1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include <algorithm> 92 using namespace llvm; 93 94 #define DEBUG_TYPE "scalar-evolution" 95 96 STATISTIC(NumArrayLenItCounts, 97 "Number of trip counts computed with array length"); 98 STATISTIC(NumTripCountsComputed, 99 "Number of loops with predictable loop counts"); 100 STATISTIC(NumTripCountsNotComputed, 101 "Number of loops without predictable loop counts"); 102 STATISTIC(NumBruteForceTripCountsComputed, 103 "Number of loops with trip counts computed by force"); 104 105 static cl::opt<unsigned> 106 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 107 cl::desc("Maximum number of iterations SCEV will " 108 "symbolically execute a constant " 109 "derived loop"), 110 cl::init(100)); 111 112 // FIXME: Enable this with XDEBUG when the test suite is clean. 113 static cl::opt<bool> 114 VerifySCEV("verify-scev", 115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 116 117 //===----------------------------------------------------------------------===// 118 // SCEV class definitions 119 //===----------------------------------------------------------------------===// 120 121 //===----------------------------------------------------------------------===// 122 // Implementation of the SCEV class. 123 // 124 125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 126 void SCEV::dump() const { 127 print(dbgs()); 128 dbgs() << '\n'; 129 } 130 #endif 131 132 void SCEV::print(raw_ostream &OS) const { 133 switch (static_cast<SCEVTypes>(getSCEVType())) { 134 case scConstant: 135 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 136 return; 137 case scTruncate: { 138 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 139 const SCEV *Op = Trunc->getOperand(); 140 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 141 << *Trunc->getType() << ")"; 142 return; 143 } 144 case scZeroExtend: { 145 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 146 const SCEV *Op = ZExt->getOperand(); 147 OS << "(zext " << *Op->getType() << " " << *Op << " to " 148 << *ZExt->getType() << ")"; 149 return; 150 } 151 case scSignExtend: { 152 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 153 const SCEV *Op = SExt->getOperand(); 154 OS << "(sext " << *Op->getType() << " " << *Op << " to " 155 << *SExt->getType() << ")"; 156 return; 157 } 158 case scAddRecExpr: { 159 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 160 OS << "{" << *AR->getOperand(0); 161 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 162 OS << ",+," << *AR->getOperand(i); 163 OS << "}<"; 164 if (AR->getNoWrapFlags(FlagNUW)) 165 OS << "nuw><"; 166 if (AR->getNoWrapFlags(FlagNSW)) 167 OS << "nsw><"; 168 if (AR->getNoWrapFlags(FlagNW) && 169 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 170 OS << "nw><"; 171 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 172 OS << ">"; 173 return; 174 } 175 case scAddExpr: 176 case scMulExpr: 177 case scUMaxExpr: 178 case scSMaxExpr: { 179 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 180 const char *OpStr = nullptr; 181 switch (NAry->getSCEVType()) { 182 case scAddExpr: OpStr = " + "; break; 183 case scMulExpr: OpStr = " * "; break; 184 case scUMaxExpr: OpStr = " umax "; break; 185 case scSMaxExpr: OpStr = " smax "; break; 186 } 187 OS << "("; 188 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 189 I != E; ++I) { 190 OS << **I; 191 if (std::next(I) != E) 192 OS << OpStr; 193 } 194 OS << ")"; 195 switch (NAry->getSCEVType()) { 196 case scAddExpr: 197 case scMulExpr: 198 if (NAry->getNoWrapFlags(FlagNUW)) 199 OS << "<nuw>"; 200 if (NAry->getNoWrapFlags(FlagNSW)) 201 OS << "<nsw>"; 202 } 203 return; 204 } 205 case scUDivExpr: { 206 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 207 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 208 return; 209 } 210 case scUnknown: { 211 const SCEVUnknown *U = cast<SCEVUnknown>(this); 212 Type *AllocTy; 213 if (U->isSizeOf(AllocTy)) { 214 OS << "sizeof(" << *AllocTy << ")"; 215 return; 216 } 217 if (U->isAlignOf(AllocTy)) { 218 OS << "alignof(" << *AllocTy << ")"; 219 return; 220 } 221 222 Type *CTy; 223 Constant *FieldNo; 224 if (U->isOffsetOf(CTy, FieldNo)) { 225 OS << "offsetof(" << *CTy << ", "; 226 FieldNo->printAsOperand(OS, false); 227 OS << ")"; 228 return; 229 } 230 231 // Otherwise just print it normally. 232 U->getValue()->printAsOperand(OS, false); 233 return; 234 } 235 case scCouldNotCompute: 236 OS << "***COULDNOTCOMPUTE***"; 237 return; 238 } 239 llvm_unreachable("Unknown SCEV kind!"); 240 } 241 242 Type *SCEV::getType() const { 243 switch (static_cast<SCEVTypes>(getSCEVType())) { 244 case scConstant: 245 return cast<SCEVConstant>(this)->getType(); 246 case scTruncate: 247 case scZeroExtend: 248 case scSignExtend: 249 return cast<SCEVCastExpr>(this)->getType(); 250 case scAddRecExpr: 251 case scMulExpr: 252 case scUMaxExpr: 253 case scSMaxExpr: 254 return cast<SCEVNAryExpr>(this)->getType(); 255 case scAddExpr: 256 return cast<SCEVAddExpr>(this)->getType(); 257 case scUDivExpr: 258 return cast<SCEVUDivExpr>(this)->getType(); 259 case scUnknown: 260 return cast<SCEVUnknown>(this)->getType(); 261 case scCouldNotCompute: 262 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 263 } 264 llvm_unreachable("Unknown SCEV kind!"); 265 } 266 267 bool SCEV::isZero() const { 268 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 269 return SC->getValue()->isZero(); 270 return false; 271 } 272 273 bool SCEV::isOne() const { 274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 275 return SC->getValue()->isOne(); 276 return false; 277 } 278 279 bool SCEV::isAllOnesValue() const { 280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 281 return SC->getValue()->isAllOnesValue(); 282 return false; 283 } 284 285 /// isNonConstantNegative - Return true if the specified scev is negated, but 286 /// not a constant. 287 bool SCEV::isNonConstantNegative() const { 288 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 289 if (!Mul) return false; 290 291 // If there is a constant factor, it will be first. 292 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 293 if (!SC) return false; 294 295 // Return true if the value is negative, this matches things like (-42 * V). 296 return SC->getValue()->getValue().isNegative(); 297 } 298 299 SCEVCouldNotCompute::SCEVCouldNotCompute() : 300 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 301 302 bool SCEVCouldNotCompute::classof(const SCEV *S) { 303 return S->getSCEVType() == scCouldNotCompute; 304 } 305 306 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 307 FoldingSetNodeID ID; 308 ID.AddInteger(scConstant); 309 ID.AddPointer(V); 310 void *IP = nullptr; 311 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 312 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 313 UniqueSCEVs.InsertNode(S, IP); 314 return S; 315 } 316 317 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 318 return getConstant(ConstantInt::get(getContext(), Val)); 319 } 320 321 const SCEV * 322 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 323 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 324 return getConstant(ConstantInt::get(ITy, V, isSigned)); 325 } 326 327 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 328 unsigned SCEVTy, const SCEV *op, Type *ty) 329 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 330 331 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 332 const SCEV *op, Type *ty) 333 : SCEVCastExpr(ID, scTruncate, op, ty) { 334 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 335 (Ty->isIntegerTy() || Ty->isPointerTy()) && 336 "Cannot truncate non-integer value!"); 337 } 338 339 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 340 const SCEV *op, Type *ty) 341 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 343 (Ty->isIntegerTy() || Ty->isPointerTy()) && 344 "Cannot zero extend non-integer value!"); 345 } 346 347 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 348 const SCEV *op, Type *ty) 349 : SCEVCastExpr(ID, scSignExtend, op, ty) { 350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 351 (Ty->isIntegerTy() || Ty->isPointerTy()) && 352 "Cannot sign extend non-integer value!"); 353 } 354 355 void SCEVUnknown::deleted() { 356 // Clear this SCEVUnknown from various maps. 357 SE->forgetMemoizedResults(this); 358 359 // Remove this SCEVUnknown from the uniquing map. 360 SE->UniqueSCEVs.RemoveNode(this); 361 362 // Release the value. 363 setValPtr(nullptr); 364 } 365 366 void SCEVUnknown::allUsesReplacedWith(Value *New) { 367 // Clear this SCEVUnknown from various maps. 368 SE->forgetMemoizedResults(this); 369 370 // Remove this SCEVUnknown from the uniquing map. 371 SE->UniqueSCEVs.RemoveNode(this); 372 373 // Update this SCEVUnknown to point to the new value. This is needed 374 // because there may still be outstanding SCEVs which still point to 375 // this SCEVUnknown. 376 setValPtr(New); 377 } 378 379 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 380 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 381 if (VCE->getOpcode() == Instruction::PtrToInt) 382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 383 if (CE->getOpcode() == Instruction::GetElementPtr && 384 CE->getOperand(0)->isNullValue() && 385 CE->getNumOperands() == 2) 386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 387 if (CI->isOne()) { 388 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 389 ->getElementType(); 390 return true; 391 } 392 393 return false; 394 } 395 396 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 398 if (VCE->getOpcode() == Instruction::PtrToInt) 399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 400 if (CE->getOpcode() == Instruction::GetElementPtr && 401 CE->getOperand(0)->isNullValue()) { 402 Type *Ty = 403 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 404 if (StructType *STy = dyn_cast<StructType>(Ty)) 405 if (!STy->isPacked() && 406 CE->getNumOperands() == 3 && 407 CE->getOperand(1)->isNullValue()) { 408 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 409 if (CI->isOne() && 410 STy->getNumElements() == 2 && 411 STy->getElementType(0)->isIntegerTy(1)) { 412 AllocTy = STy->getElementType(1); 413 return true; 414 } 415 } 416 } 417 418 return false; 419 } 420 421 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 422 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 423 if (VCE->getOpcode() == Instruction::PtrToInt) 424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 425 if (CE->getOpcode() == Instruction::GetElementPtr && 426 CE->getNumOperands() == 3 && 427 CE->getOperand(0)->isNullValue() && 428 CE->getOperand(1)->isNullValue()) { 429 Type *Ty = 430 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 431 // Ignore vector types here so that ScalarEvolutionExpander doesn't 432 // emit getelementptrs that index into vectors. 433 if (Ty->isStructTy() || Ty->isArrayTy()) { 434 CTy = Ty; 435 FieldNo = CE->getOperand(2); 436 return true; 437 } 438 } 439 440 return false; 441 } 442 443 //===----------------------------------------------------------------------===// 444 // SCEV Utilities 445 //===----------------------------------------------------------------------===// 446 447 namespace { 448 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 449 /// than the complexity of the RHS. This comparator is used to canonicalize 450 /// expressions. 451 class SCEVComplexityCompare { 452 const LoopInfo *const LI; 453 public: 454 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 455 456 // Return true or false if LHS is less than, or at least RHS, respectively. 457 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 458 return compare(LHS, RHS) < 0; 459 } 460 461 // Return negative, zero, or positive, if LHS is less than, equal to, or 462 // greater than RHS, respectively. A three-way result allows recursive 463 // comparisons to be more efficient. 464 int compare(const SCEV *LHS, const SCEV *RHS) const { 465 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 466 if (LHS == RHS) 467 return 0; 468 469 // Primarily, sort the SCEVs by their getSCEVType(). 470 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 471 if (LType != RType) 472 return (int)LType - (int)RType; 473 474 // Aside from the getSCEVType() ordering, the particular ordering 475 // isn't very important except that it's beneficial to be consistent, 476 // so that (a + b) and (b + a) don't end up as different expressions. 477 switch (static_cast<SCEVTypes>(LType)) { 478 case scUnknown: { 479 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 480 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 481 482 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 483 // not as complete as it could be. 484 const Value *LV = LU->getValue(), *RV = RU->getValue(); 485 486 // Order pointer values after integer values. This helps SCEVExpander 487 // form GEPs. 488 bool LIsPointer = LV->getType()->isPointerTy(), 489 RIsPointer = RV->getType()->isPointerTy(); 490 if (LIsPointer != RIsPointer) 491 return (int)LIsPointer - (int)RIsPointer; 492 493 // Compare getValueID values. 494 unsigned LID = LV->getValueID(), 495 RID = RV->getValueID(); 496 if (LID != RID) 497 return (int)LID - (int)RID; 498 499 // Sort arguments by their position. 500 if (const Argument *LA = dyn_cast<Argument>(LV)) { 501 const Argument *RA = cast<Argument>(RV); 502 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 503 return (int)LArgNo - (int)RArgNo; 504 } 505 506 // For instructions, compare their loop depth, and their operand 507 // count. This is pretty loose. 508 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 509 const Instruction *RInst = cast<Instruction>(RV); 510 511 // Compare loop depths. 512 const BasicBlock *LParent = LInst->getParent(), 513 *RParent = RInst->getParent(); 514 if (LParent != RParent) { 515 unsigned LDepth = LI->getLoopDepth(LParent), 516 RDepth = LI->getLoopDepth(RParent); 517 if (LDepth != RDepth) 518 return (int)LDepth - (int)RDepth; 519 } 520 521 // Compare the number of operands. 522 unsigned LNumOps = LInst->getNumOperands(), 523 RNumOps = RInst->getNumOperands(); 524 return (int)LNumOps - (int)RNumOps; 525 } 526 527 return 0; 528 } 529 530 case scConstant: { 531 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 532 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 533 534 // Compare constant values. 535 const APInt &LA = LC->getValue()->getValue(); 536 const APInt &RA = RC->getValue()->getValue(); 537 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 538 if (LBitWidth != RBitWidth) 539 return (int)LBitWidth - (int)RBitWidth; 540 return LA.ult(RA) ? -1 : 1; 541 } 542 543 case scAddRecExpr: { 544 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 545 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 546 547 // Compare addrec loop depths. 548 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 549 if (LLoop != RLoop) { 550 unsigned LDepth = LLoop->getLoopDepth(), 551 RDepth = RLoop->getLoopDepth(); 552 if (LDepth != RDepth) 553 return (int)LDepth - (int)RDepth; 554 } 555 556 // Addrec complexity grows with operand count. 557 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 558 if (LNumOps != RNumOps) 559 return (int)LNumOps - (int)RNumOps; 560 561 // Lexicographically compare. 562 for (unsigned i = 0; i != LNumOps; ++i) { 563 long X = compare(LA->getOperand(i), RA->getOperand(i)); 564 if (X != 0) 565 return X; 566 } 567 568 return 0; 569 } 570 571 case scAddExpr: 572 case scMulExpr: 573 case scSMaxExpr: 574 case scUMaxExpr: { 575 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 577 578 // Lexicographically compare n-ary expressions. 579 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 580 if (LNumOps != RNumOps) 581 return (int)LNumOps - (int)RNumOps; 582 583 for (unsigned i = 0; i != LNumOps; ++i) { 584 if (i >= RNumOps) 585 return 1; 586 long X = compare(LC->getOperand(i), RC->getOperand(i)); 587 if (X != 0) 588 return X; 589 } 590 return (int)LNumOps - (int)RNumOps; 591 } 592 593 case scUDivExpr: { 594 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 595 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 596 597 // Lexicographically compare udiv expressions. 598 long X = compare(LC->getLHS(), RC->getLHS()); 599 if (X != 0) 600 return X; 601 return compare(LC->getRHS(), RC->getRHS()); 602 } 603 604 case scTruncate: 605 case scZeroExtend: 606 case scSignExtend: { 607 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 608 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 609 610 // Compare cast expressions by operand. 611 return compare(LC->getOperand(), RC->getOperand()); 612 } 613 614 case scCouldNotCompute: 615 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 616 } 617 llvm_unreachable("Unknown SCEV kind!"); 618 } 619 }; 620 } 621 622 /// GroupByComplexity - Given a list of SCEV objects, order them by their 623 /// complexity, and group objects of the same complexity together by value. 624 /// When this routine is finished, we know that any duplicates in the vector are 625 /// consecutive and that complexity is monotonically increasing. 626 /// 627 /// Note that we go take special precautions to ensure that we get deterministic 628 /// results from this routine. In other words, we don't want the results of 629 /// this to depend on where the addresses of various SCEV objects happened to 630 /// land in memory. 631 /// 632 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 633 LoopInfo *LI) { 634 if (Ops.size() < 2) return; // Noop 635 if (Ops.size() == 2) { 636 // This is the common case, which also happens to be trivially simple. 637 // Special case it. 638 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 639 if (SCEVComplexityCompare(LI)(RHS, LHS)) 640 std::swap(LHS, RHS); 641 return; 642 } 643 644 // Do the rough sort by complexity. 645 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 646 647 // Now that we are sorted by complexity, group elements of the same 648 // complexity. Note that this is, at worst, N^2, but the vector is likely to 649 // be extremely short in practice. Note that we take this approach because we 650 // do not want to depend on the addresses of the objects we are grouping. 651 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 652 const SCEV *S = Ops[i]; 653 unsigned Complexity = S->getSCEVType(); 654 655 // If there are any objects of the same complexity and same value as this 656 // one, group them. 657 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 658 if (Ops[j] == S) { // Found a duplicate. 659 // Move it to immediately after i'th element. 660 std::swap(Ops[i+1], Ops[j]); 661 ++i; // no need to rescan it. 662 if (i == e-2) return; // Done! 663 } 664 } 665 } 666 } 667 668 namespace { 669 struct FindSCEVSize { 670 int Size; 671 FindSCEVSize() : Size(0) {} 672 673 bool follow(const SCEV *S) { 674 ++Size; 675 // Keep looking at all operands of S. 676 return true; 677 } 678 bool isDone() const { 679 return false; 680 } 681 }; 682 } 683 684 // Returns the size of the SCEV S. 685 static inline int sizeOfSCEV(const SCEV *S) { 686 FindSCEVSize F; 687 SCEVTraversal<FindSCEVSize> ST(F); 688 ST.visitAll(S); 689 return F.Size; 690 } 691 692 namespace { 693 694 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 695 public: 696 // Computes the Quotient and Remainder of the division of Numerator by 697 // Denominator. 698 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 699 const SCEV *Denominator, const SCEV **Quotient, 700 const SCEV **Remainder) { 701 assert(Numerator && Denominator && "Uninitialized SCEV"); 702 703 SCEVDivision D(SE, Numerator, Denominator); 704 705 // Check for the trivial case here to avoid having to check for it in the 706 // rest of the code. 707 if (Numerator == Denominator) { 708 *Quotient = D.One; 709 *Remainder = D.Zero; 710 return; 711 } 712 713 if (Numerator->isZero()) { 714 *Quotient = D.Zero; 715 *Remainder = D.Zero; 716 return; 717 } 718 719 // A simple case when N/1. The quotient is N. 720 if (Denominator->isOne()) { 721 *Quotient = Numerator; 722 *Remainder = D.Zero; 723 return; 724 } 725 726 // Split the Denominator when it is a product. 727 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 728 const SCEV *Q, *R; 729 *Quotient = Numerator; 730 for (const SCEV *Op : T->operands()) { 731 divide(SE, *Quotient, Op, &Q, &R); 732 *Quotient = Q; 733 734 // Bail out when the Numerator is not divisible by one of the terms of 735 // the Denominator. 736 if (!R->isZero()) { 737 *Quotient = D.Zero; 738 *Remainder = Numerator; 739 return; 740 } 741 } 742 *Remainder = D.Zero; 743 return; 744 } 745 746 D.visit(Numerator); 747 *Quotient = D.Quotient; 748 *Remainder = D.Remainder; 749 } 750 751 // Except in the trivial case described above, we do not know how to divide 752 // Expr by Denominator for the following functions with empty implementation. 753 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 754 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 755 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 756 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 757 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 758 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 759 void visitUnknown(const SCEVUnknown *Numerator) {} 760 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 761 762 void visitConstant(const SCEVConstant *Numerator) { 763 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 764 APInt NumeratorVal = Numerator->getValue()->getValue(); 765 APInt DenominatorVal = D->getValue()->getValue(); 766 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 767 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 768 769 if (NumeratorBW > DenominatorBW) 770 DenominatorVal = DenominatorVal.sext(NumeratorBW); 771 else if (NumeratorBW < DenominatorBW) 772 NumeratorVal = NumeratorVal.sext(DenominatorBW); 773 774 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 775 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 776 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 777 Quotient = SE.getConstant(QuotientVal); 778 Remainder = SE.getConstant(RemainderVal); 779 return; 780 } 781 } 782 783 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 784 const SCEV *StartQ, *StartR, *StepQ, *StepR; 785 assert(Numerator->isAffine() && "Numerator should be affine"); 786 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 787 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 788 // Bail out if the types do not match. 789 Type *Ty = Denominator->getType(); 790 if (Ty != StartQ->getType() || Ty != StartR->getType() || 791 Ty != StepQ->getType() || Ty != StepR->getType()) { 792 Quotient = Zero; 793 Remainder = Numerator; 794 return; 795 } 796 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 797 Numerator->getNoWrapFlags()); 798 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 799 Numerator->getNoWrapFlags()); 800 } 801 802 void visitAddExpr(const SCEVAddExpr *Numerator) { 803 SmallVector<const SCEV *, 2> Qs, Rs; 804 Type *Ty = Denominator->getType(); 805 806 for (const SCEV *Op : Numerator->operands()) { 807 const SCEV *Q, *R; 808 divide(SE, Op, Denominator, &Q, &R); 809 810 // Bail out if types do not match. 811 if (Ty != Q->getType() || Ty != R->getType()) { 812 Quotient = Zero; 813 Remainder = Numerator; 814 return; 815 } 816 817 Qs.push_back(Q); 818 Rs.push_back(R); 819 } 820 821 if (Qs.size() == 1) { 822 Quotient = Qs[0]; 823 Remainder = Rs[0]; 824 return; 825 } 826 827 Quotient = SE.getAddExpr(Qs); 828 Remainder = SE.getAddExpr(Rs); 829 } 830 831 void visitMulExpr(const SCEVMulExpr *Numerator) { 832 SmallVector<const SCEV *, 2> Qs; 833 Type *Ty = Denominator->getType(); 834 835 bool FoundDenominatorTerm = false; 836 for (const SCEV *Op : Numerator->operands()) { 837 // Bail out if types do not match. 838 if (Ty != Op->getType()) { 839 Quotient = Zero; 840 Remainder = Numerator; 841 return; 842 } 843 844 if (FoundDenominatorTerm) { 845 Qs.push_back(Op); 846 continue; 847 } 848 849 // Check whether Denominator divides one of the product operands. 850 const SCEV *Q, *R; 851 divide(SE, Op, Denominator, &Q, &R); 852 if (!R->isZero()) { 853 Qs.push_back(Op); 854 continue; 855 } 856 857 // Bail out if types do not match. 858 if (Ty != Q->getType()) { 859 Quotient = Zero; 860 Remainder = Numerator; 861 return; 862 } 863 864 FoundDenominatorTerm = true; 865 Qs.push_back(Q); 866 } 867 868 if (FoundDenominatorTerm) { 869 Remainder = Zero; 870 if (Qs.size() == 1) 871 Quotient = Qs[0]; 872 else 873 Quotient = SE.getMulExpr(Qs); 874 return; 875 } 876 877 if (!isa<SCEVUnknown>(Denominator)) { 878 Quotient = Zero; 879 Remainder = Numerator; 880 return; 881 } 882 883 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 884 ValueToValueMap RewriteMap; 885 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 886 cast<SCEVConstant>(Zero)->getValue(); 887 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 888 889 if (Remainder->isZero()) { 890 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 891 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 892 cast<SCEVConstant>(One)->getValue(); 893 Quotient = 894 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 895 return; 896 } 897 898 // Quotient is (Numerator - Remainder) divided by Denominator. 899 const SCEV *Q, *R; 900 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 901 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) { 902 // This SCEV does not seem to simplify: fail the division here. 903 Quotient = Zero; 904 Remainder = Numerator; 905 return; 906 } 907 divide(SE, Diff, Denominator, &Q, &R); 908 assert(R == Zero && 909 "(Numerator - Remainder) should evenly divide Denominator"); 910 Quotient = Q; 911 } 912 913 private: 914 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 915 const SCEV *Denominator) 916 : SE(S), Denominator(Denominator) { 917 Zero = SE.getConstant(Denominator->getType(), 0); 918 One = SE.getConstant(Denominator->getType(), 1); 919 920 // By default, we don't know how to divide Expr by Denominator. 921 // Providing the default here simplifies the rest of the code. 922 Quotient = Zero; 923 Remainder = Numerator; 924 } 925 926 ScalarEvolution &SE; 927 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 928 }; 929 930 } 931 932 //===----------------------------------------------------------------------===// 933 // Simple SCEV method implementations 934 //===----------------------------------------------------------------------===// 935 936 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 937 /// Assume, K > 0. 938 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 939 ScalarEvolution &SE, 940 Type *ResultTy) { 941 // Handle the simplest case efficiently. 942 if (K == 1) 943 return SE.getTruncateOrZeroExtend(It, ResultTy); 944 945 // We are using the following formula for BC(It, K): 946 // 947 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 948 // 949 // Suppose, W is the bitwidth of the return value. We must be prepared for 950 // overflow. Hence, we must assure that the result of our computation is 951 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 952 // safe in modular arithmetic. 953 // 954 // However, this code doesn't use exactly that formula; the formula it uses 955 // is something like the following, where T is the number of factors of 2 in 956 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 957 // exponentiation: 958 // 959 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 960 // 961 // This formula is trivially equivalent to the previous formula. However, 962 // this formula can be implemented much more efficiently. The trick is that 963 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 964 // arithmetic. To do exact division in modular arithmetic, all we have 965 // to do is multiply by the inverse. Therefore, this step can be done at 966 // width W. 967 // 968 // The next issue is how to safely do the division by 2^T. The way this 969 // is done is by doing the multiplication step at a width of at least W + T 970 // bits. This way, the bottom W+T bits of the product are accurate. Then, 971 // when we perform the division by 2^T (which is equivalent to a right shift 972 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 973 // truncated out after the division by 2^T. 974 // 975 // In comparison to just directly using the first formula, this technique 976 // is much more efficient; using the first formula requires W * K bits, 977 // but this formula less than W + K bits. Also, the first formula requires 978 // a division step, whereas this formula only requires multiplies and shifts. 979 // 980 // It doesn't matter whether the subtraction step is done in the calculation 981 // width or the input iteration count's width; if the subtraction overflows, 982 // the result must be zero anyway. We prefer here to do it in the width of 983 // the induction variable because it helps a lot for certain cases; CodeGen 984 // isn't smart enough to ignore the overflow, which leads to much less 985 // efficient code if the width of the subtraction is wider than the native 986 // register width. 987 // 988 // (It's possible to not widen at all by pulling out factors of 2 before 989 // the multiplication; for example, K=2 can be calculated as 990 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 991 // extra arithmetic, so it's not an obvious win, and it gets 992 // much more complicated for K > 3.) 993 994 // Protection from insane SCEVs; this bound is conservative, 995 // but it probably doesn't matter. 996 if (K > 1000) 997 return SE.getCouldNotCompute(); 998 999 unsigned W = SE.getTypeSizeInBits(ResultTy); 1000 1001 // Calculate K! / 2^T and T; we divide out the factors of two before 1002 // multiplying for calculating K! / 2^T to avoid overflow. 1003 // Other overflow doesn't matter because we only care about the bottom 1004 // W bits of the result. 1005 APInt OddFactorial(W, 1); 1006 unsigned T = 1; 1007 for (unsigned i = 3; i <= K; ++i) { 1008 APInt Mult(W, i); 1009 unsigned TwoFactors = Mult.countTrailingZeros(); 1010 T += TwoFactors; 1011 Mult = Mult.lshr(TwoFactors); 1012 OddFactorial *= Mult; 1013 } 1014 1015 // We need at least W + T bits for the multiplication step 1016 unsigned CalculationBits = W + T; 1017 1018 // Calculate 2^T, at width T+W. 1019 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1020 1021 // Calculate the multiplicative inverse of K! / 2^T; 1022 // this multiplication factor will perform the exact division by 1023 // K! / 2^T. 1024 APInt Mod = APInt::getSignedMinValue(W+1); 1025 APInt MultiplyFactor = OddFactorial.zext(W+1); 1026 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1027 MultiplyFactor = MultiplyFactor.trunc(W); 1028 1029 // Calculate the product, at width T+W 1030 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1031 CalculationBits); 1032 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1033 for (unsigned i = 1; i != K; ++i) { 1034 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1035 Dividend = SE.getMulExpr(Dividend, 1036 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1037 } 1038 1039 // Divide by 2^T 1040 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1041 1042 // Truncate the result, and divide by K! / 2^T. 1043 1044 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1045 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1046 } 1047 1048 /// evaluateAtIteration - Return the value of this chain of recurrences at 1049 /// the specified iteration number. We can evaluate this recurrence by 1050 /// multiplying each element in the chain by the binomial coefficient 1051 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1052 /// 1053 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1054 /// 1055 /// where BC(It, k) stands for binomial coefficient. 1056 /// 1057 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1058 ScalarEvolution &SE) const { 1059 const SCEV *Result = getStart(); 1060 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1061 // The computation is correct in the face of overflow provided that the 1062 // multiplication is performed _after_ the evaluation of the binomial 1063 // coefficient. 1064 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1065 if (isa<SCEVCouldNotCompute>(Coeff)) 1066 return Coeff; 1067 1068 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1069 } 1070 return Result; 1071 } 1072 1073 //===----------------------------------------------------------------------===// 1074 // SCEV Expression folder implementations 1075 //===----------------------------------------------------------------------===// 1076 1077 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1078 Type *Ty) { 1079 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1080 "This is not a truncating conversion!"); 1081 assert(isSCEVable(Ty) && 1082 "This is not a conversion to a SCEVable type!"); 1083 Ty = getEffectiveSCEVType(Ty); 1084 1085 FoldingSetNodeID ID; 1086 ID.AddInteger(scTruncate); 1087 ID.AddPointer(Op); 1088 ID.AddPointer(Ty); 1089 void *IP = nullptr; 1090 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1091 1092 // Fold if the operand is constant. 1093 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1094 return getConstant( 1095 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1096 1097 // trunc(trunc(x)) --> trunc(x) 1098 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1099 return getTruncateExpr(ST->getOperand(), Ty); 1100 1101 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1102 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1103 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1104 1105 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1106 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1107 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1108 1109 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1110 // eliminate all the truncates, or we replace other casts with truncates. 1111 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1112 SmallVector<const SCEV *, 4> Operands; 1113 bool hasTrunc = false; 1114 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1115 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1116 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1117 hasTrunc = isa<SCEVTruncateExpr>(S); 1118 Operands.push_back(S); 1119 } 1120 if (!hasTrunc) 1121 return getAddExpr(Operands); 1122 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1123 } 1124 1125 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1126 // eliminate all the truncates, or we replace other casts with truncates. 1127 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1128 SmallVector<const SCEV *, 4> Operands; 1129 bool hasTrunc = false; 1130 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1131 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1132 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1133 hasTrunc = isa<SCEVTruncateExpr>(S); 1134 Operands.push_back(S); 1135 } 1136 if (!hasTrunc) 1137 return getMulExpr(Operands); 1138 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1139 } 1140 1141 // If the input value is a chrec scev, truncate the chrec's operands. 1142 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1143 SmallVector<const SCEV *, 4> Operands; 1144 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1145 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 1146 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1147 } 1148 1149 // The cast wasn't folded; create an explicit cast node. We can reuse 1150 // the existing insert position since if we get here, we won't have 1151 // made any changes which would invalidate it. 1152 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1153 Op, Ty); 1154 UniqueSCEVs.InsertNode(S, IP); 1155 return S; 1156 } 1157 1158 // Get the limit of a recurrence such that incrementing by Step cannot cause 1159 // signed overflow as long as the value of the recurrence within the 1160 // loop does not exceed this limit before incrementing. 1161 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1162 ICmpInst::Predicate *Pred, 1163 ScalarEvolution *SE) { 1164 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1165 if (SE->isKnownPositive(Step)) { 1166 *Pred = ICmpInst::ICMP_SLT; 1167 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1168 SE->getSignedRange(Step).getSignedMax()); 1169 } 1170 if (SE->isKnownNegative(Step)) { 1171 *Pred = ICmpInst::ICMP_SGT; 1172 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1173 SE->getSignedRange(Step).getSignedMin()); 1174 } 1175 return nullptr; 1176 } 1177 1178 // Get the limit of a recurrence such that incrementing by Step cannot cause 1179 // unsigned overflow as long as the value of the recurrence within the loop does 1180 // not exceed this limit before incrementing. 1181 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1182 ICmpInst::Predicate *Pred, 1183 ScalarEvolution *SE) { 1184 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1185 *Pred = ICmpInst::ICMP_ULT; 1186 1187 return SE->getConstant(APInt::getMinValue(BitWidth) - 1188 SE->getUnsignedRange(Step).getUnsignedMax()); 1189 } 1190 1191 namespace { 1192 1193 struct ExtendOpTraitsBase { 1194 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1195 }; 1196 1197 // Used to make code generic over signed and unsigned overflow. 1198 template <typename ExtendOp> struct ExtendOpTraits { 1199 // Members present: 1200 // 1201 // static const SCEV::NoWrapFlags WrapType; 1202 // 1203 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1204 // 1205 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1206 // ICmpInst::Predicate *Pred, 1207 // ScalarEvolution *SE); 1208 }; 1209 1210 template <> 1211 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1212 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1213 1214 static const GetExtendExprTy GetExtendExpr; 1215 1216 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1217 ICmpInst::Predicate *Pred, 1218 ScalarEvolution *SE) { 1219 return getSignedOverflowLimitForStep(Step, Pred, SE); 1220 } 1221 }; 1222 1223 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1224 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1225 1226 template <> 1227 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1228 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1229 1230 static const GetExtendExprTy GetExtendExpr; 1231 1232 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1233 ICmpInst::Predicate *Pred, 1234 ScalarEvolution *SE) { 1235 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1236 } 1237 }; 1238 1239 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1240 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1241 } 1242 1243 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1244 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1245 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1246 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1247 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1248 // expression "Step + sext/zext(PreIncAR)" is congruent with 1249 // "sext/zext(PostIncAR)" 1250 template <typename ExtendOpTy> 1251 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1252 ScalarEvolution *SE) { 1253 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1254 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1255 1256 const Loop *L = AR->getLoop(); 1257 const SCEV *Start = AR->getStart(); 1258 const SCEV *Step = AR->getStepRecurrence(*SE); 1259 1260 // Check for a simple looking step prior to loop entry. 1261 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1262 if (!SA) 1263 return nullptr; 1264 1265 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1266 // subtraction is expensive. For this purpose, perform a quick and dirty 1267 // difference, by checking for Step in the operand list. 1268 SmallVector<const SCEV *, 4> DiffOps; 1269 for (const SCEV *Op : SA->operands()) 1270 if (Op != Step) 1271 DiffOps.push_back(Op); 1272 1273 if (DiffOps.size() == SA->getNumOperands()) 1274 return nullptr; 1275 1276 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1277 // `Step`: 1278 1279 // 1. NSW/NUW flags on the step increment. 1280 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1281 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1282 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1283 1284 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1285 // "S+X does not sign/unsign-overflow". 