xref: /llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 416f1c465db62d829283f6902ef35e027e127aa7)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 #define DEBUG_TYPE "call-lowering"
29 
30 using namespace llvm;
31 
32 void CallLowering::anchor() {}
33 
34 /// Helper function which updates \p Flags when \p AttrFn returns true.
35 static void
36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
37                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38   // TODO: There are missing flags. Add them here.
39   if (AttrFn(Attribute::SExt))
40     Flags.setSExt();
41   if (AttrFn(Attribute::ZExt))
42     Flags.setZExt();
43   if (AttrFn(Attribute::InReg))
44     Flags.setInReg();
45   if (AttrFn(Attribute::StructRet))
46     Flags.setSRet();
47   if (AttrFn(Attribute::Nest))
48     Flags.setNest();
49   if (AttrFn(Attribute::ByVal))
50     Flags.setByVal();
51   if (AttrFn(Attribute::ByRef))
52     Flags.setByRef();
53   if (AttrFn(Attribute::Preallocated))
54     Flags.setPreallocated();
55   if (AttrFn(Attribute::InAlloca))
56     Flags.setInAlloca();
57   if (AttrFn(Attribute::Returned))
58     Flags.setReturned();
59   if (AttrFn(Attribute::SwiftSelf))
60     Flags.setSwiftSelf();
61   if (AttrFn(Attribute::SwiftAsync))
62     Flags.setSwiftAsync();
63   if (AttrFn(Attribute::SwiftError))
64     Flags.setSwiftError();
65 }
66 
67 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
68                                                      unsigned ArgIdx) const {
69   ISD::ArgFlagsTy Flags;
70   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
71     return Call.paramHasAttr(ArgIdx, Attr);
72   });
73   return Flags;
74 }
75 
76 ISD::ArgFlagsTy
77 CallLowering::getAttributesForReturn(const CallBase &Call) const {
78   ISD::ArgFlagsTy Flags;
79   addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) {
80     return Call.hasRetAttr(Attr);
81   });
82   return Flags;
83 }
84 
85 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
86                                              const AttributeList &Attrs,
87                                              unsigned OpIdx) const {
88   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
89     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
90   });
91 }
92 
93 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
94                              ArrayRef<Register> ResRegs,
95                              ArrayRef<ArrayRef<Register>> ArgRegs,
96                              Register SwiftErrorVReg,
97                              std::optional<PtrAuthInfo> PAI,
98                              Register ConvergenceCtrlToken,
99                              std::function<unsigned()> GetCalleeReg) const {
100   CallLoweringInfo Info;
101   const DataLayout &DL = MIRBuilder.getDataLayout();
102   MachineFunction &MF = MIRBuilder.getMF();
103   MachineRegisterInfo &MRI = MF.getRegInfo();
104   bool CanBeTailCalled = CB.isTailCall() &&
105                          isInTailCallPosition(CB, MF.getTarget()) &&
106                          (MF.getFunction()
107                               .getFnAttribute("disable-tail-calls")
108                               .getValueAsString() != "true");
109 
110   CallingConv::ID CallConv = CB.getCallingConv();
111   Type *RetTy = CB.getType();
112   bool IsVarArg = CB.getFunctionType()->isVarArg();
113 
114   SmallVector<BaseArgInfo, 4> SplitArgs;
115   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
116   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
117 
118   Info.IsConvergent = CB.isConvergent();
119 
120   if (!Info.CanLowerReturn) {
121     // Callee requires sret demotion.
122     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
123 
124     // The sret demotion isn't compatible with tail-calls, since the sret
125     // argument points into the caller's stack frame.
126     CanBeTailCalled = false;
127   }
128 
129   // First step is to marshall all the function's parameters into the correct
130   // physregs and memory locations. Gather the sequence of argument types that
131   // we'll pass to the assigner function.
132   unsigned i = 0;
133   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
134   for (const auto &Arg : CB.args()) {
135     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
136                     i < NumFixedArgs};
137     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
138 
139     // If we have an explicit sret argument that is an Instruction, (i.e., it
140     // might point to function-local memory), we can't meaningfully tail-call.
141     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
142       CanBeTailCalled = false;
143 
144     Info.OrigArgs.push_back(OrigArg);
145     ++i;
146   }
147 
148   // Try looking through a bitcast from one function type to another.
149   // Commonly happens with calls to objc_msgSend().
150   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
151 
152   // If IRTranslator chose to drop the ptrauth info, we can turn this into
153   // a direct call.
154   if (!PAI && CB.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
155     CalleeV = cast<ConstantPtrAuth>(CalleeV)->getPointer();
156     assert(isa<Function>(CalleeV));
157   }
158 
159   if (const Function *F = dyn_cast<Function>(CalleeV)) {
160     if (F->hasFnAttribute(Attribute::NonLazyBind)) {
161       LLT Ty = getLLTForType(*F->getType(), DL);
162       Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0);
163       Info.Callee = MachineOperand::CreateReg(Reg, false);
164     } else {
165       Info.Callee = MachineOperand::CreateGA(F, 0);
166     }
167   } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) {
168     // IR IFuncs and Aliases can't be forward declared (only defined), so the
169     // callee must be in the same TU and therefore we can direct-call it without
170     // worrying about it being out of range.
