xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 07efe2c18a63423943a4f9d9daeada23601f84c8)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/STLExtras.h"
68 #include "llvm/ADT/ScopeExit.h"
69 #include "llvm/ADT/Sequence.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/ADT/StringExtras.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/Analysis/AssumptionCache.h"
77 #include "llvm/Analysis/ConstantFolding.h"
78 #include "llvm/Analysis/InstructionSimplify.h"
79 #include "llvm/Analysis/LoopInfo.h"
80 #include "llvm/Analysis/MemoryBuiltins.h"
81 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
82 #include "llvm/Analysis/ScalarEvolutionPatternMatch.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/Constant.h"
90 #include "llvm/IR/ConstantRange.h"
91 #include "llvm/IR/Constants.h"
92 #include "llvm/IR/DataLayout.h"
93 #include "llvm/IR/DerivedTypes.h"
94 #include "llvm/IR/Dominators.h"
95 #include "llvm/IR/Function.h"
96 #include "llvm/IR/GlobalAlias.h"
97 #include "llvm/IR/GlobalValue.h"
98 #include "llvm/IR/InstIterator.h"
99 #include "llvm/IR/InstrTypes.h"
100 #include "llvm/IR/Instruction.h"
101 #include "llvm/IR/Instructions.h"
102 #include "llvm/IR/IntrinsicInst.h"
103 #include "llvm/IR/Intrinsics.h"
104 #include "llvm/IR/LLVMContext.h"
105 #include "llvm/IR/Operator.h"
106 #include "llvm/IR/PatternMatch.h"
107 #include "llvm/IR/Type.h"
108 #include "llvm/IR/Use.h"
109 #include "llvm/IR/User.h"
110 #include "llvm/IR/Value.h"
111 #include "llvm/IR/Verifier.h"
112 #include "llvm/InitializePasses.h"
113 #include "llvm/Pass.h"
114 #include "llvm/Support/Casting.h"
115 #include "llvm/Support/CommandLine.h"
116 #include "llvm/Support/Compiler.h"
117 #include "llvm/Support/Debug.h"
118 #include "llvm/Support/ErrorHandling.h"
119 #include "llvm/Support/KnownBits.h"
120 #include "llvm/Support/SaveAndRestore.h"
121 #include "llvm/Support/raw_ostream.h"
122 #include <algorithm>
123 #include <cassert>
124 #include <climits>
125 #include <cstdint>
126 #include <cstdlib>
127 #include <map>
128 #include <memory>
129 #include <numeric>
130 #include <optional>
131 #include <tuple>
132 #include <utility>
133 #include <vector>
134 
135 using namespace llvm;
136 using namespace PatternMatch;
137 using namespace SCEVPatternMatch;
138 
139 #define DEBUG_TYPE "scalar-evolution"
140 
141 STATISTIC(NumExitCountsComputed,
142           "Number of loop exits with predictable exit counts");
143 STATISTIC(NumExitCountsNotComputed,
144           "Number of loop exits without predictable exit counts");
145 STATISTIC(NumBruteForceTripCountsComputed,
146           "Number of loops with trip counts computed by force");
147 
148 #ifdef EXPENSIVE_CHECKS
149 bool llvm::VerifySCEV = true;
150 #else
151 bool llvm::VerifySCEV = false;
152 #endif
153 
154 static cl::opt<unsigned>
155     MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
156                             cl::desc("Maximum number of iterations SCEV will "
157                                      "symbolically execute a constant "
158                                      "derived loop"),
159                             cl::init(100));
160 
161 static cl::opt<bool, true> VerifySCEVOpt(
162     "verify-scev", cl::Hidden, cl::location(VerifySCEV),
163     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
164 static cl::opt<bool> VerifySCEVStrict(
165     "verify-scev-strict", cl::Hidden,
166     cl::desc("Enable stricter verification with -verify-scev is passed"));
167 
168 static cl::opt<bool> VerifyIR(
169     "scev-verify-ir", cl::Hidden,
170     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
171     cl::init(false));
172 
173 static cl::opt<unsigned> MulOpsInlineThreshold(
174     "scev-mulops-inline-threshold", cl::Hidden,
175     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
176     cl::init(32));
177 
178 static cl::opt<unsigned> AddOpsInlineThreshold(
179     "scev-addops-inline-threshold", cl::Hidden,
180     cl::desc("Threshold for inlining addition operands into a SCEV"),
181     cl::init(500));
182 
183 static cl::opt<unsigned> MaxSCEVCompareDepth(
184     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
185     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
186     cl::init(32));
187 
188 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
189     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
190     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
191     cl::init(2));
192 
193 static cl::opt<unsigned> MaxValueCompareDepth(
194     "scalar-evolution-max-value-compare-depth", cl::Hidden,
195     cl::desc("Maximum depth of recursive value complexity comparisons"),
196     cl::init(2));
197 
198 static cl::opt<unsigned>
199     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
200                   cl::desc("Maximum depth of recursive arithmetics"),
201                   cl::init(32));
202 
203 static cl::opt<unsigned> MaxConstantEvolvingDepth(
204     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
205     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
206 
207 static cl::opt<unsigned>
208     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
209                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
210                  cl::init(8));
211 
212 static cl::opt<unsigned>
213     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
214                   cl::desc("Max coefficients in AddRec during evolving"),
215                   cl::init(8));
216 
217 static cl::opt<unsigned>
218     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
219                   cl::desc("Size of the expression which is considered huge"),
220                   cl::init(4096));
221 
222 static cl::opt<unsigned> RangeIterThreshold(
223     "scev-range-iter-threshold", cl::Hidden,
224     cl::desc("Threshold for switching to iteratively computing SCEV ranges"),
225     cl::init(32));
226 
227 static cl::opt<unsigned> MaxLoopGuardCollectionDepth(
228     "scalar-evolution-max-loop-guard-collection-depth", cl::Hidden,
229     cl::desc("Maximum depth for recursive loop guard collection"), cl::init(1));
230 
231 static cl::opt<bool>
232 ClassifyExpressions("scalar-evolution-classify-expressions",
233     cl::Hidden, cl::init(true),
234     cl::desc("When printing analysis, include information on every instruction"));
235 
236 static cl::opt<bool> UseExpensiveRangeSharpening(
237     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
238     cl::init(false),
239     cl::desc("Use more powerful methods of sharpening expression ranges. May "
240              "be costly in terms of compile time"));
241 
242 static cl::opt<unsigned> MaxPhiSCCAnalysisSize(
243     "scalar-evolution-max-scc-analysis-depth", cl::Hidden,
244     cl::desc("Maximum amount of nodes to process while searching SCEVUnknown "
245              "Phi strongly connected components"),
246     cl::init(8));
247 
248 static cl::opt<bool>
249     EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden,
250                             cl::desc("Handle <= and >= in finite loops"),
251                             cl::init(true));
252 
253 static cl::opt<bool> UseContextForNoWrapFlagInference(
254     "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden,
255     cl::desc("Infer nuw/nsw flags using context where suitable"),
256     cl::init(true));
257 
258 //===----------------------------------------------------------------------===//
259 //                           SCEV class definitions
260 //===----------------------------------------------------------------------===//
261 
262 //===----------------------------------------------------------------------===//
263 // Implementation of the SCEV class.
264 //
265 
266 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
267 LLVM_DUMP_METHOD void SCEV::dump() const {
268   print(dbgs());
269   dbgs() << '\n';
270 }
271 #endif
272 
273 void SCEV::print(raw_ostream &OS) const {
274   switch (getSCEVType()) {
275   case scConstant:
276     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
277     return;
278   case scVScale:
279     OS << "vscale";
280     return;
281   case scPtrToInt: {
282     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
283     const SCEV *Op = PtrToInt->getOperand();
284     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
285        << *PtrToInt->getType() << ")";
286     return;
287   }
288   case scTruncate: {
289     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
290     const SCEV *Op = Trunc->getOperand();
291     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
292        << *Trunc->getType() << ")";
293     return;
294   }
295   case scZeroExtend: {
296     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
297     const SCEV *Op = ZExt->getOperand();
298     OS << "(zext " << *Op->getType() << " " << *Op << " to "
299        << *ZExt->getType() << ")";
300     return;
301   }
302   case scSignExtend: {
303     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
304     const SCEV *Op = SExt->getOperand();
305     OS << "(sext " << *Op->getType() << " " << *Op << " to "
306        << *SExt->getType() << ")";
307     return;
308   }
309   case scAddRecExpr: {
310     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
311     OS << "{" << *AR->getOperand(0);
312     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
313       OS << ",+," << *AR->getOperand(i);
314     OS << "}<";
315     if (AR->hasNoUnsignedWrap())
316       OS << "nuw><";
317     if (AR->hasNoSignedWrap())
318       OS << "nsw><";
319     if (AR->hasNoSelfWrap() &&
320         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
321       OS << "nw><";
322     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
323     OS << ">";
324     return;
325   }
326   case scAddExpr:
327   case scMulExpr:
328   case scUMaxExpr:
329   case scSMaxExpr:
330   case scUMinExpr:
331   case scSMinExpr:
332   case scSequentialUMinExpr: {
333     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
334     const char *OpStr = nullptr;
335     switch (NAry->getSCEVType()) {
336     case scAddExpr: OpStr = " + "; break;
337     case scMulExpr: OpStr = " * "; break;
338     case scUMaxExpr: OpStr = " umax "; break;
339     case scSMaxExpr: OpStr = " smax "; break;
340     case scUMinExpr:
341       OpStr = " umin ";
342       break;
343     case scSMinExpr:
344       OpStr = " smin ";
345       break;
346     case scSequentialUMinExpr:
347       OpStr = " umin_seq ";
348       break;
349     default:
350       llvm_unreachable("There are no other nary expression types.");
351     }
352     OS << "(";
353     ListSeparator LS(OpStr);
354     for (const SCEV *Op : NAry->operands())
355       OS << LS << *Op;
356     OS << ")";
357     switch (NAry->getSCEVType()) {
358     case scAddExpr:
359     case scMulExpr:
360       if (NAry->hasNoUnsignedWrap())
361         OS << "<nuw>";
362       if (NAry->hasNoSignedWrap())
363         OS << "<nsw>";
364       break;
365     default:
366       // Nothing to print for other nary expressions.
367       break;
368     }
369     return;
370   }
371   case scUDivExpr: {
372     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
373     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
374     return;
375   }
376   case scUnknown:
377     cast<SCEVUnknown>(this)->getValue()->printAsOperand(OS, false);
378     return;
379   case scCouldNotCompute:
380     OS << "***COULDNOTCOMPUTE***";
381     return;
382   }
383   llvm_unreachable("Unknown SCEV kind!");
384 }
385 
386 Type *SCEV::getType() const {
387   switch (getSCEVType()) {
388   case scConstant:
389     return cast<SCEVConstant>(this)->getType();
390   case scVScale:
391     return cast<SCEVVScale>(this)->getType();
392   case scPtrToInt:
393   case scTruncate:
394   case scZeroExtend:
395   case scSignExtend:
396     return cast<SCEVCastExpr>(this)->getType();
397   case scAddRecExpr:
398     return cast<SCEVAddRecExpr>(this)->getType();
399   case scMulExpr:
400     return cast<SCEVMulExpr>(this)->getType();
401   case scUMaxExpr:
402   case scSMaxExpr:
403   case scUMinExpr:
404   case scSMinExpr:
405     return cast<SCEVMinMaxExpr>(this)->getType();
406   case scSequentialUMinExpr:
407     return cast<SCEVSequentialMinMaxExpr>(this)->getType();
408   case scAddExpr:
409     return cast<SCEVAddExpr>(this)->getType();
410   case scUDivExpr:
411     return cast<SCEVUDivExpr>(this)->getType();
412   case scUnknown:
413     return cast<SCEVUnknown>(this)->getType();
414   case scCouldNotCompute:
415     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
416   }
417   llvm_unreachable("Unknown SCEV kind!");
418 }
419 
420 ArrayRef<const SCEV *> SCEV::operands() const {
421   switch (getSCEVType()) {
422   case scConstant:
423   case scVScale:
424   case scUnknown:
425     return {};
426   case scPtrToInt:
427   case scTruncate:
428   case scZeroExtend:
429   case scSignExtend:
430     return cast<SCEVCastExpr>(this)->operands();
431   case scAddRecExpr:
432   case scAddExpr:
433   case scMulExpr:
434   case scUMaxExpr:
435   case scSMaxExpr:
436   case scUMinExpr:
437   case scSMinExpr:
438   case scSequentialUMinExpr:
439     return cast<SCEVNAryExpr>(this)->operands();
440   case scUDivExpr:
441     return cast<SCEVUDivExpr>(this)->operands();
442   case scCouldNotCompute:
443     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
444   }
445   llvm_unreachable("Unknown SCEV kind!");
446 }
447 
448 bool SCEV::isZero() const { return match(this, m_scev_Zero()); }
449 
450 bool SCEV::isOne() const { return match(this, m_scev_One()); }
451 
452 bool SCEV::isAllOnesValue() const { return match(this, m_scev_AllOnes()); }
453 
454 bool SCEV::isNonConstantNegative() const {
455   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
456   if (!Mul) return false;
457 
458   // If there is a constant factor, it will be first.
459   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
460   if (!SC) return false;
461 
462   // Return true if the value is negative, this matches things like (-42 * V).
463   return SC->getAPInt().isNegative();
464 }
465 
466 SCEVCouldNotCompute::SCEVCouldNotCompute() :
467   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
468 
469 bool SCEVCouldNotCompute::classof(const SCEV *S) {
470   return S->getSCEVType() == scCouldNotCompute;
471 }
472 
473 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
474   FoldingSetNodeID ID;
475   ID.AddInteger(scConstant);
476   ID.AddPointer(V);
477   void *IP = nullptr;
478   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
479   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
480   UniqueSCEVs.InsertNode(S, IP);
481   return S;
482 }
483 
484 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
485   return getConstant(ConstantInt::get(getContext(), Val));
486 }
487 
488 const SCEV *
489 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
490   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
491   return getConstant(ConstantInt::get(ITy, V, isSigned));
492 }
493 
494 const SCEV *ScalarEvolution::getVScale(Type *Ty) {
495   FoldingSetNodeID ID;
496   ID.AddInteger(scVScale);
497   ID.AddPointer(Ty);
498   void *IP = nullptr;
499   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
500     return S;
501   SCEV *S = new (SCEVAllocator) SCEVVScale(ID.Intern(SCEVAllocator), Ty);
502   UniqueSCEVs.InsertNode(S, IP);
503   return S;
504 }
505 
506 const SCEV *ScalarEvolution::getElementCount(Type *Ty, ElementCount EC) {
507   const SCEV *Res = getConstant(Ty, EC.getKnownMinValue());
508   if (EC.isScalable())
509     Res = getMulExpr(Res, getVScale(Ty));
510   return Res;
511 }
512 
513 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
514                            const SCEV *op, Type *ty)
515     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
516 
517 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
518                                    Type *ITy)
519     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
520   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
521          "Must be a non-bit-width-changing pointer-to-integer cast!");
522 }
523 
524 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
525                                            SCEVTypes SCEVTy, const SCEV *op,
526                                            Type *ty)
527     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
528 
529 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
530                                    Type *ty)
531     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
532   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
533          "Cannot truncate non-integer value!");
534 }
535 
536 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
537                                        const SCEV *op, Type *ty)
538     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
539   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
540          "Cannot zero extend non-integer value!");
541 }
542 
543 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
544                                        const SCEV *op, Type *ty)
545     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
546   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
547          "Cannot sign extend non-integer value!");
548 }
549 
550 void SCEVUnknown::deleted() {
551   // Clear this SCEVUnknown from various maps.
552   SE->forgetMemoizedResults(this);
553 
554   // Remove this SCEVUnknown from the uniquing map.
555   SE->UniqueSCEVs.RemoveNode(this);
556 
557   // Release the value.
558   setValPtr(nullptr);
559 }
560 
561 void SCEVUnknown::allUsesReplacedWith(Value *New) {
562   // Clear this SCEVUnknown from various maps.
563   SE->forgetMemoizedResults(this);
564 
565   // Remove this SCEVUnknown from the uniquing map.
566   SE->UniqueSCEVs.RemoveNode(this);
567 
568   // Replace the value pointer in case someone is still using this SCEVUnknown.
569   setValPtr(New);
570 }
571 
572 //===----------------------------------------------------------------------===//
573 //                               SCEV Utilities
574 //===----------------------------------------------------------------------===//
575 
576 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
577 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
578 /// operands in SCEV expressions.
579 static int CompareValueComplexity(const LoopInfo *const LI, Value *LV,
580                                   Value *RV, unsigned Depth) {
581   if (Depth > MaxValueCompareDepth)
582     return 0;
583 
584   // Order pointer values after integer values. This helps SCEVExpander form
585   // GEPs.
586   bool LIsPointer = LV->getType()->isPointerTy(),
587        RIsPointer = RV->getType()->isPointerTy();
588   if (LIsPointer != RIsPointer)
589     return (int)LIsPointer - (int)RIsPointer;
590 
591   // Compare getValueID values.
592   unsigned LID = LV->getValueID(), RID = RV->getValueID();
593   if (LID != RID)
594     return (int)LID - (int)RID;
595 
596   // Sort arguments by their position.
597   if (const auto *LA = dyn_cast<Argument>(LV)) {
598     const auto *RA = cast<Argument>(RV);
599     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
600     return (int)LArgNo - (int)RArgNo;
601   }
602 
603   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
604     const auto *RGV = cast<GlobalValue>(RV);
605 
606     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
607       auto LT = GV->getLinkage();
608       return !(GlobalValue::isPrivateLinkage(LT) ||
609                GlobalValue::isInternalLinkage(LT));
610     };
611 
612     // Use the names to distinguish the two values, but only if the
613     // names are semantically important.
614     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
615       return LGV->getName().compare(RGV->getName());
616   }
617 
618   // For instructions, compare their loop depth, and their operand count.  This
619   // is pretty loose.
620   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
621     const auto *RInst = cast<Instruction>(RV);
622 
623     // Compare loop depths.
624     const BasicBlock *LParent = LInst->getParent(),
625                      *RParent = RInst->getParent();
626     if (LParent != RParent) {
627       unsigned LDepth = LI->getLoopDepth(LParent),
628                RDepth = LI->getLoopDepth(RParent);
629       if (LDepth != RDepth)
630         return (int)LDepth - (int)RDepth;
631     }
632 
633     // Compare the number of operands.
634     unsigned LNumOps = LInst->getNumOperands(),
635              RNumOps = RInst->getNumOperands();
636     if (LNumOps != RNumOps)
637       return (int)LNumOps - (int)RNumOps;
638 
639     for (unsigned Idx : seq(LNumOps)) {
640       int Result = CompareValueComplexity(LI, LInst->getOperand(Idx),
641                                           RInst->getOperand(Idx), Depth + 1);
642       if (Result != 0)
643         return Result;
644     }
645   }
646 
647   return 0;
648 }
649 
650 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
651 // than RHS, respectively. A three-way result allows recursive comparisons to be
652 // more efficient.
653 // If the max analysis depth was reached, return std::nullopt, assuming we do
654 // not know if they are equivalent for sure.
655 static std::optional<int>
656 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
657                       const LoopInfo *const LI, const SCEV *LHS,
658                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
659   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
660   if (LHS == RHS)
661     return 0;
662 
663   // Primarily, sort the SCEVs by their getSCEVType().
664   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
665   if (LType != RType)
666     return (int)LType - (int)RType;
667 
668   if (EqCacheSCEV.isEquivalent(LHS, RHS))
669     return 0;
670 
671   if (Depth > MaxSCEVCompareDepth)
672     return std::nullopt;
673 
674   // Aside from the getSCEVType() ordering, the particular ordering
675   // isn't very important except that it's beneficial to be consistent,
676   // so that (a + b) and (b + a) don't end up as different expressions.
677   switch (LType) {
678   case scUnknown: {
679     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
680     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
681 
682     int X =
683         CompareValueComplexity(LI, LU->getValue(), RU->getValue(), Depth + 1);
684     if (X == 0)
685       EqCacheSCEV.unionSets(LHS, RHS);
686     return X;
687   }
688 
689   case scConstant: {
690     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
691     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
692 
693     // Compare constant values.
694     const APInt &LA = LC->getAPInt();
695     const APInt &RA = RC->getAPInt();
696     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
697     if (LBitWidth != RBitWidth)
698       return (int)LBitWidth - (int)RBitWidth;
699     return LA.ult(RA) ? -1 : 1;
700   }
701 
702   case scVScale: {
703     const auto *LTy = cast<IntegerType>(cast<SCEVVScale>(LHS)->getType());
704     const auto *RTy = cast<IntegerType>(cast<SCEVVScale>(RHS)->getType());
705     return LTy->getBitWidth() - RTy->getBitWidth();
706   }
707 
708   case scAddRecExpr: {
709     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
710     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
711 
712     // There is always a dominance between two recs that are used by one SCEV,
713     // so we can safely sort recs by loop header dominance. We require such
714     // order in getAddExpr.
715     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
716     if (LLoop != RLoop) {
717       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
718       assert(LHead != RHead && "Two loops share the same header?");
719       if (DT.dominates(LHead, RHead))
720         return 1;
721       assert(DT.dominates(RHead, LHead) &&
722              "No dominance between recurrences used by one SCEV?");
723       return -1;
724     }
725 
726     [[fallthrough]];
727   }
728 
729   case scTruncate:
730   case scZeroExtend:
731   case scSignExtend:
732   case scPtrToInt:
733   case scAddExpr:
734   case scMulExpr:
735   case scUDivExpr:
736   case scSMaxExpr:
737   case scUMaxExpr:
738   case scSMinExpr:
739   case scUMinExpr:
740   case scSequentialUMinExpr: {
741     ArrayRef<const SCEV *> LOps = LHS->operands();
742     ArrayRef<const SCEV *> ROps = RHS->operands();
743 
744     // Lexicographically compare n-ary-like expressions.
745     unsigned LNumOps = LOps.size(), RNumOps = ROps.size();
746     if (LNumOps != RNumOps)
747       return (int)LNumOps - (int)RNumOps;
748 
749     for (unsigned i = 0; i != LNumOps; ++i) {
750       auto X = CompareSCEVComplexity(EqCacheSCEV, LI, LOps[i], ROps[i], DT,
751                                      Depth + 1);
752       if (X != 0)
753         return X;
754     }
755     EqCacheSCEV.unionSets(LHS, RHS);
756     return 0;
757   }
758 
759   case scCouldNotCompute:
760     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
761   }
762   llvm_unreachable("Unknown SCEV kind!");
763 }
764 
765 /// Given a list of SCEV objects, order them by their complexity, and group
766 /// objects of the same complexity together by value.  When this routine is
767 /// finished, we know that any duplicates in the vector are consecutive and that
768 /// complexity is monotonically increasing.
769 ///
770 /// Note that we go take special precautions to ensure that we get deterministic
771 /// results from this routine.  In other words, we don't want the results of
772 /// this to depend on where the addresses of various SCEV objects happened to
773 /// land in memory.
774 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
775                               LoopInfo *LI, DominatorTree &DT) {
776   if (Ops.size() < 2) return;  // Noop
777 
778   EquivalenceClasses<const SCEV *> EqCacheSCEV;
779 
780   // Whether LHS has provably less complexity than RHS.
781   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
782     auto Complexity = CompareSCEVComplexity(EqCacheSCEV, LI, LHS, RHS, DT);
783     return Complexity && *Complexity < 0;
784   };
785   if (Ops.size() == 2) {
786     // This is the common case, which also happens to be trivially simple.
787     // Special case it.
788     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
789     if (IsLessComplex(RHS, LHS))
790       std::swap(LHS, RHS);
791     return;
792   }
793 
794   // Do the rough sort by complexity.
795   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
796     return IsLessComplex(LHS, RHS);
797   });
798 
799   // Now that we are sorted by complexity, group elements of the same
800   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
801   // be extremely short in practice.  Note that we take this approach because we
802   // do not want to depend on the addresses of the objects we are grouping.
803   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
804     const SCEV *S = Ops[i];
805     unsigned Complexity = S->getSCEVType();
806 
807     // If there are any objects of the same complexity and same value as this
808     // one, group them.
809     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
810       if (Ops[j] == S) { // Found a duplicate.
811         // Move it to immediately after i'th element.
812         std::swap(Ops[i+1], Ops[j]);
813         ++i;   // no need to rescan it.
814         if (i == e-2) return;  // Done!
815       }
816     }
817   }
818 }
819 
820 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
821 /// least HugeExprThreshold nodes).
822 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
823   return any_of(Ops, [](const SCEV *S) {
824     return S->getExpressionSize() >= HugeExprThreshold;
825   });
826 }
827 
828 /// Performs a number of common optimizations on the passed \p Ops. If the
829 /// whole expression reduces down to a single operand, it will be returned.
830 ///
831 /// The following optimizations are performed:
832 ///  * Fold constants using the \p Fold function.
833 ///  * Remove identity constants satisfying \p IsIdentity.
834 ///  * If a constant satisfies \p IsAbsorber, return it.
835 ///  * Sort operands by complexity.
836 template <typename FoldT, typename IsIdentityT, typename IsAbsorberT>
837 static const SCEV *
838 constantFoldAndGroupOps(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT,
839                         SmallVectorImpl<const SCEV *> &Ops, FoldT Fold,
840                         IsIdentityT IsIdentity, IsAbsorberT IsAbsorber) {
841   const SCEVConstant *Folded = nullptr;
842   for (unsigned Idx = 0; Idx < Ops.size();) {
843     const SCEV *Op = Ops[Idx];
844     if (const auto *C = dyn_cast<SCEVConstant>(Op)) {
845       if (!Folded)
846         Folded = C;
847       else
848         Folded = cast<SCEVConstant>(
849             SE.getConstant(Fold(Folded->getAPInt(), C->getAPInt())));
850       Ops.erase(Ops.begin() + Idx);
851       continue;
852     }
853     ++Idx;
854   }
855 
856   if (Ops.empty()) {
857     assert(Folded && "Must have folded value");
858     return Folded;
859   }
860 
861   if (Folded && IsAbsorber(Folded->getAPInt()))
862     return Folded;
863 
864   GroupByComplexity(Ops, &LI, DT);
865   if (Folded && !IsIdentity(Folded->getAPInt()))
866     Ops.insert(Ops.begin(), Folded);
867 
868   return Ops.size() == 1 ? Ops[0] : nullptr;
869 }
870 
871 //===----------------------------------------------------------------------===//
872 //                      Simple SCEV method implementations
873 //===----------------------------------------------------------------------===//
874 
875 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
876 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
877                                        ScalarEvolution &SE,
878                                        Type *ResultTy) {
879   // Handle the simplest case efficiently.
880   if (K == 1)
881     return SE.getTruncateOrZeroExtend(It, ResultTy);
882 
883   // We are using the following formula for BC(It, K):
884   //
885   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
886   //
887   // Suppose, W is the bitwidth of the return value.  We must be prepared for
888   // overflow.  Hence, we must assure that the result of our computation is
889   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
890   // safe in modular arithmetic.
891   //
892   // However, this code doesn't use exactly that formula; the formula it uses
893   // is something like the following, where T is the number of factors of 2 in
894   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
895   // exponentiation:
896   //
897   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
898   //
899   // This formula is trivially equivalent to the previous formula.  However,
900   // this formula can be implemented much more efficiently.  The trick is that
901   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
902   // arithmetic.  To do exact division in modular arithmetic, all we have
903   // to do is multiply by the inverse.  Therefore, this step can be done at
904   // width W.
905   //
906   // The next issue is how to safely do the division by 2^T.  The way this
907   // is done is by doing the multiplication step at a width of at least W + T
908   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
909   // when we perform the division by 2^T (which is equivalent to a right shift
910   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
911   // truncated out after the division by 2^T.
912   //
913   // In comparison to just directly using the first formula, this technique
914   // is much more efficient; using the first formula requires W * K bits,
915   // but this formula less than W + K bits. Also, the first formula requires
916   // a division step, whereas this formula only requires multiplies and shifts.
917   //
918   // It doesn't matter whether the subtraction step is done in the calculation
919   // width or the input iteration count's width; if the subtraction overflows,
920   // the result must be zero anyway.  We prefer here to do it in the width of
921   // the induction variable because it helps a lot for certain cases; CodeGen
922   // isn't smart enough to ignore the overflow, which leads to much less
923   // efficient code if the width of the subtraction is wider than the native
924   // register width.
925   //
926   // (It's possible to not widen at all by pulling out factors of 2 before
927   // the multiplication; for example, K=2 can be calculated as
928   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
929   // extra arithmetic, so it's not an obvious win, and it gets
930   // much more complicated for K > 3.)
931 
932   // Protection from insane SCEVs; this bound is conservative,
933   // but it probably doesn't matter.
934   if (K > 1000)
935     return SE.getCouldNotCompute();
936 
937   unsigned W = SE.getTypeSizeInBits(ResultTy);
938 
939   // Calculate K! / 2^T and T; we divide out the factors of two before
940   // multiplying for calculating K! / 2^T to avoid overflow.
941   // Other overflow doesn't matter because we only care about the bottom
942   // W bits of the result.
943   APInt OddFactorial(W, 1);
944   unsigned T = 1;
945   for (unsigned i = 3; i <= K; ++i) {
946     unsigned TwoFactors = countr_zero(i);
947     T += TwoFactors;
948     OddFactorial *= (i >> TwoFactors);
949   }
950 
951   // We need at least W + T bits for the multiplication step
952   unsigned CalculationBits = W + T;
953 
954   // Calculate 2^T, at width T+W.
955   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
956 
957   // Calculate the multiplicative inverse of K! / 2^T;
958   // this multiplication factor will perform the exact division by
959   // K! / 2^T.
960   APInt MultiplyFactor = OddFactorial.multiplicativeInverse();
961 
962   // Calculate the product, at width T+W
963   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
964                                                       CalculationBits);
965   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
966   for (unsigned i = 1; i != K; ++i) {
967     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
968     Dividend = SE.getMulExpr(Dividend,
969                              SE.getTruncateOrZeroExtend(S, CalculationTy));
970   }
971 
972   // Divide by 2^T
973   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
974 
975   // Truncate the result, and divide by K! / 2^T.
976 
977   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
978                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
979 }
980 
981 /// Return the value of this chain of recurrences at the specified iteration
982 /// number.  We can evaluate this recurrence by multiplying each element in the
983 /// chain by the binomial coefficient corresponding to it.  In other words, we
984 /// can evaluate {A,+,B,+,C,+,D} as:
985 ///
986 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
987 ///
988 /// where BC(It, k) stands for binomial coefficient.
989 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
990                                                 ScalarEvolution &SE) const {
991   return evaluateAtIteration(operands(), It, SE);
992 }
993 
994 const SCEV *
995 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
996                                     const SCEV *It, ScalarEvolution &SE) {
997   assert(Operands.size() > 0);
998   const SCEV *Result = Operands[0];
999   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1000     // The computation is correct in the face of overflow provided that the
1001     // multiplication is performed _after_ the evaluation of the binomial
1002     // coefficient.
1003     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1004     if (isa<SCEVCouldNotCompute>(Coeff))
1005       return Coeff;
1006 
1007     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1008   }
1009   return Result;
1010 }
1011 
1012 //===----------------------------------------------------------------------===//
1013 //                    SCEV Expression folder implementations
1014 //===----------------------------------------------------------------------===//
1015 
1016 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1017                                                      unsigned Depth) {
1018   assert(Depth <= 1 &&
1019          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1020 
1021   // We could be called with an integer-typed operands during SCEV rewrites.
1022   // Since the operand is an integer already, just perform zext/trunc/self cast.
1023   if (!Op->getType()->isPointerTy())
1024     return Op;
1025 
1026   // What would be an ID for such a SCEV cast expression?
1027   FoldingSetNodeID ID;
1028   ID.AddInteger(scPtrToInt);
1029   ID.AddPointer(Op);
1030 
1031   void *IP = nullptr;
1032 
1033   // Is there already an expression for such a cast?
1034   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1035     return S;
1036 
1037   // It isn't legal for optimizations to construct new ptrtoint expressions
1038   // for non-integral pointers.
1039   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1040     return getCouldNotCompute();
1041 
1042   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1043 
1044   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1045   // is sufficiently wide to represent all possible pointer values.
1046   // We could theoretically teach SCEV to truncate wider pointers, but
1047   // that isn't implemented for now.
1048   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1049       getDataLayout().getTypeSizeInBits(IntPtrTy))
1050     return getCouldNotCompute();
1051 
1052   // If not, is this expression something we can't reduce any further?
1053   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1054     // Perform some basic constant folding. If the operand of the ptr2int cast
1055     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1056     // left as-is), but produce a zero constant.
1057     // NOTE: We could handle a more general case, but lack motivational cases.
1058     if (isa<ConstantPointerNull>(U->getValue()))
1059       return getZero(IntPtrTy);
1060 
1061     // Create an explicit cast node.
1062     // We can reuse the existing insert position since if we get here,
1063     // we won't have made any changes which would invalidate it.
1064     SCEV *S = new (SCEVAllocator)
1065         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1066     UniqueSCEVs.InsertNode(S, IP);
1067     registerUser(S, Op);
1068     return S;
1069   }
1070 
1071   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1072                        "non-SCEVUnknown's.");
1073 
1074   // Otherwise, we've got some expression that is more complex than just a
1075   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1076   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1077   // only, and the expressions must otherwise be integer-typed.
1078   // So sink the cast down to the SCEVUnknown's.
1079 
1080   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1081   /// which computes a pointer-typed value, and rewrites the whole expression
1082   /// tree so that *all* the computations are done on integers, and the only
1083   /// pointer-typed operands in the expression are SCEVUnknown.
1084   class SCEVPtrToIntSinkingRewriter
1085       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1086     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1087 
1088   public:
1089     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1090 
1091     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1092       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1093       return Rewriter.visit(Scev);
1094     }
1095 
1096     const SCEV *visit(const SCEV *S) {
1097       Type *STy = S->getType();
1098       // If the expression is not pointer-typed, just keep it as-is.
1099       if (!STy->isPointerTy())
1100         return S;
1101       // Else, recursively sink the cast down into it.
1102       return Base::visit(S);
1103     }
1104 
1105     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1106       SmallVector<const SCEV *, 2> Operands;
1107       bool Changed = false;
1108       for (const auto *Op : Expr->operands()) {
1109         Operands.push_back(visit(Op));
1110         Changed |= Op != Operands.back();
1111       }
1112       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1113     }
1114 
1115     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1116       SmallVector<const SCEV *, 2> Operands;
1117       bool Changed = false;
1118       for (const auto *Op : Expr->operands()) {
1119         Operands.push_back(visit(Op));
1120         Changed |= Op != Operands.back();
1121       }
1122       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1123     }
1124 
1125     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1126       assert(Expr->getType()->isPointerTy() &&
1127              "Should only reach pointer-typed SCEVUnknown's.");
1128       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1129     }
1130   };
1131 
1132   // And actually perform the cast sinking.
1133   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1134   assert(IntOp->getType()->isIntegerTy() &&
1135          "We must have succeeded in sinking the cast, "
1136          "and ending up with an integer-typed expression!");
1137   return IntOp;
1138 }
1139 
1140 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1141   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1142 
1143   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1144   if (isa<SCEVCouldNotCompute>(IntOp))
1145     return IntOp;
1146 
1147   return getTruncateOrZeroExtend(IntOp, Ty);
1148 }
1149 
1150 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1151                                              unsigned Depth) {
1152   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1153          "This is not a truncating conversion!");
1154   assert(isSCEVable(Ty) &&
1155          "This is not a conversion to a SCEVable type!");
1156   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1157   Ty = getEffectiveSCEVType(Ty);
1158 
1159   FoldingSetNodeID ID;
1160   ID.AddInteger(scTruncate);
1161   ID.AddPointer(Op);
1162   ID.AddPointer(Ty);
1163   void *IP = nullptr;
1164   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1165 
1166   // Fold if the operand is constant.
1167   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1168     return getConstant(
1169       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1170 
1171   // trunc(trunc(x)) --> trunc(x)
1172   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1173     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1174 
1175   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1176   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1177     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1178 
1179   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1180   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1181     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1182 
1183   if (Depth > MaxCastDepth) {
1184     SCEV *S =
1185         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1186     UniqueSCEVs.InsertNode(S, IP);
1187     registerUser(S, Op);
1188     return S;
1189   }
1190 
1191   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1192   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1193   // if after transforming we have at most one truncate, not counting truncates
1194   // that replace other casts.
1195   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1196     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1197     SmallVector<const SCEV *, 4> Operands;
1198     unsigned numTruncs = 0;
1199     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1200          ++i) {
1201       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1202       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1203           isa<SCEVTruncateExpr>(S))
1204         numTruncs++;
1205       Operands.push_back(S);
1206     }
1207     if (numTruncs < 2) {
1208       if (isa<SCEVAddExpr>(Op))
1209         return getAddExpr(Operands);
1210       if (isa<SCEVMulExpr>(Op))
1211         return getMulExpr(Operands);
1212       llvm_unreachable("Unexpected SCEV type for Op.");
1213     }
1214     // Although we checked in the beginning that ID is not in the cache, it is
1215     // possible that during recursion and different modification ID was inserted
1216     // into the cache. So if we find it, just return it.
1217     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1218       return S;
1219   }
1220 
1221   // If the input value is a chrec scev, truncate the chrec's operands.
1222   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1223     SmallVector<const SCEV *, 4> Operands;
1224     for (const SCEV *Op : AddRec->operands())
1225       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1226     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1227   }
1228 
1229   // Return zero if truncating to known zeros.
1230   uint32_t MinTrailingZeros = getMinTrailingZeros(Op);
1231   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1232     return getZero(Ty);
1233 
1234   // The cast wasn't folded; create an explicit cast node. We can reuse
1235   // the existing insert position since if we get here, we won't have
1236   // made any changes which would invalidate it.
1237   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1238                                                  Op, Ty);
1239   UniqueSCEVs.InsertNode(S, IP);
1240   registerUser(S, Op);
1241   return S;
1242 }
1243 
1244 // Get the limit of a recurrence such that incrementing by Step cannot cause
1245 // signed overflow as long as the value of the recurrence within the
1246 // loop does not exceed this limit before incrementing.
1247 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1248                                                  ICmpInst::Predicate *Pred,
1249                                                  ScalarEvolution *SE) {
1250   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1251   if (SE->isKnownPositive(Step)) {
1252     *Pred = ICmpInst::ICMP_SLT;
1253     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1254                            SE->getSignedRangeMax(Step));
1255   }
1256   if (SE->isKnownNegative(Step)) {
1257     *Pred = ICmpInst::ICMP_SGT;
1258     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1259                            SE->getSignedRangeMin(Step));
1260   }
1261   return nullptr;
1262 }
1263 
1264 // Get the limit of a recurrence such that incrementing by Step cannot cause
1265 // unsigned overflow as long as the value of the recurrence within the loop does
1266 // not exceed this limit before incrementing.
1267 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1268                                                    ICmpInst::Predicate *Pred,
1269                                                    ScalarEvolution *SE) {
1270   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1271   *Pred = ICmpInst::ICMP_ULT;
1272 
1273   return SE->getConstant(APInt::getMinValue(BitWidth) -
1274                          SE->getUnsignedRangeMax(Step));
1275 }
1276 
1277 namespace {
1278 
1279 struct ExtendOpTraitsBase {
1280   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1281                                                           unsigned);
1282 };
1283 
1284 // Used to make code generic over signed and unsigned overflow.
1285 template <typename ExtendOp> struct ExtendOpTraits {
1286   // Members present:
1287   //
1288   // static const SCEV::NoWrapFlags WrapType;
1289   //
1290   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1291   //
1292   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1293   //                                           ICmpInst::Predicate *Pred,
1294   //                                           ScalarEvolution *SE);
1295 };
1296 
1297 template <>
1298 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1299   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1300 
1301   static const GetExtendExprTy GetExtendExpr;
1302 
1303   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1304                                              ICmpInst::Predicate *Pred,
1305                                              ScalarEvolution *SE) {
1306     return getSignedOverflowLimitForStep(Step, Pred, SE);
1307   }
1308 };
1309 
1310 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1311     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1312 
1313 template <>
1314 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1315   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1316 
1317   static const GetExtendExprTy GetExtendExpr;
1318 
1319   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1320                                              ICmpInst::Predicate *Pred,
1321                                              ScalarEvolution *SE) {
1322     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1323   }
1324 };
1325 
1326 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1327     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1328 
1329 } // end anonymous namespace
1330 
1331 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1332 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1333 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1334 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1335 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1336 // expression "Step + sext/zext(PreIncAR)" is congruent with
1337 // "sext/zext(PostIncAR)"
1338 template <typename ExtendOpTy>
1339 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1340                                         ScalarEvolution *SE, unsigned Depth) {
1341   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1342   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1343 
1344   const Loop *L = AR->getLoop();
1345   const SCEV *Start = AR->getStart();
1346   const SCEV *Step = AR->getStepRecurrence(*SE);
1347 
1348   // Check for a simple looking step prior to loop entry.
1349   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1350   if (!SA)
1351     return nullptr;
1352 
1353   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1354   // subtraction is expensive. For this purpose, perform a quick and dirty
1355   // difference, by checking for Step in the operand list. Note, that
1356   // SA might have repeated ops, like %a + %a + ..., so only remove one.
1357   SmallVector<const SCEV *, 4> DiffOps(SA->operands());
1358   for (auto It = DiffOps.begin(); It != DiffOps.end(); ++It)
1359     if (*It == Step) {
1360       DiffOps.erase(It);
1361       break;
1362     }
1363 
1364   if (DiffOps.size() == SA->getNumOperands())
1365     return nullptr;
1366 
1367   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1368   // `Step`:
1369 
1370   // 1. NSW/NUW flags on the step increment.
1371   auto PreStartFlags =
1372     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1373   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1374   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1375       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1376 
1377   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1378   // "S+X does not sign/unsign-overflow".
1379   //
1380 
1381   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1382   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1383       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1384     return PreStart;
1385 
1386   // 2. Direct overflow check on the step operation's expression.
1387   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1388   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1389   const SCEV *OperandExtendedStart =
1390       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1391                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1392   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1393     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1394       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1395       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1396       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1397       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1398     }
1399     return PreStart;
1400   }
1401 
1402   // 3. Loop precondition.
1403   ICmpInst::Predicate Pred;
1404   const SCEV *OverflowLimit =
1405       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1406 
1407   if (OverflowLimit &&
1408       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1409     return PreStart;
1410 
1411   return nullptr;
1412 }
1413 
1414 // Get the normalized zero or sign extended expression for this AddRec's Start.
1415 template <typename ExtendOpTy>
1416 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1417                                         ScalarEvolution *SE,
1418                                         unsigned Depth) {
1419   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1420 
1421   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1422   if (!PreStart)
1423     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1424 
1425   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1426                                              Depth),
1427                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1428 }
1429 
1430 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1431 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1432 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1433 //
1434 // Formally:
1435 //
1436 //     {S,+,X} == {S-T,+,X} + T
1437 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1438 //
1439 // If ({S-T,+,X} + T) does not overflow  ... (1)
1440 //
1441 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1442 //
1443 // If {S-T,+,X} does not overflow  ... (2)
1444 //
1445 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1446 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1447 //
1448 // If (S-T)+T does not overflow  ... (3)
1449 //
1450 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1451 //      == {Ext(S),+,Ext(X)} == LHS
1452 //
1453 // Thus, if (1), (2) and (3) are true for some T, then
1454 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1455 //
1456 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1457 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1458 // to check for (1) and (2).
1459 //
1460 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1461 // is `Delta` (defined below).
1462 template <typename ExtendOpTy>
1463 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1464                                                 const SCEV *Step,
1465                                                 const Loop *L) {
1466   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1467 
1468   // We restrict `Start` to a constant to prevent SCEV from spending too much
1469   // time here.  It is correct (but more expensive) to continue with a
1470   // non-constant `Start` and do a general SCEV subtraction to compute
1471   // `PreStart` below.
1472   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1473   if (!StartC)
1474     return false;
1475 
1476   APInt StartAI = StartC->getAPInt();
1477 
1478   for (unsigned Delta : {-2, -1, 1, 2}) {
1479     const SCEV *PreStart = getConstant(StartAI - Delta);
1480 
1481     FoldingSetNodeID ID;
1482     ID.AddInteger(scAddRecExpr);
1483     ID.AddPointer(PreStart);
1484     ID.AddPointer(Step);
1485     ID.AddPointer(L);
1486     void *IP = nullptr;
1487     const auto *PreAR =
1488       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1489 
1490     // Give up if we don't already have the add recurrence we need because
1491     // actually constructing an add recurrence is relatively expensive.
1492     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1493       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1494       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1495       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1496           DeltaS, &Pred, this);
1497       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1498         return true;
1499     }
1500   }
1501 
1502   return false;
1503 }
1504 
1505 // Finds an integer D for an expression (C + x + y + ...) such that the top
1506 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1507 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1508 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1509 // the (C + x + y + ...) expression is \p WholeAddExpr.
1510 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1511                                             const SCEVConstant *ConstantTerm,
1512                                             const SCEVAddExpr *WholeAddExpr) {
1513   const APInt &C = ConstantTerm->getAPInt();
1514   const unsigned BitWidth = C.getBitWidth();
1515   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1516   uint32_t TZ = BitWidth;
1517   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1518     TZ = std::min(TZ, SE.getMinTrailingZeros(WholeAddExpr->getOperand(I)));
1519   if (TZ) {
1520     // Set D to be as many least significant bits of C as possible while still
1521     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1522     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1523   }
1524   return APInt(BitWidth, 0);
1525 }
1526 
1527 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1528 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1529 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1530 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1531 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1532                                             const APInt &ConstantStart,
1533                                             const SCEV *Step) {
1534   const unsigned BitWidth = ConstantStart.getBitWidth();
1535   const uint32_t TZ = SE.getMinTrailingZeros(Step);
1536   if (TZ)
1537     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1538                          : ConstantStart;
1539   return APInt(BitWidth, 0);
1540 }
1541 
1542 static void insertFoldCacheEntry(
1543     const ScalarEvolution::FoldID &ID, const SCEV *S,
1544     DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache,
1545     DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>>
1546         &FoldCacheUser) {
1547   auto I = FoldCache.insert({ID, S});
1548   if (!I.second) {
1549     // Remove FoldCacheUser entry for ID when replacing an existing FoldCache
1550     // entry.
1551     auto &UserIDs = FoldCacheUser[I.first->second];
1552     assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs");
1553     for (unsigned I = 0; I != UserIDs.size(); ++I)
1554       if (UserIDs[I] == ID) {
1555         std::swap(UserIDs[I], UserIDs.back());
1556         break;
1557       }
1558     UserIDs.pop_back();
1559     I.first->second = S;
1560   }
1561   FoldCacheUser[S].push_back(ID);
1562 }
1563 
1564 const SCEV *
1565 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1566   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1567          "This is not an extending conversion!");
1568   assert(isSCEVable(Ty) &&
1569          "This is not a conversion to a SCEVable type!");
1570   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1571   Ty = getEffectiveSCEVType(Ty);
1572 
1573   FoldID ID(scZeroExtend, Op, Ty);
1574   auto Iter = FoldCache.find(ID);
1575   if (Iter != FoldCache.end())
1576     return Iter->second;
1577 
1578   const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth);
1579   if (!isa<SCEVZeroExtendExpr>(S))
1580     insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1581   return S;
1582 }
1583 
1584 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
1585                                                    unsigned Depth) {
1586   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1587          "This is not an extending conversion!");
1588   assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1589   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1590 
1591   // Fold if the operand is constant.
1592   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1593     return getConstant(SC->getAPInt().zext(getTypeSizeInBits(Ty)));
1594 
1595   // zext(zext(x)) --> zext(x)
1596   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1597     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1598 
1599   // Before doing any expensive analysis, check to see if we've already
1600   // computed a SCEV for this Op and Ty.
1601   FoldingSetNodeID ID;
1602   ID.AddInteger(scZeroExtend);
1603   ID.AddPointer(Op);
1604   ID.AddPointer(Ty);
1605   void *IP = nullptr;
1606   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1607   if (Depth > MaxCastDepth) {
1608     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1609                                                      Op, Ty);
1610     UniqueSCEVs.InsertNode(S, IP);
1611     registerUser(S, Op);
1612     return S;
1613   }
1614 
1615   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1616   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1617     // It's possible the bits taken off by the truncate were all zero bits. If
1618     // so, we should be able to simplify this further.
1619     const SCEV *X = ST->getOperand();
1620     ConstantRange CR = getUnsignedRange(X);
1621     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1622     unsigned NewBits = getTypeSizeInBits(Ty);
1623     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1624             CR.zextOrTrunc(NewBits)))
1625       return getTruncateOrZeroExtend(X, Ty, Depth);
1626   }
1627 
1628   // If the input value is a chrec scev, and we can prove that the value
1629   // did not overflow the old, smaller, value, we can zero extend all of the
1630   // operands (often constants).  This allows analysis of something like
1631   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1632   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1633     if (AR->isAffine()) {
1634       const SCEV *Start = AR->getStart();
1635       const SCEV *Step = AR->getStepRecurrence(*this);
1636       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1637       const Loop *L = AR->getLoop();
1638 
1639       // If we have special knowledge that this addrec won't overflow,
1640       // we don't need to do any further analysis.
1641       if (AR->hasNoUnsignedWrap()) {
1642         Start =
1643             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1644         Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1645         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1646       }
1647 
1648       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1649       // Note that this serves two purposes: It filters out loops that are
1650       // simply not analyzable, and it covers the case where this code is
1651       // being called from within backedge-taken count analysis, such that
1652       // attempting to ask for the backedge-taken count would likely result
1653       // in infinite recursion. In the later case, the analysis code will
1654       // cope with a conservative value, and it will take care to purge
1655       // that value once it has finished.
