1 //===-- BasicBlockSections.cpp ---=========--------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // BasicBlockSections implementation. 10 // 11 // The purpose of this pass is to assign sections to basic blocks when 12 // -fbasic-block-sections= option is used. Further, with profile information 13 // only the subset of basic blocks with profiles are placed in separate sections 14 // and the rest are grouped in a cold section. The exception handling blocks are 15 // treated specially to ensure they are all in one seciton. 16 // 17 // Basic Block Sections 18 // ==================== 19 // 20 // With option, -fbasic-block-sections=list, every function may be split into 21 // clusters of basic blocks. Every cluster will be emitted into a separate 22 // section with its basic blocks sequenced in the given order. To get the 23 // optimized performance, the clusters must form an optimal BB layout for the 24 // function. We insert a symbol at the beginning of every cluster's section to 25 // allow the linker to reorder the sections in any arbitrary sequence. A global 26 // order of these sections would encapsulate the function layout. 27 // For example, consider the following clusters for a function foo (consisting 28 // of 6 basic blocks 0, 1, ..., 5). 29 // 30 // 0 2 31 // 1 3 5 32 // 33 // * Basic blocks 0 and 2 are placed in one section with symbol `foo` 34 // referencing the beginning of this section. 35 // * Basic blocks 1, 3, 5 are placed in a separate section. A new symbol 36 // `foo.__part.1` will reference the beginning of this section. 37 // * Basic block 4 (note that it is not referenced in the list) is placed in 38 // one section, and a new symbol `foo.cold` will point to it. 39 // 40 // There are a couple of challenges to be addressed: 41 // 42 // 1. The last basic block of every cluster should not have any implicit 43 // fallthrough to its next basic block, as it can be reordered by the linker. 44 // The compiler should make these fallthroughs explicit by adding 45 // unconditional jumps.. 46 // 47 // 2. All inter-cluster branch targets would now need to be resolved by the 48 // linker as they cannot be calculated during compile time. This is done 49 // using static relocations. Further, the compiler tries to use short branch 50 // instructions on some ISAs for small branch offsets. This is not possible 51 // for inter-cluster branches as the offset is not determined at compile 52 // time, and therefore, long branch instructions have to be used for those. 53 // 54 // 3. Debug Information (DebugInfo) and Call Frame Information (CFI) emission 55 // needs special handling with basic block sections. DebugInfo needs to be 56 // emitted with more relocations as basic block sections can break a 57 // function into potentially several disjoint pieces, and CFI needs to be 58 // emitted per cluster. This also bloats the object file and binary sizes. 59 // 60 // Basic Block Address Map 61 // ================== 62 // 63 // With -fbasic-block-address-map, we emit the offsets of BB addresses of 64 // every function into the .llvm_bb_addr_map section. Along with the function 65 // symbols, this allows for mapping of virtual addresses in PMU profiles back to 66 // the corresponding basic blocks. This logic is implemented in AsmPrinter. This 67 // pass only assigns the BBSectionType of every function to ``labels``. 68 // 69 //===----------------------------------------------------------------------===// 70 71 #include "llvm/ADT/SmallVector.h" 72 #include "llvm/ADT/StringRef.h" 73 #include "llvm/CodeGen/BasicBlockSectionUtils.h" 74 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 75 #include "llvm/CodeGen/MachineDominators.h" 76 #include "llvm/CodeGen/MachineFunction.h" 77 #include "llvm/CodeGen/MachineFunctionPass.h" 78 #include "llvm/CodeGen/MachinePostDominators.h" 79 #include "llvm/CodeGen/Passes.h" 80 #include "llvm/CodeGen/TargetInstrInfo.h" 81 #include "llvm/InitializePasses.h" 82 #include "llvm/Target/TargetMachine.h" 83 #include <optional> 84 85 using namespace llvm; 86 87 // Placing the cold clusters in a separate section mitigates against poor 88 // profiles and allows optimizations such as hugepage mapping to be applied at a 89 // section granularity. Defaults to ".text.split." which is recognized by lld 90 // via the `-z keep-text-section-prefix` flag. 91 cl::opt<std::string> llvm::BBSectionsColdTextPrefix( 92 "bbsections-cold-text-prefix", 