171     Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0);
172   } else
173     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
174 
175   Register ReturnHintAlignReg;
176   Align ReturnHintAlign;
177 
178   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
179 
180   if (!Info.OrigRet.Ty->isVoidTy()) {
181     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
182 
183     if (MaybeAlign Alignment = CB.getRetAlign()) {
184       if (*Alignment > Align(1)) {
185         ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
186         Info.OrigRet.Regs[0] = ReturnHintAlignReg;
187         ReturnHintAlign = *Alignment;
188       }
189     }
190   }
191 
192   auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
193   if (Bundle && CB.isIndirectCall()) {
194     Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
195     assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
196   }
197 
198   Info.CB = &CB;
199   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
200   Info.CallConv = CallConv;
201   Info.SwiftErrorVReg = SwiftErrorVReg;
202   Info.PAI = PAI;
203   Info.ConvergenceCtrlToken = ConvergenceCtrlToken;
204   Info.IsMustTailCall = CB.isMustTailCall();
205   Info.IsTailCall = CanBeTailCalled;
206   Info.IsVarArg = IsVarArg;
207   if (!lowerCall(MIRBuilder, Info))
208     return false;
209 
210   if (ReturnHintAlignReg && !Info.LoweredTailCall) {
211     MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
212                                 ReturnHintAlign);
213   }
214 
215   return true;
216 }
217 
218 template <typename FuncInfoTy>
219 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
220                                const DataLayout &DL,
221                                const FuncInfoTy &FuncInfo) const {
222   auto &Flags = Arg.Flags[0];
223   const AttributeList &Attrs = FuncInfo.getAttributes();
224   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
225 
226   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
227   if (PtrTy) {
228     Flags.setPointer();
229     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
230   }
231 
232   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
233   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
234       Flags.isByRef()) {
235     assert(OpIdx >= AttributeList::FirstArgIndex);
236     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
237 
238     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
239     if (!ElementTy)
240       ElementTy = FuncInfo.getParamByRefType(ParamIdx);
241     if (!ElementTy)
242       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
243     if (!ElementTy)
244       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
245 
246     assert(ElementTy && "Must have byval, inalloca or preallocated type");
247 
248     uint64_t MemSize = DL.getTypeAllocSize(ElementTy);
249     if (Flags.isByRef())
250       Flags.setByRefSize(MemSize);
251     else
252       Flags.setByValSize(MemSize);
253 
254     // For ByVal, alignment should be passed from FE.  BE will guess if
255     // this info is not there but there are cases it cannot get right.
256     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
257       MemAlign = *ParamAlign;
258     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
259       MemAlign = *ParamAlign;
260     else
261       MemAlign = getTLI()->getByValTypeAlignment(ElementTy, DL);
262   } else if (OpIdx >= AttributeList::FirstArgIndex) {
263     if (auto ParamAlign =
264             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
265       MemAlign = *ParamAlign;
266   }
267   Flags.setMemAlign(MemAlign);
268   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
269 
270   // Don't try to use the returned attribute if the argument is marked as
271   // swiftself, since it won't be passed in x0.
272   if (Flags.isSwiftSelf())
273     Flags.setReturned(false);
274 }
275 
276 template void
277 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
278                                     const DataLayout &DL,
279                                     const Function &FuncInfo) const;
280 
281 template void
282 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
283                                     const DataLayout &DL,
284                                     const CallBase &FuncInfo) const;
285 
286 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
287                                      SmallVectorImpl<ArgInfo> &SplitArgs,
288                                      const DataLayout &DL,
289                                      CallingConv::ID CallConv,
290                                      SmallVectorImpl<uint64_t> *Offsets) const {
291   LLVMContext &Ctx = OrigArg.Ty->getContext();
292 
293   SmallVector<EVT, 4> SplitVTs;
294   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
295 
296   if (SplitVTs.size() == 0)
297     return;
298 
299   if (SplitVTs.size() == 1) {
300     // No splitting to do, but we want to replace the original type (e.g. [1 x
301     // double] -> double).
302     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
303                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
304                            OrigArg.IsFixed, OrigArg.OrigValue);
305     return;
306   }
307 
308   // Create one ArgInfo for each virtual register in the original ArgInfo.
309   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
310 
311   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
312       OrigArg.Ty, CallConv, false, DL);
313   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
314     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
315     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
316                            OrigArg.Flags[0], OrigArg.IsFixed);
317     if (NeedsRegBlock)
318       SplitArgs.back().Flags[0].setInConsecutiveRegs();
319   }
320 
321   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
322 }
323 
324 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
325 static MachineInstrBuilder
326 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
327                             ArrayRef<Register> SrcRegs) {
328   MachineRegisterInfo &MRI = *B.getMRI();
329   LLT LLTy = MRI.getType(DstRegs[0]);
330   LLT PartLLT = MRI.getType(SrcRegs[0]);
331 
332   // Deal with v3s16 split into v2s16
333   LLT LCMTy = getCoverTy(LLTy, PartLLT);
334   if (LCMTy == LLTy) {
335     // Common case where no padding is needed.
336     assert(DstRegs.size() == 1);
337     return B.buildConcatVectors(DstRegs[0], SrcRegs);
338   }
339 
340   // We need to create an unmerge to the result registers, which may require
341   // widening the original value.
342   Register UnmergeSrcReg;
343   if (LCMTy != PartLLT) {
344     assert(DstRegs.size() == 1);
345     return B.buildDeleteTrailingVectorElements(
346         DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
347   } else {
348     // We don't need to widen anything if we're extracting a scalar which was
349     // promoted to a vector e.g. s8 -> v4s8 -> s8
350     assert(SrcRegs.size() == 1);
351     UnmergeSrcReg = SrcRegs[0];
352   }
353 
354   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
355 
356   SmallVector<Register, 8> PadDstRegs(NumDst);
357   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
358 
359   // Create the excess dead defs for the unmerge.
360   for (int I = DstRegs.size(); I != NumDst; ++I)
361     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
362 
363   if (PadDstRegs.size() == 1)
364     return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
365   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
366 }
367 
368 /// Create a sequence of instructions to combine pieces split into register
369 /// typed values to the original IR value. \p OrigRegs contains the destination
370 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
371 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
372 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
373                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
374                               const ISD::ArgFlagsTy Flags) {
375   MachineRegisterInfo &MRI = *B.getMRI();
376 
377   if (PartLLT == LLTy) {
378     // We should have avoided introducing a new virtual register, and just
379     // directly assigned here.