1286 // 1287 1288 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1289 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1290 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1291 return PreStart; 1292 1293 // 2. Direct overflow check on the step operation's expression. 1294 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1295 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1296 const SCEV *OperandExtendedStart = 1297 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1298 (SE->*GetExtendExpr)(Step, WideTy)); 1299 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1300 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1301 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1302 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1303 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1304 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1305 } 1306 return PreStart; 1307 } 1308 1309 // 3. Loop precondition. 1310 ICmpInst::Predicate Pred; 1311 const SCEV *OverflowLimit = 1312 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1313 1314 if (OverflowLimit && 1315 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1316 return PreStart; 1317 } 1318 return nullptr; 1319 } 1320 1321 // Get the normalized zero or sign extended expression for this AddRec's Start. 1322 template <typename ExtendOpTy> 1323 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1324 ScalarEvolution *SE) { 1325 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1326 1327 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1328 if (!PreStart) 1329 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1330 1331 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1332 (SE->*GetExtendExpr)(PreStart, Ty)); 1333 } 1334 1335 // Try to prove away overflow by looking at "nearby" add recurrences. A 1336 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1337 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1338 // 1339 // Formally: 1340 // 1341 // {S,+,X} == {S-T,+,X} + T 1342 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1343 // 1344 // If ({S-T,+,X} + T) does not overflow ... (1) 1345 // 1346 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1347 // 1348 // If {S-T,+,X} does not overflow ... (2) 1349 // 1350 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1351 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1352 // 1353 // If (S-T)+T does not overflow ... (3) 1354 // 1355 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1356 // == {Ext(S),+,Ext(X)} == LHS 1357 // 1358 // Thus, if (1), (2) and (3) are true for some T, then 1359 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1360 // 1361 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1362 // does not overflow" restricted to the 0th iteration. Therefore we only need 1363 // to check for (1) and (2). 1364 // 1365 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1366 // is `Delta` (defined below). 1367 // 1368 template <typename ExtendOpTy> 1369 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1370 const SCEV *Step, 1371 const Loop *L) { 1372 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1373 1374 // We restrict `Start` to a constant to prevent SCEV from spending too much 1375 // time here. It is correct (but more expensive) to continue with a 1376 // non-constant `Start` and do a general SCEV subtraction to compute 1377 // `PreStart` below. 1378 // 1379 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1380 if (!StartC) 1381 return false; 1382 1383 APInt StartAI = StartC->getValue()->getValue(); 1384 1385 for (unsigned Delta : {-2, -1, 1, 2}) { 1386 const SCEV *PreStart = getConstant(StartAI - Delta); 1387 1388 // Give up if we don't already have the add recurrence we need because 1389 // actually constructing an add recurrence is relatively expensive. 1390 const SCEVAddRecExpr *PreAR = [&]() { 1391 FoldingSetNodeID ID; 1392 ID.AddInteger(scAddRecExpr); 1393 ID.AddPointer(PreStart); 1394 ID.AddPointer(Step); 1395 ID.AddPointer(L); 1396 void *IP = nullptr; 1397 return static_cast<SCEVAddRecExpr *>( 1398 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1399 }(); 1400 1401 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1402 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1403 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1404 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1405 DeltaS, &Pred, this); 1406 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1407 return true; 1408 } 1409 } 1410 1411 return false; 1412 } 1413 1414 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1415 Type *Ty) { 1416 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1417 "This is not an extending conversion!"); 1418 assert(isSCEVable(Ty) && 1419 "This is not a conversion to a SCEVable type!"); 1420 Ty = getEffectiveSCEVType(Ty); 1421 1422 // Fold if the operand is constant. 1423 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1424 return getConstant( 1425 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1426 1427 // zext(zext(x)) --> zext(x) 1428 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1429 return getZeroExtendExpr(SZ->getOperand(), Ty); 1430 1431 // Before doing any expensive analysis, check to see if we've already 1432 // computed a SCEV for this Op and Ty. 1433 FoldingSetNodeID ID; 1434 ID.AddInteger(scZeroExtend); 1435 ID.AddPointer(Op); 1436 ID.AddPointer(Ty); 1437 void *IP = nullptr; 1438 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1439 1440 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1441 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1442 // It's possible the bits taken off by the truncate were all zero bits. If 1443 // so, we should be able to simplify this further. 1444 const SCEV *X = ST->getOperand(); 1445 ConstantRange CR = getUnsignedRange(X); 1446 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1447 unsigned NewBits = getTypeSizeInBits(Ty); 1448 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1449 CR.zextOrTrunc(NewBits))) 1450 return getTruncateOrZeroExtend(X, Ty); 1451 } 1452 1453 // If the input value is a chrec scev, and we can prove that the value 1454 // did not overflow the old, smaller, value, we can zero extend all of the 1455 // operands (often constants). This allows analysis of something like 1456 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1457 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1458 if (AR->isAffine()) { 1459 const SCEV *Start = AR->getStart(); 1460 const SCEV *Step = AR->getStepRecurrence(*this); 1461 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1462 const Loop *L = AR->getLoop(); 1463 1464 // If we have special knowledge that this addrec won't overflow, 1465 // we don't need to do any further analysis. 1466 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1467 return getAddRecExpr( 1468 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1469 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1470 1471 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1472 // Note that this serves two purposes: It filters out loops that are 1473 // simply not analyzable, and it covers the case where this code is 1474 // being called from within backedge-taken count analysis, such that 1475 // attempting to ask for the backedge-taken count would likely result 1476 // in infinite recursion. In the later case, the analysis code will 1477 // cope with a conservative value, and it will take care to purge 1478 // that value once it has finished. 1479 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1480 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1481 // Manually compute the final value for AR, checking for 1482 // overflow. 1483 1484 // Check whether the backedge-taken count can be losslessly casted to 1485 // the addrec's type. The count is always unsigned. 1486 const SCEV *CastedMaxBECount = 1487 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1488 const SCEV *RecastedMaxBECount = 1489 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1490 if (MaxBECount == RecastedMaxBECount) { 1491 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1492 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1493 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1494 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1495 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1496 const SCEV *WideMaxBECount = 1497 getZeroExtendExpr(CastedMaxBECount, WideTy); 1498 const SCEV *OperandExtendedAdd = 1499 getAddExpr(WideStart, 1500 getMulExpr(WideMaxBECount, 1501 getZeroExtendExpr(Step, WideTy))); 1502 if (ZAdd == OperandExtendedAdd) { 1503 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1504 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1505 // Return the expression with the addrec on the outside. 1506 return getAddRecExpr( 1507 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1508 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1509 } 1510 // Similar to above, only this time treat the step value as signed. 1511 // This covers loops that count down. 1512 OperandExtendedAdd = 1513 getAddExpr(WideStart, 1514 getMulExpr(WideMaxBECount, 1515 getSignExtendExpr(Step, WideTy))); 1516 if (ZAdd == OperandExtendedAdd) { 1517 // Cache knowledge of AR NW, which is propagated to this AddRec. 1518 // Negative step causes unsigned wrap, but it still can't self-wrap. 1519 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1520 // Return the expression with the addrec on the outside. 1521 return getAddRecExpr( 1522 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1523 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1524 } 1525 } 1526 1527 // If the backedge is guarded by a comparison with the pre-inc value 1528 // the addrec is safe. Also, if the entry is guarded by a comparison 1529 // with the start value and the backedge is guarded by a comparison 1530 // with the post-inc value, the addrec is safe. 1531 if (isKnownPositive(Step)) { 1532 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1533 getUnsignedRange(Step).getUnsignedMax()); 1534 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1535 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1536 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1537 AR->getPostIncExpr(*this), N))) { 1538 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1539 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1540 // Return the expression with the addrec on the outside. 1541 return getAddRecExpr( 1542 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1543 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1544 } 1545 } else if (isKnownNegative(Step)) { 1546 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1547 getSignedRange(Step).getSignedMin()); 1548 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1549 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1550 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1551 AR->getPostIncExpr(*this), N))) { 1552 // Cache knowledge of AR NW, which is propagated to this AddRec. 1553 // Negative step causes unsigned wrap, but it still can't self-wrap. 1554 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1555 // Return the expression with the addrec on the outside. 1556 return getAddRecExpr( 1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1558 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1559 } 1560 } 1561 } 1562 1563 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1564 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1565 return getAddRecExpr( 1566 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1567 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1568 } 1569 } 1570 1571 // The cast wasn't folded; create an explicit cast node. 1572 // Recompute the insert position, as it may have been invalidated. 1573 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1574 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1575 Op, Ty); 1576 UniqueSCEVs.InsertNode(S, IP); 1577 return S; 1578 } 1579 1580 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1581 Type *Ty) { 1582 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1583 "This is not an extending conversion!"); 1584 assert(isSCEVable(Ty) && 1585 "This is not a conversion to a SCEVable type!"); 1586 Ty = getEffectiveSCEVType(Ty); 1587 1588 // Fold if the operand is constant. 1589 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1590 return getConstant( 1591 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1592 1593 // sext(sext(x)) --> sext(x) 1594 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1595 return getSignExtendExpr(SS->getOperand(), Ty); 1596 1597 // sext(zext(x)) --> zext(x) 1598 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1599 return getZeroExtendExpr(SZ->getOperand(), Ty); 1600 1601 // Before doing any expensive analysis, check to see if we've already 1602 // computed a SCEV for this Op and Ty. 1603 FoldingSetNodeID ID; 1604 ID.AddInteger(scSignExtend); 1605 ID.AddPointer(Op); 1606 ID.AddPointer(Ty); 1607 void *IP = nullptr; 1608 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1609 1610 // If the input value is provably positive, build a zext instead. 1611 if (isKnownNonNegative(Op)) 1612 return getZeroExtendExpr(Op, Ty); 1613 1614 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1615 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1616 // It's possible the bits taken off by the truncate were all sign bits. If 1617 // so, we should be able to simplify this further. 1618 const SCEV *X = ST->getOperand(); 1619 ConstantRange CR = getSignedRange(X); 1620 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1621 unsigned NewBits = getTypeSizeInBits(Ty); 1622 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1623 CR.sextOrTrunc(NewBits))) 1624 return getTruncateOrSignExtend(X, Ty); 1625 } 1626 1627 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1628 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) { 1629 if (SA->getNumOperands() == 2) { 1630 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1631 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1632 if (SMul && SC1) { 1633 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1634 const APInt &C1 = SC1->getValue()->getValue(); 1635 const APInt &C2 = SC2->getValue()->getValue(); 1636 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1637 C2.ugt(C1) && C2.isPowerOf2()) 1638 return getAddExpr(getSignExtendExpr(SC1, Ty), 1639 getSignExtendExpr(SMul, Ty)); 1640 } 1641 } 1642 } 1643 } 1644 // If the input value is a chrec scev, and we can prove that the value 1645 // did not overflow the old, smaller, value, we can sign extend all of the 1646 // operands (often constants). This allows analysis of something like 1647 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1648 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1649 if (AR->isAffine()) { 1650 const SCEV *Start = AR->getStart(); 1651 const SCEV *Step = AR->getStepRecurrence(*this); 1652 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1653 const Loop *L = AR->getLoop(); 1654 1655 // If we have special knowledge that this addrec won't overflow, 1656 // we don't need to do any further analysis. 1657 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1658 return getAddRecExpr( 1659 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1660 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1661 1662 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1663 // Note that this serves two purposes: It filters out loops that are 1664 // simply not analyzable, and it covers the case where this code is 1665 // being called from within backedge-taken count analysis, such that 1666 // attempting to ask for the backedge-taken count would likely result 1667 // in infinite recursion. In the later case, the analysis code will 1668 // cope with a conservative value, and it will take care to purge 1669 // that value once it has finished. 1670 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1671 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1672 // Manually compute the final value for AR, checking for 1673 // overflow. 1674 1675 // Check whether the backedge-taken count can be losslessly casted to 1676 // the addrec's type. The count is always unsigned. 1677 const SCEV *CastedMaxBECount = 1678 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1679 const SCEV *RecastedMaxBECount = 1680 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1681 if (MaxBECount == RecastedMaxBECount) { 1682 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1683 // Check whether Start+Step*MaxBECount has no signed overflow. 1684 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1685 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1686 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1687 const SCEV *WideMaxBECount = 1688 getZeroExtendExpr(CastedMaxBECount, WideTy); 1689 const SCEV *OperandExtendedAdd = 1690 getAddExpr(WideStart, 1691 getMulExpr(WideMaxBECount, 1692 getSignExtendExpr(Step, WideTy))); 1693 if (SAdd == OperandExtendedAdd) { 1694 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1695 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1696 // Return the expression with the addrec on the outside. 1697 return getAddRecExpr( 1698 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1699 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1700 } 1701 // Similar to above, only this time treat the step value as unsigned. 1702 // This covers loops that count up with an unsigned step. 1703 OperandExtendedAdd = 1704 getAddExpr(WideStart, 1705 getMulExpr(WideMaxBECount, 1706 getZeroExtendExpr(Step, WideTy))); 1707 if (SAdd == OperandExtendedAdd) { 1708 // If AR wraps around then 1709 // 1710 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1711 // => SAdd != OperandExtendedAdd 1712 // 1713 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1714 // (SAdd == OperandExtendedAdd => AR is NW) 1715 1716 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1717 1718 // Return the expression with the addrec on the outside. 1719 return getAddRecExpr( 1720 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1721 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1722 } 1723 } 1724 1725 // If the backedge is guarded by a comparison with the pre-inc value 1726 // the addrec is safe. Also, if the entry is guarded by a comparison 1727 // with the start value and the backedge is guarded by a comparison 1728 // with the post-inc value, the addrec is safe. 1729 ICmpInst::Predicate Pred; 1730 const SCEV *OverflowLimit = 1731 getSignedOverflowLimitForStep(Step, &Pred, this); 1732 if (OverflowLimit && 1733 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1734 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1735 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1736 OverflowLimit)))) { 1737 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1738 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1739 return getAddRecExpr( 1740 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1741 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1742 } 1743 } 1744 // If Start and Step are constants, check if we can apply this 1745 // transformation: 1746 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1747 auto SC1 = dyn_cast<SCEVConstant>(Start); 1748 auto SC2 = dyn_cast<SCEVConstant>(Step); 1749 if (SC1 && SC2) { 1750 const APInt &C1 = SC1->getValue()->getValue(); 1751 const APInt &C2 = SC2->getValue()->getValue(); 1752 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1753 C2.isPowerOf2()) { 1754 Start = getSignExtendExpr(Start, Ty); 1755 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step, 1756 L, AR->getNoWrapFlags()); 1757 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1758 } 1759 } 1760 1761 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1762 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1763 return getAddRecExpr( 1764 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1765 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1766 } 1767 } 1768 1769 // The cast wasn't folded; create an explicit cast node. 1770 // Recompute the insert position, as it may have been invalidated. 1771 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1772 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1773 Op, Ty); 1774 UniqueSCEVs.InsertNode(S, IP); 1775 return S; 1776 } 1777 1778 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1779 /// unspecified bits out to the given type. 1780 /// 1781 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1782 Type *Ty) { 1783 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1784 "This is not an extending conversion!"); 1785 assert(isSCEVable(Ty) && 1786 "This is not a conversion to a SCEVable type!"); 1787 Ty = getEffectiveSCEVType(Ty); 1788 1789 // Sign-extend negative constants. 1790 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1791 if (SC->getValue()->getValue().isNegative()) 1792 return getSignExtendExpr(Op, Ty); 1793 1794 // Peel off a truncate cast. 1795 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1796 const SCEV *NewOp = T->getOperand(); 1797 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1798 return getAnyExtendExpr(NewOp, Ty); 1799 return getTruncateOrNoop(NewOp, Ty); 1800 } 1801 1802 // Next try a zext cast. If the cast is folded, use it. 1803 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1804 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1805 return ZExt; 1806 1807 // Next try a sext cast. If the cast is folded, use it. 1808 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1809 if (!isa<SCEVSignExtendExpr>(SExt)) 1810 return SExt; 1811 1812 // Force the cast to be folded into the operands of an addrec. 1813 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1814 SmallVector<const SCEV *, 4> Ops; 1815 for (const SCEV *Op : AR->operands()) 1816 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1817 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1818 } 1819 1820 // If the expression is obviously signed, use the sext cast value. 1821 if (isa<SCEVSMaxExpr>(Op)) 1822 return SExt; 1823 1824 // Absent any other information, use the zext cast value. 1825 return ZExt; 1826 } 1827 1828 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1829 /// a list of operands to be added under the given scale, update the given 1830 /// map. This is a helper function for getAddRecExpr. As an example of 1831 /// what it does, given a sequence of operands that would form an add 1832 /// expression like this: 1833 /// 1834 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1835 /// 1836 /// where A and B are constants, update the map with these values: 1837 /// 1838 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1839 /// 1840 /// and add 13 + A*B*29 to AccumulatedConstant. 1841 /// This will allow getAddRecExpr to produce this: 1842 /// 1843 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1844 /// 1845 /// This form often exposes folding opportunities that are hidden in 1846 /// the original operand list. 1847 /// 1848 /// Return true iff it appears that any interesting folding opportunities 1849 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1850 /// the common case where no interesting opportunities are present, and 1851 /// is also used as a check to avoid infinite recursion. 1852 /// 1853 static bool 1854 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1855 SmallVectorImpl<const SCEV *> &NewOps, 1856 APInt &AccumulatedConstant, 1857 const SCEV *const *Ops, size_t NumOperands, 1858 const APInt &Scale, 1859 ScalarEvolution &SE) { 1860 bool Interesting = false; 1861 1862 // Iterate over the add operands. They are sorted, with constants first. 1863 unsigned i = 0; 1864 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1865 ++i; 1866 // Pull a buried constant out to the outside. 1867 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1868 Interesting = true; 1869 AccumulatedConstant += Scale * C->getValue()->getValue(); 1870 } 1871 1872 // Next comes everything else. We're especially interested in multiplies 1873 // here, but they're in the middle, so just visit the rest with one loop. 1874 for (; i != NumOperands; ++i) { 1875 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1876 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1877 APInt NewScale = 1878 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1879 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1880 // A multiplication of a constant with another add; recurse. 1881 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1882 Interesting |= 1883 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1884 Add->op_begin(), Add->getNumOperands(), 1885 NewScale, SE); 1886 } else { 1887 // A multiplication of a constant with some other value. Update 1888 // the map. 1889 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1890 const SCEV *Key = SE.getMulExpr(MulOps); 1891 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1892 M.insert(std::make_pair(Key, NewScale)); 1893 if (Pair.second) { 1894 NewOps.push_back(Pair.first->first); 1895 } else { 1896 Pair.first->second += NewScale; 1897 // The map already had an entry for this value, which may indicate 1898 // a folding opportunity. 1899 Interesting = true; 1900 } 1901 } 1902 } else { 1903 // An ordinary operand. Update the map. 1904 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1905 M.insert(std::make_pair(Ops[i], Scale)); 1906 if (Pair.second) { 1907 NewOps.push_back(Pair.first->first); 1908 } else { 1909 Pair.first->second += Scale; 1910 // The map already had an entry for this value, which may indicate 1911 // a folding opportunity. 1912 Interesting = true; 1913 } 1914 } 1915 } 1916 1917 return Interesting; 1918 } 1919 1920 namespace { 1921 struct APIntCompare { 1922 bool operator()(const APInt &LHS, const APInt &RHS) const { 1923 return LHS.ult(RHS); 1924 } 1925 }; 1926 } 1927 1928 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1929 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1930 // can't-overflow flags for the operation if possible. 1931 static SCEV::NoWrapFlags 1932 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1933 const SmallVectorImpl<const SCEV *> &Ops, 1934 SCEV::NoWrapFlags OldFlags) { 1935 using namespace std::placeholders; 1936 1937 bool CanAnalyze = 1938 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1939 (void)CanAnalyze; 1940 assert(CanAnalyze && "don't call from other places!"); 1941 1942 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1943 SCEV::NoWrapFlags SignOrUnsignWrap = 1944 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask); 1945 1946 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1947 auto IsKnownNonNegative = 1948 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1949 1950 if (SignOrUnsignWrap == SCEV::FlagNSW && 1951 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1952 return ScalarEvolution::setFlags(OldFlags, 1953 (SCEV::NoWrapFlags)SignOrUnsignMask); 1954 1955 return OldFlags; 1956 } 1957 1958 /// getAddExpr - Get a canonical add expression, or something simpler if 1959 /// possible. 1960 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1961 SCEV::NoWrapFlags Flags) { 1962 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1963 "only nuw or nsw allowed"); 1964 assert(!Ops.empty() && "Cannot get empty add!"); 1965 if (Ops.size() == 1) return Ops[0]; 1966 #ifndef NDEBUG 1967 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1968 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1969 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1970 "SCEVAddExpr operand types don't match!"); 1971 #endif 1972 1973 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 1974 1975 // Sort by complexity, this groups all similar expression types together. 1976 GroupByComplexity(Ops, &LI); 1977 1978 // If there are any constants, fold them together. 1979 unsigned Idx = 0; 1980 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1981 ++Idx; 1982 assert(Idx < Ops.size()); 1983 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1984 // We found two constants, fold them together! 1985 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1986 RHSC->getValue()->getValue()); 1987 if (Ops.size() == 2) return Ops[0]; 1988 Ops.erase(Ops.begin()+1); // Erase the folded element 1989 LHSC = cast<SCEVConstant>(Ops[0]); 1990 } 1991 1992 // If we are left with a constant zero being added, strip it off. 1993 if (LHSC->getValue()->isZero()) { 1994 Ops.erase(Ops.begin()); 1995 --Idx; 1996 } 1997 1998 if (Ops.size() == 1) return Ops[0]; 1999 } 2000 2001 // Okay, check to see if the same value occurs in the operand list more than 2002 // once. If so, merge them together into an multiply expression. Since we 2003 // sorted the list, these values are required to be adjacent. 2004 Type *Ty = Ops[0]->getType(); 2005 bool FoundMatch = false; 2006 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2007 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2008 // Scan ahead to count how many equal operands there are. 2009 unsigned Count = 2; 2010 while (i+Count != e && Ops[i+Count] == Ops[i]) 2011 ++Count; 2012 // Merge the values into a multiply. 2013 const SCEV *Scale = getConstant(Ty, Count); 2014 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2015 if (Ops.size() == Count) 2016 return Mul; 2017 Ops[i] = Mul; 2018 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2019 --i; e -= Count - 1; 2020 FoundMatch = true; 2021 } 2022 if (FoundMatch) 2023 return getAddExpr(Ops, Flags); 2024 2025 // Check for truncates. If all the operands are truncated from the same 2026 // type, see if factoring out the truncate would permit the result to be 2027 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2028 // if the contents of the resulting outer trunc fold to something simple. 2029 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2030 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2031 Type *DstType = Trunc->getType(); 2032 Type *SrcType = Trunc->getOperand()->getType(); 2033 SmallVector<const SCEV *, 8> LargeOps; 2034 bool Ok = true; 2035 // Check all the operands to see if they can be represented in the 2036 // source type of the truncate. 2037 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2038 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2039 if (T->getOperand()->getType() != SrcType) { 2040 Ok = false; 2041 break; 2042 } 2043 LargeOps.push_back(T->getOperand()); 2044 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2045 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2046 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2047 SmallVector<const SCEV *, 8> LargeMulOps; 2048 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2049 if (const SCEVTruncateExpr *T = 2050 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2051 if (T->getOperand()->getType() != SrcType) { 2052 Ok = false; 2053 break; 2054 } 2055 LargeMulOps.push_back(T->getOperand()); 2056 } else if (const SCEVConstant *C = 2057 dyn_cast<SCEVConstant>(M->getOperand(j))) { 2058 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2059 } else { 2060 Ok = false; 2061 break; 2062 } 2063 } 2064 if (Ok) 2065 LargeOps.push_back(getMulExpr(LargeMulOps)); 2066 } else { 2067 Ok = false; 2068 break; 2069 } 2070 } 2071 if (Ok) { 2072 // Evaluate the expression in the larger type. 2073 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2074 // If it folds to something simple, use it. Otherwise, don't. 2075 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2076 return getTruncateExpr(Fold, DstType); 2077 } 2078 } 2079 2080 // Skip past any other cast SCEVs. 2081 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2082 ++Idx; 2083 2084 // If there are add operands they would be next. 2085 if (Idx < Ops.size()) { 2086 bool DeletedAdd = false; 2087 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2088 // If we have an add, expand the add operands onto the end of the operands 2089 // list. 2090 Ops.erase(Ops.begin()+Idx); 2091 Ops.append(Add->op_begin(), Add->op_end()); 2092 DeletedAdd = true; 2093 } 2094 2095 // If we deleted at least one add, we added operands to the end of the list, 2096 // and they are not necessarily sorted. Recurse to resort and resimplify 2097 // any operands we just acquired. 2098 if (DeletedAdd) 2099 return getAddExpr(Ops); 2100 } 2101 2102 // Skip over the add expression until we get to a multiply. 2103 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2104 ++Idx; 2105 2106 // Check to see if there are any folding opportunities present with 2107 // operands multiplied by constant values. 2108 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2109 uint64_t BitWidth = getTypeSizeInBits(Ty); 2110 DenseMap<const SCEV *, APInt> M; 2111 SmallVector<const SCEV *, 8> NewOps; 2112 APInt AccumulatedConstant(BitWidth, 0); 2113 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2114 Ops.data(), Ops.size(), 2115 APInt(BitWidth, 1), *this)) { 2116 // Some interesting folding opportunity is present, so its worthwhile to 2117 // re-generate the operands list. Group the operands by constant scale, 2118 // to avoid multiplying by the same constant scale multiple times. 2119 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2120 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2121 E = NewOps.end(); I != E; ++I) 2122 MulOpLists[M.find(*I)->second].push_back(*I); 2123 // Re-generate the operands list. 2124 Ops.clear(); 2125 if (AccumulatedConstant != 0) 2126 Ops.push_back(getConstant(AccumulatedConstant)); 2127 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2128 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2129 if (I->first != 0) 2130 Ops.push_back(getMulExpr(getConstant(I->first), 2131 getAddExpr(I->second))); 2132 if (Ops.empty()) 2133 return getConstant(Ty, 0); 2134 if (Ops.size() == 1) 2135 return Ops[0]; 2136 return getAddExpr(Ops); 2137 } 2138 } 2139 2140 // If we are adding something to a multiply expression, make sure the 2141 // something is not already an operand of the multiply. If so, merge it into 2142 // the multiply. 2143 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2144 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2145 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2146 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2147 if (isa<SCEVConstant>(MulOpSCEV)) 2148 continue; 2149 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2150 if (MulOpSCEV == Ops[AddOp]) { 2151 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2152 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2153 if (Mul->getNumOperands() != 2) { 2154 // If the multiply has more than two operands, we must get the 2155 // Y*Z term. 2156 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2157 Mul->op_begin()+MulOp); 2158 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2159 InnerMul = getMulExpr(MulOps); 2160 } 2161 const SCEV *One = getConstant(Ty, 1); 2162 const SCEV *AddOne = getAddExpr(One, InnerMul); 2163 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2164 if (Ops.size() == 2) return OuterMul; 2165 if (AddOp < Idx) { 2166 Ops.erase(Ops.begin()+AddOp); 2167 Ops.erase(Ops.begin()+Idx-1); 2168 } else { 2169 Ops.erase(Ops.begin()+Idx); 2170 Ops.erase(Ops.begin()+AddOp-1); 2171 } 2172 Ops.push_back(OuterMul); 2173 return getAddExpr(Ops); 2174 } 2175 2176 // Check this multiply against other multiplies being added together. 2177 for (unsigned OtherMulIdx = Idx+1; 2178 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2179 ++OtherMulIdx) { 2180 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2181 // If MulOp occurs in OtherMul, we can fold the two multiplies 2182 // together. 2183 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2184 OMulOp != e; ++OMulOp) 2185 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2186 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2187 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2188 if (Mul->getNumOperands() != 2) { 2189 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2190 Mul->op_begin()+MulOp); 2191 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2192 InnerMul1 = getMulExpr(MulOps); 2193 } 2194 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2195 if (OtherMul->getNumOperands() != 2) { 2196 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2197 OtherMul->op_begin()+OMulOp); 2198 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2199 InnerMul2 = getMulExpr(MulOps); 2200 } 2201 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2202 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2203 if (Ops.size() == 2) return OuterMul; 2204 Ops.erase(Ops.begin()+Idx); 2205 Ops.erase(Ops.begin()+OtherMulIdx-1); 2206 Ops.push_back(OuterMul); 2207 return getAddExpr(Ops); 2208 } 2209 } 2210 } 2211 } 2212 2213 // If there are any add recurrences in the operands list, see if any other 2214 // added values are loop invariant. If so, we can fold them into the 2215 // recurrence. 2216 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2217 ++Idx; 2218 2219 // Scan over all recurrences, trying to fold loop invariants into them. 2220 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2221 // Scan all of the other operands to this add and add them to the vector if 2222 // they are loop invariant w.r.t. the recurrence. 2223 SmallVector<const SCEV *, 8> LIOps; 2224 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2225 const Loop *AddRecLoop = AddRec->getLoop(); 2226 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2227 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2228 LIOps.push_back(Ops[i]); 2229 Ops.erase(Ops.begin()+i); 2230 --i; --e; 2231 } 2232 2233 // If we found some loop invariants, fold them into the recurrence. 2234 if (!LIOps.empty()) { 2235 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2236 LIOps.push_back(AddRec->getStart()); 2237 2238 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2239 AddRec->op_end()); 2240 AddRecOps[0] = getAddExpr(LIOps); 2241 2242 // Build the new addrec. Propagate the NUW and NSW flags if both the 2243 // outer add and the inner addrec are guaranteed to have no overflow. 2244 // Always propagate NW. 2245 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2246 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2247 2248 // If all of the other operands were loop invariant, we are done. 2249 if (Ops.size() == 1) return NewRec; 2250 2251 // Otherwise, add the folded AddRec by the non-invariant parts. 2252 for (unsigned i = 0;; ++i) 2253 if (Ops[i] == AddRec) { 2254 Ops[i] = NewRec; 2255 break; 2256 } 2257 return getAddExpr(Ops); 2258 } 2259 2260 // Okay, if there weren't any loop invariants to be folded, check to see if 2261 // there are multiple AddRec's with the same loop induction variable being 2262 // added together. If so, we can fold them. 2263 for (unsigned OtherIdx = Idx+1; 2264 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2265 ++OtherIdx) 2266 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2267 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2268 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2269 AddRec->op_end()); 2270 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2271 ++OtherIdx) 2272 if (const SCEVAddRecExpr *OtherAddRec = 2273 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2274 if (OtherAddRec->getLoop() == AddRecLoop) { 2275 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2276 i != e; ++i) { 2277 if (i >= AddRecOps.size()) { 2278 AddRecOps.append(OtherAddRec->op_begin()+i, 2279 OtherAddRec->op_end()); 2280 break; 2281 } 2282 AddRecOps[i] = getAddExpr(AddRecOps[i], 2283 OtherAddRec->getOperand(i)); 2284 } 2285 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2286 } 2287 // Step size has changed, so we cannot guarantee no self-wraparound. 