93 cl::desc("The text prefix to use for cold basic block clusters"), 94 cl::init(".text.split."), cl::Hidden); 95 96 static cl::opt<bool> BBSectionsDetectSourceDrift( 97 "bbsections-detect-source-drift", 98 cl::desc("This checks if there is a fdo instr. profile hash " 99 "mismatch for this function"), 100 cl::init(true), cl::Hidden); 101 102 namespace { 103 104 class BasicBlockSections : public MachineFunctionPass { 105 public: 106 static char ID; 107 108 BasicBlockSectionsProfileReaderWrapperPass *BBSectionsProfileReader = nullptr; 109 110 BasicBlockSections() : MachineFunctionPass(ID) { 111 initializeBasicBlockSectionsPass(*PassRegistry::getPassRegistry()); 112 } 113 114 StringRef getPassName() const override { 115 return "Basic Block Sections Analysis"; 116 } 117 118 void getAnalysisUsage(AnalysisUsage &AU) const override; 119 120 /// Identify basic blocks that need separate sections and prepare to emit them 121 /// accordingly. 122 bool runOnMachineFunction(MachineFunction &MF) override; 123 124 private: 125 bool handleBBSections(MachineFunction &MF); 126 bool handleBBAddrMap(MachineFunction &MF); 127 }; 128 129 } // end anonymous namespace 130 131 char BasicBlockSections::ID = 0; 132 INITIALIZE_PASS_BEGIN( 133 BasicBlockSections, "bbsections-prepare", 134 "Prepares for basic block sections, by splitting functions " 135 "into clusters of basic blocks.", 136 false, false) 137 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass) 138 INITIALIZE_PASS_END(BasicBlockSections, "bbsections-prepare", 139 "Prepares for basic block sections, by splitting functions " 140 "into clusters of basic blocks.", 141 false, false) 142 143 // This function updates and optimizes the branching instructions of every basic 144 // block in a given function to account for changes in the layout. 145 static void 146 updateBranches(MachineFunction &MF, 147 const SmallVector<MachineBasicBlock *> &PreLayoutFallThroughs) { 148 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 149 SmallVector<MachineOperand, 4> Cond; 150 for (auto &MBB : MF) { 151 auto NextMBBI = std::next(MBB.getIterator()); 152 auto *FTMBB = PreLayoutFallThroughs[MBB.getNumber()]; 153 // If this block had a fallthrough before we need an explicit unconditional 154 // branch to that block if either 155 // 1- the block ends a section, which means its next block may be 156 // reorderd by the linker, or 157 // 2- the fallthrough block is not adjacent to the block in the new 158 // order. 159 if (FTMBB && (MBB.isEndSection() || &*NextMBBI != FTMBB)) 160 TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc()); 161 162 // We do not optimize branches for machine basic blocks ending sections, as 163 // their adjacent block might be reordered by the linker. 164 if (MBB.isEndSection()) 165 continue; 166 167 // It might be possible to optimize branches by flipping the branch 168 // condition. 169 Cond.clear(); 170 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 171 if (TII->analyzeBranch(MBB, TBB, FBB, Cond)) 172 continue; 173 MBB.updateTerminator(FTMBB); 174 } 175 } 176 177 // This function sorts basic blocks according to the cluster's information. 178 // All explicitly specified clusters of basic blocks will be ordered 179 // accordingly. All non-specified BBs go into a separate "Cold" section. 180 // Additionally, if exception handling landing pads end up in more than one 181 // clusters, they are moved into a single "Exception" section. Eventually, 182 // clusters are ordered in increasing order of their IDs, with the "Exception" 183 // and "Cold" succeeding all other clusters. 184 // FuncClusterInfo represents the cluster information for basic blocks. It 185 // maps from BBID of basic blocks to their cluster information. If this is 186 // empty, it means unique sections for all basic blocks in the function. 187 static void 188 assignSections(MachineFunction &MF, 189 const DenseMap<UniqueBBID, BBClusterInfo> &FuncClusterInfo) { 190 assert(MF.hasBBSections() && "BB Sections is not set for function."); 191 // This variable stores the section ID of the cluster containing eh_pads (if 192 // all eh_pads are one cluster). If more than one cluster contain eh_pads, we 193 // set it equal to ExceptionSectionID. 194 std::optional<MBBSectionID> EHPadsSectionID; 195 196 for (auto &MBB : MF) { 197 // With the 'all' option, every basic block is placed in a unique section. 