380     assert(OrigRegs[0] == Regs[0]);
381     return;
382   }
383 
384   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
385       Regs.size() == 1) {
386     B.buildBitcast(OrigRegs[0], Regs[0]);
387     return;
388   }
389 
390   // A vector PartLLT needs extending to LLTy's element size.
391   // E.g. <2 x s64> = G_SEXT <2 x s32>.
392   if (PartLLT.isVector() == LLTy.isVector() &&
393       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
394       (!PartLLT.isVector() ||
395        PartLLT.getElementCount() == LLTy.getElementCount()) &&
396       OrigRegs.size() == 1 && Regs.size() == 1) {
397     Register SrcReg = Regs[0];
398 
399     LLT LocTy = MRI.getType(SrcReg);
400 
401     if (Flags.isSExt()) {
402       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
403                    .getReg(0);
404     } else if (Flags.isZExt()) {
405       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
406                    .getReg(0);
407     }
408 
409     // Sometimes pointers are passed zero extended.
410     LLT OrigTy = MRI.getType(OrigRegs[0]);
411     if (OrigTy.isPointer()) {
412       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
413       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
414       return;
415     }
416 
417     B.buildTrunc(OrigRegs[0], SrcReg);
418     return;
419   }
420 
421   if (!LLTy.isVector() && !PartLLT.isVector()) {
422     assert(OrigRegs.size() == 1);
423     LLT OrigTy = MRI.getType(OrigRegs[0]);
424 
425     unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
426     if (SrcSize == OrigTy.getSizeInBits())
427       B.buildMergeValues(OrigRegs[0], Regs);
428     else {
429       auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
430       B.buildTrunc(OrigRegs[0], Widened);
431     }
432 
433     return;
434   }
435 
436   if (PartLLT.isVector()) {
437     assert(OrigRegs.size() == 1);
438     SmallVector<Register> CastRegs(Regs);
439 
440     // If PartLLT is a mismatched vector in both number of elements and element
441     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
442     // have the same elt type, i.e. v4s32.
443     // TODO: Extend this coersion to element multiples other than just 2.
444     if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) &&
445         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
446         Regs.size() == 1) {
447       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
448                       .changeElementCount(PartLLT.getElementCount() * 2);
449       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
450       PartLLT = NewTy;
451     }
452 
453     if (LLTy.getScalarType() == PartLLT.getElementType()) {
454       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
455     } else {
456       unsigned I = 0;
457       LLT GCDTy = getGCDType(LLTy, PartLLT);
458 
459       // We are both splitting a vector, and bitcasting its element types. Cast
460       // the source pieces into the appropriate number of pieces with the result
461       // element type.
462       for (Register SrcReg : CastRegs)
463         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
464       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
465     }
466 
467     return;
468   }
469 
470   assert(LLTy.isVector() && !PartLLT.isVector());
471 
472   LLT DstEltTy = LLTy.getElementType();
473 
474   // Pointer information was discarded. We'll need to coerce some register types
475   // to avoid violating type constraints.
476   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
477 
478   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
479 
480   if (DstEltTy == PartLLT) {
481     // Vector was trivially scalarized.
482 
483     if (RealDstEltTy.isPointer()) {
484       for (Register Reg : Regs)
485         MRI.setType(Reg, RealDstEltTy);
486     }
487 
488     B.buildBuildVector(OrigRegs[0], Regs);
489   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
490     // Deal with vector with 64-bit elements decomposed to 32-bit
491     // registers. Need to create intermediate 64-bit elements.
492     SmallVector<Register, 8> EltMerges;
493     int PartsPerElt =
494         divideCeil(DstEltTy.getSizeInBits(), PartLLT.getSizeInBits());
495     LLT ExtendedPartTy = LLT::scalar(PartLLT.getSizeInBits() * PartsPerElt);
496 
497     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
498       auto Merge =
499           B.buildMergeLikeInstr(ExtendedPartTy, Regs.take_front(PartsPerElt));
500       if (ExtendedPartTy.getSizeInBits() > RealDstEltTy.getSizeInBits())
501         Merge = B.buildTrunc(RealDstEltTy, Merge);
502       // Fix the type in case this is really a vector of pointers.
503       MRI.setType(Merge.getReg(0), RealDstEltTy);
504       EltMerges.push_back(Merge.getReg(0));
505       Regs = Regs.drop_front(PartsPerElt);
506     }
507 
508     B.buildBuildVector(OrigRegs[0], EltMerges);
509   } else {
510     // Vector was split, and elements promoted to a wider type.
511     // FIXME: Should handle floating point promotions.
512     unsigned NumElts = LLTy.getNumElements();
513     LLT BVType = LLT::fixed_vector(NumElts, PartLLT);
514 
515     Register BuildVec;
516     if (NumElts == Regs.size())
517       BuildVec = B.buildBuildVector(BVType, Regs).getReg(0);
518     else {
519       // Vector elements are packed in the inputs.
520       // e.g. we have a <4 x s16> but 2 x s32 in regs.
521       assert(NumElts > Regs.size());
522       LLT SrcEltTy = MRI.getType(Regs[0]);
523 
524       LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType();
525 
526       // Input registers contain packed elements.
527       // Determine how many elements per reg.
528       assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0);
529       unsigned EltPerReg =
530           (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits());
531 
532       SmallVector<Register, 0> BVRegs;
533       BVRegs.reserve(Regs.size() * EltPerReg);
534       for (Register R : Regs) {
535         auto Unmerge = B.buildUnmerge(OriginalEltTy, R);
536         for (unsigned K = 0; K < EltPerReg; ++K)
537           BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0));
538       }
539 
540       // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces
541       // for a <3 x s16> vector. We should have less than EltPerReg extra items.
542       if (BVRegs.size() > NumElts) {
543         assert((BVRegs.size() - NumElts) < EltPerReg);
544         BVRegs.truncate(NumElts);
545       }
546       BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0);
547     }
548     B.buildTrunc(OrigRegs[0], BuildVec);
549   }
550 }
551 
552 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
553 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
554 /// contain the type of scalar value extension if necessary.
