE_REGION_START); 2971 BeginSymbol = Context.createTempSymbol(); 2972 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 2973 } 2974 2975 if (LowerInlineAsm) { 2976 if (!translateInlineAsm(I, MIRBuilder)) 2977 return false; 2978 } else if (!translateCallBase(I, MIRBuilder)) 2979 return false; 2980 2981 MCSymbol *EndSymbol = nullptr; 2982 if (NeedEHLabel) { 2983 EndSymbol = Context.createTempSymbol(); 2984 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 2985 } 2986 2987 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2988 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2989 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(); 2990 BranchProbability EHPadBBProb = 2991 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2992 : BranchProbability::getZero(); 2993 2994 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests)) 2995 return false; 2996 2997 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 2998 &ReturnMBB = getMBB(*ReturnBB); 2999 // Update successor info. 3000 addSuccessorWithProb(InvokeMBB, &ReturnMBB); 3001 for (auto &UnwindDest : UnwindDests) { 3002 UnwindDest.first->setIsEHPad(); 3003 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3004 } 3005 InvokeMBB->normalizeSuccProbs(); 3006 3007 if (NeedEHLabel) { 3008 assert(BeginSymbol && "Expected a begin symbol!"); 3009 assert(EndSymbol && "Expected an end symbol!"); 3010 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 3011 } 3012 3013 MIRBuilder.buildBr(ReturnMBB); 3014 return true; 3015 } 3016 3017 bool IRTranslator::translateCallBr(const User &U, 3018 MachineIRBuilder &MIRBuilder) { 3019 // FIXME: Implement this. 3020 return false; 3021 } 3022 3023 bool IRTranslator::translateLandingPad(const User &U, 3024 MachineIRBuilder &MIRBuilder) { 3025 const LandingPadInst &LP = cast<LandingPadInst>(U); 3026 3027 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 3028 3029 MBB.setIsEHPad(); 3030 3031 // If there aren't registers to copy the values into (e.g., during SjLj 3032 // exceptions), then don't bother. 3033 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 3034 if (TLI->getExceptionPointerRegister(PersonalityFn) == 0 && 3035 TLI->getExceptionSelectorRegister(PersonalityFn) == 0) 3036 return true; 3037 3038 // If landingpad's return type is token type, we don't create DAG nodes 3039 // for its exception pointer and selector value. The extraction of exception 3040 // pointer or selector value from token type landingpads is not currently 3041 // supported. 3042 if (LP.getType()->isTokenTy()) 3043 return true; 3044 3045 // Add a label to mark the beginning of the landing pad. Deletion of the 3046 // landing pad can thus be detected via the MachineModuleInfo. 3047 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 3048 .addSym(MF->addLandingPad(&MBB)); 3049 3050 // If the unwinder does not preserve all registers, ensure that the 3051 // function marks the clobbered registers as used. 3052 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 3053 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 3054 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 3055 3056 LLT Ty = getLLTForType(*LP.getType(), *DL); 3057 Register Undef = MRI->createGenericVirtualRegister(Ty); 3058 MIRBuilder.buildUndef(Undef); 3059 3060 SmallVector<LLT, 2> Tys; 3061 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 3062 Tys.push_back(getLLTForType(*Ty, *DL)); 3063 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 3064 3065 // Mark exception register as live in. 3066 Register ExceptionReg = TLI->getExceptionPointerRegister(PersonalityFn); 3067 if (!ExceptionReg) 3068 return false; 3069 3070 MBB.addLiveIn(ExceptionReg); 3071 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 3072 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 3073 3074 Register SelectorReg = TLI->getExceptionSelectorRegister(PersonalityFn); 3075 if (!SelectorReg) 3076 return false; 3077 3078 MBB.addLiveIn(SelectorReg); 3079 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 3080 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 3081 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 3082 3083 return true; 3084 } 3085 3086 bool IRTranslator::translateAlloca(const User &U, 3087 MachineIRBuilder &MIRBuilder) { 3088 auto &AI = cast<AllocaInst>(U); 3089 3090 if (AI.isSwiftError()) 3091 return true; 3092 3093 if (AI.isStaticAlloca()) { 3094 Register Res = getOrCreateVReg(AI); 3095 int FI = getOrCreateFrameIndex(AI); 3096 MIRBuilder.buildFrameIndex(Res, FI); 3097 return true; 3098 } 3099 3100 // FIXME: support stack probing for Windows. 3101 if (MF->getTarget().getTargetTriple().isOSWindows()) 3102 return false; 3103 3104 // Now we're in the harder dynamic case. 3105 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 3106 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 3107 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 3108 if (MRI->getType(NumElts) != IntPtrTy) { 3109 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 3110 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 3111 NumElts = ExtElts; 3112 } 3113 3114 Type *Ty = AI.getAllocatedType(); 3115 3116 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 3117 Register TySize = 3118 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 3119 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 3120 3121 // Round the size of the allocation up to the stack alignment size 3122 // by add SA-1 to the size. This doesn't overflow because we're computing 3123 // an address inside an alloca. 