1656       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1657       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1658         // Manually compute the final value for AR, checking for overflow.
1659 
1660         // Check whether the backedge-taken count can be losslessly casted to
1661         // the addrec's type. The count is always unsigned.
1662         const SCEV *CastedMaxBECount =
1663             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1664         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1665             CastedMaxBECount, MaxBECount->getType(), Depth);
1666         if (MaxBECount == RecastedMaxBECount) {
1667           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1668           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1669           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1670                                         SCEV::FlagAnyWrap, Depth + 1);
1671           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1672                                                           SCEV::FlagAnyWrap,
1673                                                           Depth + 1),
1674                                                WideTy, Depth + 1);
1675           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1676           const SCEV *WideMaxBECount =
1677             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1678           const SCEV *OperandExtendedAdd =
1679             getAddExpr(WideStart,
1680                        getMulExpr(WideMaxBECount,
1681                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1682                                   SCEV::FlagAnyWrap, Depth + 1),
1683                        SCEV::FlagAnyWrap, Depth + 1);
1684           if (ZAdd == OperandExtendedAdd) {
1685             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1686             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1687             // Return the expression with the addrec on the outside.
1688             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1689                                                              Depth + 1);
1690             Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1691             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1692           }
1693           // Similar to above, only this time treat the step value as signed.
1694           // This covers loops that count down.
1695           OperandExtendedAdd =
1696             getAddExpr(WideStart,
1697                        getMulExpr(WideMaxBECount,
1698                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1699                                   SCEV::FlagAnyWrap, Depth + 1),
1700                        SCEV::FlagAnyWrap, Depth + 1);
1701           if (ZAdd == OperandExtendedAdd) {
1702             // Cache knowledge of AR NW, which is propagated to this AddRec.
1703             // Negative step causes unsigned wrap, but it still can't self-wrap.
1704             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1705             // Return the expression with the addrec on the outside.
1706             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1707                                                              Depth + 1);
1708             Step = getSignExtendExpr(Step, Ty, Depth + 1);
1709             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1710           }
1711         }
1712       }
1713 
1714       // Normally, in the cases we can prove no-overflow via a
1715       // backedge guarding condition, we can also compute a backedge
1716       // taken count for the loop.  The exceptions are assumptions and
1717       // guards present in the loop -- SCEV is not great at exploiting
1718       // these to compute max backedge taken counts, but can still use
1719       // these to prove lack of overflow.  Use this fact to avoid
1720       // doing extra work that may not pay off.
1721       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1722           !AC.assumptions().empty()) {
1723 
1724         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1725         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1726         if (AR->hasNoUnsignedWrap()) {
1727           // Same as nuw case above - duplicated here to avoid a compile time
1728           // issue.  It's not clear that the order of checks does matter, but
1729           // it's one of two issue possible causes for a change which was
1730           // reverted.  Be conservative for the moment.
1731           Start =
1732               getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1733           Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1734           return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1735         }
1736 
1737         // For a negative step, we can extend the operands iff doing so only
1738         // traverses values in the range zext([0,UINT_MAX]).
1739         if (isKnownNegative(Step)) {
1740           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1741                                       getSignedRangeMin(Step));
1742           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1743               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1744             // Cache knowledge of AR NW, which is propagated to this
1745             // AddRec.  Negative step causes unsigned wrap, but it
1746             // still can't self-wrap.
1747             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1748             // Return the expression with the addrec on the outside.
1749             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1750                                                              Depth + 1);
1751             Step = getSignExtendExpr(Step, Ty, Depth + 1);
1752             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1753           }
1754         }
1755       }
1756 
1757       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1758       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1759       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1760       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1761         const APInt &C = SC->getAPInt();
1762         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1763         if (D != 0) {
1764           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1765           const SCEV *SResidual =
1766               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1767           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1768           return getAddExpr(SZExtD, SZExtR,
1769                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1770                             Depth + 1);
1771         }
1772       }
1773 
1774       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1775         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1776         Start =
1777             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1778         Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1779         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1780       }
1781     }
1782 
1783   // zext(A % B) --> zext(A) % zext(B)
1784   {
1785     const SCEV *LHS;
1786     const SCEV *RHS;
1787     if (matchURem(Op, LHS, RHS))
1788       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1789                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1790   }
1791 
1792   // zext(A / B) --> zext(A) / zext(B).
1793   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1794     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1795                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1796 
1797   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1798     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1799     if (SA->hasNoUnsignedWrap()) {
1800       // If the addition does not unsign overflow then we can, by definition,
1801       // commute the zero extension with the addition operation.
1802       SmallVector<const SCEV *, 4> Ops;
1803       for (const auto *Op : SA->operands())
1804         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1805       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1806     }
1807 
1808     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1809     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1810     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1811     //
1812     // Often address arithmetics contain expressions like
1813     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1814     // This transformation is useful while proving that such expressions are
1815     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1816     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1817       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1818       if (D != 0) {
1819         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1820         const SCEV *SResidual =
1821             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1822         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1823         return getAddExpr(SZExtD, SZExtR,
1824                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1825                           Depth + 1);
1826       }
1827     }
1828   }
1829 
1830   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1831     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1832     if (SM->hasNoUnsignedWrap()) {
1833       // If the multiply does not unsign overflow then we can, by definition,
1834       // commute the zero extension with the multiply operation.
1835       SmallVector<const SCEV *, 4> Ops;
1836       for (const auto *Op : SM->operands())
1837         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1838       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1839     }
1840 
1841     // zext(2^K * (trunc X to iN)) to iM ->
1842     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1843     //
1844     // Proof:
1845     //
1846     //     zext(2^K * (trunc X to iN)) to iM
1847     //   = zext((trunc X to iN) << K) to iM
1848     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1849     //     (because shl removes the top K bits)
1850     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1851     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1852     //
1853     if (SM->getNumOperands() == 2)
1854       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1855         if (MulLHS->getAPInt().isPowerOf2())
1856           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1857             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1858                                MulLHS->getAPInt().logBase2();
1859             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1860             return getMulExpr(
1861                 getZeroExtendExpr(MulLHS, Ty),
1862                 getZeroExtendExpr(
1863                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1864                 SCEV::FlagNUW, Depth + 1);
1865           }
1866   }
1867 
1868   // zext(umin(x, y)) -> umin(zext(x), zext(y))
1869   // zext(umax(x, y)) -> umax(zext(x), zext(y))
1870   if (isa<SCEVUMinExpr>(Op) || isa<SCEVUMaxExpr>(Op)) {
1871     auto *MinMax = cast<SCEVMinMaxExpr>(Op);
1872     SmallVector<const SCEV *, 4> Operands;
1873     for (auto *Operand : MinMax->operands())
1874       Operands.push_back(getZeroExtendExpr(Operand, Ty));
1875     if (isa<SCEVUMinExpr>(MinMax))
1876       return getUMinExpr(Operands);
1877     return getUMaxExpr(Operands);
1878   }
1879 
1880   // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y))
1881   if (auto *MinMax = dyn_cast<SCEVSequentialMinMaxExpr>(Op)) {
1882     assert(isa<SCEVSequentialUMinExpr>(MinMax) && "Not supported!");
1883     SmallVector<const SCEV *, 4> Operands;
1884     for (auto *Operand : MinMax->operands())
1885       Operands.push_back(getZeroExtendExpr(Operand, Ty));
1886     return getUMinExpr(Operands, /*Sequential*/ true);
1887   }
1888 
1889   // The cast wasn't folded; create an explicit cast node.
1890   // Recompute the insert position, as it may have been invalidated.
1891   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1892   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1893                                                    Op, Ty);
1894   UniqueSCEVs.InsertNode(S, IP);
1895   registerUser(S, Op);
1896   return S;
1897 }
1898 
1899 const SCEV *
1900 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1901   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1902          "This is not an extending conversion!");
1903   assert(isSCEVable(Ty) &&
1904          "This is not a conversion to a SCEVable type!");
1905   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1906   Ty = getEffectiveSCEVType(Ty);
1907 
1908   FoldID ID(scSignExtend, Op, Ty);
1909   auto Iter = FoldCache.find(ID);
1910   if (Iter != FoldCache.end())
1911     return Iter->second;
1912 
1913   const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth);
1914   if (!isa<SCEVSignExtendExpr>(S))
1915     insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1916   return S;
1917 }
1918 
1919 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty,
1920                                                    unsigned Depth) {
1921   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1922          "This is not an extending conversion!");
1923   assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1924   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1925   Ty = getEffectiveSCEVType(Ty);
1926 
1927   // Fold if the operand is constant.
1928   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1929     return getConstant(SC->getAPInt().sext(getTypeSizeInBits(Ty)));
1930 
1931   // sext(sext(x)) --> sext(x)
1932   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1933     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1934 
1935   // sext(zext(x)) --> zext(x)
1936   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1937     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1938 
1939   // Before doing any expensive analysis, check to see if we've already
1940   // computed a SCEV for this Op and Ty.
1941   FoldingSetNodeID ID;
1942   ID.AddInteger(scSignExtend);
1943   ID.AddPointer(Op);
1944   ID.AddPointer(Ty);
1945   void *IP = nullptr;
1946   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1947   // Limit recursion depth.
1948   if (Depth > MaxCastDepth) {
1949     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1950                                                      Op, Ty);
1951     UniqueSCEVs.InsertNode(S, IP);
1952     registerUser(S, Op);
1953     return S;
1954   }
1955 
1956   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1957   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1958     // It's possible the bits taken off by the truncate were all sign bits. If
1959     // so, we should be able to simplify this further.
1960     const SCEV *X = ST->getOperand();
1961     ConstantRange CR = getSignedRange(X);
1962     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1963     unsigned NewBits = getTypeSizeInBits(Ty);
1964     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1965             CR.sextOrTrunc(NewBits)))
1966       return getTruncateOrSignExtend(X, Ty, Depth);
1967   }
1968 
1969   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1970     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1971     if (SA->hasNoSignedWrap()) {
1972       // If the addition does not sign overflow then we can, by definition,
1973       // commute the sign extension with the addition operation.
1974       SmallVector<const SCEV *, 4> Ops;
1975       for (const auto *Op : SA->operands())
1976         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1977       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1978     }
1979 
1980     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1981     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1982     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1983     //
1984     // For instance, this will bring two seemingly different expressions:
1985     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1986     //         sext(6 + 20 * %x + 24 * %y)
1987     // to the same form:
1988     //     2 + sext(4 + 20 * %x + 24 * %y)
1989     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1990       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1991       if (D != 0) {
1992         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1993         const SCEV *SResidual =
1994             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1995         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1996         return getAddExpr(SSExtD, SSExtR,
1997                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1998                           Depth + 1);
1999       }
2000     }
2001   }
2002   // If the input value is a chrec scev, and we can prove that the value
2003   // did not overflow the old, smaller, value, we can sign extend all of the
2004   // operands (often constants).  This allows analysis of something like
2005   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
2006   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
2007     if (AR->isAffine()) {
2008       const SCEV *Start = AR->getStart();
2009       const SCEV *Step = AR->getStepRecurrence(*this);
2010       unsigned BitWidth = getTypeSizeInBits(AR->getType());
2011       const Loop *L = AR->getLoop();
2012 
2013       // If we have special knowledge that this addrec won't overflow,
2014       // we don't need to do any further analysis.
2015       if (AR->hasNoSignedWrap()) {
2016         Start =
2017             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2018         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2019         return getAddRecExpr(Start, Step, L, SCEV::FlagNSW);
2020       }
2021 
2022       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2023       // Note that this serves two purposes: It filters out loops that are
2024       // simply not analyzable, and it covers the case where this code is
2025       // being called from within backedge-taken count analysis, such that
2026       // attempting to ask for the backedge-taken count would likely result
2027       // in infinite recursion. In the later case, the analysis code will
2028       // cope with a conservative value, and it will take care to purge
2029       // that value once it has finished.
2030       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2031       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2032         // Manually compute the final value for AR, checking for
2033         // overflow.
2034 
2035         // Check whether the backedge-taken count can be losslessly casted to
2036         // the addrec's type. The count is always unsigned.
2037         const SCEV *CastedMaxBECount =
2038             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2039         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2040             CastedMaxBECount, MaxBECount->getType(), Depth);
2041         if (MaxBECount == RecastedMaxBECount) {
2042           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2043           // Check whether Start+Step*MaxBECount has no signed overflow.
2044           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2045                                         SCEV::FlagAnyWrap, Depth + 1);
2046           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2047                                                           SCEV::FlagAnyWrap,
2048                                                           Depth + 1),
2049                                                WideTy, Depth + 1);
2050           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2051           const SCEV *WideMaxBECount =
2052             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2053           const SCEV *OperandExtendedAdd =
2054             getAddExpr(WideStart,
2055                        getMulExpr(WideMaxBECount,
2056                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2057                                   SCEV::FlagAnyWrap, Depth + 1),
2058                        SCEV::FlagAnyWrap, Depth + 1);
2059           if (SAdd == OperandExtendedAdd) {
2060             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2061             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2062             // Return the expression with the addrec on the outside.
2063             Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2064                                                              Depth + 1);
2065             Step = getSignExtendExpr(Step, Ty, Depth + 1);
2066             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2067           }
2068           // Similar to above, only this time treat the step value as unsigned.
2069           // This covers loops that count up with an unsigned step.
2070           OperandExtendedAdd =
2071             getAddExpr(WideStart,
2072                        getMulExpr(WideMaxBECount,
2073                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2074                                   SCEV::FlagAnyWrap, Depth + 1),
2075                        SCEV::FlagAnyWrap, Depth + 1);
2076           if (SAdd == OperandExtendedAdd) {
2077             // If AR wraps around then
2078             //
2079             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2080             // => SAdd != OperandExtendedAdd
2081             //
2082             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2083             // (SAdd == OperandExtendedAdd => AR is NW)
2084 
2085             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2086 
2087             // Return the expression with the addrec on the outside.
2088             Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2089                                                              Depth + 1);
2090             Step = getZeroExtendExpr(Step, Ty, Depth + 1);
2091             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2092           }
2093         }
2094       }
2095 
2096       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2097       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2098       if (AR->hasNoSignedWrap()) {
2099         // Same as nsw case above - duplicated here to avoid a compile time
2100         // issue.  It's not clear that the order of checks does matter, but
2101         // it's one of two issue possible causes for a change which was
2102         // reverted.  Be conservative for the moment.
2103         Start =
2104             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2105         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2106         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2107       }
2108 
2109       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2110       // if D + (C - D + Step * n) could be proven to not signed wrap
2111       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2112       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2113         const APInt &C = SC->getAPInt();
2114         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2115         if (D != 0) {
2116           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2117           const SCEV *SResidual =
2118               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2119           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2120           return getAddExpr(SSExtD, SSExtR,
2121                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2122                             Depth + 1);
2123         }
2124       }
2125 
2126       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2127         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2128         Start =
2129             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2130         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2131         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2132       }
2133     }
2134 
2135   // If the input value is provably positive and we could not simplify
2136   // away the sext build a zext instead.
2137   if (isKnownNonNegative(Op))
2138     return getZeroExtendExpr(Op, Ty, Depth + 1);
2139 
2140   // sext(smin(x, y)) -> smin(sext(x), sext(y))
2141   // sext(smax(x, y)) -> smax(sext(x), sext(y))
2142   if (isa<SCEVSMinExpr>(Op) || isa<SCEVSMaxExpr>(Op)) {
2143     auto *MinMax = cast<SCEVMinMaxExpr>(Op);
2144     SmallVector<const SCEV *, 4> Operands;
2145     for (auto *Operand : MinMax->operands())
2146       Operands.push_back(getSignExtendExpr(Operand, Ty));
2147     if (isa<SCEVSMinExpr>(MinMax))
2148       return getSMinExpr(Operands);
2149     return getSMaxExpr(Operands);
2150   }
2151 
2152   // The cast wasn't folded; create an explicit cast node.
2153   // Recompute the insert position, as it may have been invalidated.
2154   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2155   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2156                                                    Op, Ty);
2157   UniqueSCEVs.InsertNode(S, IP);
2158   registerUser(S, { Op });
2159   return S;
2160 }
2161 
2162 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op,
2163                                          Type *Ty) {
2164   switch (Kind) {
2165   case scTruncate:
2166     return getTruncateExpr(Op, Ty);
2167   case scZeroExtend:
2168     return getZeroExtendExpr(Op, Ty);
2169   case scSignExtend:
2170     return getSignExtendExpr(Op, Ty);
2171   case scPtrToInt:
2172     return getPtrToIntExpr(Op, Ty);
2173   default:
2174     llvm_unreachable("Not a SCEV cast expression!");
2175   }
2176 }
2177 
2178 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2179 /// unspecified bits out to the given type.
2180 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2181                                               Type *Ty) {
2182   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2183          "This is not an extending conversion!");
2184   assert(isSCEVable(Ty) &&
2185          "This is not a conversion to a SCEVable type!");
2186   Ty = getEffectiveSCEVType(Ty);
2187 
2188   // Sign-extend negative constants.
2189   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2190     if (SC->getAPInt().isNegative())
2191       return getSignExtendExpr(Op, Ty);
2192 
2193   // Peel off a truncate cast.
2194   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2195     const SCEV *NewOp = T->getOperand();
2196     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2197       return getAnyExtendExpr(NewOp, Ty);
2198     return getTruncateOrNoop(NewOp, Ty);
2199   }
2200 
2201   // Next try a zext cast. If the cast is folded, use it.
2202   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2203   if (!isa<SCEVZeroExtendExpr>(ZExt))
2204     return ZExt;
2205 
2206   // Next try a sext cast. If the cast is folded, use it.
2207   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2208   if (!isa<SCEVSignExtendExpr>(SExt))
2209     return SExt;
2210 
2211   // Force the cast to be folded into the operands of an addrec.
2212   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2213     SmallVector<const SCEV *, 4> Ops;
2214     for (const SCEV *Op : AR->operands())
2215       Ops.push_back(getAnyExtendExpr(Op, Ty));
2216     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2217   }
2218 
2219   // If the expression is obviously signed, use the sext cast value.
2220   if (isa<SCEVSMaxExpr>(Op))
2221     return SExt;
2222 
2223   // Absent any other information, use the zext cast value.
2224   return ZExt;
2225 }
2226 
2227 /// Process the given Ops list, which is a list of operands to be added under
2228 /// the given scale, update the given map. This is a helper function for
2229 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2230 /// that would form an add expression like this:
2231 ///
2232 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2233 ///
2234 /// where A and B are constants, update the map with these values:
2235 ///
2236 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2237 ///
2238 /// and add 13 + A*B*29 to AccumulatedConstant.
2239 /// This will allow getAddRecExpr to produce this:
2240 ///
2241 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2242 ///
2243 /// This form often exposes folding opportunities that are hidden in
2244 /// the original operand list.
2245 ///
2246 /// Return true iff it appears that any interesting folding opportunities
2247 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2248 /// the common case where no interesting opportunities are present, and
2249 /// is also used as a check to avoid infinite recursion.
2250 static bool
2251 CollectAddOperandsWithScales(SmallDenseMap<const SCEV *, APInt, 16> &M,
2252                              SmallVectorImpl<const SCEV *> &NewOps,
2253                              APInt &AccumulatedConstant,
2254                              ArrayRef<const SCEV *> Ops, const APInt &Scale,
2255                              ScalarEvolution &SE) {
2256   bool Interesting = false;
2257 
2258   // Iterate over the add operands. They are sorted, with constants first.
2259   unsigned i = 0;
2260   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2261     ++i;
2262     // Pull a buried constant out to the outside.
2263     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2264       Interesting = true;
2265     AccumulatedConstant += Scale * C->getAPInt();
2266   }
2267 
2268   // Next comes everything else. We're especially interested in multiplies
2269   // here, but they're in the middle, so just visit the rest with one loop.
2270   for (; i != Ops.size(); ++i) {
2271     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2272     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2273       APInt NewScale =
2274           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2275       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2276         // A multiplication of a constant with another add; recurse.
2277         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2278         Interesting |=
2279           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2280                                        Add->operands(), NewScale, SE);
2281       } else {
2282         // A multiplication of a constant with some other value. Update
2283         // the map.
2284         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2285         const SCEV *Key = SE.getMulExpr(MulOps);
2286         auto Pair = M.insert({Key, NewScale});
2287         if (Pair.second) {
2288           NewOps.push_back(Pair.first->first);
2289         } else {
2290           Pair.first->second += NewScale;
2291           // The map already had an entry for this value, which may indicate
2292           // a folding opportunity.
2293           Interesting = true;
2294         }
2295       }
2296     } else {
2297       // An ordinary operand. Update the map.
2298       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2299           M.insert({Ops[i], Scale});
2300       if (Pair.second) {
2301         NewOps.push_back(Pair.first->first);
2302       } else {
2303         Pair.first->second += Scale;
2304         // The map already had an entry for this value, which may indicate
2305         // a folding opportunity.
2306         Interesting = true;
2307       }
2308     }
2309   }
2310 
2311   return Interesting;
2312 }
2313 
2314 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2315                                       const SCEV *LHS, const SCEV *RHS,
2316                                       const Instruction *CtxI) {
2317   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2318                                             SCEV::NoWrapFlags, unsigned);
2319   switch (BinOp) {
2320   default:
2321     llvm_unreachable("Unsupported binary op");
2322   case Instruction::Add:
2323     Operation = &ScalarEvolution::getAddExpr;
2324     break;
2325   case Instruction::Sub:
2326     Operation = &ScalarEvolution::getMinusSCEV;
2327     break;
2328   case Instruction::Mul:
2329     Operation = &ScalarEvolution::getMulExpr;
2330     break;
2331   }
2332 
2333   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2334       Signed ? &ScalarEvolution::getSignExtendExpr
2335              : &ScalarEvolution::getZeroExtendExpr;
2336 
2337   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2338   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2339   auto *WideTy =
2340       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2341 
2342   const SCEV *A = (this->*Extension)(
2343       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2344   const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0);
2345   const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0);
2346   const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0);
2347   if (A == B)
2348     return true;
2349   // Can we use context to prove the fact we need?
2350   if (!CtxI)
2351     return false;
2352   // TODO: Support mul.
2353   if (BinOp == Instruction::Mul)
2354     return false;
2355   auto *RHSC = dyn_cast<SCEVConstant>(RHS);
2356   // TODO: Lift this limitation.
2357   if (!RHSC)
2358     return false;
2359   APInt C = RHSC->getAPInt();
2360   unsigned NumBits = C.getBitWidth();
2361   bool IsSub = (BinOp == Instruction::Sub);
2362   bool IsNegativeConst = (Signed && C.isNegative());
2363   // Compute the direction and magnitude by which we need to check overflow.
2364   bool OverflowDown = IsSub ^ IsNegativeConst;
2365   APInt Magnitude = C;
2366   if (IsNegativeConst) {
2367     if (C == APInt::getSignedMinValue(NumBits))
2368       // TODO: SINT_MIN on inversion gives the same negative value, we don't
2369       // want to deal with that.
2370       return false;
2371     Magnitude = -C;
2372   }
2373 
2374   ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
2375   if (OverflowDown) {
2376     // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS.
2377     APInt Min = Signed ? APInt::getSignedMinValue(NumBits)
2378                        : APInt::getMinValue(NumBits);
2379     APInt Limit = Min + Magnitude;
2380     return isKnownPredicateAt(Pred, getConstant(Limit), LHS, CtxI);
2381   } else {
2382     // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude.
2383     APInt Max = Signed ? APInt::getSignedMaxValue(NumBits)
2384                        : APInt::getMaxValue(NumBits);
2385     APInt Limit = Max - Magnitude;
2386     return isKnownPredicateAt(Pred, LHS, getConstant(Limit), CtxI);
2387   }
2388 }
2389 
2390 std::optional<SCEV::NoWrapFlags>
2391 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2392     const OverflowingBinaryOperator *OBO) {
2393   // It cannot be done any better.
2394   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2395     return std::nullopt;
2396 
2397   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2398 
2399   if (OBO->hasNoUnsignedWrap())
2400     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2401   if (OBO->hasNoSignedWrap())
2402     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2403 
2404   bool Deduced = false;
2405 
2406   if (OBO->getOpcode() != Instruction::Add &&
2407       OBO->getOpcode() != Instruction::Sub &&
2408       OBO->getOpcode() != Instruction::Mul)
2409     return std::nullopt;
2410 
2411   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2412   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2413 
2414   const Instruction *CtxI =
2415       UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(OBO) : nullptr;
2416   if (!OBO->hasNoUnsignedWrap() &&
2417       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2418                       /* Signed */ false, LHS, RHS, CtxI)) {
2419     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2420     Deduced = true;
2421   }
2422 
2423   if (!OBO->hasNoSignedWrap() &&
2424       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2425                       /* Signed */ true, LHS, RHS, CtxI)) {
2426     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2427     Deduced = true;
2428   }
2429 
2430   if (Deduced)
2431     return Flags;
2432   return std::nullopt;
2433 }
2434 
2435 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2436 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2437 // can't-overflow flags for the operation if possible.
2438 static SCEV::NoWrapFlags
2439 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2440                       const ArrayRef<const SCEV *> Ops,
2441                       SCEV::NoWrapFlags Flags) {
2442   using namespace std::placeholders;
2443 
2444   using OBO = OverflowingBinaryOperator;
2445 
2446   bool CanAnalyze =
2447       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2448   (void)CanAnalyze;
2449   assert(CanAnalyze && "don't call from other places!");
2450 
2451   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2452   SCEV::NoWrapFlags SignOrUnsignWrap =
2453       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2454 
2455   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2456   auto IsKnownNonNegative = [&](const SCEV *S) {
2457     return SE->isKnownNonNegative(S);
2458   };
2459 
2460   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2461     Flags =
2462         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2463 
2464   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2465 
2466   if (SignOrUnsignWrap != SignOrUnsignMask &&
2467       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2468       isa<SCEVConstant>(Ops[0])) {
2469 
2470     auto Opcode = [&] {
2471       switch (Type) {
2472       case scAddExpr:
2473         return Instruction::Add;
2474       case scMulExpr:
2475         return Instruction::Mul;
2476       default:
2477         llvm_unreachable("Unexpected SCEV op.");
2478       }
2479     }();
2480 
2481     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2482 
2483     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2484     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2485       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2486           Opcode, C, OBO::NoSignedWrap);
2487       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2488         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2489     }
2490 
2491     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2492     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2493       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2494           Opcode, C, OBO::NoUnsignedWrap);
2495       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2496         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2497     }
2498   }
2499 
2500   // <0,+,nonnegative><nw> is also nuw
2501   // TODO: Add corresponding nsw case
2502   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2503       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2504       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2505     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2506 
2507   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2508   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2509       Ops.size() == 2) {
2510     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2511       if (UDiv->getOperand(1) == Ops[1])
2512         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2513     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2514       if (UDiv->getOperand(1) == Ops[0])
2515         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2516   }
2517 
2518   return Flags;
2519 }
2520 
2521 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2522   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2523 }
2524 
2525 /// Get a canonical add expression, or something simpler if possible.
2526 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2527                                         SCEV::NoWrapFlags OrigFlags,
2528                                         unsigned Depth) {
2529   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2530          "only nuw or nsw allowed");
2531   assert(!Ops.empty() && "Cannot get empty add!");
2532   if (Ops.size() == 1) return Ops[0];
2533 #ifndef NDEBUG
2534   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2535   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2536     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2537            "SCEVAddExpr operand types don't match!");
2538   unsigned NumPtrs = count_if(
2539       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2540   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2541 #endif
2542 
2543   const SCEV *Folded = constantFoldAndGroupOps(
2544       *this, LI, DT, Ops,
2545       [](const APInt &C1, const APInt &C2) { return C1 + C2; },
2546       [](const APInt &C) { return C.isZero(); }, // identity
2547       [](const APInt &C) { return false; });     // absorber
2548   if (Folded)
2549     return Folded;
2550 
2551   unsigned Idx = isa<SCEVConstant>(Ops[0]) ? 1 : 0;
2552 
2553   // Delay expensive flag strengthening until necessary.
2554   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2555     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2556   };
2557 
2558   // Limit recursion calls depth.
2559   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2560     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2561 
2562   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2563     // Don't strengthen flags if we have no new information.
2564     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2565     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2566       Add->setNoWrapFlags(ComputeFlags(Ops));
2567     return S;
2568   }
2569 
2570   // Okay, check to see if the same value occurs in the operand list more than
2571   // once.  If so, merge them together into an multiply expression.  Since we
2572   // sorted the list, these values are required to be adjacent.
2573   Type *Ty = Ops[0]->getType();
2574   bool FoundMatch = false;
2575   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2576     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2577       // Scan ahead to count how many equal operands there are.
2578       unsigned Count = 2;
2579       while (i+Count != e && Ops[i+Count] == Ops[i])
2580         ++Count;
2581       // Merge the values into a multiply.
2582       const SCEV *Scale = getConstant(Ty, Count);
2583       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2584       if (Ops.size() == Count)
2585         return Mul;
2586       Ops[i] = Mul;
2587       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2588       --i; e -= Count - 1;
2589       FoundMatch = true;
2590     }
2591   if (FoundMatch)
2592     return getAddExpr(Ops, OrigFlags, Depth + 1);
2593 
2594   // Check for truncates. If all the operands are truncated from the same
2595   // type, see if factoring out the truncate would permit the result to be
2596   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2597   // if the contents of the resulting outer trunc fold to something simple.
2598   auto FindTruncSrcType = [&]() -> Type * {
2599     // We're ultimately looking to fold an addrec of truncs and muls of only
2600     // constants and truncs, so if we find any other types of SCEV
2601     // as operands of the addrec then we bail and return nullptr here.
2602     // Otherwise, we return the type of the operand of a trunc that we find.
2603     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2604       return T->getOperand()->getType();
2605     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2606       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2607       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2608         return T->getOperand()->getType();
2609     }
2610     return nullptr;
2611   };
2612   if (auto *SrcType = FindTruncSrcType()) {
2613     SmallVector<const SCEV *, 8> LargeOps;
2614     bool Ok = true;
2615     // Check all the operands to see if they can be represented in the
2616     // source type of the truncate.
2617     for (const SCEV *Op : Ops) {
2618       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2619         if (T->getOperand()->getType() != SrcType) {
2620           Ok = false;
2621           break;
2622         }
2623         LargeOps.push_back(T->getOperand());
2624       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Op)) {
2625         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2626       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Op)) {
2627         SmallVector<const SCEV *, 8> LargeMulOps;
2628         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2629           if (const SCEVTruncateExpr *T =
2630                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2631             if (T->getOperand()->getType() != SrcType) {
2632               Ok = false;
2633               break;
2634             }
2635             LargeMulOps.push_back(T->getOperand());
2636           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2637             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2638           } else {
2639             Ok = false;
2640             break;
2641           }
2642         }
2643         if (Ok)
2644           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2645       } else {
2646         Ok = false;
2647         break;
2648       }
2649     }
2650     if (Ok) {
2651       // Evaluate the expression in the larger type.
2652       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2653       // If it folds to something simple, use it. Otherwise, don't.
2654       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2655         return getTruncateExpr(Fold, Ty);
2656     }
2657   }
2658 
2659   if (Ops.size() == 2) {
2660     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2661     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2662     // C1).
2663     const SCEV *A = Ops[0];
2664     const SCEV *B = Ops[1];
2665     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2666     auto *C = dyn_cast<SCEVConstant>(A);
2667     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2668       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2669       auto C2 = C->getAPInt();
2670       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2671 
2672       APInt ConstAdd = C1 + C2;
2673       auto AddFlags = AddExpr->getNoWrapFlags();
2674       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2675       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2676           ConstAdd.ule(C1)) {
2677         PreservedFlags =
2678             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2679       }
2680 
2681       // Adding a constant with the same sign and small magnitude is NSW, if the
2682       // original AddExpr was NSW.
2683       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2684           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2685           ConstAdd.abs().ule(C1.abs())) {
2686         PreservedFlags =
2687             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2688       }
2689 
2690       if (PreservedFlags != SCEV::FlagAnyWrap) {
2691         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2692         NewOps[0] = getConstant(ConstAdd);
2693         return getAddExpr(NewOps, PreservedFlags);
2694       }
2695     }
2696   }
2697 
2698   // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2699   if (Ops.size() == 2) {
2700     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]);
2701     if (Mul && Mul->getNumOperands() == 2 &&
2702         Mul->getOperand(0)->isAllOnesValue()) {
2703       const SCEV *X;
2704       const SCEV *Y;
2705       if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) {
2706         return getMulExpr(Y, getUDivExpr(X, Y));
2707       }
2708     }
2709   }
2710 
2711   // Skip past any other cast SCEVs.
2712   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2713     ++Idx;
2714 
2715   // If there are add operands they would be next.
2716   if (Idx < Ops.size()) {
2717     bool DeletedAdd = false;
2718     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2719     // common NUW flag for expression after inlining. Other flags cannot be
2720     // preserved, because they may depend on the original order of operations.
2721     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2722     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2723       if (Ops.size() > AddOpsInlineThreshold ||
2724           Add->getNumOperands() > AddOpsInlineThreshold)
2725         break;
2726       // If we have an add, expand the add operands onto the end of the operands
2727       // list.
2728       Ops.erase(Ops.begin()+Idx);
2729       append_range(Ops, Add->operands());
2730       DeletedAdd = true;
2731       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2732     }
2733 
2734     // If we deleted at least one add, we added operands to the end of the list,
2735     // and they are not necessarily sorted.  Recurse to resort and resimplify
2736     // any operands we just acquired.
2737     if (DeletedAdd)
2738       return getAddExpr(Ops, CommonFlags, Depth + 1);
2739   }
2740 
2741   // Skip over the add expression until we get to a multiply.
2742   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2743     ++Idx;
2744 
2745   // Check to see if there are any folding opportunities present with
2746   // operands multiplied by constant values.
2747   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2748     uint64_t BitWidth = getTypeSizeInBits(Ty);
2749     SmallDenseMap<const SCEV *, APInt, 16> M;
2750     SmallVector<const SCEV *, 8> NewOps;
2751     APInt AccumulatedConstant(BitWidth, 0);
2752     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2753                                      Ops, APInt(BitWidth, 1), *this)) {
2754       struct APIntCompare {
2755         bool operator()(const APInt &LHS, const APInt &RHS) const {
2756           return LHS.ult(RHS);
2757         }
2758       };
2759 
2760       // Some interesting folding opportunity is present, so its worthwhile to
2761       // re-generate the operands list. Group the operands by constant scale,
2762       // to avoid multiplying by the same constant scale multiple times.
2763       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2764       for (const SCEV *NewOp : NewOps)
2765         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2766       // Re-generate the operands list.
2767       Ops.clear();
2768       if (AccumulatedConstant != 0)
2769         Ops.push_back(getConstant(AccumulatedConstant));
2770       for (auto &MulOp : MulOpLists) {
2771         if (MulOp.first == 1) {
2772           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2773         } else if (MulOp.first != 0) {
2774           Ops.push_back(getMulExpr(
2775               getConstant(MulOp.first),
2776               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2777               SCEV::FlagAnyWrap, Depth + 1));
2778         }
2779       }
2780       if (Ops.empty())
2781         return getZero(Ty);
2782       if (Ops.size() == 1)
2783         return Ops[0];
2784       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2785     }
2786   }
2787 
2788   // If we are adding something to a multiply expression, make sure the
2789   // something is not already an operand of the multiply.  If so, merge it into
2790   // the multiply.
2791   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2792     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2793     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2794       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2795       if (isa<SCEVConstant>(MulOpSCEV))
2796         continue;
2797       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2798         if (MulOpSCEV == Ops[AddOp]) {
2799           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2800           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2801           if (Mul->getNumOperands() != 2) {
2802             // If the multiply has more than two operands, we must get the
2803             // Y*Z term.
2804             SmallVector<const SCEV *, 4> MulOps(
2805                 Mul->operands().take_front(MulOp));
2806             append_range(MulOps, Mul->operands().drop_front(MulOp + 1));
2807             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2808           }
2809           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2810           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2811           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2812                                             SCEV::FlagAnyWrap, Depth + 1);
2813           if (Ops.size() == 2) return OuterMul;
2814           if (AddOp < Idx) {
2815             Ops.erase(Ops.begin()+AddOp);
2816             Ops.erase(Ops.begin()+Idx-1);
2817           } else {
2818             Ops.erase(Ops.begin()+Idx);
2819             Ops.erase(Ops.begin()+AddOp-1);
2820           }
2821           Ops.push_back(OuterMul);
2822           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2823         }
2824 
2825       // Check this multiply against other multiplies being added together.
2826       for (unsigned OtherMulIdx = Idx+1;
2827            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2828            ++OtherMulIdx) {
2829         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2830         // If MulOp occurs in OtherMul, we can fold the two multiplies
2831         // together.
2832         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2833              OMulOp != e; ++OMulOp)
2834           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2835             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2836             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2837             if (Mul->getNumOperands() != 2) {
2838               SmallVector<const SCEV *, 4> MulOps(
2839                   Mul->operands().take_front(MulOp));
2840               append_range(MulOps, Mul->operands().drop_front(MulOp+1));
2841               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2842             }
2843             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2844             if (OtherMul->getNumOperands() != 2) {
2845               SmallVector<const SCEV *, 4> MulOps(
2846                   OtherMul->operands().take_front(OMulOp));
2847               append_range(MulOps, OtherMul->operands().drop_front(OMulOp+1));
2848               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2849             }
2850             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2851             const SCEV *InnerMulSum =
2852                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2853             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2854                                               SCEV::FlagAnyWrap, Depth + 1);
2855             if (Ops.size() == 2) return OuterMul;
2856             Ops.erase(Ops.begin()+Idx);
2857             Ops.erase(Ops.begin()+OtherMulIdx-1);
2858             Ops.push_back(OuterMul);
2859             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2860           }
2861       }
2862     }
2863   }
2864 
2865   // If there are any add recurrences in the operands list, see if any other
2866   // added values are loop invariant.  If so, we can fold them into the
2867   // recurrence.
2868   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2869     ++Idx;
2870 
2871   // Scan over all recurrences, trying to fold loop invariants into them.
2872   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2873     // Scan all of the other operands to this add and add them to the vector if
2874     // they are loop invariant w.r.t. the recurrence.
2875     SmallVector<const SCEV *, 8> LIOps;
2876     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2877     const Loop *AddRecLoop = AddRec->getLoop();
2878     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2879       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2880         LIOps.push_back(Ops[i]);
2881         Ops.erase(Ops.begin()+i);
2882         --i; --e;
2883       }
2884 
2885     // If we found some loop invariants, fold them into the recurrence.
2886     if (!LIOps.empty()) {
2887       // Compute nowrap flags for the addition of the loop-invariant ops and
2888       // the addrec. Temporarily push it as an operand for that purpose. These
2889       // flags are valid in the scope of the addrec only.
2890       LIOps.push_back(AddRec);
2891       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2892       LIOps.pop_back();
2893 
2894       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2895       LIOps.push_back(AddRec->getStart());
2896 
2897       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2898 
2899       // It is not in general safe to propagate flags valid on an add within
2900       // the addrec scope to one outside it.  We must prove that the inner
2901       // scope is guaranteed to execute if the outer one does to be able to
2902       // safely propagate.  We know the program is undefined if poison is
2903       // produced on the inner scoped addrec.  We also know that *for this use*
2904       // the outer scoped add can't overflow (because of the flags we just
2905       // computed for the inner scoped add) without the program being undefined.
2906       // Proving that entry to the outer scope neccesitates entry to the inner
2907       // scope, thus proves the program undefined if the flags would be violated
2908       // in the outer scope.
2909       SCEV::NoWrapFlags AddFlags = Flags;
2910       if (AddFlags != SCEV::FlagAnyWrap) {
2911         auto *DefI = getDefiningScopeBound(LIOps);
2912         auto *ReachI = &*AddRecLoop->getHeader()->begin();
2913         if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2914           AddFlags = SCEV::FlagAnyWrap;
2915       }
2916       AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2917 
2918       // Build the new addrec. Propagate the NUW and NSW flags if both the
2919       // outer add and the inner addrec are guaranteed to have no overflow.
2920       // Always propagate NW.
2921       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2922       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2923 
2924       // If all of the other operands were loop invariant, we are done.
2925       if (Ops.size() == 1) return NewRec;
2926 
2927       // Otherwise, add the folded AddRec by the non-invariant parts.
2928       for (unsigned i = 0;; ++i)
2929         if (Ops[i] == AddRec) {
2930           Ops[i] = NewRec;
2931           break;
2932         }
2933       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2934     }
2935 
2936     // Okay, if there weren't any loop invariants to be folded, check to see if
2937     // there are multiple AddRec's with the same loop induction variable being
2938     // added together.  If so, we can fold them.
2939     for (unsigned OtherIdx = Idx+1;
2940          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2941          ++OtherIdx) {
2942       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2943       // so that the 1st found AddRecExpr is dominated by all others.
2944       assert(DT.dominates(
2945            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2946            AddRec->getLoop()->getHeader()) &&
2947         "AddRecExprs are not sorted in reverse dominance order?");
2948       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2949         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2950         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2951         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2952              ++OtherIdx) {
2953           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2954           if (OtherAddRec->getLoop() == AddRecLoop) {
2955             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2956                  i != e; ++i) {
2957               if (i >= AddRecOps.size()) {
2958                 append_range(AddRecOps, OtherAddRec->operands().drop_front(i));
2959                 break;
2960               }
2961               SmallVector<const SCEV *, 2> TwoOps = {
2962                   AddRecOps[i], OtherAddRec->getOperand(i)};
2963               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2964             }
2965             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2966           }
2967         }
2968         // Step size has changed, so we cannot guarantee no self-wraparound.
2969         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2970         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2971       }
2972     }
2973 
2974     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2975     // next one.
2976   }
2977 
2978   // Okay, it looks like we really DO need an add expr.  Check to see if we
2979   // already have one, otherwise create a new one.
2980   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2981 }
2982 
2983 const SCEV *
2984 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2985                                     SCEV::NoWrapFlags Flags) {
2986   FoldingSetNodeID ID;
2987   ID.AddInteger(scAddExpr);
2988   for (const SCEV *Op : Ops)
2989     ID.AddPointer(Op);
2990   void *IP = nullptr;
2991   SCEVAddExpr *S =
2992       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2993   if (!S) {
2994     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2995     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2996     S = new (SCEVAllocator)
2997         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2998     UniqueSCEVs.InsertNode(S, IP);
2999     registerUser(S, Ops);
3000   }
3001   S->setNoWrapFlags(Flags);
3002   return S;
3003 }
3004 
3005 const SCEV *
3006 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
3007                                        const Loop *L, SCEV::NoWrapFlags Flags) {
3008   FoldingSetNodeID ID;
3009   ID.AddInteger(scAddRecExpr);
3010   for (const SCEV *Op : Ops)
3011     ID.AddPointer(Op);
3012   ID.AddPointer(L);
3013   void *IP = nullptr;
3014   SCEVAddRecExpr *S =
3015       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3016   if (!S) {
3017     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3018     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3019     S = new (SCEVAllocator)
3020         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
3021     UniqueSCEVs.InsertNode(S, IP);
3022     LoopUsers[L].push_back(S);
3023     registerUser(S, Ops);
3024   }
3025   setNoWrapFlags(S, Flags);
3026   return S;
3027 }
3028 
3029 const SCEV *
3030 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
3031                                     SCEV::NoWrapFlags Flags) {
3032   FoldingSetNodeID ID;
3033   ID.AddInteger(scMulExpr);
3034   for (const SCEV *Op : Ops)
3035     ID.AddPointer(Op);
3036   void *IP = nullptr;
3037   SCEVMulExpr *S =
3038     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3039   if (!S) {
3040     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3041     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3042     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
3043                                         O, Ops.size());
3044     UniqueSCEVs.InsertNode(S, IP);
3045     registerUser(S, Ops);
3046   }
3047   S->setNoWrapFlags(Flags);
3048   return S;
3049 }
3050 
3051 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
3052   uint64_t k = i*j;
3053   if (j > 1 && k / j != i) Overflow = true;
3054   return k;
3055 }
3056 
3057 /// Compute the result of "n choose k", the binomial coefficient.  If an
3058 /// intermediate computation overflows, Overflow will be set and the return will
3059 /// be garbage. Overflow is not cleared on absence of overflow.
3060 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
3061   // We use the multiplicative formula:
3062   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
3063   // At each iteration, we take the n-th term of the numeral and divide by the
3064   // (k-n)th term of the denominator.  This division will always produce an
3065   // integral result, and helps reduce the chance of overflow in the
3066   // intermediate computations. However, we can still overflow even when the
3067   // final result would fit.
3068 
3069   if (n == 0 || n == k) return 1;
3070   if (k > n) return 0;
3071 
3072   if (k > n/2)
3073     k = n-k;
3074 
3075   uint64_t r = 1;
3076   for (uint64_t i = 1; i <= k; ++i) {
3077     r = umul_ov(r, n-(i-1), Overflow);
3078     r /= i;
3079   }
3080   return r;
3081 }
3082 
3083 /// Determine if any of the operands in this SCEV are a constant or if
3084 /// any of the add or multiply expressions in this SCEV contain a constant.
3085 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
3086   struct FindConstantInAddMulChain {
3087     bool FoundConstant = false;
3088 
3089     bool follow(const SCEV *S) {
3090       FoundConstant |= isa<SCEVConstant>(S);
3091       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
3092     }
3093 
3094     bool isDone() const {
3095       return FoundConstant;
3096     }
3097   };
3098 
3099   FindConstantInAddMulChain F;
3100   SCEVTraversal<FindConstantInAddMulChain> ST(F);
3101   ST.visitAll(StartExpr);
3102   return F.FoundConstant;
3103 }
3104 
3105 /// Get a canonical multiply expression, or something simpler if possible.
3106 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3107                                         SCEV::NoWrapFlags OrigFlags,
3108                                         unsigned Depth) {
3109   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3110          "only nuw or nsw allowed");
3111   assert(!Ops.empty() && "Cannot get empty mul!");
3112   if (Ops.size() == 1) return Ops[0];
3113 #ifndef NDEBUG
3114   Type *ETy = Ops[0]->getType();
3115   assert(!ETy->isPointerTy());
3116   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3117     assert(Ops[i]->getType() == ETy &&
3118            "SCEVMulExpr operand types don't match!");
3119 #endif
3120 
3121   const SCEV *Folded = constantFoldAndGroupOps(
3122       *this, LI, DT, Ops,
3123       [](const APInt &C1, const APInt &C2) { return C1 * C2; },
3124       [](const APInt &C) { return C.isOne(); },   // identity
3125       [](const APInt &C) { return C.isZero(); }); // absorber
3126   if (Folded)
3127     return Folded;
3128 
3129   // Delay expensive flag strengthening until necessary.
3130   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3131     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3132   };
3133 
3134   // Limit recursion calls depth.
3135   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3136     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3137 
3138   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3139     // Don't strengthen flags if we have no new information.
3140     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3141     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3142       Mul->setNoWrapFlags(ComputeFlags(Ops));
3143     return S;
3144   }
3145 
3146   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3147     if (Ops.size() == 2) {
3148       // C1*(C2+V) -> C1*C2 + C1*V
3149       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3150         // If any of Add's ops are Adds or Muls with a constant, apply this
3151         // transformation as well.
3152         //
3153         // TODO: There are some cases where this transformation is not
3154         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3155         // this transformation should be narrowed down.
3156         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) {
3157           const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0),
3158                                        SCEV::FlagAnyWrap, Depth + 1);
3159           const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1),
3160                                        SCEV::FlagAnyWrap, Depth + 1);
3161           return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1);
3162         }
3163 
3164       if (Ops[0]->isAllOnesValue()) {
3165         // If we have a mul by -1 of an add, try distributing the -1 among the
3166         // add operands.
3167         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3168           SmallVector<const SCEV *, 4> NewOps;
3169           bool AnyFolded = false;
3170           for (const SCEV *AddOp : Add->operands()) {
3171             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3172                                          Depth + 1);
3173             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3174             NewOps.push_back(Mul);
3175           }
3176           if (AnyFolded)
3177             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3178         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3179           // Negation preserves a recurrence's no self-wrap property.
3180           SmallVector<const SCEV *, 4> Operands;
3181           for (const SCEV *AddRecOp : AddRec->operands())
3182             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3183                                           Depth + 1));
3184           // Let M be the minimum representable signed value. AddRec with nsw
3185           // multiplied by -1 can have signed overflow if and only if it takes a
3186           // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the
3187           // maximum signed value. In all other cases signed overflow is
3188           // impossible.
3189           auto FlagsMask = SCEV::FlagNW;
3190           if (hasFlags(AddRec->getNoWrapFlags(), SCEV::FlagNSW)) {
3191             auto MinInt =
3192                 APInt::getSignedMinValue(getTypeSizeInBits(AddRec->getType()));
3193             if (getSignedRangeMin(AddRec) != MinInt)
3194               FlagsMask = setFlags(FlagsMask, SCEV::FlagNSW);
3195           }
3196           return getAddRecExpr(Operands, AddRec->getLoop(),
3197                                AddRec->getNoWrapFlags(FlagsMask));
3198         }
3199       }
3200     }
3201   }
3202 
3203   // Skip over the add expression until we get to a multiply.
3204   unsigned Idx = 0;
3205   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3206     ++Idx;
3207 
3208   // If there are mul operands inline them all into this expression.
3209   if (Idx < Ops.size()) {
3210     bool DeletedMul = false;
3211     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3212       if (Ops.size() > MulOpsInlineThreshold)
3213         break;
3214       // If we have an mul, expand the mul operands onto the end of the
3215       // operands list.
3216       Ops.erase(Ops.begin()+Idx);
3217       append_range(Ops, Mul->operands());
3218       DeletedMul = true;
3219     }
3220 
3221     // If we deleted at least one mul, we added operands to the end of the
3222     // list, and they are not necessarily sorted.  Recurse to resort and
3223     // resimplify any operands we just acquired.