555 ///
556 /// This is used for outgoing values (vregs to physregs)
557 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
558                             Register SrcReg, LLT SrcTy, LLT PartTy,
559                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
560   // We could just insert a regular copy, but this is unreachable at the moment.
561   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
562 
563   const TypeSize PartSize = PartTy.getSizeInBits();
564 
565   if (PartTy.isVector() == SrcTy.isVector() &&
566       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
567     assert(DstRegs.size() == 1);
568     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
569     return;
570   }
571 
572   if (SrcTy.isVector() && !PartTy.isVector() &&
573       TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) {
574     // Vector was scalarized, and the elements extended.
575     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
576     for (int i = 0, e = DstRegs.size(); i != e; ++i)
577       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
578     return;
579   }
580 
581   if (SrcTy.isVector() && PartTy.isVector() &&
582       PartTy.getSizeInBits() == SrcTy.getSizeInBits() &&
583       ElementCount::isKnownLT(SrcTy.getElementCount(),
584                               PartTy.getElementCount())) {
585     // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32
586     Register DstReg = DstRegs.front();
587     B.buildPadVectorWithUndefElements(DstReg, SrcReg);
588     return;
589   }
590 
591   LLT GCDTy = getGCDType(SrcTy, PartTy);
592   if (GCDTy == PartTy) {
593     // If this already evenly divisible, we can create a simple unmerge.
594     B.buildUnmerge(DstRegs, SrcReg);
595     return;
596   }
597 
598   if (SrcTy.isVector() && !PartTy.isVector() &&
599       SrcTy.getScalarSizeInBits() > PartTy.getSizeInBits()) {
600     LLT ExtTy =
601         LLT::vector(SrcTy.getElementCount(),
602                     LLT::scalar(PartTy.getScalarSizeInBits() * DstRegs.size() /
603                                 SrcTy.getNumElements()));
604     auto Ext = B.buildAnyExt(ExtTy, SrcReg);
605     B.buildUnmerge(DstRegs, Ext);
606     return;
607   }
608 
609   MachineRegisterInfo &MRI = *B.getMRI();
610   LLT DstTy = MRI.getType(DstRegs[0]);
611   LLT LCMTy = getCoverTy(SrcTy, PartTy);
612 
613   if (PartTy.isVector() && LCMTy == PartTy) {
614     assert(DstRegs.size() == 1);
615     B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
616     return;
617   }
618 
619   const unsigned DstSize = DstTy.getSizeInBits();
620   const unsigned SrcSize = SrcTy.getSizeInBits();
621   unsigned CoveringSize = LCMTy.getSizeInBits();
622 
623   Register UnmergeSrc = SrcReg;
624 
625   if (!LCMTy.isVector() && CoveringSize != SrcSize) {
626     // For scalars, it's common to be able to use a simple extension.
627     if (SrcTy.isScalar() && DstTy.isScalar()) {
628       CoveringSize = alignTo(SrcSize, DstSize);
629       LLT CoverTy = LLT::scalar(CoveringSize);
630       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
631     } else {
632       // Widen to the common type.
633       // FIXME: This should respect the extend type
634       Register Undef = B.buildUndef(SrcTy).getReg(0);
635       SmallVector<Register, 8> MergeParts(1, SrcReg);
636       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
637         MergeParts.push_back(Undef);
638       UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
639     }
640   }
641 
642   if (LCMTy.isVector() && CoveringSize != SrcSize)
643     UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
644 
645   B.buildUnmerge(DstRegs, UnmergeSrc);
646 }
647 
648 bool CallLowering::determineAndHandleAssignments(
649     ValueHandler &Handler, ValueAssigner &Assigner,
650     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
651     CallingConv::ID CallConv, bool IsVarArg,
652     ArrayRef<Register> ThisReturnRegs) const {
653   MachineFunction &MF = MIRBuilder.getMF();
654   const Function &F = MF.getFunction();
655   SmallVector<CCValAssign, 16> ArgLocs;
656 
657   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
658   if (!determineAssignments(Assigner, Args, CCInfo))
659     return false;
660 
661   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
662                            ThisReturnRegs);
663 }
664 
665 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
666   if (Flags.isSExt())
667     return TargetOpcode::G_SEXT;
668   if (Flags.isZExt())
669     return TargetOpcode::G_ZEXT;
670   return TargetOpcode::G_ANYEXT;
671 }
672 
673 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
674                                         SmallVectorImpl<ArgInfo> &Args,
675                                         CCState &CCInfo) const {
676   LLVMContext &Ctx = CCInfo.getContext();
677   const CallingConv::ID CallConv = CCInfo.getCallingConv();
678 
679   unsigned NumArgs = Args.size();
680   for (unsigned i = 0; i != NumArgs; ++i) {
681     EVT CurVT = EVT::getEVT(Args[i].Ty);
682 
683     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
684 
685     // If we need to split the type over multiple regs, check it's a scenario
686     // we currently support.
687     unsigned NumParts =
688         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
689 
690     if (NumParts == 1) {
691       // Try to use the register type if we couldn't assign the VT.
692       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
693                              Args[i].Flags[0], CCInfo))
694         return false;
695       continue;
696     }
697 
698     // For incoming arguments (physregs to vregs), we could have values in
699     // physregs (or memlocs) which we want to extract and copy to vregs.
700     // During this, we might have to deal with the LLT being split across
701     // multiple regs, so we have to record this information for later.
702     //
703     // If we have outgoing args, then we have the opposite case. We have a
704     // vreg with an LLT which we want to assign to a physical location, and
705     // we might have to record that the value has to be split later.
706 
707     // We're handling an incoming arg which is split over multiple regs.
708     // E.g. passing an s128 on AArch64.