3124 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 3125 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 3126 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 3127 MachineInstr::NoUWrap); 3128 auto AlignCst = 3129 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 3130 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 3131 3132 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 3133 if (Alignment <= StackAlign) 3134 Alignment = Align(1); 3135 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 3136 3137 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 3138 assert(MF->getFrameInfo().hasVarSizedObjects()); 3139 return true; 3140 } 3141 3142 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 3143 // FIXME: We may need more info about the type. Because of how LLT works, 3144 // we're completely discarding the i64/double distinction here (amongst 3145 // others). Fortunately the ABIs I know of where that matters don't use va_arg 3146 // anyway but that's not guaranteed. 3147 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 3148 {getOrCreateVReg(*U.getOperand(0)), 3149 DL->getABITypeAlign(U.getType()).value()}); 3150 return true; 3151 } 3152 3153 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) { 3154 if (!MF->getTarget().Options.TrapUnreachable) 3155 return true; 3156 3157 auto &UI = cast<UnreachableInst>(U); 3158 3159 // We may be able to ignore unreachable behind a noreturn call. 3160 if (const CallInst *Call = dyn_cast_or_null<CallInst>(UI.getPrevNode()); 3161 Call && Call->doesNotReturn()) { 3162 if (MF->getTarget().Options.NoTrapAfterNoreturn) 3163 return true; 3164 // Do not emit an additional trap instruction. 3165 if (Call->isNonContinuableTrap()) 3166 return true; 3167 } 3168 3169 MIRBuilder.buildTrap(); 3170 return true; 3171 } 3172 3173 bool IRTranslator::translateInsertElement(const User &U, 3174 MachineIRBuilder &MIRBuilder) { 3175 // If it is a <1 x Ty> vector, use the scalar as it is 3176 // not a legal vector type in LLT. 3177 if (auto *FVT = dyn_cast<FixedVectorType>(U.getType()); 3178 FVT && FVT->getNumElements() == 1) 3179 return translateCopy(U, *U.getOperand(1), MIRBuilder); 3180 3181 Register Res = getOrCreateVReg(U); 3182 Register Val = getOrCreateVReg(*U.getOperand(0)); 3183 Register Elt = getOrCreateVReg(*U.getOperand(1)); 3184 unsigned PreferredVecIdxWidth = TLI->getVectorIdxTy(*DL).getSizeInBits(); 3185 Register Idx; 3186 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(2))) { 3187 if (CI->getBitWidth() != PreferredVecIdxWidth) { 3188 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth); 3189 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 3190 Idx = getOrCreateVReg(*NewIdxCI); 3191 } 3192 } 3193 if (!Idx) 3194 Idx = getOrCreateVReg(*U.getOperand(2)); 3195 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 3196 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 3197 Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0); 3198 } 3199 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 3200 return true; 3201 } 3202 3203 bool IRTranslator::translateInsertVector(const User &U, 3204 MachineIRBuilder &MIRBuilder) { 3205 Register Dst = getOrCreateVReg(U); 3206 Register Vec = getOrCreateVReg(*U.getOperand(0)); 3207 Register Elt = getOrCreateVReg(*U.getOperand(1)); 3208 3209 ConstantInt *CI = cast<ConstantInt>(U.getOperand(2)); 3210 unsigned PreferredVecIdxWidth = TLI->getVectorIdxTy(*DL).getSizeInBits(); 3211 3212 // Resize Index to preferred index width. 3213 if (CI->getBitWidth() != PreferredVecIdxWidth) { 3214 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth); 3215 CI = ConstantInt::get(CI->getContext(), NewIdx); 3216 } 3217 3218 // If it is a <1 x Ty> vector, we have to use other means. 3219 if (auto *ResultType = dyn_cast<FixedVectorType>(U.getOperand(1)->getType()); 3220 ResultType && ResultType->getNumElements() == 1) { 3221 if (auto *InputType = dyn_cast<FixedVectorType>(U.getOperand(0)->getType()); 3222 InputType && InputType->getNumElements() == 1) { 3223 // We are inserting an illegal fixed vector into an illegal 3224 // fixed vector, use the scalar as it is not a legal vector type 3225 // in LLT. 3226 return translateCopy(U, *U.getOperand(0), MIRBuilder); 3227 } 3228 if (isa<FixedVectorType>(U.getOperand(0)->getType())) { 3229 // We are inserting an illegal fixed vector into a legal fixed 3230 // vector, use the scalar as it is not a legal vector type in 3231 // LLT. 3232 Register Idx = getOrCreateVReg(*CI); 3233 MIRBuilder.buildInsertVectorElement(Dst, Vec, Elt, Idx); 3234 return true; 3235 } 3236 if (isa<ScalableVectorType>(U.getOperand(0)->getType())) { 3237 // We are inserting an illegal fixed vector into a scalable 3238 // vector, use a scalar element insert. 3239 LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 3240 Register Idx = getOrCreateVReg(*CI); 3241 auto ScaledIndex = MIRBuilder.buildMul( 3242 VecIdxTy, MIRBuilder.buildVScale(VecIdxTy, 1), Idx); 3243 MIRBuilder.buildInsertVectorElement(Dst, Vec, Elt, ScaledIndex); 3244 return true; 3245 } 3246 } 3247 3248 MIRBuilder.buildInsertSubvector( 3249 getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)), 3250 getOrCreateVReg(*U.getOperand(1)), CI->getZExtValue()); 3251 return true; 3252 } 3253 3254 bool IRTranslator::translateExtractElement(const User &U, 3255 MachineIRBuilder &MIRBuilder) { 3256 // If it is a <1 x Ty> vector, use the scalar as it is 3257 // not a legal vector type in LLT. 3258 if (const FixedVectorType *FVT = 3259 dyn_cast<FixedVectorType>(U.getOperand(0)->getType())) 3260 if (FVT->getNumElements() == 1) 3261 return translateCopy(U, *U.getOperand(0), MIRBuilder); 3262 3263 Register Res = getOrCreateVReg(U); 3264 Register Val = getOrCreateVReg(*U.getOperand(0)); 3265 unsigned PreferredVecIdxWidth = TLI->getVectorIdxTy(*DL).getSizeInBits(); 3266 Register Idx; 3267 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 3268 if (CI->getBitWidth() != PreferredVecIdxWidth) { 3269 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth); 3270 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 3271 Idx = getOrCreateVReg(*NewIdxCI); 3272 } 3273 } 3274 if (!Idx) 3275 Idx = getOrCreateVReg(*U.getOperand(1)); 3276 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 3277 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 3278 Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0); 3279 } 3280 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 3281 return true; 3282 } 3283 3284 bool IRTranslator::translateExtractVector(const User &U, 3285 MachineIRBuilder &MIRBuilder) { 3286 Register Res = getOrCreateVReg(U); 3287 Register Vec = getOrCreateVReg(*U.getOperand(0)); 3288 ConstantInt *CI = cast<ConstantInt>(U.getOperand(1)); 3289 unsigned PreferredVecIdxWidth = TLI->getVectorIdxTy(*DL).getSizeInBits(); 3290 3291 // Resize Index to preferred index width. 