2288 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2289 return getAddExpr(Ops); 2290 } 2291 2292 // Otherwise couldn't fold anything into this recurrence. Move onto the 2293 // next one. 2294 } 2295 2296 // Okay, it looks like we really DO need an add expr. Check to see if we 2297 // already have one, otherwise create a new one. 2298 FoldingSetNodeID ID; 2299 ID.AddInteger(scAddExpr); 2300 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2301 ID.AddPointer(Ops[i]); 2302 void *IP = nullptr; 2303 SCEVAddExpr *S = 2304 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2305 if (!S) { 2306 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2307 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2308 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2309 O, Ops.size()); 2310 UniqueSCEVs.InsertNode(S, IP); 2311 } 2312 S->setNoWrapFlags(Flags); 2313 return S; 2314 } 2315 2316 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2317 uint64_t k = i*j; 2318 if (j > 1 && k / j != i) Overflow = true; 2319 return k; 2320 } 2321 2322 /// Compute the result of "n choose k", the binomial coefficient. If an 2323 /// intermediate computation overflows, Overflow will be set and the return will 2324 /// be garbage. Overflow is not cleared on absence of overflow. 2325 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2326 // We use the multiplicative formula: 2327 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2328 // At each iteration, we take the n-th term of the numeral and divide by the 2329 // (k-n)th term of the denominator. This division will always produce an 2330 // integral result, and helps reduce the chance of overflow in the 2331 // intermediate computations. However, we can still overflow even when the 2332 // final result would fit. 2333 2334 if (n == 0 || n == k) return 1; 2335 if (k > n) return 0; 2336 2337 if (k > n/2) 2338 k = n-k; 2339 2340 uint64_t r = 1; 2341 for (uint64_t i = 1; i <= k; ++i) { 2342 r = umul_ov(r, n-(i-1), Overflow); 2343 r /= i; 2344 } 2345 return r; 2346 } 2347 2348 /// Determine if any of the operands in this SCEV are a constant or if 2349 /// any of the add or multiply expressions in this SCEV contain a constant. 2350 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2351 SmallVector<const SCEV *, 4> Ops; 2352 Ops.push_back(StartExpr); 2353 while (!Ops.empty()) { 2354 const SCEV *CurrentExpr = Ops.pop_back_val(); 2355 if (isa<SCEVConstant>(*CurrentExpr)) 2356 return true; 2357 2358 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2359 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2360 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2361 } 2362 } 2363 return false; 2364 } 2365 2366 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2367 /// possible. 2368 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2369 SCEV::NoWrapFlags Flags) { 2370 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2371 "only nuw or nsw allowed"); 2372 assert(!Ops.empty() && "Cannot get empty mul!"); 2373 if (Ops.size() == 1) return Ops[0]; 2374 #ifndef NDEBUG 2375 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2376 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2377 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2378 "SCEVMulExpr operand types don't match!"); 2379 #endif 2380 2381 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2382 2383 // Sort by complexity, this groups all similar expression types together. 2384 GroupByComplexity(Ops, &LI); 2385 2386 // If there are any constants, fold them together. 2387 unsigned Idx = 0; 2388 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2389 2390 // C1*(C2+V) -> C1*C2 + C1*V 2391 if (Ops.size() == 2) 2392 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2393 // If any of Add's ops are Adds or Muls with a constant, 2394 // apply this transformation as well. 2395 if (Add->getNumOperands() == 2) 2396 if (containsConstantSomewhere(Add)) 2397 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2398 getMulExpr(LHSC, Add->getOperand(1))); 2399 2400 ++Idx; 2401 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2402 // We found two constants, fold them together! 2403 ConstantInt *Fold = ConstantInt::get(getContext(), 2404 LHSC->getValue()->getValue() * 2405 RHSC->getValue()->getValue()); 2406 Ops[0] = getConstant(Fold); 2407 Ops.erase(Ops.begin()+1); // Erase the folded element 2408 if (Ops.size() == 1) return Ops[0]; 2409 LHSC = cast<SCEVConstant>(Ops[0]); 2410 } 2411 2412 // If we are left with a constant one being multiplied, strip it off. 2413 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2414 Ops.erase(Ops.begin()); 2415 --Idx; 2416 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2417 // If we have a multiply of zero, it will always be zero. 2418 return Ops[0]; 2419 } else if (Ops[0]->isAllOnesValue()) { 2420 // If we have a mul by -1 of an add, try distributing the -1 among the 2421 // add operands. 2422 if (Ops.size() == 2) { 2423 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2424 SmallVector<const SCEV *, 4> NewOps; 2425 bool AnyFolded = false; 2426 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2427 E = Add->op_end(); I != E; ++I) { 2428 const SCEV *Mul = getMulExpr(Ops[0], *I); 2429 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2430 NewOps.push_back(Mul); 2431 } 2432 if (AnyFolded) 2433 return getAddExpr(NewOps); 2434 } 2435 else if (const SCEVAddRecExpr * 2436 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2437 // Negation preserves a recurrence's no self-wrap property. 2438 SmallVector<const SCEV *, 4> Operands; 2439 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2440 E = AddRec->op_end(); I != E; ++I) { 2441 Operands.push_back(getMulExpr(Ops[0], *I)); 2442 } 2443 return getAddRecExpr(Operands, AddRec->getLoop(), 2444 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2445 } 2446 } 2447 } 2448 2449 if (Ops.size() == 1) 2450 return Ops[0]; 2451 } 2452 2453 // Skip over the add expression until we get to a multiply. 2454 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2455 ++Idx; 2456 2457 // If there are mul operands inline them all into this expression. 2458 if (Idx < Ops.size()) { 2459 bool DeletedMul = false; 2460 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2461 // If we have an mul, expand the mul operands onto the end of the operands 2462 // list. 2463 Ops.erase(Ops.begin()+Idx); 2464 Ops.append(Mul->op_begin(), Mul->op_end()); 2465 DeletedMul = true; 2466 } 2467 2468 // If we deleted at least one mul, we added operands to the end of the list, 2469 // and they are not necessarily sorted. Recurse to resort and resimplify 2470 // any operands we just acquired. 2471 if (DeletedMul) 2472 return getMulExpr(Ops); 2473 } 2474 2475 // If there are any add recurrences in the operands list, see if any other 2476 // added values are loop invariant. If so, we can fold them into the 2477 // recurrence. 2478 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2479 ++Idx; 2480 2481 // Scan over all recurrences, trying to fold loop invariants into them. 2482 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2483 // Scan all of the other operands to this mul and add them to the vector if 2484 // they are loop invariant w.r.t. the recurrence. 2485 SmallVector<const SCEV *, 8> LIOps; 2486 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2487 const Loop *AddRecLoop = AddRec->getLoop(); 2488 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2489 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2490 LIOps.push_back(Ops[i]); 2491 Ops.erase(Ops.begin()+i); 2492 --i; --e; 2493 } 2494 2495 // If we found some loop invariants, fold them into the recurrence. 2496 if (!LIOps.empty()) { 2497 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2498 SmallVector<const SCEV *, 4> NewOps; 2499 NewOps.reserve(AddRec->getNumOperands()); 2500 const SCEV *Scale = getMulExpr(LIOps); 2501 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2502 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2503 2504 // Build the new addrec. Propagate the NUW and NSW flags if both the 2505 // outer mul and the inner addrec are guaranteed to have no overflow. 2506 // 2507 // No self-wrap cannot be guaranteed after changing the step size, but 2508 // will be inferred if either NUW or NSW is true. 2509 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2510 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2511 2512 // If all of the other operands were loop invariant, we are done. 2513 if (Ops.size() == 1) return NewRec; 2514 2515 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2516 for (unsigned i = 0;; ++i) 2517 if (Ops[i] == AddRec) { 2518 Ops[i] = NewRec; 2519 break; 2520 } 2521 return getMulExpr(Ops); 2522 } 2523 2524 // Okay, if there weren't any loop invariants to be folded, check to see if 2525 // there are multiple AddRec's with the same loop induction variable being 2526 // multiplied together. If so, we can fold them. 2527 2528 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2529 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2530 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2531 // ]]],+,...up to x=2n}. 2532 // Note that the arguments to choose() are always integers with values 2533 // known at compile time, never SCEV objects. 2534 // 2535 // The implementation avoids pointless extra computations when the two 2536 // addrec's are of different length (mathematically, it's equivalent to 2537 // an infinite stream of zeros on the right). 2538 bool OpsModified = false; 2539 for (unsigned OtherIdx = Idx+1; 2540 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2541 ++OtherIdx) { 2542 const SCEVAddRecExpr *OtherAddRec = 2543 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2544 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2545 continue; 2546 2547 bool Overflow = false; 2548 Type *Ty = AddRec->getType(); 2549 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2550 SmallVector<const SCEV*, 7> AddRecOps; 2551 for (int x = 0, xe = AddRec->getNumOperands() + 2552 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2553 const SCEV *Term = getConstant(Ty, 0); 2554 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2555 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2556 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2557 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2558 z < ze && !Overflow; ++z) { 2559 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2560 uint64_t Coeff; 2561 if (LargerThan64Bits) 2562 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2563 else 2564 Coeff = Coeff1*Coeff2; 2565 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2566 const SCEV *Term1 = AddRec->getOperand(y-z); 2567 const SCEV *Term2 = OtherAddRec->getOperand(z); 2568 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2569 } 2570 } 2571 AddRecOps.push_back(Term); 2572 } 2573 if (!Overflow) { 2574 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2575 SCEV::FlagAnyWrap); 2576 if (Ops.size() == 2) return NewAddRec; 2577 Ops[Idx] = NewAddRec; 2578 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2579 OpsModified = true; 2580 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2581 if (!AddRec) 2582 break; 2583 } 2584 } 2585 if (OpsModified) 2586 return getMulExpr(Ops); 2587 2588 // Otherwise couldn't fold anything into this recurrence. Move onto the 2589 // next one. 2590 } 2591 2592 // Okay, it looks like we really DO need an mul expr. Check to see if we 2593 // already have one, otherwise create a new one. 2594 FoldingSetNodeID ID; 2595 ID.AddInteger(scMulExpr); 2596 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2597 ID.AddPointer(Ops[i]); 2598 void *IP = nullptr; 2599 SCEVMulExpr *S = 2600 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2601 if (!S) { 2602 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2603 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2604 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2605 O, Ops.size()); 2606 UniqueSCEVs.InsertNode(S, IP); 2607 } 2608 S->setNoWrapFlags(Flags); 2609 return S; 2610 } 2611 2612 /// getUDivExpr - Get a canonical unsigned division expression, or something 2613 /// simpler if possible. 2614 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2615 const SCEV *RHS) { 2616 assert(getEffectiveSCEVType(LHS->getType()) == 2617 getEffectiveSCEVType(RHS->getType()) && 2618 "SCEVUDivExpr operand types don't match!"); 2619 2620 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2621 if (RHSC->getValue()->equalsInt(1)) 2622 return LHS; // X udiv 1 --> x 2623 // If the denominator is zero, the result of the udiv is undefined. Don't 2624 // try to analyze it, because the resolution chosen here may differ from 2625 // the resolution chosen in other parts of the compiler. 2626 if (!RHSC->getValue()->isZero()) { 2627 // Determine if the division can be folded into the operands of 2628 // its operands. 2629 // TODO: Generalize this to non-constants by using known-bits information. 2630 Type *Ty = LHS->getType(); 2631 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2632 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2633 // For non-power-of-two values, effectively round the value up to the 2634 // nearest power of two. 2635 if (!RHSC->getValue()->getValue().isPowerOf2()) 2636 ++MaxShiftAmt; 2637 IntegerType *ExtTy = 2638 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2639 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2640 if (const SCEVConstant *Step = 2641 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2642 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2643 const APInt &StepInt = Step->getValue()->getValue(); 2644 const APInt &DivInt = RHSC->getValue()->getValue(); 2645 if (!StepInt.urem(DivInt) && 2646 getZeroExtendExpr(AR, ExtTy) == 2647 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2648 getZeroExtendExpr(Step, ExtTy), 2649 AR->getLoop(), SCEV::FlagAnyWrap)) { 2650 SmallVector<const SCEV *, 4> Operands; 2651 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2652 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2653 return getAddRecExpr(Operands, AR->getLoop(), 2654 SCEV::FlagNW); 2655 } 2656 /// Get a canonical UDivExpr for a recurrence. 2657 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2658 // We can currently only fold X%N if X is constant. 2659 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2660 if (StartC && !DivInt.urem(StepInt) && 2661 getZeroExtendExpr(AR, ExtTy) == 2662 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2663 getZeroExtendExpr(Step, ExtTy), 2664 AR->getLoop(), SCEV::FlagAnyWrap)) { 2665 const APInt &StartInt = StartC->getValue()->getValue(); 2666 const APInt &StartRem = StartInt.urem(StepInt); 2667 if (StartRem != 0) 2668 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2669 AR->getLoop(), SCEV::FlagNW); 2670 } 2671 } 2672 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2673 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2674 SmallVector<const SCEV *, 4> Operands; 2675 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2676 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2677 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2678 // Find an operand that's safely divisible. 2679 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2680 const SCEV *Op = M->getOperand(i); 2681 const SCEV *Div = getUDivExpr(Op, RHSC); 2682 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2683 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2684 M->op_end()); 2685 Operands[i] = Div; 2686 return getMulExpr(Operands); 2687 } 2688 } 2689 } 2690 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2691 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2692 SmallVector<const SCEV *, 4> Operands; 2693 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2694 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2695 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2696 Operands.clear(); 2697 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2698 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2699 if (isa<SCEVUDivExpr>(Op) || 2700 getMulExpr(Op, RHS) != A->getOperand(i)) 2701 break; 2702 Operands.push_back(Op); 2703 } 2704 if (Operands.size() == A->getNumOperands()) 2705 return getAddExpr(Operands); 2706 } 2707 } 2708 2709 // Fold if both operands are constant. 2710 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2711 Constant *LHSCV = LHSC->getValue(); 2712 Constant *RHSCV = RHSC->getValue(); 2713 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2714 RHSCV))); 2715 } 2716 } 2717 } 2718 2719 FoldingSetNodeID ID; 2720 ID.AddInteger(scUDivExpr); 2721 ID.AddPointer(LHS); 2722 ID.AddPointer(RHS); 2723 void *IP = nullptr; 2724 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2725 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2726 LHS, RHS); 2727 UniqueSCEVs.InsertNode(S, IP); 2728 return S; 2729 } 2730 2731 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2732 APInt A = C1->getValue()->getValue().abs(); 2733 APInt B = C2->getValue()->getValue().abs(); 2734 uint32_t ABW = A.getBitWidth(); 2735 uint32_t BBW = B.getBitWidth(); 2736 2737 if (ABW > BBW) 2738 B = B.zext(ABW); 2739 else if (ABW < BBW) 2740 A = A.zext(BBW); 2741 2742 return APIntOps::GreatestCommonDivisor(A, B); 2743 } 2744 2745 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2746 /// something simpler if possible. There is no representation for an exact udiv 2747 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2748 /// We can't do this when it's not exact because the udiv may be clearing bits. 2749 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2750 const SCEV *RHS) { 2751 // TODO: we could try to find factors in all sorts of things, but for now we 2752 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2753 // end of this file for inspiration. 2754 2755 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2756 if (!Mul) 2757 return getUDivExpr(LHS, RHS); 2758 2759 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2760 // If the mulexpr multiplies by a constant, then that constant must be the 2761 // first element of the mulexpr. 2762 if (const SCEVConstant *LHSCst = 2763 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2764 if (LHSCst == RHSCst) { 2765 SmallVector<const SCEV *, 2> Operands; 2766 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2767 return getMulExpr(Operands); 2768 } 2769 2770 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2771 // that there's a factor provided by one of the other terms. We need to 2772 // check. 2773 APInt Factor = gcd(LHSCst, RHSCst); 2774 if (!Factor.isIntN(1)) { 2775 LHSCst = cast<SCEVConstant>( 2776 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2777 RHSCst = cast<SCEVConstant>( 2778 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2779 SmallVector<const SCEV *, 2> Operands; 2780 Operands.push_back(LHSCst); 2781 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2782 LHS = getMulExpr(Operands); 2783 RHS = RHSCst; 2784 Mul = dyn_cast<SCEVMulExpr>(LHS); 2785 if (!Mul) 2786 return getUDivExactExpr(LHS, RHS); 2787 } 2788 } 2789 } 2790 2791 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2792 if (Mul->getOperand(i) == RHS) { 2793 SmallVector<const SCEV *, 2> Operands; 2794 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2795 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2796 return getMulExpr(Operands); 2797 } 2798 } 2799 2800 return getUDivExpr(LHS, RHS); 2801 } 2802 2803 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2804 /// Simplify the expression as much as possible. 2805 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2806 const Loop *L, 2807 SCEV::NoWrapFlags Flags) { 2808 SmallVector<const SCEV *, 4> Operands; 2809 Operands.push_back(Start); 2810 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2811 if (StepChrec->getLoop() == L) { 2812 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2813 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2814 } 2815 2816 Operands.push_back(Step); 2817 return getAddRecExpr(Operands, L, Flags); 2818 } 2819 2820 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2821 /// Simplify the expression as much as possible. 2822 const SCEV * 2823 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2824 const Loop *L, SCEV::NoWrapFlags Flags) { 2825 if (Operands.size() == 1) return Operands[0]; 2826 #ifndef NDEBUG 2827 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2828 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2829 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2830 "SCEVAddRecExpr operand types don't match!"); 2831 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2832 assert(isLoopInvariant(Operands[i], L) && 2833 "SCEVAddRecExpr operand is not loop-invariant!"); 2834 #endif 2835 2836 if (Operands.back()->isZero()) { 2837 Operands.pop_back(); 2838 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2839 } 2840 2841 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2842 // use that information to infer NUW and NSW flags. However, computing a 2843 // BE count requires calling getAddRecExpr, so we may not yet have a 2844 // meaningful BE count at this point (and if we don't, we'd be stuck 2845 // with a SCEVCouldNotCompute as the cached BE count). 2846 2847 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2848 2849 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2850 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2851 const Loop *NestedLoop = NestedAR->getLoop(); 2852 if (L->contains(NestedLoop) 2853 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2854 : (!NestedLoop->contains(L) && 2855 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2856 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2857 NestedAR->op_end()); 2858 Operands[0] = NestedAR->getStart(); 2859 // AddRecs require their operands be loop-invariant with respect to their 2860 // loops. Don't perform this transformation if it would break this 2861 // requirement. 2862 bool AllInvariant = true; 2863 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2864 if (!isLoopInvariant(Operands[i], L)) { 2865 AllInvariant = false; 2866 break; 2867 } 2868 if (AllInvariant) { 2869 // Create a recurrence for the outer loop with the same step size. 2870 // 2871 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2872 // inner recurrence has the same property. 2873 SCEV::NoWrapFlags OuterFlags = 2874 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2875 2876 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2877 AllInvariant = true; 2878 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2879 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2880 AllInvariant = false; 2881 break; 2882 } 2883 if (AllInvariant) { 2884 // Ok, both add recurrences are valid after the transformation. 2885 // 2886 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2887 // the outer recurrence has the same property. 2888 SCEV::NoWrapFlags InnerFlags = 2889 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2890 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2891 } 2892 } 2893 // Reset Operands to its original state. 2894 Operands[0] = NestedAR; 2895 } 2896 } 2897 2898 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2899 // already have one, otherwise create a new one. 2900 FoldingSetNodeID ID; 2901 ID.AddInteger(scAddRecExpr); 2902 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2903 ID.AddPointer(Operands[i]); 2904 ID.AddPointer(L); 2905 void *IP = nullptr; 2906 SCEVAddRecExpr *S = 2907 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2908 if (!S) { 2909 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2910 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2911 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2912 O, Operands.size(), L); 2913 UniqueSCEVs.InsertNode(S, IP); 2914 } 2915 S->setNoWrapFlags(Flags); 2916 return S; 2917 } 2918 2919 const SCEV * 2920 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2921 const SmallVectorImpl<const SCEV *> &IndexExprs, 2922 bool InBounds) { 2923 // getSCEV(Base)->getType() has the same address space as Base->getType() 2924 // because SCEV::getType() preserves the address space. 2925 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2926 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2927 // instruction to its SCEV, because the Instruction may be guarded by control 2928 // flow and the no-overflow bits may not be valid for the expression in any 2929 // context. This can be fixed similarly to how these flags are handled for 2930 // adds. 2931 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2932 2933 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2934 // The address space is unimportant. The first thing we do on CurTy is getting 2935 // its element type. 2936 Type *CurTy = PointerType::getUnqual(PointeeType); 2937 for (const SCEV *IndexExpr : IndexExprs) { 2938 // Compute the (potentially symbolic) offset in bytes for this index. 2939 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2940 // For a struct, add the member offset. 2941 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2942 unsigned FieldNo = Index->getZExtValue(); 2943 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2944 2945 // Add the field offset to the running total offset. 2946 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2947 2948 // Update CurTy to the type of the field at Index. 2949 CurTy = STy->getTypeAtIndex(Index); 2950 } else { 2951 // Update CurTy to its element type. 2952 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2953 // For an array, add the element offset, explicitly scaled. 2954 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2955 // Getelementptr indices are signed. 2956 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2957 2958 // Multiply the index by the element size to compute the element offset. 2959 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2960 2961 // Add the element offset to the running total offset. 2962 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2963 } 2964 } 2965 2966 // Add the total offset from all the GEP indices to the base. 2967 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2968 } 2969 2970 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2971 const SCEV *RHS) { 2972 SmallVector<const SCEV *, 2> Ops; 2973 Ops.push_back(LHS); 2974 Ops.push_back(RHS); 2975 return getSMaxExpr(Ops); 2976 } 2977 2978 const SCEV * 2979 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2980 assert(!Ops.empty() && "Cannot get empty smax!"); 2981 if (Ops.size() == 1) return Ops[0]; 2982 #ifndef NDEBUG 2983 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2984 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2985 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2986 "SCEVSMaxExpr operand types don't match!"); 2987 #endif 2988 2989 // Sort by complexity, this groups all similar expression types together. 2990 GroupByComplexity(Ops, &LI); 2991 2992 // If there are any constants, fold them together. 2993 unsigned Idx = 0; 2994 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2995 ++Idx; 2996 assert(Idx < Ops.size()); 2997 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2998 // We found two constants, fold them together! 2999 ConstantInt *Fold = ConstantInt::get(getContext(), 3000 APIntOps::smax(LHSC->getValue()->getValue(), 3001 RHSC->getValue()->getValue())); 3002 Ops[0] = getConstant(Fold); 3003 Ops.erase(Ops.begin()+1); // Erase the folded element 3004 if (Ops.size() == 1) return Ops[0]; 3005 LHSC = cast<SCEVConstant>(Ops[0]); 3006 } 3007 3008 // If we are left with a constant minimum-int, strip it off. 3009 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3010 Ops.erase(Ops.begin()); 3011 --Idx; 3012 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3013 // If we have an smax with a constant maximum-int, it will always be 3014 // maximum-int. 3015 return Ops[0]; 3016 } 3017 3018 if (Ops.size() == 1) return Ops[0]; 3019 } 3020 3021 // Find the first SMax 3022 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3023 ++Idx; 3024 3025 // Check to see if one of the operands is an SMax. If so, expand its operands 3026 // onto our operand list, and recurse to simplify. 3027 if (Idx < Ops.size()) { 3028 bool DeletedSMax = false; 3029 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3030 Ops.erase(Ops.begin()+Idx); 3031 Ops.append(SMax->op_begin(), SMax->op_end()); 3032 DeletedSMax = true; 3033 } 3034 3035 if (DeletedSMax) 3036 return getSMaxExpr(Ops); 3037 } 3038 3039 // Okay, check to see if the same value occurs in the operand list twice. If 3040 // so, delete one. Since we sorted the list, these values are required to 3041 // be adjacent. 3042 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3043 // X smax Y smax Y --> X smax Y 3044 // X smax Y --> X, if X is always greater than Y 3045 if (Ops[i] == Ops[i+1] || 3046 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3047 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3048 --i; --e; 3049 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3050 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3051 --i; --e; 3052 } 3053 3054 if (Ops.size() == 1) return Ops[0]; 3055 3056 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3057 3058 // Okay, it looks like we really DO need an smax expr. Check to see if we 3059 // already have one, otherwise create a new one. 3060 FoldingSetNodeID ID; 3061 ID.AddInteger(scSMaxExpr); 3062 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3063 ID.AddPointer(Ops[i]); 3064 void *IP = nullptr; 3065 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3066 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3067 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3068 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3069 O, Ops.size()); 3070 UniqueSCEVs.InsertNode(S, IP); 3071 return S; 3072 } 3073 3074 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3075 const SCEV *RHS) { 3076 SmallVector<const SCEV *, 2> Ops; 3077 Ops.push_back(LHS); 3078 Ops.push_back(RHS); 3079 return getUMaxExpr(Ops); 3080 } 3081 3082 const SCEV * 3083 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3084 assert(!Ops.empty() && "Cannot get empty umax!"); 3085 if (Ops.size() == 1) return Ops[0]; 3086 #ifndef NDEBUG 3087 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3088 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3089 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3090 "SCEVUMaxExpr operand types don't match!"); 3091 #endif 3092 3093 // Sort by complexity, this groups all similar expression types together. 3094 GroupByComplexity(Ops, &LI); 3095 3096 // If there are any constants, fold them together. 3097 unsigned Idx = 0; 3098 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3099 ++Idx; 3100 assert(Idx < Ops.size()); 3101 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3102 // We found two constants, fold them together! 3103 ConstantInt *Fold = ConstantInt::get(getContext(), 3104 APIntOps::umax(LHSC->getValue()->getValue(), 3105 RHSC->getValue()->getValue())); 3106 Ops[0] = getConstant(Fold); 3107 Ops.erase(Ops.begin()+1); // Erase the folded element 3108 if (Ops.size() == 1) return Ops[0]; 3109 LHSC = cast<SCEVConstant>(Ops[0]); 3110 } 3111 3112 // If we are left with a constant minimum-int, strip it off. 3113 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3114 Ops.erase(Ops.begin()); 3115 --Idx; 3116 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3117 // If we have an umax with a constant maximum-int, it will always be 3118 // maximum-int. 3119 return Ops[0]; 3120 } 3121 3122 if (Ops.size() == 1) return Ops[0]; 3123 } 3124 3125 // Find the first UMax 3126 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3127 ++Idx; 3128 3129 // Check to see if one of the operands is a UMax. If so, expand its operands 3130 // onto our operand list, and recurse to simplify. 3131 if (Idx < Ops.size()) { 3132 bool DeletedUMax = false; 3133 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3134 Ops.erase(Ops.begin()+Idx); 3135 Ops.append(UMax->op_begin(), UMax->op_end()); 3136 DeletedUMax = true; 3137 } 3138 3139 if (DeletedUMax) 3140 return getUMaxExpr(Ops); 3141 } 3142 3143 // Okay, check to see if the same value occurs in the operand list twice. If 3144 // so, delete one. Since we sorted the list, these values are required to 3145 // be adjacent. 3146 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3147 // X umax Y umax Y --> X umax Y 3148 // X umax Y --> X, if X is always greater than Y 3149 if (Ops[i] == Ops[i+1] || 3150 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3151 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3152 --i; --e; 3153 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3154 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3155 --i; --e; 3156 } 3157 3158 if (Ops.size() == 1) return Ops[0]; 3159 3160 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3161 3162 // Okay, it looks like we really DO need a umax expr. Check to see if we 3163 // already have one, otherwise create a new one. 3164 FoldingSetNodeID ID; 3165 ID.AddInteger(scUMaxExpr); 3166 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3167 ID.AddPointer(Ops[i]); 3168 void *IP = nullptr; 3169 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3170 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3171 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3172 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3173 O, Ops.size()); 3174 UniqueSCEVs.InsertNode(S, IP); 3175 return S; 3176 } 3177 3178 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3179 const SCEV *RHS) { 3180 // ~smax(~x, ~y) == smin(x, y). 3181 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3182 } 3183 3184 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3185 const SCEV *RHS) { 3186 // ~umax(~x, ~y) == umin(x, y) 3187 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3188 } 3189 3190 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3191 // We can bypass creating a target-independent 3192 // constant expression and then folding it back into a ConstantInt. 3193 // This is just a compile-time optimization. 3194 return getConstant(IntTy, 3195 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy)); 3196 } 3197 3198 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3199 StructType *STy, 3200 unsigned FieldNo) { 3201 // We can bypass creating a target-independent 3202 // constant expression and then folding it back into a ConstantInt. 3203 // This is just a compile-time optimization. 3204 return getConstant( 3205 IntTy, 3206 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset( 3207 FieldNo)); 3208 } 3209 3210 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3211 // Don't attempt to do anything other than create a SCEVUnknown object 3212 // here. createSCEV only calls getUnknown after checking for all other 3213 // interesting possibilities, and any other code that calls getUnknown 3214 // is doing so in order to hide a value from SCEV canonicalization. 3215 3216 FoldingSetNodeID ID; 3217 ID.AddInteger(scUnknown); 3218 ID.AddPointer(V); 3219 void *IP = nullptr; 3220 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3221 assert(cast<SCEVUnknown>(S)->getValue() == V && 3222 "Stale SCEVUnknown in uniquing map!"); 3223 return S; 3224 } 3225 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3226 FirstUnknown); 3227 FirstUnknown = cast<SCEVUnknown>(S); 3228 UniqueSCEVs.InsertNode(S, IP); 3229 return S; 3230 } 3231 3232 //===----------------------------------------------------------------------===// 3233 // Basic SCEV Analysis and PHI Idiom Recognition Code 3234 // 3235 3236 /// isSCEVable - Test if values of the given type are analyzable within 3237 /// the SCEV framework. This primarily includes integer types, and it 3238 /// can optionally include pointer types if the ScalarEvolution class 3239 /// has access to target-specific information. 3240 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3241 // Integers and pointers are always SCEVable. 3242 return Ty->isIntegerTy() || Ty->isPointerTy(); 3243 } 3244 3245 /// getTypeSizeInBits - Return the size in bits of the specified type, 3246 /// for which isSCEVable must return true. 3247 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3248 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3249 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty); 3250 } 3251 3252 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3253 /// the given type and which represents how SCEV will treat the given 3254 /// type, for which isSCEVable must return true. For pointer types, 3255 /// this is the pointer-sized integer type. 3256 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3257 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3258 3259 if (Ty->isIntegerTy()) { 3260 return Ty; 3261 } 3262 3263 // The only other support type is pointer. 3264 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3265 return F.getParent()->getDataLayout().getIntPtrType(Ty); 3266 } 3267 3268 const SCEV *ScalarEvolution::getCouldNotCompute() { 3269 return CouldNotCompute.get(); 3270 } 3271 3272 namespace { 3273 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3274 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3275 // is set iff if find such SCEVUnknown. 3276 // 3277 struct FindInvalidSCEVUnknown { 3278 bool FindOne; 3279 FindInvalidSCEVUnknown() { FindOne = false; } 3280 bool follow(const SCEV *S) { 3281 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3282 case scConstant: 3283 return false; 3284 case scUnknown: 3285 if (!cast<SCEVUnknown>(S)->getValue()) 3286 FindOne = true; 3287 return false; 3288 default: 3289 return true; 3290 } 3291 } 3292 bool isDone() const { return FindOne; } 3293 }; 3294 } 3295 3296 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3297 FindInvalidSCEVUnknown F; 3298 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3299 ST.visitAll(S); 3300 3301 return !F.FindOne; 3302 } 3303 3304 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3305 /// expression and create a new one. 3306 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3307 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3308 3309 const SCEV *S = getExistingSCEV(V); 3310 if (S == nullptr) { 3311 S = createSCEV(V); 3312 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3313 } 3314 return S; 3315 } 3316 3317 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3318 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3319 3320 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3321 if (I != ValueExprMap.end()) { 3322 const SCEV *S = I->second; 3323 if (checkValidity(S)) 3324 return S; 3325 ValueExprMap.erase(I); 3326 } 3327 return nullptr; 3328 } 3329 3330 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3331 /// 3332 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3333 SCEV::NoWrapFlags Flags) { 3334 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3335 return getConstant( 3336 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3337 3338 Type *Ty = V->getType(); 3339 Ty = getEffectiveSCEVType(Ty); 3340 return getMulExpr( 3341 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3342 } 3343 3344 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3345 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3346 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3347 return getConstant( 3348 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3349 3350 Type *Ty = V->getType(); 3351 Ty = getEffectiveSCEVType(Ty); 3352 const SCEV *AllOnes = 3353 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3354 return getMinusSCEV(AllOnes, V); 3355 } 3356 3357 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3358 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3359 SCEV::NoWrapFlags Flags) { 3360 // Fast path: X - X --> 0. 3361 if (LHS == RHS) 3362 return getConstant(LHS->getType(), 0); 3363 3364 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3365 // makes it so that we cannot make much use of NUW. 3366 auto AddFlags = SCEV::FlagAnyWrap; 3367 const bool RHSIsNotMinSigned = 3368 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3369 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3370 // Let M be the minimum representable signed value. Then (-1)*RHS 3371 // signed-wraps if and only if RHS is M. That can happen even for 3372 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3373 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3374 // (-1)*RHS, we need to prove that RHS != M. 3375 // 3376 // If LHS is non-negative and we know that LHS - RHS does not 3377 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3378 // either by proving that RHS > M or that LHS >= 0. 