709     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
710     Args[i].Flags.clear();
711 
712     for (unsigned Part = 0; Part < NumParts; ++Part) {
713       ISD::ArgFlagsTy Flags = OrigFlags;
714       if (Part == 0) {
715         Flags.setSplit();
716       } else {
717         Flags.setOrigAlign(Align(1));
718         if (Part == NumParts - 1)
719           Flags.setSplitEnd();
720       }
721 
722       Args[i].Flags.push_back(Flags);
723       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
724                              Args[i].Flags[Part], CCInfo)) {
725         // Still couldn't assign this smaller part type for some reason.
726         return false;
727       }
728     }
729   }
730 
731   return true;
732 }
733 
734 bool CallLowering::handleAssignments(ValueHandler &Handler,
735                                      SmallVectorImpl<ArgInfo> &Args,
736                                      CCState &CCInfo,
737                                      SmallVectorImpl<CCValAssign> &ArgLocs,
738                                      MachineIRBuilder &MIRBuilder,
739                                      ArrayRef<Register> ThisReturnRegs) const {
740   MachineFunction &MF = MIRBuilder.getMF();
741   MachineRegisterInfo &MRI = MF.getRegInfo();
742   const Function &F = MF.getFunction();
743   const DataLayout &DL = F.getDataLayout();
744 
745   const unsigned NumArgs = Args.size();
746 
747   // Stores thunks for outgoing register assignments. This is used so we delay
748   // generating register copies until mem loc assignments are done. We do this
749   // so that if the target is using the delayed stack protector feature, we can
750   // find the split point of the block accurately. E.g. if we have:
751   // G_STORE %val, %memloc
752   // $x0 = COPY %foo
753   // $x1 = COPY %bar
754   // CALL func
755   // ... then the split point for the block will correctly be at, and including,
756   // the copy to $x0. If instead the G_STORE instruction immediately precedes
757   // the CALL, then we'd prematurely choose the CALL as the split point, thus
758   // generating a split block with a CALL that uses undefined physregs.
759   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
760 
761   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
762     assert(j < ArgLocs.size() && "Skipped too many arg locs");
763     CCValAssign &VA = ArgLocs[j];
764     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
765 
766     if (VA.needsCustom()) {
767       std::function<void()> Thunk;
768       unsigned NumArgRegs = Handler.assignCustomValue(
769           Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
770       if (Thunk)
771         DelayedOutgoingRegAssignments.emplace_back(Thunk);
772       if (!NumArgRegs)
773         return false;
774       j += (NumArgRegs - 1);
775       continue;
776     }
777 
778     auto AllocaAddressSpace = MF.getDataLayout().getAllocaAddrSpace();
779 
780     const MVT ValVT = VA.getValVT();
781     const MVT LocVT = VA.getLocVT();
782 
783     const LLT LocTy(LocVT);
784     const LLT ValTy(ValVT);
785     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
786     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
787     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
788     const LLT PointerTy = LLT::pointer(
789         AllocaAddressSpace, DL.getPointerSizeInBits(AllocaAddressSpace));
790 
791     // Expected to be multiple regs for a single incoming arg.
792     // There should be Regs.size() ArgLocs per argument.
793     // This should be the same as getNumRegistersForCallingConv
794     const unsigned NumParts = Args[i].Flags.size();
795 
796     // Now split the registers into the assigned types.
797     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
798 
799     if (NumParts != 1 || NewLLT != OrigTy) {
800       // If we can't directly assign the register, we need one or more
801       // intermediate values.
802       Args[i].Regs.resize(NumParts);
803 
804       // When we have indirect parameter passing we are receiving a pointer,
805       // that points to the actual value, so we need one "temporary" pointer.
806       if (VA.getLocInfo() == CCValAssign::Indirect) {
807         if (Handler.isIncomingArgumentHandler())
808           Args[i].Regs[0] = MRI.createGenericVirtualRegister(PointerTy);
809       } else {
810         // For each split register, create and assign a vreg that will store
811         // the incoming component of the larger value. These will later be
812         // merged to form the final vreg.
813         for (unsigned Part = 0; Part < NumParts; ++Part)
814           Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
815       }
816     }
817 
818     assert((j + (NumParts - 1)) < ArgLocs.size() &&
819            "Too many regs for number of args");
820 
821     // Coerce into outgoing value types before register assignment.
822     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy &&
823         VA.getLocInfo() != CCValAssign::Indirect) {
824       assert(Args[i].OrigRegs.size() == 1);
825       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
826                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
827     }
828 
829     bool IndirectParameterPassingHandled = false;
830     bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
831     for (unsigned Part = 0; Part < NumParts; ++Part) {
832       assert((VA.getLocInfo() != CCValAssign::Indirect || Part == 0) &&
833              "Only the first parameter should be processed when "
834              "handling indirect passing!");
835       Register ArgReg = Args[i].Regs[Part];
836       // There should be Regs.size() ArgLocs per argument.
837       unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
838       CCValAssign &VA = ArgLocs[j + Idx];
839       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
840 
841       // We found an indirect parameter passing, and we have an
842       // OutgoingValueHandler as our handler (so we are at the call site or the
843       // return value). In this case, start the construction of the following
844       // GMIR, that is responsible for the preparation of indirect parameter
845       // passing:
846       //
847       // %1(indirectly passed type) = The value to pass
848       // %3(pointer) = G_FRAME_INDEX %stack.0
849       // G_STORE %1, %3 :: (store (s128), align 8)
850       //
851       // After this GMIR, the remaining part of the loop body will decide how
852       // to get the value to the caller and we break out of the loop.
853       if (VA.getLocInfo() == CCValAssign::Indirect &&
854           !Handler.isIncomingArgumentHandler()) {
855         Align AlignmentForStored = DL.getPrefTypeAlign(Args[i].Ty);
856         MachineFrameInfo &MFI = MF.getFrameInfo();
857         // Get some space on the stack for the value, so later we can pass it
858         // as a reference.