3292 if (CI->getBitWidth() != PreferredVecIdxWidth) { 3293 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth); 3294 CI = ConstantInt::get(CI->getContext(), NewIdx); 3295 } 3296 3297 // If it is a <1 x Ty> vector, we have to use other means. 3298 if (auto *ResultType = dyn_cast<FixedVectorType>(U.getType()); 3299 ResultType && ResultType->getNumElements() == 1) { 3300 if (auto *InputType = dyn_cast<FixedVectorType>(U.getOperand(0)->getType()); 3301 InputType && InputType->getNumElements() == 1) { 3302 // We are extracting an illegal fixed vector from an illegal fixed vector, 3303 // use the scalar as it is not a legal vector type in LLT. 3304 return translateCopy(U, *U.getOperand(0), MIRBuilder); 3305 } 3306 if (isa<FixedVectorType>(U.getOperand(0)->getType())) { 3307 // We are extracting an illegal fixed vector from a legal fixed 3308 // vector, use the scalar as it is not a legal vector type in 3309 // LLT. 3310 Register Idx = getOrCreateVReg(*CI); 3311 MIRBuilder.buildExtractVectorElement(Res, Vec, Idx); 3312 return true; 3313 } 3314 if (isa<ScalableVectorType>(U.getOperand(0)->getType())) { 3315 // We are extracting an illegal fixed vector from a scalable 3316 // vector, use a scalar element extract. 3317 LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 3318 Register Idx = getOrCreateVReg(*CI); 3319 auto ScaledIndex = MIRBuilder.buildMul( 3320 VecIdxTy, MIRBuilder.buildVScale(VecIdxTy, 1), Idx); 3321 MIRBuilder.buildExtractVectorElement(Res, Vec, ScaledIndex); 3322 return true; 3323 } 3324 } 3325 3326 MIRBuilder.buildExtractSubvector(getOrCreateVReg(U), 3327 getOrCreateVReg(*U.getOperand(0)), 3328 CI->getZExtValue()); 3329 return true; 3330 } 3331 3332 bool IRTranslator::translateShuffleVector(const User &U, 3333 MachineIRBuilder &MIRBuilder) { 3334 // A ShuffleVector that operates on scalable vectors is a splat vector where 3335 // the value of the splat vector is the 0th element of the first operand, 3336 // since the index mask operand is the zeroinitializer (undef and 3337 // poison are treated as zeroinitializer here). 3338 if (U.getOperand(0)->getType()->isScalableTy()) { 3339 Register Val = getOrCreateVReg(*U.getOperand(0)); 3340 auto SplatVal = MIRBuilder.buildExtractVectorElementConstant( 3341 MRI->getType(Val).getElementType(), Val, 0); 3342 MIRBuilder.buildSplatVector(getOrCreateVReg(U), SplatVal); 3343 return true; 3344 } 3345 3346 ArrayRef<int> Mask; 3347 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 3348 Mask = SVI->getShuffleMask(); 3349 else 3350 Mask = cast<ConstantExpr>(U).getShuffleMask(); 3351 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 3352 MIRBuilder 3353 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 3354 {getOrCreateVReg(*U.getOperand(0)), 3355 getOrCreateVReg(*U.getOperand(1))}) 3356 .addShuffleMask(MaskAlloc); 3357 return true; 3358 } 3359 3360 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 3361 const PHINode &PI = cast<PHINode>(U); 3362 3363 SmallVector<MachineInstr *, 4> Insts; 3364 for (auto Reg : getOrCreateVRegs(PI)) { 3365 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 3366 Insts.push_back(MIB.getInstr()); 3367 } 3368 3369 PendingPHIs.emplace_back(&PI, std::move(Insts)); 3370 return true; 3371 } 3372 3373 bool IRTranslator::translateAtomicCmpXchg(const User &U, 3374 MachineIRBuilder &MIRBuilder) { 3375 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 3376 3377 auto Flags = TLI->getAtomicMemOperandFlags(I, *DL); 3378 3379 auto Res = getOrCreateVRegs(I); 3380 Register OldValRes = Res[0]; 3381 Register SuccessRes = Res[1]; 3382 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 3383 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 3384 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 3385 3386 MIRBuilder.buildAtomicCmpXchgWithSuccess( 3387 OldValRes, SuccessRes, Addr, Cmp, NewVal, 3388 *MF->getMachineMemOperand( 3389 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp), 3390 getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(), 3391 I.getSuccessOrdering(), I.getFailureOrdering())); 3392 return true; 3393 } 3394 3395 bool IRTranslator::translateAtomicRMW(const User &U, 3396 MachineIRBuilder &MIRBuilder) { 3397 if (containsBF16Type(U)) 3398 return false; 3399 3400 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 3401 auto Flags = TLI->getAtomicMemOperandFlags(I, *DL); 3402 3403 Register Res = getOrCreateVReg(I); 3404 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 3405 Register Val = getOrCreateVReg(*I.getValOperand()); 3406 3407 unsigned Opcode = 0; 3408 switch (I.getOperation()) { 3409 default: 3410 return false; 3411 case AtomicRMWInst::Xchg: 3412 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 3413 break; 3414 case AtomicRMWInst::Add: 3415 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 3416 break; 3417 case AtomicRMWInst::Sub: 3418 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 3419 break; 3420 case AtomicRMWInst::And: 3421 Opcode = TargetOpcode::G_ATOMICRMW_AND; 3422 break; 3423 case AtomicRMWInst::Nand: 3424 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 3425 break; 3426 case AtomicRMWInst::Or: 3427 Opcode = TargetOpcode::G_ATOMICRMW_OR; 3428 break; 3429 case AtomicRMWInst::Xor: 3430 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 3431 break; 3432 case AtomicRMWInst::Max: 3433 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 3434 break; 3435 case AtomicRMWInst::Min: 3436 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 