3224     if (DeletedMul)
3225       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3226   }
3227 
3228   // If there are any add recurrences in the operands list, see if any other
3229   // added values are loop invariant.  If so, we can fold them into the
3230   // recurrence.
3231   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3232     ++Idx;
3233 
3234   // Scan over all recurrences, trying to fold loop invariants into them.
3235   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3236     // Scan all of the other operands to this mul and add them to the vector
3237     // if they are loop invariant w.r.t. the recurrence.
3238     SmallVector<const SCEV *, 8> LIOps;
3239     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3240     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3241       if (isAvailableAtLoopEntry(Ops[i], AddRec->getLoop())) {
3242         LIOps.push_back(Ops[i]);
3243         Ops.erase(Ops.begin()+i);
3244         --i; --e;
3245       }
3246 
3247     // If we found some loop invariants, fold them into the recurrence.
3248     if (!LIOps.empty()) {
3249       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3250       SmallVector<const SCEV *, 4> NewOps;
3251       NewOps.reserve(AddRec->getNumOperands());
3252       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3253 
3254       // If both the mul and addrec are nuw, we can preserve nuw.
3255       // If both the mul and addrec are nsw, we can only preserve nsw if either
3256       // a) they are also nuw, or
3257       // b) all multiplications of addrec operands with scale are nsw.
3258       SCEV::NoWrapFlags Flags =
3259           AddRec->getNoWrapFlags(ComputeFlags({Scale, AddRec}));
3260 
3261       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3262         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3263                                     SCEV::FlagAnyWrap, Depth + 1));
3264 
3265         if (hasFlags(Flags, SCEV::FlagNSW) && !hasFlags(Flags, SCEV::FlagNUW)) {
3266           ConstantRange NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3267               Instruction::Mul, getSignedRange(Scale),
3268               OverflowingBinaryOperator::NoSignedWrap);
3269           if (!NSWRegion.contains(getSignedRange(AddRec->getOperand(i))))
3270             Flags = clearFlags(Flags, SCEV::FlagNSW);
3271         }
3272       }
3273 
3274       const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), Flags);
3275 
3276       // If all of the other operands were loop invariant, we are done.
3277       if (Ops.size() == 1) return NewRec;
3278 
3279       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3280       for (unsigned i = 0;; ++i)
3281         if (Ops[i] == AddRec) {
3282           Ops[i] = NewRec;
3283           break;
3284         }
3285       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3286     }
3287 
3288     // Okay, if there weren't any loop invariants to be folded, check to see
3289     // if there are multiple AddRec's with the same loop induction variable
3290     // being multiplied together.  If so, we can fold them.
3291 
3292     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3293     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3294     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3295     //   ]]],+,...up to x=2n}.
3296     // Note that the arguments to choose() are always integers with values
3297     // known at compile time, never SCEV objects.
3298     //
3299     // The implementation avoids pointless extra computations when the two
3300     // addrec's are of different length (mathematically, it's equivalent to
3301     // an infinite stream of zeros on the right).
3302     bool OpsModified = false;
3303     for (unsigned OtherIdx = Idx+1;
3304          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3305          ++OtherIdx) {
3306       const SCEVAddRecExpr *OtherAddRec =
3307         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3308       if (!OtherAddRec || OtherAddRec->getLoop() != AddRec->getLoop())
3309         continue;
3310 
3311       // Limit max number of arguments to avoid creation of unreasonably big
3312       // SCEVAddRecs with very complex operands.
3313       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3314           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3315         continue;
3316 
3317       bool Overflow = false;
3318       Type *Ty = AddRec->getType();
3319       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3320       SmallVector<const SCEV*, 7> AddRecOps;
3321       for (int x = 0, xe = AddRec->getNumOperands() +
3322              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3323         SmallVector <const SCEV *, 7> SumOps;
3324         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3325           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3326           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3327                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3328                z < ze && !Overflow; ++z) {
3329             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3330             uint64_t Coeff;
3331             if (LargerThan64Bits)
3332               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3333             else
3334               Coeff = Coeff1*Coeff2;
3335             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3336             const SCEV *Term1 = AddRec->getOperand(y-z);
3337             const SCEV *Term2 = OtherAddRec->getOperand(z);
3338             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3339                                         SCEV::FlagAnyWrap, Depth + 1));
3340           }
3341         }
3342         if (SumOps.empty())
3343           SumOps.push_back(getZero(Ty));
3344         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3345       }
3346       if (!Overflow) {
3347         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
3348                                               SCEV::FlagAnyWrap);
3349         if (Ops.size() == 2) return NewAddRec;
3350         Ops[Idx] = NewAddRec;
3351         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3352         OpsModified = true;
3353         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3354         if (!AddRec)
3355           break;
3356       }
3357     }
3358     if (OpsModified)
3359       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3360 
3361     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3362     // next one.
3363   }
3364 
3365   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3366   // already have one, otherwise create a new one.
3367   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3368 }
3369 
3370 /// Represents an unsigned remainder expression based on unsigned division.
3371 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3372                                          const SCEV *RHS) {
3373   assert(getEffectiveSCEVType(LHS->getType()) ==
3374          getEffectiveSCEVType(RHS->getType()) &&
3375          "SCEVURemExpr operand types don't match!");
3376 
3377   // Short-circuit easy cases
3378   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3379     // If constant is one, the result is trivial
3380     if (RHSC->getValue()->isOne())
3381       return getZero(LHS->getType()); // X urem 1 --> 0
3382 
3383     // If constant is a power of two, fold into a zext(trunc(LHS)).
3384     if (RHSC->getAPInt().isPowerOf2()) {
3385       Type *FullTy = LHS->getType();
3386       Type *TruncTy =
3387           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3388       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3389     }
3390   }
3391 
3392   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3393   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3394   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3395   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3396 }
3397 
3398 /// Get a canonical unsigned division expression, or something simpler if
3399 /// possible.
3400 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3401                                          const SCEV *RHS) {
3402   assert(!LHS->getType()->isPointerTy() &&
3403          "SCEVUDivExpr operand can't be pointer!");
3404   assert(LHS->getType() == RHS->getType() &&
3405          "SCEVUDivExpr operand types don't match!");
3406 
3407   FoldingSetNodeID ID;
3408   ID.AddInteger(scUDivExpr);
3409   ID.AddPointer(LHS);
3410   ID.AddPointer(RHS);
3411   void *IP = nullptr;
3412   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3413     return S;
3414 
3415   // 0 udiv Y == 0
3416   if (match(LHS, m_scev_Zero()))
3417     return LHS;
3418 
3419   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3420     if (RHSC->getValue()->isOne())
3421       return LHS;                               // X udiv 1 --> x
3422     // If the denominator is zero, the result of the udiv is undefined. Don't
3423     // try to analyze it, because the resolution chosen here may differ from
3424     // the resolution chosen in other parts of the compiler.
3425     if (!RHSC->getValue()->isZero()) {
3426       // Determine if the division can be folded into the operands of
3427       // its operands.
3428       // TODO: Generalize this to non-constants by using known-bits information.
3429       Type *Ty = LHS->getType();
3430       unsigned LZ = RHSC->getAPInt().countl_zero();
3431       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3432       // For non-power-of-two values, effectively round the value up to the
3433       // nearest power of two.
3434       if (!RHSC->getAPInt().isPowerOf2())
3435         ++MaxShiftAmt;
3436       IntegerType *ExtTy =
3437         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3438       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3439         if (const SCEVConstant *Step =
3440             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3441           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3442           const APInt &StepInt = Step->getAPInt();
3443           const APInt &DivInt = RHSC->getAPInt();
3444           if (!StepInt.urem(DivInt) &&
3445               getZeroExtendExpr(AR, ExtTy) ==
3446               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3447                             getZeroExtendExpr(Step, ExtTy),
3448                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3449             SmallVector<const SCEV *, 4> Operands;
3450             for (const SCEV *Op : AR->operands())
3451               Operands.push_back(getUDivExpr(Op, RHS));
3452             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3453           }
3454           /// Get a canonical UDivExpr for a recurrence.
3455           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3456           // We can currently only fold X%N if X is constant.
3457           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3458           if (StartC && !DivInt.urem(StepInt) &&
3459               getZeroExtendExpr(AR, ExtTy) ==
3460               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3461                             getZeroExtendExpr(Step, ExtTy),
3462                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3463             const APInt &StartInt = StartC->getAPInt();
3464             const APInt &StartRem = StartInt.urem(StepInt);
3465             if (StartRem != 0) {
3466               const SCEV *NewLHS =
3467                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3468                                 AR->getLoop(), SCEV::FlagNW);
3469               if (LHS != NewLHS) {
3470                 LHS = NewLHS;
3471 
3472                 // Reset the ID to include the new LHS, and check if it is
3473                 // already cached.
3474                 ID.clear();
3475                 ID.AddInteger(scUDivExpr);
3476                 ID.AddPointer(LHS);
3477                 ID.AddPointer(RHS);
3478                 IP = nullptr;
3479                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3480                   return S;
3481               }
3482             }
3483           }
3484         }
3485       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3486       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3487         SmallVector<const SCEV *, 4> Operands;
3488         for (const SCEV *Op : M->operands())
3489           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3490         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3491           // Find an operand that's safely divisible.
3492           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3493             const SCEV *Op = M->getOperand(i);
3494             const SCEV *Div = getUDivExpr(Op, RHSC);
3495             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3496               Operands = SmallVector<const SCEV *, 4>(M->operands());
3497               Operands[i] = Div;
3498               return getMulExpr(Operands);
3499             }
3500           }
3501       }
3502 
3503       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3504       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3505         if (auto *DivisorConstant =
3506                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3507           bool Overflow = false;
3508           APInt NewRHS =
3509               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3510           if (Overflow) {
3511             return getConstant(RHSC->getType(), 0, false);
3512           }
3513           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3514         }
3515       }
3516 
3517       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3518       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3519         SmallVector<const SCEV *, 4> Operands;
3520         for (const SCEV *Op : A->operands())
3521           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3522         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3523           Operands.clear();
3524           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3525             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3526             if (isa<SCEVUDivExpr>(Op) ||
3527                 getMulExpr(Op, RHS) != A->getOperand(i))
3528               break;
3529             Operands.push_back(Op);
3530           }
3531           if (Operands.size() == A->getNumOperands())
3532             return getAddExpr(Operands);
3533         }
3534       }
3535 
3536       // Fold if both operands are constant.
3537       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3538         return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt()));
3539     }
3540   }
3541 
3542   // ((-C + (C smax %x)) /u %x) evaluates to zero, for any positive constant C.
3543   if (const auto *AE = dyn_cast<SCEVAddExpr>(LHS);
3544       AE && AE->getNumOperands() == 2) {
3545     if (const auto *VC = dyn_cast<SCEVConstant>(AE->getOperand(0))) {
3546       const APInt &NegC = VC->getAPInt();
3547       if (NegC.isNegative() && !NegC.isMinSignedValue()) {
3548         const auto *MME = dyn_cast<SCEVSMaxExpr>(AE->getOperand(1));
3549         if (MME && MME->getNumOperands() == 2 &&
3550             isa<SCEVConstant>(MME->getOperand(0)) &&
3551             cast<SCEVConstant>(MME->getOperand(0))->getAPInt() == -NegC &&
3552             MME->getOperand(1) == RHS)
3553           return getZero(LHS->getType());
3554       }
3555     }
3556   }
3557 
3558   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3559   // changes). Make sure we get a new one.
3560   IP = nullptr;
3561   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3562   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3563                                              LHS, RHS);
3564   UniqueSCEVs.InsertNode(S, IP);
3565   registerUser(S, {LHS, RHS});
3566   return S;
3567 }
3568 
3569 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3570   APInt A = C1->getAPInt().abs();
3571   APInt B = C2->getAPInt().abs();
3572   uint32_t ABW = A.getBitWidth();
3573   uint32_t BBW = B.getBitWidth();
3574 
3575   if (ABW > BBW)
3576     B = B.zext(ABW);
3577   else if (ABW < BBW)
3578     A = A.zext(BBW);
3579 
3580   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3581 }
3582 
3583 /// Get a canonical unsigned division expression, or something simpler if
3584 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3585 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3586 /// it's not exact because the udiv may be clearing bits.
3587 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3588                                               const SCEV *RHS) {
3589   // TODO: we could try to find factors in all sorts of things, but for now we
3590   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3591   // end of this file for inspiration.
3592 
3593   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3594   if (!Mul || !Mul->hasNoUnsignedWrap())
3595     return getUDivExpr(LHS, RHS);
3596 
3597   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3598     // If the mulexpr multiplies by a constant, then that constant must be the
3599     // first element of the mulexpr.
3600     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3601       if (LHSCst == RHSCst) {
3602         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3603         return getMulExpr(Operands);
3604       }
3605 
3606       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3607       // that there's a factor provided by one of the other terms. We need to
3608       // check.
3609       APInt Factor = gcd(LHSCst, RHSCst);
3610       if (!Factor.isIntN(1)) {
3611         LHSCst =
3612             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3613         RHSCst =
3614             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3615         SmallVector<const SCEV *, 2> Operands;
3616         Operands.push_back(LHSCst);
3617         append_range(Operands, Mul->operands().drop_front());
3618         LHS = getMulExpr(Operands);
3619         RHS = RHSCst;
3620         Mul = dyn_cast<SCEVMulExpr>(LHS);
3621         if (!Mul)
3622           return getUDivExactExpr(LHS, RHS);
3623       }
3624     }
3625   }
3626 
3627   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3628     if (Mul->getOperand(i) == RHS) {
3629       SmallVector<const SCEV *, 2> Operands;
3630       append_range(Operands, Mul->operands().take_front(i));
3631       append_range(Operands, Mul->operands().drop_front(i + 1));
3632       return getMulExpr(Operands);
3633     }
3634   }
3635 
3636   return getUDivExpr(LHS, RHS);
3637 }
3638 
3639 /// Get an add recurrence expression for the specified loop.  Simplify the
3640 /// expression as much as possible.
3641 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3642                                            const Loop *L,
3643                                            SCEV::NoWrapFlags Flags) {
3644   SmallVector<const SCEV *, 4> Operands;
3645   Operands.push_back(Start);
3646   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3647     if (StepChrec->getLoop() == L) {
3648       append_range(Operands, StepChrec->operands());
3649       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3650     }
3651 
3652   Operands.push_back(Step);
3653   return getAddRecExpr(Operands, L, Flags);
3654 }
3655 
3656 /// Get an add recurrence expression for the specified loop.  Simplify the
3657 /// expression as much as possible.
3658 const SCEV *
3659 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3660                                const Loop *L, SCEV::NoWrapFlags Flags) {
3661   if (Operands.size() == 1) return Operands[0];
3662 #ifndef NDEBUG
3663   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3664   for (const SCEV *Op : llvm::drop_begin(Operands)) {
3665     assert(getEffectiveSCEVType(Op->getType()) == ETy &&
3666            "SCEVAddRecExpr operand types don't match!");
3667     assert(!Op->getType()->isPointerTy() && "Step must be integer");
3668   }
3669   for (const SCEV *Op : Operands)
3670     assert(isAvailableAtLoopEntry(Op, L) &&
3671            "SCEVAddRecExpr operand is not available at loop entry!");
3672 #endif
3673 
3674   if (Operands.back()->isZero()) {
3675     Operands.pop_back();
3676     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3677   }
3678 
3679   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3680   // use that information to infer NUW and NSW flags. However, computing a
3681   // BE count requires calling getAddRecExpr, so we may not yet have a
3682   // meaningful BE count at this point (and if we don't, we'd be stuck
3683   // with a SCEVCouldNotCompute as the cached BE count).
3684 
3685   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3686 
3687   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3688   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3689     const Loop *NestedLoop = NestedAR->getLoop();
3690     if (L->contains(NestedLoop)
3691             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3692             : (!NestedLoop->contains(L) &&
3693                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3694       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3695       Operands[0] = NestedAR->getStart();
3696       // AddRecs require their operands be loop-invariant with respect to their
3697       // loops. Don't perform this transformation if it would break this
3698       // requirement.
3699       bool AllInvariant = all_of(
3700           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3701 
3702       if (AllInvariant) {
3703         // Create a recurrence for the outer loop with the same step size.
3704         //
3705         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3706         // inner recurrence has the same property.
3707         SCEV::NoWrapFlags OuterFlags =
3708           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3709 
3710         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3711         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3712           return isLoopInvariant(Op, NestedLoop);
3713         });
3714 
3715         if (AllInvariant) {
3716           // Ok, both add recurrences are valid after the transformation.
3717           //
3718           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3719           // the outer recurrence has the same property.
3720           SCEV::NoWrapFlags InnerFlags =
3721             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3722           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3723         }
3724       }
3725       // Reset Operands to its original state.
3726       Operands[0] = NestedAR;
3727     }
3728   }
3729 
3730   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3731   // already have one, otherwise create a new one.
3732   return getOrCreateAddRecExpr(Operands, L, Flags);
3733 }
3734 
3735 const SCEV *
3736 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3737                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3738   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3739   // getSCEV(Base)->getType() has the same address space as Base->getType()
3740   // because SCEV::getType() preserves the address space.
3741   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3742   GEPNoWrapFlags NW = GEP->getNoWrapFlags();
3743   if (NW != GEPNoWrapFlags::none()) {
3744     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3745     // but to do that, we have to ensure that said flag is valid in the entire
3746     // defined scope of the SCEV.
3747     // TODO: non-instructions have global scope.  We might be able to prove
3748     // some global scope cases
3749     auto *GEPI = dyn_cast<Instruction>(GEP);
3750     if (!GEPI || !isSCEVExprNeverPoison(GEPI))
3751       NW = GEPNoWrapFlags::none();
3752   }
3753 
3754   SCEV::NoWrapFlags OffsetWrap = SCEV::FlagAnyWrap;
3755   if (NW.hasNoUnsignedSignedWrap())
3756     OffsetWrap = setFlags(OffsetWrap, SCEV::FlagNSW);
3757   if (NW.hasNoUnsignedWrap())
3758     OffsetWrap = setFlags(OffsetWrap, SCEV::FlagNUW);
3759 
3760   Type *CurTy = GEP->getType();
3761   bool FirstIter = true;
3762   SmallVector<const SCEV *, 4> Offsets;
3763   for (const SCEV *IndexExpr : IndexExprs) {
3764     // Compute the (potentially symbolic) offset in bytes for this index.
3765     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3766       // For a struct, add the member offset.
3767       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3768       unsigned FieldNo = Index->getZExtValue();
3769       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3770       Offsets.push_back(FieldOffset);
3771 
3772       // Update CurTy to the type of the field at Index.
3773       CurTy = STy->getTypeAtIndex(Index);
3774     } else {
3775       // Update CurTy to its element type.
3776       if (FirstIter) {
3777         assert(isa<PointerType>(CurTy) &&
3778                "The first index of a GEP indexes a pointer");
3779         CurTy = GEP->getSourceElementType();
3780         FirstIter = false;
3781       } else {
3782         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3783       }
3784       // For an array, add the element offset, explicitly scaled.
3785       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3786       // Getelementptr indices are signed.
3787       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3788 
3789       // Multiply the index by the element size to compute the element offset.
3790       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3791       Offsets.push_back(LocalOffset);
3792     }
3793   }
3794 
3795   // Handle degenerate case of GEP without offsets.
3796   if (Offsets.empty())
3797     return BaseExpr;
3798 
3799   // Add the offsets together, assuming nsw if inbounds.
3800   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3801   // Add the base address and the offset. We cannot use the nsw flag, as the
3802   // base address is unsigned. However, if we know that the offset is
3803   // non-negative, we can use nuw.
3804   bool NUW = NW.hasNoUnsignedWrap() ||
3805              (NW.hasNoUnsignedSignedWrap() && isKnownNonNegative(Offset));
3806   SCEV::NoWrapFlags BaseWrap = NUW ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3807   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3808   assert(BaseExpr->getType() == GEPExpr->getType() &&
3809          "GEP should not change type mid-flight.");
3810   return GEPExpr;
3811 }
3812 
3813 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3814                                                ArrayRef<const SCEV *> Ops) {
3815   FoldingSetNodeID ID;
3816   ID.AddInteger(SCEVType);
3817   for (const SCEV *Op : Ops)
3818     ID.AddPointer(Op);
3819   void *IP = nullptr;
3820   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3821 }
3822 
3823 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3824   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3825   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3826 }
3827 
3828 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3829                                            SmallVectorImpl<const SCEV *> &Ops) {
3830   assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!");
3831   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3832   if (Ops.size() == 1) return Ops[0];
3833 #ifndef NDEBUG
3834   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3835   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3836     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3837            "Operand types don't match!");
3838     assert(Ops[0]->getType()->isPointerTy() ==
3839                Ops[i]->getType()->isPointerTy() &&
3840            "min/max should be consistently pointerish");
3841   }
3842 #endif
3843 
3844   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3845   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3846 
3847   const SCEV *Folded = constantFoldAndGroupOps(
3848       *this, LI, DT, Ops,
3849       [&](const APInt &C1, const APInt &C2) {
3850         switch (Kind) {
3851         case scSMaxExpr:
3852           return APIntOps::smax(C1, C2);
3853         case scSMinExpr:
3854           return APIntOps::smin(C1, C2);
3855         case scUMaxExpr:
3856           return APIntOps::umax(C1, C2);
3857         case scUMinExpr:
3858           return APIntOps::umin(C1, C2);
3859         default:
3860           llvm_unreachable("Unknown SCEV min/max opcode");
3861         }
3862       },
3863       [&](const APInt &C) {
3864         // identity
3865         if (IsMax)
3866           return IsSigned ? C.isMinSignedValue() : C.isMinValue();
3867         else
3868           return IsSigned ? C.isMaxSignedValue() : C.isMaxValue();
3869       },
3870       [&](const APInt &C) {
3871         // absorber
3872         if (IsMax)
3873           return IsSigned ? C.isMaxSignedValue() : C.isMaxValue();
3874         else
3875           return IsSigned ? C.isMinSignedValue() : C.isMinValue();
3876       });
3877   if (Folded)
3878     return Folded;
3879 
3880   // Check if we have created the same expression before.
3881   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3882     return S;
3883   }
3884 
3885   // Find the first operation of the same kind
3886   unsigned Idx = 0;
3887   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3888     ++Idx;
3889 
3890   // Check to see if one of the operands is of the same kind. If so, expand its
3891   // operands onto our operand list, and recurse to simplify.
3892   if (Idx < Ops.size()) {
3893     bool DeletedAny = false;
3894     while (Ops[Idx]->getSCEVType() == Kind) {
3895       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3896       Ops.erase(Ops.begin()+Idx);
3897       append_range(Ops, SMME->operands());
3898       DeletedAny = true;
3899     }
3900 
3901     if (DeletedAny)
3902       return getMinMaxExpr(Kind, Ops);
3903   }
3904 
3905   // Okay, check to see if the same value occurs in the operand list twice.  If
3906   // so, delete one.  Since we sorted the list, these values are required to
3907   // be adjacent.
3908   llvm::CmpInst::Predicate GEPred =
3909       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3910   llvm::CmpInst::Predicate LEPred =
3911       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3912   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3913   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3914   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3915     if (Ops[i] == Ops[i + 1] ||
3916         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3917       //  X op Y op Y  -->  X op Y
3918       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3919       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3920       --i;
3921       --e;
3922     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3923                                                Ops[i + 1])) {
3924       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3925       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3926       --i;
3927       --e;
3928     }
3929   }
3930 
3931   if (Ops.size() == 1) return Ops[0];
3932 
3933   assert(!Ops.empty() && "Reduced smax down to nothing!");
3934 
3935   // Okay, it looks like we really DO need an expr.  Check to see if we
3936   // already have one, otherwise create a new one.
3937   FoldingSetNodeID ID;
3938   ID.AddInteger(Kind);
3939   for (const SCEV *Op : Ops)
3940     ID.AddPointer(Op);
3941   void *IP = nullptr;
3942   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3943   if (ExistingSCEV)
3944     return ExistingSCEV;
3945   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3946   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3947   SCEV *S = new (SCEVAllocator)
3948       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3949 
3950   UniqueSCEVs.InsertNode(S, IP);
3951   registerUser(S, Ops);
3952   return S;
3953 }
3954 
3955 namespace {
3956 
3957 class SCEVSequentialMinMaxDeduplicatingVisitor final
3958     : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
3959                          std::optional<const SCEV *>> {
3960   using RetVal = std::optional<const SCEV *>;
3961   using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>;
3962 
3963   ScalarEvolution &SE;
3964   const SCEVTypes RootKind; // Must be a sequential min/max expression.
3965   const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind.
3966   SmallPtrSet<const SCEV *, 16> SeenOps;
3967 
3968   bool canRecurseInto(SCEVTypes Kind) const {
3969     // We can only recurse into the SCEV expression of the same effective type
3970     // as the type of our root SCEV expression.
3971     return RootKind == Kind || NonSequentialRootKind == Kind;
3972   };
3973 
3974   RetVal visitAnyMinMaxExpr(const SCEV *S) {
3975     assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&
3976            "Only for min/max expressions.");
3977     SCEVTypes Kind = S->getSCEVType();
3978 
3979     if (!canRecurseInto(Kind))
3980       return S;
3981 
3982     auto *NAry = cast<SCEVNAryExpr>(S);
3983     SmallVector<const SCEV *> NewOps;
3984     bool Changed = visit(Kind, NAry->operands(), NewOps);
3985 
3986     if (!Changed)
3987       return S;
3988     if (NewOps.empty())
3989       return std::nullopt;
3990 
3991     return isa<SCEVSequentialMinMaxExpr>(S)
3992                ? SE.getSequentialMinMaxExpr(Kind, NewOps)
3993                : SE.getMinMaxExpr(Kind, NewOps);
3994   }
3995 
3996   RetVal visit(const SCEV *S) {
3997     // Has the whole operand been seen already?
3998     if (!SeenOps.insert(S).second)
3999       return std::nullopt;
4000     return Base::visit(S);
4001   }
4002 
4003 public:
4004   SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
4005                                            SCEVTypes RootKind)
4006       : SE(SE), RootKind(RootKind),
4007         NonSequentialRootKind(
4008             SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
4009                 RootKind)) {}
4010 
4011   bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps,
4012                          SmallVectorImpl<const SCEV *> &NewOps) {
4013     bool Changed = false;
4014     SmallVector<const SCEV *> Ops;
4015     Ops.reserve(OrigOps.size());
4016 
4017     for (const SCEV *Op : OrigOps) {
4018       RetVal NewOp = visit(Op);
4019       if (NewOp != Op)
4020         Changed = true;
4021       if (NewOp)
4022         Ops.emplace_back(*NewOp);
4023     }
4024 
4025     if (Changed)
4026       NewOps = std::move(Ops);
4027     return Changed;
4028   }
4029 
4030   RetVal visitConstant(const SCEVConstant *Constant) { return Constant; }
4031 
4032   RetVal visitVScale(const SCEVVScale *VScale) { return VScale; }
4033 
4034   RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; }
4035 
4036   RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; }
4037 
4038   RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; }
4039 
4040   RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; }
4041 
4042   RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; }
4043 
4044   RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; }
4045 
4046   RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; }
4047 
4048   RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
4049 
4050   RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) {
4051     return visitAnyMinMaxExpr(Expr);
4052   }
4053 
4054   RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) {
4055     return visitAnyMinMaxExpr(Expr);
4056   }
4057 
4058   RetVal visitSMinExpr(const SCEVSMinExpr *Expr) {
4059     return visitAnyMinMaxExpr(Expr);
4060   }
4061 
4062   RetVal visitUMinExpr(const SCEVUMinExpr *Expr) {
4063     return visitAnyMinMaxExpr(Expr);
4064   }
4065 
4066   RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
4067     return visitAnyMinMaxExpr(Expr);
4068   }
4069 
4070   RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; }
4071 
4072   RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }
4073 };
4074 
4075 } // namespace
4076 
4077 static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) {
4078   switch (Kind) {
4079   case scConstant:
4080   case scVScale:
4081   case scTruncate:
4082   case scZeroExtend:
4083   case scSignExtend:
4084   case scPtrToInt:
4085   case scAddExpr:
4086   case scMulExpr:
4087   case scUDivExpr:
4088   case scAddRecExpr:
4089   case scUMaxExpr:
4090   case scSMaxExpr:
4091   case scUMinExpr:
4092   case scSMinExpr:
4093   case scUnknown:
4094     // If any operand is poison, the whole expression is poison.
4095     return true;
4096   case scSequentialUMinExpr:
4097     // FIXME: if the *first* operand is poison, the whole expression is poison.
4098     return false; // Pessimistically, say that it does not propagate poison.
4099   case scCouldNotCompute:
4100     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
4101   }
4102   llvm_unreachable("Unknown SCEV kind!");
4103 }
4104 
4105 namespace {
4106 // The only way poison may be introduced in a SCEV expression is from a
4107 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown,
4108 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not*
4109 // introduce poison -- they encode guaranteed, non-speculated knowledge.
4110 //
4111 // Additionally, all SCEV nodes propagate poison from inputs to outputs,
4112 // with the notable exception of umin_seq, where only poison from the first
4113 // operand is (unconditionally) propagated.
4114 struct SCEVPoisonCollector {
4115   bool LookThroughMaybePoisonBlocking;
4116   SmallPtrSet<const SCEVUnknown *, 4> MaybePoison;
4117   SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking)
4118       : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {}
4119 
4120   bool follow(const SCEV *S) {
4121     if (!LookThroughMaybePoisonBlocking &&
4122         !scevUnconditionallyPropagatesPoisonFromOperands(S->getSCEVType()))
4123       return false;
4124 
4125     if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
4126       if (!isGuaranteedNotToBePoison(SU->getValue()))
4127         MaybePoison.insert(SU);
4128     }
4129     return true;
4130   }
4131   bool isDone() const { return false; }
4132 };
4133 } // namespace
4134 
4135 /// Return true if V is poison given that AssumedPoison is already poison.
4136 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) {
4137   // First collect all SCEVs that might result in AssumedPoison to be poison.
4138   // We need to look through potentially poison-blocking operations here,
4139   // because we want to find all SCEVs that *might* result in poison, not only
4140   // those that are *required* to.
4141   SCEVPoisonCollector PC1(/* LookThroughMaybePoisonBlocking */ true);
4142   visitAll(AssumedPoison, PC1);
4143 
4144   // AssumedPoison is never poison. As the assumption is false, the implication
4145   // is true. Don't bother walking the other SCEV in this case.
4146   if (PC1.MaybePoison.empty())
4147     return true;
4148 
4149   // Collect all SCEVs in S that, if poison, *will* result in S being poison
4150   // as well. We cannot look through potentially poison-blocking operations
4151   // here, as their arguments only *may* make the result poison.
4152   SCEVPoisonCollector PC2(/* LookThroughMaybePoisonBlocking */ false);
4153   visitAll(S, PC2);
4154 
4155   // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison,
4156   // it will also make S poison by being part of PC2.MaybePoison.
4157   return llvm::set_is_subset(PC1.MaybePoison, PC2.MaybePoison);
4158 }
4159 
4160 void ScalarEvolution::getPoisonGeneratingValues(
4161     SmallPtrSetImpl<const Value *> &Result, const SCEV *S) {
4162   SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ false);
4163   visitAll(S, PC);
4164   for (const SCEVUnknown *SU : PC.MaybePoison)
4165     Result.insert(SU->getValue());
4166 }
4167 
4168 bool ScalarEvolution::canReuseInstruction(
4169     const SCEV *S, Instruction *I,
4170     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
4171   // If the instruction cannot be poison, it's always safe to reuse.
4172   if (programUndefinedIfPoison(I))
4173     return true;
4174 
4175   // Otherwise, it is possible that I is more poisonous that S. Collect the
4176   // poison-contributors of S, and then check whether I has any additional
4177   // poison-contributors. Poison that is contributed through poison-generating
4178   // flags is handled by dropping those flags instead.
4179   SmallPtrSet<const Value *, 8> PoisonVals;
4180   getPoisonGeneratingValues(PoisonVals, S);
4181 
4182   SmallVector<Value *> Worklist;
4183   SmallPtrSet<Value *, 8> Visited;
4184   Worklist.push_back(I);
4185   while (!Worklist.empty()) {
4186     Value *V = Worklist.pop_back_val();
4187     if (!Visited.insert(V).second)
4188       continue;
4189 
4190     // Avoid walking large instruction graphs.
4191     if (Visited.size() > 16)
4192       return false;
4193 
4194     // Either the value can't be poison, or the S would also be poison if it
4195     // is.
4196     if (PoisonVals.contains(V) || ::isGuaranteedNotToBePoison(V))
4197       continue;
4198 
4199     auto *I = dyn_cast<Instruction>(V);
4200     if (!I)
4201       return false;
4202 
4203     // Disjoint or instructions are interpreted as adds by SCEV. However, we
4204     // can't replace an arbitrary add with disjoint or, even if we drop the
4205     // flag. We would need to convert the or into an add.
4206     if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I))
4207       if (PDI->isDisjoint())
4208         return false;
4209 
4210     // FIXME: Ignore vscale, even though it technically could be poison. Do this
4211     // because SCEV currently assumes it can't be poison. Remove this special
4212     // case once we proper model when vscale can be poison.
4213     if (auto *II = dyn_cast<IntrinsicInst>(I);
4214         II && II->getIntrinsicID() == Intrinsic::vscale)
4215       continue;
4216 
4217     if (canCreatePoison(cast<Operator>(I), /*ConsiderFlagsAndMetadata*/ false))
4218       return false;
4219 
4220     // If the instruction can't create poison, we can recurse to its operands.
4221     if (I->hasPoisonGeneratingAnnotations())
4222       DropPoisonGeneratingInsts.push_back(I);
4223 
4224     for (Value *Op : I->operands())
4225       Worklist.push_back(Op);
4226   }
4227   return true;
4228 }
4229 
4230 const SCEV *
4231 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind,
4232                                          SmallVectorImpl<const SCEV *> &Ops) {
4233   assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&
4234          "Not a SCEVSequentialMinMaxExpr!");
4235   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
4236   if (Ops.size() == 1)
4237     return Ops[0];
4238 #ifndef NDEBUG
4239   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
4240   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4241     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
4242            "Operand types don't match!");
4243     assert(Ops[0]->getType()->isPointerTy() ==
4244                Ops[i]->getType()->isPointerTy() &&
4245            "min/max should be consistently pointerish");
4246   }
4247 #endif
4248 
4249   // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4250   // so we can *NOT* do any kind of sorting of the expressions!
4251 
4252   // Check if we have created the same expression before.
4253   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops))
4254     return S;
4255 
4256   // FIXME: there are *some* simplifications that we can do here.
4257 
4258   // Keep only the first instance of an operand.
4259   {
4260     SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind);
4261     bool Changed = Deduplicator.visit(Kind, Ops, Ops);
4262     if (Changed)
4263       return getSequentialMinMaxExpr(Kind, Ops);
4264   }
4265 
4266   // Check to see if one of the operands is of the same kind. If so, expand its
4267   // operands onto our operand list, and recurse to simplify.
4268   {
4269     unsigned Idx = 0;
4270     bool DeletedAny = false;
4271     while (Idx < Ops.size()) {
4272       if (Ops[Idx]->getSCEVType() != Kind) {
4273         ++Idx;
4274         continue;
4275       }
4276       const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]);
4277       Ops.erase(Ops.begin() + Idx);
4278       Ops.insert(Ops.begin() + Idx, SMME->operands().begin(),
4279                  SMME->operands().end());
4280       DeletedAny = true;
4281     }
4282 
4283     if (DeletedAny)
4284       return getSequentialMinMaxExpr(Kind, Ops);
4285   }
4286 
4287   const SCEV *SaturationPoint;
4288   ICmpInst::Predicate Pred;
4289   switch (Kind) {
4290   case scSequentialUMinExpr:
4291     SaturationPoint = getZero(Ops[0]->getType());
4292     Pred = ICmpInst::ICMP_ULE;
4293     break;
4294   default:
4295     llvm_unreachable("Not a sequential min/max type.");
4296   }
4297 
4298   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4299     if (!isGuaranteedNotToCauseUB(Ops[i]))
4300       continue;
4301     // We can replace %x umin_seq %y with %x umin %y if either:
4302     //  * %y being poison implies %x is also poison.
4303     //  * %x cannot be the saturating value (e.g. zero for umin).
4304     if (::impliesPoison(Ops[i], Ops[i - 1]) ||
4305         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1],
4306                                         SaturationPoint)) {
4307       SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]};
4308       Ops[i - 1] = getMinMaxExpr(
4309           SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind),
4310           SeqOps);
4311       Ops.erase(Ops.begin() + i);
4312       return getSequentialMinMaxExpr(Kind, Ops);
4313     }
4314     // Fold %x umin_seq %y to %x if %x ule %y.
4315     // TODO: We might be able to prove the predicate for a later operand.
4316     if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) {
4317       Ops.erase(Ops.begin() + i);
4318       return getSequentialMinMaxExpr(Kind, Ops);
4319     }
4320   }
4321 
4322   // Okay, it looks like we really DO need an expr.  Check to see if we
4323   // already have one, otherwise create a new one.
4324   FoldingSetNodeID ID;
4325   ID.AddInteger(Kind);
4326   for (const SCEV *Op : Ops)
4327     ID.AddPointer(Op);
4328   void *IP = nullptr;
4329   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
4330   if (ExistingSCEV)
4331     return ExistingSCEV;
4332 
4333   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
4334   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
4335   SCEV *S = new (SCEVAllocator)
4336       SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
4337 
4338   UniqueSCEVs.InsertNode(S, IP);
4339   registerUser(S, Ops);
4340   return S;
4341 }
4342 
4343 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4344   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4345   return getSMaxExpr(Ops);
4346 }
4347 
4348 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4349   return getMinMaxExpr(scSMaxExpr, Ops);
4350 }
4351 
4352 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4353   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4354   return getUMaxExpr(Ops);
4355 }
4356 
4357 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4358   return getMinMaxExpr(scUMaxExpr, Ops);
4359 }
4360 
4361 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
4362                                          const SCEV *RHS) {
4363   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4364   return getSMinExpr(Ops);
4365 }
4366 
4367 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
4368   return getMinMaxExpr(scSMinExpr, Ops);
4369 }
4370 
4371 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS,
4372                                          bool Sequential) {
4373   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4374   return getUMinExpr(Ops, Sequential);
4375 }
4376 
4377 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops,
4378                                          bool Sequential) {
4379   return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops)
4380                     : getMinMaxExpr(scUMinExpr, Ops);
4381 }
4382 
4383 const SCEV *
4384 ScalarEvolution::getSizeOfExpr(Type *IntTy, TypeSize Size) {
4385   const SCEV *Res = getConstant(IntTy, Size.getKnownMinValue());
4386   if (Size.isScalable())
4387     Res = getMulExpr(Res, getVScale(IntTy));
4388   return Res;
4389 }
4390 
4391 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
4392   return getSizeOfExpr(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
4393 }
4394 
4395 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
4396   return getSizeOfExpr(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
4397 }
4398 
4399 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
4400                                              StructType *STy,
4401                                              unsigned FieldNo) {
4402   // We can bypass creating a target-independent constant expression and then
4403   // folding it back into a ConstantInt. This is just a compile-time
4404   // optimization.
4405   const StructLayout *SL = getDataLayout().getStructLayout(STy);
4406   assert(!SL->getSizeInBits().isScalable() &&
4407          "Cannot get offset for structure containing scalable vector types");
4408   return getConstant(IntTy, SL->getElementOffset(FieldNo));
4409 }
4410 
4411 const SCEV *ScalarEvolution::getUnknown(Value *V) {
4412   // Don't attempt to do anything other than create a SCEVUnknown object
4413   // here.  createSCEV only calls getUnknown after checking for all other
4414   // interesting possibilities, and any other code that calls getUnknown
4415   // is doing so in order to hide a value from SCEV canonicalization.
4416 
4417   FoldingSetNodeID ID;
4418   ID.AddInteger(scUnknown);
4419   ID.AddPointer(V);
4420   void *IP = nullptr;
4421   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
4422     assert(cast<SCEVUnknown>(S)->getValue() == V &&
4423            "Stale SCEVUnknown in uniquing map!");
4424     return S;
4425   }
4426   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
4427                                             FirstUnknown);
4428   FirstUnknown = cast<SCEVUnknown>(S);
4429   UniqueSCEVs.InsertNode(S, IP);
4430   return S;
4431 }
4432 
4433 //===----------------------------------------------------------------------===//
4434 //            Basic SCEV Analysis and PHI Idiom Recognition Code
4435 //
4436 
4437 /// Test if values of the given type are analyzable within the SCEV
4438 /// framework. This primarily includes integer types, and it can optionally
4439 /// include pointer types if the ScalarEvolution class has access to
4440 /// target-specific information.
4441 bool ScalarEvolution::isSCEVable(Type *Ty) const {
4442   // Integers and pointers are always SCEVable.
4443   return Ty->isIntOrPtrTy();
4444 }
4445 
4446 /// Return the size in bits of the specified type, for which isSCEVable must
4447 /// return true.
4448 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
4449   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4450   if (Ty->isPointerTy())
4451     return getDataLayout().getIndexTypeSizeInBits(Ty);
4452   return getDataLayout().getTypeSizeInBits(Ty);
4453 }
4454 
4455 /// Return a type with the same bitwidth as the given type and which represents
4456 /// how SCEV will treat the given type, for which isSCEVable must return
4457 /// true. For pointer types, this is the pointer index sized integer type.
4458 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
4459   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4460 
4461   if (Ty->isIntegerTy())
4462     return Ty;
4463 
4464   // The only other support type is pointer.
4465   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
4466   return getDataLayout().getIndexType(Ty);
4467 }
4468 
4469 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
4470   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
4471 }
4472 
4473 bool ScalarEvolution::instructionCouldExistWithOperands(const SCEV *A,
4474                                                         const SCEV *B) {
4475   /// For a valid use point to exist, the defining scope of one operand
4476   /// must dominate the other.
4477   bool PreciseA, PreciseB;
4478   auto *ScopeA = getDefiningScopeBound({A}, PreciseA);
4479   auto *ScopeB = getDefiningScopeBound({B}, PreciseB);
4480   if (!PreciseA || !PreciseB)
4481     // Can't tell.
4482     return false;
4483   return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
4484     DT.dominates(ScopeB, ScopeA);
4485 }
4486 
4487 const SCEV *ScalarEvolution::getCouldNotCompute() {
4488   return CouldNotCompute.get();
4489 }
4490 
4491 bool ScalarEvolution::checkValidity(const SCEV *S) const {
4492   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
4493     auto *SU = dyn_cast<SCEVUnknown>(S);
4494     return SU && SU->getValue() == nullptr;
4495   });
4496 
4497   return !ContainsNulls;
4498 }
4499 
4500 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4501   HasRecMapType::iterator I = HasRecMap.find(S);
4502   if (I != HasRecMap.end())
4503     return I->second;
4504 
4505   bool FoundAddRec =
4506       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4507   HasRecMap.insert({S, FoundAddRec});
4508   return FoundAddRec;
4509 }
4510 
4511 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4512 /// by the value and offset from any ValueOffsetPair in the set.
4513 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) {
4514   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4515   if (SI == ExprValueMap.end())
4516     return {};
4517   return SI->second.getArrayRef();
4518 }
4519 
4520 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4521 /// cannot be used separately. eraseValueFromMap should be used to remove
4522 /// V from ValueExprMap and ExprValueMap at the same time.
4523 void ScalarEvolution::eraseValueFromMap(Value *V) {
4524   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4525   if (I != ValueExprMap.end()) {
4526     auto EVIt = ExprValueMap.find(I->second);
4527     bool Removed = EVIt->second.remove(V);
4528     (void) Removed;
4529     assert(Removed && "Value not in ExprValueMap?");
4530     ValueExprMap.erase(I);
4531   }
4532 }
4533 
4534 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {
4535   // A recursive query may have already computed the SCEV. It should be
4536   // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4537   // inferred nowrap flags.
4538   auto It = ValueExprMap.find_as(V);
4539   if (It == ValueExprMap.end()) {
4540     ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4541     ExprValueMap[S].insert(V);
4542   }
4543 }
4544 
4545 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4546 /// create a new one.
4547 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4548   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4549 
4550   if (const SCEV *S = getExistingSCEV(V))
4551     return S;
4552   return createSCEVIter(V);
4553 }
4554 
4555 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4556   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4557 
4558   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4559   if (I != ValueExprMap.end()) {
4560     const SCEV *S = I->second;
4561     assert(checkValidity(S) &&
4562            "existing SCEV has not been properly invalidated");
4563     return S;
4564   }
4565   return nullptr;
4566 }
4567 
4568 /// Return a SCEV corresponding to -V = -1*V
4569 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4570                                              SCEV::NoWrapFlags Flags) {
4571   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4572     return getConstant(
4573                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4574 
4575   Type *Ty = V->getType();
4576   Ty = getEffectiveSCEVType(Ty);
4577   return getMulExpr(V, getMinusOne(Ty), Flags);
4578 }
4579 
4580 /// If Expr computes ~A, return A else return nullptr
4581 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4582   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4583   if (!Add || Add->getNumOperands() != 2 ||
4584       !Add->getOperand(0)->isAllOnesValue())
4585     return nullptr;
4586 
4587   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4588   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4589       !AddRHS->getOperand(0)->isAllOnesValue())
4590     return nullptr;
4591 
4592   return AddRHS->getOperand(1);
4593 }
4594 
4595 /// Return a SCEV corresponding to ~V = -1-V
4596 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4597   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4598 
4599   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4600     return getConstant(
4601                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4602 
4603   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4604   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4605     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4606       SmallVector<const SCEV *, 2> MatchedOperands;
4607       for (const SCEV *Operand : MME->operands()) {
4608         const SCEV *Matched = MatchNotExpr(Operand);
4609         if (!Matched)
4610           return (const SCEV *)nullptr;
4611         MatchedOperands.push_back(Matched);
4612       }
4613       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4614                            MatchedOperands);
4615     };
4616     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4617       return Replaced;
4618   }
4619 
4620   Type *Ty = V->getType();
4621   Ty = getEffectiveSCEVType(Ty);
4622   return getMinusSCEV(getMinusOne(Ty), V);
4623 }
4624 
4625 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4626   assert(P->getType()->isPointerTy());
4627 
4628   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4629     // The base of an AddRec is the first operand.
4630     SmallVector<const SCEV *> Ops{AddRec->operands()};
4631     Ops[0] = removePointerBase(Ops[0]);
4632     // Don't try to transfer nowrap flags for now. We could in some cases
4633     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4634     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4635   }
4636   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4637     // The base of an Add is the pointer operand.
4638     SmallVector<const SCEV *> Ops{Add->operands()};
4639     const SCEV **PtrOp = nullptr;
4640     for (const SCEV *&AddOp : Ops) {
4641       if (AddOp->getType()->isPointerTy()) {
4642         assert(!PtrOp && "Cannot have multiple pointer ops");
4643         PtrOp = &AddOp;
4644       }
4645     }
4646     *PtrOp = removePointerBase(*PtrOp);
4647     // Don't try to transfer nowrap flags for now. We could in some cases
4648     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4649     return getAddExpr(Ops);
4650   }
4651   // Any other expression must be a pointer base.
4652   return getZero(P->getType());
4653 }
4654 
4655 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4656                                           SCEV::NoWrapFlags Flags,
4657                                           unsigned Depth) {
4658   // Fast path: X - X --> 0.
4659   if (LHS == RHS)
4660     return getZero(LHS->getType());
4661 
4662   // If we subtract two pointers with different pointer bases, bail.
4663   // Eventually, we're going to add an assertion to getMulExpr that we
4664   // can't multiply by a pointer.
4665   if (RHS->getType()->isPointerTy()) {
4666     if (!LHS->getType()->isPointerTy() ||
4667         getPointerBase(LHS) != getPointerBase(RHS))
4668       return getCouldNotCompute();
4669     LHS = removePointerBase(LHS);
4670     RHS = removePointerBase(RHS);
4671   }
4672 
4673   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4674   // makes it so that we cannot make much use of NUW.
4675   auto AddFlags = SCEV::FlagAnyWrap;
4676   const bool RHSIsNotMinSigned =
4677       !getSignedRangeMin(RHS).isMinSignedValue();
4678   if (hasFlags(Flags, SCEV::FlagNSW)) {
4679     // Let M be the minimum representable signed value. Then (-1)*RHS
4680     // signed-wraps if and only if RHS is M. That can happen even for
4681     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4682     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4683     // (-1)*RHS, we need to prove that RHS != M.
4684     //
4685     // If LHS is non-negative and we know that LHS - RHS does not
4686     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4687     // either by proving that RHS > M or that LHS >= 0.
4688     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4689       AddFlags = SCEV::FlagNSW;
4690     }
4691   }
4692 
4693   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4694   // RHS is NSW and LHS >= 0.
4695   //
4696   // The difficulty here is that the NSW flag may have been proven
4697   // relative to a loop that is to be found in a recurrence in LHS and
4698   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4699   // larger scope than intended.