859         int FrameIdx = MFI.CreateStackObject(OrigTy.getScalarSizeInBits(),
860                                              AlignmentForStored, false);
861         Register PointerToStackReg =
862             MIRBuilder.buildFrameIndex(PointerTy, FrameIdx).getReg(0);
863         MachinePointerInfo StackPointerMPO =
864             MachinePointerInfo::getFixedStack(MF, FrameIdx);
865         // Store the value in the previously created stack space.
866         MIRBuilder.buildStore(Args[i].OrigRegs[Part], PointerToStackReg,
867                               StackPointerMPO,
868                               inferAlignFromPtrInfo(MF, StackPointerMPO));
869 
870         ArgReg = PointerToStackReg;
871         IndirectParameterPassingHandled = true;
872       }
873 
874       if (VA.isMemLoc() && !Flags.isByVal()) {
875         // Individual pieces may have been spilled to the stack and others
876         // passed in registers.
877 
878         // TODO: The memory size may be larger than the value we need to
879         // store. We may need to adjust the offset for big endian targets.
880         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
881 
882         MachinePointerInfo MPO;
883         Register StackAddr =
884             Handler.getStackAddress(VA.getLocInfo() == CCValAssign::Indirect
885                                         ? PointerTy.getSizeInBytes()
886                                         : MemTy.getSizeInBytes(),
887                                     VA.getLocMemOffset(), MPO, Flags);
888 
889         // Finish the handling of indirect passing from the passers
890         // (OutgoingParameterHandler) side.
891         // This branch is needed, so the pointer to the value is loaded onto the
892         // stack.
893         if (VA.getLocInfo() == CCValAssign::Indirect)
894           Handler.assignValueToAddress(ArgReg, StackAddr, PointerTy, MPO, VA);
895         else
896           Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO,
897                                        VA);
898       } else if (VA.isMemLoc() && Flags.isByVal()) {
899         assert(Args[i].Regs.size() == 1 && "didn't expect split byval pointer");
900 
901         if (Handler.isIncomingArgumentHandler()) {
902           // We just need to copy the frame index value to the pointer.
903           MachinePointerInfo MPO;
904           Register StackAddr = Handler.getStackAddress(
905               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
906           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
907         } else {
908           // For outgoing byval arguments, insert the implicit copy byval
909           // implies, such that writes in the callee do not modify the caller's
910           // value.
911           uint64_t MemSize = Flags.getByValSize();
912           int64_t Offset = VA.getLocMemOffset();
913 
914           MachinePointerInfo DstMPO;
915           Register StackAddr =
916               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
917 
918           MachinePointerInfo SrcMPO(Args[i].OrigValue);
919           if (!Args[i].OrigValue) {
920             // We still need to accurately track the stack address space if we
921             // don't know the underlying value.
922             const LLT PtrTy = MRI.getType(StackAddr);
923             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
924           }
925 
926           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
927                                     inferAlignFromPtrInfo(MF, DstMPO));
928 
929           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
930                                     inferAlignFromPtrInfo(MF, SrcMPO));
931 
932           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
933                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
934                                      MemSize, VA);
935         }
936       } else if (i == 0 && !ThisReturnRegs.empty() &&
937                  Handler.isIncomingArgumentHandler() &&
938                  isTypeIsValidForThisReturn(ValVT)) {
939         Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
940       } else if (Handler.isIncomingArgumentHandler()) {
941         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
942       } else {
943         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
944           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
945         });
946       }
947 
948       // Finish the handling of indirect parameter passing when receiving
949       // the value (we are in the called function or the caller when receiving
950       // the return value).
951       if (VA.getLocInfo() == CCValAssign::Indirect &&
952           Handler.isIncomingArgumentHandler()) {
953         Align Alignment = DL.getABITypeAlign(Args[i].Ty);
954         MachinePointerInfo MPO = MachinePointerInfo::getUnknownStack(MF);
955 
956         // Since we are doing indirect parameter passing, we know that the value
957         // in the temporary register is not the value passed to the function,
958         // but rather a pointer to that value. Let's load that value into the
959         // virtual register where the parameter should go.
960         MIRBuilder.buildLoad(Args[i].OrigRegs[0], Args[i].Regs[0], MPO,
961                              Alignment);
962 
963         IndirectParameterPassingHandled = true;
964       }
965 
966       if (IndirectParameterPassingHandled)
967         break;
968     }
969 
970     // Now that all pieces have been assigned, re-pack the register typed values
971     // into the original value typed registers. This is only necessary, when
972     // the value was passed in multiple registers, not indirectly.
973     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT &&
974         !IndirectParameterPassingHandled) {
975       // Merge the split registers into the expected larger result vregs of
976       // the original call.
977       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
978                         LocTy, Args[i].Flags[0]);
979     }
980 
981     j += NumParts - 1;
982   }
983   for (auto &Fn : DelayedOutgoingRegAssignments)
984     Fn();
985 
986   return true;
987 }
988 
989 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
990                                    ArrayRef<Register> VRegs, Register DemoteReg,
991                                    int FI) const {
992   MachineFunction &MF = MIRBuilder.getMF();
993   MachineRegisterInfo &MRI = MF.getRegInfo();
994   const DataLayout &DL = MF.getDataLayout();
995 
996   SmallVector<EVT, 4> SplitVTs;
997   SmallVector<uint64_t, 4> Offsets;
998   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
999 
1000   assert(VRegs.size() == SplitVTs.size());
1001 
1002   unsigned NumValues = SplitVTs.size();
1003   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
1004   Type *RetPtrTy =
1005       PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace());
1006   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL);
1007 
1008   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
1009 
1010   for (unsigned I = 0; I < NumValues; ++I) {
1011     Register Addr;
1012     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
1013     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1014                                         MRI.getType(VRegs[I]),
1015                                         commonAlignment(BaseAlign, Offsets[I]));
1016     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
1017   }
1018 }
1019 
1020 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
1021                                     ArrayRef<Register> VRegs,
1022                                     Register DemoteReg) const {
1023   MachineFunction &MF = MIRBuilder.getMF();
1024   MachineRegisterInfo &MRI = MF.getRegInfo();
1025   const DataLayout &DL = MF.getDataLayout();
1026 
1027   SmallVector<EVT, 4> SplitVTs;
1028   SmallVector<uint64_t, 4> Offsets;
1029   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
1030 
1031   assert(VRegs.size() == SplitVTs.size());
1032 
1033   unsigned NumValues = SplitVTs.size();
1034   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
1035   unsigned AS = DL.getAllocaAddrSpace();
1036   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getContext(), AS), DL);
1037 
1038   MachinePointerInfo PtrInfo(AS);
1039 
1040   for (unsigned I = 0; I < NumValues; ++I) {
1041     Register Addr;
1042     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
1043     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
1044                                         MRI.getType(VRegs[I]),
1045                                         commonAlignment(BaseAlign, Offsets[I]));
1046     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
1047   }
1048 }
1049 
1050 void CallLowering::insertSRetIncomingArgument(
1051     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
1052     MachineRegisterInfo &MRI, const DataLayout &DL) const {
1053   unsigned AS = DL.getAllocaAddrSpace();
1054   DemoteReg = MRI.createGenericVirtualRegister(
1055       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
1056 
1057   Type *PtrTy = PointerType::get(F.getContext(), AS);
1058 
1059   SmallVector<EVT, 1> ValueVTs;
1060   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
1061 
1062   // NOTE: Assume that a pointer won't get split into more than one VT.