3437 break; 3438 case AtomicRMWInst::UMax: 3439 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 3440 break; 3441 case AtomicRMWInst::UMin: 3442 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 3443 break; 3444 case AtomicRMWInst::FAdd: 3445 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 3446 break; 3447 case AtomicRMWInst::FSub: 3448 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 3449 break; 3450 case AtomicRMWInst::FMax: 3451 Opcode = TargetOpcode::G_ATOMICRMW_FMAX; 3452 break; 3453 case AtomicRMWInst::FMin: 3454 Opcode = TargetOpcode::G_ATOMICRMW_FMIN; 3455 break; 3456 case AtomicRMWInst::UIncWrap: 3457 Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP; 3458 break; 3459 case AtomicRMWInst::UDecWrap: 3460 Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP; 3461 break; 3462 case AtomicRMWInst::USubCond: 3463 Opcode = TargetOpcode::G_ATOMICRMW_USUB_COND; 3464 break; 3465 case AtomicRMWInst::USubSat: 3466 Opcode = TargetOpcode::G_ATOMICRMW_USUB_SAT; 3467 break; 3468 } 3469 3470 MIRBuilder.buildAtomicRMW( 3471 Opcode, Res, Addr, Val, 3472 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3473 Flags, MRI->getType(Val), getMemOpAlign(I), 3474 I.getAAMetadata(), nullptr, I.getSyncScopeID(), 3475 I.getOrdering())); 3476 return true; 3477 } 3478 3479 bool IRTranslator::translateFence(const User &U, 3480 MachineIRBuilder &MIRBuilder) { 3481 const FenceInst &Fence = cast<FenceInst>(U); 3482 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 3483 Fence.getSyncScopeID()); 3484 return true; 3485 } 3486 3487 bool IRTranslator::translateFreeze(const User &U, 3488 MachineIRBuilder &MIRBuilder) { 3489 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 3490 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 3491 3492 assert(DstRegs.size() == SrcRegs.size() && 3493 "Freeze with different source and destination type?"); 3494 3495 for (unsigned I = 0; I < DstRegs.size(); ++I) { 3496 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 3497 } 3498 3499 return true; 3500 } 3501 3502 void IRTranslator::finishPendingPhis() { 3503 #ifndef NDEBUG 3504 DILocationVerifier Verifier; 3505 GISelObserverWrapper WrapperObserver(&Verifier); 3506 RAIIMFObsDelInstaller ObsInstall(*MF, WrapperObserver); 3507 #endif // ifndef NDEBUG 3508 for (auto &Phi : PendingPHIs) { 3509 const PHINode *PI = Phi.first; 3510 if (PI->getType()->isEmptyTy()) 3511 continue; 3512 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 3513 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 3514 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 3515 #ifndef NDEBUG 3516 Verifier.setCurrentInst(PI); 3517 #endif // ifndef NDEBUG 3518 3519 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 3520 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 3521 auto IRPred = PI->getIncomingBlock(i); 3522 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 3523 for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 3524 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 3525 continue; 3526 SeenPreds.insert(Pred); 3527 for (unsigned j = 0; j < ValRegs.size(); ++j) { 3528 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 3529 MIB.addUse(ValRegs[j]); 3530 MIB.addMBB(Pred); 3531 } 3532 } 3533 } 3534 } 3535 } 3536 3537 void IRTranslator::translateDbgValueRecord(Value *V, bool HasArgList, 3538 const DILocalVariable *Variable, 3539 const DIExpression *Expression, 3540 const DebugLoc &DL, 3541 MachineIRBuilder &MIRBuilder) { 3542 assert(Variable->isValidLocationForIntrinsic(DL) && 3543 "Expected inlined-at fields to agree"); 3544 // Act as if we're handling a debug intrinsic. 3545 MIRBuilder.setDebugLoc(DL); 3546 3547 if (!V || HasArgList) { 3548 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to 3549 // terminate any prior location. 3550 MIRBuilder.buildIndirectDbgValue(0, Variable, Expression); 3551 return; 3552 } 3553 3554 if (const auto *CI = dyn_cast<Constant>(V)) { 3555 MIRBuilder.buildConstDbgValue(*CI, Variable, Expression); 3556 return; 3557 } 3558 3559 if (auto *AI = dyn_cast<AllocaInst>(V); 3560 AI && AI->isStaticAlloca() && Expression->startsWithDeref()) { 3561 // If the value is an alloca and the expression starts with a 3562 // dereference, track a stack slot instead of a register, as registers 3563 // may be clobbered. 3564 auto ExprOperands = Expression->getElements(); 3565 auto *ExprDerefRemoved = 3566 DIExpression::get(AI->getContext(), ExprOperands.drop_front()); 3567 MIRBuilder.buildFIDbgValue(getOrCreateFrameIndex(*AI), Variable, 3568 ExprDerefRemoved); 3569 return; 3570 } 3571 if (translateIfEntryValueArgument(false, V, Variable, Expression, DL, 3572 MIRBuilder)) 3573 return; 3574 for (Register Reg : getOrCreateVRegs(*V)) { 3575 // FIXME: This does not handle register-indirect values at offset 0. The 3576 // direct/indirect thing shouldn't really be handled by something as 3577 // implicit as reg+noreg vs reg+imm in the first place, but it seems 3578 // pretty baked in right now. 3579 MIRBuilder.buildDirectDbgValue(Reg, Variable, Expression); 3580 } 3581 } 3582 3583 void IRTranslator::translateDbgDeclareRecord(Value *Address, bool HasArgList, 3584 const DILocalVariable *Variable, 3585 const DIExpression *Expression, 3586 const DebugLoc &DL, 3587 MachineIRBuilder &MIRBuilder) { 3588 if (!Address || isa<UndefValue>(Address)) { 3589 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *Variable << "\n"); 3590 return; 3591 } 3592 3593 assert(Variable->isValidLocationForIntrinsic(DL) && 3594 "Expected inlined-at fields to agree"); 3595 auto AI = dyn_cast<AllocaInst>(Address); 3596 if (AI && AI->isStaticAlloca()) { 3597 // Static allocas are tracked at the MF level, no need for DBG_VALUE 3598 // instructions (in fact, they get ignored if they *do* exist). 3599 MF->setVariableDbgInfo(Variable, Expression, 3600 getOrCreateFrameIndex(*AI), DL); 3601 return; 3602 } 3603 3604 if (translateIfEntryValueArgument(true, Address, Variable, 3605 Expression, DL, 3606 MIRBuilder)) 3607 return; 3608 3609 // A dbg.declare describes the address of a source variable, so lower it 3610 // into an indirect DBG_VALUE. 