3379 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3380 AddFlags = SCEV::FlagNSW; 3381 } 3382 } 3383 3384 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3385 // RHS is NSW and LHS >= 0. 3386 // 3387 // The difficulty here is that the NSW flag may have been proven 3388 // relative to a loop that is to be found in a recurrence in LHS and 3389 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3390 // larger scope than intended. 3391 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3392 3393 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3394 } 3395 3396 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3397 /// input value to the specified type. If the type must be extended, it is zero 3398 /// extended. 3399 const SCEV * 3400 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3401 Type *SrcTy = V->getType(); 3402 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3403 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3404 "Cannot truncate or zero extend with non-integer arguments!"); 3405 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3406 return V; // No conversion 3407 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3408 return getTruncateExpr(V, Ty); 3409 return getZeroExtendExpr(V, Ty); 3410 } 3411 3412 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3413 /// input value to the specified type. If the type must be extended, it is sign 3414 /// extended. 3415 const SCEV * 3416 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3417 Type *Ty) { 3418 Type *SrcTy = V->getType(); 3419 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3420 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3421 "Cannot truncate or zero extend with non-integer arguments!"); 3422 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3423 return V; // No conversion 3424 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3425 return getTruncateExpr(V, Ty); 3426 return getSignExtendExpr(V, Ty); 3427 } 3428 3429 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3430 /// input value to the specified type. If the type must be extended, it is zero 3431 /// extended. The conversion must not be narrowing. 3432 const SCEV * 3433 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3434 Type *SrcTy = V->getType(); 3435 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3436 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3437 "Cannot noop or zero extend with non-integer arguments!"); 3438 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3439 "getNoopOrZeroExtend cannot truncate!"); 3440 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3441 return V; // No conversion 3442 return getZeroExtendExpr(V, Ty); 3443 } 3444 3445 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3446 /// input value to the specified type. If the type must be extended, it is sign 3447 /// extended. The conversion must not be narrowing. 3448 const SCEV * 3449 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3450 Type *SrcTy = V->getType(); 3451 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3452 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3453 "Cannot noop or sign extend with non-integer arguments!"); 3454 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3455 "getNoopOrSignExtend cannot truncate!"); 3456 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3457 return V; // No conversion 3458 return getSignExtendExpr(V, Ty); 3459 } 3460 3461 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3462 /// the input value to the specified type. If the type must be extended, 3463 /// it is extended with unspecified bits. The conversion must not be 3464 /// narrowing. 3465 const SCEV * 3466 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3467 Type *SrcTy = V->getType(); 3468 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3469 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3470 "Cannot noop or any extend with non-integer arguments!"); 3471 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3472 "getNoopOrAnyExtend cannot truncate!"); 3473 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3474 return V; // No conversion 3475 return getAnyExtendExpr(V, Ty); 3476 } 3477 3478 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3479 /// input value to the specified type. The conversion must not be widening. 3480 const SCEV * 3481 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3482 Type *SrcTy = V->getType(); 3483 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3484 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3485 "Cannot truncate or noop with non-integer arguments!"); 3486 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3487 "getTruncateOrNoop cannot extend!"); 3488 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3489 return V; // No conversion 3490 return getTruncateExpr(V, Ty); 3491 } 3492 3493 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3494 /// the types using zero-extension, and then perform a umax operation 3495 /// with them. 3496 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3497 const SCEV *RHS) { 3498 const SCEV *PromotedLHS = LHS; 3499 const SCEV *PromotedRHS = RHS; 3500 3501 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3502 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3503 else 3504 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3505 3506 return getUMaxExpr(PromotedLHS, PromotedRHS); 3507 } 3508 3509 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3510 /// the types using zero-extension, and then perform a umin operation 3511 /// with them. 3512 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3513 const SCEV *RHS) { 3514 const SCEV *PromotedLHS = LHS; 3515 const SCEV *PromotedRHS = RHS; 3516 3517 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3518 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3519 else 3520 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3521 3522 return getUMinExpr(PromotedLHS, PromotedRHS); 3523 } 3524 3525 /// getPointerBase - Transitively follow the chain of pointer-type operands 3526 /// until reaching a SCEV that does not have a single pointer operand. This 3527 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3528 /// but corner cases do exist. 3529 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3530 // A pointer operand may evaluate to a nonpointer expression, such as null. 3531 if (!V->getType()->isPointerTy()) 3532 return V; 3533 3534 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3535 return getPointerBase(Cast->getOperand()); 3536 } 3537 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3538 const SCEV *PtrOp = nullptr; 3539 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3540 I != E; ++I) { 3541 if ((*I)->getType()->isPointerTy()) { 3542 // Cannot find the base of an expression with multiple pointer operands. 3543 if (PtrOp) 3544 return V; 3545 PtrOp = *I; 3546 } 3547 } 3548 if (!PtrOp) 3549 return V; 3550 return getPointerBase(PtrOp); 3551 } 3552 return V; 3553 } 3554 3555 /// PushDefUseChildren - Push users of the given Instruction 3556 /// onto the given Worklist. 3557 static void 3558 PushDefUseChildren(Instruction *I, 3559 SmallVectorImpl<Instruction *> &Worklist) { 3560 // Push the def-use children onto the Worklist stack. 3561 for (User *U : I->users()) 3562 Worklist.push_back(cast<Instruction>(U)); 3563 } 3564 3565 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3566 /// instructions that depend on the given instruction and removes them from 3567 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3568 /// resolution. 3569 void 3570 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3571 SmallVector<Instruction *, 16> Worklist; 3572 PushDefUseChildren(PN, Worklist); 3573 3574 SmallPtrSet<Instruction *, 8> Visited; 3575 Visited.insert(PN); 3576 while (!Worklist.empty()) { 3577 Instruction *I = Worklist.pop_back_val(); 3578 if (!Visited.insert(I).second) 3579 continue; 3580 3581 ValueExprMapType::iterator It = 3582 ValueExprMap.find_as(static_cast<Value *>(I)); 3583 if (It != ValueExprMap.end()) { 3584 const SCEV *Old = It->second; 3585 3586 // Short-circuit the def-use traversal if the symbolic name 3587 // ceases to appear in expressions. 3588 if (Old != SymName && !hasOperand(Old, SymName)) 3589 continue; 3590 3591 // SCEVUnknown for a PHI either means that it has an unrecognized 3592 // structure, it's a PHI that's in the progress of being computed 3593 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3594 // additional loop trip count information isn't going to change anything. 3595 // In the second case, createNodeForPHI will perform the necessary 3596 // updates on its own when it gets to that point. In the third, we do 3597 // want to forget the SCEVUnknown. 3598 if (!isa<PHINode>(I) || 3599 !isa<SCEVUnknown>(Old) || 3600 (I != PN && Old == SymName)) { 3601 forgetMemoizedResults(Old); 3602 ValueExprMap.erase(It); 3603 } 3604 } 3605 3606 PushDefUseChildren(I, Worklist); 3607 } 3608 } 3609 3610 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3611 /// a loop header, making it a potential recurrence, or it doesn't. 3612 /// 3613 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3614 if (const Loop *L = LI.getLoopFor(PN->getParent())) 3615 if (L->getHeader() == PN->getParent()) { 3616 // The loop may have multiple entrances or multiple exits; we can analyze 3617 // this phi as an addrec if it has a unique entry value and a unique 3618 // backedge value. 3619 Value *BEValueV = nullptr, *StartValueV = nullptr; 3620 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3621 Value *V = PN->getIncomingValue(i); 3622 if (L->contains(PN->getIncomingBlock(i))) { 3623 if (!BEValueV) { 3624 BEValueV = V; 3625 } else if (BEValueV != V) { 3626 BEValueV = nullptr; 3627 break; 3628 } 3629 } else if (!StartValueV) { 3630 StartValueV = V; 3631 } else if (StartValueV != V) { 3632 StartValueV = nullptr; 3633 break; 3634 } 3635 } 3636 if (BEValueV && StartValueV) { 3637 // While we are analyzing this PHI node, handle its value symbolically. 3638 const SCEV *SymbolicName = getUnknown(PN); 3639 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3640 "PHI node already processed?"); 3641 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3642 3643 // Using this symbolic name for the PHI, analyze the value coming around 3644 // the back-edge. 3645 const SCEV *BEValue = getSCEV(BEValueV); 3646 3647 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3648 // has a special value for the first iteration of the loop. 3649 3650 // If the value coming around the backedge is an add with the symbolic 3651 // value we just inserted, then we found a simple induction variable! 3652 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3653 // If there is a single occurrence of the symbolic value, replace it 3654 // with a recurrence. 3655 unsigned FoundIndex = Add->getNumOperands(); 3656 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3657 if (Add->getOperand(i) == SymbolicName) 3658 if (FoundIndex == e) { 3659 FoundIndex = i; 3660 break; 3661 } 3662 3663 if (FoundIndex != Add->getNumOperands()) { 3664 // Create an add with everything but the specified operand. 3665 SmallVector<const SCEV *, 8> Ops; 3666 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3667 if (i != FoundIndex) 3668 Ops.push_back(Add->getOperand(i)); 3669 const SCEV *Accum = getAddExpr(Ops); 3670 3671 // This is not a valid addrec if the step amount is varying each 3672 // loop iteration, but is not itself an addrec in this loop. 3673 if (isLoopInvariant(Accum, L) || 3674 (isa<SCEVAddRecExpr>(Accum) && 3675 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3676 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3677 3678 // If the increment doesn't overflow, then neither the addrec nor 3679 // the post-increment will overflow. 3680 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3681 if (OBO->getOperand(0) == PN) { 3682 if (OBO->hasNoUnsignedWrap()) 3683 Flags = setFlags(Flags, SCEV::FlagNUW); 3684 if (OBO->hasNoSignedWrap()) 3685 Flags = setFlags(Flags, SCEV::FlagNSW); 3686 } 3687 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3688 // If the increment is an inbounds GEP, then we know the address 3689 // space cannot be wrapped around. We cannot make any guarantee 3690 // about signed or unsigned overflow because pointers are 3691 // unsigned but we may have a negative index from the base 3692 // pointer. We can guarantee that no unsigned wrap occurs if the 3693 // indices form a positive value. 3694 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3695 Flags = setFlags(Flags, SCEV::FlagNW); 3696 3697 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3698 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3699 Flags = setFlags(Flags, SCEV::FlagNUW); 3700 } 3701 3702 // We cannot transfer nuw and nsw flags from subtraction 3703 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3704 // for instance. 3705 } 3706 3707 const SCEV *StartVal = getSCEV(StartValueV); 3708 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3709 3710 // Since the no-wrap flags are on the increment, they apply to the 3711 // post-incremented value as well. 3712 if (isLoopInvariant(Accum, L)) 3713 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3714 Accum, L, Flags); 3715 3716 // Okay, for the entire analysis of this edge we assumed the PHI 3717 // to be symbolic. We now need to go back and purge all of the 3718 // entries for the scalars that use the symbolic expression. 3719 ForgetSymbolicName(PN, SymbolicName); 3720 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3721 return PHISCEV; 3722 } 3723 } 3724 } else if (const SCEVAddRecExpr *AddRec = 3725 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3726 // Otherwise, this could be a loop like this: 3727 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3728 // In this case, j = {1,+,1} and BEValue is j. 3729 // Because the other in-value of i (0) fits the evolution of BEValue 3730 // i really is an addrec evolution. 3731 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3732 const SCEV *StartVal = getSCEV(StartValueV); 3733 3734 // If StartVal = j.start - j.stride, we can use StartVal as the 3735 // initial step of the addrec evolution. 3736 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3737 AddRec->getOperand(1))) { 3738 // FIXME: For constant StartVal, we should be able to infer 3739 // no-wrap flags. 3740 const SCEV *PHISCEV = 3741 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3742 SCEV::FlagAnyWrap); 3743 3744 // Okay, for the entire analysis of this edge we assumed the PHI 3745 // to be symbolic. We now need to go back and purge all of the 3746 // entries for the scalars that use the symbolic expression. 3747 ForgetSymbolicName(PN, SymbolicName); 3748 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3749 return PHISCEV; 3750 } 3751 } 3752 } 3753 } 3754 } 3755 3756 // If the PHI has a single incoming value, follow that value, unless the 3757 // PHI's incoming blocks are in a different loop, in which case doing so 3758 // risks breaking LCSSA form. Instcombine would normally zap these, but 3759 // it doesn't have DominatorTree information, so it may miss cases. 3760 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI, 3761 &DT, &AC)) 3762 if (LI.replacementPreservesLCSSAForm(PN, V)) 3763 return getSCEV(V); 3764 3765 // If it's not a loop phi, we can't handle it yet. 3766 return getUnknown(PN); 3767 } 3768 3769 /// createNodeForGEP - Expand GEP instructions into add and multiply 3770 /// operations. This allows them to be analyzed by regular SCEV code. 3771 /// 3772 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3773 Value *Base = GEP->getOperand(0); 3774 // Don't attempt to analyze GEPs over unsized objects. 3775 if (!Base->getType()->getPointerElementType()->isSized()) 3776 return getUnknown(GEP); 3777 3778 SmallVector<const SCEV *, 4> IndexExprs; 3779 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 3780 IndexExprs.push_back(getSCEV(*Index)); 3781 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 3782 GEP->isInBounds()); 3783 } 3784 3785 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3786 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3787 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3788 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3789 uint32_t 3790 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3791 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3792 return C->getValue()->getValue().countTrailingZeros(); 3793 3794 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3795 return std::min(GetMinTrailingZeros(T->getOperand()), 3796 (uint32_t)getTypeSizeInBits(T->getType())); 3797 3798 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3799 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3800 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3801 getTypeSizeInBits(E->getType()) : OpRes; 3802 } 3803 3804 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3805 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3806 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3807 getTypeSizeInBits(E->getType()) : OpRes; 3808 } 3809 3810 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3811 // The result is the min of all operands results. 3812 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3813 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3814 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3815 return MinOpRes; 3816 } 3817 3818 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3819 // The result is the sum of all operands results. 3820 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3821 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3822 for (unsigned i = 1, e = M->getNumOperands(); 3823 SumOpRes != BitWidth && i != e; ++i) 3824 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3825 BitWidth); 3826 return SumOpRes; 3827 } 3828 3829 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3830 // The result is the min of all operands results. 3831 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3832 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3833 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3834 return MinOpRes; 3835 } 3836 3837 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3838 // The result is the min of all operands results. 3839 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3840 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3841 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3842 return MinOpRes; 3843 } 3844 3845 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3846 // The result is the min of all operands results. 3847 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3848 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3849 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3850 return MinOpRes; 3851 } 3852 3853 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3854 // For a SCEVUnknown, ask ValueTracking. 3855 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3856 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3857 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(), 3858 0, &AC, nullptr, &DT); 3859 return Zeros.countTrailingOnes(); 3860 } 3861 3862 // SCEVUDivExpr 3863 return 0; 3864 } 3865 3866 /// GetRangeFromMetadata - Helper method to assign a range to V from 3867 /// metadata present in the IR. 3868 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 3869 if (Instruction *I = dyn_cast<Instruction>(V)) { 3870 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { 3871 ConstantRange TotalRange( 3872 cast<IntegerType>(I->getType())->getBitWidth(), false); 3873 3874 unsigned NumRanges = MD->getNumOperands() / 2; 3875 assert(NumRanges >= 1); 3876 3877 for (unsigned i = 0; i < NumRanges; ++i) { 3878 ConstantInt *Lower = 3879 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0)); 3880 ConstantInt *Upper = 3881 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1)); 3882 ConstantRange Range(Lower->getValue(), Upper->getValue()); 3883 TotalRange = TotalRange.unionWith(Range); 3884 } 3885 3886 return TotalRange; 3887 } 3888 } 3889 3890 return None; 3891 } 3892 3893 /// getRange - Determine the range for a particular SCEV. If SignHint is 3894 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 3895 /// with a "cleaner" unsigned (resp. signed) representation. 3896 /// 3897 ConstantRange 3898 ScalarEvolution::getRange(const SCEV *S, 3899 ScalarEvolution::RangeSignHint SignHint) { 3900 DenseMap<const SCEV *, ConstantRange> &Cache = 3901 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 3902 : SignedRanges; 3903 3904 // See if we've computed this range already. 3905 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 3906 if (I != Cache.end()) 3907 return I->second; 3908 3909 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3910 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 3911 3912 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3913 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3914 3915 // If the value has known zeros, the maximum value will have those known zeros 3916 // as well. 3917 uint32_t TZ = GetMinTrailingZeros(S); 3918 if (TZ != 0) { 3919 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 3920 ConservativeResult = 3921 ConstantRange(APInt::getMinValue(BitWidth), 3922 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3923 else 3924 ConservativeResult = ConstantRange( 3925 APInt::getSignedMinValue(BitWidth), 3926 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3927 } 3928 3929 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3930 ConstantRange X = getRange(Add->getOperand(0), SignHint); 3931 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3932 X = X.add(getRange(Add->getOperand(i), SignHint)); 3933 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 3934 } 3935 3936 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3937 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 3938 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3939 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 3940 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 3941 } 3942 3943 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3944 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 3945 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3946 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 3947 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 3948 } 3949 3950 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3951 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 3952 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3953 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 3954 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 3955 } 3956 3957 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3958 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 3959 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 3960 return setRange(UDiv, SignHint, 3961 ConservativeResult.intersectWith(X.udiv(Y))); 3962 } 3963 3964 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3965 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 3966 return setRange(ZExt, SignHint, 3967 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3968 } 3969 3970 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3971 ConstantRange X = getRange(SExt->getOperand(), SignHint); 3972 return setRange(SExt, SignHint, 3973 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3974 } 3975 3976 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3977 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 3978 return setRange(Trunc, SignHint, 3979 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3980 } 3981 3982 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3983 // If there's no unsigned wrap, the value will never be less than its 3984 // initial value. 3985 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3986 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3987 if (!C->getValue()->isZero()) 3988 ConservativeResult = 3989 ConservativeResult.intersectWith( 3990 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3991 3992 // If there's no signed wrap, and all the operands have the same sign or 3993 // zero, the value won't ever change sign. 3994 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3995 bool AllNonNeg = true; 3996 bool AllNonPos = true; 3997 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3998 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3999 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4000 } 4001 if (AllNonNeg) 4002 ConservativeResult = ConservativeResult.intersectWith( 4003 ConstantRange(APInt(BitWidth, 0), 4004 APInt::getSignedMinValue(BitWidth))); 4005 else if (AllNonPos) 4006 ConservativeResult = ConservativeResult.intersectWith( 4007 ConstantRange(APInt::getSignedMinValue(BitWidth), 4008 APInt(BitWidth, 1))); 4009 } 4010 4011 // TODO: non-affine addrec 4012 if (AddRec->isAffine()) { 4013 Type *Ty = AddRec->getType(); 4014 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4015 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4016 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4017 4018 // Check for overflow. This must be done with ConstantRange arithmetic 4019 // because we could be called from within the ScalarEvolution overflow 4020 // checking code. 4021 4022 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4023 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4024 ConstantRange ZExtMaxBECountRange = 4025 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4026 4027 const SCEV *Start = AddRec->getStart(); 4028 const SCEV *Step = AddRec->getStepRecurrence(*this); 4029 ConstantRange StepSRange = getSignedRange(Step); 4030 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4031 4032 ConstantRange StartURange = getUnsignedRange(Start); 4033 ConstantRange EndURange = 4034 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4035 4036 // Check for unsigned overflow. 4037 ConstantRange ZExtStartURange = 4038 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4039 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4040 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4041 ZExtEndURange) { 4042 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4043 EndURange.getUnsignedMin()); 4044 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4045 EndURange.getUnsignedMax()); 4046 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4047 if (!IsFullRange) 4048 ConservativeResult = 4049 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4050 } 4051 4052 ConstantRange StartSRange = getSignedRange(Start); 4053 ConstantRange EndSRange = 4054 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4055 4056 // Check for signed overflow. This must be done with ConstantRange 4057 // arithmetic because we could be called from within the ScalarEvolution 4058 // overflow checking code. 4059 ConstantRange SExtStartSRange = 4060 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4061 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4062 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4063 SExtEndSRange) { 4064 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4065 EndSRange.getSignedMin()); 4066 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4067 EndSRange.getSignedMax()); 4068 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4069 if (!IsFullRange) 4070 ConservativeResult = 4071 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4072 } 4073 } 4074 } 4075 4076 return setRange(AddRec, SignHint, ConservativeResult); 4077 } 4078 4079 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4080 // Check if the IR explicitly contains !range metadata. 4081 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4082 if (MDRange.hasValue()) 4083 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4084 4085 // Split here to avoid paying the compile-time cost of calling both 4086 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4087 // if needed. 4088 const DataLayout &DL = F.getParent()->getDataLayout(); 4089 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4090 // For a SCEVUnknown, ask ValueTracking. 4091 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4092 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4093 if (Ones != ~Zeros + 1) 4094 ConservativeResult = 4095 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4096 } else { 4097 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4098 "generalize as needed!"); 4099 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4100 if (NS > 1) 4101 ConservativeResult = ConservativeResult.intersectWith( 4102 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4103 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4104 } 4105 4106 return setRange(U, SignHint, ConservativeResult); 4107 } 4108 4109 return setRange(S, SignHint, ConservativeResult); 4110 } 4111 4112 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4113 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4114 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4115 4116 // Return early if there are no flags to propagate to the SCEV. 4117 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4118 if (BinOp->hasNoUnsignedWrap()) 4119 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4120 if (BinOp->hasNoSignedWrap()) 4121 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4122 if (Flags == SCEV::FlagAnyWrap) { 4123 return SCEV::FlagAnyWrap; 4124 } 4125 4126 // Here we check that BinOp is in the header of the innermost loop 4127 // containing BinOp, since we only deal with instructions in the loop 4128 // header. The actual loop we need to check later will come from an add 4129 // recurrence, but getting that requires computing the SCEV of the operands, 4130 // which can be expensive. This check we can do cheaply to rule out some 4131 // cases early. 4132 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4133 if (innermostContainingLoop == nullptr || 4134 innermostContainingLoop->getHeader() != BinOp->getParent()) 4135 return SCEV::FlagAnyWrap; 4136 4137 // Only proceed if we can prove that BinOp does not yield poison. 4138 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4139 4140 // At this point we know that if V is executed, then it does not wrap 4141 // according to at least one of NSW or NUW. If V is not executed, then we do 4142 // not know if the calculation that V represents would wrap. Multiple 4143 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4144 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4145 // derived from other instructions that map to the same SCEV. We cannot make 4146 // that guarantee for cases where V is not executed. So we need to find the 4147 // loop that V is considered in relation to and prove that V is executed for 4148 // every iteration of that loop. That implies that the value that V 4149 // calculates does not wrap anywhere in the loop, so then we can apply the 4150 // flags to the SCEV. 4151 // 4152 // We check isLoopInvariant to disambiguate in case we are adding two 4153 // recurrences from different loops, so that we know which loop to prove 4154 // that V is executed in. 4155 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4156 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4157 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4158 const int OtherOpIndex = 1 - OpIndex; 4159 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4160 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4161 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4162 return Flags; 4163 } 4164 } 4165 return SCEV::FlagAnyWrap; 4166 } 4167 4168 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4169 /// the expression. 4170 /// 4171 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4172 if (!isSCEVable(V->getType())) 4173 return getUnknown(V); 4174 4175 unsigned Opcode = Instruction::UserOp1; 4176 if (Instruction *I = dyn_cast<Instruction>(V)) { 4177 Opcode = I->getOpcode(); 4178 4179 // Don't attempt to analyze instructions in blocks that aren't 4180 // reachable. Such instructions don't matter, and they aren't required 4181 // to obey basic rules for definitions dominating uses which this 4182 // analysis depends on. 4183 if (!DT.isReachableFromEntry(I->getParent())) 4184 return getUnknown(V); 4185 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4186 Opcode = CE->getOpcode(); 4187 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4188 return getConstant(CI); 4189 else if (isa<ConstantPointerNull>(V)) 4190 return getConstant(V->getType(), 0); 4191 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4192 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4193 else 4194 return getUnknown(V); 4195 4196 Operator *U = cast<Operator>(V); 4197 switch (Opcode) { 4198 case Instruction::Add: { 4199 // The simple thing to do would be to just call getSCEV on both operands 4200 // and call getAddExpr with the result. However if we're looking at a 4201 // bunch of things all added together, this can be quite inefficient, 4202 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4203 // Instead, gather up all the operands and make a single getAddExpr call. 4204 // LLVM IR canonical form means we need only traverse the left operands. 4205 SmallVector<const SCEV *, 4> AddOps; 4206 for (Value *Op = U;; Op = U->getOperand(0)) { 4207 U = dyn_cast<Operator>(Op); 4208 unsigned Opcode = U ? U->getOpcode() : 0; 4209 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4210 assert(Op != V && "V should be an add"); 4211 AddOps.push_back(getSCEV(Op)); 4212 break; 4213 } 4214 4215 if (auto *OpSCEV = getExistingSCEV(U)) { 4216 AddOps.push_back(OpSCEV); 4217 break; 4218 } 4219 4220 // If a NUW or NSW flag can be applied to the SCEV for this 4221 // addition, then compute the SCEV for this addition by itself 4222 // with a separate call to getAddExpr. We need to do that 4223 // instead of pushing the operands of the addition onto AddOps, 4224 // since the flags are only known to apply to this particular 4225 // addition - they may not apply to other additions that can be 4226 // formed with operands from AddOps. 4227 const SCEV *RHS = getSCEV(U->getOperand(1)); 4228 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4229 if (Flags != SCEV::FlagAnyWrap) { 4230 const SCEV *LHS = getSCEV(U->getOperand(0)); 4231 if (Opcode == Instruction::Sub) 4232 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4233 else 4234 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4235 break; 4236 } 4237 4238 if (Opcode == Instruction::Sub) 4239 AddOps.push_back(getNegativeSCEV(RHS)); 4240 else 4241 AddOps.push_back(RHS); 4242 } 4243 return getAddExpr(AddOps); 4244 } 4245 4246 case Instruction::Mul: { 4247 SmallVector<const SCEV *, 4> MulOps; 4248 for (Value *Op = U;; Op = U->getOperand(0)) { 4249 U = dyn_cast<Operator>(Op); 4250 if (!U || U->getOpcode() != Instruction::Mul) { 4251 assert(Op != V && "V should be a mul"); 4252 MulOps.push_back(getSCEV(Op)); 4253 break; 4254 } 4255 4256 if (auto *OpSCEV = getExistingSCEV(U)) { 4257 MulOps.push_back(OpSCEV); 4258 break; 4259 } 4260 4261 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4262 if (Flags != SCEV::FlagAnyWrap) { 4263 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4264 getSCEV(U->getOperand(1)), Flags)); 4265 break; 4266 } 4267 4268 MulOps.push_back(getSCEV(U->getOperand(1))); 4269 } 4270 return getMulExpr(MulOps); 4271 } 4272 case Instruction::UDiv: 4273 return getUDivExpr(getSCEV(U->getOperand(0)), 4274 getSCEV(U->getOperand(1))); 4275 case Instruction::Sub: 4276 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4277 getNoWrapFlagsFromUB(U)); 4278 case Instruction::And: 4279 // For an expression like x&255 that merely masks off the high bits, 4280 // use zext(trunc(x)) as the SCEV expression. 4281 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4282 if (CI->isNullValue()) 4283 return getSCEV(U->getOperand(1)); 4284 if (CI->isAllOnesValue()) 4285 return getSCEV(U->getOperand(0)); 4286 const APInt &A = CI->getValue(); 4287 4288 // Instcombine's ShrinkDemandedConstant may strip bits out of 4289 // constants, obscuring what would otherwise be a low-bits mask. 4290 // Use computeKnownBits to compute what ShrinkDemandedConstant 4291 // knew about to reconstruct a low-bits mask value. 4292 unsigned LZ = A.countLeadingZeros(); 4293 unsigned TZ = A.countTrailingZeros(); 4294 unsigned BitWidth = A.getBitWidth(); 4295 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4296 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, 4297 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT); 4298 4299 APInt EffectiveMask = 4300 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4301 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4302 const SCEV *MulCount = getConstant( 4303 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4304 return getMulExpr( 4305 getZeroExtendExpr( 4306 getTruncateExpr( 4307 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4308 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4309 U->getType()), 4310 MulCount); 4311 } 4312 } 4313 break; 4314 4315 case Instruction::Or: 4316 // If the RHS of the Or is a constant, we may have something like: 4317 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4318 // optimizations will transparently handle this case. 4319 // 4320 // In order for this transformation to be safe, the LHS must be of the 4321 // form X*(2^n) and the Or constant must be less than 2^n. 4322 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4323 const SCEV *LHS = getSCEV(U->getOperand(0)); 4324 const APInt &CIVal = CI->getValue(); 4325 if (GetMinTrailingZeros(LHS) >= 4326 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4327 // Build a plain add SCEV. 4328 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4329 // If the LHS of the add was an addrec and it has no-wrap flags, 4330 // transfer the no-wrap flags, since an or won't introduce a wrap. 4331 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4332 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4333 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4334 OldAR->getNoWrapFlags()); 4335 } 4336 return S; 4337 } 4338 } 4339 break; 4340 case Instruction::Xor: 4341 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4342 // If the RHS of the xor is a signbit, then this is just an add. 4343 // Instcombine turns add of signbit into xor as a strength reduction step. 4344 if (CI->getValue().isSignBit()) 4345 return getAddExpr(getSCEV(U->getOperand(0)), 4346 getSCEV(U->getOperand(1))); 4347 4348 // If the RHS of xor is -1, then this is a not operation. 4349 if (CI->isAllOnesValue()) 4350 return getNotSCEV(getSCEV(U->getOperand(0))); 4351 4352 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4353 // This is a variant of the check for xor with -1, and it handles 4354 // the case where instcombine has trimmed non-demanded bits out 4355 // of an xor with -1. 4356 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4357 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4358 if (BO->getOpcode() == Instruction::And && 4359 LCI->getValue() == CI->getValue()) 4360 if (const SCEVZeroExtendExpr *Z = 4361 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4362 Type *UTy = U->getType(); 4363 const SCEV *Z0 = Z->getOperand(); 4364 Type *Z0Ty = Z0->getType(); 4365 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4366 4367 // If C is a low-bits mask, the zero extend is serving to 4368 // mask off the high bits. Complement the operand and 4369 // re-apply the zext. 4370 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4371 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4372 4373 // If C is a single bit, it may be in the sign-bit position 4374 // before the zero-extend. In this case, represent the xor 4375 // using an add, which is equivalent, and re-apply the zext. 4376 APInt Trunc = CI->getValue().trunc(Z0TySize); 4377 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4378 Trunc.isSignBit()) 4379 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4380 UTy); 4381 } 4382 } 4383 break; 4384 4385 case Instruction::Shl: 4386 // Turn shift left of a constant amount into a multiply. 