4700   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4701 
4702   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4703 }
4704 
4705 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4706                                                      unsigned Depth) {
4707   Type *SrcTy = V->getType();
4708   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4709          "Cannot truncate or zero extend with non-integer arguments!");
4710   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4711     return V;  // No conversion
4712   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4713     return getTruncateExpr(V, Ty, Depth);
4714   return getZeroExtendExpr(V, Ty, Depth);
4715 }
4716 
4717 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4718                                                      unsigned Depth) {
4719   Type *SrcTy = V->getType();
4720   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4721          "Cannot truncate or zero extend with non-integer arguments!");
4722   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4723     return V;  // No conversion
4724   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4725     return getTruncateExpr(V, Ty, Depth);
4726   return getSignExtendExpr(V, Ty, Depth);
4727 }
4728 
4729 const SCEV *
4730 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4731   Type *SrcTy = V->getType();
4732   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4733          "Cannot noop or zero extend with non-integer arguments!");
4734   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4735          "getNoopOrZeroExtend cannot truncate!");
4736   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4737     return V;  // No conversion
4738   return getZeroExtendExpr(V, Ty);
4739 }
4740 
4741 const SCEV *
4742 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4743   Type *SrcTy = V->getType();
4744   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4745          "Cannot noop or sign extend with non-integer arguments!");
4746   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4747          "getNoopOrSignExtend cannot truncate!");
4748   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4749     return V;  // No conversion
4750   return getSignExtendExpr(V, Ty);
4751 }
4752 
4753 const SCEV *
4754 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4755   Type *SrcTy = V->getType();
4756   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4757          "Cannot noop or any extend with non-integer arguments!");
4758   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4759          "getNoopOrAnyExtend cannot truncate!");
4760   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4761     return V;  // No conversion
4762   return getAnyExtendExpr(V, Ty);
4763 }
4764 
4765 const SCEV *
4766 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4767   Type *SrcTy = V->getType();
4768   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4769          "Cannot truncate or noop with non-integer arguments!");
4770   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4771          "getTruncateOrNoop cannot extend!");
4772   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4773     return V;  // No conversion
4774   return getTruncateExpr(V, Ty);
4775 }
4776 
4777 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4778                                                         const SCEV *RHS) {
4779   const SCEV *PromotedLHS = LHS;
4780   const SCEV *PromotedRHS = RHS;
4781 
4782   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4783     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4784   else
4785     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4786 
4787   return getUMaxExpr(PromotedLHS, PromotedRHS);
4788 }
4789 
4790 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4791                                                         const SCEV *RHS,
4792                                                         bool Sequential) {
4793   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4794   return getUMinFromMismatchedTypes(Ops, Sequential);
4795 }
4796 
4797 const SCEV *
4798 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
4799                                             bool Sequential) {
4800   assert(!Ops.empty() && "At least one operand must be!");
4801   // Trivial case.
4802   if (Ops.size() == 1)
4803     return Ops[0];
4804 
4805   // Find the max type first.
4806   Type *MaxType = nullptr;
4807   for (const auto *S : Ops)
4808     if (MaxType)
4809       MaxType = getWiderType(MaxType, S->getType());
4810     else
4811       MaxType = S->getType();
4812   assert(MaxType && "Failed to find maximum type!");
4813 
4814   // Extend all ops to max type.
4815   SmallVector<const SCEV *, 2> PromotedOps;
4816   for (const auto *S : Ops)
4817     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4818 
4819   // Generate umin.
4820   return getUMinExpr(PromotedOps, Sequential);
4821 }
4822 
4823 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4824   // A pointer operand may evaluate to a nonpointer expression, such as null.
4825   if (!V->getType()->isPointerTy())
4826     return V;
4827 
4828   while (true) {
4829     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4830       V = AddRec->getStart();
4831     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4832       const SCEV *PtrOp = nullptr;
4833       for (const SCEV *AddOp : Add->operands()) {
4834         if (AddOp->getType()->isPointerTy()) {
4835           assert(!PtrOp && "Cannot have multiple pointer ops");
4836           PtrOp = AddOp;
4837         }
4838       }
4839       assert(PtrOp && "Must have pointer op");
4840       V = PtrOp;
4841     } else // Not something we can look further into.
4842       return V;
4843   }
4844 }
4845 
4846 /// Push users of the given Instruction onto the given Worklist.
4847 static void PushDefUseChildren(Instruction *I,
4848                                SmallVectorImpl<Instruction *> &Worklist,
4849                                SmallPtrSetImpl<Instruction *> &Visited) {
4850   // Push the def-use children onto the Worklist stack.
4851   for (User *U : I->users()) {
4852     auto *UserInsn = cast<Instruction>(U);
4853     if (Visited.insert(UserInsn).second)
4854       Worklist.push_back(UserInsn);
4855   }
4856 }
4857 
4858 namespace {
4859 
4860 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4861 /// expression in case its Loop is L. If it is not L then
4862 /// if IgnoreOtherLoops is true then use AddRec itself
4863 /// otherwise rewrite cannot be done.
4864 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4865 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4866 public:
4867   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4868                              bool IgnoreOtherLoops = true) {
4869     SCEVInitRewriter Rewriter(L, SE);
4870     const SCEV *Result = Rewriter.visit(S);
4871     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4872       return SE.getCouldNotCompute();
4873     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4874                ? SE.getCouldNotCompute()
4875                : Result;
4876   }
4877 
4878   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4879     if (!SE.isLoopInvariant(Expr, L))
4880       SeenLoopVariantSCEVUnknown = true;
4881     return Expr;
4882   }
4883 
4884   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4885     // Only re-write AddRecExprs for this loop.
4886     if (Expr->getLoop() == L)
4887       return Expr->getStart();
4888     SeenOtherLoops = true;
4889     return Expr;
4890   }
4891 
4892   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4893 
4894   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4895 
4896 private:
4897   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4898       : SCEVRewriteVisitor(SE), L(L) {}
4899 
4900   const Loop *L;
4901   bool SeenLoopVariantSCEVUnknown = false;
4902   bool SeenOtherLoops = false;
4903 };
4904 
4905 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4906 /// increment expression in case its Loop is L. If it is not L then
4907 /// use AddRec itself.
4908 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4909 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4910 public:
4911   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4912     SCEVPostIncRewriter Rewriter(L, SE);
4913     const SCEV *Result = Rewriter.visit(S);
4914     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4915         ? SE.getCouldNotCompute()
4916         : Result;
4917   }
4918 
4919   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4920     if (!SE.isLoopInvariant(Expr, L))
4921       SeenLoopVariantSCEVUnknown = true;
4922     return Expr;
4923   }
4924 
4925   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4926     // Only re-write AddRecExprs for this loop.
4927     if (Expr->getLoop() == L)
4928       return Expr->getPostIncExpr(SE);
4929     SeenOtherLoops = true;
4930     return Expr;
4931   }
4932 
4933   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4934 
4935   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4936 
4937 private:
4938   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4939       : SCEVRewriteVisitor(SE), L(L) {}
4940 
4941   const Loop *L;
4942   bool SeenLoopVariantSCEVUnknown = false;
4943   bool SeenOtherLoops = false;
4944 };
4945 
4946 /// This class evaluates the compare condition by matching it against the
4947 /// condition of loop latch. If there is a match we assume a true value
4948 /// for the condition while building SCEV nodes.
4949 class SCEVBackedgeConditionFolder
4950     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4951 public:
4952   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4953                              ScalarEvolution &SE) {
4954     bool IsPosBECond = false;
4955     Value *BECond = nullptr;
4956     if (BasicBlock *Latch = L->getLoopLatch()) {
4957       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4958       if (BI && BI->isConditional()) {
4959         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4960                "Both outgoing branches should not target same header!");
4961         BECond = BI->getCondition();
4962         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4963       } else {
4964         return S;
4965       }
4966     }
4967     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4968     return Rewriter.visit(S);
4969   }
4970 
4971   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4972     const SCEV *Result = Expr;
4973     bool InvariantF = SE.isLoopInvariant(Expr, L);
4974 
4975     if (!InvariantF) {
4976       Instruction *I = cast<Instruction>(Expr->getValue());
4977       switch (I->getOpcode()) {
4978       case Instruction::Select: {
4979         SelectInst *SI = cast<SelectInst>(I);
4980         std::optional<const SCEV *> Res =
4981             compareWithBackedgeCondition(SI->getCondition());
4982         if (Res) {
4983           bool IsOne = cast<SCEVConstant>(*Res)->getValue()->isOne();
4984           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4985         }
4986         break;
4987       }
4988       default: {
4989         std::optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4990         if (Res)
4991           Result = *Res;
4992         break;
4993       }
4994       }
4995     }
4996     return Result;
4997   }
4998 
4999 private:
5000   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
5001                                        bool IsPosBECond, ScalarEvolution &SE)
5002       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
5003         IsPositiveBECond(IsPosBECond) {}
5004 
5005   std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
5006 
5007   const Loop *L;
5008   /// Loop back condition.
5009   Value *BackedgeCond = nullptr;
5010   /// Set to true if loop back is on positive branch condition.
5011   bool IsPositiveBECond;
5012 };
5013 
5014 std::optional<const SCEV *>
5015 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
5016 
5017   // If value matches the backedge condition for loop latch,
5018   // then return a constant evolution node based on loopback
5019   // branch taken.
5020   if (BackedgeCond == IC)
5021     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
5022                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
5023   return std::nullopt;
5024 }
5025 
5026 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
5027 public:
5028   static const SCEV *rewrite(const SCEV *S, const Loop *L,
5029                              ScalarEvolution &SE) {
5030     SCEVShiftRewriter Rewriter(L, SE);
5031     const SCEV *Result = Rewriter.visit(S);
5032     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
5033   }
5034 
5035   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
5036     // Only allow AddRecExprs for this loop.
5037     if (!SE.isLoopInvariant(Expr, L))
5038       Valid = false;
5039     return Expr;
5040   }
5041 
5042   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
5043     if (Expr->getLoop() == L && Expr->isAffine())
5044       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
5045     Valid = false;
5046     return Expr;
5047   }
5048 
5049   bool isValid() { return Valid; }
5050 
5051 private:
5052   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
5053       : SCEVRewriteVisitor(SE), L(L) {}
5054 
5055   const Loop *L;
5056   bool Valid = true;
5057 };
5058 
5059 } // end anonymous namespace
5060 
5061 SCEV::NoWrapFlags
5062 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
5063   if (!AR->isAffine())
5064     return SCEV::FlagAnyWrap;
5065 
5066   using OBO = OverflowingBinaryOperator;
5067 
5068   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
5069 
5070   if (!AR->hasNoSelfWrap()) {
5071     const SCEV *BECount = getConstantMaxBackedgeTakenCount(AR->getLoop());
5072     if (const SCEVConstant *BECountMax = dyn_cast<SCEVConstant>(BECount)) {
5073       ConstantRange StepCR = getSignedRange(AR->getStepRecurrence(*this));
5074       const APInt &BECountAP = BECountMax->getAPInt();
5075       unsigned NoOverflowBitWidth =
5076         BECountAP.getActiveBits() + StepCR.getMinSignedBits();
5077       if (NoOverflowBitWidth <= getTypeSizeInBits(AR->getType()))
5078         Result = ScalarEvolution::setFlags(Result, SCEV::FlagNW);
5079     }
5080   }
5081 
5082   if (!AR->hasNoSignedWrap()) {
5083     ConstantRange AddRecRange = getSignedRange(AR);
5084     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
5085 
5086     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5087         Instruction::Add, IncRange, OBO::NoSignedWrap);
5088     if (NSWRegion.contains(AddRecRange))
5089       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
5090   }
5091 
5092   if (!AR->hasNoUnsignedWrap()) {
5093     ConstantRange AddRecRange = getUnsignedRange(AR);
5094     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
5095 
5096     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5097         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
5098     if (NUWRegion.contains(AddRecRange))
5099       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
5100   }
5101 
5102   return Result;
5103 }
5104 
5105 SCEV::NoWrapFlags
5106 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5107   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5108 
5109   if (AR->hasNoSignedWrap())
5110     return Result;
5111 
5112   if (!AR->isAffine())
5113     return Result;
5114 
5115   // This function can be expensive, only try to prove NSW once per AddRec.
5116   if (!SignedWrapViaInductionTried.insert(AR).second)
5117     return Result;
5118 
5119   const SCEV *Step = AR->getStepRecurrence(*this);
5120   const Loop *L = AR->getLoop();
5121 
5122   // Check whether the backedge-taken count is SCEVCouldNotCompute.
5123   // Note that this serves two purposes: It filters out loops that are
5124   // simply not analyzable, and it covers the case where this code is
5125   // being called from within backedge-taken count analysis, such that
5126   // attempting to ask for the backedge-taken count would likely result
5127   // in infinite recursion. In the later case, the analysis code will
5128   // cope with a conservative value, and it will take care to purge
5129   // that value once it has finished.
5130   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5131 
5132   // Normally, in the cases we can prove no-overflow via a
5133   // backedge guarding condition, we can also compute a backedge
5134   // taken count for the loop.  The exceptions are assumptions and
5135   // guards present in the loop -- SCEV is not great at exploiting
5136   // these to compute max backedge taken counts, but can still use
5137   // these to prove lack of overflow.  Use this fact to avoid
5138   // doing extra work that may not pay off.
5139 
5140   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
5141       AC.assumptions().empty())
5142     return Result;
5143 
5144   // If the backedge is guarded by a comparison with the pre-inc  value the
5145   // addrec is safe. Also, if the entry is guarded by a comparison with the
5146   // start value and the backedge is guarded by a comparison with the post-inc
5147   // value, the addrec is safe.
5148   ICmpInst::Predicate Pred;
5149   const SCEV *OverflowLimit =
5150     getSignedOverflowLimitForStep(Step, &Pred, this);
5151   if (OverflowLimit &&
5152       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
5153        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
5154     Result = setFlags(Result, SCEV::FlagNSW);
5155   }
5156   return Result;
5157 }
5158 SCEV::NoWrapFlags
5159 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5160   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5161 
5162   if (AR->hasNoUnsignedWrap())
5163     return Result;
5164 
5165   if (!AR->isAffine())
5166     return Result;
5167 
5168   // This function can be expensive, only try to prove NUW once per AddRec.
5169   if (!UnsignedWrapViaInductionTried.insert(AR).second)
5170     return Result;
5171 
5172   const SCEV *Step = AR->getStepRecurrence(*this);
5173   unsigned BitWidth = getTypeSizeInBits(AR->getType());
5174   const Loop *L = AR->getLoop();
5175 
5176   // Check whether the backedge-taken count is SCEVCouldNotCompute.
5177   // Note that this serves two purposes: It filters out loops that are
5178   // simply not analyzable, and it covers the case where this code is
5179   // being called from within backedge-taken count analysis, such that
5180   // attempting to ask for the backedge-taken count would likely result
5181   // in infinite recursion. In the later case, the analysis code will
5182   // cope with a conservative value, and it will take care to purge
5183   // that value once it has finished.
5184   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5185 
5186   // Normally, in the cases we can prove no-overflow via a
5187   // backedge guarding condition, we can also compute a backedge
5188   // taken count for the loop.  The exceptions are assumptions and
5189   // guards present in the loop -- SCEV is not great at exploiting
5190   // these to compute max backedge taken counts, but can still use
5191   // these to prove lack of overflow.  Use this fact to avoid
5192   // doing extra work that may not pay off.
5193 
5194   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
5195       AC.assumptions().empty())
5196     return Result;
5197 
5198   // If the backedge is guarded by a comparison with the pre-inc  value the
5199   // addrec is safe. Also, if the entry is guarded by a comparison with the
5200   // start value and the backedge is guarded by a comparison with the post-inc
5201   // value, the addrec is safe.
5202   if (isKnownPositive(Step)) {
5203     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
5204                                 getUnsignedRangeMax(Step));
5205     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
5206         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
5207       Result = setFlags(Result, SCEV::FlagNUW);
5208     }
5209   }
5210 
5211   return Result;
5212 }
5213 
5214 namespace {
5215 
5216 /// Represents an abstract binary operation.  This may exist as a
5217 /// normal instruction or constant expression, or may have been
5218 /// derived from an expression tree.
5219 struct BinaryOp {
5220   unsigned Opcode;
5221   Value *LHS;
5222   Value *RHS;
5223   bool IsNSW = false;
5224   bool IsNUW = false;
5225 
5226   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5227   /// constant expression.
5228   Operator *Op = nullptr;
5229 
5230   explicit BinaryOp(Operator *Op)
5231       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
5232         Op(Op) {
5233     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
5234       IsNSW = OBO->hasNoSignedWrap();
5235       IsNUW = OBO->hasNoUnsignedWrap();
5236     }
5237   }
5238 
5239   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
5240                     bool IsNUW = false)
5241       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
5242 };
5243 
5244 } // end anonymous namespace
5245 
5246 /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure.
5247 static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL,
5248                                              AssumptionCache &AC,
5249                                              const DominatorTree &DT,
5250                                              const Instruction *CxtI) {
5251   auto *Op = dyn_cast<Operator>(V);
5252   if (!Op)
5253     return std::nullopt;
5254 
5255   // Implementation detail: all the cleverness here should happen without
5256   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5257   // SCEV expressions when possible, and we should not break that.
5258 
5259   switch (Op->getOpcode()) {
5260   case Instruction::Add:
5261   case Instruction::Sub:
5262   case Instruction::Mul:
5263   case Instruction::UDiv:
5264   case Instruction::URem:
5265   case Instruction::And:
5266   case Instruction::AShr:
5267   case Instruction::Shl:
5268     return BinaryOp(Op);
5269 
5270   case Instruction::Or: {
5271     // Convert or disjoint into add nuw nsw.
5272     if (cast<PossiblyDisjointInst>(Op)->isDisjoint())
5273       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1),
5274                       /*IsNSW=*/true, /*IsNUW=*/true);
5275     return BinaryOp(Op);
5276   }
5277 
5278   case Instruction::Xor:
5279     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
5280       // If the RHS of the xor is a signmask, then this is just an add.
5281       // Instcombine turns add of signmask into xor as a strength reduction step.
5282       if (RHSC->getValue().isSignMask())
5283         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5284     // Binary `xor` is a bit-wise `add`.
5285     if (V->getType()->isIntegerTy(1))
5286       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5287     return BinaryOp(Op);
5288 
5289   case Instruction::LShr:
5290     // Turn logical shift right of a constant into a unsigned divide.
5291     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
5292       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
5293 
5294       // If the shift count is not less than the bitwidth, the result of
5295       // the shift is undefined. Don't try to analyze it, because the
5296       // resolution chosen here may differ from the resolution chosen in
5297       // other parts of the compiler.
5298       if (SA->getValue().ult(BitWidth)) {
5299         Constant *X =
5300             ConstantInt::get(SA->getContext(),
5301                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5302         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
5303       }
5304     }
5305     return BinaryOp(Op);
5306 
5307   case Instruction::ExtractValue: {
5308     auto *EVI = cast<ExtractValueInst>(Op);
5309     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
5310       break;
5311 
5312     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
5313     if (!WO)
5314       break;
5315 
5316     Instruction::BinaryOps BinOp = WO->getBinaryOp();
5317     bool Signed = WO->isSigned();
5318     // TODO: Should add nuw/nsw flags for mul as well.
5319     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
5320       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
5321 
5322     // Now that we know that all uses of the arithmetic-result component of
5323     // CI are guarded by the overflow check, we can go ahead and pretend
5324     // that the arithmetic is non-overflowing.
5325     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
5326                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
5327   }
5328 
5329   default:
5330     break;
5331   }
5332 
5333   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5334   // semantics as a Sub, return a binary sub expression.
5335   if (auto *II = dyn_cast<IntrinsicInst>(V))
5336     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
5337       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
5338 
5339   return std::nullopt;
5340 }
5341 
5342 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
5343 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5344 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5345 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5346 /// follows one of the following patterns:
5347 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5348 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5349 /// If the SCEV expression of \p Op conforms with one of the expected patterns
5350 /// we return the type of the truncation operation, and indicate whether the
5351 /// truncated type should be treated as signed/unsigned by setting
5352 /// \p Signed to true/false, respectively.
5353 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
5354                                bool &Signed, ScalarEvolution &SE) {
5355   // The case where Op == SymbolicPHI (that is, with no type conversions on
5356   // the way) is handled by the regular add recurrence creating logic and
5357   // would have already been triggered in createAddRecForPHI. Reaching it here
5358   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5359   // because one of the other operands of the SCEVAddExpr updating this PHI is
5360   // not invariant).
5361   //
5362   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5363   // this case predicates that allow us to prove that Op == SymbolicPHI will
5364   // be added.
5365   if (Op == SymbolicPHI)
5366     return nullptr;
5367 
5368   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
5369   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
5370   if (SourceBits != NewBits)
5371     return nullptr;
5372 
5373   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
5374   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
5375   if (!SExt && !ZExt)
5376     return nullptr;
5377   const SCEVTruncateExpr *Trunc =
5378       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
5379            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
5380   if (!Trunc)
5381     return nullptr;
5382   const SCEV *X = Trunc->getOperand();
5383   if (X != SymbolicPHI)
5384     return nullptr;
5385   Signed = SExt != nullptr;
5386   return Trunc->getType();
5387 }
5388 
5389 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
5390   if (!PN->getType()->isIntegerTy())
5391     return nullptr;
5392   const Loop *L = LI.getLoopFor(PN->getParent());
5393   if (!L || L->getHeader() != PN->getParent())
5394     return nullptr;
5395   return L;
5396 }
5397 
5398 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5399 // computation that updates the phi follows the following pattern:
5400 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5401 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
5402 // If so, try to see if it can be rewritten as an AddRecExpr under some
5403 // Predicates. If successful, return them as a pair. Also cache the results
5404 // of the analysis.
5405 //
5406 // Example usage scenario:
5407 //    Say the Rewriter is called for the following SCEV:
5408 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5409 //    where:
5410 //         %X = phi i64 (%Start, %BEValue)
5411 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5412 //    and call this function with %SymbolicPHI = %X.
5413 //
5414 //    The analysis will find that the value coming around the backedge has
5415 //    the following SCEV:
5416 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5417 //    Upon concluding that this matches the desired pattern, the function
5418 //    will return the pair {NewAddRec, SmallPredsVec} where:
5419 //         NewAddRec = {%Start,+,%Step}
5420 //         SmallPredsVec = {P1, P2, P3} as follows:
5421 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5422 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5423 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5424 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5425 //    under the predicates {P1,P2,P3}.
5426 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
5427 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5428 //
5429 // TODO's:
5430 //
5431 // 1) Extend the Induction descriptor to also support inductions that involve
5432 //    casts: When needed (namely, when we are called in the context of the
5433 //    vectorizer induction analysis), a Set of cast instructions will be
5434 //    populated by this method, and provided back to isInductionPHI. This is
5435 //    needed to allow the vectorizer to properly record them to be ignored by
5436 //    the cost model and to avoid vectorizing them (otherwise these casts,
5437 //    which are redundant under the runtime overflow checks, will be
5438 //    vectorized, which can be costly).
5439 //
5440 // 2) Support additional induction/PHISCEV patterns: We also want to support
5441 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
5442 //    after the induction update operation (the induction increment):
5443 //
5444 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5445 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
5446 //
5447 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5448 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5449 //
5450 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5451 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5452 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5453   SmallVector<const SCEVPredicate *, 3> Predicates;
5454 
5455   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5456   // return an AddRec expression under some predicate.
5457 
5458   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5459   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5460   assert(L && "Expecting an integer loop header phi");
5461 
5462   // The loop may have multiple entrances or multiple exits; we can analyze
5463   // this phi as an addrec if it has a unique entry value and a unique
5464   // backedge value.
5465   Value *BEValueV = nullptr, *StartValueV = nullptr;
5466   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5467     Value *V = PN->getIncomingValue(i);
5468     if (L->contains(PN->getIncomingBlock(i))) {
5469       if (!BEValueV) {
5470         BEValueV = V;
5471       } else if (BEValueV != V) {
5472         BEValueV = nullptr;
5473         break;
5474       }
5475     } else if (!StartValueV) {
5476       StartValueV = V;
5477     } else if (StartValueV != V) {
5478       StartValueV = nullptr;
5479       break;
5480     }
5481   }
5482   if (!BEValueV || !StartValueV)
5483     return std::nullopt;
5484 
5485   const SCEV *BEValue = getSCEV(BEValueV);
5486 
5487   // If the value coming around the backedge is an add with the symbolic
5488   // value we just inserted, possibly with casts that we can ignore under
5489   // an appropriate runtime guard, then we found a simple induction variable!
5490   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5491   if (!Add)
5492     return std::nullopt;
5493 
5494   // If there is a single occurrence of the symbolic value, possibly
5495   // casted, replace it with a recurrence.
5496   unsigned FoundIndex = Add->getNumOperands();
5497   Type *TruncTy = nullptr;
5498   bool Signed;
5499   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5500     if ((TruncTy =
5501              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5502       if (FoundIndex == e) {
5503         FoundIndex = i;
5504         break;
5505       }
5506 
5507   if (FoundIndex == Add->getNumOperands())
5508     return std::nullopt;
5509 
5510   // Create an add with everything but the specified operand.
5511   SmallVector<const SCEV *, 8> Ops;
5512   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5513     if (i != FoundIndex)
5514       Ops.push_back(Add->getOperand(i));
5515   const SCEV *Accum = getAddExpr(Ops);
5516 
5517   // The runtime checks will not be valid if the step amount is
5518   // varying inside the loop.
5519   if (!isLoopInvariant(Accum, L))
5520     return std::nullopt;
5521 
5522   // *** Part2: Create the predicates
5523 
5524   // Analysis was successful: we have a phi-with-cast pattern for which we
5525   // can return an AddRec expression under the following predicates:
5526   //
5527   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5528   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5529   // P2: An Equal predicate that guarantees that
5530   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5531   // P3: An Equal predicate that guarantees that
5532   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5533   //
5534   // As we next prove, the above predicates guarantee that:
5535   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5536   //
5537   //
5538   // More formally, we want to prove that:
5539   //     Expr(i+1) = Start + (i+1) * Accum
5540   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5541   //
5542   // Given that:
5543   // 1) Expr(0) = Start
5544   // 2) Expr(1) = Start + Accum
5545   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5546   // 3) Induction hypothesis (step i):
5547   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5548   //
5549   // Proof:
5550   //  Expr(i+1) =
5551   //   = Start + (i+1)*Accum
5552   //   = (Start + i*Accum) + Accum
5553   //   = Expr(i) + Accum
5554   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5555   //                                                             :: from step i
5556   //
5557   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5558   //
5559   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5560   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5561   //     + Accum                                                     :: from P3
5562   //
5563   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5564   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5565   //
5566   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5567   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5568   //
5569   // By induction, the same applies to all iterations 1<=i<n:
5570   //
5571 
5572   // Create a truncated addrec for which we will add a no overflow check (P1).
5573   const SCEV *StartVal = getSCEV(StartValueV);
5574   const SCEV *PHISCEV =
5575       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5576                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5577 
5578   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5579   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5580   // will be constant.
5581   //
5582   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5583   // add P1.
5584   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5585     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5586         Signed ? SCEVWrapPredicate::IncrementNSSW
5587                : SCEVWrapPredicate::IncrementNUSW;
5588     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5589     Predicates.push_back(AddRecPred);
5590   }
5591 
5592   // Create the Equal Predicates P2,P3:
5593 
5594   // It is possible that the predicates P2 and/or P3 are computable at
5595   // compile time due to StartVal and/or Accum being constants.
5596   // If either one is, then we can check that now and escape if either P2
5597   // or P3 is false.
5598 
5599   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5600   // for each of StartVal and Accum
5601   auto getExtendedExpr = [&](const SCEV *Expr,
5602                              bool CreateSignExtend) -> const SCEV * {
5603     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5604     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5605     const SCEV *ExtendedExpr =
5606         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5607                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5608     return ExtendedExpr;
5609   };
5610 
5611   // Given:
5612   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5613   //               = getExtendedExpr(Expr)
5614   // Determine whether the predicate P: Expr == ExtendedExpr
5615   // is known to be false at compile time
5616   auto PredIsKnownFalse = [&](const SCEV *Expr,
5617                               const SCEV *ExtendedExpr) -> bool {
5618     return Expr != ExtendedExpr &&
5619            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5620   };
5621 
5622   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5623   if (PredIsKnownFalse(StartVal, StartExtended)) {
5624     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5625     return std::nullopt;
5626   }
5627 
5628   // The Step is always Signed (because the overflow checks are either
5629   // NSSW or NUSW)
5630   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5631   if (PredIsKnownFalse(Accum, AccumExtended)) {
5632     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5633     return std::nullopt;
5634   }
5635 
5636   auto AppendPredicate = [&](const SCEV *Expr,
5637                              const SCEV *ExtendedExpr) -> void {
5638     if (Expr != ExtendedExpr &&
5639         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5640       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5641       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5642       Predicates.push_back(Pred);
5643     }
5644   };
5645 
5646   AppendPredicate(StartVal, StartExtended);
5647   AppendPredicate(Accum, AccumExtended);
5648 
5649   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5650   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5651   // into NewAR if it will also add the runtime overflow checks specified in
5652   // Predicates.
5653   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5654 
5655   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5656       std::make_pair(NewAR, Predicates);
5657   // Remember the result of the analysis for this SCEV at this locayyytion.
5658   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5659   return PredRewrite;
5660 }
5661 
5662 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5663 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5664   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5665   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5666   if (!L)
5667     return std::nullopt;
5668 
5669   // Check to see if we already analyzed this PHI.
5670   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5671   if (I != PredicatedSCEVRewrites.end()) {
5672     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5673         I->second;
5674     // Analysis was done before and failed to create an AddRec:
5675     if (Rewrite.first == SymbolicPHI)
5676       return std::nullopt;
5677     // Analysis was done before and succeeded to create an AddRec under
5678     // a predicate:
5679     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5680     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5681     return Rewrite;
5682   }
5683 
5684   std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5685     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5686 
5687   // Record in the cache that the analysis failed
5688   if (!Rewrite) {
5689     SmallVector<const SCEVPredicate *, 3> Predicates;
5690     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5691     return std::nullopt;
5692   }
5693 
5694   return Rewrite;
5695 }
5696 
5697 // FIXME: This utility is currently required because the Rewriter currently
5698 // does not rewrite this expression:
5699 // {0, +, (sext ix (trunc iy to ix) to iy)}
5700 // into {0, +, %step},
5701 // even when the following Equal predicate exists:
5702 // "%step == (sext ix (trunc iy to ix) to iy)".
5703 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5704     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5705   if (AR1 == AR2)
5706     return true;
5707 
5708   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5709     if (Expr1 != Expr2 &&
5710         !Preds->implies(SE.getEqualPredicate(Expr1, Expr2), SE) &&
5711         !Preds->implies(SE.getEqualPredicate(Expr2, Expr1), SE))
5712       return false;
5713     return true;
5714   };
5715 
5716   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5717       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5718     return false;
5719   return true;
5720 }
5721 
5722 /// A helper function for createAddRecFromPHI to handle simple cases.
5723 ///
5724 /// This function tries to find an AddRec expression for the simplest (yet most
5725 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5726 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5727 /// technique for finding the AddRec expression.
5728 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5729                                                       Value *BEValueV,
5730                                                       Value *StartValueV) {
5731   const Loop *L = LI.getLoopFor(PN->getParent());
5732   assert(L && L->getHeader() == PN->getParent());
5733   assert(BEValueV && StartValueV);
5734 
5735   auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN);
5736   if (!BO)
5737     return nullptr;
5738 
5739   if (BO->Opcode != Instruction::Add)
5740     return nullptr;
5741 
5742   const SCEV *Accum = nullptr;
5743   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5744     Accum = getSCEV(BO->RHS);
5745   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5746     Accum = getSCEV(BO->LHS);
5747 
5748   if (!Accum)
5749     return nullptr;
5750 
5751   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5752   if (BO->IsNUW)
5753     Flags = setFlags(Flags, SCEV::FlagNUW);
5754   if (BO->IsNSW)
5755     Flags = setFlags(Flags, SCEV::FlagNSW);
5756 
5757   const SCEV *StartVal = getSCEV(StartValueV);
5758   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5759   insertValueToMap(PN, PHISCEV);
5760 
5761   if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5762     setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR),
5763                    (SCEV::NoWrapFlags)(AR->getNoWrapFlags() |
5764                                        proveNoWrapViaConstantRanges(AR)));
5765   }
5766 
5767   // We can add Flags to the post-inc expression only if we
5768   // know that it is *undefined behavior* for BEValueV to
5769   // overflow.
5770   if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) {
5771     assert(isLoopInvariant(Accum, L) &&
5772            "Accum is defined outside L, but is not invariant?");
5773     if (isAddRecNeverPoison(BEInst, L))
5774       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5775   }
5776 
5777   return PHISCEV;
5778 }
5779 
5780 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5781   const Loop *L = LI.getLoopFor(PN->getParent());
5782   if (!L || L->getHeader() != PN->getParent())
5783     return nullptr;
5784 
5785   // The loop may have multiple entrances or multiple exits; we can analyze
5786   // this phi as an addrec if it has a unique entry value and a unique
5787   // backedge value.
5788   Value *BEValueV = nullptr, *StartValueV = nullptr;
5789   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5790     Value *V = PN->getIncomingValue(i);
5791     if (L->contains(PN->getIncomingBlock(i))) {
5792       if (!BEValueV) {
5793         BEValueV = V;
5794       } else if (BEValueV != V) {
5795         BEValueV = nullptr;
5796         break;
5797       }
5798     } else if (!StartValueV) {
5799       StartValueV = V;
5800     } else if (StartValueV != V) {
5801       StartValueV = nullptr;
5802       break;
5803     }
5804   }
5805   if (!BEValueV || !StartValueV)
5806     return nullptr;
5807 
5808   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5809          "PHI node already processed?");
5810 
5811   // First, try to find AddRec expression without creating a fictituos symbolic
5812   // value for PN.
5813   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5814     return S;
5815 
5816   // Handle PHI node value symbolically.
5817   const SCEV *SymbolicName = getUnknown(PN);
5818   insertValueToMap(PN, SymbolicName);
5819 
5820   // Using this symbolic name for the PHI, analyze the value coming around
5821   // the back-edge.
5822   const SCEV *BEValue = getSCEV(BEValueV);
5823 
5824   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5825   // has a special value for the first iteration of the loop.
5826 
5827   // If the value coming around the backedge is an add with the symbolic
5828   // value we just inserted, then we found a simple induction variable!
5829   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5830     // If there is a single occurrence of the symbolic value, replace it
5831     // with a recurrence.
5832     unsigned FoundIndex = Add->getNumOperands();
5833     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5834       if (Add->getOperand(i) == SymbolicName)
5835         if (FoundIndex == e) {
5836           FoundIndex = i;
5837           break;
5838         }
5839 
5840     if (FoundIndex != Add->getNumOperands()) {
5841       // Create an add with everything but the specified operand.
5842       SmallVector<const SCEV *, 8> Ops;
5843       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5844         if (i != FoundIndex)
5845           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5846                                                              L, *this));
5847       const SCEV *Accum = getAddExpr(Ops);
5848 
5849       // This is not a valid addrec if the step amount is varying each
5850       // loop iteration, but is not itself an addrec in this loop.
5851       if (isLoopInvariant(Accum, L) ||
5852           (isa<SCEVAddRecExpr>(Accum) &&
5853            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5854         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5855 
5856         if (auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN)) {
5857           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5858             if (BO->IsNUW)
5859               Flags = setFlags(Flags, SCEV::FlagNUW);
5860             if (BO->IsNSW)
5861               Flags = setFlags(Flags, SCEV::FlagNSW);
5862           }
5863         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5864           if (GEP->getOperand(0) == PN) {
5865             GEPNoWrapFlags NW = GEP->getNoWrapFlags();
5866             // If the increment has any nowrap flags, then we know the address
5867             // space cannot be wrapped around.
5868             if (NW != GEPNoWrapFlags::none())
5869               Flags = setFlags(Flags, SCEV::FlagNW);
5870             // If the GEP is nuw or nusw with non-negative offset, we know that
5871             // no unsigned wrap occurs. We cannot set the nsw flag as only the
5872             // offset is treated as signed, while the base is unsigned.
5873             if (NW.hasNoUnsignedWrap() ||
5874                 (NW.hasNoUnsignedSignedWrap() && isKnownNonNegative(Accum)))
5875               Flags = setFlags(Flags, SCEV::FlagNUW);
5876           }
5877 
5878           // We cannot transfer nuw and nsw flags from subtraction
5879           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5880           // for instance.
5881         }
5882 
5883         const SCEV *StartVal = getSCEV(StartValueV);
5884         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5885 
5886         // Okay, for the entire analysis of this edge we assumed the PHI
5887         // to be symbolic.  We now need to go back and purge all of the
5888         // entries for the scalars that use the symbolic expression.
5889         forgetMemoizedResults(SymbolicName);
5890         insertValueToMap(PN, PHISCEV);
5891 
5892         if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5893           setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR),
5894                          (SCEV::NoWrapFlags)(AR->getNoWrapFlags() |
5895                                              proveNoWrapViaConstantRanges(AR)));
5896         }
5897 
5898         // We can add Flags to the post-inc expression only if we
5899         // know that it is *undefined behavior* for BEValueV to
5900         // overflow.
5901         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5902           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5903             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5904 
5905         return PHISCEV;
5906       }
5907     }
5908   } else {
5909     // Otherwise, this could be a loop like this:
5910     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5911     // In this case, j = {1,+,1}  and BEValue is j.
5912     // Because the other in-value of i (0) fits the evolution of BEValue
5913     // i really is an addrec evolution.
5914     //
5915     // We can generalize this saying that i is the shifted value of BEValue
5916     // by one iteration:
5917     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5918 
5919     // Do not allow refinement in rewriting of BEValue.
5920     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5921     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5922     if (Shifted != getCouldNotCompute() && Start != getCouldNotCompute() &&
5923         isGuaranteedNotToCauseUB(Shifted) && ::impliesPoison(Shifted, Start)) {
5924       const SCEV *StartVal = getSCEV(StartValueV);
5925       if (Start == StartVal) {
5926         // Okay, for the entire analysis of this edge we assumed the PHI
5927         // to be symbolic.  We now need to go back and purge all of the
5928         // entries for the scalars that use the symbolic expression.
5929         forgetMemoizedResults(SymbolicName);
5930         insertValueToMap(PN, Shifted);
5931         return Shifted;
5932       }
5933     }
5934   }
5935 
5936   // Remove the temporary PHI node SCEV that has been inserted while intending
5937   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5938   // as it will prevent later (possibly simpler) SCEV expressions to be added
5939   // to the ValueExprMap.
5940   eraseValueFromMap(PN);
5941 
5942   return nullptr;
5943 }
5944 
5945 // Try to match a control flow sequence that branches out at BI and merges back
5946 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5947 // match.
5948 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5949                           Value *&C, Value *&LHS, Value *&RHS) {
5950   C = BI->getCondition();
5951 
5952   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5953   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5954 
5955   if (!LeftEdge.isSingleEdge())
5956     return false;
5957 
5958   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5959 
5960   Use &LeftUse = Merge->getOperandUse(0);
5961   Use &RightUse = Merge->getOperandUse(1);
5962 
5963   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5964     LHS = LeftUse;
5965     RHS = RightUse;
5966     return true;
5967   }
5968 
5969   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5970     LHS = RightUse;
5971     RHS = LeftUse;
5972     return true;
5973   }
5974 
5975   return false;
5976 }
5977 
5978 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5979   auto IsReachable =
5980       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5981   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5982     // Try to match
5983     //
5984     //  br %cond, label %left, label %right
5985     // left:
5986     //  br label %merge
5987     // right:
5988     //  br label %merge
5989     // merge:
5990     //  V = phi [ %x, %left ], [ %y, %right ]
5991     //
5992     // as "select %cond, %x, %y"
5993 
5994     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5995     assert(IDom && "At least the entry block should dominate PN");
5996 
5997     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5998     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5999 
6000     if (BI && BI->isConditional() &&
6001         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
6002         properlyDominates(getSCEV(LHS), PN->getParent()) &&
6003         properlyDominates(getSCEV(RHS), PN->getParent()))
6004       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
6005   }
6006 
6007   return nullptr;
6008 }
6009 
6010 /// Returns SCEV for the first operand of a phi if all phi operands have
6011 /// identical opcodes and operands
6012 /// eg.
6013 /// a: %add = %a + %b
6014 ///    br %c
6015 /// b: %add1 = %a + %b
6016 ///    br %c
6017 /// c: %phi = phi [%add, a], [%add1, b]
6018 /// scev(%phi) => scev(%add)
6019 const SCEV *
6020 ScalarEvolution::createNodeForPHIWithIdenticalOperands(PHINode *PN) {
6021   BinaryOperator *CommonInst = nullptr;
6022   // Check if instructions are identical.
6023   for (Value *Incoming : PN->incoming_values()) {
6024     auto *IncomingInst = dyn_cast<BinaryOperator>(Incoming);
6025     if (!IncomingInst)
6026       return nullptr;
6027     if (CommonInst) {
6028       if (!CommonInst->isIdenticalToWhenDefined(IncomingInst))
6029         return nullptr; // Not identical, give up
6030     } else {
6031       // Remember binary operator
6032       CommonInst = IncomingInst;
6033     }
6034   }
6035   if (!CommonInst)
6036     return nullptr;
6037 
6038   // Check if SCEV exprs for instructions are identical.
6039   const SCEV *CommonSCEV = getSCEV(CommonInst);
6040   bool SCEVExprsIdentical =
6041       all_of(drop_begin(PN->incoming_values()),
6042              [this, CommonSCEV](Value *V) { return CommonSCEV == getSCEV(V); });
6043   return SCEVExprsIdentical ? CommonSCEV : nullptr;
6044 }
6045 
6046 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
6047   if (const SCEV *S = createAddRecFromPHI(PN))
6048     return S;
6049 
6050   // We do not allow simplifying phi (undef, X) to X here, to avoid reusing the
6051   // phi node for X.
6052   if (Value *V = simplifyInstruction(
6053           PN, {getDataLayout(), &TLI, &DT, &AC, /*CtxI=*/nullptr,
6054                /*UseInstrInfo=*/true, /*CanUseUndef=*/false}))
6055     return getSCEV(V);
6056 
6057   if (const SCEV *S = createNodeForPHIWithIdenticalOperands(PN))
6058     return S;
6059 
6060   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
6061     return S;
6062 
6063   // If it's not a loop phi, we can't handle it yet.
6064   return getUnknown(PN);
6065 }
6066 
6067 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind,
6068                             SCEVTypes RootKind) {
6069   struct FindClosure {
6070     const SCEV *OperandToFind;
6071     const SCEVTypes RootKind; // Must be a sequential min/max expression.
6072     const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind.
6073 
6074     bool Found = false;
6075 
6076     bool canRecurseInto(SCEVTypes Kind) const {
6077       // We can only recurse into the SCEV expression of the same effective type
6078       // as the type of our root SCEV expression, and into zero-extensions.
6079       return RootKind == Kind || NonSequentialRootKind == Kind ||
6080              scZeroExtend == Kind;
6081     };
6082 
6083     FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind)
6084         : OperandToFind(OperandToFind), RootKind(RootKind),
6085           NonSequentialRootKind(
6086               SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
6087                   RootKind)) {}
6088 
6089     bool follow(const SCEV *S) {
6090       Found = S == OperandToFind;
6091 
6092       return !isDone() && canRecurseInto(S->getSCEVType());
6093     }
6094 
6095     bool isDone() const { return Found; }
6096   };
6097 
6098   FindClosure FC(OperandToFind, RootKind);
6099   visitAll(Root, FC);
6100   return FC.Found;
6101 }
6102 
6103 std::optional<const SCEV *>
6104 ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty,
6105                                                               ICmpInst *Cond,
6106                                                               Value *TrueVal,
6107                                                               Value *FalseVal) {
6108   // Try to match some simple smax or umax patterns.
6109   auto *ICI = Cond;
6110 
6111   Value *LHS = ICI->getOperand(0);
6112   Value *RHS = ICI->getOperand(1);
6113 
6114   switch (ICI->getPredicate()) {
6115   case ICmpInst::ICMP_SLT:
6116   case ICmpInst::ICMP_SLE:
6117   case ICmpInst::ICMP_ULT:
6118   case ICmpInst::ICMP_ULE:
6119     std::swap(LHS, RHS);
6120     [[fallthrough]];
6121   case ICmpInst::ICMP_SGT:
6122   case ICmpInst::ICMP_SGE:
6123   case ICmpInst::ICMP_UGT:
6124   case ICmpInst::ICMP_UGE:
6125     // a > b ? a+x : b+x  ->  max(a, b)+x
6126     // a > b ? b+x : a+x  ->  min(a, b)+x
6127     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty)) {
6128       bool Signed = ICI->isSigned();
6129       const SCEV *LA = getSCEV(TrueVal);
6130       const SCEV *RA = getSCEV(FalseVal);
6131       const SCEV *LS = getSCEV(LHS);
6132       const SCEV *RS = getSCEV(RHS);
6133       if (LA->getType()->isPointerTy()) {
6134         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
6135         // Need to make sure we can't produce weird expressions involving
6136         // negated pointers.
6137         if (LA == LS && RA == RS)
6138           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
6139         if (LA == RS && RA == LS)
6140           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
6141       }
6142       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
6143         if (Op->getType()->isPointerTy()) {
6144           Op = getLosslessPtrToIntExpr(Op);
6145           if (isa<SCEVCouldNotCompute>(Op))
6146             return Op;
6147         }
6148         if (Signed)
6149           Op = getNoopOrSignExtend(Op, Ty);
6150         else
6151           Op = getNoopOrZeroExtend(Op, Ty);
6152         return Op;
6153       };
6154       LS = CoerceOperand(LS);
6155       RS = CoerceOperand(RS);
6156       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
6157         break;
6158       const SCEV *LDiff = getMinusSCEV(LA, LS);
6159       const SCEV *RDiff = getMinusSCEV(RA, RS);
6160       if (LDiff == RDiff)
6161         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
6162                           LDiff);
6163       LDiff = getMinusSCEV(LA, RS);
6164       RDiff = getMinusSCEV(RA, LS);
6165       if (LDiff == RDiff)
6166         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
6167                           LDiff);
6168     }
6169     break;
6170   case ICmpInst::ICMP_NE:
6171     // x != 0 ? x+y : C+y  ->  x == 0 ? C+y : x+y
6172     std::swap(TrueVal, FalseVal);
6173     [[fallthrough]];
6174   case ICmpInst::ICMP_EQ:
6175     // x == 0 ? C+y : x+y  ->  umax(x, C)+y   iff C u<= 1
6176     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty) &&
6177         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
6178       const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), Ty);
6179       const SCEV *TrueValExpr = getSCEV(TrueVal);    // C+y
6180       const SCEV *FalseValExpr = getSCEV(FalseVal);  // x+y
6181       const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x
6182       const SCEV *C = getMinusSCEV(TrueValExpr, Y);  // C = (C+y)-y
6183       if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1))
6184         return getAddExpr(getUMaxExpr(X, C), Y);
6185     }
6186     // x == 0 ? 0 : umin    (..., x, ...)  ->  umin_seq(x, umin    (...))
6187     // x == 0 ? 0 : umin_seq(..., x, ...)  ->  umin_seq(x, umin_seq(...))
6188     // x == 0 ? 0 : umin    (..., umin_seq(..., x, ...), ...)
6189     //                    ->  umin_seq(x, umin (..., umin_seq(...), ...))
6190     if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() &&
6191         isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) {
6192       const SCEV *X = getSCEV(LHS);
6193       while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X))
6194         X = ZExt->getOperand();
6195       if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(Ty)) {
6196         const SCEV *FalseValExpr = getSCEV(FalseVal);
6197         if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr))
6198           return getUMinExpr(getNoopOrZeroExtend(X, Ty), FalseValExpr,
6199                              /*Sequential=*/true);
6200       }
6201     }
6202     break;
6203   default:
6204     break;
6205   }
6206 
6207   return std::nullopt;
6208 }
6209 
6210 static std::optional<const SCEV *>
6211 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr,
6212                               const SCEV *TrueExpr, const SCEV *FalseExpr) {
6213   assert(CondExpr->getType()->isIntegerTy(1) &&
6214          TrueExpr->getType() == FalseExpr->getType() &&
6215          TrueExpr->getType()->isIntegerTy(1) &&
6216          "Unexpected operands of a select.");
6217 
6218   // i1 cond ? i1 x : i1 C  -->  C + (i1  cond ? (i1 x - i1 C) : i1 0)
6219   //                        -->  C + (umin_seq  cond, x - C)
6220   //
6221   // i1 cond ? i1 C : i1 x  -->  C + (i1  cond ? i1 0 : (i1 x - i1 C))
6222   //                        -->  C + (i1 ~cond ? (i1 x - i1 C) : i1 0)
6223   //                        -->  C + (umin_seq ~cond, x - C)
6224 
6225   // FIXME: while we can't legally model the case where both of the hands
6226   // are fully variable, we only require that the *difference* is constant.
6227   if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr))
6228     return std::nullopt;
6229 
6230   const SCEV *X, *C;
6231   if (isa<SCEVConstant>(TrueExpr)) {
6232     CondExpr = SE->getNotSCEV(CondExpr);
6233     X = FalseExpr;
6234     C = TrueExpr;
6235   } else {
6236     X = TrueExpr;
6237     C = FalseExpr;
6238   }
6239   return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C),
6240                                            /*Sequential=*/true));
6241 }
6242 
6243 static std::optional<const SCEV *>
6244 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal,
6245                               Value *FalseVal) {
6246   if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal))
6247     return std::nullopt;
6248 
6249   const auto *SECond = SE->getSCEV(Cond);
6250   const auto *SETrue = SE->getSCEV(TrueVal);
6251   const auto *SEFalse = SE->getSCEV(FalseVal);
6252   return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse);
6253 }
6254 
6255 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
6256     Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) {
6257   assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?");
6258   assert(TrueVal->getType() == FalseVal->getType() &&
6259          V->getType() == TrueVal->getType() &&
6260          "Types of select hands and of the result must match.");
6261 
6262   // For now, only deal with i1-typed `select`s.
6263   if (!V->getType()->isIntegerTy(1))
6264     return getUnknown(V);
6265 
6266   if (std::optional<const SCEV *> S =
6267           createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal))
6268     return *S;
6269 
6270   return getUnknown(V);
6271 }
6272 
6273 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond,
6274                                                       Value *TrueVal,
6275                                                       Value *FalseVal) {
6276   // Handle "constant" branch or select. This can occur for instance when a
6277   // loop pass transforms an inner loop and moves on to process the outer loop.