3611 MIRBuilder.setDebugLoc(DL); 3612 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 3613 Variable, Expression); 3614 return; 3615 } 3616 3617 void IRTranslator::translateDbgInfo(const Instruction &Inst, 3618 MachineIRBuilder &MIRBuilder) { 3619 for (DbgRecord &DR : Inst.getDbgRecordRange()) { 3620 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3621 MIRBuilder.setDebugLoc(DLR->getDebugLoc()); 3622 assert(DLR->getLabel() && "Missing label"); 3623 assert(DLR->getLabel()->isValidLocationForIntrinsic( 3624 MIRBuilder.getDebugLoc()) && 3625 "Expected inlined-at fields to agree"); 3626 MIRBuilder.buildDbgLabel(DLR->getLabel()); 3627 continue; 3628 } 3629 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3630 const DILocalVariable *Variable = DVR.getVariable(); 3631 const DIExpression *Expression = DVR.getExpression(); 3632 Value *V = DVR.getVariableLocationOp(0); 3633 if (DVR.isDbgDeclare()) 3634 translateDbgDeclareRecord(V, DVR.hasArgList(), Variable, Expression, 3635 DVR.getDebugLoc(), MIRBuilder); 3636 else 3637 translateDbgValueRecord(V, DVR.hasArgList(), Variable, Expression, 3638 DVR.getDebugLoc(), MIRBuilder); 3639 } 3640 } 3641 3642 bool IRTranslator::translate(const Instruction &Inst) { 3643 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 3644 CurBuilder->setPCSections(Inst.getMetadata(LLVMContext::MD_pcsections)); 3645 CurBuilder->setMMRAMetadata(Inst.getMetadata(LLVMContext::MD_mmra)); 3646 3647 if (TLI->fallBackToDAGISel(Inst)) 3648 return false; 3649 3650 switch (Inst.getOpcode()) { 3651 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3652 case Instruction::OPCODE: \ 3653 return translate##OPCODE(Inst, *CurBuilder.get()); 3654 #include "llvm/IR/Instruction.def" 3655 default: 3656 return false; 3657 } 3658 } 3659 3660 bool IRTranslator::translate(const Constant &C, Register Reg) { 3661 // We only emit constants into the entry block from here. To prevent jumpy 3662 // debug behaviour remove debug line. 3663 if (auto CurrInstDL = CurBuilder->getDL()) 3664 EntryBuilder->setDebugLoc(DebugLoc()); 3665 3666 if (auto CI = dyn_cast<ConstantInt>(&C)) 3667 EntryBuilder->buildConstant(Reg, *CI); 3668 else if (auto CF = dyn_cast<ConstantFP>(&C)) 3669 EntryBuilder->buildFConstant(Reg, *CF); 3670 else if (isa<UndefValue>(C)) 3671 EntryBuilder->buildUndef(Reg); 3672 else if (isa<ConstantPointerNull>(C)) 3673 EntryBuilder->buildConstant(Reg, 0); 3674 else if (auto GV = dyn_cast<GlobalValue>(&C)) 3675 EntryBuilder->buildGlobalValue(Reg, GV); 3676 else if (auto CPA = dyn_cast<ConstantPtrAuth>(&C)) { 3677 Register Addr = getOrCreateVReg(*CPA->getPointer()); 3678 Register AddrDisc = getOrCreateVReg(*CPA->getAddrDiscriminator()); 3679 EntryBuilder->buildConstantPtrAuth(Reg, CPA, Addr, AddrDisc); 3680 } else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 3681 Constant &Elt = *CAZ->getElementValue(0u); 3682 if (isa<ScalableVectorType>(CAZ->getType())) { 3683 EntryBuilder->buildSplatVector(Reg, getOrCreateVReg(Elt)); 3684 return true; 3685 } 3686 // Return the scalar if it is a <1 x Ty> vector. 3687 unsigned NumElts = CAZ->getElementCount().getFixedValue(); 3688 if (NumElts == 1) 3689 return translateCopy(C, Elt, *EntryBuilder); 3690 // All elements are zero so we can just use the first one. 3691 EntryBuilder->buildSplatBuildVector(Reg, getOrCreateVReg(Elt)); 3692 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 3693 // Return the scalar if it is a <1 x Ty> vector. 3694 if (CV->getNumElements() == 1) 3695 return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder); 3696 SmallVector<Register, 4> Ops; 3697 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 3698 Constant &Elt = *CV->getElementAsConstant(i); 3699 Ops.push_back(getOrCreateVReg(Elt)); 3700 } 3701 EntryBuilder->buildBuildVector(Reg, Ops); 3702 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 3703 switch(CE->getOpcode()) { 3704 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3705 case Instruction::OPCODE: \ 3706 return translate##OPCODE(*CE, *EntryBuilder.get()); 3707 #include "llvm/IR/Instruction.def" 3708 default: 3709 return false; 3710 } 3711 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 3712 if (CV->getNumOperands() == 1) 3713 return translateCopy(C, *CV->getOperand(0), *EntryBuilder); 3714 SmallVector<Register, 4> Ops; 3715 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 3716 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 3717 } 3718 EntryBuilder->buildBuildVector(Reg, Ops); 3719 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 3720 EntryBuilder->buildBlockAddress(Reg, BA); 3721 } else 3722 return false; 3723 3724 return true; 3725 } 3726 3727 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB, 3728 MachineBasicBlock &MBB) { 3729 for (auto &BTB : SL->BitTestCases) { 3730 // Emit header first, if it wasn't already emitted. 3731 if (!BTB.Emitted) 3732 emitBitTestHeader(BTB, BTB.Parent); 3733 3734 BranchProbability UnhandledProb = BTB.Prob; 3735 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 3736 UnhandledProb -= BTB.Cases[j].ExtraProb; 3737 // Set the current basic block to the mbb we wish to insert the code into 3738 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB; 3739 // If all cases cover a contiguous range, it is not necessary to jump to 3740 // the default block after the last bit test fails. This is because the 3741 // range check during bit test header creation has guaranteed that every 3742 // case here doesn't go outside the range. In this case, there is no need 3743 // to perform the last bit test, as it will always be true. Instead, make 3744 // the second-to-last bit-test fall through to the target of the last bit 3745 // test, and delete the last bit test. 3746 3747 MachineBasicBlock *NextMBB; 3748 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3749 // Second-to-last bit-test with contiguous range: fall through to the 3750 // target of the final bit test. 3751 NextMBB = BTB.Cases[j + 1].TargetBB; 3752 } else if (j + 1 == ej) { 3753 // For the last bit test, fall through to Default. 