198 // With the 'list' option, every basic block is placed in a section 199 // associated with its cluster, unless we want individual unique sections 200 // for every basic block in this function (if FuncClusterInfo is empty). 201 if (MF.getTarget().getBBSectionsType() == llvm::BasicBlockSection::All || 202 FuncClusterInfo.empty()) { 203 // If unique sections are desired for all basic blocks of the function, we 204 // set every basic block's section ID equal to its original position in 205 // the layout (which is equal to its number). This ensures that basic 206 // blocks are ordered canonically. 207 MBB.setSectionID(MBB.getNumber()); 208 } else { 209 auto I = FuncClusterInfo.find(*MBB.getBBID()); 210 if (I != FuncClusterInfo.end()) { 211 MBB.setSectionID(I->second.ClusterID); 212 } else { 213 const TargetInstrInfo &TII = 214 *MBB.getParent()->getSubtarget().getInstrInfo(); 215 216 if (TII.isMBBSafeToSplitToCold(MBB)) { 217 // BB goes into the special cold section if it is not specified in the 218 // cluster info map. 219 MBB.setSectionID(MBBSectionID::ColdSectionID); 220 } 221 } 222 } 223 224 if (MBB.isEHPad() && EHPadsSectionID != MBB.getSectionID() && 225 EHPadsSectionID != MBBSectionID::ExceptionSectionID) { 226 // If we already have one cluster containing eh_pads, this must be updated 227 // to ExceptionSectionID. Otherwise, we set it equal to the current 228 // section ID. 229 EHPadsSectionID = EHPadsSectionID ? MBBSectionID::ExceptionSectionID 230 : MBB.getSectionID(); 231 } 232 } 233 234 // If EHPads are in more than one section, this places all of them in the 235 // special exception section. 236 if (EHPadsSectionID == MBBSectionID::ExceptionSectionID) 237 for (auto &MBB : MF) 238 if (MBB.isEHPad()) 239 MBB.setSectionID(*EHPadsSectionID); 240 } 241 242 void llvm::sortBasicBlocksAndUpdateBranches( 243 MachineFunction &MF, MachineBasicBlockComparator MBBCmp) { 244 [[maybe_unused]] const MachineBasicBlock *EntryBlock = &MF.front(); 245 SmallVector<MachineBasicBlock *> PreLayoutFallThroughs(MF.getNumBlockIDs()); 246 for (auto &MBB : MF) 247 PreLayoutFallThroughs[MBB.getNumber()] = 248 MBB.getFallThrough(/*JumpToFallThrough=*/false); 249 250 MF.sort(MBBCmp); 251 assert(&MF.front() == EntryBlock && 252 "Entry block should not be displaced by basic block sections"); 253 254 // Set IsBeginSection and IsEndSection according to the assigned section IDs. 255 MF.assignBeginEndSections(); 256 257 // After reordering basic blocks, we must update basic block branches to 258 // insert explicit fallthrough branches when required and optimize branches 259 // when possible. 260 updateBranches(MF, PreLayoutFallThroughs); 261 } 262 263 // If the exception section begins with a landing pad, that landing pad will 264 // assume a zero offset (relative to @LPStart) in the LSDA. However, a value of 265 // zero implies "no landing pad." This function inserts a NOP just before the EH 266 // pad label to ensure a nonzero offset. 267 void llvm::avoidZeroOffsetLandingPad(MachineFunction &MF) { 268 for (auto &MBB : MF) { 269 if (MBB.isBeginSection() && MBB.isEHPad()) { 270 MachineBasicBlock::iterator MI = MBB.begin(); 271 while (!MI->isEHLabel()) 272 ++MI; 273 MF.getSubtarget().getInstrInfo()->insertNoop(MBB, MI); 274 } 275 } 276 } 277 278 bool llvm::hasInstrProfHashMismatch(MachineFunction &MF) { 279 if (!BBSectionsDetectSourceDrift) 280 return false; 281 282 const char MetadataName[] = "instr_prof_hash_mismatch"; 283 auto *Existing = MF.getFunction().getMetadata(LLVMContext::MD_annotation); 284 if (Existing) { 285 MDTuple *Tuple = cast<MDTuple>(Existing); 286 for (const auto &N : Tuple->operands()) 287 if (N.equalsStr(MetadataName)) 288 return true; 289 } 290 291 return false; 292 } 293 294 // Identify, arrange, and modify basic blocks which need separate sections 295 // according to the specification provided by the -fbasic-block-sections flag. 296 bool BasicBlockSections::handleBBSections(MachineFunction &MF) { 297 auto BBSectionsType = MF.getTarget().getBBSectionsType(); 298 if (BBSectionsType == BasicBlockSection::None) 299 return false; 300 301 // Check for source drift. If the source has changed since the profiles 302 // were obtained, optimizing basic blocks might be sub-optimal. 303 // This only applies to BasicBlockSection::List as it creates 304 // clusters of basic blocks using basic block ids. Source drift can 305 // invalidate these groupings leading to sub-optimal code generation with 306 // regards to performance. 