4387 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4388 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4389 4390 // If the shift count is not less than the bitwidth, the result of 4391 // the shift is undefined. Don't try to analyze it, because the 4392 // resolution chosen here may differ from the resolution chosen in 4393 // other parts of the compiler. 4394 if (SA->getValue().uge(BitWidth)) 4395 break; 4396 4397 // It is currently not resolved how to interpret NSW for left 4398 // shift by BitWidth - 1, so we avoid applying flags in that 4399 // case. Remove this check (or this comment) once the situation 4400 // is resolved. See 4401 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4402 // and http://reviews.llvm.org/D8890 . 4403 auto Flags = SCEV::FlagAnyWrap; 4404 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4405 4406 Constant *X = ConstantInt::get(getContext(), 4407 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4408 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4409 } 4410 break; 4411 4412 case Instruction::LShr: 4413 // Turn logical shift right of a constant into a unsigned divide. 4414 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4415 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4416 4417 // If the shift count is not less than the bitwidth, the result of 4418 // the shift is undefined. Don't try to analyze it, because the 4419 // resolution chosen here may differ from the resolution chosen in 4420 // other parts of the compiler. 4421 if (SA->getValue().uge(BitWidth)) 4422 break; 4423 4424 Constant *X = ConstantInt::get(getContext(), 4425 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4426 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4427 } 4428 break; 4429 4430 case Instruction::AShr: 4431 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4432 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4433 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4434 if (L->getOpcode() == Instruction::Shl && 4435 L->getOperand(1) == U->getOperand(1)) { 4436 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4437 4438 // If the shift count is not less than the bitwidth, the result of 4439 // the shift is undefined. Don't try to analyze it, because the 4440 // resolution chosen here may differ from the resolution chosen in 4441 // other parts of the compiler. 4442 if (CI->getValue().uge(BitWidth)) 4443 break; 4444 4445 uint64_t Amt = BitWidth - CI->getZExtValue(); 4446 if (Amt == BitWidth) 4447 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4448 return 4449 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4450 IntegerType::get(getContext(), 4451 Amt)), 4452 U->getType()); 4453 } 4454 break; 4455 4456 case Instruction::Trunc: 4457 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4458 4459 case Instruction::ZExt: 4460 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4461 4462 case Instruction::SExt: 4463 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4464 4465 case Instruction::BitCast: 4466 // BitCasts are no-op casts so we just eliminate the cast. 4467 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4468 return getSCEV(U->getOperand(0)); 4469 break; 4470 4471 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4472 // lead to pointer expressions which cannot safely be expanded to GEPs, 4473 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4474 // simplifying integer expressions. 4475 4476 case Instruction::GetElementPtr: 4477 return createNodeForGEP(cast<GEPOperator>(U)); 4478 4479 case Instruction::PHI: 4480 return createNodeForPHI(cast<PHINode>(U)); 4481 4482 case Instruction::Select: 4483 // This could be a smax or umax that was lowered earlier. 4484 // Try to recover it. 4485 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 4486 Value *LHS = ICI->getOperand(0); 4487 Value *RHS = ICI->getOperand(1); 4488 switch (ICI->getPredicate()) { 4489 case ICmpInst::ICMP_SLT: 4490 case ICmpInst::ICMP_SLE: 4491 std::swap(LHS, RHS); 4492 // fall through 4493 case ICmpInst::ICMP_SGT: 4494 case ICmpInst::ICMP_SGE: 4495 // a >s b ? a+x : b+x -> smax(a, b)+x 4496 // a >s b ? b+x : a+x -> smin(a, b)+x 4497 if (getTypeSizeInBits(LHS->getType()) <= 4498 getTypeSizeInBits(U->getType())) { 4499 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType()); 4500 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType()); 4501 const SCEV *LA = getSCEV(U->getOperand(1)); 4502 const SCEV *RA = getSCEV(U->getOperand(2)); 4503 const SCEV *LDiff = getMinusSCEV(LA, LS); 4504 const SCEV *RDiff = getMinusSCEV(RA, RS); 4505 if (LDiff == RDiff) 4506 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4507 LDiff = getMinusSCEV(LA, RS); 4508 RDiff = getMinusSCEV(RA, LS); 4509 if (LDiff == RDiff) 4510 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4511 } 4512 break; 4513 case ICmpInst::ICMP_ULT: 4514 case ICmpInst::ICMP_ULE: 4515 std::swap(LHS, RHS); 4516 // fall through 4517 case ICmpInst::ICMP_UGT: 4518 case ICmpInst::ICMP_UGE: 4519 // a >u b ? a+x : b+x -> umax(a, b)+x 4520 // a >u b ? b+x : a+x -> umin(a, b)+x 4521 if (getTypeSizeInBits(LHS->getType()) <= 4522 getTypeSizeInBits(U->getType())) { 4523 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4524 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType()); 4525 const SCEV *LA = getSCEV(U->getOperand(1)); 4526 const SCEV *RA = getSCEV(U->getOperand(2)); 4527 const SCEV *LDiff = getMinusSCEV(LA, LS); 4528 const SCEV *RDiff = getMinusSCEV(RA, RS); 4529 if (LDiff == RDiff) 4530 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4531 LDiff = getMinusSCEV(LA, RS); 4532 RDiff = getMinusSCEV(RA, LS); 4533 if (LDiff == RDiff) 4534 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4535 } 4536 break; 4537 case ICmpInst::ICMP_NE: 4538 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4539 if (getTypeSizeInBits(LHS->getType()) <= 4540 getTypeSizeInBits(U->getType()) && 4541 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4542 const SCEV *One = getConstant(U->getType(), 1); 4543 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4544 const SCEV *LA = getSCEV(U->getOperand(1)); 4545 const SCEV *RA = getSCEV(U->getOperand(2)); 4546 const SCEV *LDiff = getMinusSCEV(LA, LS); 4547 const SCEV *RDiff = getMinusSCEV(RA, One); 4548 if (LDiff == RDiff) 4549 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4550 } 4551 break; 4552 case ICmpInst::ICMP_EQ: 4553 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4554 if (getTypeSizeInBits(LHS->getType()) <= 4555 getTypeSizeInBits(U->getType()) && 4556 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4557 const SCEV *One = getConstant(U->getType(), 1); 4558 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4559 const SCEV *LA = getSCEV(U->getOperand(1)); 4560 const SCEV *RA = getSCEV(U->getOperand(2)); 4561 const SCEV *LDiff = getMinusSCEV(LA, One); 4562 const SCEV *RDiff = getMinusSCEV(RA, LS); 4563 if (LDiff == RDiff) 4564 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4565 } 4566 break; 4567 default: 4568 break; 4569 } 4570 } 4571 4572 default: // We cannot analyze this expression. 4573 break; 4574 } 4575 4576 return getUnknown(V); 4577 } 4578 4579 4580 4581 //===----------------------------------------------------------------------===// 4582 // Iteration Count Computation Code 4583 // 4584 4585 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4586 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4587 return getSmallConstantTripCount(L, ExitingBB); 4588 4589 // No trip count information for multiple exits. 4590 return 0; 4591 } 4592 4593 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4594 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4595 /// constant. Will also return 0 if the maximum trip count is very large (>= 4596 /// 2^32). 4597 /// 4598 /// This "trip count" assumes that control exits via ExitingBlock. More 4599 /// precisely, it is the number of times that control may reach ExitingBlock 4600 /// before taking the branch. For loops with multiple exits, it may not be the 4601 /// number times that the loop header executes because the loop may exit 4602 /// prematurely via another branch. 4603 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4604 BasicBlock *ExitingBlock) { 4605 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4606 assert(L->isLoopExiting(ExitingBlock) && 4607 "Exiting block must actually branch out of the loop!"); 4608 const SCEVConstant *ExitCount = 4609 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4610 if (!ExitCount) 4611 return 0; 4612 4613 ConstantInt *ExitConst = ExitCount->getValue(); 4614 4615 // Guard against huge trip counts. 4616 if (ExitConst->getValue().getActiveBits() > 32) 4617 return 0; 4618 4619 // In case of integer overflow, this returns 0, which is correct. 4620 return ((unsigned)ExitConst->getZExtValue()) + 1; 4621 } 4622 4623 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4624 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4625 return getSmallConstantTripMultiple(L, ExitingBB); 4626 4627 // No trip multiple information for multiple exits. 4628 return 0; 4629 } 4630 4631 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4632 /// trip count of this loop as a normal unsigned value, if possible. This 4633 /// means that the actual trip count is always a multiple of the returned 4634 /// value (don't forget the trip count could very well be zero as well!). 4635 /// 4636 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4637 /// multiple of a constant (which is also the case if the trip count is simply 4638 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4639 /// if the trip count is very large (>= 2^32). 4640 /// 4641 /// As explained in the comments for getSmallConstantTripCount, this assumes 4642 /// that control exits the loop via ExitingBlock. 4643 unsigned 4644 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4645 BasicBlock *ExitingBlock) { 4646 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4647 assert(L->isLoopExiting(ExitingBlock) && 4648 "Exiting block must actually branch out of the loop!"); 4649 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4650 if (ExitCount == getCouldNotCompute()) 4651 return 1; 4652 4653 // Get the trip count from the BE count by adding 1. 4654 const SCEV *TCMul = getAddExpr(ExitCount, 4655 getConstant(ExitCount->getType(), 1)); 4656 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4657 // to factor simple cases. 4658 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4659 TCMul = Mul->getOperand(0); 4660 4661 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4662 if (!MulC) 4663 return 1; 4664 4665 ConstantInt *Result = MulC->getValue(); 4666 4667 // Guard against huge trip counts (this requires checking 4668 // for zero to handle the case where the trip count == -1 and the 4669 // addition wraps). 4670 if (!Result || Result->getValue().getActiveBits() > 32 || 4671 Result->getValue().getActiveBits() == 0) 4672 return 1; 4673 4674 return (unsigned)Result->getZExtValue(); 4675 } 4676 4677 // getExitCount - Get the expression for the number of loop iterations for which 4678 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4679 // SCEVCouldNotCompute. 4680 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4681 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4682 } 4683 4684 /// getBackedgeTakenCount - If the specified loop has a predictable 4685 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4686 /// object. The backedge-taken count is the number of times the loop header 4687 /// will be branched to from within the loop. This is one less than the 4688 /// trip count of the loop, since it doesn't count the first iteration, 4689 /// when the header is branched to from outside the loop. 4690 /// 4691 /// Note that it is not valid to call this method on a loop without a 4692 /// loop-invariant backedge-taken count (see 4693 /// hasLoopInvariantBackedgeTakenCount). 4694 /// 4695 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4696 return getBackedgeTakenInfo(L).getExact(this); 4697 } 4698 4699 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4700 /// return the least SCEV value that is known never to be less than the 4701 /// actual backedge taken count. 4702 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4703 return getBackedgeTakenInfo(L).getMax(this); 4704 } 4705 4706 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4707 /// onto the given Worklist. 4708 static void 4709 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4710 BasicBlock *Header = L->getHeader(); 4711 4712 // Push all Loop-header PHIs onto the Worklist stack. 4713 for (BasicBlock::iterator I = Header->begin(); 4714 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4715 Worklist.push_back(PN); 4716 } 4717 4718 const ScalarEvolution::BackedgeTakenInfo & 4719 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4720 // Initially insert an invalid entry for this loop. If the insertion 4721 // succeeds, proceed to actually compute a backedge-taken count and 4722 // update the value. The temporary CouldNotCompute value tells SCEV 4723 // code elsewhere that it shouldn't attempt to request a new 4724 // backedge-taken count, which could result in infinite recursion. 4725 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4726 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4727 if (!Pair.second) 4728 return Pair.first->second; 4729 4730 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4731 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4732 // must be cleared in this scope. 4733 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4734 4735 if (Result.getExact(this) != getCouldNotCompute()) { 4736 assert(isLoopInvariant(Result.getExact(this), L) && 4737 isLoopInvariant(Result.getMax(this), L) && 4738 "Computed backedge-taken count isn't loop invariant for loop!"); 4739 ++NumTripCountsComputed; 4740 } 4741 else if (Result.getMax(this) == getCouldNotCompute() && 4742 isa<PHINode>(L->getHeader()->begin())) { 4743 // Only count loops that have phi nodes as not being computable. 4744 ++NumTripCountsNotComputed; 4745 } 4746 4747 // Now that we know more about the trip count for this loop, forget any 4748 // existing SCEV values for PHI nodes in this loop since they are only 4749 // conservative estimates made without the benefit of trip count 4750 // information. This is similar to the code in forgetLoop, except that 4751 // it handles SCEVUnknown PHI nodes specially. 4752 if (Result.hasAnyInfo()) { 4753 SmallVector<Instruction *, 16> Worklist; 4754 PushLoopPHIs(L, Worklist); 4755 4756 SmallPtrSet<Instruction *, 8> Visited; 4757 while (!Worklist.empty()) { 4758 Instruction *I = Worklist.pop_back_val(); 4759 if (!Visited.insert(I).second) 4760 continue; 4761 4762 ValueExprMapType::iterator It = 4763 ValueExprMap.find_as(static_cast<Value *>(I)); 4764 if (It != ValueExprMap.end()) { 4765 const SCEV *Old = It->second; 4766 4767 // SCEVUnknown for a PHI either means that it has an unrecognized 4768 // structure, or it's a PHI that's in the progress of being computed 4769 // by createNodeForPHI. In the former case, additional loop trip 4770 // count information isn't going to change anything. In the later 4771 // case, createNodeForPHI will perform the necessary updates on its 4772 // own when it gets to that point. 4773 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4774 forgetMemoizedResults(Old); 4775 ValueExprMap.erase(It); 4776 } 4777 if (PHINode *PN = dyn_cast<PHINode>(I)) 4778 ConstantEvolutionLoopExitValue.erase(PN); 4779 } 4780 4781 PushDefUseChildren(I, Worklist); 4782 } 4783 } 4784 4785 // Re-lookup the insert position, since the call to 4786 // ComputeBackedgeTakenCount above could result in a 4787 // recusive call to getBackedgeTakenInfo (on a different 4788 // loop), which would invalidate the iterator computed 4789 // earlier. 4790 return BackedgeTakenCounts.find(L)->second = Result; 4791 } 4792 4793 /// forgetLoop - This method should be called by the client when it has 4794 /// changed a loop in a way that may effect ScalarEvolution's ability to 4795 /// compute a trip count, or if the loop is deleted. 4796 void ScalarEvolution::forgetLoop(const Loop *L) { 4797 // Drop any stored trip count value. 4798 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4799 BackedgeTakenCounts.find(L); 4800 if (BTCPos != BackedgeTakenCounts.end()) { 4801 BTCPos->second.clear(); 4802 BackedgeTakenCounts.erase(BTCPos); 4803 } 4804 4805 // Drop information about expressions based on loop-header PHIs. 4806 SmallVector<Instruction *, 16> Worklist; 4807 PushLoopPHIs(L, Worklist); 4808 4809 SmallPtrSet<Instruction *, 8> Visited; 4810 while (!Worklist.empty()) { 4811 Instruction *I = Worklist.pop_back_val(); 4812 if (!Visited.insert(I).second) 4813 continue; 4814 4815 ValueExprMapType::iterator It = 4816 ValueExprMap.find_as(static_cast<Value *>(I)); 4817 if (It != ValueExprMap.end()) { 4818 forgetMemoizedResults(It->second); 4819 ValueExprMap.erase(It); 4820 if (PHINode *PN = dyn_cast<PHINode>(I)) 4821 ConstantEvolutionLoopExitValue.erase(PN); 4822 } 4823 4824 PushDefUseChildren(I, Worklist); 4825 } 4826 4827 // Forget all contained loops too, to avoid dangling entries in the 4828 // ValuesAtScopes map. 4829 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4830 forgetLoop(*I); 4831 } 4832 4833 /// forgetValue - This method should be called by the client when it has 4834 /// changed a value in a way that may effect its value, or which may 4835 /// disconnect it from a def-use chain linking it to a loop. 4836 void ScalarEvolution::forgetValue(Value *V) { 4837 Instruction *I = dyn_cast<Instruction>(V); 4838 if (!I) return; 4839 4840 // Drop information about expressions based on loop-header PHIs. 4841 SmallVector<Instruction *, 16> Worklist; 4842 Worklist.push_back(I); 4843 4844 SmallPtrSet<Instruction *, 8> Visited; 4845 while (!Worklist.empty()) { 4846 I = Worklist.pop_back_val(); 4847 if (!Visited.insert(I).second) 4848 continue; 4849 4850 ValueExprMapType::iterator It = 4851 ValueExprMap.find_as(static_cast<Value *>(I)); 4852 if (It != ValueExprMap.end()) { 4853 forgetMemoizedResults(It->second); 4854 ValueExprMap.erase(It); 4855 if (PHINode *PN = dyn_cast<PHINode>(I)) 4856 ConstantEvolutionLoopExitValue.erase(PN); 4857 } 4858 4859 PushDefUseChildren(I, Worklist); 4860 } 4861 } 4862 4863 /// getExact - Get the exact loop backedge taken count considering all loop 4864 /// exits. A computable result can only be returned for loops with a single 4865 /// exit. Returning the minimum taken count among all exits is incorrect 4866 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 4867 /// assumes that the limit of each loop test is never skipped. This is a valid 4868 /// assumption as long as the loop exits via that test. For precise results, it 4869 /// is the caller's responsibility to specify the relevant loop exit using 4870 /// getExact(ExitingBlock, SE). 4871 const SCEV * 4872 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4873 // If any exits were not computable, the loop is not computable. 4874 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4875 4876 // We need exactly one computable exit. 4877 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4878 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4879 4880 const SCEV *BECount = nullptr; 4881 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4882 ENT != nullptr; ENT = ENT->getNextExit()) { 4883 4884 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4885 4886 if (!BECount) 4887 BECount = ENT->ExactNotTaken; 4888 else if (BECount != ENT->ExactNotTaken) 4889 return SE->getCouldNotCompute(); 4890 } 4891 assert(BECount && "Invalid not taken count for loop exit"); 4892 return BECount; 4893 } 4894 4895 /// getExact - Get the exact not taken count for this loop exit. 4896 const SCEV * 4897 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4898 ScalarEvolution *SE) const { 4899 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4900 ENT != nullptr; ENT = ENT->getNextExit()) { 4901 4902 if (ENT->ExitingBlock == ExitingBlock) 4903 return ENT->ExactNotTaken; 4904 } 4905 return SE->getCouldNotCompute(); 4906 } 4907 4908 /// getMax - Get the max backedge taken count for the loop. 4909 const SCEV * 4910 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4911 return Max ? Max : SE->getCouldNotCompute(); 4912 } 4913 4914 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4915 ScalarEvolution *SE) const { 4916 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4917 return true; 4918 4919 if (!ExitNotTaken.ExitingBlock) 4920 return false; 4921 4922 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4923 ENT != nullptr; ENT = ENT->getNextExit()) { 4924 4925 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4926 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4927 return true; 4928 } 4929 } 4930 return false; 4931 } 4932 4933 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4934 /// computable exit into a persistent ExitNotTakenInfo array. 4935 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4936 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4937 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4938 4939 if (!Complete) 4940 ExitNotTaken.setIncomplete(); 4941 4942 unsigned NumExits = ExitCounts.size(); 4943 if (NumExits == 0) return; 4944 4945 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4946 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4947 if (NumExits == 1) return; 4948 4949 // Handle the rare case of multiple computable exits. 4950 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4951 4952 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4953 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4954 PrevENT->setNextExit(ENT); 4955 ENT->ExitingBlock = ExitCounts[i].first; 4956 ENT->ExactNotTaken = ExitCounts[i].second; 4957 } 4958 } 4959 4960 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4961 void ScalarEvolution::BackedgeTakenInfo::clear() { 4962 ExitNotTaken.ExitingBlock = nullptr; 4963 ExitNotTaken.ExactNotTaken = nullptr; 4964 delete[] ExitNotTaken.getNextExit(); 4965 } 4966 4967 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4968 /// of the specified loop will execute. 4969 ScalarEvolution::BackedgeTakenInfo 4970 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4971 SmallVector<BasicBlock *, 8> ExitingBlocks; 4972 L->getExitingBlocks(ExitingBlocks); 4973 4974 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4975 bool CouldComputeBECount = true; 4976 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 4977 const SCEV *MustExitMaxBECount = nullptr; 4978 const SCEV *MayExitMaxBECount = nullptr; 4979 4980 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 4981 // and compute maxBECount. 4982 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4983 BasicBlock *ExitBB = ExitingBlocks[i]; 4984 ExitLimit EL = ComputeExitLimit(L, ExitBB); 4985 4986 // 1. For each exit that can be computed, add an entry to ExitCounts. 4987 // CouldComputeBECount is true only if all exits can be computed. 4988 if (EL.Exact == getCouldNotCompute()) 4989 // We couldn't compute an exact value for this exit, so 4990 // we won't be able to compute an exact value for the loop. 4991 CouldComputeBECount = false; 4992 else 4993 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 4994 4995 // 2. Derive the loop's MaxBECount from each exit's max number of 4996 // non-exiting iterations. Partition the loop exits into two kinds: 4997 // LoopMustExits and LoopMayExits. 4998 // 4999 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5000 // is a LoopMayExit. If any computable LoopMustExit is found, then 5001 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5002 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5003 // considered greater than any computable EL.Max. 5004 if (EL.Max != getCouldNotCompute() && Latch && 5005 DT.dominates(ExitBB, Latch)) { 5006 if (!MustExitMaxBECount) 5007 MustExitMaxBECount = EL.Max; 5008 else { 5009 MustExitMaxBECount = 5010 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5011 } 5012 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5013 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5014 MayExitMaxBECount = EL.Max; 5015 else { 5016 MayExitMaxBECount = 5017 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5018 } 5019 } 5020 } 5021 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5022 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5023 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5024 } 5025 5026 /// ComputeExitLimit - Compute the number of times the backedge of the specified 5027 /// loop will execute if it exits via the specified block. 5028 ScalarEvolution::ExitLimit 5029 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5030 5031 // Okay, we've chosen an exiting block. See what condition causes us to 5032 // exit at this block and remember the exit block and whether all other targets 5033 // lead to the loop header. 5034 bool MustExecuteLoopHeader = true; 5035 BasicBlock *Exit = nullptr; 5036 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5037 SI != SE; ++SI) 5038 if (!L->contains(*SI)) { 5039 if (Exit) // Multiple exit successors. 5040 return getCouldNotCompute(); 5041 Exit = *SI; 5042 } else if (*SI != L->getHeader()) { 5043 MustExecuteLoopHeader = false; 5044 } 5045 5046 // At this point, we know we have a conditional branch that determines whether 5047 // the loop is exited. However, we don't know if the branch is executed each 5048 // time through the loop. If not, then the execution count of the branch will 5049 // not be equal to the trip count of the loop. 5050 // 5051 // Currently we check for this by checking to see if the Exit branch goes to 5052 // the loop header. If so, we know it will always execute the same number of 5053 // times as the loop. We also handle the case where the exit block *is* the 5054 // loop header. This is common for un-rotated loops. 5055 // 5056 // If both of those tests fail, walk up the unique predecessor chain to the 5057 // header, stopping if there is an edge that doesn't exit the loop. If the 5058 // header is reached, the execution count of the branch will be equal to the 5059 // trip count of the loop. 5060 // 5061 // More extensive analysis could be done to handle more cases here. 5062 // 5063 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5064 // The simple checks failed, try climbing the unique predecessor chain 5065 // up to the header. 5066 bool Ok = false; 5067 for (BasicBlock *BB = ExitingBlock; BB; ) { 5068 BasicBlock *Pred = BB->getUniquePredecessor(); 5069 if (!Pred) 5070 return getCouldNotCompute(); 5071 TerminatorInst *PredTerm = Pred->getTerminator(); 5072 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5073 if (PredSucc == BB) 5074 continue; 5075 // If the predecessor has a successor that isn't BB and isn't 5076 // outside the loop, assume the worst. 5077 if (L->contains(PredSucc)) 5078 return getCouldNotCompute(); 5079 } 5080 if (Pred == L->getHeader()) { 5081 Ok = true; 5082 break; 5083 } 5084 BB = Pred; 5085 } 5086 if (!Ok) 5087 return getCouldNotCompute(); 5088 } 5089 5090 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5091 TerminatorInst *Term = ExitingBlock->getTerminator(); 5092 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5093 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5094 // Proceed to the next level to examine the exit condition expression. 5095 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5096 BI->getSuccessor(1), 5097 /*ControlsExit=*/IsOnlyExit); 5098 } 5099 5100 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5101 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 5102 /*ControlsExit=*/IsOnlyExit); 5103 5104 return getCouldNotCompute(); 5105 } 5106 5107 /// ComputeExitLimitFromCond - Compute the number of times the 5108 /// backedge of the specified loop will execute if its exit condition 5109 /// were a conditional branch of ExitCond, TBB, and FBB. 5110 /// 5111 /// @param ControlsExit is true if ExitCond directly controls the exit 5112 /// branch. In this case, we can assume that the loop exits only if the 5113 /// condition is true and can infer that failing to meet the condition prior to 5114 /// integer wraparound results in undefined behavior. 5115 ScalarEvolution::ExitLimit 5116 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 5117 Value *ExitCond, 5118 BasicBlock *TBB, 5119 BasicBlock *FBB, 5120 bool ControlsExit) { 5121 // Check if the controlling expression for this loop is an And or Or. 5122 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5123 if (BO->getOpcode() == Instruction::And) { 5124 // Recurse on the operands of the and. 5125 bool EitherMayExit = L->contains(TBB); 5126 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5127 ControlsExit && !EitherMayExit); 5128 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5129 ControlsExit && !EitherMayExit); 5130 const SCEV *BECount = getCouldNotCompute(); 5131 const SCEV *MaxBECount = getCouldNotCompute(); 5132 if (EitherMayExit) { 5133 // Both conditions must be true for the loop to continue executing. 5134 // Choose the less conservative count. 5135 if (EL0.Exact == getCouldNotCompute() || 5136 EL1.Exact == getCouldNotCompute()) 5137 BECount = getCouldNotCompute(); 5138 else 5139 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5140 if (EL0.Max == getCouldNotCompute()) 5141 MaxBECount = EL1.Max; 5142 else if (EL1.Max == getCouldNotCompute()) 5143 MaxBECount = EL0.Max; 5144 else 5145 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5146 } else { 5147 // Both conditions must be true at the same time for the loop to exit. 5148 // For now, be conservative. 5149 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5150 if (EL0.Max == EL1.Max) 5151 MaxBECount = EL0.Max; 5152 if (EL0.Exact == EL1.Exact) 5153 BECount = EL0.Exact; 5154 } 5155 5156 return ExitLimit(BECount, MaxBECount); 5157 } 5158 if (BO->getOpcode() == Instruction::Or) { 5159 // Recurse on the operands of the or. 5160 bool EitherMayExit = L->contains(FBB); 5161 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5162 ControlsExit && !EitherMayExit); 5163 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5164 ControlsExit && !EitherMayExit); 5165 const SCEV *BECount = getCouldNotCompute(); 5166 const SCEV *MaxBECount = getCouldNotCompute(); 5167 if (EitherMayExit) { 5168 // Both conditions must be false for the loop to continue executing. 5169 // Choose the less conservative count. 5170 if (EL0.Exact == getCouldNotCompute() || 5171 EL1.Exact == getCouldNotCompute()) 5172 BECount = getCouldNotCompute(); 5173 else 5174 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5175 if (EL0.Max == getCouldNotCompute()) 5176 MaxBECount = EL1.Max; 5177 else if (EL1.Max == getCouldNotCompute()) 5178 MaxBECount = EL0.Max; 5179 else 5180 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5181 } else { 5182 // Both conditions must be false at the same time for the loop to exit. 5183 // For now, be conservative. 5184 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5185 if (EL0.Max == EL1.Max) 5186 MaxBECount = EL0.Max; 5187 if (EL0.Exact == EL1.Exact) 5188 BECount = EL0.Exact; 5189 } 5190 5191 return ExitLimit(BECount, MaxBECount); 5192 } 5193 } 5194 5195 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5196 // Proceed to the next level to examine the icmp. 5197 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5198 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5199 5200 // Check for a constant condition. These are normally stripped out by 5201 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5202 // preserve the CFG and is temporarily leaving constant conditions 5203 // in place. 5204 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5205 if (L->contains(FBB) == !CI->getZExtValue()) 5206 // The backedge is always taken. 5207 return getCouldNotCompute(); 5208 else 5209 // The backedge is never taken. 5210 return getConstant(CI->getType(), 0); 5211 } 5212 5213 // If it's not an integer or pointer comparison then compute it the hard way. 5214 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5215 } 5216 5217 /// ComputeExitLimitFromICmp - Compute the number of times the 5218 /// backedge of the specified loop will execute if its exit condition 5219 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 5220 ScalarEvolution::ExitLimit 5221 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 5222 ICmpInst *ExitCond, 5223 BasicBlock *TBB, 5224 BasicBlock *FBB, 5225 bool ControlsExit) { 5226 5227 // If the condition was exit on true, convert the condition to exit on false 5228 ICmpInst::Predicate Cond; 5229 if (!L->contains(FBB)) 5230 Cond = ExitCond->getPredicate(); 5231 else 5232 Cond = ExitCond->getInversePredicate(); 5233 5234 // Handle common loops like: for (X = "string"; *X; ++X) 5235 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5236 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5237 ExitLimit ItCnt = 5238 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5239 if (ItCnt.hasAnyInfo()) 5240 return ItCnt; 5241 } 5242 5243 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5244 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5245 5246 // Try to evaluate any dependencies out of the loop. 5247 LHS = getSCEVAtScope(LHS, L); 5248 RHS = getSCEVAtScope(RHS, L); 5249 5250 // At this point, we would like to compute how many iterations of the 5251 // loop the predicate will return true for these inputs. 5252 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5253 // If there is a loop-invariant, force it into the RHS. 5254 std::swap(LHS, RHS); 5255 Cond = ICmpInst::getSwappedPredicate(Cond); 5256 } 5257 5258 // Simplify the operands before analyzing them. 5259 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5260 5261 // If we have a comparison of a chrec against a constant, try to use value 5262 // ranges to answer this query. 5263 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5264 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5265 if (AddRec->getLoop() == L) { 5266 // Form the constant range. 5267 ConstantRange CompRange( 5268 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5269 5270 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5271 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5272 } 5273 5274 switch (Cond) { 5275 case ICmpInst::ICMP_NE: { // while (X != Y) 5276 // Convert to: while (X-Y != 0) 5277 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5278 if (EL.hasAnyInfo()) return EL; 5279 break; 5280 } 5281 case ICmpInst::ICMP_EQ: { // while (X == Y) 5282 // Convert to: while (X-Y == 0) 5283 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5284 if (EL.hasAnyInfo()) return EL; 5285 break; 5286 } 5287 case ICmpInst::ICMP_SLT: 5288 case ICmpInst::ICMP_ULT: { // while (X < Y) 5289 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5290 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5291 if (EL.hasAnyInfo()) return EL; 5292 break; 5293 } 5294 case ICmpInst::ICMP_SGT: 5295 case ICmpInst::ICMP_UGT: { // while (X > Y) 5296 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5297 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5298 if (EL.hasAnyInfo()) return EL; 5299 break; 5300 } 5301 default: 5302 #if 0 5303 dbgs() << "ComputeBackedgeTakenCount "; 5304 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5305 dbgs() << "[unsigned] "; 5306 dbgs() << *LHS << " " 5307 << Instruction::getOpcodeName(Instruction::ICmp) 5308 << " " << *RHS << "\n"; 5309 #endif 5310 break; 5311 } 5312 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5313 } 5314 5315 ScalarEvolution::ExitLimit 5316 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 5317 SwitchInst *Switch, 5318 BasicBlock *ExitingBlock, 5319 bool ControlsExit) { 5320 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5321 5322 // Give up if the exit is the default dest of a switch. 5323 if (Switch->getDefaultDest() == ExitingBlock) 5324 return getCouldNotCompute(); 5325 5326 assert(L->contains(Switch->getDefaultDest()) && 5327 "Default case must not exit the loop!"); 5328 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5329 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5330 5331 // while (X != Y) --> while (X-Y != 0) 5332 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5333 if (EL.hasAnyInfo()) 5334 return EL; 5335 5336 return getCouldNotCompute(); 5337 } 5338 5339 static ConstantInt * 5340 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5341 ScalarEvolution &SE) { 5342 const SCEV *InVal = SE.getConstant(C); 5343 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5344 assert(isa<SCEVConstant>(Val) && 5345 "Evaluation of SCEV at constant didn't fold correctly?"); 5346 return cast<SCEVConstant>(Val)->getValue(); 5347 } 5348 5349 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 5350 /// 'icmp op load X, cst', try to see if we can compute the backedge 5351 /// execution count. 5352 ScalarEvolution::ExitLimit 5353 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 5354 LoadInst *LI, 5355 Constant *RHS, 5356 const Loop *L, 5357 ICmpInst::Predicate predicate) { 5358 5359 if (LI->isVolatile()) return getCouldNotCompute(); 5360 5361 // Check to see if the loaded pointer is a getelementptr of a global. 5362 // TODO: Use SCEV instead of manually grubbing with GEPs. 5363 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5364 if (!GEP) return getCouldNotCompute(); 5365 5366 // Make sure that it is really a constant global we are gepping, with an 5367 // initializer, and make sure the first IDX is really 0. 5368 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5369 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5370 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5371 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5372 return getCouldNotCompute(); 5373 5374 // Okay, we allow one non-constant index into the GEP instruction. 5375 Value *VarIdx = nullptr; 5376 std::vector<Constant*> Indexes; 5377 unsigned VarIdxNum = 0; 5378 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5379 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5380 Indexes.push_back(CI); 5381 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5382 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5383 VarIdx = GEP->getOperand(i); 5384 VarIdxNum = i-2; 5385 Indexes.push_back(nullptr); 5386 } 5387 5388 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5389 if (!VarIdx) 5390 return getCouldNotCompute(); 5391 5392 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5393 // Check to see if X is a loop variant variable value now. 5394 const SCEV *Idx = getSCEV(VarIdx); 5395 Idx = getSCEVAtScope(Idx, L); 5396 5397 // We can only recognize very limited forms of loop index expressions, in 5398 // particular, only affine AddRec's like {C1,+,C2}. 5399 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5400 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5401 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5402 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5403 return getCouldNotCompute(); 5404 5405 unsigned MaxSteps = MaxBruteForceIterations; 5406 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5407 ConstantInt *ItCst = ConstantInt::get( 5408 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5409 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5410 5411 // Form the GEP offset. 5412 Indexes[VarIdxNum] = Val; 5413 5414 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5415 Indexes); 5416 if (!Result) break; // Cannot compute! 5417 5418 // Evaluate the condition for this iteration. 5419 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5420 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5421 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5422 #if 0 5423 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5424 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5425 << "***\n"; 5426 #endif 5427 ++NumArrayLenItCounts; 5428 return getConstant(ItCst); // Found terminating iteration! 5429 } 5430 } 5431 return getCouldNotCompute(); 5432 } 5433 5434 5435 /// CanConstantFold - Return true if we can constant fold an instruction of the 5436 /// specified type, assuming that all operands were constants. 