3754 NextMBB = BTB.Default; 3755 } else { 3756 // Otherwise, fall through to the next bit test. 3757 NextMBB = BTB.Cases[j + 1].ThisBB; 3758 } 3759 3760 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB); 3761 3762 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3763 // We need to record the replacement phi edge here that normally 3764 // happens in emitBitTestCase before we delete the case, otherwise the 3765 // phi edge will be lost. 3766 addMachineCFGPred({BTB.Parent->getBasicBlock(), 3767 BTB.Cases[ej - 1].TargetBB->getBasicBlock()}, 3768 MBB); 3769 // Since we're not going to use the final bit test, remove it. 3770 BTB.Cases.pop_back(); 3771 break; 3772 } 3773 } 3774 // This is "default" BB. We have two jumps to it. From "header" BB and from 3775 // last "case" BB, unless the latter was skipped. 3776 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(), 3777 BTB.Default->getBasicBlock()}; 3778 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent); 3779 if (!BTB.ContiguousRange) { 3780 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB); 3781 } 3782 } 3783 SL->BitTestCases.clear(); 3784 3785 for (auto &JTCase : SL->JTCases) { 3786 // Emit header first, if it wasn't already emitted. 3787 if (!JTCase.first.Emitted) 3788 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 3789 3790 emitJumpTable(JTCase.second, JTCase.second.MBB); 3791 } 3792 SL->JTCases.clear(); 3793 3794 for (auto &SwCase : SL->SwitchCases) 3795 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder); 3796 SL->SwitchCases.clear(); 3797 3798 // Check if we need to generate stack-protector guard checks. 3799 StackProtector &SP = getAnalysis<StackProtector>(); 3800 if (SP.shouldEmitSDCheck(BB)) { 3801 bool FunctionBasedInstrumentation = 3802 TLI->getSSPStackGuardCheck(*MF->getFunction().getParent()); 3803 SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation); 3804 } 3805 // Handle stack protector. 3806 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 3807 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n"); 3808 return false; 3809 } else if (SPDescriptor.shouldEmitStackProtector()) { 3810 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB(); 3811 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB(); 3812 3813 // Find the split point to split the parent mbb. At the same time copy all 3814 // physical registers used in the tail of parent mbb into virtual registers 3815 // before the split point and back into physical registers after the split 3816 // point. This prevents us needing to deal with Live-ins and many other 3817 // register allocation issues caused by us splitting the parent mbb. The 3818 // register allocator will clean up said virtual copies later on. 3819 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector( 3820 ParentMBB, *MF->getSubtarget().getInstrInfo()); 3821 3822 // Splice the terminator of ParentMBB into SuccessMBB. 3823 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint, 3824 ParentMBB->end()); 3825 3826 // Add compare/jump on neq/jump to the parent BB. 3827 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB)) 3828 return false; 3829 3830 // CodeGen Failure MBB if we have not codegened it yet. 3831 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB(); 3832 if (FailureMBB->empty()) { 3833 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB)) 3834 return false; 3835 } 3836 3837 // Clear the Per-BB State. 3838 SPDescriptor.resetPerBBState(); 3839 } 3840 return true; 3841 } 3842 3843 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD, 3844 MachineBasicBlock *ParentBB) { 3845 CurBuilder->setInsertPt(*ParentBB, ParentBB->end()); 3846 // First create the loads to the guard/stack slot for the comparison. 3847 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext()); 3848 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 3849 LLT PtrMemTy = getLLTForMVT(TLI->getPointerMemTy(*DL)); 3850 3851 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3852 int FI = MFI.getStackProtectorIndex(); 3853 3854 Register Guard; 3855 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0); 3856 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3857 Align Align = DL->getPrefTypeAlign(PointerType::getUnqual(M.getContext())); 3858 3859 // Generate code to load the content of the guard slot. 3860 Register GuardVal = 3861 CurBuilder 3862 ->buildLoad(PtrMemTy, StackSlotPtr, 3863 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3864 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile) 3865 .getReg(0); 3866 3867 if (TLI->useStackGuardXorFP()) { 3868 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented"); 3869 return false; 3870 } 3871 3872 // Retrieve guard check function, nullptr if instrumentation is inlined. 3873 if (const Function *GuardCheckFn = TLI->getSSPStackGuardCheck(M)) { 3874 // This path is currently untestable on GlobalISel, since the only platform 3875 // that needs this seems to be Windows, and we fall back on that currently. 3876 // The code still lives here in case that changes. 3877 // Silence warning about unused variable until the code below that uses 3878 // 'GuardCheckFn' is enabled. 3879 (void)GuardCheckFn; 3880 return false; 3881 #if 0 3882 // The target provides a guard check function to validate the guard value. 3883 // Generate a call to that function with the content of the guard slot as 3884 // argument. 