6278   if (auto *CI = dyn_cast<ConstantInt>(Cond))
6279     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
6280 
6281   if (auto *I = dyn_cast<Instruction>(V)) {
6282     if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
6283       if (std::optional<const SCEV *> S =
6284               createNodeForSelectOrPHIInstWithICmpInstCond(I->getType(), ICI,
6285                                                            TrueVal, FalseVal))
6286         return *S;
6287     }
6288   }
6289 
6290   return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal);
6291 }
6292 
6293 /// Expand GEP instructions into add and multiply operations. This allows them
6294 /// to be analyzed by regular SCEV code.
6295 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
6296   assert(GEP->getSourceElementType()->isSized() &&
6297          "GEP source element type must be sized");
6298 
6299   SmallVector<const SCEV *, 4> IndexExprs;
6300   for (Value *Index : GEP->indices())
6301     IndexExprs.push_back(getSCEV(Index));
6302   return getGEPExpr(GEP, IndexExprs);
6303 }
6304 
6305 APInt ScalarEvolution::getConstantMultipleImpl(const SCEV *S) {
6306   uint64_t BitWidth = getTypeSizeInBits(S->getType());
6307   auto GetShiftedByZeros = [BitWidth](uint32_t TrailingZeros) {
6308     return TrailingZeros >= BitWidth
6309                ? APInt::getZero(BitWidth)
6310                : APInt::getOneBitSet(BitWidth, TrailingZeros);
6311   };
6312   auto GetGCDMultiple = [this](const SCEVNAryExpr *N) {
6313     // The result is GCD of all operands results.
6314     APInt Res = getConstantMultiple(N->getOperand(0));
6315     for (unsigned I = 1, E = N->getNumOperands(); I < E && Res != 1; ++I)
6316       Res = APIntOps::GreatestCommonDivisor(
6317           Res, getConstantMultiple(N->getOperand(I)));
6318     return Res;
6319   };
6320 
6321   switch (S->getSCEVType()) {
6322   case scConstant:
6323     return cast<SCEVConstant>(S)->getAPInt();
6324   case scPtrToInt:
6325     return getConstantMultiple(cast<SCEVPtrToIntExpr>(S)->getOperand());
6326   case scUDivExpr:
6327   case scVScale:
6328     return APInt(BitWidth, 1);
6329   case scTruncate: {
6330     // Only multiples that are a power of 2 will hold after truncation.
6331     const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(S);
6332     uint32_t TZ = getMinTrailingZeros(T->getOperand());
6333     return GetShiftedByZeros(TZ);
6334   }
6335   case scZeroExtend: {
6336     const SCEVZeroExtendExpr *Z = cast<SCEVZeroExtendExpr>(S);
6337     return getConstantMultiple(Z->getOperand()).zext(BitWidth);
6338   }
6339   case scSignExtend: {
6340     // Only multiples that are a power of 2 will hold after sext.
6341     const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(S);
6342     uint32_t TZ = getMinTrailingZeros(E->getOperand());
6343     return GetShiftedByZeros(TZ);
6344   }
6345   case scMulExpr: {
6346     const SCEVMulExpr *M = cast<SCEVMulExpr>(S);
6347     if (M->hasNoUnsignedWrap()) {
6348       // The result is the product of all operand results.
6349       APInt Res = getConstantMultiple(M->getOperand(0));
6350       for (const SCEV *Operand : M->operands().drop_front())
6351         Res = Res * getConstantMultiple(Operand);
6352       return Res;
6353     }
6354 
6355     // If there are no wrap guarentees, find the trailing zeros, which is the
6356     // sum of trailing zeros for all its operands.
6357     uint32_t TZ = 0;
6358     for (const SCEV *Operand : M->operands())
6359       TZ += getMinTrailingZeros(Operand);
6360     return GetShiftedByZeros(TZ);
6361   }
6362   case scAddExpr:
6363   case scAddRecExpr: {
6364     const SCEVNAryExpr *N = cast<SCEVNAryExpr>(S);
6365     if (N->hasNoUnsignedWrap())
6366         return GetGCDMultiple(N);
6367     // Find the trailing bits, which is the minimum of its operands.
6368     uint32_t TZ = getMinTrailingZeros(N->getOperand(0));
6369     for (const SCEV *Operand : N->operands().drop_front())
6370       TZ = std::min(TZ, getMinTrailingZeros(Operand));
6371     return GetShiftedByZeros(TZ);
6372   }
6373   case scUMaxExpr:
6374   case scSMaxExpr:
6375   case scUMinExpr:
6376   case scSMinExpr:
6377   case scSequentialUMinExpr:
6378     return GetGCDMultiple(cast<SCEVNAryExpr>(S));
6379   case scUnknown: {
6380     // ask ValueTracking for known bits
6381     const SCEVUnknown *U = cast<SCEVUnknown>(S);
6382     unsigned Known =
6383         computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT)
6384             .countMinTrailingZeros();
6385     return GetShiftedByZeros(Known);
6386   }
6387   case scCouldNotCompute:
6388     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6389   }
6390   llvm_unreachable("Unknown SCEV kind!");
6391 }
6392 
6393 APInt ScalarEvolution::getConstantMultiple(const SCEV *S) {
6394   auto I = ConstantMultipleCache.find(S);
6395   if (I != ConstantMultipleCache.end())
6396     return I->second;
6397 
6398   APInt Result = getConstantMultipleImpl(S);
6399   auto InsertPair = ConstantMultipleCache.insert({S, Result});
6400   assert(InsertPair.second && "Should insert a new key");
6401   return InsertPair.first->second;
6402 }
6403 
6404 APInt ScalarEvolution::getNonZeroConstantMultiple(const SCEV *S) {
6405   APInt Multiple = getConstantMultiple(S);
6406   return Multiple == 0 ? APInt(Multiple.getBitWidth(), 1) : Multiple;
6407 }
6408 
6409 uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV *S) {
6410   return std::min(getConstantMultiple(S).countTrailingZeros(),
6411                   (unsigned)getTypeSizeInBits(S->getType()));
6412 }
6413 
6414 /// Helper method to assign a range to V from metadata present in the IR.
6415 static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) {
6416   if (Instruction *I = dyn_cast<Instruction>(V)) {
6417     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
6418       return getConstantRangeFromMetadata(*MD);
6419     if (const auto *CB = dyn_cast<CallBase>(V))
6420       if (std::optional<ConstantRange> Range = CB->getRange())
6421         return Range;
6422   }
6423   if (auto *A = dyn_cast<Argument>(V))
6424     if (std::optional<ConstantRange> Range = A->getRange())
6425       return Range;
6426 
6427   return std::nullopt;
6428 }
6429 
6430 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
6431                                      SCEV::NoWrapFlags Flags) {
6432   if (AddRec->getNoWrapFlags(Flags) != Flags) {
6433     AddRec->setNoWrapFlags(Flags);
6434     UnsignedRanges.erase(AddRec);
6435     SignedRanges.erase(AddRec);
6436     ConstantMultipleCache.erase(AddRec);
6437   }
6438 }
6439 
6440 ConstantRange ScalarEvolution::
6441 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
6442   const DataLayout &DL = getDataLayout();
6443 
6444   unsigned BitWidth = getTypeSizeInBits(U->getType());
6445   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
6446 
6447   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6448   // use information about the trip count to improve our available range.  Note
6449   // that the trip count independent cases are already handled by known bits.
6450   // WARNING: The definition of recurrence used here is subtly different than
6451   // the one used by AddRec (and thus most of this file).  Step is allowed to
6452   // be arbitrarily loop varying here, where AddRec allows only loop invariant
6453   // and other addrecs in the same loop (for non-affine addrecs).  The code
6454   // below intentionally handles the case where step is not loop invariant.
6455   auto *P = dyn_cast<PHINode>(U->getValue());
6456   if (!P)
6457     return FullSet;
6458 
6459   // Make sure that no Phi input comes from an unreachable block. Otherwise,
6460   // even the values that are not available in these blocks may come from them,
6461   // and this leads to false-positive recurrence test.
6462   for (auto *Pred : predecessors(P->getParent()))
6463     if (!DT.isReachableFromEntry(Pred))
6464       return FullSet;
6465 
6466   BinaryOperator *BO;
6467   Value *Start, *Step;
6468   if (!matchSimpleRecurrence(P, BO, Start, Step))
6469     return FullSet;
6470 
6471   // If we found a recurrence in reachable code, we must be in a loop. Note
6472   // that BO might be in some subloop of L, and that's completely okay.
6473   auto *L = LI.getLoopFor(P->getParent());
6474   assert(L && L->getHeader() == P->getParent());
6475   if (!L->contains(BO->getParent()))
6476     // NOTE: This bailout should be an assert instead.  However, asserting
6477     // the condition here exposes a case where LoopFusion is querying SCEV
6478     // with malformed loop information during the midst of the transform.
6479     // There doesn't appear to be an obvious fix, so for the moment bailout
6480     // until the caller issue can be fixed.  PR49566 tracks the bug.
6481     return FullSet;
6482 
6483   // TODO: Extend to other opcodes such as mul, and div
6484   switch (BO->getOpcode()) {
6485   default:
6486     return FullSet;
6487   case Instruction::AShr:
6488   case Instruction::LShr:
6489   case Instruction::Shl:
6490     break;
6491   };
6492 
6493   if (BO->getOperand(0) != P)
6494     // TODO: Handle the power function forms some day.
6495     return FullSet;
6496 
6497   unsigned TC = getSmallConstantMaxTripCount(L);
6498   if (!TC || TC >= BitWidth)
6499     return FullSet;
6500 
6501   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
6502   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
6503   assert(KnownStart.getBitWidth() == BitWidth &&
6504          KnownStep.getBitWidth() == BitWidth);
6505 
6506   // Compute total shift amount, being careful of overflow and bitwidths.
6507   auto MaxShiftAmt = KnownStep.getMaxValue();
6508   APInt TCAP(BitWidth, TC-1);
6509   bool Overflow = false;
6510   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
6511   if (Overflow)
6512     return FullSet;
6513 
6514   switch (BO->getOpcode()) {
6515   default:
6516     llvm_unreachable("filtered out above");
6517   case Instruction::AShr: {
6518     // For each ashr, three cases:
6519     //   shift = 0 => unchanged value
6520     //   saturation => 0 or -1
6521     //   other => a value closer to zero (of the same sign)
6522     // Thus, the end value is closer to zero than the start.
6523     auto KnownEnd = KnownBits::ashr(KnownStart,
6524                                     KnownBits::makeConstant(TotalShift));
6525     if (KnownStart.isNonNegative())
6526       // Analogous to lshr (simply not yet canonicalized)
6527       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6528                                         KnownStart.getMaxValue() + 1);
6529     if (KnownStart.isNegative())
6530       // End >=u Start && End <=s Start
6531       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
6532                                         KnownEnd.getMaxValue() + 1);
6533     break;
6534   }
6535   case Instruction::LShr: {
6536     // For each lshr, three cases:
6537     //   shift = 0 => unchanged value
6538     //   saturation => 0
6539     //   other => a smaller positive number
6540     // Thus, the low end of the unsigned range is the last value produced.
6541     auto KnownEnd = KnownBits::lshr(KnownStart,
6542                                     KnownBits::makeConstant(TotalShift));
6543     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6544                                       KnownStart.getMaxValue() + 1);
6545   }
6546   case Instruction::Shl: {
6547     // Iff no bits are shifted out, value increases on every shift.
6548     auto KnownEnd = KnownBits::shl(KnownStart,
6549                                    KnownBits::makeConstant(TotalShift));
6550     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6551       return ConstantRange(KnownStart.getMinValue(),
6552                            KnownEnd.getMaxValue() + 1);
6553     break;
6554   }
6555   };
6556   return FullSet;
6557 }
6558 
6559 const ConstantRange &
6560 ScalarEvolution::getRangeRefIter(const SCEV *S,
6561                                  ScalarEvolution::RangeSignHint SignHint) {
6562   DenseMap<const SCEV *, ConstantRange> &Cache =
6563       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6564                                                        : SignedRanges;
6565   SmallVector<const SCEV *> WorkList;
6566   SmallPtrSet<const SCEV *, 8> Seen;
6567 
6568   // Add Expr to the worklist, if Expr is either an N-ary expression or a
6569   // SCEVUnknown PHI node.
6570   auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) {
6571     if (!Seen.insert(Expr).second)
6572       return;
6573     if (Cache.contains(Expr))
6574       return;
6575     switch (Expr->getSCEVType()) {
6576     case scUnknown:
6577       if (!isa<PHINode>(cast<SCEVUnknown>(Expr)->getValue()))
6578         break;
6579       [[fallthrough]];
6580     case scConstant:
6581     case scVScale:
6582     case scTruncate:
6583     case scZeroExtend:
6584     case scSignExtend:
6585     case scPtrToInt:
6586     case scAddExpr:
6587     case scMulExpr:
6588     case scUDivExpr:
6589     case scAddRecExpr:
6590     case scUMaxExpr:
6591     case scSMaxExpr:
6592     case scUMinExpr:
6593     case scSMinExpr:
6594     case scSequentialUMinExpr:
6595       WorkList.push_back(Expr);
6596       break;
6597     case scCouldNotCompute:
6598       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6599     }
6600   };
6601   AddToWorklist(S);
6602 
6603   // Build worklist by queuing operands of N-ary expressions and phi nodes.
6604   for (unsigned I = 0; I != WorkList.size(); ++I) {
6605     const SCEV *P = WorkList[I];
6606     auto *UnknownS = dyn_cast<SCEVUnknown>(P);
6607     // If it is not a `SCEVUnknown`, just recurse into operands.
6608     if (!UnknownS) {
6609       for (const SCEV *Op : P->operands())
6610         AddToWorklist(Op);
6611       continue;
6612     }
6613     // `SCEVUnknown`'s require special treatment.
6614     if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) {
6615       if (!PendingPhiRangesIter.insert(P).second)
6616         continue;
6617       for (auto &Op : reverse(P->operands()))
6618         AddToWorklist(getSCEV(Op));
6619     }
6620   }
6621 
6622   if (!WorkList.empty()) {
6623     // Use getRangeRef to compute ranges for items in the worklist in reverse
6624     // order. This will force ranges for earlier operands to be computed before
6625     // their users in most cases.
6626     for (const SCEV *P : reverse(drop_begin(WorkList))) {
6627       getRangeRef(P, SignHint);
6628 
6629       if (auto *UnknownS = dyn_cast<SCEVUnknown>(P))
6630         if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue()))
6631           PendingPhiRangesIter.erase(P);
6632     }
6633   }
6634 
6635   return getRangeRef(S, SignHint, 0);
6636 }
6637 
6638 /// Determine the range for a particular SCEV.  If SignHint is
6639 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6640 /// with a "cleaner" unsigned (resp. signed) representation.
6641 const ConstantRange &ScalarEvolution::getRangeRef(
6642     const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) {
6643   DenseMap<const SCEV *, ConstantRange> &Cache =
6644       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6645                                                        : SignedRanges;
6646   ConstantRange::PreferredRangeType RangeType =
6647       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned
6648                                                        : ConstantRange::Signed;
6649 
6650   // See if we've computed this range already.
6651   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6652   if (I != Cache.end())
6653     return I->second;
6654 
6655   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6656     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6657 
6658   // Switch to iteratively computing the range for S, if it is part of a deeply
6659   // nested expression.
6660   if (Depth > RangeIterThreshold)
6661     return getRangeRefIter(S, SignHint);
6662 
6663   unsigned BitWidth = getTypeSizeInBits(S->getType());
6664   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6665   using OBO = OverflowingBinaryOperator;
6666 
6667   // If the value has known zeros, the maximum value will have those known zeros
6668   // as well.
6669   if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
6670     APInt Multiple = getNonZeroConstantMultiple(S);
6671     APInt Remainder = APInt::getMaxValue(BitWidth).urem(Multiple);
6672     if (!Remainder.isZero())
6673       ConservativeResult =
6674           ConstantRange(APInt::getMinValue(BitWidth),
6675                         APInt::getMaxValue(BitWidth) - Remainder + 1);
6676   }
6677   else {
6678     uint32_t TZ = getMinTrailingZeros(S);
6679     if (TZ != 0) {
6680       ConservativeResult = ConstantRange(
6681           APInt::getSignedMinValue(BitWidth),
6682           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6683     }
6684   }
6685 
6686   switch (S->getSCEVType()) {
6687   case scConstant:
6688     llvm_unreachable("Already handled above.");
6689   case scVScale:
6690     return setRange(S, SignHint, getVScaleRange(&F, BitWidth));
6691   case scTruncate: {
6692     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(S);
6693     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint, Depth + 1);
6694     return setRange(
6695         Trunc, SignHint,
6696         ConservativeResult.intersectWith(X.truncate(BitWidth), RangeType));
6697   }
6698   case scZeroExtend: {
6699     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(S);
6700     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint, Depth + 1);
6701     return setRange(
6702         ZExt, SignHint,
6703         ConservativeResult.intersectWith(X.zeroExtend(BitWidth), RangeType));
6704   }
6705   case scSignExtend: {
6706     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(S);
6707     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint, Depth + 1);
6708     return setRange(
6709         SExt, SignHint,
6710         ConservativeResult.intersectWith(X.signExtend(BitWidth), RangeType));
6711   }
6712   case scPtrToInt: {
6713     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(S);
6714     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint, Depth + 1);
6715     return setRange(PtrToInt, SignHint, X);
6716   }
6717   case scAddExpr: {
6718     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
6719     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint, Depth + 1);
6720     unsigned WrapType = OBO::AnyWrap;
6721     if (Add->hasNoSignedWrap())
6722       WrapType |= OBO::NoSignedWrap;
6723     if (Add->hasNoUnsignedWrap())
6724       WrapType |= OBO::NoUnsignedWrap;
6725     for (const SCEV *Op : drop_begin(Add->operands()))
6726       X = X.addWithNoWrap(getRangeRef(Op, SignHint, Depth + 1), WrapType,
6727                           RangeType);
6728     return setRange(Add, SignHint,
6729                     ConservativeResult.intersectWith(X, RangeType));
6730   }
6731   case scMulExpr: {
6732     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(S);
6733     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint, Depth + 1);
6734     for (const SCEV *Op : drop_begin(Mul->operands()))
6735       X = X.multiply(getRangeRef(Op, SignHint, Depth + 1));
6736     return setRange(Mul, SignHint,
6737                     ConservativeResult.intersectWith(X, RangeType));
6738   }
6739   case scUDivExpr: {
6740     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6741     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint, Depth + 1);
6742     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint, Depth + 1);
6743     return setRange(UDiv, SignHint,
6744                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6745   }
6746   case scAddRecExpr: {
6747     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(S);
6748     // If there's no unsigned wrap, the value will never be less than its
6749     // initial value.
6750     if (AddRec->hasNoUnsignedWrap()) {
6751       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6752       if (!UnsignedMinValue.isZero())
6753         ConservativeResult = ConservativeResult.intersectWith(
6754             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6755     }
6756 
6757     // If there's no signed wrap, and all the operands except initial value have
6758     // the same sign or zero, the value won't ever be:
6759     // 1: smaller than initial value if operands are non negative,
6760     // 2: bigger than initial value if operands are non positive.
6761     // For both cases, value can not cross signed min/max boundary.
6762     if (AddRec->hasNoSignedWrap()) {
6763       bool AllNonNeg = true;
6764       bool AllNonPos = true;
6765       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6766         if (!isKnownNonNegative(AddRec->getOperand(i)))
6767           AllNonNeg = false;
6768         if (!isKnownNonPositive(AddRec->getOperand(i)))
6769           AllNonPos = false;
6770       }
6771       if (AllNonNeg)
6772         ConservativeResult = ConservativeResult.intersectWith(
6773             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6774                                        APInt::getSignedMinValue(BitWidth)),
6775             RangeType);
6776       else if (AllNonPos)
6777         ConservativeResult = ConservativeResult.intersectWith(
6778             ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth),
6779                                        getSignedRangeMax(AddRec->getStart()) +
6780                                            1),
6781             RangeType);
6782     }
6783 
6784     // TODO: non-affine addrec
6785     if (AddRec->isAffine()) {
6786       const SCEV *MaxBEScev =
6787           getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6788       if (!isa<SCEVCouldNotCompute>(MaxBEScev)) {
6789         APInt MaxBECount = cast<SCEVConstant>(MaxBEScev)->getAPInt();
6790 
6791         // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if
6792         // MaxBECount's active bits are all <= AddRec's bit width.
6793         if (MaxBECount.getBitWidth() > BitWidth &&
6794             MaxBECount.getActiveBits() <= BitWidth)
6795           MaxBECount = MaxBECount.trunc(BitWidth);
6796         else if (MaxBECount.getBitWidth() < BitWidth)
6797           MaxBECount = MaxBECount.zext(BitWidth);
6798 
6799         if (MaxBECount.getBitWidth() == BitWidth) {
6800           auto RangeFromAffine = getRangeForAffineAR(
6801               AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount);
6802           ConservativeResult =
6803               ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6804 
6805           auto RangeFromFactoring = getRangeViaFactoring(
6806               AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount);
6807           ConservativeResult =
6808               ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6809         }
6810       }
6811 
6812       // Now try symbolic BE count and more powerful methods.
6813       if (UseExpensiveRangeSharpening) {
6814         const SCEV *SymbolicMaxBECount =
6815             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6816         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6817             getTypeSizeInBits(MaxBEScev->getType()) <= BitWidth &&
6818             AddRec->hasNoSelfWrap()) {
6819           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6820               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6821           ConservativeResult =
6822               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6823         }
6824       }
6825     }
6826 
6827     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6828   }
6829   case scUMaxExpr:
6830   case scSMaxExpr:
6831   case scUMinExpr:
6832   case scSMinExpr:
6833   case scSequentialUMinExpr: {
6834     Intrinsic::ID ID;
6835     switch (S->getSCEVType()) {
6836     case scUMaxExpr:
6837       ID = Intrinsic::umax;
6838       break;
6839     case scSMaxExpr:
6840       ID = Intrinsic::smax;
6841       break;
6842     case scUMinExpr:
6843     case scSequentialUMinExpr:
6844       ID = Intrinsic::umin;
6845       break;
6846     case scSMinExpr:
6847       ID = Intrinsic::smin;
6848       break;
6849     default:
6850       llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
6851     }
6852 
6853     const auto *NAry = cast<SCEVNAryExpr>(S);
6854     ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint, Depth + 1);
6855     for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
6856       X = X.intrinsic(
6857           ID, {X, getRangeRef(NAry->getOperand(i), SignHint, Depth + 1)});
6858     return setRange(S, SignHint,
6859                     ConservativeResult.intersectWith(X, RangeType));
6860   }
6861   case scUnknown: {
6862     const SCEVUnknown *U = cast<SCEVUnknown>(S);
6863     Value *V = U->getValue();
6864 
6865     // Check if the IR explicitly contains !range metadata.
6866     std::optional<ConstantRange> MDRange = GetRangeFromMetadata(V);
6867     if (MDRange)
6868       ConservativeResult =
6869           ConservativeResult.intersectWith(*MDRange, RangeType);
6870 
6871     // Use facts about recurrences in the underlying IR.  Note that add
6872     // recurrences are AddRecExprs and thus don't hit this path.  This
6873     // primarily handles shift recurrences.
6874     auto CR = getRangeForUnknownRecurrence(U);
6875     ConservativeResult = ConservativeResult.intersectWith(CR);
6876 
6877     // See if ValueTracking can give us a useful range.
6878     const DataLayout &DL = getDataLayout();
6879     KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, &DT);
6880     if (Known.getBitWidth() != BitWidth)
6881       Known = Known.zextOrTrunc(BitWidth);
6882 
6883     // ValueTracking may be able to compute a tighter result for the number of
6884     // sign bits than for the value of those sign bits.
6885     unsigned NS = ComputeNumSignBits(V, DL, 0, &AC, nullptr, &DT);
6886     if (U->getType()->isPointerTy()) {
6887       // If the pointer size is larger than the index size type, this can cause
6888       // NS to be larger than BitWidth. So compensate for this.
6889       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6890       int ptrIdxDiff = ptrSize - BitWidth;
6891       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6892         NS -= ptrIdxDiff;
6893     }
6894 
6895     if (NS > 1) {
6896       // If we know any of the sign bits, we know all of the sign bits.
6897       if (!Known.Zero.getHiBits(NS).isZero())
6898         Known.Zero.setHighBits(NS);
6899       if (!Known.One.getHiBits(NS).isZero())
6900         Known.One.setHighBits(NS);
6901     }
6902 
6903     if (Known.getMinValue() != Known.getMaxValue() + 1)
6904       ConservativeResult = ConservativeResult.intersectWith(
6905           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6906           RangeType);
6907     if (NS > 1)
6908       ConservativeResult = ConservativeResult.intersectWith(
6909           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6910                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6911           RangeType);
6912 
6913     if (U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) {
6914       // Strengthen the range if the underlying IR value is a
6915       // global/alloca/heap allocation using the size of the object.
6916       bool CanBeNull, CanBeFreed;
6917       uint64_t DerefBytes =
6918           V->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
6919       if (DerefBytes > 1 && isUIntN(BitWidth, DerefBytes)) {
6920         // The highest address the object can start is DerefBytes bytes before
6921         // the end (unsigned max value). If this value is not a multiple of the
6922         // alignment, the last possible start value is the next lowest multiple
6923         // of the alignment. Note: The computations below cannot overflow,
6924         // because if they would there's no possible start address for the
6925         // object.
6926         APInt MaxVal =
6927             APInt::getMaxValue(BitWidth) - APInt(BitWidth, DerefBytes);
6928         uint64_t Align = U->getValue()->getPointerAlignment(DL).value();
6929         uint64_t Rem = MaxVal.urem(Align);
6930         MaxVal -= APInt(BitWidth, Rem);
6931         APInt MinVal = APInt::getZero(BitWidth);
6932         if (llvm::isKnownNonZero(V, DL))
6933           MinVal = Align;
6934         ConservativeResult = ConservativeResult.intersectWith(
6935             ConstantRange::getNonEmpty(MinVal, MaxVal + 1), RangeType);
6936       }
6937     }
6938 
6939     // A range of Phi is a subset of union of all ranges of its input.
6940     if (PHINode *Phi = dyn_cast<PHINode>(V)) {
6941       // Make sure that we do not run over cycled Phis.
6942       if (PendingPhiRanges.insert(Phi).second) {
6943         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6944 
6945         for (const auto &Op : Phi->operands()) {
6946           auto OpRange = getRangeRef(getSCEV(Op), SignHint, Depth + 1);
6947           RangeFromOps = RangeFromOps.unionWith(OpRange);
6948           // No point to continue if we already have a full set.
6949           if (RangeFromOps.isFullSet())
6950             break;
6951         }
6952         ConservativeResult =
6953             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6954         bool Erased = PendingPhiRanges.erase(Phi);
6955         assert(Erased && "Failed to erase Phi properly?");
6956         (void)Erased;
6957       }
6958     }
6959 
6960     // vscale can't be equal to zero
6961     if (const auto *II = dyn_cast<IntrinsicInst>(V))
6962       if (II->getIntrinsicID() == Intrinsic::vscale) {
6963         ConstantRange Disallowed = APInt::getZero(BitWidth);
6964         ConservativeResult = ConservativeResult.difference(Disallowed);
6965       }
6966 
6967     return setRange(U, SignHint, std::move(ConservativeResult));
6968   }
6969   case scCouldNotCompute:
6970     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6971   }
6972 
6973   return setRange(S, SignHint, std::move(ConservativeResult));
6974 }
6975 
6976 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6977 // values that the expression can take. Initially, the expression has a value
6978 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6979 // argument defines if we treat Step as signed or unsigned.
6980 static ConstantRange getRangeForAffineARHelper(APInt Step,
6981                                                const ConstantRange &StartRange,
6982                                                const APInt &MaxBECount,
6983                                                bool Signed) {
6984   unsigned BitWidth = Step.getBitWidth();
6985   assert(BitWidth == StartRange.getBitWidth() &&
6986          BitWidth == MaxBECount.getBitWidth() && "mismatched bit widths");
6987   // If either Step or MaxBECount is 0, then the expression won't change, and we
6988   // just need to return the initial range.
6989   if (Step == 0 || MaxBECount == 0)
6990     return StartRange;
6991 
6992   // If we don't know anything about the initial value (i.e. StartRange is
6993   // FullRange), then we don't know anything about the final range either.
6994   // Return FullRange.
6995   if (StartRange.isFullSet())
6996     return ConstantRange::getFull(BitWidth);
6997 
6998   // If Step is signed and negative, then we use its absolute value, but we also
6999   // note that we're moving in the opposite direction.
7000   bool Descending = Signed && Step.isNegative();
7001 
7002   if (Signed)
7003     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
7004     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
7005     // This equations hold true due to the well-defined wrap-around behavior of
7006     // APInt.
7007     Step = Step.abs();
7008 
7009   // Check if Offset is more than full span of BitWidth. If it is, the
7010   // expression is guaranteed to overflow.
7011   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
7012     return ConstantRange::getFull(BitWidth);
7013 
7014   // Offset is by how much the expression can change. Checks above guarantee no
7015   // overflow here.
7016   APInt Offset = Step * MaxBECount;
7017 
7018   // Minimum value of the final range will match the minimal value of StartRange
7019   // if the expression is increasing and will be decreased by Offset otherwise.
7020   // Maximum value of the final range will match the maximal value of StartRange
7021   // if the expression is decreasing and will be increased by Offset otherwise.
7022   APInt StartLower = StartRange.getLower();
7023   APInt StartUpper = StartRange.getUpper() - 1;
7024   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
7025                                    : (StartUpper + std::move(Offset));
7026 
7027   // It's possible that the new minimum/maximum value will fall into the initial
7028   // range (due to wrap around). This means that the expression can take any
7029   // value in this bitwidth, and we have to return full range.
7030   if (StartRange.contains(MovedBoundary))
7031     return ConstantRange::getFull(BitWidth);
7032 
7033   APInt NewLower =
7034       Descending ? std::move(MovedBoundary) : std::move(StartLower);
7035   APInt NewUpper =
7036       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
7037   NewUpper += 1;
7038 
7039   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
7040   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
7041 }
7042 
7043 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
7044                                                    const SCEV *Step,
7045                                                    const APInt &MaxBECount) {
7046   assert(getTypeSizeInBits(Start->getType()) ==
7047              getTypeSizeInBits(Step->getType()) &&
7048          getTypeSizeInBits(Start->getType()) == MaxBECount.getBitWidth() &&
7049          "mismatched bit widths");
7050 
7051   // First, consider step signed.
7052   ConstantRange StartSRange = getSignedRange(Start);
7053   ConstantRange StepSRange = getSignedRange(Step);
7054 
7055   // If Step can be both positive and negative, we need to find ranges for the
7056   // maximum absolute step values in both directions and union them.
7057   ConstantRange SR = getRangeForAffineARHelper(
7058       StepSRange.getSignedMin(), StartSRange, MaxBECount, /* Signed = */ true);
7059   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
7060                                               StartSRange, MaxBECount,
7061                                               /* Signed = */ true));
7062 
7063   // Next, consider step unsigned.
7064   ConstantRange UR = getRangeForAffineARHelper(
7065       getUnsignedRangeMax(Step), getUnsignedRange(Start), MaxBECount,
7066       /* Signed = */ false);
7067 
7068   // Finally, intersect signed and unsigned ranges.
7069   return SR.intersectWith(UR, ConstantRange::Smallest);
7070 }
7071 
7072 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
7073     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
7074     ScalarEvolution::RangeSignHint SignHint) {
7075   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
7076   assert(AddRec->hasNoSelfWrap() &&
7077          "This only works for non-self-wrapping AddRecs!");
7078   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
7079   const SCEV *Step = AddRec->getStepRecurrence(*this);
7080   // Only deal with constant step to save compile time.
7081   if (!isa<SCEVConstant>(Step))
7082     return ConstantRange::getFull(BitWidth);
7083   // Let's make sure that we can prove that we do not self-wrap during
7084   // MaxBECount iterations. We need this because MaxBECount is a maximum
7085   // iteration count estimate, and we might infer nw from some exit for which we
7086   // do not know max exit count (or any other side reasoning).
7087   // TODO: Turn into assert at some point.
7088   if (getTypeSizeInBits(MaxBECount->getType()) >
7089       getTypeSizeInBits(AddRec->getType()))
7090     return ConstantRange::getFull(BitWidth);
7091   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
7092   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
7093   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
7094   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
7095   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
7096                                          MaxItersWithoutWrap))
7097     return ConstantRange::getFull(BitWidth);
7098 
7099   ICmpInst::Predicate LEPred =
7100       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
7101   ICmpInst::Predicate GEPred =
7102       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
7103   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
7104 
7105   // We know that there is no self-wrap. Let's take Start and End values and
7106   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
7107   // the iteration. They either lie inside the range [Min(Start, End),
7108   // Max(Start, End)] or outside it:
7109   //
7110   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
7111   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
7112   //
7113   // No self wrap flag guarantees that the intermediate values cannot be BOTH
7114   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
7115   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
7116   // Start <= End and step is positive, or Start >= End and step is negative.
7117   const SCEV *Start = applyLoopGuards(AddRec->getStart(), AddRec->getLoop());
7118   ConstantRange StartRange = getRangeRef(Start, SignHint);
7119   ConstantRange EndRange = getRangeRef(End, SignHint);
7120   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
7121   // If they already cover full iteration space, we will know nothing useful
7122   // even if we prove what we want to prove.
7123   if (RangeBetween.isFullSet())
7124     return RangeBetween;
7125   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
7126   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
7127                                : RangeBetween.isWrappedSet();
7128   if (IsWrappedSet)
7129     return ConstantRange::getFull(BitWidth);
7130 
7131   if (isKnownPositive(Step) &&
7132       isKnownPredicateViaConstantRanges(LEPred, Start, End))
7133     return RangeBetween;
7134   if (isKnownNegative(Step) &&
7135            isKnownPredicateViaConstantRanges(GEPred, Start, End))
7136     return RangeBetween;
7137   return ConstantRange::getFull(BitWidth);
7138 }
7139 
7140 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
7141                                                     const SCEV *Step,
7142                                                     const APInt &MaxBECount) {
7143   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
7144   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
7145 
7146   unsigned BitWidth = MaxBECount.getBitWidth();
7147   assert(getTypeSizeInBits(Start->getType()) == BitWidth &&
7148          getTypeSizeInBits(Step->getType()) == BitWidth &&
7149          "mismatched bit widths");
7150 
7151   struct SelectPattern {
7152     Value *Condition = nullptr;
7153     APInt TrueValue;
7154     APInt FalseValue;
7155 
7156     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
7157                            const SCEV *S) {
7158       std::optional<unsigned> CastOp;
7159       APInt Offset(BitWidth, 0);
7160 
7161       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
7162              "Should be!");
7163 
7164       // Peel off a constant offset:
7165       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
7166         // In the future we could consider being smarter here and handle
7167         // {Start+Step,+,Step} too.
7168         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
7169           return;
7170 
7171         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
7172         S = SA->getOperand(1);
7173       }
7174 
7175       // Peel off a cast operation
7176       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
7177         CastOp = SCast->getSCEVType();
7178         S = SCast->getOperand();
7179       }
7180 
7181       using namespace llvm::PatternMatch;
7182 
7183       auto *SU = dyn_cast<SCEVUnknown>(S);
7184       const APInt *TrueVal, *FalseVal;
7185       if (!SU ||
7186           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
7187                                           m_APInt(FalseVal)))) {
7188         Condition = nullptr;
7189         return;
7190       }
7191 
7192       TrueValue = *TrueVal;
7193       FalseValue = *FalseVal;
7194 
7195       // Re-apply the cast we peeled off earlier
7196       if (CastOp)
7197         switch (*CastOp) {
7198         default:
7199           llvm_unreachable("Unknown SCEV cast type!");
7200 
7201         case scTruncate:
7202           TrueValue = TrueValue.trunc(BitWidth);
7203           FalseValue = FalseValue.trunc(BitWidth);
7204           break;
7205         case scZeroExtend:
7206           TrueValue = TrueValue.zext(BitWidth);
7207           FalseValue = FalseValue.zext(BitWidth);
7208           break;
7209         case scSignExtend:
7210           TrueValue = TrueValue.sext(BitWidth);
7211           FalseValue = FalseValue.sext(BitWidth);
7212           break;
7213         }
7214 
7215       // Re-apply the constant offset we peeled off earlier
7216       TrueValue += Offset;
7217       FalseValue += Offset;
7218     }
7219 
7220     bool isRecognized() { return Condition != nullptr; }
7221   };
7222 
7223   SelectPattern StartPattern(*this, BitWidth, Start);
7224   if (!StartPattern.isRecognized())
7225     return ConstantRange::getFull(BitWidth);
7226 
7227   SelectPattern StepPattern(*this, BitWidth, Step);
7228   if (!StepPattern.isRecognized())
7229     return ConstantRange::getFull(BitWidth);
7230 
7231   if (StartPattern.Condition != StepPattern.Condition) {
7232     // We don't handle this case today; but we could, by considering four
7233     // possibilities below instead of two. I'm not sure if there are cases where
7234     // that will help over what getRange already does, though.
7235     return ConstantRange::getFull(BitWidth);
7236   }
7237 
7238   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
7239   // construct arbitrary general SCEV expressions here.  This function is called
7240   // from deep in the call stack, and calling getSCEV (on a sext instruction,
7241   // say) can end up caching a suboptimal value.
7242 
7243   // FIXME: without the explicit `this` receiver below, MSVC errors out with
7244   // C2352 and C2512 (otherwise it isn't needed).
7245 
7246   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
7247   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
7248   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
7249   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
7250 
7251   ConstantRange TrueRange =
7252       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount);
7253   ConstantRange FalseRange =
7254       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount);
7255 
7256   return TrueRange.unionWith(FalseRange);
7257 }
7258 
7259 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
7260   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
7261   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
7262 
7263   // Return early if there are no flags to propagate to the SCEV.
7264   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7265   if (BinOp->hasNoUnsignedWrap())
7266     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
7267   if (BinOp->hasNoSignedWrap())
7268     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
7269   if (Flags == SCEV::FlagAnyWrap)
7270     return SCEV::FlagAnyWrap;
7271 
7272   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
7273 }
7274 
7275 const Instruction *
7276 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
7277   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
7278     return &*AddRec->getLoop()->getHeader()->begin();
7279   if (auto *U = dyn_cast<SCEVUnknown>(S))
7280     if (auto *I = dyn_cast<Instruction>(U->getValue()))
7281       return I;
7282   return nullptr;
7283 }
7284 
7285 const Instruction *
7286 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
7287                                        bool &Precise) {
7288   Precise = true;
7289   // Do a bounded search of the def relation of the requested SCEVs.
7290   SmallSet<const SCEV *, 16> Visited;
7291   SmallVector<const SCEV *> Worklist;
7292   auto pushOp = [&](const SCEV *S) {
7293     if (!Visited.insert(S).second)
7294       return;
7295     // Threshold of 30 here is arbitrary.
7296     if (Visited.size() > 30) {
7297       Precise = false;
7298       return;
7299     }
7300     Worklist.push_back(S);
7301   };
7302 
7303   for (const auto *S : Ops)
7304     pushOp(S);
7305 
7306   const Instruction *Bound = nullptr;
7307   while (!Worklist.empty()) {
7308     auto *S = Worklist.pop_back_val();
7309     if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
7310       if (!Bound || DT.dominates(Bound, DefI))
7311         Bound = DefI;
7312     } else {
7313       for (const auto *Op : S->operands())
7314         pushOp(Op);
7315     }
7316   }
7317   return Bound ? Bound : &*F.getEntryBlock().begin();
7318 }
7319 
7320 const Instruction *
7321 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
7322   bool Discard;
7323   return getDefiningScopeBound(Ops, Discard);
7324 }
7325 
7326 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
7327                                                         const Instruction *B) {
7328   if (A->getParent() == B->getParent() &&
7329       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7330                                                  B->getIterator()))
7331     return true;
7332 
7333   auto *BLoop = LI.getLoopFor(B->getParent());
7334   if (BLoop && BLoop->getHeader() == B->getParent() &&
7335       BLoop->getLoopPreheader() == A->getParent() &&
7336       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7337                                                  A->getParent()->end()) &&
7338       isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
7339                                                  B->getIterator()))
7340     return true;
7341   return false;
7342 }
7343 
7344 bool ScalarEvolution::isGuaranteedNotToBePoison(const SCEV *Op) {
7345   SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ true);
7346   visitAll(Op, PC);
7347   return PC.MaybePoison.empty();
7348 }
7349 
7350 bool ScalarEvolution::isGuaranteedNotToCauseUB(const SCEV *Op) {
7351   return !SCEVExprContains(Op, [this](const SCEV *S) {
7352     auto *UDiv = dyn_cast<SCEVUDivExpr>(S);
7353     // The UDiv may be UB if the divisor is poison or zero. Unless the divisor
7354     // is a non-zero constant, we have to assume the UDiv may be UB.
7355     return UDiv && (!isKnownNonZero(UDiv->getOperand(1)) ||
7356                     !isGuaranteedNotToBePoison(UDiv->getOperand(1)));
7357   });
7358 }
7359 
7360 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
7361   // Only proceed if we can prove that I does not yield poison.
7362   if (!programUndefinedIfPoison(I))
7363     return false;
7364 
7365   // At this point we know that if I is executed, then it does not wrap
7366   // according to at least one of NSW or NUW. If I is not executed, then we do
7367   // not know if the calculation that I represents would wrap. Multiple
7368   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
7369   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
7370   // derived from other instructions that map to the same SCEV. We cannot make
7371   // that guarantee for cases where I is not executed. So we need to find a
7372   // upper bound on the defining scope for the SCEV, and prove that I is
7373   // executed every time we enter that scope.  When the bounding scope is a
7374   // loop (the common case), this is equivalent to proving I executes on every
7375   // iteration of that loop.
7376   SmallVector<const SCEV *> SCEVOps;
7377   for (const Use &Op : I->operands()) {
7378     // I could be an extractvalue from a call to an overflow intrinsic.
7379     // TODO: We can do better here in some cases.
7380     if (isSCEVable(Op->getType()))
7381       SCEVOps.push_back(getSCEV(Op));
7382   }
7383   auto *DefI = getDefiningScopeBound(SCEVOps);
7384   return isGuaranteedToTransferExecutionTo(DefI, I);
7385 }
7386 
7387 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
7388   // If we know that \c I can never be poison period, then that's enough.
7389   if (isSCEVExprNeverPoison(I))
7390     return true;
7391 
7392   // If the loop only has one exit, then we know that, if the loop is entered,
7393   // any instruction dominating that exit will be executed. If any such
7394   // instruction would result in UB, the addrec cannot be poison.
7395   //
7396   // This is basically the same reasoning as in isSCEVExprNeverPoison(), but
7397   // also handles uses outside the loop header (they just need to dominate the
7398   // single exit).
7399 
7400   auto *ExitingBB = L->getExitingBlock();
7401   if (!ExitingBB || !loopHasNoAbnormalExits(L))
7402     return false;
7403 
7404   SmallPtrSet<const Value *, 16> KnownPoison;
7405   SmallVector<const Instruction *, 8> Worklist;
7406 
7407   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
7408   // things that are known to be poison under that assumption go on the
7409   // Worklist.
7410   KnownPoison.insert(I);
7411   Worklist.push_back(I);
7412 
7413   while (!Worklist.empty()) {
7414     const Instruction *Poison = Worklist.pop_back_val();
7415 
7416     for (const Use &U : Poison->uses()) {
7417       const Instruction *PoisonUser = cast<Instruction>(U.getUser());
7418       if (mustTriggerUB(PoisonUser, KnownPoison) &&
7419           DT.dominates(PoisonUser->getParent(), ExitingBB))
7420         return true;
7421 
7422       if (propagatesPoison(U) && L->contains(PoisonUser))
7423         if (KnownPoison.insert(PoisonUser).second)
7424           Worklist.push_back(PoisonUser);
7425     }
7426   }
7427 
7428   return false;
7429 }
7430 
7431 ScalarEvolution::LoopProperties
7432 ScalarEvolution::getLoopProperties(const Loop *L) {
7433   using LoopProperties = ScalarEvolution::LoopProperties;
7434 
7435   auto Itr = LoopPropertiesCache.find(L);
7436   if (Itr == LoopPropertiesCache.end()) {
7437     auto HasSideEffects = [](Instruction *I) {
7438       if (auto *SI = dyn_cast<StoreInst>(I))
7439         return !SI->isSimple();
7440 
7441       return I->mayThrow() || I->mayWriteToMemory();
7442     };
7443 
7444     LoopProperties LP = {/* HasNoAbnormalExits */ true,
7445                          /*HasNoSideEffects*/ true};
7446 
7447     for (auto *BB : L->getBlocks())
7448       for (auto &I : *BB) {
7449         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7450           LP.HasNoAbnormalExits = false;
7451         if (HasSideEffects(&I))
7452           LP.HasNoSideEffects = false;
7453         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
7454           break; // We're already as pessimistic as we can get.
7455       }
7456 
7457     auto InsertPair = LoopPropertiesCache.insert({L, LP});
7458     assert(InsertPair.second && "We just checked!");
7459     Itr = InsertPair.first;
7460   }
7461 
7462   return Itr->second;
7463 }
7464 
7465 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
7466   // A mustprogress loop without side effects must be finite.
7467   // TODO: The check used here is very conservative.  It's only *specific*
7468   // side effects which are well defined in infinite loops.
7469   return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L));
7470 }
7471 
7472 const SCEV *ScalarEvolution::createSCEVIter(Value *V) {
7473   // Worklist item with a Value and a bool indicating whether all operands have
7474   // been visited already.
7475   using PointerTy = PointerIntPair<Value *, 1, bool>;
7476   SmallVector<PointerTy> Stack;
7477 
7478   Stack.emplace_back(V, true);
7479   Stack.emplace_back(V, false);
7480   while (!Stack.empty()) {
7481     auto E = Stack.pop_back_val();
7482     Value *CurV = E.getPointer();
7483 
7484     if (getExistingSCEV(CurV))
7485       continue;
7486 
7487     SmallVector<Value *> Ops;
7488     const SCEV *CreatedSCEV = nullptr;
7489     // If all operands have been visited already, create the SCEV.
7490     if (E.getInt()) {
7491       CreatedSCEV = createSCEV(CurV);
7492     } else {
7493       // Otherwise get the operands we need to create SCEV's for before creating
7494       // the SCEV for CurV. If the SCEV for CurV can be constructed trivially,
7495       // just use it.
7496       CreatedSCEV = getOperandsToCreate(CurV, Ops);
7497     }
7498 
7499     if (CreatedSCEV) {
7500       insertValueToMap(CurV, CreatedSCEV);
7501     } else {
7502       // Queue CurV for SCEV creation, followed by its's operands which need to
7503       // be constructed first.
7504       Stack.emplace_back(CurV, true);
7505       for (Value *Op : Ops)
7506         Stack.emplace_back(Op, false);
7507     }
7508   }
7509 
7510   return getExistingSCEV(V);
7511 }
7512 
7513 const SCEV *
7514 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) {
7515   if (!isSCEVable(V->getType()))
7516     return getUnknown(V);
7517 
7518   if (Instruction *I = dyn_cast<Instruction>(V)) {
7519     // Don't attempt to analyze instructions in blocks that aren't
7520     // reachable. Such instructions don't matter, and they aren't required
7521     // to obey basic rules for definitions dominating uses which this
7522     // analysis depends on.
7523     if (!DT.isReachableFromEntry(I->getParent()))
7524       return getUnknown(PoisonValue::get(V->getType()));
7525   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7526     return getConstant(CI);
7527   else if (isa<GlobalAlias>(V))
7528     return getUnknown(V);
7529   else if (!isa<ConstantExpr>(V))
7530     return getUnknown(V);
7531 
7532   Operator *U = cast<Operator>(V);
7533   if (auto BO =
7534           MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
7535     bool IsConstArg = isa<ConstantInt>(BO->RHS);
7536     switch (BO->Opcode) {
7537     case Instruction::Add:
7538     case Instruction::Mul: {
7539       // For additions and multiplications, traverse add/mul chains for which we
7540       // can potentially create a single SCEV, to reduce the number of
7541       // get{Add,Mul}Expr calls.
7542       do {
7543         if (BO->Op) {
7544           if (BO->Op != V && getExistingSCEV(BO->Op)) {
7545             Ops.push_back(BO->Op);
7546             break;
7547           }
7548         }
7549         Ops.push_back(BO->RHS);
7550         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7551                                    dyn_cast<Instruction>(V));
7552         if (!NewBO ||
7553             (BO->Opcode == Instruction::Add &&
7554              (NewBO->Opcode != Instruction::Add &&
7555               NewBO->Opcode != Instruction::Sub)) ||
7556             (BO->Opcode == Instruction::Mul &&
7557              NewBO->Opcode != Instruction::Mul)) {
7558           Ops.push_back(BO->LHS);
7559           break;
7560         }
7561         // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions
7562         // requires a SCEV for the LHS.