1063   assert(ValueVTs.size() == 1);
1064 
1065   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
1066                     ArgInfo::NoArgIndex);
1067   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
1068   DemoteArg.Flags[0].setSRet();
1069   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
1070 }
1071 
1072 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
1073                                               const CallBase &CB,
1074                                               CallLoweringInfo &Info) const {
1075   const DataLayout &DL = MIRBuilder.getDataLayout();
1076   Type *RetTy = CB.getType();
1077   unsigned AS = DL.getAllocaAddrSpace();
1078   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1079 
1080   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
1081       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
1082 
1083   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
1084   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy->getContext(), AS),
1085                     ArgInfo::NoArgIndex);
1086   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
1087   DemoteArg.Flags[0].setSRet();
1088 
1089   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
1090   Info.DemoteStackIndex = FI;
1091   Info.DemoteRegister = DemoteReg;
1092 }
1093 
1094 bool CallLowering::checkReturn(CCState &CCInfo,
1095                                SmallVectorImpl<BaseArgInfo> &Outs,
1096                                CCAssignFn *Fn) const {
1097   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
1098     MVT VT = MVT::getVT(Outs[I].Ty);
1099     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
1100       return false;
1101   }
1102   return true;
1103 }
1104 
1105 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
1106                                  AttributeList Attrs,
1107                                  SmallVectorImpl<BaseArgInfo> &Outs,
1108                                  const DataLayout &DL) const {
1109   LLVMContext &Context = RetTy->getContext();
1110   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1111 
1112   SmallVector<EVT, 4> SplitVTs;
1113   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
1114   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
1115 
1116   for (EVT VT : SplitVTs) {
1117     unsigned NumParts =
1118         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
1119     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
1120     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
1121 
1122     for (unsigned I = 0; I < NumParts; ++I) {
1123       Outs.emplace_back(PartTy, Flags);
1124     }
1125   }
1126 }
1127 
1128 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
1129   const auto &F = MF.getFunction();
1130   Type *ReturnType = F.getReturnType();
1131   CallingConv::ID CallConv = F.getCallingConv();
1132 
1133   SmallVector<BaseArgInfo, 4> SplitArgs;
1134   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
1135                 MF.getDataLayout());
1136   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
1137 }
1138 
1139 bool CallLowering::parametersInCSRMatch(
1140     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
1141     const SmallVectorImpl<CCValAssign> &OutLocs,
1142     const SmallVectorImpl<ArgInfo> &OutArgs) const {
1143   for (unsigned i = 0; i < OutLocs.size(); ++i) {
1144     const auto &ArgLoc = OutLocs[i];
1145     // If it's not a register, it's fine.
1146     if (!ArgLoc.isRegLoc())
1147       continue;
1148 
1149     MCRegister PhysReg = ArgLoc.getLocReg();
1150 
1151     // Only look at callee-saved registers.
1152     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
1153       continue;
1154 
1155     LLVM_DEBUG(
1156         dbgs()
1157         << "... Call has an argument passed in a callee-saved register.\n");
1158 
1159     // Check if it was copied from.
1160     const ArgInfo &OutInfo = OutArgs[i];
1161 
1162     if (OutInfo.Regs.size() > 1) {
1163       LLVM_DEBUG(
1164           dbgs() << "... Cannot handle arguments in multiple registers.\n");
1165       return false;
1166     }
1167 
1168     // Check if we copy the register, walking through copies from virtual
1169     // registers. Note that getDefIgnoringCopies does not ignore copies from
1170     // physical registers.
1171     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
1172     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
1173       LLVM_DEBUG(
1174           dbgs()
1175           << "... Parameter was not copied into a VReg, cannot tail call.\n");
1176       return false;
1177     }
1178 
1179     // Got a copy. Verify that it's the same as the register we want.
1180     Register CopyRHS = RegDef->getOperand(1).getReg();
1181     if (CopyRHS != PhysReg) {
1182       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1183                            "VReg, cannot tail call.\n");
1184       return false;
1185     }
1186   }
1187 
1188   return true;
1189 }
1190 
1191 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1192                                      MachineFunction &MF,
1193                                      SmallVectorImpl<ArgInfo> &InArgs,
1194                                      ValueAssigner &CalleeAssigner,
1195                                      ValueAssigner &CallerAssigner) const {
1196   const Function &F = MF.getFunction();
1197   CallingConv::ID CalleeCC = Info.CallConv;
1198   CallingConv::ID CallerCC = F.getCallingConv();
1199 
1200   if (CallerCC == CalleeCC)
1201     return true;
1202 
1203   SmallVector<CCValAssign, 16> ArgLocs1;
1204   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1205   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1206     return false;
1207 
1208   SmallVector<CCValAssign, 16> ArgLocs2;
1209   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1210   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1211     return false;
1212 
1213   // We need the argument locations to match up exactly. If there's more in
1214   // one than the other, then we are done.