5437 static bool CanConstantFold(const Instruction *I) { 5438 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5439 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5440 isa<LoadInst>(I)) 5441 return true; 5442 5443 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5444 if (const Function *F = CI->getCalledFunction()) 5445 return canConstantFoldCallTo(F); 5446 return false; 5447 } 5448 5449 /// Determine whether this instruction can constant evolve within this loop 5450 /// assuming its operands can all constant evolve. 5451 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5452 // An instruction outside of the loop can't be derived from a loop PHI. 5453 if (!L->contains(I)) return false; 5454 5455 if (isa<PHINode>(I)) { 5456 // We don't currently keep track of the control flow needed to evaluate 5457 // PHIs, so we cannot handle PHIs inside of loops. 5458 return L->getHeader() == I->getParent(); 5459 } 5460 5461 // If we won't be able to constant fold this expression even if the operands 5462 // are constants, bail early. 5463 return CanConstantFold(I); 5464 } 5465 5466 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5467 /// recursing through each instruction operand until reaching a loop header phi. 5468 static PHINode * 5469 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5470 DenseMap<Instruction *, PHINode *> &PHIMap) { 5471 5472 // Otherwise, we can evaluate this instruction if all of its operands are 5473 // constant or derived from a PHI node themselves. 5474 PHINode *PHI = nullptr; 5475 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5476 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5477 5478 if (isa<Constant>(*OpI)) continue; 5479 5480 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5481 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5482 5483 PHINode *P = dyn_cast<PHINode>(OpInst); 5484 if (!P) 5485 // If this operand is already visited, reuse the prior result. 5486 // We may have P != PHI if this is the deepest point at which the 5487 // inconsistent paths meet. 5488 P = PHIMap.lookup(OpInst); 5489 if (!P) { 5490 // Recurse and memoize the results, whether a phi is found or not. 5491 // This recursive call invalidates pointers into PHIMap. 5492 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5493 PHIMap[OpInst] = P; 5494 } 5495 if (!P) 5496 return nullptr; // Not evolving from PHI 5497 if (PHI && PHI != P) 5498 return nullptr; // Evolving from multiple different PHIs. 5499 PHI = P; 5500 } 5501 // This is a expression evolving from a constant PHI! 5502 return PHI; 5503 } 5504 5505 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5506 /// in the loop that V is derived from. We allow arbitrary operations along the 5507 /// way, but the operands of an operation must either be constants or a value 5508 /// derived from a constant PHI. If this expression does not fit with these 5509 /// constraints, return null. 5510 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5511 Instruction *I = dyn_cast<Instruction>(V); 5512 if (!I || !canConstantEvolve(I, L)) return nullptr; 5513 5514 if (PHINode *PN = dyn_cast<PHINode>(I)) { 5515 return PN; 5516 } 5517 5518 // Record non-constant instructions contained by the loop. 5519 DenseMap<Instruction *, PHINode *> PHIMap; 5520 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5521 } 5522 5523 /// EvaluateExpression - Given an expression that passes the 5524 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5525 /// in the loop has the value PHIVal. If we can't fold this expression for some 5526 /// reason, return null. 5527 static Constant *EvaluateExpression(Value *V, const Loop *L, 5528 DenseMap<Instruction *, Constant *> &Vals, 5529 const DataLayout &DL, 5530 const TargetLibraryInfo *TLI) { 5531 // Convenient constant check, but redundant for recursive calls. 5532 if (Constant *C = dyn_cast<Constant>(V)) return C; 5533 Instruction *I = dyn_cast<Instruction>(V); 5534 if (!I) return nullptr; 5535 5536 if (Constant *C = Vals.lookup(I)) return C; 5537 5538 // An instruction inside the loop depends on a value outside the loop that we 5539 // weren't given a mapping for, or a value such as a call inside the loop. 5540 if (!canConstantEvolve(I, L)) return nullptr; 5541 5542 // An unmapped PHI can be due to a branch or another loop inside this loop, 5543 // or due to this not being the initial iteration through a loop where we 5544 // couldn't compute the evolution of this particular PHI last time. 5545 if (isa<PHINode>(I)) return nullptr; 5546 5547 std::vector<Constant*> Operands(I->getNumOperands()); 5548 5549 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5550 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5551 if (!Operand) { 5552 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5553 if (!Operands[i]) return nullptr; 5554 continue; 5555 } 5556 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5557 Vals[Operand] = C; 5558 if (!C) return nullptr; 5559 Operands[i] = C; 5560 } 5561 5562 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5563 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5564 Operands[1], DL, TLI); 5565 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5566 if (!LI->isVolatile()) 5567 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5568 } 5569 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5570 TLI); 5571 } 5572 5573 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5574 /// in the header of its containing loop, we know the loop executes a 5575 /// constant number of times, and the PHI node is just a recurrence 5576 /// involving constants, fold it. 5577 Constant * 5578 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5579 const APInt &BEs, 5580 const Loop *L) { 5581 DenseMap<PHINode*, Constant*>::const_iterator I = 5582 ConstantEvolutionLoopExitValue.find(PN); 5583 if (I != ConstantEvolutionLoopExitValue.end()) 5584 return I->second; 5585 5586 if (BEs.ugt(MaxBruteForceIterations)) 5587 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5588 5589 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5590 5591 DenseMap<Instruction *, Constant *> CurrentIterVals; 5592 BasicBlock *Header = L->getHeader(); 5593 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5594 5595 // Since the loop is canonicalized, the PHI node must have two entries. One 5596 // entry must be a constant (coming in from outside of the loop), and the 5597 // second must be derived from the same PHI. 5598 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5599 PHINode *PHI = nullptr; 5600 for (BasicBlock::iterator I = Header->begin(); 5601 (PHI = dyn_cast<PHINode>(I)); ++I) { 5602 Constant *StartCST = 5603 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5604 if (!StartCST) continue; 5605 CurrentIterVals[PHI] = StartCST; 5606 } 5607 if (!CurrentIterVals.count(PN)) 5608 return RetVal = nullptr; 5609 5610 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5611 5612 // Execute the loop symbolically to determine the exit value. 5613 if (BEs.getActiveBits() >= 32) 5614 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5615 5616 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5617 unsigned IterationNum = 0; 5618 const DataLayout &DL = F.getParent()->getDataLayout(); 5619 for (; ; ++IterationNum) { 5620 if (IterationNum == NumIterations) 5621 return RetVal = CurrentIterVals[PN]; // Got exit value! 5622 5623 // Compute the value of the PHIs for the next iteration. 5624 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5625 DenseMap<Instruction *, Constant *> NextIterVals; 5626 Constant *NextPHI = 5627 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5628 if (!NextPHI) 5629 return nullptr; // Couldn't evaluate! 5630 NextIterVals[PN] = NextPHI; 5631 5632 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5633 5634 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5635 // cease to be able to evaluate one of them or if they stop evolving, 5636 // because that doesn't necessarily prevent us from computing PN. 5637 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5638 for (DenseMap<Instruction *, Constant *>::const_iterator 5639 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5640 PHINode *PHI = dyn_cast<PHINode>(I->first); 5641 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5642 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5643 } 5644 // We use two distinct loops because EvaluateExpression may invalidate any 5645 // iterators into CurrentIterVals. 5646 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5647 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5648 PHINode *PHI = I->first; 5649 Constant *&NextPHI = NextIterVals[PHI]; 5650 if (!NextPHI) { // Not already computed. 5651 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5652 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5653 } 5654 if (NextPHI != I->second) 5655 StoppedEvolving = false; 5656 } 5657 5658 // If all entries in CurrentIterVals == NextIterVals then we can stop 5659 // iterating, the loop can't continue to change. 5660 if (StoppedEvolving) 5661 return RetVal = CurrentIterVals[PN]; 5662 5663 CurrentIterVals.swap(NextIterVals); 5664 } 5665 } 5666 5667 /// ComputeExitCountExhaustively - If the loop is known to execute a 5668 /// constant number of times (the condition evolves only from constants), 5669 /// try to evaluate a few iterations of the loop until we get the exit 5670 /// condition gets a value of ExitWhen (true or false). If we cannot 5671 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5672 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5673 Value *Cond, 5674 bool ExitWhen) { 5675 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5676 if (!PN) return getCouldNotCompute(); 5677 5678 // If the loop is canonicalized, the PHI will have exactly two entries. 5679 // That's the only form we support here. 5680 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5681 5682 DenseMap<Instruction *, Constant *> CurrentIterVals; 5683 BasicBlock *Header = L->getHeader(); 5684 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5685 5686 // One entry must be a constant (coming in from outside of the loop), and the 5687 // second must be derived from the same PHI. 5688 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5689 PHINode *PHI = nullptr; 5690 for (BasicBlock::iterator I = Header->begin(); 5691 (PHI = dyn_cast<PHINode>(I)); ++I) { 5692 Constant *StartCST = 5693 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5694 if (!StartCST) continue; 5695 CurrentIterVals[PHI] = StartCST; 5696 } 5697 if (!CurrentIterVals.count(PN)) 5698 return getCouldNotCompute(); 5699 5700 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5701 // the loop symbolically to determine when the condition gets a value of 5702 // "ExitWhen". 5703 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5704 const DataLayout &DL = F.getParent()->getDataLayout(); 5705 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5706 ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>( 5707 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 5708 5709 // Couldn't symbolically evaluate. 5710 if (!CondVal) return getCouldNotCompute(); 5711 5712 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5713 ++NumBruteForceTripCountsComputed; 5714 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5715 } 5716 5717 // Update all the PHI nodes for the next iteration. 5718 DenseMap<Instruction *, Constant *> NextIterVals; 5719 5720 // Create a list of which PHIs we need to compute. We want to do this before 5721 // calling EvaluateExpression on them because that may invalidate iterators 5722 // into CurrentIterVals. 5723 SmallVector<PHINode *, 8> PHIsToCompute; 5724 for (DenseMap<Instruction *, Constant *>::const_iterator 5725 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5726 PHINode *PHI = dyn_cast<PHINode>(I->first); 5727 if (!PHI || PHI->getParent() != Header) continue; 5728 PHIsToCompute.push_back(PHI); 5729 } 5730 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5731 E = PHIsToCompute.end(); I != E; ++I) { 5732 PHINode *PHI = *I; 5733 Constant *&NextPHI = NextIterVals[PHI]; 5734 if (NextPHI) continue; // Already computed! 5735 5736 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5737 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5738 } 5739 CurrentIterVals.swap(NextIterVals); 5740 } 5741 5742 // Too many iterations were needed to evaluate. 5743 return getCouldNotCompute(); 5744 } 5745 5746 /// getSCEVAtScope - Return a SCEV expression for the specified value 5747 /// at the specified scope in the program. The L value specifies a loop 5748 /// nest to evaluate the expression at, where null is the top-level or a 5749 /// specified loop is immediately inside of the loop. 5750 /// 5751 /// This method can be used to compute the exit value for a variable defined 5752 /// in a loop by querying what the value will hold in the parent loop. 5753 /// 5754 /// In the case that a relevant loop exit value cannot be computed, the 5755 /// original value V is returned. 5756 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5757 // Check to see if we've folded this expression at this loop before. 5758 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5759 for (unsigned u = 0; u < Values.size(); u++) { 5760 if (Values[u].first == L) 5761 return Values[u].second ? Values[u].second : V; 5762 } 5763 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5764 // Otherwise compute it. 5765 const SCEV *C = computeSCEVAtScope(V, L); 5766 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5767 for (unsigned u = Values2.size(); u > 0; u--) { 5768 if (Values2[u - 1].first == L) { 5769 Values2[u - 1].second = C; 5770 break; 5771 } 5772 } 5773 return C; 5774 } 5775 5776 /// This builds up a Constant using the ConstantExpr interface. That way, we 5777 /// will return Constants for objects which aren't represented by a 5778 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5779 /// Returns NULL if the SCEV isn't representable as a Constant. 5780 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5781 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5782 case scCouldNotCompute: 5783 case scAddRecExpr: 5784 break; 5785 case scConstant: 5786 return cast<SCEVConstant>(V)->getValue(); 5787 case scUnknown: 5788 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5789 case scSignExtend: { 5790 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5791 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5792 return ConstantExpr::getSExt(CastOp, SS->getType()); 5793 break; 5794 } 5795 case scZeroExtend: { 5796 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5797 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5798 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5799 break; 5800 } 5801 case scTruncate: { 5802 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5803 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5804 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5805 break; 5806 } 5807 case scAddExpr: { 5808 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5809 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5810 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5811 unsigned AS = PTy->getAddressSpace(); 5812 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5813 C = ConstantExpr::getBitCast(C, DestPtrTy); 5814 } 5815 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5816 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5817 if (!C2) return nullptr; 5818 5819 // First pointer! 5820 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5821 unsigned AS = C2->getType()->getPointerAddressSpace(); 5822 std::swap(C, C2); 5823 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5824 // The offsets have been converted to bytes. We can add bytes to an 5825 // i8* by GEP with the byte count in the first index. 5826 C = ConstantExpr::getBitCast(C, DestPtrTy); 5827 } 5828 5829 // Don't bother trying to sum two pointers. We probably can't 5830 // statically compute a load that results from it anyway. 5831 if (C2->getType()->isPointerTy()) 5832 return nullptr; 5833 5834 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5835 if (PTy->getElementType()->isStructTy()) 5836 C2 = ConstantExpr::getIntegerCast( 5837 C2, Type::getInt32Ty(C->getContext()), true); 5838 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 5839 } else 5840 C = ConstantExpr::getAdd(C, C2); 5841 } 5842 return C; 5843 } 5844 break; 5845 } 5846 case scMulExpr: { 5847 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5848 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5849 // Don't bother with pointers at all. 5850 if (C->getType()->isPointerTy()) return nullptr; 5851 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5852 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5853 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 5854 C = ConstantExpr::getMul(C, C2); 5855 } 5856 return C; 5857 } 5858 break; 5859 } 5860 case scUDivExpr: { 5861 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5862 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5863 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5864 if (LHS->getType() == RHS->getType()) 5865 return ConstantExpr::getUDiv(LHS, RHS); 5866 break; 5867 } 5868 case scSMaxExpr: 5869 case scUMaxExpr: 5870 break; // TODO: smax, umax. 5871 } 5872 return nullptr; 5873 } 5874 5875 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5876 if (isa<SCEVConstant>(V)) return V; 5877 5878 // If this instruction is evolved from a constant-evolving PHI, compute the 5879 // exit value from the loop without using SCEVs. 5880 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5881 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5882 const Loop *LI = this->LI[I->getParent()]; 5883 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5884 if (PHINode *PN = dyn_cast<PHINode>(I)) 5885 if (PN->getParent() == LI->getHeader()) { 5886 // Okay, there is no closed form solution for the PHI node. Check 5887 // to see if the loop that contains it has a known backedge-taken 5888 // count. If so, we may be able to force computation of the exit 5889 // value. 5890 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5891 if (const SCEVConstant *BTCC = 5892 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5893 // Okay, we know how many times the containing loop executes. If 5894 // this is a constant evolving PHI node, get the final value at 5895 // the specified iteration number. 5896 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5897 BTCC->getValue()->getValue(), 5898 LI); 5899 if (RV) return getSCEV(RV); 5900 } 5901 } 5902 5903 // Okay, this is an expression that we cannot symbolically evaluate 5904 // into a SCEV. Check to see if it's possible to symbolically evaluate 5905 // the arguments into constants, and if so, try to constant propagate the 5906 // result. This is particularly useful for computing loop exit values. 5907 if (CanConstantFold(I)) { 5908 SmallVector<Constant *, 4> Operands; 5909 bool MadeImprovement = false; 5910 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5911 Value *Op = I->getOperand(i); 5912 if (Constant *C = dyn_cast<Constant>(Op)) { 5913 Operands.push_back(C); 5914 continue; 5915 } 5916 5917 // If any of the operands is non-constant and if they are 5918 // non-integer and non-pointer, don't even try to analyze them 5919 // with scev techniques. 5920 if (!isSCEVable(Op->getType())) 5921 return V; 5922 5923 const SCEV *OrigV = getSCEV(Op); 5924 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5925 MadeImprovement |= OrigV != OpV; 5926 5927 Constant *C = BuildConstantFromSCEV(OpV); 5928 if (!C) return V; 5929 if (C->getType() != Op->getType()) 5930 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5931 Op->getType(), 5932 false), 5933 C, Op->getType()); 5934 Operands.push_back(C); 5935 } 5936 5937 // Check to see if getSCEVAtScope actually made an improvement. 5938 if (MadeImprovement) { 5939 Constant *C = nullptr; 5940 const DataLayout &DL = F.getParent()->getDataLayout(); 5941 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5942 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5943 Operands[1], DL, &TLI); 5944 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5945 if (!LI->isVolatile()) 5946 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 5947 } else 5948 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 5949 DL, &TLI); 5950 if (!C) return V; 5951 return getSCEV(C); 5952 } 5953 } 5954 } 5955 5956 // This is some other type of SCEVUnknown, just return it. 5957 return V; 5958 } 5959 5960 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5961 // Avoid performing the look-up in the common case where the specified 5962 // expression has no loop-variant portions. 5963 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5964 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5965 if (OpAtScope != Comm->getOperand(i)) { 5966 // Okay, at least one of these operands is loop variant but might be 5967 // foldable. Build a new instance of the folded commutative expression. 5968 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5969 Comm->op_begin()+i); 5970 NewOps.push_back(OpAtScope); 5971 5972 for (++i; i != e; ++i) { 5973 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5974 NewOps.push_back(OpAtScope); 5975 } 5976 if (isa<SCEVAddExpr>(Comm)) 5977 return getAddExpr(NewOps); 5978 if (isa<SCEVMulExpr>(Comm)) 5979 return getMulExpr(NewOps); 5980 if (isa<SCEVSMaxExpr>(Comm)) 5981 return getSMaxExpr(NewOps); 5982 if (isa<SCEVUMaxExpr>(Comm)) 5983 return getUMaxExpr(NewOps); 5984 llvm_unreachable("Unknown commutative SCEV type!"); 5985 } 5986 } 5987 // If we got here, all operands are loop invariant. 5988 return Comm; 5989 } 5990 5991 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5992 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5993 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5994 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5995 return Div; // must be loop invariant 5996 return getUDivExpr(LHS, RHS); 5997 } 5998 5999 // If this is a loop recurrence for a loop that does not contain L, then we 6000 // are dealing with the final value computed by the loop. 6001 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6002 // First, attempt to evaluate each operand. 6003 // Avoid performing the look-up in the common case where the specified 6004 // expression has no loop-variant portions. 6005 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6006 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6007 if (OpAtScope == AddRec->getOperand(i)) 6008 continue; 6009 6010 // Okay, at least one of these operands is loop variant but might be 6011 // foldable. Build a new instance of the folded commutative expression. 6012 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6013 AddRec->op_begin()+i); 6014 NewOps.push_back(OpAtScope); 6015 for (++i; i != e; ++i) 6016 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6017 6018 const SCEV *FoldedRec = 6019 getAddRecExpr(NewOps, AddRec->getLoop(), 6020 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6021 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6022 // The addrec may be folded to a nonrecurrence, for example, if the 6023 // induction variable is multiplied by zero after constant folding. Go 6024 // ahead and return the folded value. 6025 if (!AddRec) 6026 return FoldedRec; 6027 break; 6028 } 6029 6030 // If the scope is outside the addrec's loop, evaluate it by using the 6031 // loop exit value of the addrec. 6032 if (!AddRec->getLoop()->contains(L)) { 6033 // To evaluate this recurrence, we need to know how many times the AddRec 6034 // loop iterates. Compute this now. 6035 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6036 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6037 6038 // Then, evaluate the AddRec. 6039 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6040 } 6041 6042 return AddRec; 6043 } 6044 6045 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6046 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6047 if (Op == Cast->getOperand()) 6048 return Cast; // must be loop invariant 6049 return getZeroExtendExpr(Op, Cast->getType()); 6050 } 6051 6052 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6053 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6054 if (Op == Cast->getOperand()) 6055 return Cast; // must be loop invariant 6056 return getSignExtendExpr(Op, Cast->getType()); 6057 } 6058 6059 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6060 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6061 if (Op == Cast->getOperand()) 6062 return Cast; // must be loop invariant 6063 return getTruncateExpr(Op, Cast->getType()); 6064 } 6065 6066 llvm_unreachable("Unknown SCEV type!"); 6067 } 6068 6069 /// getSCEVAtScope - This is a convenience function which does 6070 /// getSCEVAtScope(getSCEV(V), L). 6071 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6072 return getSCEVAtScope(getSCEV(V), L); 6073 } 6074 6075 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6076 /// following equation: 6077 /// 6078 /// A * X = B (mod N) 6079 /// 6080 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6081 /// A and B isn't important. 6082 /// 6083 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6084 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6085 ScalarEvolution &SE) { 6086 uint32_t BW = A.getBitWidth(); 6087 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6088 assert(A != 0 && "A must be non-zero."); 6089 6090 // 1. D = gcd(A, N) 6091 // 6092 // The gcd of A and N may have only one prime factor: 2. The number of 6093 // trailing zeros in A is its multiplicity 6094 uint32_t Mult2 = A.countTrailingZeros(); 6095 // D = 2^Mult2 6096 6097 // 2. Check if B is divisible by D. 6098 // 6099 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6100 // is not less than multiplicity of this prime factor for D. 6101 if (B.countTrailingZeros() < Mult2) 6102 return SE.getCouldNotCompute(); 6103 6104 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6105 // modulo (N / D). 6106 // 6107 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6108 // bit width during computations. 6109 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6110 APInt Mod(BW + 1, 0); 6111 Mod.setBit(BW - Mult2); // Mod = N / D 6112 APInt I = AD.multiplicativeInverse(Mod); 6113 6114 // 4. Compute the minimum unsigned root of the equation: 6115 // I * (B / D) mod (N / D) 6116 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6117 6118 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6119 // bits. 6120 return SE.getConstant(Result.trunc(BW)); 6121 } 6122 6123 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6124 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6125 /// might be the same) or two SCEVCouldNotCompute objects. 6126 /// 6127 static std::pair<const SCEV *,const SCEV *> 6128 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6129 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6130 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6131 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6132 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6133 6134 // We currently can only solve this if the coefficients are constants. 6135 if (!LC || !MC || !NC) { 6136 const SCEV *CNC = SE.getCouldNotCompute(); 6137 return std::make_pair(CNC, CNC); 6138 } 6139 6140 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6141 const APInt &L = LC->getValue()->getValue(); 6142 const APInt &M = MC->getValue()->getValue(); 6143 const APInt &N = NC->getValue()->getValue(); 6144 APInt Two(BitWidth, 2); 6145 APInt Four(BitWidth, 4); 6146 6147 { 6148 using namespace APIntOps; 6149 const APInt& C = L; 6150 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6151 // The B coefficient is M-N/2 6152 APInt B(M); 6153 B -= sdiv(N,Two); 6154 6155 // The A coefficient is N/2 6156 APInt A(N.sdiv(Two)); 6157 6158 // Compute the B^2-4ac term. 6159 APInt SqrtTerm(B); 6160 SqrtTerm *= B; 6161 SqrtTerm -= Four * (A * C); 6162 6163 if (SqrtTerm.isNegative()) { 6164 // The loop is provably infinite. 6165 const SCEV *CNC = SE.getCouldNotCompute(); 6166 return std::make_pair(CNC, CNC); 6167 } 6168 6169 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6170 // integer value or else APInt::sqrt() will assert. 6171 APInt SqrtVal(SqrtTerm.sqrt()); 6172 6173 // Compute the two solutions for the quadratic formula. 6174 // The divisions must be performed as signed divisions. 6175 APInt NegB(-B); 6176 APInt TwoA(A << 1); 6177 if (TwoA.isMinValue()) { 6178 const SCEV *CNC = SE.getCouldNotCompute(); 6179 return std::make_pair(CNC, CNC); 6180 } 6181 6182 LLVMContext &Context = SE.getContext(); 6183 6184 ConstantInt *Solution1 = 6185 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6186 ConstantInt *Solution2 = 6187 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6188 6189 return std::make_pair(SE.getConstant(Solution1), 6190 SE.getConstant(Solution2)); 6191 } // end APIntOps namespace 6192 } 6193 6194 /// HowFarToZero - Return the number of times a backedge comparing the specified 6195 /// value to zero will execute. If not computable, return CouldNotCompute. 6196 /// 6197 /// This is only used for loops with a "x != y" exit test. The exit condition is 6198 /// now expressed as a single expression, V = x-y. So the exit test is 6199 /// effectively V != 0. We know and take advantage of the fact that this 6200 /// expression only being used in a comparison by zero context. 6201 ScalarEvolution::ExitLimit 6202 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6203 // If the value is a constant 6204 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6205 // If the value is already zero, the branch will execute zero times. 6206 if (C->getValue()->isZero()) return C; 6207 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6208 } 6209 6210 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6211 if (!AddRec || AddRec->getLoop() != L) 6212 return getCouldNotCompute(); 6213 6214 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6215 // the quadratic equation to solve it. 6216 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6217 std::pair<const SCEV *,const SCEV *> Roots = 6218 SolveQuadraticEquation(AddRec, *this); 6219 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6220 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6221 if (R1 && R2) { 6222 #if 0 6223 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6224 << " sol#2: " << *R2 << "\n"; 6225 #endif 6226 // Pick the smallest positive root value. 6227 if (ConstantInt *CB = 6228 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6229 R1->getValue(), 6230 R2->getValue()))) { 6231 if (!CB->getZExtValue()) 6232 std::swap(R1, R2); // R1 is the minimum root now. 6233 6234 // We can only use this value if the chrec ends up with an exact zero 6235 // value at this index. When solving for "X*X != 5", for example, we 6236 // should not accept a root of 2. 6237 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6238 if (Val->isZero()) 6239 return R1; // We found a quadratic root! 6240 } 6241 } 6242 return getCouldNotCompute(); 6243 } 6244 6245 // Otherwise we can only handle this if it is affine. 6246 if (!AddRec->isAffine()) 6247 return getCouldNotCompute(); 6248 6249 // If this is an affine expression, the execution count of this branch is 6250 // the minimum unsigned root of the following equation: 6251 // 6252 // Start + Step*N = 0 (mod 2^BW) 6253 // 6254 // equivalent to: 6255 // 6256 // Step*N = -Start (mod 2^BW) 6257 // 6258 // where BW is the common bit width of Start and Step. 6259 6260 // Get the initial value for the loop. 6261 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6262 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6263 6264 // For now we handle only constant steps. 6265 // 6266 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6267 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6268 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6269 // We have not yet seen any such cases. 6270 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6271 if (!StepC || StepC->getValue()->equalsInt(0)) 6272 return getCouldNotCompute(); 6273 6274 // For positive steps (counting up until unsigned overflow): 6275 // N = -Start/Step (as unsigned) 6276 // For negative steps (counting down to zero): 6277 // N = Start/-Step 6278 // First compute the unsigned distance from zero in the direction of Step. 6279 bool CountDown = StepC->getValue()->getValue().isNegative(); 6280 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6281 6282 // Handle unitary steps, which cannot wraparound. 6283 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6284 // N = Distance (as unsigned) 6285 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6286 ConstantRange CR = getUnsignedRange(Start); 6287 const SCEV *MaxBECount; 6288 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6289 // When counting up, the worst starting value is 1, not 0. 6290 MaxBECount = CR.getUnsignedMax().isMinValue() 6291 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6292 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6293 else 6294 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6295 : -CR.getUnsignedMin()); 6296 return ExitLimit(Distance, MaxBECount); 6297 } 6298 6299 // As a special case, handle the instance where Step is a positive power of 6300 // two. In this case, determining whether Step divides Distance evenly can be 6301 // done by counting and comparing the number of trailing zeros of Step and 6302 // Distance. 6303 if (!CountDown) { 6304 const APInt &StepV = StepC->getValue()->getValue(); 6305 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6306 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6307 // case is not handled as this code is guarded by !CountDown. 6308 if (StepV.isPowerOf2() && 6309 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) 6310 return getUDivExactExpr(Distance, Step); 6311 } 6312 6313 // If the condition controls loop exit (the loop exits only if the expression 6314 // is true) and the addition is no-wrap we can use unsigned divide to 6315 // compute the backedge count. In this case, the step may not divide the 6316 // distance, but we don't care because if the condition is "missed" the loop 6317 // will have undefined behavior due to wrapping. 6318 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6319 const SCEV *Exact = 6320 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6321 return ExitLimit(Exact, Exact); 6322 } 6323 6324 // Then, try to solve the above equation provided that Start is constant. 6325 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6326 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6327 -StartC->getValue()->getValue(), 6328 *this); 6329 return getCouldNotCompute(); 6330 } 6331 6332 /// HowFarToNonZero - Return the number of times a backedge checking the 6333 /// specified value for nonzero will execute. If not computable, return 6334 /// CouldNotCompute 6335 ScalarEvolution::ExitLimit 6336 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6337 // Loops that look like: while (X == 0) are very strange indeed. We don't 6338 // handle them yet except for the trivial case. This could be expanded in the 6339 // future as needed. 6340 6341 // If the value is a constant, check to see if it is known to be non-zero 6342 // already. If so, the backedge will execute zero times. 6343 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6344 if (!C->getValue()->isNullValue()) 6345 return getConstant(C->getType(), 0); 6346 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6347 } 6348 6349 // We could implement others, but I really doubt anyone writes loops like 6350 // this, and if they did, they would already be constant folded. 6351 return getCouldNotCompute(); 6352 } 6353 6354 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6355 /// (which may not be an immediate predecessor) which has exactly one 6356 /// successor from which BB is reachable, or null if no such block is 6357 /// found. 6358 /// 6359 std::pair<BasicBlock *, BasicBlock *> 6360 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6361 // If the block has a unique predecessor, then there is no path from the 6362 // predecessor to the block that does not go through the direct edge 6363 // from the predecessor to the block. 6364 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6365 return std::make_pair(Pred, BB); 6366 6367 // A loop's header is defined to be a block that dominates the loop. 6368 // If the header has a unique predecessor outside the loop, it must be 6369 // a block that has exactly one successor that can reach the loop. 6370 if (Loop *L = LI.getLoopFor(BB)) 6371 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6372 6373 return std::pair<BasicBlock *, BasicBlock *>(); 6374 } 6375 6376 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6377 /// testing whether two expressions are equal, however for the purposes of 6378 /// looking for a condition guarding a loop, it can be useful to be a little 6379 /// more general, since a front-end may have replicated the controlling 6380 /// expression. 6381 /// 6382 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6383 // Quick check to see if they are the same SCEV. 6384 if (A == B) return true; 6385 6386 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6387 // two different instructions with the same value. Check for this case. 6388 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6389 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6390 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6391 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6392 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 6393 return true; 6394 6395 // Otherwise assume they may have a different value. 6396 return false; 6397 } 6398 6399 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6400 /// predicate Pred. Return true iff any changes were made. 6401 /// 6402 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6403 const SCEV *&LHS, const SCEV *&RHS, 6404 unsigned Depth) { 6405 bool Changed = false; 6406 6407 // If we hit the max recursion limit bail out. 6408 if (Depth >= 3) 6409 return false; 6410 6411 // Canonicalize a constant to the right side. 6412 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6413 // Check for both operands constant. 6414 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6415 if (ConstantExpr::getICmp(Pred, 6416 LHSC->getValue(), 6417 RHSC->getValue())->isNullValue()) 6418 goto trivially_false; 6419 else 6420 goto trivially_true; 6421 } 6422 // Otherwise swap the operands to put the constant on the right. 