7563         if (BO->Op && (BO->IsNSW || BO->IsNUW)) {
7564           auto *I = dyn_cast<Instruction>(BO->Op);
7565           if (I && programUndefinedIfPoison(I)) {
7566             Ops.push_back(BO->LHS);
7567             break;
7568           }
7569         }
7570         BO = NewBO;
7571       } while (true);
7572       return nullptr;
7573     }
7574     case Instruction::Sub:
7575     case Instruction::UDiv:
7576     case Instruction::URem:
7577       break;
7578     case Instruction::AShr:
7579     case Instruction::Shl:
7580     case Instruction::Xor:
7581       if (!IsConstArg)
7582         return nullptr;
7583       break;
7584     case Instruction::And:
7585     case Instruction::Or:
7586       if (!IsConstArg && !BO->LHS->getType()->isIntegerTy(1))
7587         return nullptr;
7588       break;
7589     case Instruction::LShr:
7590       return getUnknown(V);
7591     default:
7592       llvm_unreachable("Unhandled binop");
7593       break;
7594     }
7595 
7596     Ops.push_back(BO->LHS);
7597     Ops.push_back(BO->RHS);
7598     return nullptr;
7599   }
7600 
7601   switch (U->getOpcode()) {
7602   case Instruction::Trunc:
7603   case Instruction::ZExt:
7604   case Instruction::SExt:
7605   case Instruction::PtrToInt:
7606     Ops.push_back(U->getOperand(0));
7607     return nullptr;
7608 
7609   case Instruction::BitCast:
7610     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) {
7611       Ops.push_back(U->getOperand(0));
7612       return nullptr;
7613     }
7614     return getUnknown(V);
7615 
7616   case Instruction::SDiv:
7617   case Instruction::SRem:
7618     Ops.push_back(U->getOperand(0));
7619     Ops.push_back(U->getOperand(1));
7620     return nullptr;
7621 
7622   case Instruction::GetElementPtr:
7623     assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() &&
7624            "GEP source element type must be sized");
7625     for (Value *Index : U->operands())
7626       Ops.push_back(Index);
7627     return nullptr;
7628 
7629   case Instruction::IntToPtr:
7630     return getUnknown(V);
7631 
7632   case Instruction::PHI:
7633     // Keep constructing SCEVs' for phis recursively for now.
7634     return nullptr;
7635 
7636   case Instruction::Select: {
7637     // Check if U is a select that can be simplified to a SCEVUnknown.
7638     auto CanSimplifyToUnknown = [this, U]() {
7639       if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0)))
7640         return false;
7641 
7642       auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0));
7643       if (!ICI)
7644         return false;
7645       Value *LHS = ICI->getOperand(0);
7646       Value *RHS = ICI->getOperand(1);
7647       if (ICI->getPredicate() == CmpInst::ICMP_EQ ||
7648           ICI->getPredicate() == CmpInst::ICMP_NE) {
7649         if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()))
7650           return true;
7651       } else if (getTypeSizeInBits(LHS->getType()) >
7652                  getTypeSizeInBits(U->getType()))
7653         return true;
7654       return false;
7655     };
7656     if (CanSimplifyToUnknown())
7657       return getUnknown(U);
7658 
7659     for (Value *Inc : U->operands())
7660       Ops.push_back(Inc);
7661     return nullptr;
7662     break;
7663   }
7664   case Instruction::Call:
7665   case Instruction::Invoke:
7666     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) {
7667       Ops.push_back(RV);
7668       return nullptr;
7669     }
7670 
7671     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7672       switch (II->getIntrinsicID()) {
7673       case Intrinsic::abs:
7674         Ops.push_back(II->getArgOperand(0));
7675         return nullptr;
7676       case Intrinsic::umax:
7677       case Intrinsic::umin:
7678       case Intrinsic::smax:
7679       case Intrinsic::smin:
7680       case Intrinsic::usub_sat:
7681       case Intrinsic::uadd_sat:
7682         Ops.push_back(II->getArgOperand(0));
7683         Ops.push_back(II->getArgOperand(1));
7684         return nullptr;
7685       case Intrinsic::start_loop_iterations:
7686       case Intrinsic::annotation:
7687       case Intrinsic::ptr_annotation:
7688         Ops.push_back(II->getArgOperand(0));
7689         return nullptr;
7690       default:
7691         break;
7692       }
7693     }
7694     break;
7695   }
7696 
7697   return nullptr;
7698 }
7699 
7700 const SCEV *ScalarEvolution::createSCEV(Value *V) {
7701   if (!isSCEVable(V->getType()))
7702     return getUnknown(V);
7703 
7704   if (Instruction *I = dyn_cast<Instruction>(V)) {
7705     // Don't attempt to analyze instructions in blocks that aren't
7706     // reachable. Such instructions don't matter, and they aren't required
7707     // to obey basic rules for definitions dominating uses which this
7708     // analysis depends on.
7709     if (!DT.isReachableFromEntry(I->getParent()))
7710       return getUnknown(PoisonValue::get(V->getType()));
7711   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7712     return getConstant(CI);
7713   else if (isa<GlobalAlias>(V))
7714     return getUnknown(V);
7715   else if (!isa<ConstantExpr>(V))
7716     return getUnknown(V);
7717 
7718   const SCEV *LHS;
7719   const SCEV *RHS;
7720 
7721   Operator *U = cast<Operator>(V);
7722   if (auto BO =
7723           MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
7724     switch (BO->Opcode) {
7725     case Instruction::Add: {
7726       // The simple thing to do would be to just call getSCEV on both operands
7727       // and call getAddExpr with the result. However if we're looking at a
7728       // bunch of things all added together, this can be quite inefficient,
7729       // because it leads to N-1 getAddExpr calls for N ultimate operands.
7730       // Instead, gather up all the operands and make a single getAddExpr call.
7731       // LLVM IR canonical form means we need only traverse the left operands.
7732       SmallVector<const SCEV *, 4> AddOps;
7733       do {
7734         if (BO->Op) {
7735           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7736             AddOps.push_back(OpSCEV);
7737             break;
7738           }
7739 
7740           // If a NUW or NSW flag can be applied to the SCEV for this
7741           // addition, then compute the SCEV for this addition by itself
7742           // with a separate call to getAddExpr. We need to do that
7743           // instead of pushing the operands of the addition onto AddOps,
7744           // since the flags are only known to apply to this particular
7745           // addition - they may not apply to other additions that can be
7746           // formed with operands from AddOps.
7747           const SCEV *RHS = getSCEV(BO->RHS);
7748           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7749           if (Flags != SCEV::FlagAnyWrap) {
7750             const SCEV *LHS = getSCEV(BO->LHS);
7751             if (BO->Opcode == Instruction::Sub)
7752               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
7753             else
7754               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
7755             break;
7756           }
7757         }
7758 
7759         if (BO->Opcode == Instruction::Sub)
7760           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
7761         else
7762           AddOps.push_back(getSCEV(BO->RHS));
7763 
7764         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7765                                    dyn_cast<Instruction>(V));
7766         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7767                        NewBO->Opcode != Instruction::Sub)) {
7768           AddOps.push_back(getSCEV(BO->LHS));
7769           break;
7770         }
7771         BO = NewBO;
7772       } while (true);
7773 
7774       return getAddExpr(AddOps);
7775     }
7776 
7777     case Instruction::Mul: {
7778       SmallVector<const SCEV *, 4> MulOps;
7779       do {
7780         if (BO->Op) {
7781           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7782             MulOps.push_back(OpSCEV);
7783             break;
7784           }
7785 
7786           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7787           if (Flags != SCEV::FlagAnyWrap) {
7788             LHS = getSCEV(BO->LHS);
7789             RHS = getSCEV(BO->RHS);
7790             MulOps.push_back(getMulExpr(LHS, RHS, Flags));
7791             break;
7792           }
7793         }
7794 
7795         MulOps.push_back(getSCEV(BO->RHS));
7796         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7797                                    dyn_cast<Instruction>(V));
7798         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7799           MulOps.push_back(getSCEV(BO->LHS));
7800           break;
7801         }
7802         BO = NewBO;
7803       } while (true);
7804 
7805       return getMulExpr(MulOps);
7806     }
7807     case Instruction::UDiv:
7808       LHS = getSCEV(BO->LHS);
7809       RHS = getSCEV(BO->RHS);
7810       return getUDivExpr(LHS, RHS);
7811     case Instruction::URem:
7812       LHS = getSCEV(BO->LHS);
7813       RHS = getSCEV(BO->RHS);
7814       return getURemExpr(LHS, RHS);
7815     case Instruction::Sub: {
7816       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7817       if (BO->Op)
7818         Flags = getNoWrapFlagsFromUB(BO->Op);
7819       LHS = getSCEV(BO->LHS);
7820       RHS = getSCEV(BO->RHS);
7821       return getMinusSCEV(LHS, RHS, Flags);
7822     }
7823     case Instruction::And:
7824       // For an expression like x&255 that merely masks off the high bits,
7825       // use zext(trunc(x)) as the SCEV expression.
7826       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7827         if (CI->isZero())
7828           return getSCEV(BO->RHS);
7829         if (CI->isMinusOne())
7830           return getSCEV(BO->LHS);
7831         const APInt &A = CI->getValue();
7832 
7833         // Instcombine's ShrinkDemandedConstant may strip bits out of
7834         // constants, obscuring what would otherwise be a low-bits mask.
7835         // Use computeKnownBits to compute what ShrinkDemandedConstant
7836         // knew about to reconstruct a low-bits mask value.
7837         unsigned LZ = A.countl_zero();
7838         unsigned TZ = A.countr_zero();
7839         unsigned BitWidth = A.getBitWidth();
7840         KnownBits Known(BitWidth);
7841         computeKnownBits(BO->LHS, Known, getDataLayout(),
7842                          0, &AC, nullptr, &DT);
7843 
7844         APInt EffectiveMask =
7845             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
7846         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
7847           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
7848           const SCEV *LHS = getSCEV(BO->LHS);
7849           const SCEV *ShiftedLHS = nullptr;
7850           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
7851             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
7852               // For an expression like (x * 8) & 8, simplify the multiply.
7853               unsigned MulZeros = OpC->getAPInt().countr_zero();
7854               unsigned GCD = std::min(MulZeros, TZ);
7855               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
7856               SmallVector<const SCEV*, 4> MulOps;
7857               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
7858               append_range(MulOps, LHSMul->operands().drop_front());
7859               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
7860               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
7861             }
7862           }
7863           if (!ShiftedLHS)
7864             ShiftedLHS = getUDivExpr(LHS, MulCount);
7865           return getMulExpr(
7866               getZeroExtendExpr(
7867                   getTruncateExpr(ShiftedLHS,
7868                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
7869                   BO->LHS->getType()),
7870               MulCount);
7871         }
7872       }
7873       // Binary `and` is a bit-wise `umin`.
7874       if (BO->LHS->getType()->isIntegerTy(1)) {
7875         LHS = getSCEV(BO->LHS);
7876         RHS = getSCEV(BO->RHS);
7877         return getUMinExpr(LHS, RHS);
7878       }
7879       break;
7880 
7881     case Instruction::Or:
7882       // Binary `or` is a bit-wise `umax`.
7883       if (BO->LHS->getType()->isIntegerTy(1)) {
7884         LHS = getSCEV(BO->LHS);
7885         RHS = getSCEV(BO->RHS);
7886         return getUMaxExpr(LHS, RHS);
7887       }
7888       break;
7889 
7890     case Instruction::Xor:
7891       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7892         // If the RHS of xor is -1, then this is a not operation.
7893         if (CI->isMinusOne())
7894           return getNotSCEV(getSCEV(BO->LHS));
7895 
7896         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7897         // This is a variant of the check for xor with -1, and it handles
7898         // the case where instcombine has trimmed non-demanded bits out
7899         // of an xor with -1.
7900         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
7901           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
7902             if (LBO->getOpcode() == Instruction::And &&
7903                 LCI->getValue() == CI->getValue())
7904               if (const SCEVZeroExtendExpr *Z =
7905                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
7906                 Type *UTy = BO->LHS->getType();
7907                 const SCEV *Z0 = Z->getOperand();
7908                 Type *Z0Ty = Z0->getType();
7909                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
7910 
7911                 // If C is a low-bits mask, the zero extend is serving to
7912                 // mask off the high bits. Complement the operand and
7913                 // re-apply the zext.
7914                 if (CI->getValue().isMask(Z0TySize))
7915                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
7916 
7917                 // If C is a single bit, it may be in the sign-bit position
7918                 // before the zero-extend. In this case, represent the xor
7919                 // using an add, which is equivalent, and re-apply the zext.
7920                 APInt Trunc = CI->getValue().trunc(Z0TySize);
7921                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
7922                     Trunc.isSignMask())
7923                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
7924                                            UTy);
7925               }
7926       }
7927       break;
7928 
7929     case Instruction::Shl:
7930       // Turn shift left of a constant amount into a multiply.
7931       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7932         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7933 
7934         // If the shift count is not less than the bitwidth, the result of
7935         // the shift is undefined. Don't try to analyze it, because the
7936         // resolution chosen here may differ from the resolution chosen in
7937         // other parts of the compiler.
7938         if (SA->getValue().uge(BitWidth))
7939           break;
7940 
7941         // We can safely preserve the nuw flag in all cases. It's also safe to
7942         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7943         // requires special handling. It can be preserved as long as we're not
7944         // left shifting by bitwidth - 1.
7945         auto Flags = SCEV::FlagAnyWrap;
7946         if (BO->Op) {
7947           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7948           if ((MulFlags & SCEV::FlagNSW) &&
7949               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7950             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7951           if (MulFlags & SCEV::FlagNUW)
7952             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7953         }
7954 
7955         ConstantInt *X = ConstantInt::get(
7956             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7957         return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags);
7958       }
7959       break;
7960 
7961     case Instruction::AShr:
7962       // AShr X, C, where C is a constant.
7963       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7964       if (!CI)
7965         break;
7966 
7967       Type *OuterTy = BO->LHS->getType();
7968       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7969       // If the shift count is not less than the bitwidth, the result of
7970       // the shift is undefined. Don't try to analyze it, because the
7971       // resolution chosen here may differ from the resolution chosen in
7972       // other parts of the compiler.
7973       if (CI->getValue().uge(BitWidth))
7974         break;
7975 
7976       if (CI->isZero())
7977         return getSCEV(BO->LHS); // shift by zero --> noop
7978 
7979       uint64_t AShrAmt = CI->getZExtValue();
7980       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7981 
7982       Operator *L = dyn_cast<Operator>(BO->LHS);
7983       const SCEV *AddTruncateExpr = nullptr;
7984       ConstantInt *ShlAmtCI = nullptr;
7985       const SCEV *AddConstant = nullptr;
7986 
7987       if (L && L->getOpcode() == Instruction::Add) {
7988         // X = Shl A, n
7989         // Y = Add X, c
7990         // Z = AShr Y, m
7991         // n, c and m are constants.
7992 
7993         Operator *LShift = dyn_cast<Operator>(L->getOperand(0));
7994         ConstantInt *AddOperandCI = dyn_cast<ConstantInt>(L->getOperand(1));
7995         if (LShift && LShift->getOpcode() == Instruction::Shl) {
7996           if (AddOperandCI) {
7997             const SCEV *ShlOp0SCEV = getSCEV(LShift->getOperand(0));
7998             ShlAmtCI = dyn_cast<ConstantInt>(LShift->getOperand(1));
7999             // since we truncate to TruncTy, the AddConstant should be of the
8000             // same type, so create a new Constant with type same as TruncTy.
8001             // Also, the Add constant should be shifted right by AShr amount.
8002             APInt AddOperand = AddOperandCI->getValue().ashr(AShrAmt);
8003             AddConstant = getConstant(AddOperand.trunc(BitWidth - AShrAmt));
8004             // we model the expression as sext(add(trunc(A), c << n)), since the
8005             // sext(trunc) part is already handled below, we create a
8006             // AddExpr(TruncExp) which will be used later.
8007             AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy);
8008           }
8009         }
8010       } else if (L && L->getOpcode() == Instruction::Shl) {
8011         // X = Shl A, n
8012         // Y = AShr X, m
8013         // Both n and m are constant.
8014 
8015         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
8016         ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
8017         AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy);
8018       }
8019 
8020       if (AddTruncateExpr && ShlAmtCI) {
8021         // We can merge the two given cases into a single SCEV statement,
8022         // incase n = m, the mul expression will be 2^0, so it gets resolved to
8023         // a simpler case. The following code handles the two cases:
8024         //
8025         // 1) For a two-shift sext-inreg, i.e. n = m,
8026         //    use sext(trunc(x)) as the SCEV expression.
8027         //
8028         // 2) When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
8029         //    expression. We already checked that ShlAmt < BitWidth, so
8030         //    the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
8031         //    ShlAmt - AShrAmt < Amt.
8032         const APInt &ShlAmt = ShlAmtCI->getValue();
8033         if (ShlAmt.ult(BitWidth) && ShlAmt.uge(AShrAmt)) {
8034           APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
8035                                           ShlAmtCI->getZExtValue() - AShrAmt);
8036           const SCEV *CompositeExpr =
8037               getMulExpr(AddTruncateExpr, getConstant(Mul));
8038           if (L->getOpcode() != Instruction::Shl)
8039             CompositeExpr = getAddExpr(CompositeExpr, AddConstant);
8040 
8041           return getSignExtendExpr(CompositeExpr, OuterTy);
8042         }
8043       }
8044       break;
8045     }
8046   }
8047 
8048   switch (U->getOpcode()) {
8049   case Instruction::Trunc:
8050     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
8051 
8052   case Instruction::ZExt:
8053     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
8054 
8055   case Instruction::SExt:
8056     if (auto BO = MatchBinaryOp(U->getOperand(0), getDataLayout(), AC, DT,
8057                                 dyn_cast<Instruction>(V))) {
8058       // The NSW flag of a subtract does not always survive the conversion to
8059       // A + (-1)*B.  By pushing sign extension onto its operands we are much
8060       // more likely to preserve NSW and allow later AddRec optimisations.
8061       //
8062       // NOTE: This is effectively duplicating this logic from getSignExtend:
8063       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
8064       // but by that point the NSW information has potentially been lost.
8065       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
8066         Type *Ty = U->getType();
8067         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
8068         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
8069         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
8070       }
8071     }
8072     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
8073 
8074   case Instruction::BitCast:
8075     // BitCasts are no-op casts so we just eliminate the cast.
8076     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
8077       return getSCEV(U->getOperand(0));
8078     break;
8079 
8080   case Instruction::PtrToInt: {
8081     // Pointer to integer cast is straight-forward, so do model it.
8082     const SCEV *Op = getSCEV(U->getOperand(0));
8083     Type *DstIntTy = U->getType();
8084     // But only if effective SCEV (integer) type is wide enough to represent
8085     // all possible pointer values.
8086     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
8087     if (isa<SCEVCouldNotCompute>(IntOp))
8088       return getUnknown(V);
8089     return IntOp;
8090   }
8091   case Instruction::IntToPtr:
8092     // Just don't deal with inttoptr casts.
8093     return getUnknown(V);
8094 
8095   case Instruction::SDiv:
8096     // If both operands are non-negative, this is just an udiv.
8097     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
8098         isKnownNonNegative(getSCEV(U->getOperand(1))))
8099       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
8100     break;
8101 
8102   case Instruction::SRem:
8103     // If both operands are non-negative, this is just an urem.
8104     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
8105         isKnownNonNegative(getSCEV(U->getOperand(1))))
8106       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
8107     break;
8108 
8109   case Instruction::GetElementPtr:
8110     return createNodeForGEP(cast<GEPOperator>(U));
8111 
8112   case Instruction::PHI:
8113     return createNodeForPHI(cast<PHINode>(U));
8114 
8115   case Instruction::Select:
8116     return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1),
8117                                     U->getOperand(2));
8118 
8119   case Instruction::Call:
8120   case Instruction::Invoke:
8121     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
8122       return getSCEV(RV);
8123 
8124     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
8125       switch (II->getIntrinsicID()) {
8126       case Intrinsic::abs:
8127         return getAbsExpr(
8128             getSCEV(II->getArgOperand(0)),
8129             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
8130       case Intrinsic::umax:
8131         LHS = getSCEV(II->getArgOperand(0));
8132         RHS = getSCEV(II->getArgOperand(1));
8133         return getUMaxExpr(LHS, RHS);
8134       case Intrinsic::umin:
8135         LHS = getSCEV(II->getArgOperand(0));
8136         RHS = getSCEV(II->getArgOperand(1));
8137         return getUMinExpr(LHS, RHS);
8138       case Intrinsic::smax:
8139         LHS = getSCEV(II->getArgOperand(0));
8140         RHS = getSCEV(II->getArgOperand(1));
8141         return getSMaxExpr(LHS, RHS);
8142       case Intrinsic::smin:
8143         LHS = getSCEV(II->getArgOperand(0));
8144         RHS = getSCEV(II->getArgOperand(1));
8145         return getSMinExpr(LHS, RHS);
8146       case Intrinsic::usub_sat: {
8147         const SCEV *X = getSCEV(II->getArgOperand(0));
8148         const SCEV *Y = getSCEV(II->getArgOperand(1));
8149         const SCEV *ClampedY = getUMinExpr(X, Y);
8150         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
8151       }
8152       case Intrinsic::uadd_sat: {
8153         const SCEV *X = getSCEV(II->getArgOperand(0));
8154         const SCEV *Y = getSCEV(II->getArgOperand(1));
8155         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
8156         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
8157       }
8158       case Intrinsic::start_loop_iterations:
8159       case Intrinsic::annotation:
8160       case Intrinsic::ptr_annotation:
8161         // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is
8162         // just eqivalent to the first operand for SCEV purposes.
8163         return getSCEV(II->getArgOperand(0));
8164       case Intrinsic::vscale:
8165         return getVScale(II->getType());
8166       default:
8167         break;
8168       }
8169     }
8170     break;
8171   }
8172 
8173   return getUnknown(V);
8174 }
8175 
8176 //===----------------------------------------------------------------------===//
8177 //                   Iteration Count Computation Code
8178 //
8179 
8180 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
8181   if (isa<SCEVCouldNotCompute>(ExitCount))
8182     return getCouldNotCompute();
8183 
8184   auto *ExitCountType = ExitCount->getType();
8185   assert(ExitCountType->isIntegerTy());
8186   auto *EvalTy = Type::getIntNTy(ExitCountType->getContext(),
8187                                  1 + ExitCountType->getScalarSizeInBits());
8188   return getTripCountFromExitCount(ExitCount, EvalTy, nullptr);
8189 }
8190 
8191 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
8192                                                        Type *EvalTy,
8193                                                        const Loop *L) {
8194   if (isa<SCEVCouldNotCompute>(ExitCount))
8195     return getCouldNotCompute();
8196 
8197   unsigned ExitCountSize = getTypeSizeInBits(ExitCount->getType());
8198   unsigned EvalSize = EvalTy->getPrimitiveSizeInBits();
8199 
8200   auto CanAddOneWithoutOverflow = [&]() {
8201     ConstantRange ExitCountRange =
8202       getRangeRef(ExitCount, RangeSignHint::HINT_RANGE_UNSIGNED);
8203     if (!ExitCountRange.contains(APInt::getMaxValue(ExitCountSize)))
8204       return true;
8205 
8206     return L && isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, ExitCount,
8207                                          getMinusOne(ExitCount->getType()));
8208   };
8209 
8210   // If we need to zero extend the backedge count, check if we can add one to
8211   // it prior to zero extending without overflow. Provided this is safe, it
8212   // allows better simplification of the +1.
8213   if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow())
8214     return getZeroExtendExpr(
8215         getAddExpr(ExitCount, getOne(ExitCount->getType())), EvalTy);
8216 
8217   // Get the total trip count from the count by adding 1.  This may wrap.
8218   return getAddExpr(getTruncateOrZeroExtend(ExitCount, EvalTy), getOne(EvalTy));
8219 }
8220 
8221 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
8222   if (!ExitCount)
8223     return 0;
8224 
8225   ConstantInt *ExitConst = ExitCount->getValue();
8226 
8227   // Guard against huge trip counts.
8228   if (ExitConst->getValue().getActiveBits() > 32)
8229     return 0;
8230 
8231   // In case of integer overflow, this returns 0, which is correct.
8232   return ((unsigned)ExitConst->getZExtValue()) + 1;
8233 }
8234 
8235 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
8236   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
8237   return getConstantTripCount(ExitCount);
8238 }
8239 
8240 unsigned
8241 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
8242                                            const BasicBlock *ExitingBlock) {
8243   assert(ExitingBlock && "Must pass a non-null exiting block!");
8244   assert(L->isLoopExiting(ExitingBlock) &&
8245          "Exiting block must actually branch out of the loop!");
8246   const SCEVConstant *ExitCount =
8247       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
8248   return getConstantTripCount(ExitCount);
8249 }
8250 
8251 unsigned ScalarEvolution::getSmallConstantMaxTripCount(
8252     const Loop *L, SmallVectorImpl<const SCEVPredicate *> *Predicates) {
8253 
8254   const auto *MaxExitCount =
8255       Predicates ? getPredicatedConstantMaxBackedgeTakenCount(L, *Predicates)
8256                  : getConstantMaxBackedgeTakenCount(L);
8257   return getConstantTripCount(dyn_cast<SCEVConstant>(MaxExitCount));
8258 }
8259 
8260 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
8261   SmallVector<BasicBlock *, 8> ExitingBlocks;
8262   L->getExitingBlocks(ExitingBlocks);
8263 
8264   std::optional<unsigned> Res;
8265   for (auto *ExitingBB : ExitingBlocks) {
8266     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
8267     if (!Res)
8268       Res = Multiple;
8269     Res = (unsigned)std::gcd(*Res, Multiple);
8270   }
8271   return Res.value_or(1);
8272 }
8273 
8274 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8275                                                        const SCEV *ExitCount) {
8276   if (ExitCount == getCouldNotCompute())
8277     return 1;
8278 
8279   // Get the trip count
8280   const SCEV *TCExpr = getTripCountFromExitCount(applyLoopGuards(ExitCount, L));
8281 
8282   APInt Multiple = getNonZeroConstantMultiple(TCExpr);
8283   // If a trip multiple is huge (>=2^32), the trip count is still divisible by
8284   // the greatest power of 2 divisor less than 2^32.
8285   return Multiple.getActiveBits() > 32
8286              ? 1U << std::min((unsigned)31, Multiple.countTrailingZeros())
8287              : (unsigned)Multiple.zextOrTrunc(32).getZExtValue();
8288 }
8289 
8290 /// Returns the largest constant divisor of the trip count of this loop as a
8291 /// normal unsigned value, if possible. This means that the actual trip count is
8292 /// always a multiple of the returned value (don't forget the trip count could
8293 /// very well be zero as well!).
8294 ///
8295 /// Returns 1 if the trip count is unknown or not guaranteed to be the
8296 /// multiple of a constant (which is also the case if the trip count is simply
8297 /// constant, use getSmallConstantTripCount for that case), Will also return 1
8298 /// if the trip count is very large (>= 2^32).
8299 ///
8300 /// As explained in the comments for getSmallConstantTripCount, this assumes
8301 /// that control exits the loop via ExitingBlock.
8302 unsigned
8303 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8304                                               const BasicBlock *ExitingBlock) {
8305   assert(ExitingBlock && "Must pass a non-null exiting block!");
8306   assert(L->isLoopExiting(ExitingBlock) &&
8307          "Exiting block must actually branch out of the loop!");
8308   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
8309   return getSmallConstantTripMultiple(L, ExitCount);
8310 }
8311 
8312 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
8313                                           const BasicBlock *ExitingBlock,
8314                                           ExitCountKind Kind) {
8315   switch (Kind) {
8316   case Exact:
8317     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
8318   case SymbolicMaximum:
8319     return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this);
8320   case ConstantMaximum:
8321     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
8322   };
8323   llvm_unreachable("Invalid ExitCountKind!");
8324 }
8325 
8326 const SCEV *ScalarEvolution::getPredicatedExitCount(
8327     const Loop *L, const BasicBlock *ExitingBlock,
8328     SmallVectorImpl<const SCEVPredicate *> *Predicates, ExitCountKind Kind) {
8329   switch (Kind) {
8330   case Exact:
8331     return getPredicatedBackedgeTakenInfo(L).getExact(ExitingBlock, this,
8332                                                       Predicates);
8333   case SymbolicMaximum:
8334     return getPredicatedBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this,
8335                                                             Predicates);
8336   case ConstantMaximum:
8337     return getPredicatedBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this,
8338                                                             Predicates);
8339   };
8340   llvm_unreachable("Invalid ExitCountKind!");
8341 }
8342 
8343 const SCEV *ScalarEvolution::getPredicatedBackedgeTakenCount(
8344     const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Preds) {
8345   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
8346 }
8347 
8348 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
8349                                                    ExitCountKind Kind) {
8350   switch (Kind) {
8351   case Exact:
8352     return getBackedgeTakenInfo(L).getExact(L, this);
8353   case ConstantMaximum:
8354     return getBackedgeTakenInfo(L).getConstantMax(this);
8355   case SymbolicMaximum:
8356     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
8357   };
8358   llvm_unreachable("Invalid ExitCountKind!");
8359 }
8360 
8361 const SCEV *ScalarEvolution::getPredicatedSymbolicMaxBackedgeTakenCount(
8362     const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Preds) {
8363   return getPredicatedBackedgeTakenInfo(L).getSymbolicMax(L, this, &Preds);
8364 }
8365 
8366 const SCEV *ScalarEvolution::getPredicatedConstantMaxBackedgeTakenCount(
8367     const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Preds) {
8368   return getPredicatedBackedgeTakenInfo(L).getConstantMax(this, &Preds);
8369 }
8370 
8371 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
8372   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
8373 }
8374 
8375 /// Push PHI nodes in the header of the given loop onto the given Worklist.
8376 static void PushLoopPHIs(const Loop *L,
8377                          SmallVectorImpl<Instruction *> &Worklist,
8378                          SmallPtrSetImpl<Instruction *> &Visited) {
8379   BasicBlock *Header = L->getHeader();
8380 
8381   // Push all Loop-header PHIs onto the Worklist stack.
8382   for (PHINode &PN : Header->phis())
8383     if (Visited.insert(&PN).second)
8384       Worklist.push_back(&PN);
8385 }
8386 
8387 ScalarEvolution::BackedgeTakenInfo &
8388 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
8389   auto &BTI = getBackedgeTakenInfo(L);
8390   if (BTI.hasFullInfo())
8391     return BTI;
8392 
8393   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8394 
8395   if (!Pair.second)
8396     return Pair.first->second;
8397 
8398   BackedgeTakenInfo Result =
8399       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
8400 
8401   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
8402 }
8403 
8404 ScalarEvolution::BackedgeTakenInfo &
8405 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
8406   // Initially insert an invalid entry for this loop. If the insertion
8407   // succeeds, proceed to actually compute a backedge-taken count and
8408   // update the value. The temporary CouldNotCompute value tells SCEV
8409   // code elsewhere that it shouldn't attempt to request a new
8410   // backedge-taken count, which could result in infinite recursion.
8411   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
8412       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8413   if (!Pair.second)
8414     return Pair.first->second;
8415 
8416   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
8417   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
8418   // must be cleared in this scope.
8419   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
8420 
8421   // Now that we know more about the trip count for this loop, forget any
8422   // existing SCEV values for PHI nodes in this loop since they are only
8423   // conservative estimates made without the benefit of trip count
8424   // information. This invalidation is not necessary for correctness, and is
8425   // only done to produce more precise results.
8426   if (Result.hasAnyInfo()) {
8427     // Invalidate any expression using an addrec in this loop.
8428     SmallVector<const SCEV *, 8> ToForget;
8429     auto LoopUsersIt = LoopUsers.find(L);
8430     if (LoopUsersIt != LoopUsers.end())
8431       append_range(ToForget, LoopUsersIt->second);
8432     forgetMemoizedResults(ToForget);
8433 
8434     // Invalidate constant-evolved loop header phis.
8435     for (PHINode &PN : L->getHeader()->phis())
8436       ConstantEvolutionLoopExitValue.erase(&PN);
8437   }
8438 
8439   // Re-lookup the insert position, since the call to
8440   // computeBackedgeTakenCount above could result in a
8441   // recusive call to getBackedgeTakenInfo (on a different
8442   // loop), which would invalidate the iterator computed
8443   // earlier.
8444   return BackedgeTakenCounts.find(L)->second = std::move(Result);
8445 }
8446 
8447 void ScalarEvolution::forgetAllLoops() {
8448   // This method is intended to forget all info about loops. It should
8449   // invalidate caches as if the following happened:
8450   // - The trip counts of all loops have changed arbitrarily
8451   // - Every llvm::Value has been updated in place to produce a different
8452   // result.
8453   BackedgeTakenCounts.clear();
8454   PredicatedBackedgeTakenCounts.clear();
8455   BECountUsers.clear();
8456   LoopPropertiesCache.clear();
8457   ConstantEvolutionLoopExitValue.clear();
8458   ValueExprMap.clear();
8459   ValuesAtScopes.clear();
8460   ValuesAtScopesUsers.clear();
8461   LoopDispositions.clear();
8462   BlockDispositions.clear();
8463   UnsignedRanges.clear();
8464   SignedRanges.clear();
8465   ExprValueMap.clear();
8466   HasRecMap.clear();
8467   ConstantMultipleCache.clear();
8468   PredicatedSCEVRewrites.clear();
8469   FoldCache.clear();
8470   FoldCacheUser.clear();
8471 }
8472 void ScalarEvolution::visitAndClearUsers(
8473     SmallVectorImpl<Instruction *> &Worklist,
8474     SmallPtrSetImpl<Instruction *> &Visited,
8475     SmallVectorImpl<const SCEV *> &ToForget) {
8476   while (!Worklist.empty()) {
8477     Instruction *I = Worklist.pop_back_val();
8478     if (!isSCEVable(I->getType()) && !isa<WithOverflowInst>(I))
8479       continue;
8480 
8481     ValueExprMapType::iterator It =
8482         ValueExprMap.find_as(static_cast<Value *>(I));
8483     if (It != ValueExprMap.end()) {
8484       eraseValueFromMap(It->first);
8485       ToForget.push_back(It->second);
8486       if (PHINode *PN = dyn_cast<PHINode>(I))
8487         ConstantEvolutionLoopExitValue.erase(PN);
8488     }
8489 
8490     PushDefUseChildren(I, Worklist, Visited);
8491   }
8492 }
8493 
8494 void ScalarEvolution::forgetLoop(const Loop *L) {
8495   SmallVector<const Loop *, 16> LoopWorklist(1, L);
8496   SmallVector<Instruction *, 32> Worklist;
8497   SmallPtrSet<Instruction *, 16> Visited;
8498   SmallVector<const SCEV *, 16> ToForget;
8499 
8500   // Iterate over all the loops and sub-loops to drop SCEV information.
8501   while (!LoopWorklist.empty()) {
8502     auto *CurrL = LoopWorklist.pop_back_val();
8503 
8504     // Drop any stored trip count value.
8505     forgetBackedgeTakenCounts(CurrL, /* Predicated */ false);
8506     forgetBackedgeTakenCounts(CurrL, /* Predicated */ true);
8507 
8508     // Drop information about predicated SCEV rewrites for this loop.
8509     for (auto I = PredicatedSCEVRewrites.begin();
8510          I != PredicatedSCEVRewrites.end();) {
8511       std::pair<const SCEV *, const Loop *> Entry = I->first;
8512       if (Entry.second == CurrL)
8513         PredicatedSCEVRewrites.erase(I++);
8514       else
8515         ++I;
8516     }
8517 
8518     auto LoopUsersItr = LoopUsers.find(CurrL);
8519     if (LoopUsersItr != LoopUsers.end()) {
8520       ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
8521                 LoopUsersItr->second.end());
8522     }
8523 
8524     // Drop information about expressions based on loop-header PHIs.
8525     PushLoopPHIs(CurrL, Worklist, Visited);
8526     visitAndClearUsers(Worklist, Visited, ToForget);
8527 
8528     LoopPropertiesCache.erase(CurrL);
8529     // Forget all contained loops too, to avoid dangling entries in the
8530     // ValuesAtScopes map.
8531     LoopWorklist.append(CurrL->begin(), CurrL->end());
8532   }
8533   forgetMemoizedResults(ToForget);
8534 }
8535 
8536 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
8537   forgetLoop(L->getOutermostLoop());
8538 }
8539 
8540 void ScalarEvolution::forgetValue(Value *V) {
8541   Instruction *I = dyn_cast<Instruction>(V);
8542   if (!I) return;
8543 
8544   // Drop information about expressions based on loop-header PHIs.
8545   SmallVector<Instruction *, 16> Worklist;
8546   SmallPtrSet<Instruction *, 8> Visited;
8547   SmallVector<const SCEV *, 8> ToForget;
8548   Worklist.push_back(I);
8549   Visited.insert(I);
8550   visitAndClearUsers(Worklist, Visited, ToForget);
8551 
8552   forgetMemoizedResults(ToForget);
8553 }
8554 
8555 void ScalarEvolution::forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V) {
8556   if (!isSCEVable(V->getType()))
8557     return;
8558 
8559   // If SCEV looked through a trivial LCSSA phi node, we might have SCEV's
8560   // directly using a SCEVUnknown/SCEVAddRec defined in the loop. After an
8561   // extra predecessor is added, this is no longer valid. Find all Unknowns and
8562   // AddRecs defined in the loop and invalidate any SCEV's making use of them.
8563   if (const SCEV *S = getExistingSCEV(V)) {
8564     struct InvalidationRootCollector {
8565       Loop *L;
8566       SmallVector<const SCEV *, 8> Roots;
8567 
8568       InvalidationRootCollector(Loop *L) : L(L) {}
8569 
8570       bool follow(const SCEV *S) {
8571         if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
8572           if (auto *I = dyn_cast<Instruction>(SU->getValue()))
8573             if (L->contains(I))
8574               Roots.push_back(S);
8575         } else if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
8576           if (L->contains(AddRec->getLoop()))
8577             Roots.push_back(S);
8578         }
8579         return true;
8580       }
8581       bool isDone() const { return false; }
8582     };
8583 
8584     InvalidationRootCollector C(L);
8585     visitAll(S, C);
8586     forgetMemoizedResults(C.Roots);
8587   }
8588 
8589   // Also perform the normal invalidation.
8590   forgetValue(V);
8591 }
8592 
8593 void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); }
8594 
8595 void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) {
8596   // Unless a specific value is passed to invalidation, completely clear both
8597   // caches.
8598   if (!V) {
8599     BlockDispositions.clear();
8600     LoopDispositions.clear();
8601     return;
8602   }
8603 
8604   if (!isSCEVable(V->getType()))
8605     return;
8606 
8607   const SCEV *S = getExistingSCEV(V);
8608   if (!S)
8609     return;
8610 
8611   // Invalidate the block and loop dispositions cached for S. Dispositions of
8612   // S's users may change if S's disposition changes (i.e. a user may change to
8613   // loop-invariant, if S changes to loop invariant), so also invalidate
8614   // dispositions of S's users recursively.
8615   SmallVector<const SCEV *, 8> Worklist = {S};
8616   SmallPtrSet<const SCEV *, 8> Seen = {S};
8617   while (!Worklist.empty()) {
8618     const SCEV *Curr = Worklist.pop_back_val();
8619     bool LoopDispoRemoved = LoopDispositions.erase(Curr);
8620     bool BlockDispoRemoved = BlockDispositions.erase(Curr);
8621     if (!LoopDispoRemoved && !BlockDispoRemoved)
8622       continue;
8623     auto Users = SCEVUsers.find(Curr);
8624     if (Users != SCEVUsers.end())
8625       for (const auto *User : Users->second)
8626         if (Seen.insert(User).second)
8627           Worklist.push_back(User);
8628   }
8629 }
8630 
8631 /// Get the exact loop backedge taken count considering all loop exits. A
8632 /// computable result can only be returned for loops with all exiting blocks
8633 /// dominating the latch. howFarToZero assumes that the limit of each loop test
8634 /// is never skipped. This is a valid assumption as long as the loop exits via
8635 /// that test. For precise results, it is the caller's responsibility to specify
8636 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
8637 const SCEV *ScalarEvolution::BackedgeTakenInfo::getExact(
8638     const Loop *L, ScalarEvolution *SE,
8639     SmallVectorImpl<const SCEVPredicate *> *Preds) const {
8640   // If any exits were not computable, the loop is not computable.
8641   if (!isComplete() || ExitNotTaken.empty())
8642     return SE->getCouldNotCompute();
8643 
8644   const BasicBlock *Latch = L->getLoopLatch();
8645   // All exiting blocks we have collected must dominate the only backedge.
8646   if (!Latch)
8647     return SE->getCouldNotCompute();
8648 
8649   // All exiting blocks we have gathered dominate loop's latch, so exact trip
8650   // count is simply a minimum out of all these calculated exit counts.
8651   SmallVector<const SCEV *, 2> Ops;
8652   for (const auto &ENT : ExitNotTaken) {
8653     const SCEV *BECount = ENT.ExactNotTaken;
8654     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
8655     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
8656            "We should only have known counts for exiting blocks that dominate "
8657            "latch!");
8658 
8659     Ops.push_back(BECount);
8660 
8661     if (Preds)
8662       append_range(*Preds, ENT.Predicates);
8663 
8664     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
8665            "Predicate should be always true!");
8666   }
8667 
8668   // If an earlier exit exits on the first iteration (exit count zero), then
8669   // a later poison exit count should not propagate into the result. This are
8670   // exactly the semantics provided by umin_seq.
8671   return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true);
8672 }
8673 
8674 const ScalarEvolution::ExitNotTakenInfo *
8675 ScalarEvolution::BackedgeTakenInfo::getExitNotTaken(
8676     const BasicBlock *ExitingBlock,
8677     SmallVectorImpl<const SCEVPredicate *> *Predicates) const {
8678   for (const auto &ENT : ExitNotTaken)
8679     if (ENT.ExitingBlock == ExitingBlock) {
8680       if (ENT.hasAlwaysTruePredicate())
8681         return &ENT;
8682       else if (Predicates) {
8683         append_range(*Predicates, ENT.Predicates);
8684         return &ENT;
8685       }
8686     }
8687 
8688   return nullptr;
8689 }
8690 
8691 /// getConstantMax - Get the constant max backedge taken count for the loop.
8692 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8693     ScalarEvolution *SE,
8694     SmallVectorImpl<const SCEVPredicate *> *Predicates) const {
8695   if (!getConstantMax())
8696     return SE->getCouldNotCompute();
8697 
8698   for (const auto &ENT : ExitNotTaken)
8699     if (!ENT.hasAlwaysTruePredicate()) {
8700       if (!Predicates)
8701         return SE->getCouldNotCompute();
8702       append_range(*Predicates, ENT.Predicates);
8703     }
8704 
8705   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
8706           isa<SCEVConstant>(getConstantMax())) &&
8707          "No point in having a non-constant max backedge taken count!");
8708   return getConstantMax();
8709 }
8710 
8711 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(
8712     const Loop *L, ScalarEvolution *SE,
8713     SmallVectorImpl<const SCEVPredicate *> *Predicates) {
8714   if (!SymbolicMax) {
8715     // Form an expression for the maximum exit count possible for this loop. We
8716     // merge the max and exact information to approximate a version of
8717     // getConstantMaxBackedgeTakenCount which isn't restricted to just
8718     // constants.
8719     SmallVector<const SCEV *, 4> ExitCounts;
8720 
8721     for (const auto &ENT : ExitNotTaken) {
8722       const SCEV *ExitCount = ENT.SymbolicMaxNotTaken;
8723       if (!isa<SCEVCouldNotCompute>(ExitCount)) {
8724         assert(SE->DT.dominates(ENT.ExitingBlock, L->getLoopLatch()) &&
8725                "We should only have known counts for exiting blocks that "
8726                "dominate latch!");
8727         ExitCounts.push_back(ExitCount);
8728         if (Predicates)
8729           append_range(*Predicates, ENT.Predicates);
8730 
8731         assert((Predicates || ENT.hasAlwaysTruePredicate()) &&
8732                "Predicate should be always true!");
8733       }
8734     }
8735     if (ExitCounts.empty())
8736       SymbolicMax = SE->getCouldNotCompute();
8737     else
8738       SymbolicMax =
8739           SE->getUMinFromMismatchedTypes(ExitCounts, /*Sequential*/ true);
8740   }
8741   return SymbolicMax;
8742 }
8743 
8744 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8745     ScalarEvolution *SE) const {
8746   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8747     return !ENT.hasAlwaysTruePredicate();
8748   };
8749   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
8750 }
8751 
8752 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
8753     : ExitLimit(E, E, E, false) {}
8754 
8755 ScalarEvolution::ExitLimit::ExitLimit(
8756     const SCEV *E, const SCEV *ConstantMaxNotTaken,
8757     const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8758     ArrayRef<ArrayRef<const SCEVPredicate *>> PredLists)
8759     : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken),
8760       SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) {
8761   // If we prove the max count is zero, so is the symbolic bound.  This happens
8762   // in practice due to differences in a) how context sensitive we've chosen
8763   // to be and b) how we reason about bounds implied by UB.
8764   if (ConstantMaxNotTaken->isZero()) {
8765     this->ExactNotTaken = E = ConstantMaxNotTaken;
8766     this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken;
8767   }
8768 
8769   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8770           !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8771          "Exact is not allowed to be less precise than Constant Max");
8772   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8773           !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) &&
8774          "Exact is not allowed to be less precise than Symbolic Max");
8775   assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) ||
8776           !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8777          "Symbolic Max is not allowed to be less precise than Constant Max");
8778   assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8779           isa<SCEVConstant>(ConstantMaxNotTaken)) &&
8780          "No point in having a non-constant max backedge taken count!");
8781   SmallPtrSet<const SCEVPredicate *, 4> SeenPreds;
8782   for (const auto PredList : PredLists)
8783     for (const auto *P : PredList) {
8784       if (SeenPreds.contains(P))
8785         continue;
8786       assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
8787       SeenPreds.insert(P);
8788       Predicates.push_back(P);
8789     }
8790   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
8791          "Backedge count should be int");
8792   assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8793           !ConstantMaxNotTaken->getType()->isPointerTy()) &&
8794          "Max backedge count should be int");
8795 }
8796 
8797 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E,
8798                                       const SCEV *ConstantMaxNotTaken,
8799                                       const SCEV *SymbolicMaxNotTaken,
8800                                       bool MaxOrZero,
8801                                       ArrayRef<const SCEVPredicate *> PredList)
8802     : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero,
8803                 ArrayRef({PredList})) {}
8804 
8805 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8806 /// computable exit into a persistent ExitNotTakenInfo array.
8807 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8808     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
8809     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
8810     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
8811   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8812 
8813   ExitNotTaken.reserve(ExitCounts.size());
8814   std::transform(ExitCounts.begin(), ExitCounts.end(),
8815                  std::back_inserter(ExitNotTaken),
8816                  [&](const EdgeExitInfo &EEI) {
8817         BasicBlock *ExitBB = EEI.first;
8818         const ExitLimit &EL = EEI.second;
8819         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken,
8820                                 EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken,
8821                                 EL.Predicates);
8822   });
8823   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
8824           isa<SCEVConstant>(ConstantMax)) &&
8825          "No point in having a non-constant max backedge taken count!");
8826 }
8827 
8828 /// Compute the number of times the backedge of the specified loop will execute.
8829 ScalarEvolution::BackedgeTakenInfo
8830 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
8831                                            bool AllowPredicates) {
8832   SmallVector<BasicBlock *, 8> ExitingBlocks;
8833   L->getExitingBlocks(ExitingBlocks);
8834 
8835   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8836 
8837   SmallVector<EdgeExitInfo, 4> ExitCounts;
8838   bool CouldComputeBECount = true;
8839   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
8840   const SCEV *MustExitMaxBECount = nullptr;
8841   const SCEV *MayExitMaxBECount = nullptr;
8842   bool MustExitMaxOrZero = false;
8843   bool IsOnlyExit = ExitingBlocks.size() == 1;
8844 
8845   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8846   // and compute maxBECount.
8847   // Do a union of all the predicates here.
8848   for (BasicBlock *ExitBB : ExitingBlocks) {
8849     // We canonicalize untaken exits to br (constant), ignore them so that
8850     // proving an exit untaken doesn't negatively impact our ability to reason
8851     // about the loop as whole.
8852     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
8853       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
8854         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8855         if (ExitIfTrue == CI->isZero())
8856           continue;
8857       }
8858 
8859     ExitLimit EL = computeExitLimit(L, ExitBB, IsOnlyExit, AllowPredicates);
8860 
8861     assert((AllowPredicates || EL.Predicates.empty()) &&
8862            "Predicated exit limit when predicates are not allowed!");
8863 
8864     // 1. For each exit that can be computed, add an entry to ExitCounts.
8865     // CouldComputeBECount is true only if all exits can be computed.
8866     if (EL.ExactNotTaken != getCouldNotCompute())
8867       ++NumExitCountsComputed;
8868     else
8869       // We couldn't compute an exact value for this exit, so
8870       // we won't be able to compute an exact value for the loop.
8871       CouldComputeBECount = false;
8872     // Remember exit count if either exact or symbolic is known. Because
8873     // Exact always implies symbolic, only check symbolic.
8874     if (EL.SymbolicMaxNotTaken != getCouldNotCompute())
8875       ExitCounts.emplace_back(ExitBB, EL);
8876     else {
8877       assert(EL.ExactNotTaken == getCouldNotCompute() &&
8878              "Exact is known but symbolic isn't?");
8879       ++NumExitCountsNotComputed;
8880     }
8881 
8882     // 2. Derive the loop's MaxBECount from each exit's max number of
8883     // non-exiting iterations. Partition the loop exits into two kinds:
8884     // LoopMustExits and LoopMayExits.
8885     //
8886     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8887     // is a LoopMayExit.  If any computable LoopMustExit is found, then
8888     // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable
8889     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8890     // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than
8891     // any
8892     // computable EL.ConstantMaxNotTaken.