1215   if (ArgLocs1.size() != ArgLocs2.size())
1216     return false;
1217 
1218   // Make sure that each location is passed in exactly the same way.
1219   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1220     const CCValAssign &Loc1 = ArgLocs1[i];
1221     const CCValAssign &Loc2 = ArgLocs2[i];
1222 
1223     // We need both of them to be the same. So if one is a register and one
1224     // isn't, we're done.
1225     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1226       return false;
1227 
1228     if (Loc1.isRegLoc()) {
1229       // If they don't have the same register location, we're done.
1230       if (Loc1.getLocReg() != Loc2.getLocReg())
1231         return false;
1232 
1233       // They matched, so we can move to the next ArgLoc.
1234       continue;
1235     }
1236 
1237     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1238     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1239       return false;
1240   }
1241 
1242   return true;
1243 }
1244 
1245 LLT CallLowering::ValueHandler::getStackValueStoreType(
1246     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1247   const MVT ValVT = VA.getValVT();
1248   if (ValVT != MVT::iPTR) {
1249     LLT ValTy(ValVT);
1250 
1251     // We lost the pointeriness going through CCValAssign, so try to restore it
1252     // based on the flags.
1253     if (Flags.isPointer()) {
1254       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1255                                ValTy.getScalarSizeInBits());
1256       if (ValVT.isVector())
1257         return LLT::vector(ValTy.getElementCount(), PtrTy);
1258       return PtrTy;
1259     }
1260 
1261     return ValTy;
1262   }
1263 
1264   unsigned AddrSpace = Flags.getPointerAddrSpace();
1265   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1266 }
1267 
1268 void CallLowering::ValueHandler::copyArgumentMemory(
1269     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1270     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1271     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1272     CCValAssign &VA) const {
1273   MachineFunction &MF = MIRBuilder.getMF();
1274   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1275       SrcPtrInfo,
1276       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1277       SrcAlign);
1278 
1279   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1280       DstPtrInfo,
1281       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1282       MemSize, DstAlign);
1283 
1284   const LLT PtrTy = MRI.getType(DstPtr);
1285   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1286 
1287   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1288   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1289 }
1290 
1291 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1292                                                     const CCValAssign &VA,
1293                                                     unsigned MaxSizeBits) {
1294   LLT LocTy{VA.getLocVT()};
1295   LLT ValTy{VA.getValVT()};
1296 
1297   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1298     return ValReg;
1299 
1300   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1301     if (MaxSizeBits <= ValTy.getSizeInBits())
1302       return ValReg;
1303     LocTy = LLT::scalar(MaxSizeBits);
1304   }
1305 
1306   const LLT ValRegTy = MRI.getType(ValReg);
1307   if (ValRegTy.isPointer()) {
1308     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1309     // we have to cast to do the extension.
1310     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1311     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1312   }
1313 
1314   switch (VA.getLocInfo()) {
1315   default:
1316     break;
1317   case CCValAssign::Full:
1318   case CCValAssign::BCvt:
1319     // FIXME: bitconverting between vector types may or may not be a
1320     // nop in big-endian situations.
1321     return ValReg;
1322   case CCValAssign::AExt: {
1323     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1324     return MIB.getReg(0);
1325   }
1326   case CCValAssign::SExt: {
1327     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1328     MIRBuilder.buildSExt(NewReg, ValReg);
1329     return NewReg;
1330   }
1331   case CCValAssign::ZExt: {
1332     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1333     MIRBuilder.buildZExt(NewReg, ValReg);
1334     return NewReg;
1335   }
1336   }
1337   llvm_unreachable("unable to extend register");
1338 }
1339 
1340 void CallLowering::ValueAssigner::anchor() {}
1341 
1342 Register CallLowering::IncomingValueHandler::buildExtensionHint(
1343     const CCValAssign &VA, Register SrcReg, LLT NarrowTy) {
1344   switch (VA.getLocInfo()) {
1345   case CCValAssign::LocInfo::ZExt: {
1346     return MIRBuilder
1347         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1348                          NarrowTy.getScalarSizeInBits())
1349         .getReg(0);
1350   }
1351   case CCValAssign::LocInfo::SExt: {
1352     return MIRBuilder
1353         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1354                          NarrowTy.getScalarSizeInBits())
1355         .getReg(0);
1356     break;
1357   }
1358   default:
1359     return SrcReg;
1360   }
1361 }
1362 
1363 /// Check if we can use a basic COPY instruction between the two types.
1364 ///
1365 /// We're currently building on top of the infrastructure using MVT, which loses
1366 /// pointer information in the CCValAssign. We accept copies from physical
1367 /// registers that have been reported as integers if it's to an equivalent sized
1368 /// pointer LLT.
1369 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1370   if (SrcTy == DstTy)
1371     return true;
1372 
1373   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1374     return false;
1375 
1376   SrcTy = SrcTy.getScalarType();
1377   DstTy = DstTy.getScalarType();
1378 
1379   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1380          (DstTy.isPointer() && SrcTy.isScalar());
1381 }
1382 
1383 void CallLowering::IncomingValueHandler::assignValueToReg(
1384     Register ValVReg, Register PhysReg, const CCValAssign &VA) {
1385   const MVT LocVT = VA.getLocVT();
1386   const LLT LocTy(LocVT);
1387   const LLT RegTy = MRI.getType(ValVReg);
1388 
1389   if (isCopyCompatibleType(RegTy, LocTy)) {
1390     MIRBuilder.buildCopy(ValVReg, PhysReg);
1391     return;
1392   }
1393 
1394   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1395   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1396   MIRBuilder.buildTrunc(ValVReg, Hint);
1397 }
1398