3885 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3886 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3887 ISD::ArgFlagsTy Flags; 3888 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 3889 Flags.setInReg(); 3890 CallLowering::ArgInfo GuardArgInfo( 3891 {GuardVal, FnTy->getParamType(0), {Flags}}); 3892 3893 CallLowering::CallLoweringInfo Info; 3894 Info.OrigArgs.push_back(GuardArgInfo); 3895 Info.CallConv = GuardCheckFn->getCallingConv(); 3896 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0); 3897 Info.OrigRet = {Register(), FnTy->getReturnType()}; 3898 if (!CLI->lowerCall(MIRBuilder, Info)) { 3899 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n"); 3900 return false; 3901 } 3902 return true; 3903 #endif 3904 } 3905 3906 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3907 // Otherwise, emit a volatile load to retrieve the stack guard value. 3908 if (TLI->useLoadStackGuardNode(*ParentBB->getBasicBlock()->getModule())) { 3909 Guard = 3910 MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits())); 3911 getStackGuard(Guard, *CurBuilder); 3912 } else { 3913 // TODO: test using android subtarget when we support @llvm.thread.pointer. 3914 const Value *IRGuard = TLI->getSDagStackGuard(M); 3915 Register GuardPtr = getOrCreateVReg(*IRGuard); 3916 3917 Guard = CurBuilder 3918 ->buildLoad(PtrMemTy, GuardPtr, 3919 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3920 MachineMemOperand::MOLoad | 3921 MachineMemOperand::MOVolatile) 3922 .getReg(0); 3923 } 3924 3925 // Perform the comparison. 3926 auto Cmp = 3927 CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal); 3928 // If the guard/stackslot do not equal, branch to failure MBB. 3929 CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB()); 3930 // Otherwise branch to success MBB. 3931 CurBuilder->buildBr(*SPD.getSuccessMBB()); 3932 return true; 3933 } 3934 3935 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD, 3936 MachineBasicBlock *FailureBB) { 3937 CurBuilder->setInsertPt(*FailureBB, FailureBB->end()); 3938 3939 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL; 3940 const char *Name = TLI->getLibcallName(Libcall); 3941 3942 CallLowering::CallLoweringInfo Info; 3943 Info.CallConv = TLI->getLibcallCallingConv(Libcall); 3944 Info.Callee = MachineOperand::CreateES(Name); 3945 Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()), 3946 0}; 3947 if (!CLI->lowerCall(*CurBuilder, Info)) { 3948 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n"); 3949 return false; 3950 } 3951 3952 // Emit a trap instruction if we are required to do so. 3953 const TargetOptions &TargetOpts = TLI->getTargetMachine().Options; 3954 if (TargetOpts.TrapUnreachable && !TargetOpts.NoTrapAfterNoreturn) 3955 CurBuilder->buildInstr(TargetOpcode::G_TRAP); 3956 3957 return true; 3958 } 3959 3960 void IRTranslator::finalizeFunction() { 3961 // Release the memory used by the different maps we 3962 // needed during the translation. 3963 PendingPHIs.clear(); 3964 VMap.reset(); 3965 FrameIndices.clear(); 3966 MachinePreds.clear(); 3967 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 3968 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 3969 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 3970 EntryBuilder.reset(); 3971 CurBuilder.reset(); 3972 FuncInfo.clear(); 3973 SPDescriptor.resetPerFunctionState(); 3974 } 3975 3976 /// Returns true if a BasicBlock \p BB within a variadic function contains a 3977 /// variadic musttail call. 3978 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 3979 if (!IsVarArg) 3980 return false; 3981 3982 // Walk the block backwards, because tail calls usually only appear at the end 3983 // of a block. 3984 return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) { 3985 const auto *CI = dyn_cast<CallInst>(&I); 3986 return CI && CI->isMustTailCall(); 3987 }); 3988 } 3989 3990 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 3991 MF = &CurMF; 3992 const Function &F = MF->getFunction(); 3993 GISelCSEAnalysisWrapper &Wrapper = 3994 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 3995 // Set the CSEConfig and run the analysis. 3996 GISelCSEInfo *CSEInfo = nullptr; 3997 TPC = &getAnalysis<TargetPassConfig>(); 3998 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 3999 ? EnableCSEInIRTranslator 4000 : TPC->isGISelCSEEnabled(); 4001 TLI = MF->getSubtarget().getTargetLowering(); 4002 4003 if (EnableCSE) { 4004 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 4005 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 4006 EntryBuilder->setCSEInfo(CSEInfo); 4007 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 4008 CurBuilder->setCSEInfo(CSEInfo); 4009 } else { 4010 EntryBuilder = std::make_unique<MachineIRBuilder>(); 4011 CurBuilder = std::make_unique<MachineIRBuilder>(); 4012 } 4013 CLI = MF->getSubtarget().getCallLowering(); 4014 CurBuilder->setMF(*MF); 4015 EntryBuilder->setMF(*MF); 4016 MRI = &MF->getRegInfo(); 4017 DL = &F.getDataLayout(); 4018 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 4019 const TargetMachine &TM = MF->getTarget(); 4020 TM.resetTargetOptions(F); 4021 EnableOpts = OptLevel != CodeGenOptLevel::None && !skipFunction(F); 4022 FuncInfo.MF = MF; 4023 if (EnableOpts) { 4024 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4025 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 4026 } else { 4027 AA = nullptr; 4028 FuncInfo.BPI = nullptr; 4029 } 4030 4031 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 4032 MF->getFunction()); 4033 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4034 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF); 4035 4036 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 4037 SL->init(*TLI, TM, *DL); 4038 4039 assert(PendingPHIs.empty() && "stale PHIs"); 4040 4041 // Targets which want to use big endian can enable it using 4042 // enableBigEndian() 4043 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) { 4044 // Currently we don't properly handle big endian code. 4045 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 4046 F.getSubprogram(), &F.getEntryBlock()); 4047 R << "unable to translate in big endian mode"; 4048 reportTranslationError(*MF, *TPC, *ORE, R); 4049 return false; 4050 } 4051 4052 // Release the per-function state when we return, whether we succeeded or not. 4053 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 4054 4055 // Setup a separate basic-block for the arguments and constants 4056 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 4057 MF->push_back(EntryBB); 4058 EntryBuilder->setMBB(*EntryBB); 4059 4060 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHIIt()->getDebugLoc(); 4061 SwiftError.setFunction(CurMF); 4062 SwiftError.createEntriesInEntryBlock(DbgLoc); 4063 4064 bool IsVarArg = F.isVarArg(); 4065 bool HasMustTailInVarArgFn = false; 4066 4067 // Create all blocks, in IR order, to preserve the layout. 