6423 std::swap(LHS, RHS); 6424 Pred = ICmpInst::getSwappedPredicate(Pred); 6425 Changed = true; 6426 } 6427 6428 // If we're comparing an addrec with a value which is loop-invariant in the 6429 // addrec's loop, put the addrec on the left. Also make a dominance check, 6430 // as both operands could be addrecs loop-invariant in each other's loop. 6431 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6432 const Loop *L = AR->getLoop(); 6433 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6434 std::swap(LHS, RHS); 6435 Pred = ICmpInst::getSwappedPredicate(Pred); 6436 Changed = true; 6437 } 6438 } 6439 6440 // If there's a constant operand, canonicalize comparisons with boundary 6441 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6442 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6443 const APInt &RA = RC->getValue()->getValue(); 6444 switch (Pred) { 6445 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6446 case ICmpInst::ICMP_EQ: 6447 case ICmpInst::ICMP_NE: 6448 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6449 if (!RA) 6450 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6451 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6452 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6453 ME->getOperand(0)->isAllOnesValue()) { 6454 RHS = AE->getOperand(1); 6455 LHS = ME->getOperand(1); 6456 Changed = true; 6457 } 6458 break; 6459 case ICmpInst::ICMP_UGE: 6460 if ((RA - 1).isMinValue()) { 6461 Pred = ICmpInst::ICMP_NE; 6462 RHS = getConstant(RA - 1); 6463 Changed = true; 6464 break; 6465 } 6466 if (RA.isMaxValue()) { 6467 Pred = ICmpInst::ICMP_EQ; 6468 Changed = true; 6469 break; 6470 } 6471 if (RA.isMinValue()) goto trivially_true; 6472 6473 Pred = ICmpInst::ICMP_UGT; 6474 RHS = getConstant(RA - 1); 6475 Changed = true; 6476 break; 6477 case ICmpInst::ICMP_ULE: 6478 if ((RA + 1).isMaxValue()) { 6479 Pred = ICmpInst::ICMP_NE; 6480 RHS = getConstant(RA + 1); 6481 Changed = true; 6482 break; 6483 } 6484 if (RA.isMinValue()) { 6485 Pred = ICmpInst::ICMP_EQ; 6486 Changed = true; 6487 break; 6488 } 6489 if (RA.isMaxValue()) goto trivially_true; 6490 6491 Pred = ICmpInst::ICMP_ULT; 6492 RHS = getConstant(RA + 1); 6493 Changed = true; 6494 break; 6495 case ICmpInst::ICMP_SGE: 6496 if ((RA - 1).isMinSignedValue()) { 6497 Pred = ICmpInst::ICMP_NE; 6498 RHS = getConstant(RA - 1); 6499 Changed = true; 6500 break; 6501 } 6502 if (RA.isMaxSignedValue()) { 6503 Pred = ICmpInst::ICMP_EQ; 6504 Changed = true; 6505 break; 6506 } 6507 if (RA.isMinSignedValue()) goto trivially_true; 6508 6509 Pred = ICmpInst::ICMP_SGT; 6510 RHS = getConstant(RA - 1); 6511 Changed = true; 6512 break; 6513 case ICmpInst::ICMP_SLE: 6514 if ((RA + 1).isMaxSignedValue()) { 6515 Pred = ICmpInst::ICMP_NE; 6516 RHS = getConstant(RA + 1); 6517 Changed = true; 6518 break; 6519 } 6520 if (RA.isMinSignedValue()) { 6521 Pred = ICmpInst::ICMP_EQ; 6522 Changed = true; 6523 break; 6524 } 6525 if (RA.isMaxSignedValue()) goto trivially_true; 6526 6527 Pred = ICmpInst::ICMP_SLT; 6528 RHS = getConstant(RA + 1); 6529 Changed = true; 6530 break; 6531 case ICmpInst::ICMP_UGT: 6532 if (RA.isMinValue()) { 6533 Pred = ICmpInst::ICMP_NE; 6534 Changed = true; 6535 break; 6536 } 6537 if ((RA + 1).isMaxValue()) { 6538 Pred = ICmpInst::ICMP_EQ; 6539 RHS = getConstant(RA + 1); 6540 Changed = true; 6541 break; 6542 } 6543 if (RA.isMaxValue()) goto trivially_false; 6544 break; 6545 case ICmpInst::ICMP_ULT: 6546 if (RA.isMaxValue()) { 6547 Pred = ICmpInst::ICMP_NE; 6548 Changed = true; 6549 break; 6550 } 6551 if ((RA - 1).isMinValue()) { 6552 Pred = ICmpInst::ICMP_EQ; 6553 RHS = getConstant(RA - 1); 6554 Changed = true; 6555 break; 6556 } 6557 if (RA.isMinValue()) goto trivially_false; 6558 break; 6559 case ICmpInst::ICMP_SGT: 6560 if (RA.isMinSignedValue()) { 6561 Pred = ICmpInst::ICMP_NE; 6562 Changed = true; 6563 break; 6564 } 6565 if ((RA + 1).isMaxSignedValue()) { 6566 Pred = ICmpInst::ICMP_EQ; 6567 RHS = getConstant(RA + 1); 6568 Changed = true; 6569 break; 6570 } 6571 if (RA.isMaxSignedValue()) goto trivially_false; 6572 break; 6573 case ICmpInst::ICMP_SLT: 6574 if (RA.isMaxSignedValue()) { 6575 Pred = ICmpInst::ICMP_NE; 6576 Changed = true; 6577 break; 6578 } 6579 if ((RA - 1).isMinSignedValue()) { 6580 Pred = ICmpInst::ICMP_EQ; 6581 RHS = getConstant(RA - 1); 6582 Changed = true; 6583 break; 6584 } 6585 if (RA.isMinSignedValue()) goto trivially_false; 6586 break; 6587 } 6588 } 6589 6590 // Check for obvious equality. 6591 if (HasSameValue(LHS, RHS)) { 6592 if (ICmpInst::isTrueWhenEqual(Pred)) 6593 goto trivially_true; 6594 if (ICmpInst::isFalseWhenEqual(Pred)) 6595 goto trivially_false; 6596 } 6597 6598 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6599 // adding or subtracting 1 from one of the operands. 6600 switch (Pred) { 6601 case ICmpInst::ICMP_SLE: 6602 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6603 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6604 SCEV::FlagNSW); 6605 Pred = ICmpInst::ICMP_SLT; 6606 Changed = true; 6607 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6608 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6609 SCEV::FlagNSW); 6610 Pred = ICmpInst::ICMP_SLT; 6611 Changed = true; 6612 } 6613 break; 6614 case ICmpInst::ICMP_SGE: 6615 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6616 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6617 SCEV::FlagNSW); 6618 Pred = ICmpInst::ICMP_SGT; 6619 Changed = true; 6620 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6621 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6622 SCEV::FlagNSW); 6623 Pred = ICmpInst::ICMP_SGT; 6624 Changed = true; 6625 } 6626 break; 6627 case ICmpInst::ICMP_ULE: 6628 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6629 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6630 SCEV::FlagNUW); 6631 Pred = ICmpInst::ICMP_ULT; 6632 Changed = true; 6633 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6634 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6635 SCEV::FlagNUW); 6636 Pred = ICmpInst::ICMP_ULT; 6637 Changed = true; 6638 } 6639 break; 6640 case ICmpInst::ICMP_UGE: 6641 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6642 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6643 SCEV::FlagNUW); 6644 Pred = ICmpInst::ICMP_UGT; 6645 Changed = true; 6646 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6647 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6648 SCEV::FlagNUW); 6649 Pred = ICmpInst::ICMP_UGT; 6650 Changed = true; 6651 } 6652 break; 6653 default: 6654 break; 6655 } 6656 6657 // TODO: More simplifications are possible here. 6658 6659 // Recursively simplify until we either hit a recursion limit or nothing 6660 // changes. 6661 if (Changed) 6662 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6663 6664 return Changed; 6665 6666 trivially_true: 6667 // Return 0 == 0. 6668 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6669 Pred = ICmpInst::ICMP_EQ; 6670 return true; 6671 6672 trivially_false: 6673 // Return 0 != 0. 6674 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6675 Pred = ICmpInst::ICMP_NE; 6676 return true; 6677 } 6678 6679 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6680 return getSignedRange(S).getSignedMax().isNegative(); 6681 } 6682 6683 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6684 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6685 } 6686 6687 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6688 return !getSignedRange(S).getSignedMin().isNegative(); 6689 } 6690 6691 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6692 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6693 } 6694 6695 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6696 return isKnownNegative(S) || isKnownPositive(S); 6697 } 6698 6699 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6700 const SCEV *LHS, const SCEV *RHS) { 6701 // Canonicalize the inputs first. 6702 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6703 6704 // If LHS or RHS is an addrec, check to see if the condition is true in 6705 // every iteration of the loop. 6706 // If LHS and RHS are both addrec, both conditions must be true in 6707 // every iteration of the loop. 6708 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6709 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6710 bool LeftGuarded = false; 6711 bool RightGuarded = false; 6712 if (LAR) { 6713 const Loop *L = LAR->getLoop(); 6714 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6715 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6716 if (!RAR) return true; 6717 LeftGuarded = true; 6718 } 6719 } 6720 if (RAR) { 6721 const Loop *L = RAR->getLoop(); 6722 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6723 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6724 if (!LAR) return true; 6725 RightGuarded = true; 6726 } 6727 } 6728 if (LeftGuarded && RightGuarded) 6729 return true; 6730 6731 // Otherwise see what can be done with known constant ranges. 6732 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6733 } 6734 6735 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 6736 ICmpInst::Predicate Pred, 6737 bool &Increasing) { 6738 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 6739 6740 #ifndef NDEBUG 6741 // Verify an invariant: inverting the predicate should turn a monotonically 6742 // increasing change to a monotonically decreasing one, and vice versa. 6743 bool IncreasingSwapped; 6744 bool ResultSwapped = isMonotonicPredicateImpl( 6745 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 6746 6747 assert(Result == ResultSwapped && "should be able to analyze both!"); 6748 if (ResultSwapped) 6749 assert(Increasing == !IncreasingSwapped && 6750 "monotonicity should flip as we flip the predicate"); 6751 #endif 6752 6753 return Result; 6754 } 6755 6756 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 6757 ICmpInst::Predicate Pred, 6758 bool &Increasing) { 6759 6760 // A zero step value for LHS means the induction variable is essentially a 6761 // loop invariant value. We don't really depend on the predicate actually 6762 // flipping from false to true (for increasing predicates, and the other way 6763 // around for decreasing predicates), all we care about is that *if* the 6764 // predicate changes then it only changes from false to true. 6765 // 6766 // A zero step value in itself is not very useful, but there may be places 6767 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 6768 // as general as possible. 6769 6770 switch (Pred) { 6771 default: 6772 return false; // Conservative answer 6773 6774 case ICmpInst::ICMP_UGT: 6775 case ICmpInst::ICMP_UGE: 6776 case ICmpInst::ICMP_ULT: 6777 case ICmpInst::ICMP_ULE: 6778 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 6779 return false; 6780 6781 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 6782 return true; 6783 6784 case ICmpInst::ICMP_SGT: 6785 case ICmpInst::ICMP_SGE: 6786 case ICmpInst::ICMP_SLT: 6787 case ICmpInst::ICMP_SLE: { 6788 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 6789 return false; 6790 6791 const SCEV *Step = LHS->getStepRecurrence(*this); 6792 6793 if (isKnownNonNegative(Step)) { 6794 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 6795 return true; 6796 } 6797 6798 if (isKnownNonPositive(Step)) { 6799 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 6800 return true; 6801 } 6802 6803 return false; 6804 } 6805 6806 } 6807 6808 llvm_unreachable("switch has default clause!"); 6809 } 6810 6811 bool ScalarEvolution::isLoopInvariantPredicate( 6812 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 6813 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 6814 const SCEV *&InvariantRHS) { 6815 6816 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 6817 if (!isLoopInvariant(RHS, L)) { 6818 if (!isLoopInvariant(LHS, L)) 6819 return false; 6820 6821 std::swap(LHS, RHS); 6822 Pred = ICmpInst::getSwappedPredicate(Pred); 6823 } 6824 6825 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 6826 if (!ArLHS || ArLHS->getLoop() != L) 6827 return false; 6828 6829 bool Increasing; 6830 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 6831 return false; 6832 6833 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 6834 // true as the loop iterates, and the backedge is control dependent on 6835 // "ArLHS `Pred` RHS" == true then we can reason as follows: 6836 // 6837 // * if the predicate was false in the first iteration then the predicate 6838 // is never evaluated again, since the loop exits without taking the 6839 // backedge. 6840 // * if the predicate was true in the first iteration then it will 6841 // continue to be true for all future iterations since it is 6842 // monotonically increasing. 6843 // 6844 // For both the above possibilities, we can replace the loop varying 6845 // predicate with its value on the first iteration of the loop (which is 6846 // loop invariant). 6847 // 6848 // A similar reasoning applies for a monotonically decreasing predicate, by 6849 // replacing true with false and false with true in the above two bullets. 6850 6851 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 6852 6853 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 6854 return false; 6855 6856 InvariantPred = Pred; 6857 InvariantLHS = ArLHS->getStart(); 6858 InvariantRHS = RHS; 6859 return true; 6860 } 6861 6862 bool 6863 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6864 const SCEV *LHS, const SCEV *RHS) { 6865 if (HasSameValue(LHS, RHS)) 6866 return ICmpInst::isTrueWhenEqual(Pred); 6867 6868 // This code is split out from isKnownPredicate because it is called from 6869 // within isLoopEntryGuardedByCond. 6870 switch (Pred) { 6871 default: 6872 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6873 case ICmpInst::ICMP_SGT: 6874 std::swap(LHS, RHS); 6875 case ICmpInst::ICMP_SLT: { 6876 ConstantRange LHSRange = getSignedRange(LHS); 6877 ConstantRange RHSRange = getSignedRange(RHS); 6878 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6879 return true; 6880 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6881 return false; 6882 break; 6883 } 6884 case ICmpInst::ICMP_SGE: 6885 std::swap(LHS, RHS); 6886 case ICmpInst::ICMP_SLE: { 6887 ConstantRange LHSRange = getSignedRange(LHS); 6888 ConstantRange RHSRange = getSignedRange(RHS); 6889 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6890 return true; 6891 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6892 return false; 6893 break; 6894 } 6895 case ICmpInst::ICMP_UGT: 6896 std::swap(LHS, RHS); 6897 case ICmpInst::ICMP_ULT: { 6898 ConstantRange LHSRange = getUnsignedRange(LHS); 6899 ConstantRange RHSRange = getUnsignedRange(RHS); 6900 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6901 return true; 6902 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6903 return false; 6904 break; 6905 } 6906 case ICmpInst::ICMP_UGE: 6907 std::swap(LHS, RHS); 6908 case ICmpInst::ICMP_ULE: { 6909 ConstantRange LHSRange = getUnsignedRange(LHS); 6910 ConstantRange RHSRange = getUnsignedRange(RHS); 6911 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6912 return true; 6913 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6914 return false; 6915 break; 6916 } 6917 case ICmpInst::ICMP_NE: { 6918 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6919 return true; 6920 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6921 return true; 6922 6923 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6924 if (isKnownNonZero(Diff)) 6925 return true; 6926 break; 6927 } 6928 case ICmpInst::ICMP_EQ: 6929 // The check at the top of the function catches the case where 6930 // the values are known to be equal. 6931 break; 6932 } 6933 return false; 6934 } 6935 6936 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6937 /// protected by a conditional between LHS and RHS. This is used to 6938 /// to eliminate casts. 6939 bool 6940 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6941 ICmpInst::Predicate Pred, 6942 const SCEV *LHS, const SCEV *RHS) { 6943 // Interpret a null as meaning no loop, where there is obviously no guard 6944 // (interprocedural conditions notwithstanding). 6945 if (!L) return true; 6946 6947 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 6948 6949 BasicBlock *Latch = L->getLoopLatch(); 6950 if (!Latch) 6951 return false; 6952 6953 BranchInst *LoopContinuePredicate = 6954 dyn_cast<BranchInst>(Latch->getTerminator()); 6955 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 6956 isImpliedCond(Pred, LHS, RHS, 6957 LoopContinuePredicate->getCondition(), 6958 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 6959 return true; 6960 6961 // Check conditions due to any @llvm.assume intrinsics. 6962 for (auto &AssumeVH : AC.assumptions()) { 6963 if (!AssumeVH) 6964 continue; 6965 auto *CI = cast<CallInst>(AssumeVH); 6966 if (!DT.dominates(CI, Latch->getTerminator())) 6967 continue; 6968 6969 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 6970 return true; 6971 } 6972 6973 struct ClearWalkingBEDominatingCondsOnExit { 6974 ScalarEvolution &SE; 6975 6976 explicit ClearWalkingBEDominatingCondsOnExit(ScalarEvolution &SE) 6977 : SE(SE){} 6978 6979 ~ClearWalkingBEDominatingCondsOnExit() { 6980 SE.WalkingBEDominatingConds = false; 6981 } 6982 }; 6983 6984 // We don't want more than one activation of the following loop on the stack 6985 // -- that can lead to O(n!) time complexity. 6986 if (WalkingBEDominatingConds) 6987 return false; 6988 6989 WalkingBEDominatingConds = true; 6990 ClearWalkingBEDominatingCondsOnExit ClearOnExit(*this); 6991 6992 // If the loop is not reachable from the entry block, we risk running into an 6993 // infinite loop as we walk up into the dom tree. These loops do not matter 6994 // anyway, so we just return a conservative answer when we see them. 6995 if (!DT.isReachableFromEntry(L->getHeader())) 6996 return false; 6997 6998 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 6999 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7000 7001 assert(DTN && "should reach the loop header before reaching the root!"); 7002 7003 BasicBlock *BB = DTN->getBlock(); 7004 BasicBlock *PBB = BB->getSinglePredecessor(); 7005 if (!PBB) 7006 continue; 7007 7008 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7009 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7010 continue; 7011 7012 Value *Condition = ContinuePredicate->getCondition(); 7013 7014 // If we have an edge `E` within the loop body that dominates the only 7015 // latch, the condition guarding `E` also guards the backedge. This 7016 // reasoning works only for loops with a single latch. 7017 7018 BasicBlockEdge DominatingEdge(PBB, BB); 7019 if (DominatingEdge.isSingleEdge()) { 7020 // We're constructively (and conservatively) enumerating edges within the 7021 // loop body that dominate the latch. The dominator tree better agree 7022 // with us on this: 7023 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7024 7025 if (isImpliedCond(Pred, LHS, RHS, Condition, 7026 BB != ContinuePredicate->getSuccessor(0))) 7027 return true; 7028 } 7029 } 7030 7031 return false; 7032 } 7033 7034 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7035 /// by a conditional between LHS and RHS. This is used to help avoid max 7036 /// expressions in loop trip counts, and to eliminate casts. 7037 bool 7038 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7039 ICmpInst::Predicate Pred, 7040 const SCEV *LHS, const SCEV *RHS) { 7041 // Interpret a null as meaning no loop, where there is obviously no guard 7042 // (interprocedural conditions notwithstanding). 7043 if (!L) return false; 7044 7045 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7046 7047 // Starting at the loop predecessor, climb up the predecessor chain, as long 7048 // as there are predecessors that can be found that have unique successors 7049 // leading to the original header. 7050 for (std::pair<BasicBlock *, BasicBlock *> 7051 Pair(L->getLoopPredecessor(), L->getHeader()); 7052 Pair.first; 7053 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7054 7055 BranchInst *LoopEntryPredicate = 7056 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7057 if (!LoopEntryPredicate || 7058 LoopEntryPredicate->isUnconditional()) 7059 continue; 7060 7061 if (isImpliedCond(Pred, LHS, RHS, 7062 LoopEntryPredicate->getCondition(), 7063 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7064 return true; 7065 } 7066 7067 // Check conditions due to any @llvm.assume intrinsics. 7068 for (auto &AssumeVH : AC.assumptions()) { 7069 if (!AssumeVH) 7070 continue; 7071 auto *CI = cast<CallInst>(AssumeVH); 7072 if (!DT.dominates(CI, L->getHeader())) 7073 continue; 7074 7075 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7076 return true; 7077 } 7078 7079 return false; 7080 } 7081 7082 /// RAII wrapper to prevent recursive application of isImpliedCond. 7083 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7084 /// currently evaluating isImpliedCond. 7085 struct MarkPendingLoopPredicate { 7086 Value *Cond; 7087 DenseSet<Value*> &LoopPreds; 7088 bool Pending; 7089 7090 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7091 : Cond(C), LoopPreds(LP) { 7092 Pending = !LoopPreds.insert(Cond).second; 7093 } 7094 ~MarkPendingLoopPredicate() { 7095 if (!Pending) 7096 LoopPreds.erase(Cond); 7097 } 7098 }; 7099 7100 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7101 /// and RHS is true whenever the given Cond value evaluates to true. 7102 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7103 const SCEV *LHS, const SCEV *RHS, 7104 Value *FoundCondValue, 7105 bool Inverse) { 7106 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7107 if (Mark.Pending) 7108 return false; 7109 7110 // Recursively handle And and Or conditions. 7111 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7112 if (BO->getOpcode() == Instruction::And) { 7113 if (!Inverse) 7114 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7115 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7116 } else if (BO->getOpcode() == Instruction::Or) { 7117 if (Inverse) 7118 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7119 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7120 } 7121 } 7122 7123 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7124 if (!ICI) return false; 7125 7126 // Now that we found a conditional branch that dominates the loop or controls 7127 // the loop latch. Check to see if it is the comparison we are looking for. 7128 ICmpInst::Predicate FoundPred; 7129 if (Inverse) 7130 FoundPred = ICI->getInversePredicate(); 7131 else 7132 FoundPred = ICI->getPredicate(); 7133 7134 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7135 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7136 7137 // Balance the types. 7138 if (getTypeSizeInBits(LHS->getType()) < 7139 getTypeSizeInBits(FoundLHS->getType())) { 7140 if (CmpInst::isSigned(Pred)) { 7141 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7142 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7143 } else { 7144 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7145 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7146 } 7147 } else if (getTypeSizeInBits(LHS->getType()) > 7148 getTypeSizeInBits(FoundLHS->getType())) { 7149 if (CmpInst::isSigned(FoundPred)) { 7150 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7151 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7152 } else { 7153 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7154 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7155 } 7156 } 7157 7158 // Canonicalize the query to match the way instcombine will have 7159 // canonicalized the comparison. 7160 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7161 if (LHS == RHS) 7162 return CmpInst::isTrueWhenEqual(Pred); 7163 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7164 if (FoundLHS == FoundRHS) 7165 return CmpInst::isFalseWhenEqual(FoundPred); 7166 7167 // Check to see if we can make the LHS or RHS match. 7168 if (LHS == FoundRHS || RHS == FoundLHS) { 7169 if (isa<SCEVConstant>(RHS)) { 7170 std::swap(FoundLHS, FoundRHS); 7171 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7172 } else { 7173 std::swap(LHS, RHS); 7174 Pred = ICmpInst::getSwappedPredicate(Pred); 7175 } 7176 } 7177 7178 // Check whether the found predicate is the same as the desired predicate. 7179 if (FoundPred == Pred) 7180 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7181 7182 // Check whether swapping the found predicate makes it the same as the 7183 // desired predicate. 7184 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7185 if (isa<SCEVConstant>(RHS)) 7186 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7187 else 7188 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7189 RHS, LHS, FoundLHS, FoundRHS); 7190 } 7191 7192 // Check if we can make progress by sharpening ranges. 7193 if (FoundPred == ICmpInst::ICMP_NE && 7194 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7195 7196 const SCEVConstant *C = nullptr; 7197 const SCEV *V = nullptr; 7198 7199 if (isa<SCEVConstant>(FoundLHS)) { 7200 C = cast<SCEVConstant>(FoundLHS); 7201 V = FoundRHS; 7202 } else { 7203 C = cast<SCEVConstant>(FoundRHS); 7204 V = FoundLHS; 7205 } 7206 7207 // The guarding predicate tells us that C != V. If the known range 7208 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7209 // range we consider has to correspond to same signedness as the 7210 // predicate we're interested in folding. 7211 7212 APInt Min = ICmpInst::isSigned(Pred) ? 7213 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7214 7215 if (Min == C->getValue()->getValue()) { 7216 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7217 // This is true even if (Min + 1) wraps around -- in case of 7218 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7219 7220 APInt SharperMin = Min + 1; 7221 7222 switch (Pred) { 7223 case ICmpInst::ICMP_SGE: 7224 case ICmpInst::ICMP_UGE: 7225 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7226 // RHS, we're done. 7227 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7228 getConstant(SharperMin))) 7229 return true; 7230 7231 case ICmpInst::ICMP_SGT: 7232 case ICmpInst::ICMP_UGT: 7233 // We know from the range information that (V `Pred` Min || 7234 // V == Min). We know from the guarding condition that !(V 7235 // == Min). This gives us 7236 // 7237 // V `Pred` Min || V == Min && !(V == Min) 7238 // => V `Pred` Min 7239 // 7240 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7241 7242 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7243 return true; 7244 7245 default: 7246 // No change 7247 break; 7248 } 7249 } 7250 } 7251 7252 // Check whether the actual condition is beyond sufficient. 7253 if (FoundPred == ICmpInst::ICMP_EQ) 7254 if (ICmpInst::isTrueWhenEqual(Pred)) 7255 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7256 return true; 7257 if (Pred == ICmpInst::ICMP_NE) 7258 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7259 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7260 return true; 7261 7262 // Otherwise assume the worst. 7263 return false; 7264 } 7265 7266 /// isImpliedCondOperands - Test whether the condition described by Pred, 7267 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7268 /// and FoundRHS is true. 7269 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7270 const SCEV *LHS, const SCEV *RHS, 7271 const SCEV *FoundLHS, 7272 const SCEV *FoundRHS) { 7273 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7274 return true; 7275 7276 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7277 FoundLHS, FoundRHS) || 7278 // ~x < ~y --> x > y 7279 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7280 getNotSCEV(FoundRHS), 7281 getNotSCEV(FoundLHS)); 7282 } 7283 7284 7285 /// If Expr computes ~A, return A else return nullptr 7286 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7287 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7288 if (!Add || Add->getNumOperands() != 2) return nullptr; 7289 7290 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0)); 7291 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue())) 7292 return nullptr; 7293 7294 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7295 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr; 7296 7297 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0)); 7298 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue())) 7299 return nullptr; 7300 7301 return AddRHS->getOperand(1); 7302 } 7303 7304 7305 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7306 template<typename MaxExprType> 7307 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7308 const SCEV *Candidate) { 7309 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7310 if (!MaxExpr) return false; 7311 7312 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7313 return It != MaxExpr->op_end(); 7314 } 7315 7316 7317 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7318 template<typename MaxExprType> 7319 static bool IsMinConsistingOf(ScalarEvolution &SE, 7320 const SCEV *MaybeMinExpr, 7321 const SCEV *Candidate) { 7322 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7323 if (!MaybeMaxExpr) 7324 return false; 7325 7326 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7327 } 7328 7329 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7330 ICmpInst::Predicate Pred, 7331 const SCEV *LHS, const SCEV *RHS) { 7332 7333 // If both sides are affine addrecs for the same loop, with equal 7334 // steps, and we know the recurrences don't wrap, then we only 7335 // need to check the predicate on the starting values. 7336 7337 if (!ICmpInst::isRelational(Pred)) 7338 return false; 7339 7340 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7341 if (!LAR) 7342 return false; 7343 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7344 if (!RAR) 7345 return false; 7346 if (LAR->getLoop() != RAR->getLoop()) 7347 return false; 7348 if (!LAR->isAffine() || !RAR->isAffine()) 7349 return false; 7350 7351 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 7352 return false; 7353 7354 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 7355 SCEV::FlagNSW : SCEV::FlagNUW; 7356 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 7357 return false; 7358 7359 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 7360 } 7361 7362 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7363 /// expression? 7364 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7365 ICmpInst::Predicate Pred, 7366 const SCEV *LHS, const SCEV *RHS) { 7367 switch (Pred) { 7368 default: 7369 return false; 7370 7371 case ICmpInst::ICMP_SGE: 7372 std::swap(LHS, RHS); 7373 // fall through 7374 case ICmpInst::ICMP_SLE: 7375 return 7376 // min(A, ...) <= A 7377 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7378 // A <= max(A, ...) 7379 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7380 7381 case ICmpInst::ICMP_UGE: 7382 std::swap(LHS, RHS); 7383 // fall through 7384 case ICmpInst::ICMP_ULE: 7385 return 7386 // min(A, ...) <= A 7387 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7388 // A <= max(A, ...) 7389 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7390 } 7391 7392 llvm_unreachable("covered switch fell through?!"); 7393 } 7394 7395 /// isImpliedCondOperandsHelper - Test whether the condition described by 7396 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7397 /// FoundLHS, and FoundRHS is true. 7398 bool 7399 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7400 const SCEV *LHS, const SCEV *RHS, 7401 const SCEV *FoundLHS, 7402 const SCEV *FoundRHS) { 7403 auto IsKnownPredicateFull = 7404 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7405 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7406 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 7407 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS); 7408 }; 7409 7410 switch (Pred) { 7411 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7412 case ICmpInst::ICMP_EQ: 7413 case ICmpInst::ICMP_NE: 7414 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7415 return true; 7416 break; 7417 case ICmpInst::ICMP_SLT: 7418 case ICmpInst::ICMP_SLE: 7419 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7420 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7421 return true; 7422 break; 7423 case ICmpInst::ICMP_SGT: 7424 case ICmpInst::ICMP_SGE: 7425 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7426 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7427 return true; 7428 break; 7429 case ICmpInst::ICMP_ULT: 7430 case ICmpInst::ICMP_ULE: 7431 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7432 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7433 return true; 7434 break; 7435 case ICmpInst::ICMP_UGT: 7436 case ICmpInst::ICMP_UGE: 7437 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7438 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7439 return true; 7440 break; 7441 } 7442 7443 return false; 7444 } 7445 7446 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7447 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7448 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7449 const SCEV *LHS, 7450 const SCEV *RHS, 7451 const SCEV *FoundLHS, 7452 const SCEV *FoundRHS) { 7453 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7454 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7455 // reduce the compile time impact of this optimization. 7456 return false; 7457 7458 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7459 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7460 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7461 return false; 7462 7463 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7464 7465 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7466 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7467 ConstantRange FoundLHSRange = 7468 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7469 7470 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7471 // for `LHS`: 7472 APInt Addend = 7473 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7474 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7475 7476 // We can also compute the range of values for `LHS` that satisfy the 7477 // consequent, "`LHS` `Pred` `RHS`": 7478 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7479 ConstantRange SatisfyingLHSRange = 7480 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7481 7482 // The antecedent implies the consequent if every value of `LHS` that 7483 // satisfies the antecedent also satisfies the consequent. 7484 return SatisfyingLHSRange.contains(LHSRange); 7485 } 7486 7487 // Verify if an linear IV with positive stride can overflow when in a 7488 // less-than comparison, knowing the invariant term of the comparison, the 7489 // stride and the knowledge of NSW/NUW flags on the recurrence. 7490 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7491 bool IsSigned, bool NoWrap) { 7492 if (NoWrap) return false; 7493 7494 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7495 const SCEV *One = getConstant(Stride->getType(), 1); 7496 7497 if (IsSigned) { 7498 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7499 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7500 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7501 .getSignedMax(); 7502 7503 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7504 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7505 } 7506 7507 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7508 APInt MaxValue = APInt::getMaxValue(BitWidth); 7509 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7510 .getUnsignedMax(); 7511 7512 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7513 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7514 } 7515 7516 // Verify if an linear IV with negative stride can overflow when in a 7517 // greater-than comparison, knowing the invariant term of the comparison, 7518 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7519 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7520 bool IsSigned, bool NoWrap) { 7521 if (NoWrap) return false; 7522 7523 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7524 const SCEV *One = getConstant(Stride->getType(), 1); 7525 7526 if (IsSigned) { 7527 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7528 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7529 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7530 .getSignedMax(); 7531 7532 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7533 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7534 } 7535 7536 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 7537 APInt MinValue = APInt::getMinValue(BitWidth); 7538 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7539 .getUnsignedMax(); 7540 7541 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 7542 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 7543 } 7544 7545 // Compute the backedge taken count knowing the interval difference, the 7546 // stride and presence of the equality in the comparison. 7547 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 7548 bool Equality) { 7549 const SCEV *One = getConstant(Step->getType(), 1); 7550 Delta = Equality ? getAddExpr(Delta, Step) 7551 : getAddExpr(Delta, getMinusSCEV(Step, One)); 7552 return getUDivExpr(Delta, Step); 7553 } 7554 7555 /// HowManyLessThans - Return the number of times a backedge containing the 7556 /// specified less-than comparison will execute. If not computable, return 7557 /// CouldNotCompute. 7558 /// 7559 /// @param ControlsExit is true when the LHS < RHS condition directly controls 7560 /// the branch (loops exits only if condition is true). In this case, we can use 7561 /// NoWrapFlags to skip overflow checks. 7562 ScalarEvolution::ExitLimit 7563 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 7564 const Loop *L, bool IsSigned, 7565 bool ControlsExit) { 7566 // We handle only IV < Invariant 7567 if (!isLoopInvariant(RHS, L)) 7568 return getCouldNotCompute(); 7569 7570 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7571 7572 // Avoid weird loops 7573 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7574 return getCouldNotCompute(); 7575 7576 bool NoWrap = ControlsExit && 7577 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7578 7579 const SCEV *Stride = IV->getStepRecurrence(*this); 7580 7581 // Avoid negative or zero stride values 7582 if (!isKnownPositive(Stride)) 7583 return getCouldNotCompute(); 7584 7585 // Avoid proven overflow cases: this will ensure that the backedge taken count 7586 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7587 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7588 // behaviors like the case of C language. 7589 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 7590 return getCouldNotCompute(); 7591 7592 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 7593 : ICmpInst::ICMP_ULT; 7594 const SCEV *Start = IV->getStart(); 7595 const SCEV *End = RHS; 7596 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 7597 const SCEV *Diff = getMinusSCEV(RHS, Start); 7598 // If we have NoWrap set, then we can assume that the increment won't 7599 // overflow, in which case if RHS - Start is a constant, we don't need to 7600 // do a max operation since we can just figure it out statically 7601 if (NoWrap && isa<SCEVConstant>(Diff)) { 7602 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7603 if (D.isNegative()) 7604 End = Start; 7605 } else 7606 End = IsSigned ? getSMaxExpr(RHS, Start) 7607 : getUMaxExpr(RHS, Start); 7608 } 7609 7610 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 7611 7612 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 7613 : getUnsignedRange(Start).getUnsignedMin(); 7614 7615 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7616 : getUnsignedRange(Stride).getUnsignedMin(); 7617 7618 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7619 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 7620 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 7621 7622 // Although End can be a MAX expression we estimate MaxEnd considering only 7623 // the case End = RHS. This is safe because in the other case (End - Start) 7624 // is zero, leading to a zero maximum backedge taken count. 7625 APInt MaxEnd = 7626 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 7627 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 7628 7629 const SCEV *MaxBECount; 7630 if (isa<SCEVConstant>(BECount)) 7631 MaxBECount = BECount; 7632 else 7633 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 7634 getConstant(MinStride), false); 7635 7636 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7637 MaxBECount = BECount; 7638 7639 return ExitLimit(BECount, MaxBECount); 7640 } 7641 7642 ScalarEvolution::ExitLimit 7643 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 7644 const Loop *L, bool IsSigned, 7645 bool ControlsExit) { 7646 // We handle only IV > Invariant 7647 if (!isLoopInvariant(RHS, L)) 7648 return getCouldNotCompute(); 7649 7650 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7651 7652 // Avoid weird loops 7653 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7654 return getCouldNotCompute(); 7655 7656 bool NoWrap = ControlsExit && 7657 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7658 7659 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 7660 7661 // Avoid negative or zero stride values 7662 if (!isKnownPositive(Stride)) 7663 return getCouldNotCompute(); 7664 7665 // Avoid proven overflow cases: this will ensure that the backedge taken count 7666 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7667 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7668 // behaviors like the case of C language. 