8893     if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch &&
8894         DT.dominates(ExitBB, Latch)) {
8895       if (!MustExitMaxBECount) {
8896         MustExitMaxBECount = EL.ConstantMaxNotTaken;
8897         MustExitMaxOrZero = EL.MaxOrZero;
8898       } else {
8899         MustExitMaxBECount = getUMinFromMismatchedTypes(MustExitMaxBECount,
8900                                                         EL.ConstantMaxNotTaken);
8901       }
8902     } else if (MayExitMaxBECount != getCouldNotCompute()) {
8903       if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute())
8904         MayExitMaxBECount = EL.ConstantMaxNotTaken;
8905       else {
8906         MayExitMaxBECount = getUMaxFromMismatchedTypes(MayExitMaxBECount,
8907                                                        EL.ConstantMaxNotTaken);
8908       }
8909     }
8910   }
8911   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8912     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
8913   // The loop backedge will be taken the maximum or zero times if there's
8914   // a single exit that must be taken the maximum or zero times.
8915   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8916 
8917   // Remember which SCEVs are used in exit limits for invalidation purposes.
8918   // We only care about non-constant SCEVs here, so we can ignore
8919   // EL.ConstantMaxNotTaken
8920   // and MaxBECount, which must be SCEVConstant.
8921   for (const auto &Pair : ExitCounts) {
8922     if (!isa<SCEVConstant>(Pair.second.ExactNotTaken))
8923       BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates});
8924     if (!isa<SCEVConstant>(Pair.second.SymbolicMaxNotTaken))
8925       BECountUsers[Pair.second.SymbolicMaxNotTaken].insert(
8926           {L, AllowPredicates});
8927   }
8928   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8929                            MaxBECount, MaxOrZero);
8930 }
8931 
8932 ScalarEvolution::ExitLimit
8933 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
8934                                   bool IsOnlyExit, bool AllowPredicates) {
8935   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
8936   // If our exiting block does not dominate the latch, then its connection with
8937   // loop's exit limit may be far from trivial.
8938   const BasicBlock *Latch = L->getLoopLatch();
8939   if (!Latch || !DT.dominates(ExitingBlock, Latch))
8940     return getCouldNotCompute();
8941 
8942   Instruction *Term = ExitingBlock->getTerminator();
8943   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
8944     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
8945     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8946     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
8947            "It should have one successor in loop and one exit block!");
8948     // Proceed to the next level to examine the exit condition expression.
8949     return computeExitLimitFromCond(L, BI->getCondition(), ExitIfTrue,
8950                                     /*ControlsOnlyExit=*/IsOnlyExit,
8951                                     AllowPredicates);
8952   }
8953 
8954   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
8955     // For switch, make sure that there is a single exit from the loop.
8956     BasicBlock *Exit = nullptr;
8957     for (auto *SBB : successors(ExitingBlock))
8958       if (!L->contains(SBB)) {
8959         if (Exit) // Multiple exit successors.
8960           return getCouldNotCompute();
8961         Exit = SBB;
8962       }
8963     assert(Exit && "Exiting block must have at least one exit");
8964     return computeExitLimitFromSingleExitSwitch(
8965         L, SI, Exit, /*ControlsOnlyExit=*/IsOnlyExit);
8966   }
8967 
8968   return getCouldNotCompute();
8969 }
8970 
8971 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8972     const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit,
8973     bool AllowPredicates) {
8974   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8975   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8976                                         ControlsOnlyExit, AllowPredicates);
8977 }
8978 
8979 std::optional<ScalarEvolution::ExitLimit>
8980 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8981                                       bool ExitIfTrue, bool ControlsOnlyExit,
8982                                       bool AllowPredicates) {
8983   (void)this->L;
8984   (void)this->ExitIfTrue;
8985   (void)this->AllowPredicates;
8986 
8987   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8988          this->AllowPredicates == AllowPredicates &&
8989          "Variance in assumed invariant key components!");
8990   auto Itr = TripCountMap.find({ExitCond, ControlsOnlyExit});
8991   if (Itr == TripCountMap.end())
8992     return std::nullopt;
8993   return Itr->second;
8994 }
8995 
8996 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8997                                              bool ExitIfTrue,
8998                                              bool ControlsOnlyExit,
8999                                              bool AllowPredicates,
9000                                              const ExitLimit &EL) {
9001   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
9002          this->AllowPredicates == AllowPredicates &&
9003          "Variance in assumed invariant key components!");
9004 
9005   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsOnlyExit}, EL});
9006   assert(InsertResult.second && "Expected successful insertion!");
9007   (void)InsertResult;
9008   (void)ExitIfTrue;
9009 }
9010 
9011 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
9012     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
9013     bool ControlsOnlyExit, bool AllowPredicates) {
9014 
9015   if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit,
9016                                 AllowPredicates))
9017     return *MaybeEL;
9018 
9019   ExitLimit EL = computeExitLimitFromCondImpl(
9020       Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates);
9021   Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL);
9022   return EL;
9023 }
9024 
9025 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
9026     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
9027     bool ControlsOnlyExit, bool AllowPredicates) {
9028   // Handle BinOp conditions (And, Or).
9029   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
9030           Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates))
9031     return *LimitFromBinOp;
9032 
9033   // With an icmp, it may be feasible to compute an exact backedge-taken count.
9034   // Proceed to the next level to examine the icmp.
9035   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
9036     ExitLimit EL =
9037         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsOnlyExit);
9038     if (EL.hasFullInfo() || !AllowPredicates)
9039       return EL;
9040 
9041     // Try again, but use SCEV predicates this time.
9042     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue,
9043                                     ControlsOnlyExit,
9044                                     /*AllowPredicates=*/true);
9045   }
9046 
9047   // Check for a constant condition. These are normally stripped out by
9048   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
9049   // preserve the CFG and is temporarily leaving constant conditions
9050   // in place.
9051   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
9052     if (ExitIfTrue == !CI->getZExtValue())
9053       // The backedge is always taken.
9054       return getCouldNotCompute();
9055     // The backedge is never taken.
9056     return getZero(CI->getType());
9057   }
9058 
9059   // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
9060   // with a constant step, we can form an equivalent icmp predicate and figure
9061   // out how many iterations will be taken before we exit.
9062   const WithOverflowInst *WO;
9063   const APInt *C;
9064   if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) &&
9065       match(WO->getRHS(), m_APInt(C))) {
9066     ConstantRange NWR =
9067       ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
9068                                            WO->getNoWrapKind());
9069     CmpInst::Predicate Pred;
9070     APInt NewRHSC, Offset;
9071     NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
9072     if (!ExitIfTrue)
9073       Pred = ICmpInst::getInversePredicate(Pred);
9074     auto *LHS = getSCEV(WO->getLHS());
9075     if (Offset != 0)
9076       LHS = getAddExpr(LHS, getConstant(Offset));
9077     auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC),
9078                                        ControlsOnlyExit, AllowPredicates);
9079     if (EL.hasAnyInfo())
9080       return EL;
9081   }
9082 
9083   // If it's not an integer or pointer comparison then compute it the hard way.
9084   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
9085 }
9086 
9087 std::optional<ScalarEvolution::ExitLimit>
9088 ScalarEvolution::computeExitLimitFromCondFromBinOp(
9089     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
9090     bool ControlsOnlyExit, bool AllowPredicates) {
9091   // Check if the controlling expression for this loop is an And or Or.
9092   Value *Op0, *Op1;
9093   bool IsAnd = false;
9094   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
9095     IsAnd = true;
9096   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
9097     IsAnd = false;
9098   else
9099     return std::nullopt;
9100 
9101   // EitherMayExit is true in these two cases:
9102   //   br (and Op0 Op1), loop, exit
9103   //   br (or  Op0 Op1), exit, loop
9104   bool EitherMayExit = IsAnd ^ ExitIfTrue;
9105   ExitLimit EL0 = computeExitLimitFromCondCached(
9106       Cache, L, Op0, ExitIfTrue, ControlsOnlyExit && !EitherMayExit,
9107       AllowPredicates);
9108   ExitLimit EL1 = computeExitLimitFromCondCached(
9109       Cache, L, Op1, ExitIfTrue, ControlsOnlyExit && !EitherMayExit,
9110       AllowPredicates);
9111 
9112   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
9113   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
9114   if (isa<ConstantInt>(Op1))
9115     return Op1 == NeutralElement ? EL0 : EL1;
9116   if (isa<ConstantInt>(Op0))
9117     return Op0 == NeutralElement ? EL1 : EL0;
9118 
9119   const SCEV *BECount = getCouldNotCompute();
9120   const SCEV *ConstantMaxBECount = getCouldNotCompute();
9121   const SCEV *SymbolicMaxBECount = getCouldNotCompute();
9122   if (EitherMayExit) {
9123     bool UseSequentialUMin = !isa<BinaryOperator>(ExitCond);
9124     // Both conditions must be same for the loop to continue executing.
9125     // Choose the less conservative count.
9126     if (EL0.ExactNotTaken != getCouldNotCompute() &&
9127         EL1.ExactNotTaken != getCouldNotCompute()) {
9128       BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken,
9129                                            UseSequentialUMin);
9130     }
9131     if (EL0.ConstantMaxNotTaken == getCouldNotCompute())
9132       ConstantMaxBECount = EL1.ConstantMaxNotTaken;
9133     else if (EL1.ConstantMaxNotTaken == getCouldNotCompute())
9134       ConstantMaxBECount = EL0.ConstantMaxNotTaken;
9135     else
9136       ConstantMaxBECount = getUMinFromMismatchedTypes(EL0.ConstantMaxNotTaken,
9137                                                       EL1.ConstantMaxNotTaken);
9138     if (EL0.SymbolicMaxNotTaken == getCouldNotCompute())
9139       SymbolicMaxBECount = EL1.SymbolicMaxNotTaken;
9140     else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute())
9141       SymbolicMaxBECount = EL0.SymbolicMaxNotTaken;
9142     else
9143       SymbolicMaxBECount = getUMinFromMismatchedTypes(
9144           EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin);
9145   } else {
9146     // Both conditions must be same at the same time for the loop to exit.
9147     // For now, be conservative.
9148     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
9149       BECount = EL0.ExactNotTaken;
9150   }
9151 
9152   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
9153   // to be more aggressive when computing BECount than when computing
9154   // ConstantMaxBECount.  In these cases it is possible for EL0.ExactNotTaken
9155   // and
9156   // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and
9157   // EL1.ConstantMaxNotTaken to not.
9158   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
9159       !isa<SCEVCouldNotCompute>(BECount))
9160     ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
9161   if (isa<SCEVCouldNotCompute>(SymbolicMaxBECount))
9162     SymbolicMaxBECount =
9163         isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
9164   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
9165                    {ArrayRef(EL0.Predicates), ArrayRef(EL1.Predicates)});
9166 }
9167 
9168 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
9169     const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit,
9170     bool AllowPredicates) {
9171   // If the condition was exit on true, convert the condition to exit on false
9172   CmpPredicate Pred;
9173   if (!ExitIfTrue)
9174     Pred = ExitCond->getCmpPredicate();
9175   else
9176     Pred = ExitCond->getInverseCmpPredicate();
9177   const ICmpInst::Predicate OriginalPred = Pred;
9178 
9179   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
9180   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
9181 
9182   ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsOnlyExit,
9183                                           AllowPredicates);
9184   if (EL.hasAnyInfo())
9185     return EL;
9186 
9187   auto *ExhaustiveCount =
9188       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
9189 
9190   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
9191     return ExhaustiveCount;
9192 
9193   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
9194                                       ExitCond->getOperand(1), L, OriginalPred);
9195 }
9196 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
9197     const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS,
9198     bool ControlsOnlyExit, bool AllowPredicates) {
9199 
9200   // Try to evaluate any dependencies out of the loop.
9201   LHS = getSCEVAtScope(LHS, L);
9202   RHS = getSCEVAtScope(RHS, L);
9203 
9204   // At this point, we would like to compute how many iterations of the
9205   // loop the predicate will return true for these inputs.
9206   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
9207     // If there is a loop-invariant, force it into the RHS.
9208     std::swap(LHS, RHS);
9209     Pred = ICmpInst::getSwappedCmpPredicate(Pred);
9210   }
9211 
9212   bool ControllingFiniteLoop = ControlsOnlyExit && loopHasNoAbnormalExits(L) &&
9213                                loopIsFiniteByAssumption(L);
9214   // Simplify the operands before analyzing them.
9215   (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0);
9216 
9217   // If we have a comparison of a chrec against a constant, try to use value
9218   // ranges to answer this query.
9219   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
9220     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
9221       if (AddRec->getLoop() == L) {
9222         // Form the constant range.
9223         ConstantRange CompRange =
9224             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
9225 
9226         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
9227         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
9228       }
9229 
9230   // If this loop must exit based on this condition (or execute undefined
9231   // behaviour), see if we can improve wrap flags.  This is essentially
9232   // a must execute style proof.
9233   if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) {
9234     // If we can prove the test sequence produced must repeat the same values
9235     // on self-wrap of the IV, then we can infer that IV doesn't self wrap
9236     // because if it did, we'd have an infinite (undefined) loop.
9237     // TODO: We can peel off any functions which are invertible *in L*.  Loop
9238     // invariant terms are effectively constants for our purposes here.
9239     auto *InnerLHS = LHS;
9240     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS))
9241       InnerLHS = ZExt->getOperand();
9242     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS);
9243         AR && !AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() &&
9244         isKnownToBeAPowerOfTwo(AR->getStepRecurrence(*this), /*OrZero=*/true,
9245                                /*OrNegative=*/true)) {
9246       auto Flags = AR->getNoWrapFlags();
9247       Flags = setFlags(Flags, SCEV::FlagNW);
9248       SmallVector<const SCEV *> Operands{AR->operands()};
9249       Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
9250       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
9251     }
9252 
9253     // For a slt/ult condition with a positive step, can we prove nsw/nuw?
9254     // From no-self-wrap, this follows trivially from the fact that every
9255     // (un)signed-wrapped, but not self-wrapped value must be LT than the
9256     // last value before (un)signed wrap.  Since we know that last value
9257     // didn't exit, nor will any smaller one.
9258     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT) {
9259       auto WrapType = Pred == ICmpInst::ICMP_SLT ? SCEV::FlagNSW : SCEV::FlagNUW;
9260       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS);
9261           AR && AR->getLoop() == L && AR->isAffine() &&
9262           !AR->getNoWrapFlags(WrapType) && AR->hasNoSelfWrap() &&
9263           isKnownPositive(AR->getStepRecurrence(*this))) {
9264         auto Flags = AR->getNoWrapFlags();
9265         Flags = setFlags(Flags, WrapType);
9266         SmallVector<const SCEV*> Operands{AR->operands()};
9267         Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
9268         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
9269       }
9270     }
9271   }
9272 
9273   switch (Pred) {
9274   case ICmpInst::ICMP_NE: {                     // while (X != Y)
9275     // Convert to: while (X-Y != 0)
9276     if (LHS->getType()->isPointerTy()) {
9277       LHS = getLosslessPtrToIntExpr(LHS);
9278       if (isa<SCEVCouldNotCompute>(LHS))
9279         return LHS;
9280     }
9281     if (RHS->getType()->isPointerTy()) {
9282       RHS = getLosslessPtrToIntExpr(RHS);
9283       if (isa<SCEVCouldNotCompute>(RHS))
9284         return RHS;
9285     }
9286     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit,
9287                                 AllowPredicates);
9288     if (EL.hasAnyInfo())
9289       return EL;
9290     break;
9291   }
9292   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
9293     // Convert to: while (X-Y == 0)
9294     if (LHS->getType()->isPointerTy()) {
9295       LHS = getLosslessPtrToIntExpr(LHS);
9296       if (isa<SCEVCouldNotCompute>(LHS))
9297         return LHS;
9298     }
9299     if (RHS->getType()->isPointerTy()) {
9300       RHS = getLosslessPtrToIntExpr(RHS);
9301       if (isa<SCEVCouldNotCompute>(RHS))
9302         return RHS;
9303     }
9304     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
9305     if (EL.hasAnyInfo()) return EL;
9306     break;
9307   }
9308   case ICmpInst::ICMP_SLE:
9309   case ICmpInst::ICMP_ULE:
9310     // Since the loop is finite, an invariant RHS cannot include the boundary
9311     // value, otherwise it would loop forever.
9312     if (!EnableFiniteLoopControl || !ControllingFiniteLoop ||
9313         !isLoopInvariant(RHS, L)) {
9314       // Otherwise, perform the addition in a wider type, to avoid overflow.
9315       // If the LHS is an addrec with the appropriate nowrap flag, the
9316       // extension will be sunk into it and the exit count can be analyzed.
9317       auto *OldType = dyn_cast<IntegerType>(LHS->getType());
9318       if (!OldType)
9319         break;
9320       // Prefer doubling the bitwidth over adding a single bit to make it more
9321       // likely that we use a legal type.
9322       auto *NewType =
9323           Type::getIntNTy(OldType->getContext(), OldType->getBitWidth() * 2);
9324       if (ICmpInst::isSigned(Pred)) {
9325         LHS = getSignExtendExpr(LHS, NewType);
9326         RHS = getSignExtendExpr(RHS, NewType);
9327       } else {
9328         LHS = getZeroExtendExpr(LHS, NewType);
9329         RHS = getZeroExtendExpr(RHS, NewType);
9330       }
9331     }
9332     RHS = getAddExpr(getOne(RHS->getType()), RHS);
9333     [[fallthrough]];
9334   case ICmpInst::ICMP_SLT:
9335   case ICmpInst::ICMP_ULT: { // while (X < Y)
9336     bool IsSigned = ICmpInst::isSigned(Pred);
9337     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsOnlyExit,
9338                                     AllowPredicates);
9339     if (EL.hasAnyInfo())
9340       return EL;
9341     break;
9342   }
9343   case ICmpInst::ICMP_SGE:
9344   case ICmpInst::ICMP_UGE:
9345     // Since the loop is finite, an invariant RHS cannot include the boundary
9346     // value, otherwise it would loop forever.
9347     if (!EnableFiniteLoopControl || !ControllingFiniteLoop ||
9348         !isLoopInvariant(RHS, L))
9349       break;
9350     RHS = getAddExpr(getMinusOne(RHS->getType()), RHS);
9351     [[fallthrough]];
9352   case ICmpInst::ICMP_SGT:
9353   case ICmpInst::ICMP_UGT: { // while (X > Y)
9354     bool IsSigned = ICmpInst::isSigned(Pred);
9355     ExitLimit EL = howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsOnlyExit,
9356                                        AllowPredicates);
9357     if (EL.hasAnyInfo())
9358       return EL;
9359     break;
9360   }
9361   default:
9362     break;
9363   }
9364 
9365   return getCouldNotCompute();
9366 }
9367 
9368 ScalarEvolution::ExitLimit
9369 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
9370                                                       SwitchInst *Switch,
9371                                                       BasicBlock *ExitingBlock,
9372                                                       bool ControlsOnlyExit) {
9373   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
9374 
9375   // Give up if the exit is the default dest of a switch.
9376   if (Switch->getDefaultDest() == ExitingBlock)
9377     return getCouldNotCompute();
9378 
9379   assert(L->contains(Switch->getDefaultDest()) &&
9380          "Default case must not exit the loop!");
9381   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
9382   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
9383 
9384   // while (X != Y) --> while (X-Y != 0)
9385   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit);
9386   if (EL.hasAnyInfo())
9387     return EL;
9388 
9389   return getCouldNotCompute();
9390 }
9391 
9392 static ConstantInt *
9393 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
9394                                 ScalarEvolution &SE) {
9395   const SCEV *InVal = SE.getConstant(C);
9396   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
9397   assert(isa<SCEVConstant>(Val) &&
9398          "Evaluation of SCEV at constant didn't fold correctly?");
9399   return cast<SCEVConstant>(Val)->getValue();
9400 }
9401 
9402 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
9403     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
9404   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
9405   if (!RHS)
9406     return getCouldNotCompute();
9407 
9408   const BasicBlock *Latch = L->getLoopLatch();
9409   if (!Latch)
9410     return getCouldNotCompute();
9411 
9412   const BasicBlock *Predecessor = L->getLoopPredecessor();
9413   if (!Predecessor)
9414     return getCouldNotCompute();
9415 
9416   // Return true if V is of the form "LHS `shift_op` <positive constant>".
9417   // Return LHS in OutLHS and shift_opt in OutOpCode.
9418   auto MatchPositiveShift =
9419       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
9420 
9421     using namespace PatternMatch;
9422 
9423     ConstantInt *ShiftAmt;
9424     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9425       OutOpCode = Instruction::LShr;
9426     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9427       OutOpCode = Instruction::AShr;
9428     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9429       OutOpCode = Instruction::Shl;
9430     else
9431       return false;
9432 
9433     return ShiftAmt->getValue().isStrictlyPositive();
9434   };
9435 
9436   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
9437   //
9438   // loop:
9439   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
9440   //   %iv.shifted = lshr i32 %iv, <positive constant>
9441   //
9442   // Return true on a successful match.  Return the corresponding PHI node (%iv
9443   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
9444   auto MatchShiftRecurrence =
9445       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
9446     std::optional<Instruction::BinaryOps> PostShiftOpCode;
9447 
9448     {
9449       Instruction::BinaryOps OpC;
9450       Value *V;
9451 
9452       // If we encounter a shift instruction, "peel off" the shift operation,
9453       // and remember that we did so.  Later when we inspect %iv's backedge
9454       // value, we will make sure that the backedge value uses the same
9455       // operation.
9456       //
9457       // Note: the peeled shift operation does not have to be the same
9458       // instruction as the one feeding into the PHI's backedge value.  We only
9459       // really care about it being the same *kind* of shift instruction --
9460       // that's all that is required for our later inferences to hold.
9461       if (MatchPositiveShift(LHS, V, OpC)) {
9462         PostShiftOpCode = OpC;
9463         LHS = V;
9464       }
9465     }
9466 
9467     PNOut = dyn_cast<PHINode>(LHS);
9468     if (!PNOut || PNOut->getParent() != L->getHeader())
9469       return false;
9470 
9471     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
9472     Value *OpLHS;
9473 
9474     return
9475         // The backedge value for the PHI node must be a shift by a positive
9476         // amount
9477         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
9478 
9479         // of the PHI node itself
9480         OpLHS == PNOut &&
9481 
9482         // and the kind of shift should be match the kind of shift we peeled
9483         // off, if any.
9484         (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut);
9485   };
9486 
9487   PHINode *PN;
9488   Instruction::BinaryOps OpCode;
9489   if (!MatchShiftRecurrence(LHS, PN, OpCode))
9490     return getCouldNotCompute();
9491 
9492   const DataLayout &DL = getDataLayout();
9493 
9494   // The key rationale for this optimization is that for some kinds of shift
9495   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
9496   // within a finite number of iterations.  If the condition guarding the
9497   // backedge (in the sense that the backedge is taken if the condition is true)
9498   // is false for the value the shift recurrence stabilizes to, then we know
9499   // that the backedge is taken only a finite number of times.
9500 
9501   ConstantInt *StableValue = nullptr;
9502   switch (OpCode) {
9503   default:
9504     llvm_unreachable("Impossible case!");
9505 
9506   case Instruction::AShr: {
9507     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
9508     // bitwidth(K) iterations.
9509     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
9510     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
9511                                        Predecessor->getTerminator(), &DT);
9512     auto *Ty = cast<IntegerType>(RHS->getType());
9513     if (Known.isNonNegative())
9514       StableValue = ConstantInt::get(Ty, 0);
9515     else if (Known.isNegative())
9516       StableValue = ConstantInt::get(Ty, -1, true);
9517     else
9518       return getCouldNotCompute();
9519 
9520     break;
9521   }
9522   case Instruction::LShr:
9523   case Instruction::Shl:
9524     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
9525     // stabilize to 0 in at most bitwidth(K) iterations.
9526     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
9527     break;
9528   }
9529 
9530   auto *Result =
9531       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
9532   assert(Result->getType()->isIntegerTy(1) &&
9533          "Otherwise cannot be an operand to a branch instruction");
9534 
9535   if (Result->isZeroValue()) {
9536     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9537     const SCEV *UpperBound =
9538         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
9539     return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false);
9540   }
9541 
9542   return getCouldNotCompute();
9543 }
9544 
9545 /// Return true if we can constant fold an instruction of the specified type,
9546 /// assuming that all operands were constants.
9547 static bool CanConstantFold(const Instruction *I) {
9548   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
9549       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
9550       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
9551     return true;
9552 
9553   if (const CallInst *CI = dyn_cast<CallInst>(I))
9554     if (const Function *F = CI->getCalledFunction())
9555       return canConstantFoldCallTo(CI, F);
9556   return false;
9557 }
9558 
9559 /// Determine whether this instruction can constant evolve within this loop
9560 /// assuming its operands can all constant evolve.
9561 static bool canConstantEvolve(Instruction *I, const Loop *L) {
9562   // An instruction outside of the loop can't be derived from a loop PHI.
9563   if (!L->contains(I)) return false;
9564 
9565   if (isa<PHINode>(I)) {
9566     // We don't currently keep track of the control flow needed to evaluate
9567     // PHIs, so we cannot handle PHIs inside of loops.
9568     return L->getHeader() == I->getParent();
9569   }
9570 
9571   // If we won't be able to constant fold this expression even if the operands
9572   // are constants, bail early.
9573   return CanConstantFold(I);
9574 }
9575 
9576 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
9577 /// recursing through each instruction operand until reaching a loop header phi.
9578 static PHINode *
9579 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
9580                                DenseMap<Instruction *, PHINode *> &PHIMap,
9581                                unsigned Depth) {
9582   if (Depth > MaxConstantEvolvingDepth)
9583     return nullptr;
9584 
9585   // Otherwise, we can evaluate this instruction if all of its operands are
9586   // constant or derived from a PHI node themselves.
9587   PHINode *PHI = nullptr;
9588   for (Value *Op : UseInst->operands()) {
9589     if (isa<Constant>(Op)) continue;
9590 
9591     Instruction *OpInst = dyn_cast<Instruction>(Op);
9592     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
9593 
9594     PHINode *P = dyn_cast<PHINode>(OpInst);
9595     if (!P)
9596       // If this operand is already visited, reuse the prior result.
9597       // We may have P != PHI if this is the deepest point at which the
9598       // inconsistent paths meet.
9599       P = PHIMap.lookup(OpInst);
9600     if (!P) {
9601       // Recurse and memoize the results, whether a phi is found or not.
9602       // This recursive call invalidates pointers into PHIMap.
9603       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
9604       PHIMap[OpInst] = P;
9605     }
9606     if (!P)
9607       return nullptr;  // Not evolving from PHI
9608     if (PHI && PHI != P)
9609       return nullptr;  // Evolving from multiple different PHIs.
9610     PHI = P;
9611   }
9612   // This is a expression evolving from a constant PHI!
9613   return PHI;
9614 }
9615 
9616 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
9617 /// in the loop that V is derived from.  We allow arbitrary operations along the
9618 /// way, but the operands of an operation must either be constants or a value
9619 /// derived from a constant PHI.  If this expression does not fit with these
9620 /// constraints, return null.
9621 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
9622   Instruction *I = dyn_cast<Instruction>(V);
9623   if (!I || !canConstantEvolve(I, L)) return nullptr;
9624 
9625   if (PHINode *PN = dyn_cast<PHINode>(I))
9626     return PN;
9627 
9628   // Record non-constant instructions contained by the loop.
9629   DenseMap<Instruction *, PHINode *> PHIMap;
9630   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
9631 }
9632 
9633 /// EvaluateExpression - Given an expression that passes the
9634 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
9635 /// in the loop has the value PHIVal.  If we can't fold this expression for some
9636 /// reason, return null.
9637 static Constant *EvaluateExpression(Value *V, const Loop *L,
9638                                     DenseMap<Instruction *, Constant *> &Vals,
9639                                     const DataLayout &DL,
9640                                     const TargetLibraryInfo *TLI) {
9641   // Convenient constant check, but redundant for recursive calls.
9642   if (Constant *C = dyn_cast<Constant>(V)) return C;
9643   Instruction *I = dyn_cast<Instruction>(V);
9644   if (!I) return nullptr;
9645 
9646   if (Constant *C = Vals.lookup(I)) return C;
9647 
9648   // An instruction inside the loop depends on a value outside the loop that we
9649   // weren't given a mapping for, or a value such as a call inside the loop.
9650   if (!canConstantEvolve(I, L)) return nullptr;
9651 
9652   // An unmapped PHI can be due to a branch or another loop inside this loop,
9653   // or due to this not being the initial iteration through a loop where we
9654   // couldn't compute the evolution of this particular PHI last time.
9655   if (isa<PHINode>(I)) return nullptr;
9656 
9657   std::vector<Constant*> Operands(I->getNumOperands());
9658 
9659   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
9660     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
9661     if (!Operand) {
9662       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
9663       if (!Operands[i]) return nullptr;
9664       continue;
9665     }
9666     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
9667     Vals[Operand] = C;
9668     if (!C) return nullptr;
9669     Operands[i] = C;
9670   }
9671 
9672   return ConstantFoldInstOperands(I, Operands, DL, TLI,
9673                                   /*AllowNonDeterministic=*/false);
9674 }
9675 
9676 
9677 // If every incoming value to PN except the one for BB is a specific Constant,
9678 // return that, else return nullptr.
9679 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
9680   Constant *IncomingVal = nullptr;
9681 
9682   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9683     if (PN->getIncomingBlock(i) == BB)
9684       continue;
9685 
9686     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
9687     if (!CurrentVal)
9688       return nullptr;
9689 
9690     if (IncomingVal != CurrentVal) {
9691       if (IncomingVal)
9692         return nullptr;
9693       IncomingVal = CurrentVal;
9694     }
9695   }
9696 
9697   return IncomingVal;
9698 }
9699 
9700 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
9701 /// in the header of its containing loop, we know the loop executes a
9702 /// constant number of times, and the PHI node is just a recurrence
9703 /// involving constants, fold it.
9704 Constant *
9705 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
9706                                                    const APInt &BEs,
9707                                                    const Loop *L) {
9708   auto [I, Inserted] = ConstantEvolutionLoopExitValue.try_emplace(PN);
9709   if (!Inserted)
9710     return I->second;
9711 
9712   if (BEs.ugt(MaxBruteForceIterations))
9713     return nullptr; // Not going to evaluate it.
9714 
9715   Constant *&RetVal = I->second;
9716 
9717   DenseMap<Instruction *, Constant *> CurrentIterVals;
9718   BasicBlock *Header = L->getHeader();
9719   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9720 
9721   BasicBlock *Latch = L->getLoopLatch();
9722   if (!Latch)
9723     return nullptr;
9724 
9725   for (PHINode &PHI : Header->phis()) {
9726     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9727       CurrentIterVals[&PHI] = StartCST;
9728   }
9729   if (!CurrentIterVals.count(PN))
9730     return RetVal = nullptr;
9731 
9732   Value *BEValue = PN->getIncomingValueForBlock(Latch);
9733 
9734   // Execute the loop symbolically to determine the exit value.
9735   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
9736          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
9737 
9738   unsigned NumIterations = BEs.getZExtValue(); // must be in range
9739   unsigned IterationNum = 0;
9740   const DataLayout &DL = getDataLayout();
9741   for (; ; ++IterationNum) {
9742     if (IterationNum == NumIterations)
9743       return RetVal = CurrentIterVals[PN];  // Got exit value!
9744 
9745     // Compute the value of the PHIs for the next iteration.
9746     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
9747     DenseMap<Instruction *, Constant *> NextIterVals;
9748     Constant *NextPHI =
9749         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9750     if (!NextPHI)
9751       return nullptr;        // Couldn't evaluate!
9752     NextIterVals[PN] = NextPHI;
9753 
9754     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
9755 
9756     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
9757     // cease to be able to evaluate one of them or if they stop evolving,
9758     // because that doesn't necessarily prevent us from computing PN.
9759     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
9760     for (const auto &I : CurrentIterVals) {
9761       PHINode *PHI = dyn_cast<PHINode>(I.first);
9762       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
9763       PHIsToCompute.emplace_back(PHI, I.second);
9764     }
9765     // We use two distinct loops because EvaluateExpression may invalidate any
9766     // iterators into CurrentIterVals.
9767     for (const auto &I : PHIsToCompute) {
9768       PHINode *PHI = I.first;
9769       Constant *&NextPHI = NextIterVals[PHI];
9770       if (!NextPHI) {   // Not already computed.
9771         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9772         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9773       }
9774       if (NextPHI != I.second)
9775         StoppedEvolving = false;
9776     }
9777 
9778     // If all entries in CurrentIterVals == NextIterVals then we can stop
9779     // iterating, the loop can't continue to change.
9780     if (StoppedEvolving)
9781       return RetVal = CurrentIterVals[PN];
9782 
9783     CurrentIterVals.swap(NextIterVals);
9784   }
9785 }
9786 
9787 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
9788                                                           Value *Cond,
9789                                                           bool ExitWhen) {
9790   PHINode *PN = getConstantEvolvingPHI(Cond, L);
9791   if (!PN) return getCouldNotCompute();
9792 
9793   // If the loop is canonicalized, the PHI will have exactly two entries.
9794   // That's the only form we support here.
9795   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
9796 
9797   DenseMap<Instruction *, Constant *> CurrentIterVals;
9798   BasicBlock *Header = L->getHeader();
9799   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9800 
9801   BasicBlock *Latch = L->getLoopLatch();
9802   assert(Latch && "Should follow from NumIncomingValues == 2!");
9803 
9804   for (PHINode &PHI : Header->phis()) {
9805     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9806       CurrentIterVals[&PHI] = StartCST;
9807   }
9808   if (!CurrentIterVals.count(PN))
9809     return getCouldNotCompute();
9810 
9811   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
9812   // the loop symbolically to determine when the condition gets a value of
9813   // "ExitWhen".
9814   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
9815   const DataLayout &DL = getDataLayout();
9816   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
9817     auto *CondVal = dyn_cast_or_null<ConstantInt>(
9818         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
9819 
9820     // Couldn't symbolically evaluate.
9821     if (!CondVal) return getCouldNotCompute();
9822 
9823     if (CondVal->getValue() == uint64_t(ExitWhen)) {
9824       ++NumBruteForceTripCountsComputed;
9825       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
9826     }
9827 
9828     // Update all the PHI nodes for the next iteration.
9829     DenseMap<Instruction *, Constant *> NextIterVals;
9830 
9831     // Create a list of which PHIs we need to compute. We want to do this before
9832     // calling EvaluateExpression on them because that may invalidate iterators
9833     // into CurrentIterVals.
9834     SmallVector<PHINode *, 8> PHIsToCompute;
9835     for (const auto &I : CurrentIterVals) {
9836       PHINode *PHI = dyn_cast<PHINode>(I.first);
9837       if (!PHI || PHI->getParent() != Header) continue;
9838       PHIsToCompute.push_back(PHI);
9839     }
9840     for (PHINode *PHI : PHIsToCompute) {
9841       Constant *&NextPHI = NextIterVals[PHI];
9842       if (NextPHI) continue;    // Already computed!
9843 
9844       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9845       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9846     }
9847     CurrentIterVals.swap(NextIterVals);
9848   }
9849 
9850   // Too many iterations were needed to evaluate.
9851   return getCouldNotCompute();
9852 }
9853 
9854 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
9855   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
9856       ValuesAtScopes[V];
9857   // Check to see if we've folded this expression at this loop before.
9858   for (auto &LS : Values)
9859     if (LS.first == L)
9860       return LS.second ? LS.second : V;
9861 
9862   Values.emplace_back(L, nullptr);
9863 
9864   // Otherwise compute it.
9865   const SCEV *C = computeSCEVAtScope(V, L);
9866   for (auto &LS : reverse(ValuesAtScopes[V]))
9867     if (LS.first == L) {
9868       LS.second = C;
9869       if (!isa<SCEVConstant>(C))
9870         ValuesAtScopesUsers[C].push_back({L, V});
9871       break;
9872     }
9873   return C;
9874 }
9875 
9876 /// This builds up a Constant using the ConstantExpr interface.  That way, we
9877 /// will return Constants for objects which aren't represented by a
9878 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9879 /// Returns NULL if the SCEV isn't representable as a Constant.
9880 static Constant *BuildConstantFromSCEV(const SCEV *V) {
9881   switch (V->getSCEVType()) {
9882   case scCouldNotCompute:
9883   case scAddRecExpr:
9884   case scVScale:
9885     return nullptr;
9886   case scConstant:
9887     return cast<SCEVConstant>(V)->getValue();
9888   case scUnknown:
9889     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
9890   case scPtrToInt: {
9891     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
9892     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
9893       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
9894 
9895     return nullptr;
9896   }
9897   case scTruncate: {
9898     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
9899     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
9900       return ConstantExpr::getTrunc(CastOp, ST->getType());
9901     return nullptr;
9902   }
9903   case scAddExpr: {
9904     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
9905     Constant *C = nullptr;
9906     for (const SCEV *Op : SA->operands()) {
9907       Constant *OpC = BuildConstantFromSCEV(Op);
9908       if (!OpC)
9909         return nullptr;
9910       if (!C) {
9911         C = OpC;
9912         continue;
9913       }
9914       assert(!C->getType()->isPointerTy() &&
9915              "Can only have one pointer, and it must be last");
9916       if (OpC->getType()->isPointerTy()) {
9917         // The offsets have been converted to bytes.  We can add bytes using
9918         // an i8 GEP.
9919         C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
9920                                            OpC, C);
9921       } else {
9922         C = ConstantExpr::getAdd(C, OpC);
9923       }
9924     }
9925     return C;
9926   }
9927   case scMulExpr:
9928   case scSignExtend:
9929   case scZeroExtend:
9930   case scUDivExpr:
9931   case scSMaxExpr:
9932   case scUMaxExpr:
9933   case scSMinExpr:
9934   case scUMinExpr:
9935   case scSequentialUMinExpr:
9936     return nullptr;
9937   }
9938   llvm_unreachable("Unknown SCEV kind!");
9939 }
9940 
9941 const SCEV *
9942 ScalarEvolution::getWithOperands(const SCEV *S,
9943                                  SmallVectorImpl<const SCEV *> &NewOps) {
9944   switch (S->getSCEVType()) {
9945   case scTruncate:
9946   case scZeroExtend:
9947   case scSignExtend:
9948   case scPtrToInt:
9949     return getCastExpr(S->getSCEVType(), NewOps[0], S->getType());
9950   case scAddRecExpr: {
9951     auto *AddRec = cast<SCEVAddRecExpr>(S);
9952     return getAddRecExpr(NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags());
9953   }
9954   case scAddExpr:
9955     return getAddExpr(NewOps, cast<SCEVAddExpr>(S)->getNoWrapFlags());
9956   case scMulExpr:
9957     return getMulExpr(NewOps, cast<SCEVMulExpr>(S)->getNoWrapFlags());
9958   case scUDivExpr:
9959     return getUDivExpr(NewOps[0], NewOps[1]);
9960   case scUMaxExpr:
9961   case scSMaxExpr:
9962   case scUMinExpr:
9963   case scSMinExpr:
9964     return getMinMaxExpr(S->getSCEVType(), NewOps);
9965   case scSequentialUMinExpr:
9966     return getSequentialMinMaxExpr(S->getSCEVType(), NewOps);
9967   case scConstant:
9968   case scVScale:
9969   case scUnknown:
9970     return S;
9971   case scCouldNotCompute:
9972     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9973   }
9974   llvm_unreachable("Unknown SCEV kind!");
9975 }
9976 
9977 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
9978   switch (V->getSCEVType()) {
9979   case scConstant:
9980   case scVScale:
9981     return V;
9982   case scAddRecExpr: {
9983     // If this is a loop recurrence for a loop that does not contain L, then we
9984     // are dealing with the final value computed by the loop.
9985     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(V);
9986     // First, attempt to evaluate each operand.
9987     // Avoid performing the look-up in the common case where the specified
9988     // expression has no loop-variant portions.
9989     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9990       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9991       if (OpAtScope == AddRec->getOperand(i))
9992         continue;
9993 
9994       // Okay, at least one of these operands is loop variant but might be
9995       // foldable.  Build a new instance of the folded commutative expression.
9996       SmallVector<const SCEV *, 8> NewOps;
9997       NewOps.reserve(AddRec->getNumOperands());
9998       append_range(NewOps, AddRec->operands().take_front(i));
9999       NewOps.push_back(OpAtScope);
10000       for (++i; i != e; ++i)
10001         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
10002 
10003       const SCEV *FoldedRec = getAddRecExpr(
10004           NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(SCEV::FlagNW));
10005       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
10006       // The addrec may be folded to a nonrecurrence, for example, if the
10007       // induction variable is multiplied by zero after constant folding. Go
10008       // ahead and return the folded value.
10009       if (!AddRec)
10010         return FoldedRec;
10011       break;
10012     }
10013 
10014     // If the scope is outside the addrec's loop, evaluate it by using the
10015     // loop exit value of the addrec.
10016     if (!AddRec->getLoop()->contains(L)) {
10017       // To evaluate this recurrence, we need to know how many times the AddRec
10018       // loop iterates.  Compute this now.
10019       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
10020       if (BackedgeTakenCount == getCouldNotCompute())
10021         return AddRec;
10022 
10023       // Then, evaluate the AddRec.
10024       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
10025     }
10026 
10027     return AddRec;
10028   }
10029   case scTruncate:
10030   case scZeroExtend:
10031   case scSignExtend:
10032   case scPtrToInt:
10033   case scAddExpr:
10034   case scMulExpr:
10035   case scUDivExpr:
10036   case scUMaxExpr:
10037   case scSMaxExpr:
10038   case scUMinExpr:
10039   case scSMinExpr:
10040   case scSequentialUMinExpr: {
10041     ArrayRef<const SCEV *> Ops = V->operands();
10042     // Avoid performing the look-up in the common case where the specified
10043     // expression has no loop-variant portions.
10044     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
10045       const SCEV *OpAtScope = getSCEVAtScope(Ops[i], L);
10046       if (OpAtScope != Ops[i]) {
10047         // Okay, at least one of these operands is loop variant but might be
10048         // foldable.  Build a new instance of the folded commutative expression.
10049         SmallVector<const SCEV *, 8> NewOps;
10050         NewOps.reserve(Ops.size());
10051         append_range(NewOps, Ops.take_front(i));
10052         NewOps.push_back(OpAtScope);
10053 
10054         for (++i; i != e; ++i) {
10055           OpAtScope = getSCEVAtScope(Ops[i], L);
10056           NewOps.push_back(OpAtScope);
10057         }
10058 
10059         return getWithOperands(V, NewOps);
10060       }
10061     }
10062     // If we got here, all operands are loop invariant.
10063     return V;
10064   }
10065   case scUnknown: {
10066     // If this instruction is evolved from a constant-evolving PHI, compute the
10067     // exit value from the loop without using SCEVs.
10068     const SCEVUnknown *SU = cast<SCEVUnknown>(V);
10069     Instruction *I = dyn_cast<Instruction>(SU->getValue());
10070     if (!I)
10071       return V; // This is some other type of SCEVUnknown, just return it.
10072 
10073     if (PHINode *PN = dyn_cast<PHINode>(I)) {
10074       const Loop *CurrLoop = this->LI[I->getParent()];
10075       // Looking for loop exit value.
10076       if (CurrLoop && CurrLoop->getParentLoop() == L &&
10077           PN->getParent() == CurrLoop->getHeader()) {
10078         // Okay, there is no closed form solution for the PHI node.  Check
10079         // to see if the loop that contains it has a known backedge-taken
10080         // count.  If so, we may be able to force computation of the exit
10081         // value.
10082         const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
10083         // This trivial case can show up in some degenerate cases where
10084         // the incoming IR has not yet been fully simplified.
10085         if (BackedgeTakenCount->isZero()) {
10086           Value *InitValue = nullptr;
10087           bool MultipleInitValues = false;
10088           for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
10089             if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
10090               if (!InitValue)
10091                 InitValue = PN->getIncomingValue(i);
10092               else if (InitValue != PN->getIncomingValue(i)) {
10093                 MultipleInitValues = true;
10094                 break;
10095               }
10096             }
10097           }
10098           if (!MultipleInitValues && InitValue)
10099             return getSCEV(InitValue);
10100         }
10101         // Do we have a loop invariant value flowing around the backedge
10102         // for a loop which must execute the backedge?
10103         if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
10104             isKnownNonZero(BackedgeTakenCount) &&
10105             PN->getNumIncomingValues() == 2) {
10106 
10107           unsigned InLoopPred =
10108               CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
10109           Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
10110           if (CurrLoop->isLoopInvariant(BackedgeVal))
10111             return getSCEV(BackedgeVal);
10112         }
10113         if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
10114           // Okay, we know how many times the containing loop executes.  If
10115           // this is a constant evolving PHI node, get the final value at
10116           // the specified iteration number.
10117           Constant *RV =
10118               getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), CurrLoop);
10119           if (RV)
10120             return getSCEV(RV);
10121         }
10122       }
10123     }
10124 
10125     // Okay, this is an expression that we cannot symbolically evaluate
10126     // into a SCEV.  Check to see if it's possible to symbolically evaluate
10127     // the arguments into constants, and if so, try to constant propagate the
10128     // result.  This is particularly useful for computing loop exit values.
10129     if (!CanConstantFold(I))
10130       return V; // This is some other type of SCEVUnknown, just return it.
10131 
10132     SmallVector<Constant *, 4> Operands;
10133     Operands.reserve(I->getNumOperands());
10134     bool MadeImprovement = false;
10135     for (Value *Op : I->operands()) {
10136       if (Constant *C = dyn_cast<Constant>(Op)) {
10137         Operands.push_back(C);
10138         continue;
10139       }
10140 
10141       // If any of the operands is non-constant and if they are
10142       // non-integer and non-pointer, don't even try to analyze them
10143       // with scev techniques.
10144       if (!isSCEVable(Op->getType()))
10145         return V;
10146 
10147       const SCEV *OrigV = getSCEV(Op);
10148       const SCEV *OpV = getSCEVAtScope(OrigV, L);
10149       MadeImprovement |= OrigV != OpV;
10150 
10151       Constant *C = BuildConstantFromSCEV(OpV);
10152       if (!C)
10153         return V;
10154       assert(C->getType() == Op->getType() && "Type mismatch");
10155       Operands.push_back(C);
10156     }
10157 
10158     // Check to see if getSCEVAtScope actually made an improvement.
10159     if (!MadeImprovement)
10160       return V; // This is some other type of SCEVUnknown, just return it.
10161 
10162     Constant *C = nullptr;
10163     const DataLayout &DL = getDataLayout();
10164     C = ConstantFoldInstOperands(I, Operands, DL, &TLI,
10165                                  /*AllowNonDeterministic=*/false);
10166     if (!C)
10167       return V;
10168     return getSCEV(C);
10169   }
10170   case scCouldNotCompute:
10171     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
10172   }
10173   llvm_unreachable("Unknown SCEV type!");
10174 }
10175 
10176 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
10177   return getSCEVAtScope(getSCEV(V), L);
10178 }
10179 
10180 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
10181   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
10182     return stripInjectiveFunctions(ZExt->getOperand());
10183   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
10184     return stripInjectiveFunctions(SExt->getOperand());
10185   return S;
10186 }
10187 
10188 /// Finds the minimum unsigned root of the following equation:
10189 ///
10190 ///     A * X = B (mod N)
10191 ///
10192 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
10193 /// A and B isn't important.
10194 ///
10195 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
10196 static const SCEV *
10197 SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
10198                              SmallVectorImpl<const SCEVPredicate *> *Predicates,
10199 
10200                              ScalarEvolution &SE) {
10201   uint32_t BW = A.getBitWidth();
10202   assert(BW == SE.getTypeSizeInBits(B->getType()));
10203   assert(A != 0 && "A must be non-zero.");
10204 
10205   // 1. D = gcd(A, N)
10206   //
10207   // The gcd of A and N may have only one prime factor: 2. The number of
10208   // trailing zeros in A is its multiplicity
10209   uint32_t Mult2 = A.countr_zero();
10210   // D = 2^Mult2
10211 
10212   // 2. Check if B is divisible by D.
10213   //
10214   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
10215   // is not less than multiplicity of this prime factor for D.
10216   if (SE.getMinTrailingZeros(B) < Mult2) {
10217     // Check if we can prove there's no remainder using URem.
10218     const SCEV *URem =
10219         SE.getURemExpr(B, SE.getConstant(APInt::getOneBitSet(BW, Mult2)));
10220     const SCEV *Zero = SE.getZero(B->getType());
10221     if (!SE.isKnownPredicate(CmpInst::ICMP_EQ, URem, Zero)) {
10222       // Try to add a predicate ensuring B is a multiple of 1 << Mult2.
10223       if (!Predicates)
10224         return SE.getCouldNotCompute();
10225 
10226       // Avoid adding a predicate that is known to be false.
10227       if (SE.isKnownPredicate(CmpInst::ICMP_NE, URem, Zero))
10228         return SE.getCouldNotCompute();
10229       Predicates->push_back(SE.getEqualPredicate(URem, Zero));
10230     }
10231   }
10232 
10233   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
10234   // modulo (N / D).
10235   //
10236   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
10237   // (N / D) in general. The inverse itself always fits into BW bits, though,
10238   // so we immediately truncate it.
10239   APInt AD = A.lshr(Mult2).trunc(BW - Mult2); // AD = A / D
10240   APInt I = AD.multiplicativeInverse().zext(BW);
10241 
10242   // 4. Compute the minimum unsigned root of the equation:
10243   // I * (B / D) mod (N / D)
10244   // To simplify the computation, we factor out the divide by D:
10245   // (I * B mod N) / D
10246   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
10247   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
10248 }
10249 
10250 /// For a given quadratic addrec, generate coefficients of the corresponding
10251 /// quadratic equation, multiplied by a common value to ensure that they are
10252 /// integers.
10253 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
10254 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
10255 /// were multiplied by, and BitWidth is the bit width of the original addrec
10256 /// coefficients.
10257 /// This function returns std::nullopt if the addrec coefficients are not
10258 /// compile- time constants.
10259 static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
10260 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
10261   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
10262   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
10263   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
10264   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
10265   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
10266                     << *AddRec << '\n');
10267 
10268   // We currently can only solve this if the coefficients are constants.