4068 FuncInfo.MBBMap.resize(F.getMaxBlockNumber()); 4069 for (const BasicBlock &BB: F) { 4070 auto *&MBB = FuncInfo.MBBMap[BB.getNumber()]; 4071 4072 MBB = MF->CreateMachineBasicBlock(&BB); 4073 MF->push_back(MBB); 4074 4075 if (BB.hasAddressTaken()) 4076 MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB)); 4077 4078 if (!HasMustTailInVarArgFn) 4079 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 4080 } 4081 4082 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 4083 4084 // Make our arguments/constants entry block fallthrough to the IR entry block. 4085 EntryBB->addSuccessor(&getMBB(F.front())); 4086 4087 if (CLI->fallBackToDAGISel(*MF)) { 4088 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 4089 F.getSubprogram(), &F.getEntryBlock()); 4090 R << "unable to lower function: " 4091 << ore::NV("Prototype", F.getFunctionType()); 4092 reportTranslationError(*MF, *TPC, *ORE, R); 4093 return false; 4094 } 4095 4096 // Lower the actual args into this basic block. 4097 SmallVector<ArrayRef<Register>, 8> VRegArgs; 4098 for (const Argument &Arg: F.args()) { 4099 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 4100 continue; // Don't handle zero sized types. 4101 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 4102 VRegArgs.push_back(VRegs); 4103 4104 if (Arg.hasSwiftErrorAttr()) { 4105 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 4106 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 4107 } 4108 } 4109 4110 if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) { 4111 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 4112 F.getSubprogram(), &F.getEntryBlock()); 4113 R << "unable to lower arguments: " 4114 << ore::NV("Prototype", F.getFunctionType()); 4115 reportTranslationError(*MF, *TPC, *ORE, R); 4116 return false; 4117 } 4118 4119 // Need to visit defs before uses when translating instructions. 4120 GISelObserverWrapper WrapperObserver; 4121 if (EnableCSE && CSEInfo) 4122 WrapperObserver.addObserver(CSEInfo); 4123 { 4124 ReversePostOrderTraversal<const Function *> RPOT(&F); 4125 #ifndef NDEBUG 4126 DILocationVerifier Verifier; 4127 WrapperObserver.addObserver(&Verifier); 4128 #endif // ifndef NDEBUG 4129 RAIIMFObsDelInstaller ObsInstall(*MF, WrapperObserver); 4130 for (const BasicBlock *BB : RPOT) { 4131 MachineBasicBlock &MBB = getMBB(*BB); 4132 // Set the insertion point of all the following translations to 4133 // the end of this basic block. 4134 CurBuilder->setMBB(MBB); 4135 HasTailCall = false; 4136 for (const Instruction &Inst : *BB) { 4137 // If we translated a tail call in the last step, then we know 4138 // everything after the call is either a return, or something that is 4139 // handled by the call itself. (E.g. a lifetime marker or assume 4140 // intrinsic.) In this case, we should stop translating the block and 4141 // move on. 4142 if (HasTailCall) 4143 break; 4144 #ifndef NDEBUG 4145 Verifier.setCurrentInst(&Inst); 4146 #endif // ifndef NDEBUG 4147 4148 // Translate any debug-info attached to the instruction. 4149 translateDbgInfo(Inst, *CurBuilder); 4150 4151 if (translate(Inst)) 4152 continue; 4153 4154 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 4155 Inst.getDebugLoc(), BB); 4156 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 4157 4158 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 4159 std::string InstStrStorage; 4160 raw_string_ostream InstStr(InstStrStorage); 4161 InstStr << Inst; 4162 4163 R << ": '" << InstStrStorage << "'"; 4164 } 4165 4166 reportTranslationError(*MF, *TPC, *ORE, R); 4167 return false; 4168 } 4169 4170 if (!finalizeBasicBlock(*BB, MBB)) { 4171 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 4172 BB->getTerminator()->getDebugLoc(), BB); 4173 R << "unable to translate basic block"; 4174 reportTranslationError(*MF, *TPC, *ORE, R); 4175 return false; 4176 } 4177 } 4178 #ifndef NDEBUG 4179 WrapperObserver.removeObserver(&Verifier); 4180 #endif 4181 } 4182 4183 finishPendingPhis(); 4184 4185 SwiftError.propagateVRegs(); 4186 4187 // Merge the argument lowering and constants block with its single 4188 // successor, the LLVM-IR entry block. We want the basic block to 4189 // be maximal. 4190 assert(EntryBB->succ_size() == 1 && 4191 "Custom BB used for lowering should have only one successor"); 4192 // Get the successor of the current entry block. 4193 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 4194 assert(NewEntryBB.pred_size() == 1 && 4195 "LLVM-IR entry block has a predecessor!?"); 4196 // Move all the instruction from the current entry block to the 4197 // new entry block. 4198 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 4199 EntryBB->end()); 4200 4201 // Update the live-in information for the new entry block. 4202 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 4203 NewEntryBB.addLiveIn(LiveIn); 4204 NewEntryBB.sortUniqueLiveIns(); 4205 4206 // Get rid of the now empty basic block. 4207 EntryBB->removeSuccessor(&NewEntryBB); 4208 MF->remove(EntryBB); 4209 MF->deleteMachineBasicBlock(EntryBB); 4210 4211 assert(&MF->front() == &NewEntryBB && 4212 "New entry wasn't next in the list of basic block!"); 4213 4214 // Initialize stack protector information. 4215 StackProtector &SP = getAnalysis<StackProtector>(); 4216 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 4217 4218 return false; 4219 } 4220