307 if (BBSectionsType == BasicBlockSection::List && 308 hasInstrProfHashMismatch(MF)) 309 return false; 310 // Renumber blocks before sorting them. This is useful for accessing the 311 // original layout positions and finding the original fallthroughs. 312 MF.RenumberBlocks(); 313 314 DenseMap<UniqueBBID, BBClusterInfo> FuncClusterInfo; 315 if (BBSectionsType == BasicBlockSection::List) { 316 auto [HasProfile, ClusterInfo] = 317 getAnalysis<BasicBlockSectionsProfileReaderWrapperPass>() 318 .getClusterInfoForFunction(MF.getName()); 319 if (!HasProfile) 320 return false; 321 for (auto &BBClusterInfo : ClusterInfo) { 322 FuncClusterInfo.try_emplace(BBClusterInfo.BBID, BBClusterInfo); 323 } 324 } 325 326 MF.setBBSectionsType(BBSectionsType); 327 assignSections(MF, FuncClusterInfo); 328 329 const MachineBasicBlock &EntryBB = MF.front(); 330 auto EntryBBSectionID = EntryBB.getSectionID(); 331 332 // Helper function for ordering BB sections as follows: 333 // * Entry section (section including the entry block). 334 // * Regular sections (in increasing order of their Number). 335 // ... 336 // * Exception section 337 // * Cold section 338 auto MBBSectionOrder = [EntryBBSectionID](const MBBSectionID &LHS, 339 const MBBSectionID &RHS) { 340 // We make sure that the section containing the entry block precedes all the 341 // other sections. 342 if (LHS == EntryBBSectionID || RHS == EntryBBSectionID) 343 return LHS == EntryBBSectionID; 344 return LHS.Type == RHS.Type ? LHS.Number < RHS.Number : LHS.Type < RHS.Type; 345 }; 346 347 // We sort all basic blocks to make sure the basic blocks of every cluster are 348 // contiguous and ordered accordingly. Furthermore, clusters are ordered in 349 // increasing order of their section IDs, with the exception and the 350 // cold section placed at the end of the function. 351 // Also, we force the entry block of the function to be placed at the 352 // beginning of the function, regardless of the requested order. 353 auto Comparator = [&](const MachineBasicBlock &X, 354 const MachineBasicBlock &Y) { 355 auto XSectionID = X.getSectionID(); 356 auto YSectionID = Y.getSectionID(); 357 if (XSectionID != YSectionID) 358 return MBBSectionOrder(XSectionID, YSectionID); 359 // Make sure that the entry block is placed at the beginning. 360 if (&X == &EntryBB || &Y == &EntryBB) 361 return &X == &EntryBB; 362 // If the two basic block are in the same section, the order is decided by 363 // their position within the section. 364 if (XSectionID.Type == MBBSectionID::SectionType::Default) 365 return FuncClusterInfo.lookup(*X.getBBID()).PositionInCluster < 366 FuncClusterInfo.lookup(*Y.getBBID()).PositionInCluster; 367 return X.getNumber() < Y.getNumber(); 368 }; 369 370 sortBasicBlocksAndUpdateBranches(MF, Comparator); 371 avoidZeroOffsetLandingPad(MF); 372 return true; 373 } 374 375 // When the BB address map needs to be generated, this renumbers basic blocks to 376 // make them appear in increasing order of their IDs in the function. This 377 // avoids the need to store basic block IDs in the BB address map section, since 378 // they can be determined implicitly. 379 bool BasicBlockSections::handleBBAddrMap(MachineFunction &MF) { 380 if (!MF.getTarget().Options.BBAddrMap) 381 return false; 382 MF.RenumberBlocks(); 383 return true; 384 } 385 386 bool BasicBlockSections::runOnMachineFunction(MachineFunction &MF) { 387 // First handle the basic block sections. 388 auto R1 = handleBBSections(MF); 389 // Handle basic block address map after basic block sections are finalized. 390 auto R2 = handleBBAddrMap(MF); 391 392 // We renumber blocks, so update the dominator tree we want to preserve. 393 if (auto *WP = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>()) 394 WP->getDomTree().updateBlockNumbers(); 395 if (auto *WP = getAnalysisIfAvailable<MachinePostDominatorTreeWrapperPass>()) 396 WP->getPostDomTree().updateBlockNumbers(); 397 398 return R1 || R2; 399 } 400 401 void BasicBlockSections::getAnalysisUsage(AnalysisUsage &AU) const { 402 AU.setPreservesAll(); 403 AU.addRequired<BasicBlockSectionsProfileReaderWrapperPass>(); 404 AU.addUsedIfAvailable<MachineDominatorTreeWrapperPass>(); 405 AU.addUsedIfAvailable<MachinePostDominatorTreeWrapperPass>(); 406 MachineFunctionPass::getAnalysisUsage(AU); 407 } 408 409 MachineFunctionPass *llvm::createBasicBlockSectionsPass() { 410 return new BasicBlockSections(); 411 } 412