7669 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 7670 return getCouldNotCompute(); 7671 7672 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 7673 : ICmpInst::ICMP_UGT; 7674 7675 const SCEV *Start = IV->getStart(); 7676 const SCEV *End = RHS; 7677 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 7678 const SCEV *Diff = getMinusSCEV(RHS, Start); 7679 // If we have NoWrap set, then we can assume that the increment won't 7680 // overflow, in which case if RHS - Start is a constant, we don't need to 7681 // do a max operation since we can just figure it out statically 7682 if (NoWrap && isa<SCEVConstant>(Diff)) { 7683 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7684 if (!D.isNegative()) 7685 End = Start; 7686 } else 7687 End = IsSigned ? getSMinExpr(RHS, Start) 7688 : getUMinExpr(RHS, Start); 7689 } 7690 7691 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 7692 7693 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 7694 : getUnsignedRange(Start).getUnsignedMax(); 7695 7696 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7697 : getUnsignedRange(Stride).getUnsignedMin(); 7698 7699 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7700 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 7701 : APInt::getMinValue(BitWidth) + (MinStride - 1); 7702 7703 // Although End can be a MIN expression we estimate MinEnd considering only 7704 // the case End = RHS. This is safe because in the other case (Start - End) 7705 // is zero, leading to a zero maximum backedge taken count. 7706 APInt MinEnd = 7707 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 7708 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 7709 7710 7711 const SCEV *MaxBECount = getCouldNotCompute(); 7712 if (isa<SCEVConstant>(BECount)) 7713 MaxBECount = BECount; 7714 else 7715 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 7716 getConstant(MinStride), false); 7717 7718 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7719 MaxBECount = BECount; 7720 7721 return ExitLimit(BECount, MaxBECount); 7722 } 7723 7724 /// getNumIterationsInRange - Return the number of iterations of this loop that 7725 /// produce values in the specified constant range. Another way of looking at 7726 /// this is that it returns the first iteration number where the value is not in 7727 /// the condition, thus computing the exit count. If the iteration count can't 7728 /// be computed, an instance of SCEVCouldNotCompute is returned. 7729 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 7730 ScalarEvolution &SE) const { 7731 if (Range.isFullSet()) // Infinite loop. 7732 return SE.getCouldNotCompute(); 7733 7734 // If the start is a non-zero constant, shift the range to simplify things. 7735 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 7736 if (!SC->getValue()->isZero()) { 7737 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 7738 Operands[0] = SE.getConstant(SC->getType(), 0); 7739 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 7740 getNoWrapFlags(FlagNW)); 7741 if (const SCEVAddRecExpr *ShiftedAddRec = 7742 dyn_cast<SCEVAddRecExpr>(Shifted)) 7743 return ShiftedAddRec->getNumIterationsInRange( 7744 Range.subtract(SC->getValue()->getValue()), SE); 7745 // This is strange and shouldn't happen. 7746 return SE.getCouldNotCompute(); 7747 } 7748 7749 // The only time we can solve this is when we have all constant indices. 7750 // Otherwise, we cannot determine the overflow conditions. 7751 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 7752 if (!isa<SCEVConstant>(getOperand(i))) 7753 return SE.getCouldNotCompute(); 7754 7755 7756 // Okay at this point we know that all elements of the chrec are constants and 7757 // that the start element is zero. 7758 7759 // First check to see if the range contains zero. If not, the first 7760 // iteration exits. 7761 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 7762 if (!Range.contains(APInt(BitWidth, 0))) 7763 return SE.getConstant(getType(), 0); 7764 7765 if (isAffine()) { 7766 // If this is an affine expression then we have this situation: 7767 // Solve {0,+,A} in Range === Ax in Range 7768 7769 // We know that zero is in the range. If A is positive then we know that 7770 // the upper value of the range must be the first possible exit value. 7771 // If A is negative then the lower of the range is the last possible loop 7772 // value. Also note that we already checked for a full range. 7773 APInt One(BitWidth,1); 7774 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 7775 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 7776 7777 // The exit value should be (End+A)/A. 7778 APInt ExitVal = (End + A).udiv(A); 7779 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 7780 7781 // Evaluate at the exit value. If we really did fall out of the valid 7782 // range, then we computed our trip count, otherwise wrap around or other 7783 // things must have happened. 7784 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 7785 if (Range.contains(Val->getValue())) 7786 return SE.getCouldNotCompute(); // Something strange happened 7787 7788 // Ensure that the previous value is in the range. This is a sanity check. 7789 assert(Range.contains( 7790 EvaluateConstantChrecAtConstant(this, 7791 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 7792 "Linear scev computation is off in a bad way!"); 7793 return SE.getConstant(ExitValue); 7794 } else if (isQuadratic()) { 7795 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 7796 // quadratic equation to solve it. To do this, we must frame our problem in 7797 // terms of figuring out when zero is crossed, instead of when 7798 // Range.getUpper() is crossed. 7799 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 7800 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 7801 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 7802 // getNoWrapFlags(FlagNW) 7803 FlagAnyWrap); 7804 7805 // Next, solve the constructed addrec 7806 std::pair<const SCEV *,const SCEV *> Roots = 7807 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 7808 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 7809 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 7810 if (R1) { 7811 // Pick the smallest positive root value. 7812 if (ConstantInt *CB = 7813 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 7814 R1->getValue(), R2->getValue()))) { 7815 if (!CB->getZExtValue()) 7816 std::swap(R1, R2); // R1 is the minimum root now. 7817 7818 // Make sure the root is not off by one. The returned iteration should 7819 // not be in the range, but the previous one should be. When solving 7820 // for "X*X < 5", for example, we should not return a root of 2. 7821 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 7822 R1->getValue(), 7823 SE); 7824 if (Range.contains(R1Val->getValue())) { 7825 // The next iteration must be out of the range... 7826 ConstantInt *NextVal = 7827 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 7828 7829 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 7830 if (!Range.contains(R1Val->getValue())) 7831 return SE.getConstant(NextVal); 7832 return SE.getCouldNotCompute(); // Something strange happened 7833 } 7834 7835 // If R1 was not in the range, then it is a good return value. Make 7836 // sure that R1-1 WAS in the range though, just in case. 7837 ConstantInt *NextVal = 7838 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 7839 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 7840 if (Range.contains(R1Val->getValue())) 7841 return R1; 7842 return SE.getCouldNotCompute(); // Something strange happened 7843 } 7844 } 7845 } 7846 7847 return SE.getCouldNotCompute(); 7848 } 7849 7850 namespace { 7851 struct FindUndefs { 7852 bool Found; 7853 FindUndefs() : Found(false) {} 7854 7855 bool follow(const SCEV *S) { 7856 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 7857 if (isa<UndefValue>(C->getValue())) 7858 Found = true; 7859 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 7860 if (isa<UndefValue>(C->getValue())) 7861 Found = true; 7862 } 7863 7864 // Keep looking if we haven't found it yet. 7865 return !Found; 7866 } 7867 bool isDone() const { 7868 // Stop recursion if we have found an undef. 7869 return Found; 7870 } 7871 }; 7872 } 7873 7874 // Return true when S contains at least an undef value. 7875 static inline bool 7876 containsUndefs(const SCEV *S) { 7877 FindUndefs F; 7878 SCEVTraversal<FindUndefs> ST(F); 7879 ST.visitAll(S); 7880 7881 return F.Found; 7882 } 7883 7884 namespace { 7885 // Collect all steps of SCEV expressions. 7886 struct SCEVCollectStrides { 7887 ScalarEvolution &SE; 7888 SmallVectorImpl<const SCEV *> &Strides; 7889 7890 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 7891 : SE(SE), Strides(S) {} 7892 7893 bool follow(const SCEV *S) { 7894 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 7895 Strides.push_back(AR->getStepRecurrence(SE)); 7896 return true; 7897 } 7898 bool isDone() const { return false; } 7899 }; 7900 7901 // Collect all SCEVUnknown and SCEVMulExpr expressions. 7902 struct SCEVCollectTerms { 7903 SmallVectorImpl<const SCEV *> &Terms; 7904 7905 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 7906 : Terms(T) {} 7907 7908 bool follow(const SCEV *S) { 7909 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 7910 if (!containsUndefs(S)) 7911 Terms.push_back(S); 7912 7913 // Stop recursion: once we collected a term, do not walk its operands. 7914 return false; 7915 } 7916 7917 // Keep looking. 7918 return true; 7919 } 7920 bool isDone() const { return false; } 7921 }; 7922 } 7923 7924 /// Find parametric terms in this SCEVAddRecExpr. 7925 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 7926 SmallVectorImpl<const SCEV *> &Terms) { 7927 SmallVector<const SCEV *, 4> Strides; 7928 SCEVCollectStrides StrideCollector(*this, Strides); 7929 visitAll(Expr, StrideCollector); 7930 7931 DEBUG({ 7932 dbgs() << "Strides:\n"; 7933 for (const SCEV *S : Strides) 7934 dbgs() << *S << "\n"; 7935 }); 7936 7937 for (const SCEV *S : Strides) { 7938 SCEVCollectTerms TermCollector(Terms); 7939 visitAll(S, TermCollector); 7940 } 7941 7942 DEBUG({ 7943 dbgs() << "Terms:\n"; 7944 for (const SCEV *T : Terms) 7945 dbgs() << *T << "\n"; 7946 }); 7947 } 7948 7949 static bool findArrayDimensionsRec(ScalarEvolution &SE, 7950 SmallVectorImpl<const SCEV *> &Terms, 7951 SmallVectorImpl<const SCEV *> &Sizes) { 7952 int Last = Terms.size() - 1; 7953 const SCEV *Step = Terms[Last]; 7954 7955 // End of recursion. 7956 if (Last == 0) { 7957 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 7958 SmallVector<const SCEV *, 2> Qs; 7959 for (const SCEV *Op : M->operands()) 7960 if (!isa<SCEVConstant>(Op)) 7961 Qs.push_back(Op); 7962 7963 Step = SE.getMulExpr(Qs); 7964 } 7965 7966 Sizes.push_back(Step); 7967 return true; 7968 } 7969 7970 for (const SCEV *&Term : Terms) { 7971 // Normalize the terms before the next call to findArrayDimensionsRec. 7972 const SCEV *Q, *R; 7973 SCEVDivision::divide(SE, Term, Step, &Q, &R); 7974 7975 // Bail out when GCD does not evenly divide one of the terms. 7976 if (!R->isZero()) 7977 return false; 7978 7979 Term = Q; 7980 } 7981 7982 // Remove all SCEVConstants. 7983 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 7984 return isa<SCEVConstant>(E); 7985 }), 7986 Terms.end()); 7987 7988 if (Terms.size() > 0) 7989 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 7990 return false; 7991 7992 Sizes.push_back(Step); 7993 return true; 7994 } 7995 7996 namespace { 7997 struct FindParameter { 7998 bool FoundParameter; 7999 FindParameter() : FoundParameter(false) {} 8000 8001 bool follow(const SCEV *S) { 8002 if (isa<SCEVUnknown>(S)) { 8003 FoundParameter = true; 8004 // Stop recursion: we found a parameter. 8005 return false; 8006 } 8007 // Keep looking. 8008 return true; 8009 } 8010 bool isDone() const { 8011 // Stop recursion if we have found a parameter. 8012 return FoundParameter; 8013 } 8014 }; 8015 } 8016 8017 // Returns true when S contains at least a SCEVUnknown parameter. 8018 static inline bool 8019 containsParameters(const SCEV *S) { 8020 FindParameter F; 8021 SCEVTraversal<FindParameter> ST(F); 8022 ST.visitAll(S); 8023 8024 return F.FoundParameter; 8025 } 8026 8027 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8028 static inline bool 8029 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8030 for (const SCEV *T : Terms) 8031 if (containsParameters(T)) 8032 return true; 8033 return false; 8034 } 8035 8036 // Return the number of product terms in S. 8037 static inline int numberOfTerms(const SCEV *S) { 8038 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8039 return Expr->getNumOperands(); 8040 return 1; 8041 } 8042 8043 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8044 if (isa<SCEVConstant>(T)) 8045 return nullptr; 8046 8047 if (isa<SCEVUnknown>(T)) 8048 return T; 8049 8050 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8051 SmallVector<const SCEV *, 2> Factors; 8052 for (const SCEV *Op : M->operands()) 8053 if (!isa<SCEVConstant>(Op)) 8054 Factors.push_back(Op); 8055 8056 return SE.getMulExpr(Factors); 8057 } 8058 8059 return T; 8060 } 8061 8062 /// Return the size of an element read or written by Inst. 8063 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8064 Type *Ty; 8065 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8066 Ty = Store->getValueOperand()->getType(); 8067 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8068 Ty = Load->getType(); 8069 else 8070 return nullptr; 8071 8072 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8073 return getSizeOfExpr(ETy, Ty); 8074 } 8075 8076 /// Second step of delinearization: compute the array dimensions Sizes from the 8077 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8078 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8079 SmallVectorImpl<const SCEV *> &Sizes, 8080 const SCEV *ElementSize) const { 8081 8082 if (Terms.size() < 1 || !ElementSize) 8083 return; 8084 8085 // Early return when Terms do not contain parameters: we do not delinearize 8086 // non parametric SCEVs. 8087 if (!containsParameters(Terms)) 8088 return; 8089 8090 DEBUG({ 8091 dbgs() << "Terms:\n"; 8092 for (const SCEV *T : Terms) 8093 dbgs() << *T << "\n"; 8094 }); 8095 8096 // Remove duplicates. 8097 std::sort(Terms.begin(), Terms.end()); 8098 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8099 8100 // Put larger terms first. 8101 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8102 return numberOfTerms(LHS) > numberOfTerms(RHS); 8103 }); 8104 8105 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8106 8107 // Divide all terms by the element size. 8108 for (const SCEV *&Term : Terms) { 8109 const SCEV *Q, *R; 8110 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8111 Term = Q; 8112 } 8113 8114 SmallVector<const SCEV *, 4> NewTerms; 8115 8116 // Remove constant factors. 8117 for (const SCEV *T : Terms) 8118 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8119 NewTerms.push_back(NewT); 8120 8121 DEBUG({ 8122 dbgs() << "Terms after sorting:\n"; 8123 for (const SCEV *T : NewTerms) 8124 dbgs() << *T << "\n"; 8125 }); 8126 8127 if (NewTerms.empty() || 8128 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8129 Sizes.clear(); 8130 return; 8131 } 8132 8133 // The last element to be pushed into Sizes is the size of an element. 8134 Sizes.push_back(ElementSize); 8135 8136 DEBUG({ 8137 dbgs() << "Sizes:\n"; 8138 for (const SCEV *S : Sizes) 8139 dbgs() << *S << "\n"; 8140 }); 8141 } 8142 8143 /// Third step of delinearization: compute the access functions for the 8144 /// Subscripts based on the dimensions in Sizes. 8145 void ScalarEvolution::computeAccessFunctions( 8146 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8147 SmallVectorImpl<const SCEV *> &Sizes) { 8148 8149 // Early exit in case this SCEV is not an affine multivariate function. 8150 if (Sizes.empty()) 8151 return; 8152 8153 if (auto AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8154 if (!AR->isAffine()) 8155 return; 8156 8157 const SCEV *Res = Expr; 8158 int Last = Sizes.size() - 1; 8159 for (int i = Last; i >= 0; i--) { 8160 const SCEV *Q, *R; 8161 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8162 8163 DEBUG({ 8164 dbgs() << "Res: " << *Res << "\n"; 8165 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8166 dbgs() << "Res divided by Sizes[i]:\n"; 8167 dbgs() << "Quotient: " << *Q << "\n"; 8168 dbgs() << "Remainder: " << *R << "\n"; 8169 }); 8170 8171 Res = Q; 8172 8173 // Do not record the last subscript corresponding to the size of elements in 8174 // the array. 8175 if (i == Last) { 8176 8177 // Bail out if the remainder is too complex. 8178 if (isa<SCEVAddRecExpr>(R)) { 8179 Subscripts.clear(); 8180 Sizes.clear(); 8181 return; 8182 } 8183 8184 continue; 8185 } 8186 8187 // Record the access function for the current subscript. 8188 Subscripts.push_back(R); 8189 } 8190 8191 // Also push in last position the remainder of the last division: it will be 8192 // the access function of the innermost dimension. 8193 Subscripts.push_back(Res); 8194 8195 std::reverse(Subscripts.begin(), Subscripts.end()); 8196 8197 DEBUG({ 8198 dbgs() << "Subscripts:\n"; 8199 for (const SCEV *S : Subscripts) 8200 dbgs() << *S << "\n"; 8201 }); 8202 } 8203 8204 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8205 /// sizes of an array access. Returns the remainder of the delinearization that 8206 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8207 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8208 /// expressions in the stride and base of a SCEV corresponding to the 8209 /// computation of a GCD (greatest common divisor) of base and stride. When 8210 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8211 /// 8212 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8213 /// 8214 /// void foo(long n, long m, long o, double A[n][m][o]) { 8215 /// 8216 /// for (long i = 0; i < n; i++) 8217 /// for (long j = 0; j < m; j++) 8218 /// for (long k = 0; k < o; k++) 8219 /// A[i][j][k] = 1.0; 8220 /// } 8221 /// 8222 /// the delinearization input is the following AddRec SCEV: 8223 /// 8224 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8225 /// 8226 /// From this SCEV, we are able to say that the base offset of the access is %A 8227 /// because it appears as an offset that does not divide any of the strides in 8228 /// the loops: 8229 /// 8230 /// CHECK: Base offset: %A 8231 /// 8232 /// and then SCEV->delinearize determines the size of some of the dimensions of 8233 /// the array as these are the multiples by which the strides are happening: 8234 /// 8235 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8236 /// 8237 /// Note that the outermost dimension remains of UnknownSize because there are 8238 /// no strides that would help identifying the size of the last dimension: when 8239 /// the array has been statically allocated, one could compute the size of that 8240 /// dimension by dividing the overall size of the array by the size of the known 8241 /// dimensions: %m * %o * 8. 8242 /// 8243 /// Finally delinearize provides the access functions for the array reference 8244 /// that does correspond to A[i][j][k] of the above C testcase: 8245 /// 8246 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8247 /// 8248 /// The testcases are checking the output of a function pass: 8249 /// DelinearizationPass that walks through all loads and stores of a function 8250 /// asking for the SCEV of the memory access with respect to all enclosing 8251 /// loops, calling SCEV->delinearize on that and printing the results. 8252 8253 void ScalarEvolution::delinearize(const SCEV *Expr, 8254 SmallVectorImpl<const SCEV *> &Subscripts, 8255 SmallVectorImpl<const SCEV *> &Sizes, 8256 const SCEV *ElementSize) { 8257 // First step: collect parametric terms. 8258 SmallVector<const SCEV *, 4> Terms; 8259 collectParametricTerms(Expr, Terms); 8260 8261 if (Terms.empty()) 8262 return; 8263 8264 // Second step: find subscript sizes. 8265 findArrayDimensions(Terms, Sizes, ElementSize); 8266 8267 if (Sizes.empty()) 8268 return; 8269 8270 // Third step: compute the access functions for each subscript. 8271 computeAccessFunctions(Expr, Subscripts, Sizes); 8272 8273 if (Subscripts.empty()) 8274 return; 8275 8276 DEBUG({ 8277 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8278 dbgs() << "ArrayDecl[UnknownSize]"; 8279 for (const SCEV *S : Sizes) 8280 dbgs() << "[" << *S << "]"; 8281 8282 dbgs() << "\nArrayRef"; 8283 for (const SCEV *S : Subscripts) 8284 dbgs() << "[" << *S << "]"; 8285 dbgs() << "\n"; 8286 }); 8287 } 8288 8289 //===----------------------------------------------------------------------===// 8290 // SCEVCallbackVH Class Implementation 8291 //===----------------------------------------------------------------------===// 8292 8293 void ScalarEvolution::SCEVCallbackVH::deleted() { 8294 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8295 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8296 SE->ConstantEvolutionLoopExitValue.erase(PN); 8297 SE->ValueExprMap.erase(getValPtr()); 8298 // this now dangles! 8299 } 8300 8301 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8302 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8303 8304 // Forget all the expressions associated with users of the old value, 8305 // so that future queries will recompute the expressions using the new 8306 // value. 8307 Value *Old = getValPtr(); 8308 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8309 SmallPtrSet<User *, 8> Visited; 8310 while (!Worklist.empty()) { 8311 User *U = Worklist.pop_back_val(); 8312 // Deleting the Old value will cause this to dangle. Postpone 8313 // that until everything else is done. 8314 if (U == Old) 8315 continue; 8316 if (!Visited.insert(U).second) 8317 continue; 8318 if (PHINode *PN = dyn_cast<PHINode>(U)) 8319 SE->ConstantEvolutionLoopExitValue.erase(PN); 8320 SE->ValueExprMap.erase(U); 8321 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8322 } 8323 // Delete the Old value. 8324 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8325 SE->ConstantEvolutionLoopExitValue.erase(PN); 8326 SE->ValueExprMap.erase(Old); 8327 // this now dangles! 8328 } 8329 8330 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8331 : CallbackVH(V), SE(se) {} 8332 8333 //===----------------------------------------------------------------------===// 8334 // ScalarEvolution Class Implementation 8335 //===----------------------------------------------------------------------===// 8336 8337 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 8338 AssumptionCache &AC, DominatorTree &DT, 8339 LoopInfo &LI) 8340 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 8341 CouldNotCompute(new SCEVCouldNotCompute()), 8342 WalkingBEDominatingConds(false), ValuesAtScopes(64), LoopDispositions(64), 8343 BlockDispositions(64), FirstUnknown(nullptr) {} 8344 8345 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 8346 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 8347 CouldNotCompute(std::move(Arg.CouldNotCompute)), 8348 ValueExprMap(std::move(Arg.ValueExprMap)), 8349 WalkingBEDominatingConds(false), 8350 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 8351 ConstantEvolutionLoopExitValue( 8352 std::move(Arg.ConstantEvolutionLoopExitValue)), 8353 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 8354 LoopDispositions(std::move(Arg.LoopDispositions)), 8355 BlockDispositions(std::move(Arg.BlockDispositions)), 8356 UnsignedRanges(std::move(Arg.UnsignedRanges)), 8357 SignedRanges(std::move(Arg.SignedRanges)), 8358 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 8359 SCEVAllocator(std::move(Arg.SCEVAllocator)), 8360 FirstUnknown(Arg.FirstUnknown) { 8361 Arg.FirstUnknown = nullptr; 8362 } 8363 8364 ScalarEvolution::~ScalarEvolution() { 8365 // Iterate through all the SCEVUnknown instances and call their 8366 // destructors, so that they release their references to their values. 8367 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 8368 U->~SCEVUnknown(); 8369 FirstUnknown = nullptr; 8370 8371 ValueExprMap.clear(); 8372 8373 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8374 // that a loop had multiple computable exits. 8375 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8376 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 8377 I != E; ++I) { 8378 I->second.clear(); 8379 } 8380 8381 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8382 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8383 } 8384 8385 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8386 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8387 } 8388 8389 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8390 const Loop *L) { 8391 // Print all inner loops first 8392 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8393 PrintLoopInfo(OS, SE, *I); 8394 8395 OS << "Loop "; 8396 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8397 OS << ": "; 8398 8399 SmallVector<BasicBlock *, 8> ExitBlocks; 8400 L->getExitBlocks(ExitBlocks); 8401 if (ExitBlocks.size() != 1) 8402 OS << "<multiple exits> "; 8403 8404 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8405 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8406 } else { 8407 OS << "Unpredictable backedge-taken count. "; 8408 } 8409 8410 OS << "\n" 8411 "Loop "; 8412 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8413 OS << ": "; 8414 8415 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8416 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8417 } else { 8418 OS << "Unpredictable max backedge-taken count. "; 8419 } 8420 8421 OS << "\n"; 8422 } 8423 8424 void ScalarEvolution::print(raw_ostream &OS) const { 8425 // ScalarEvolution's implementation of the print method is to print 8426 // out SCEV values of all instructions that are interesting. Doing 8427 // this potentially causes it to create new SCEV objects though, 8428 // which technically conflicts with the const qualifier. This isn't 8429 // observable from outside the class though, so casting away the 8430 // const isn't dangerous. 8431 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8432 8433 OS << "Classifying expressions for: "; 8434 F.printAsOperand(OS, /*PrintType=*/false); 8435 OS << "\n"; 8436 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 8437 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 8438 OS << *I << '\n'; 8439 OS << " --> "; 8440 const SCEV *SV = SE.getSCEV(&*I); 8441 SV->print(OS); 8442 if (!isa<SCEVCouldNotCompute>(SV)) { 8443 OS << " U: "; 8444 SE.getUnsignedRange(SV).print(OS); 8445 OS << " S: "; 8446 SE.getSignedRange(SV).print(OS); 8447 } 8448 8449 const Loop *L = LI.getLoopFor((*I).getParent()); 8450 8451 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8452 if (AtUse != SV) { 8453 OS << " --> "; 8454 AtUse->print(OS); 8455 if (!isa<SCEVCouldNotCompute>(AtUse)) { 8456 OS << " U: "; 8457 SE.getUnsignedRange(AtUse).print(OS); 8458 OS << " S: "; 8459 SE.getSignedRange(AtUse).print(OS); 8460 } 8461 } 8462 8463 if (L) { 8464 OS << "\t\t" "Exits: "; 8465 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 8466 if (!SE.isLoopInvariant(ExitValue, L)) { 8467 OS << "<<Unknown>>"; 8468 } else { 8469 OS << *ExitValue; 8470 } 8471 } 8472 8473 OS << "\n"; 8474 } 8475 8476 OS << "Determining loop execution counts for: "; 8477 F.printAsOperand(OS, /*PrintType=*/false); 8478 OS << "\n"; 8479 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 8480 PrintLoopInfo(OS, &SE, *I); 8481 } 8482 8483 ScalarEvolution::LoopDisposition 8484 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 8485 auto &Values = LoopDispositions[S]; 8486 for (auto &V : Values) { 8487 if (V.getPointer() == L) 8488 return V.getInt(); 8489 } 8490 Values.emplace_back(L, LoopVariant); 8491 LoopDisposition D = computeLoopDisposition(S, L); 8492 auto &Values2 = LoopDispositions[S]; 8493 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8494 if (V.getPointer() == L) { 8495 V.setInt(D); 8496 break; 8497 } 8498 } 8499 return D; 8500 } 8501 8502 ScalarEvolution::LoopDisposition 8503 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 8504 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8505 case scConstant: 8506 return LoopInvariant; 8507 case scTruncate: 8508 case scZeroExtend: 8509 case scSignExtend: 8510 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 8511 case scAddRecExpr: { 8512 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8513 8514 // If L is the addrec's loop, it's computable. 8515 if (AR->getLoop() == L) 8516 return LoopComputable; 8517 8518 // Add recurrences are never invariant in the function-body (null loop). 8519 if (!L) 8520 return LoopVariant; 8521 8522 // This recurrence is variant w.r.t. L if L contains AR's loop. 8523 if (L->contains(AR->getLoop())) 8524 return LoopVariant; 8525 8526 // This recurrence is invariant w.r.t. L if AR's loop contains L. 8527 if (AR->getLoop()->contains(L)) 8528 return LoopInvariant; 8529 8530 // This recurrence is variant w.r.t. L if any of its operands 8531 // are variant. 8532 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 8533 I != E; ++I) 8534 if (!isLoopInvariant(*I, L)) 8535 return LoopVariant; 8536 8537 // Otherwise it's loop-invariant. 8538 return LoopInvariant; 8539 } 8540 case scAddExpr: 8541 case scMulExpr: 8542 case scUMaxExpr: 8543 case scSMaxExpr: { 8544 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8545 bool HasVarying = false; 8546 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8547 I != E; ++I) { 8548 LoopDisposition D = getLoopDisposition(*I, L); 8549 if (D == LoopVariant) 8550 return LoopVariant; 8551 if (D == LoopComputable) 8552 HasVarying = true; 8553 } 8554 return HasVarying ? LoopComputable : LoopInvariant; 8555 } 8556 case scUDivExpr: { 8557 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8558 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 8559 if (LD == LoopVariant) 8560 return LoopVariant; 8561 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 8562 if (RD == LoopVariant) 8563 return LoopVariant; 8564 return (LD == LoopInvariant && RD == LoopInvariant) ? 8565 LoopInvariant : LoopComputable; 8566 } 8567 case scUnknown: 8568 // All non-instruction values are loop invariant. All instructions are loop 8569 // invariant if they are not contained in the specified loop. 8570 // Instructions are never considered invariant in the function body 8571 // (null loop) because they are defined within the "loop". 8572 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 8573 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 8574 return LoopInvariant; 8575 case scCouldNotCompute: 8576 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8577 } 8578 llvm_unreachable("Unknown SCEV kind!"); 8579 } 8580 8581 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 8582 return getLoopDisposition(S, L) == LoopInvariant; 8583 } 8584 8585 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 8586 return getLoopDisposition(S, L) == LoopComputable; 8587 } 8588 8589 ScalarEvolution::BlockDisposition 8590 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8591 auto &Values = BlockDispositions[S]; 8592 for (auto &V : Values) { 8593 if (V.getPointer() == BB) 8594 return V.getInt(); 8595 } 8596 Values.emplace_back(BB, DoesNotDominateBlock); 8597 BlockDisposition D = computeBlockDisposition(S, BB); 8598 auto &Values2 = BlockDispositions[S]; 8599 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8600 if (V.getPointer() == BB) { 8601 V.setInt(D); 8602 break; 8603 } 8604 } 8605 return D; 8606 } 8607 8608 ScalarEvolution::BlockDisposition 8609 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8610 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8611 case scConstant: 8612 return ProperlyDominatesBlock; 8613 case scTruncate: 8614 case scZeroExtend: 8615 case scSignExtend: 8616 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 8617 case scAddRecExpr: { 8618 // This uses a "dominates" query instead of "properly dominates" query 8619 // to test for proper dominance too, because the instruction which 8620 // produces the addrec's value is a PHI, and a PHI effectively properly 8621 // dominates its entire containing block. 8622 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8623 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 8624 return DoesNotDominateBlock; 8625 } 8626 // FALL THROUGH into SCEVNAryExpr handling. 8627 case scAddExpr: 8628 case scMulExpr: 8629 case scUMaxExpr: 8630 case scSMaxExpr: { 8631 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8632 bool Proper = true; 8633 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8634 I != E; ++I) { 8635 BlockDisposition D = getBlockDisposition(*I, BB); 8636 if (D == DoesNotDominateBlock) 8637 return DoesNotDominateBlock; 8638 if (D == DominatesBlock) 8639 Proper = false; 8640 } 8641 return Proper ? ProperlyDominatesBlock : DominatesBlock; 8642 } 8643 case scUDivExpr: { 8644 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8645 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 8646 BlockDisposition LD = getBlockDisposition(LHS, BB); 8647 if (LD == DoesNotDominateBlock) 8648 return DoesNotDominateBlock; 8649 BlockDisposition RD = getBlockDisposition(RHS, BB); 8650 if (RD == DoesNotDominateBlock) 8651 return DoesNotDominateBlock; 8652 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 8653 ProperlyDominatesBlock : DominatesBlock; 8654 } 8655 case scUnknown: 8656 if (Instruction *I = 8657 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 8658 if (I->getParent() == BB) 8659 return DominatesBlock; 8660 if (DT.properlyDominates(I->getParent(), BB)) 8661 return ProperlyDominatesBlock; 8662 return DoesNotDominateBlock; 8663 } 8664 return ProperlyDominatesBlock; 8665 case scCouldNotCompute: 8666 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8667 } 8668 llvm_unreachable("Unknown SCEV kind!"); 8669 } 8670 8671 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 8672 return getBlockDisposition(S, BB) >= DominatesBlock; 8673 } 8674 8675 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 8676 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 8677 } 8678 8679 namespace { 8680 // Search for a SCEV expression node within an expression tree. 8681 // Implements SCEVTraversal::Visitor. 8682 struct SCEVSearch { 8683 const SCEV *Node; 8684 bool IsFound; 8685 8686 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 8687 8688 bool follow(const SCEV *S) { 8689 IsFound |= (S == Node); 8690 return !IsFound; 8691 } 8692 bool isDone() const { return IsFound; } 8693 }; 8694 } 8695 8696 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 8697 SCEVSearch Search(Op); 8698 visitAll(S, Search); 8699 return Search.IsFound; 8700 } 8701 8702 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 8703 ValuesAtScopes.erase(S); 8704 LoopDispositions.erase(S); 8705 BlockDispositions.erase(S); 8706 UnsignedRanges.erase(S); 8707 SignedRanges.erase(S); 8708 8709 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8710 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 8711 BackedgeTakenInfo &BEInfo = I->second; 8712 if (BEInfo.hasOperand(S, this)) { 8713 BEInfo.clear(); 8714 BackedgeTakenCounts.erase(I++); 8715 } 8716 else 8717 ++I; 8718 } 8719 } 8720 8721 typedef DenseMap<const Loop *, std::string> VerifyMap; 8722 8723 /// replaceSubString - Replaces all occurrences of From in Str with To. 8724 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 8725 size_t Pos = 0; 8726 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 8727 Str.replace(Pos, From.size(), To.data(), To.size()); 8728 Pos += To.size(); 8729 } 8730 } 8731 8732 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 8733 static void 8734 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 8735 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 8736 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 8737 8738 std::string &S = Map[L]; 8739 if (S.empty()) { 8740 raw_string_ostream OS(S); 8741 SE.getBackedgeTakenCount(L)->print(OS); 8742 8743 // false and 0 are semantically equivalent. This can happen in dead loops. 8744 replaceSubString(OS.str(), "false", "0"); 8745 // Remove wrap flags, their use in SCEV is highly fragile. 8746 // FIXME: Remove this when SCEV gets smarter about them. 8747 replaceSubString(OS.str(), "<nw>", ""); 8748 replaceSubString(OS.str(), "<nsw>", ""); 8749 replaceSubString(OS.str(), "<nuw>", ""); 8750 } 8751 } 8752 } 8753 8754 void ScalarEvolution::verify() const { 8755 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8756 8757 // Gather stringified backedge taken counts for all loops using SCEV's caches. 8758 // FIXME: It would be much better to store actual values instead of strings, 8759 // but SCEV pointers will change if we drop the caches. 8760 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 8761 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 8762 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 8763 8764 // Gather stringified backedge taken counts for all loops using a fresh 8765 // ScalarEvolution object. 8766 ScalarEvolution SE2(F, TLI, AC, DT, LI); 8767 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 8768 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 8769 8770 // Now compare whether they're the same with and without caches. This allows 8771 // verifying that no pass changed the cache. 8772 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 8773 "New loops suddenly appeared!"); 8774 8775 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 8776 OldE = BackedgeDumpsOld.end(), 8777 NewI = BackedgeDumpsNew.begin(); 8778 OldI != OldE; ++OldI, ++NewI) { 8779 assert(OldI->first == NewI->first && "Loop order changed!"); 8780 8781 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 8782 // changes. 8783 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 8784 // means that a pass is buggy or SCEV has to learn a new pattern but is 8785 // usually not harmful. 8786 if (OldI->second != NewI->second && 8787 OldI->second.find("undef") == std::string::npos && 8788 NewI->second.find("undef") == std::string::npos && 8789 OldI->second != "***COULDNOTCOMPUTE***" && 8790 NewI->second != "***COULDNOTCOMPUTE***") { 8791 dbgs() << "SCEVValidator: SCEV for loop '" 8792 << OldI->first->getHeader()->getName() 8793 << "' changed from '" << OldI->second 8794 << "' to '" << NewI->second << "'!\n"; 8795 std::abort(); 8796 } 8797 } 8798 8799 // TODO: Verify more things. 8800 } 8801 8802 char ScalarEvolutionAnalysis::PassID; 8803 8804 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 8805 AnalysisManager<Function> *AM) { 8806 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 8807 AM->getResult<AssumptionAnalysis>(F), 8808 AM->getResult<DominatorTreeAnalysis>(F), 8809 AM->getResult<LoopAnalysis>(F)); 8810 } 8811 8812 PreservedAnalyses 8813 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 8814 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 8815 return PreservedAnalyses::all(); 8816 } 8817 8818 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 8819 "Scalar Evolution Analysis", false, true) 8820 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 8821 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 8822 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 8823 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 8824 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 8825 "Scalar Evolution Analysis", false, true) 8826 char ScalarEvolutionWrapperPass::ID = 0; 8827 8828 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 8829 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 8830 } 8831 8832 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 8833 SE.reset(new ScalarEvolution( 8834 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 8835 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 8836 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 8837 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 8838 return false; 8839 } 8840 8841 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 8842 8843 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 8844 SE->print(OS); 8845 } 8846 8847 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 8848 if (!VerifySCEV) 8849 return; 8850 8851 SE->verify(); 8852 } 8853 8854 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 8855 AU.setPreservesAll(); 8856 AU.addRequiredTransitive<AssumptionCacheTracker>(); 8857 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 8858 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 8859 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 8860 } 8861