10269   if (!LC || !MC || !NC) {
10270     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
10271     return std::nullopt;
10272   }
10273 
10274   APInt L = LC->getAPInt();
10275   APInt M = MC->getAPInt();
10276   APInt N = NC->getAPInt();
10277   assert(!N.isZero() && "This is not a quadratic addrec");
10278 
10279   unsigned BitWidth = LC->getAPInt().getBitWidth();
10280   unsigned NewWidth = BitWidth + 1;
10281   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
10282                     << BitWidth << '\n');
10283   // The sign-extension (as opposed to a zero-extension) here matches the
10284   // extension used in SolveQuadraticEquationWrap (with the same motivation).
10285   N = N.sext(NewWidth);
10286   M = M.sext(NewWidth);
10287   L = L.sext(NewWidth);
10288 
10289   // The increments are M, M+N, M+2N, ..., so the accumulated values are
10290   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
10291   //   L+M, L+2M+N, L+3M+3N, ...
10292   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
10293   //
10294   // The equation Acc = 0 is then
10295   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
10296   // In a quadratic form it becomes:
10297   //   N n^2 + (2M-N) n + 2L = 0.
10298 
10299   APInt A = N;
10300   APInt B = 2 * M - A;
10301   APInt C = 2 * L;
10302   APInt T = APInt(NewWidth, 2);
10303   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
10304                     << "x + " << C << ", coeff bw: " << NewWidth
10305                     << ", multiplied by " << T << '\n');
10306   return std::make_tuple(A, B, C, T, BitWidth);
10307 }
10308 
10309 /// Helper function to compare optional APInts:
10310 /// (a) if X and Y both exist, return min(X, Y),
10311 /// (b) if neither X nor Y exist, return std::nullopt,
10312 /// (c) if exactly one of X and Y exists, return that value.
10313 static std::optional<APInt> MinOptional(std::optional<APInt> X,
10314                                         std::optional<APInt> Y) {
10315   if (X && Y) {
10316     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
10317     APInt XW = X->sext(W);
10318     APInt YW = Y->sext(W);
10319     return XW.slt(YW) ? *X : *Y;
10320   }
10321   if (!X && !Y)
10322     return std::nullopt;
10323   return X ? *X : *Y;
10324 }
10325 
10326 /// Helper function to truncate an optional APInt to a given BitWidth.
10327 /// When solving addrec-related equations, it is preferable to return a value
10328 /// that has the same bit width as the original addrec's coefficients. If the
10329 /// solution fits in the original bit width, truncate it (except for i1).
10330 /// Returning a value of a different bit width may inhibit some optimizations.
10331 ///
10332 /// In general, a solution to a quadratic equation generated from an addrec
10333 /// may require BW+1 bits, where BW is the bit width of the addrec's
10334 /// coefficients. The reason is that the coefficients of the quadratic
10335 /// equation are BW+1 bits wide (to avoid truncation when converting from
10336 /// the addrec to the equation).
10337 static std::optional<APInt> TruncIfPossible(std::optional<APInt> X,
10338                                             unsigned BitWidth) {
10339   if (!X)
10340     return std::nullopt;
10341   unsigned W = X->getBitWidth();
10342   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
10343     return X->trunc(BitWidth);
10344   return X;
10345 }
10346 
10347 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
10348 /// iterations. The values L, M, N are assumed to be signed, and they
10349 /// should all have the same bit widths.
10350 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
10351 /// where BW is the bit width of the addrec's coefficients.
10352 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
10353 /// returned as such, otherwise the bit width of the returned value may
10354 /// be greater than BW.
10355 ///
10356 /// This function returns std::nullopt if
10357 /// (a) the addrec coefficients are not constant, or
10358 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
10359 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
10360 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
10361 static std::optional<APInt>
10362 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
10363   APInt A, B, C, M;
10364   unsigned BitWidth;
10365   auto T = GetQuadraticEquation(AddRec);
10366   if (!T)
10367     return std::nullopt;
10368 
10369   std::tie(A, B, C, M, BitWidth) = *T;
10370   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
10371   std::optional<APInt> X =
10372       APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth + 1);
10373   if (!X)
10374     return std::nullopt;
10375 
10376   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
10377   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
10378   if (!V->isZero())
10379     return std::nullopt;
10380 
10381   return TruncIfPossible(X, BitWidth);
10382 }
10383 
10384 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
10385 /// iterations. The values M, N are assumed to be signed, and they
10386 /// should all have the same bit widths.
10387 /// Find the least n such that c(n) does not belong to the given range,
10388 /// while c(n-1) does.
10389 ///
10390 /// This function returns std::nullopt if
10391 /// (a) the addrec coefficients are not constant, or
10392 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
10393 ///     bounds of the range.
10394 static std::optional<APInt>
10395 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
10396                           const ConstantRange &Range, ScalarEvolution &SE) {
10397   assert(AddRec->getOperand(0)->isZero() &&
10398          "Starting value of addrec should be 0");
10399   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
10400                     << Range << ", addrec " << *AddRec << '\n');
10401   // This case is handled in getNumIterationsInRange. Here we can assume that
10402   // we start in the range.
10403   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
10404          "Addrec's initial value should be in range");
10405 
10406   APInt A, B, C, M;
10407   unsigned BitWidth;
10408   auto T = GetQuadraticEquation(AddRec);
10409   if (!T)
10410     return std::nullopt;
10411 
10412   // Be careful about the return value: there can be two reasons for not
10413   // returning an actual number. First, if no solutions to the equations
10414   // were found, and second, if the solutions don't leave the given range.
10415   // The first case means that the actual solution is "unknown", the second
10416   // means that it's known, but not valid. If the solution is unknown, we
10417   // cannot make any conclusions.
10418   // Return a pair: the optional solution and a flag indicating if the
10419   // solution was found.
10420   auto SolveForBoundary =
10421       [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> {
10422     // Solve for signed overflow and unsigned overflow, pick the lower
10423     // solution.
10424     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
10425                       << Bound << " (before multiplying by " << M << ")\n");
10426     Bound *= M; // The quadratic equation multiplier.
10427 
10428     std::optional<APInt> SO;
10429     if (BitWidth > 1) {
10430       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10431                            "signed overflow\n");
10432       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
10433     }
10434     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10435                          "unsigned overflow\n");
10436     std::optional<APInt> UO =
10437         APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth + 1);
10438 
10439     auto LeavesRange = [&] (const APInt &X) {
10440       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
10441       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
10442       if (Range.contains(V0->getValue()))
10443         return false;
10444       // X should be at least 1, so X-1 is non-negative.
10445       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
10446       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
10447       if (Range.contains(V1->getValue()))
10448         return true;
10449       return false;
10450     };
10451 
10452     // If SolveQuadraticEquationWrap returns std::nullopt, it means that there
10453     // can be a solution, but the function failed to find it. We cannot treat it
10454     // as "no solution".
10455     if (!SO || !UO)
10456       return {std::nullopt, false};
10457 
10458     // Check the smaller value first to see if it leaves the range.
10459     // At this point, both SO and UO must have values.
10460     std::optional<APInt> Min = MinOptional(SO, UO);
10461     if (LeavesRange(*Min))
10462       return { Min, true };
10463     std::optional<APInt> Max = Min == SO ? UO : SO;
10464     if (LeavesRange(*Max))
10465       return { Max, true };
10466 
10467     // Solutions were found, but were eliminated, hence the "true".
10468     return {std::nullopt, true};
10469   };
10470 
10471   std::tie(A, B, C, M, BitWidth) = *T;
10472   // Lower bound is inclusive, subtract 1 to represent the exiting value.
10473   APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1;
10474   APInt Upper = Range.getUpper().sext(A.getBitWidth());
10475   auto SL = SolveForBoundary(Lower);
10476   auto SU = SolveForBoundary(Upper);
10477   // If any of the solutions was unknown, no meaninigful conclusions can
10478   // be made.
10479   if (!SL.second || !SU.second)
10480     return std::nullopt;
10481 
10482   // Claim: The correct solution is not some value between Min and Max.
10483   //
10484   // Justification: Assuming that Min and Max are different values, one of
10485   // them is when the first signed overflow happens, the other is when the
10486   // first unsigned overflow happens. Crossing the range boundary is only
10487   // possible via an overflow (treating 0 as a special case of it, modeling
10488   // an overflow as crossing k*2^W for some k).
10489   //
10490   // The interesting case here is when Min was eliminated as an invalid
10491   // solution, but Max was not. The argument is that if there was another
10492   // overflow between Min and Max, it would also have been eliminated if
10493   // it was considered.
10494   //
10495   // For a given boundary, it is possible to have two overflows of the same
10496   // type (signed/unsigned) without having the other type in between: this
10497   // can happen when the vertex of the parabola is between the iterations
10498   // corresponding to the overflows. This is only possible when the two
10499   // overflows cross k*2^W for the same k. In such case, if the second one
10500   // left the range (and was the first one to do so), the first overflow
10501   // would have to enter the range, which would mean that either we had left
10502   // the range before or that we started outside of it. Both of these cases
10503   // are contradictions.
10504   //
10505   // Claim: In the case where SolveForBoundary returns std::nullopt, the correct
10506   // solution is not some value between the Max for this boundary and the
10507   // Min of the other boundary.
10508   //
10509   // Justification: Assume that we had such Max_A and Min_B corresponding
10510   // to range boundaries A and B and such that Max_A < Min_B. If there was
10511   // a solution between Max_A and Min_B, it would have to be caused by an
10512   // overflow corresponding to either A or B. It cannot correspond to B,
10513   // since Min_B is the first occurrence of such an overflow. If it
10514   // corresponded to A, it would have to be either a signed or an unsigned
10515   // overflow that is larger than both eliminated overflows for A. But
10516   // between the eliminated overflows and this overflow, the values would
10517   // cover the entire value space, thus crossing the other boundary, which
10518   // is a contradiction.
10519 
10520   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
10521 }
10522 
10523 ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(const SCEV *V,
10524                                                          const Loop *L,
10525                                                          bool ControlsOnlyExit,
10526                                                          bool AllowPredicates) {
10527 
10528   // This is only used for loops with a "x != y" exit test. The exit condition
10529   // is now expressed as a single expression, V = x-y. So the exit test is
10530   // effectively V != 0.  We know and take advantage of the fact that this
10531   // expression only being used in a comparison by zero context.
10532 
10533   SmallVector<const SCEVPredicate *> Predicates;
10534   // If the value is a constant
10535   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10536     // If the value is already zero, the branch will execute zero times.
10537     if (C->getValue()->isZero()) return C;
10538     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10539   }
10540 
10541   const SCEVAddRecExpr *AddRec =
10542       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
10543 
10544   if (!AddRec && AllowPredicates)
10545     // Try to make this an AddRec using runtime tests, in the first X
10546     // iterations of this loop, where X is the SCEV expression found by the
10547     // algorithm below.
10548     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
10549 
10550   if (!AddRec || AddRec->getLoop() != L)
10551     return getCouldNotCompute();
10552 
10553   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
10554   // the quadratic equation to solve it.
10555   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
10556     // We can only use this value if the chrec ends up with an exact zero
10557     // value at this index.  When solving for "X*X != 5", for example, we
10558     // should not accept a root of 2.
10559     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
10560       const auto *R = cast<SCEVConstant>(getConstant(*S));
10561       return ExitLimit(R, R, R, false, Predicates);
10562     }
10563     return getCouldNotCompute();
10564   }
10565 
10566   // Otherwise we can only handle this if it is affine.
10567   if (!AddRec->isAffine())
10568     return getCouldNotCompute();
10569 
10570   // If this is an affine expression, the execution count of this branch is
10571   // the minimum unsigned root of the following equation:
10572   //
10573   //     Start + Step*N = 0 (mod 2^BW)
10574   //
10575   // equivalent to:
10576   //
10577   //             Step*N = -Start (mod 2^BW)
10578   //
10579   // where BW is the common bit width of Start and Step.
10580 
10581   // Get the initial value for the loop.
10582   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
10583   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
10584 
10585   if (!isLoopInvariant(Step, L))
10586     return getCouldNotCompute();
10587 
10588   LoopGuards Guards = LoopGuards::collect(L, *this);
10589   // Specialize step for this loop so we get context sensitive facts below.
10590   const SCEV *StepWLG = applyLoopGuards(Step, Guards);
10591 
10592   // For positive steps (counting up until unsigned overflow):
10593   //   N = -Start/Step (as unsigned)
10594   // For negative steps (counting down to zero):
10595   //   N = Start/-Step
10596   // First compute the unsigned distance from zero in the direction of Step.
10597   bool CountDown = isKnownNegative(StepWLG);
10598   if (!CountDown && !isKnownNonNegative(StepWLG))
10599     return getCouldNotCompute();
10600 
10601   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
10602   // Handle unitary steps, which cannot wraparound.
10603   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
10604   //   N = Distance (as unsigned)
10605 
10606   if (match(Step, m_CombineOr(m_scev_One(), m_scev_AllOnes()))) {
10607     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, Guards));
10608     MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance));
10609 
10610     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
10611     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
10612     // case, and see if we can improve the bound.
10613     //
10614     // Explicitly handling this here is necessary because getUnsignedRange
10615     // isn't context-sensitive; it doesn't know that we only care about the
10616     // range inside the loop.
10617     const SCEV *Zero = getZero(Distance->getType());
10618     const SCEV *One = getOne(Distance->getType());
10619     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
10620     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
10621       // If Distance + 1 doesn't overflow, we can compute the maximum distance
10622       // as "unsigned_max(Distance + 1) - 1".
10623       ConstantRange CR = getUnsignedRange(DistancePlusOne);
10624       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
10625     }
10626     return ExitLimit(Distance, getConstant(MaxBECount), Distance, false,
10627                      Predicates);
10628   }
10629 
10630   // If the condition controls loop exit (the loop exits only if the expression
10631   // is true) and the addition is no-wrap we can use unsigned divide to
10632   // compute the backedge count.  In this case, the step may not divide the
10633   // distance, but we don't care because if the condition is "missed" the loop
10634   // will have undefined behavior due to wrapping.
10635   if (ControlsOnlyExit && AddRec->hasNoSelfWrap() &&
10636       loopHasNoAbnormalExits(AddRec->getLoop())) {
10637 
10638     // If the stride is zero, the loop must be infinite.  In C++, most loops
10639     // are finite by assumption, in which case the step being zero implies
10640     // UB must execute if the loop is entered.
10641     if (!loopIsFiniteByAssumption(L) && !isKnownNonZero(StepWLG))
10642       return getCouldNotCompute();
10643 
10644     const SCEV *Exact =
10645         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
10646     const SCEV *ConstantMax = getCouldNotCompute();
10647     if (Exact != getCouldNotCompute()) {
10648       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, Guards));
10649       ConstantMax =
10650           getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact)));
10651     }
10652     const SCEV *SymbolicMax =
10653         isa<SCEVCouldNotCompute>(Exact) ? ConstantMax : Exact;
10654     return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates);
10655   }
10656 
10657   // Solve the general equation.
10658   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
10659   if (!StepC || StepC->getValue()->isZero())
10660     return getCouldNotCompute();
10661   const SCEV *E = SolveLinEquationWithOverflow(
10662       StepC->getAPInt(), getNegativeSCEV(Start),
10663       AllowPredicates ? &Predicates : nullptr, *this);
10664 
10665   const SCEV *M = E;
10666   if (E != getCouldNotCompute()) {
10667     APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, Guards));
10668     M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E)));
10669   }
10670   auto *S = isa<SCEVCouldNotCompute>(E) ? M : E;
10671   return ExitLimit(E, M, S, false, Predicates);
10672 }
10673 
10674 ScalarEvolution::ExitLimit
10675 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
10676   // Loops that look like: while (X == 0) are very strange indeed.  We don't
10677   // handle them yet except for the trivial case.  This could be expanded in the
10678   // future as needed.
10679 
10680   // If the value is a constant, check to see if it is known to be non-zero
10681   // already.  If so, the backedge will execute zero times.
10682   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10683     if (!C->getValue()->isZero())
10684       return getZero(C->getType());
10685     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10686   }
10687 
10688   // We could implement others, but I really doubt anyone writes loops like
10689   // this, and if they did, they would already be constant folded.
10690   return getCouldNotCompute();
10691 }
10692 
10693 std::pair<const BasicBlock *, const BasicBlock *>
10694 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
10695     const {
10696   // If the block has a unique predecessor, then there is no path from the
10697   // predecessor to the block that does not go through the direct edge
10698   // from the predecessor to the block.
10699   if (const BasicBlock *Pred = BB->getSinglePredecessor())
10700     return {Pred, BB};
10701 
10702   // A loop's header is defined to be a block that dominates the loop.
10703   // If the header has a unique predecessor outside the loop, it must be
10704   // a block that has exactly one successor that can reach the loop.
10705   if (const Loop *L = LI.getLoopFor(BB))
10706     return {L->getLoopPredecessor(), L->getHeader()};
10707 
10708   return {nullptr, BB};
10709 }
10710 
10711 /// SCEV structural equivalence is usually sufficient for testing whether two
10712 /// expressions are equal, however for the purposes of looking for a condition
10713 /// guarding a loop, it can be useful to be a little more general, since a
10714 /// front-end may have replicated the controlling expression.
10715 static bool HasSameValue(const SCEV *A, const SCEV *B) {
10716   // Quick check to see if they are the same SCEV.
10717   if (A == B) return true;
10718 
10719   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
10720     // Not all instructions that are "identical" compute the same value.  For
10721     // instance, two distinct alloca instructions allocating the same type are
10722     // identical and do not read memory; but compute distinct values.
10723     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
10724   };
10725 
10726   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
10727   // two different instructions with the same value. Check for this case.
10728   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
10729     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
10730       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
10731         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
10732           if (ComputesEqualValues(AI, BI))
10733             return true;
10734 
10735   // Otherwise assume they may have a different value.
10736   return false;
10737 }
10738 
10739 static bool MatchBinarySub(const SCEV *S, const SCEV *&LHS, const SCEV *&RHS) {
10740   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S);
10741   if (!Add || Add->getNumOperands() != 2)
10742     return false;
10743   if (auto *ME = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
10744       ME && ME->getNumOperands() == 2 && ME->getOperand(0)->isAllOnesValue()) {
10745     LHS = Add->getOperand(1);
10746     RHS = ME->getOperand(1);
10747     return true;
10748   }
10749   if (auto *ME = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
10750       ME && ME->getNumOperands() == 2 && ME->getOperand(0)->isAllOnesValue()) {
10751     LHS = Add->getOperand(0);
10752     RHS = ME->getOperand(1);
10753     return true;
10754   }
10755   return false;
10756 }
10757 
10758 bool ScalarEvolution::SimplifyICmpOperands(CmpPredicate &Pred, const SCEV *&LHS,
10759                                            const SCEV *&RHS, unsigned Depth) {
10760   bool Changed = false;
10761   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
10762   // '0 != 0'.
10763   auto TrivialCase = [&](bool TriviallyTrue) {
10764     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
10765     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
10766     return true;
10767   };
10768   // If we hit the max recursion limit bail out.
10769   if (Depth >= 3)
10770     return false;
10771 
10772   // Canonicalize a constant to the right side.
10773   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
10774     // Check for both operands constant.
10775     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
10776       if (!ICmpInst::compare(LHSC->getAPInt(), RHSC->getAPInt(), Pred))
10777         return TrivialCase(false);
10778       return TrivialCase(true);
10779     }
10780     // Otherwise swap the operands to put the constant on the right.
10781     std::swap(LHS, RHS);
10782     Pred = ICmpInst::getSwappedCmpPredicate(Pred);
10783     Changed = true;
10784   }
10785 
10786   // If we're comparing an addrec with a value which is loop-invariant in the
10787   // addrec's loop, put the addrec on the left. Also make a dominance check,
10788   // as both operands could be addrecs loop-invariant in each other's loop.
10789   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
10790     const Loop *L = AR->getLoop();
10791     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
10792       std::swap(LHS, RHS);
10793       Pred = ICmpInst::getSwappedCmpPredicate(Pred);
10794       Changed = true;
10795     }
10796   }
10797 
10798   // If there's a constant operand, canonicalize comparisons with boundary
10799   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
10800   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
10801     const APInt &RA = RC->getAPInt();
10802 
10803     bool SimplifiedByConstantRange = false;
10804 
10805     if (!ICmpInst::isEquality(Pred)) {
10806       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
10807       if (ExactCR.isFullSet())
10808         return TrivialCase(true);
10809       if (ExactCR.isEmptySet())
10810         return TrivialCase(false);
10811 
10812       APInt NewRHS;
10813       CmpInst::Predicate NewPred;
10814       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
10815           ICmpInst::isEquality(NewPred)) {
10816         // We were able to convert an inequality to an equality.
10817         Pred = NewPred;
10818         RHS = getConstant(NewRHS);
10819         Changed = SimplifiedByConstantRange = true;
10820       }
10821     }
10822 
10823     if (!SimplifiedByConstantRange) {
10824       switch (Pred) {
10825       default:
10826         break;
10827       case ICmpInst::ICMP_EQ:
10828       case ICmpInst::ICMP_NE:
10829         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10830         if (RA.isZero() && MatchBinarySub(LHS, LHS, RHS))
10831           Changed = true;
10832         break;
10833 
10834         // The "Should have been caught earlier!" messages refer to the fact
10835         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10836         // should have fired on the corresponding cases, and canonicalized the
10837         // check to trivial case.
10838 
10839       case ICmpInst::ICMP_UGE:
10840         assert(!RA.isMinValue() && "Should have been caught earlier!");
10841         Pred = ICmpInst::ICMP_UGT;
10842         RHS = getConstant(RA - 1);
10843         Changed = true;
10844         break;
10845       case ICmpInst::ICMP_ULE:
10846         assert(!RA.isMaxValue() && "Should have been caught earlier!");
10847         Pred = ICmpInst::ICMP_ULT;
10848         RHS = getConstant(RA + 1);
10849         Changed = true;
10850         break;
10851       case ICmpInst::ICMP_SGE:
10852         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
10853         Pred = ICmpInst::ICMP_SGT;
10854         RHS = getConstant(RA - 1);
10855         Changed = true;
10856         break;
10857       case ICmpInst::ICMP_SLE:
10858         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
10859         Pred = ICmpInst::ICMP_SLT;
10860         RHS = getConstant(RA + 1);
10861         Changed = true;
10862         break;
10863       }
10864     }
10865   }
10866 
10867   // Check for obvious equality.
10868   if (HasSameValue(LHS, RHS)) {
10869     if (ICmpInst::isTrueWhenEqual(Pred))
10870       return TrivialCase(true);
10871     if (ICmpInst::isFalseWhenEqual(Pred))
10872       return TrivialCase(false);
10873   }
10874 
10875   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10876   // adding or subtracting 1 from one of the operands.
10877   switch (Pred) {
10878   case ICmpInst::ICMP_SLE:
10879     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
10880       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10881                        SCEV::FlagNSW);
10882       Pred = ICmpInst::ICMP_SLT;
10883       Changed = true;
10884     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
10885       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
10886                        SCEV::FlagNSW);
10887       Pred = ICmpInst::ICMP_SLT;
10888       Changed = true;
10889     }
10890     break;
10891   case ICmpInst::ICMP_SGE:
10892     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
10893       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
10894                        SCEV::FlagNSW);
10895       Pred = ICmpInst::ICMP_SGT;
10896       Changed = true;
10897     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
10898       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10899                        SCEV::FlagNSW);
10900       Pred = ICmpInst::ICMP_SGT;
10901       Changed = true;
10902     }
10903     break;
10904   case ICmpInst::ICMP_ULE:
10905     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
10906       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10907                        SCEV::FlagNUW);
10908       Pred = ICmpInst::ICMP_ULT;
10909       Changed = true;
10910     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
10911       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
10912       Pred = ICmpInst::ICMP_ULT;
10913       Changed = true;
10914     }
10915     break;
10916   case ICmpInst::ICMP_UGE:
10917     if (!getUnsignedRangeMin(RHS).isMinValue()) {
10918       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
10919       Pred = ICmpInst::ICMP_UGT;
10920       Changed = true;
10921     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
10922       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10923                        SCEV::FlagNUW);
10924       Pred = ICmpInst::ICMP_UGT;
10925       Changed = true;
10926     }
10927     break;
10928   default:
10929     break;
10930   }
10931 
10932   // TODO: More simplifications are possible here.
10933 
10934   // Recursively simplify until we either hit a recursion limit or nothing
10935   // changes.
10936   if (Changed)
10937     return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1);
10938 
10939   return Changed;
10940 }
10941 
10942 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
10943   return getSignedRangeMax(S).isNegative();
10944 }
10945 
10946 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
10947   return getSignedRangeMin(S).isStrictlyPositive();
10948 }
10949 
10950 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
10951   return !getSignedRangeMin(S).isNegative();
10952 }
10953 
10954 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
10955   return !getSignedRangeMax(S).isStrictlyPositive();
10956 }
10957 
10958 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
10959   // Query push down for cases where the unsigned range is
10960   // less than sufficient.
10961   if (const auto *SExt = dyn_cast<SCEVSignExtendExpr>(S))
10962     return isKnownNonZero(SExt->getOperand(0));
10963   return getUnsignedRangeMin(S) != 0;
10964 }
10965 
10966 bool ScalarEvolution::isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero,
10967                                              bool OrNegative) {
10968   auto NonRecursive = [this, OrNegative](const SCEV *S) {
10969     if (auto *C = dyn_cast<SCEVConstant>(S))
10970       return C->getAPInt().isPowerOf2() ||
10971              (OrNegative && C->getAPInt().isNegatedPowerOf2());
10972 
10973     // The vscale_range indicates vscale is a power-of-two.
10974     return isa<SCEVVScale>(S) && F.hasFnAttribute(Attribute::VScaleRange);
10975   };
10976 
10977   if (NonRecursive(S))
10978     return true;
10979 
10980   auto *Mul = dyn_cast<SCEVMulExpr>(S);
10981   if (!Mul)
10982     return false;
10983   return all_of(Mul->operands(), NonRecursive) && (OrZero || isKnownNonZero(S));
10984 }
10985 
10986 std::pair<const SCEV *, const SCEV *>
10987 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
10988   // Compute SCEV on entry of loop L.
10989   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
10990   if (Start == getCouldNotCompute())
10991     return { Start, Start };
10992   // Compute post increment SCEV for loop L.
10993   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
10994   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
10995   return { Start, PostInc };
10996 }
10997 
10998 bool ScalarEvolution::isKnownViaInduction(CmpPredicate Pred, const SCEV *LHS,
10999                                           const SCEV *RHS) {
11000   // First collect all loops.
11001   SmallPtrSet<const Loop *, 8> LoopsUsed;
11002   getUsedLoops(LHS, LoopsUsed);
11003   getUsedLoops(RHS, LoopsUsed);
11004 
11005   if (LoopsUsed.empty())
11006     return false;
11007 
11008   // Domination relationship must be a linear order on collected loops.
11009 #ifndef NDEBUG
11010   for (const auto *L1 : LoopsUsed)
11011     for (const auto *L2 : LoopsUsed)
11012       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
11013               DT.dominates(L2->getHeader(), L1->getHeader())) &&
11014              "Domination relationship is not a linear order");
11015 #endif
11016 
11017   const Loop *MDL =
11018       *llvm::max_element(LoopsUsed, [&](const Loop *L1, const Loop *L2) {
11019         return DT.properlyDominates(L1->getHeader(), L2->getHeader());
11020       });
11021 
11022   // Get init and post increment value for LHS.
11023   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
11024   // if LHS contains unknown non-invariant SCEV then bail out.
11025   if (SplitLHS.first == getCouldNotCompute())
11026     return false;
11027   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
11028   // Get init and post increment value for RHS.
11029   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
11030   // if RHS contains unknown non-invariant SCEV then bail out.
11031   if (SplitRHS.first == getCouldNotCompute())
11032     return false;
11033   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
11034   // It is possible that init SCEV contains an invariant load but it does
11035   // not dominate MDL and is not available at MDL loop entry, so we should
11036   // check it here.
11037   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
11038       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
11039     return false;
11040 
11041   // It seems backedge guard check is faster than entry one so in some cases
11042   // it can speed up whole estimation by short circuit
11043   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
11044                                      SplitRHS.second) &&
11045          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
11046 }
11047 
11048 bool ScalarEvolution::isKnownPredicate(CmpPredicate Pred, const SCEV *LHS,
11049                                        const SCEV *RHS) {
11050   // Canonicalize the inputs first.
11051   (void)SimplifyICmpOperands(Pred, LHS, RHS);
11052 
11053   if (isKnownViaInduction(Pred, LHS, RHS))
11054     return true;
11055 
11056   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
11057     return true;
11058 
11059   // Otherwise see what can be done with some simple reasoning.
11060   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
11061 }
11062 
11063 std::optional<bool> ScalarEvolution::evaluatePredicate(CmpPredicate Pred,
11064                                                        const SCEV *LHS,
11065                                                        const SCEV *RHS) {
11066   if (isKnownPredicate(Pred, LHS, RHS))
11067     return true;
11068   if (isKnownPredicate(ICmpInst::getInverseCmpPredicate(Pred), LHS, RHS))
11069     return false;
11070   return std::nullopt;
11071 }
11072 
11073 bool ScalarEvolution::isKnownPredicateAt(CmpPredicate Pred, const SCEV *LHS,
11074                                          const SCEV *RHS,
11075                                          const Instruction *CtxI) {
11076   // TODO: Analyze guards and assumes from Context's block.
11077   return isKnownPredicate(Pred, LHS, RHS) ||
11078          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
11079 }
11080 
11081 std::optional<bool>
11082 ScalarEvolution::evaluatePredicateAt(CmpPredicate Pred, const SCEV *LHS,
11083                                      const SCEV *RHS, const Instruction *CtxI) {
11084   std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
11085   if (KnownWithoutContext)
11086     return KnownWithoutContext;
11087 
11088   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
11089     return true;
11090   if (isBasicBlockEntryGuardedByCond(
11091           CtxI->getParent(), ICmpInst::getInverseCmpPredicate(Pred), LHS, RHS))
11092     return false;
11093   return std::nullopt;
11094 }
11095 
11096 bool ScalarEvolution::isKnownOnEveryIteration(CmpPredicate Pred,
11097                                               const SCEVAddRecExpr *LHS,
11098                                               const SCEV *RHS) {
11099   const Loop *L = LHS->getLoop();
11100   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
11101          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
11102 }
11103 
11104 std::optional<ScalarEvolution::MonotonicPredicateType>
11105 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
11106                                            ICmpInst::Predicate Pred) {
11107   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
11108 
11109 #ifndef NDEBUG
11110   // Verify an invariant: inverting the predicate should turn a monotonically
11111   // increasing change to a monotonically decreasing one, and vice versa.
11112   if (Result) {
11113     auto ResultSwapped =
11114         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
11115 
11116     assert(*ResultSwapped != *Result &&
11117            "monotonicity should flip as we flip the predicate");
11118   }
11119 #endif
11120 
11121   return Result;
11122 }
11123 
11124 std::optional<ScalarEvolution::MonotonicPredicateType>
11125 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
11126                                                ICmpInst::Predicate Pred) {
11127   // A zero step value for LHS means the induction variable is essentially a
11128   // loop invariant value. We don't really depend on the predicate actually
11129   // flipping from false to true (for increasing predicates, and the other way
11130   // around for decreasing predicates), all we care about is that *if* the
11131   // predicate changes then it only changes from false to true.
11132   //
11133   // A zero step value in itself is not very useful, but there may be places
11134   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
11135   // as general as possible.
11136 
11137   // Only handle LE/LT/GE/GT predicates.
11138   if (!ICmpInst::isRelational(Pred))
11139     return std::nullopt;
11140 
11141   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
11142   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
11143          "Should be greater or less!");
11144 
11145   // Check that AR does not wrap.
11146   if (ICmpInst::isUnsigned(Pred)) {
11147     if (!LHS->hasNoUnsignedWrap())
11148       return std::nullopt;
11149     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
11150   }
11151   assert(ICmpInst::isSigned(Pred) &&
11152          "Relational predicate is either signed or unsigned!");
11153   if (!LHS->hasNoSignedWrap())
11154     return std::nullopt;
11155 
11156   const SCEV *Step = LHS->getStepRecurrence(*this);
11157 
11158   if (isKnownNonNegative(Step))
11159     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
11160 
11161   if (isKnownNonPositive(Step))
11162     return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
11163 
11164   return std::nullopt;
11165 }
11166 
11167 std::optional<ScalarEvolution::LoopInvariantPredicate>
11168 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
11169                                            const SCEV *LHS, const SCEV *RHS,
11170                                            const Loop *L,
11171                                            const Instruction *CtxI) {
11172   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
11173   if (!isLoopInvariant(RHS, L)) {
11174     if (!isLoopInvariant(LHS, L))
11175       return std::nullopt;
11176 
11177     std::swap(LHS, RHS);
11178     Pred = ICmpInst::getSwappedPredicate(Pred);
11179   }
11180 
11181   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11182   if (!ArLHS || ArLHS->getLoop() != L)
11183     return std::nullopt;
11184 
11185   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
11186   if (!MonotonicType)
11187     return std::nullopt;
11188   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
11189   // true as the loop iterates, and the backedge is control dependent on
11190   // "ArLHS `Pred` RHS" == true then we can reason as follows:
11191   //
11192   //   * if the predicate was false in the first iteration then the predicate
11193   //     is never evaluated again, since the loop exits without taking the
11194   //     backedge.
11195   //   * if the predicate was true in the first iteration then it will
11196   //     continue to be true for all future iterations since it is
11197   //     monotonically increasing.
11198   //
11199   // For both the above possibilities, we can replace the loop varying
11200   // predicate with its value on the first iteration of the loop (which is
11201   // loop invariant).
11202   //
11203   // A similar reasoning applies for a monotonically decreasing predicate, by
11204   // replacing true with false and false with true in the above two bullets.
11205   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
11206   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
11207 
11208   if (isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
11209     return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
11210                                                    RHS);
11211 
11212   if (!CtxI)
11213     return std::nullopt;
11214   // Try to prove via context.
11215   // TODO: Support other cases.
11216   switch (Pred) {
11217   default:
11218     break;
11219   case ICmpInst::ICMP_ULE:
11220   case ICmpInst::ICMP_ULT: {
11221     assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!");
11222     // Given preconditions
11223     // (1) ArLHS does not cross the border of positive and negative parts of
11224     //     range because of:
11225     //     - Positive step; (TODO: lift this limitation)
11226     //     - nuw - does not cross zero boundary;
11227     //     - nsw - does not cross SINT_MAX boundary;
11228     // (2) ArLHS <s RHS
11229     // (3) RHS >=s 0
11230     // we can replace the loop variant ArLHS <u RHS condition with loop
11231     // invariant Start(ArLHS) <u RHS.
11232     //
11233     // Because of (1) there are two options:
11234     // - ArLHS is always negative. It means that ArLHS <u RHS is always false;
11235     // - ArLHS is always non-negative. Because of (3) RHS is also non-negative.
11236     //   It means that ArLHS <s RHS <=> ArLHS <u RHS.
11237     //   Because of (2) ArLHS <u RHS is trivially true.
11238     // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0.
11239     // We can strengthen this to Start(ArLHS) <u RHS.
11240     auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred);
11241     if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() &&
11242         isKnownPositive(ArLHS->getStepRecurrence(*this)) &&
11243         isKnownNonNegative(RHS) &&
11244         isKnownPredicateAt(SignFlippedPred, ArLHS, RHS, CtxI))
11245       return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
11246                                                      RHS);
11247   }
11248   }
11249 
11250   return std::nullopt;
11251 }
11252 
11253 std::optional<ScalarEvolution::LoopInvariantPredicate>
11254 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
11255     CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
11256     const Instruction *CtxI, const SCEV *MaxIter) {
11257   if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
11258           Pred, LHS, RHS, L, CtxI, MaxIter))
11259     return LIP;
11260   if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter))
11261     // Number of iterations expressed as UMIN isn't always great for expressing
11262     // the value on the last iteration. If the straightforward approach didn't
11263     // work, try the following trick: if the a predicate is invariant for X, it
11264     // is also invariant for umin(X, ...). So try to find something that works
11265     // among subexpressions of MaxIter expressed as umin.
11266     for (auto *Op : UMin->operands())
11267       if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
11268               Pred, LHS, RHS, L, CtxI, Op))
11269         return LIP;
11270   return std::nullopt;
11271 }
11272 
11273 std::optional<ScalarEvolution::LoopInvariantPredicate>
11274 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl(
11275     CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
11276     const Instruction *CtxI, const SCEV *MaxIter) {
11277   // Try to prove the following set of facts:
11278   // - The predicate is monotonic in the iteration space.
11279   // - If the check does not fail on the 1st iteration:
11280   //   - No overflow will happen during first MaxIter iterations;
11281   //   - It will not fail on the MaxIter'th iteration.
11282   // If the check does fail on the 1st iteration, we leave the loop and no
11283   // other checks matter.
11284 
11285   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
11286   if (!isLoopInvariant(RHS, L)) {
11287     if (!isLoopInvariant(LHS, L))
11288       return std::nullopt;
11289 
11290     std::swap(LHS, RHS);
11291     Pred = ICmpInst::getSwappedCmpPredicate(Pred);
11292   }
11293 
11294   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
11295   if (!AR || AR->getLoop() != L)
11296     return std::nullopt;
11297 
11298   // The predicate must be relational (i.e. <, <=, >=, >).
11299   if (!ICmpInst::isRelational(Pred))
11300     return std::nullopt;
11301 
11302   // TODO: Support steps other than +/- 1.
11303   const SCEV *Step = AR->getStepRecurrence(*this);
11304   auto *One = getOne(Step->getType());
11305   auto *MinusOne = getNegativeSCEV(One);
11306   if (Step != One && Step != MinusOne)
11307     return std::nullopt;
11308 
11309   // Type mismatch here means that MaxIter is potentially larger than max
11310   // unsigned value in start type, which mean we cannot prove no wrap for the
11311   // indvar.
11312   if (AR->getType() != MaxIter->getType())
11313     return std::nullopt;
11314 
11315   // Value of IV on suggested last iteration.
11316   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
11317   // Does it still meet the requirement?
11318   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
11319     return std::nullopt;
11320   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
11321   // not exceed max unsigned value of this type), this effectively proves
11322   // that there is no wrap during the iteration. To prove that there is no
11323   // signed/unsigned wrap, we need to check that
11324   // Start <= Last for step = 1 or Start >= Last for step = -1.
11325   ICmpInst::Predicate NoOverflowPred =
11326       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11327   if (Step == MinusOne)
11328     NoOverflowPred = ICmpInst::getSwappedCmpPredicate(NoOverflowPred);
11329   const SCEV *Start = AR->getStart();
11330   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
11331     return std::nullopt;
11332 
11333   // Everything is fine.
11334   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
11335 }
11336 
11337 bool ScalarEvolution::isKnownPredicateViaConstantRanges(CmpPredicate Pred,
11338                                                         const SCEV *LHS,
11339                                                         const SCEV *RHS) {
11340   if (HasSameValue(LHS, RHS))
11341     return ICmpInst::isTrueWhenEqual(Pred);
11342 
11343   // This code is split out from isKnownPredicate because it is called from
11344   // within isLoopEntryGuardedByCond.
11345 
11346   auto CheckRanges = [&](const ConstantRange &RangeLHS,
11347                          const ConstantRange &RangeRHS) {
11348     return RangeLHS.icmp(Pred, RangeRHS);
11349   };
11350 
11351   // The check at the top of the function catches the case where the values are
11352   // known to be equal.
11353   if (Pred == CmpInst::ICMP_EQ)
11354     return false;
11355 
11356   if (Pred == CmpInst::ICMP_NE) {
11357     auto SL = getSignedRange(LHS);
11358     auto SR = getSignedRange(RHS);
11359     if (CheckRanges(SL, SR))
11360       return true;
11361     auto UL = getUnsignedRange(LHS);
11362     auto UR = getUnsignedRange(RHS);
11363     if (CheckRanges(UL, UR))
11364       return true;
11365     auto *Diff = getMinusSCEV(LHS, RHS);
11366     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
11367   }
11368 
11369   if (CmpInst::isSigned(Pred)) {
11370     auto SL = getSignedRange(LHS);
11371     auto SR = getSignedRange(RHS);
11372     return CheckRanges(SL, SR);
11373   }
11374 
11375   auto UL = getUnsignedRange(LHS);
11376   auto UR = getUnsignedRange(RHS);
11377   return CheckRanges(UL, UR);
11378 }
11379 
11380 bool ScalarEvolution::isKnownPredicateViaNoOverflow(CmpPredicate Pred,
11381                                                     const SCEV *LHS,
11382                                                     const SCEV *RHS) {
11383   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
11384   // C1 and C2 are constant integers. If either X or Y are not add expressions,
11385   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
11386   // OutC1 and OutC2.
11387   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
11388                                       APInt &OutC1, APInt &OutC2,
11389                                       SCEV::NoWrapFlags ExpectedFlags) {
11390     const SCEV *XNonConstOp, *XConstOp;
11391     const SCEV *YNonConstOp, *YConstOp;
11392     SCEV::NoWrapFlags XFlagsPresent;
11393     SCEV::NoWrapFlags YFlagsPresent;
11394 
11395     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
11396       XConstOp = getZero(X->getType());
11397       XNonConstOp = X;
11398       XFlagsPresent = ExpectedFlags;
11399     }
11400     if (!isa<SCEVConstant>(XConstOp) ||
11401         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
11402       return false;
11403 
11404     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
11405       YConstOp = getZero(Y->getType());
11406       YNonConstOp = Y;
11407       YFlagsPresent = ExpectedFlags;
11408     }
11409 
11410     if (!isa<SCEVConstant>(YConstOp) ||
11411         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
11412       return false;
11413 
11414     if (YNonConstOp != XNonConstOp)
11415       return false;
11416 
11417     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
11418     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
11419 
11420     return true;
11421   };
11422 
11423   APInt C1;
11424   APInt C2;
11425 
11426   switch (Pred) {
11427   default:
11428     break;
11429 
11430   case ICmpInst::ICMP_SGE:
11431     std::swap(LHS, RHS);
11432     [[fallthrough]];
11433   case ICmpInst::ICMP_SLE:
11434     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
11435     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
11436       return true;
11437 
11438     break;
11439 
11440   case ICmpInst::ICMP_SGT:
11441     std::swap(LHS, RHS);
11442     [[fallthrough]];
11443   case ICmpInst::ICMP_SLT:
11444     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
11445     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
11446       return true;
11447 
11448     break;
11449 
11450   case ICmpInst::ICMP_UGE:
11451     std::swap(LHS, RHS);
11452     [[fallthrough]];
11453   case ICmpInst::ICMP_ULE:
11454     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
11455     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNUW) && C1.ule(C2))
11456       return true;
11457 
11458     break;
11459 
11460   case ICmpInst::ICMP_UGT:
11461     std::swap(LHS, RHS);
11462     [[fallthrough]];
11463   case ICmpInst::ICMP_ULT:
11464     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
11465     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNUW) && C1.ult(C2))
11466       return true;
11467     break;
11468   }
11469 
11470   return false;
11471 }
11472 
11473 bool ScalarEvolution::isKnownPredicateViaSplitting(CmpPredicate Pred,
11474                                                    const SCEV *LHS,
11475                                                    const SCEV *RHS) {
11476   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
11477     return false;
11478 
11479   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
11480   // the stack can result in exponential time complexity.
11481   SaveAndRestore Restore(ProvingSplitPredicate, true);
11482 
11483   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
11484   //
11485   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
11486   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
11487   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
11488   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
11489   // use isKnownPredicate later if needed.
11490   return isKnownNonNegative(RHS) &&
11491          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
11492          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
11493 }
11494 
11495 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, CmpPredicate Pred,
11496                                         const SCEV *LHS, const SCEV *RHS) {
11497   // No need to even try if we know the module has no guards.
11498   if (!HasGuards)
11499     return false;
11500 
11501   return any_of(*BB, [&](const Instruction &I) {
11502     using namespace llvm::PatternMatch;
11503 
11504     Value *Condition;
11505     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
11506                          m_Value(Condition))) &&
11507            isImpliedCond(Pred, LHS, RHS, Condition, false);
11508   });
11509 }
11510 
11511 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
11512 /// protected by a conditional between LHS and RHS.  This is used to
11513 /// to eliminate casts.
11514 bool ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
11515                                                   CmpPredicate Pred,
11516                                                   const SCEV *LHS,
11517                                                   const SCEV *RHS) {
11518   // Interpret a null as meaning no loop, where there is obviously no guard
11519   // (interprocedural conditions notwithstanding). Do not bother about
11520   // unreachable loops.
11521   if (!L || !DT.isReachableFromEntry(L->getHeader()))
11522     return true;
11523 
11524   if (VerifyIR)
11525     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
11526            "This cannot be done on broken IR!");
11527 
11528 
11529   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11530     return true;
11531 
11532   BasicBlock *Latch = L->getLoopLatch();
11533   if (!Latch)
11534     return false;
11535 
11536   BranchInst *LoopContinuePredicate =
11537     dyn_cast<BranchInst>(Latch->getTerminator());
11538   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
11539       isImpliedCond(Pred, LHS, RHS,
11540                     LoopContinuePredicate->getCondition(),
11541                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
11542     return true;
11543 
11544   // We don't want more than one activation of the following loops on the stack
11545   // -- that can lead to O(n!) time complexity.
11546   if (WalkingBEDominatingConds)
11547     return false;
11548 
11549   SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true);
11550 
11551   // See if we can exploit a trip count to prove the predicate.
11552   const auto &BETakenInfo = getBackedgeTakenInfo(L);
11553   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
11554   if (LatchBECount != getCouldNotCompute()) {
11555     // We know that Latch branches back to the loop header exactly
11556     // LatchBECount times.  This means the backdege condition at Latch is
11557     // equivalent to  "{0,+,1} u< LatchBECount".
11558     Type *Ty = LatchBECount->getType();
11559     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
11560     const SCEV *LoopCounter =
11561       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
11562     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
11563                       LatchBECount))
11564       return true;
11565   }
11566 
11567   // Check conditions due to any @llvm.assume intrinsics.
11568   for (auto &AssumeVH : AC.assumptions()) {
11569     if (!AssumeVH)
11570       continue;
11571     auto *CI = cast<CallInst>(AssumeVH);
11572     if (!DT.dominates(CI, Latch->getTerminator()))
11573       continue;
11574 
11575     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
11576       return true;
11577   }
11578 
11579   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
11580     return true;
11581 
11582   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
11583        DTN != HeaderDTN; DTN = DTN->getIDom()) {
11584     assert(DTN && "should reach the loop header before reaching the root!");
11585 
11586     BasicBlock *BB = DTN->getBlock();
11587     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
11588       return true;
11589 
11590     BasicBlock *PBB = BB->getSinglePredecessor();
11591     if (!PBB)
11592       continue;
11593 
11594     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
11595     if (!ContinuePredicate || !ContinuePredicate->isConditional())
11596       continue;
11597 
11598     Value *Condition = ContinuePredicate->getCondition();
11599 
11600     // If we have an edge `E` within the loop body that dominates the only
11601     // latch, the condition guarding `E` also guards the backedge.  This
11602     // reasoning works only for loops with a single latch.
11603 
11604     BasicBlockEdge DominatingEdge(PBB, BB);
11605     if (DominatingEdge.isSingleEdge()) {
11606       // We're constructively (and conservatively) enumerating edges within the
11607       // loop body that dominate the latch.  The dominator tree better agree
11608       // with us on this:
11609       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
11610 
11611       if (isImpliedCond(Pred, LHS, RHS, Condition,
11612                         BB != ContinuePredicate->getSuccessor(0)))
11613         return true;
11614     }
11615   }
11616 
11617   return false;
11618 }
11619 
11620 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
11621                                                      CmpPredicate Pred,
11622                                                      const SCEV *LHS,
11623                                                      const SCEV *RHS) {
11624   // Do not bother proving facts for unreachable code.
11625   if (!DT.isReachableFromEntry(BB))
11626     return true;
11627   if (VerifyIR)
11628     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
11629            "This cannot be done on broken IR!");
11630 
11631   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
11632   // the facts (a >= b && a != b) separately. A typical situation is when the
11633   // non-strict comparison is known from ranges and non-equality is known from
11634   // dominating predicates. If we are proving strict comparison, we always try
11635   // to prove non-equality and non-strict comparison separately.
11636   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
11637   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
11638   bool ProvedNonStrictComparison = false;
11639   bool ProvedNonEquality = false;
11640 
11641   auto SplitAndProve = [&](std::function<bool(CmpPredicate)> Fn) -> bool {
11642     if (!ProvedNonStrictComparison)
11643       ProvedNonStrictComparison = Fn(NonStrictPredicate);
11644     if (!ProvedNonEquality)
11645       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
11646     if (ProvedNonStrictComparison && ProvedNonEquality)
11647       return true;
11648     return false;
11649   };
11650 
11651   if (ProvingStrictComparison) {
11652     auto ProofFn = [&](CmpPredicate P) {
11653       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
11654     };
11655     if (SplitAndProve(ProofFn))
11656       return true;
11657   }
11658 
11659   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
11660   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
11661     const Instruction *CtxI = &BB->front();
11662     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
11663       return true;
11664     if (ProvingStrictComparison) {
11665       auto ProofFn = [&](CmpPredicate P) {
11666         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
11667       };
11668       if (SplitAndProve(ProofFn))
11669         return true;
11670     }
11671     return false;
11672   };
11673 
11674   // Starting at the block's predecessor, climb up the predecessor chain, as long
11675   // as there are predecessors that can be found that have unique successors
11676   // leading to the original block.
11677   const Loop *ContainingLoop = LI.getLoopFor(BB);
11678   const BasicBlock *PredBB;
11679   if (ContainingLoop && ContainingLoop->getHeader() == BB)
11680     PredBB = ContainingLoop->getLoopPredecessor();
11681   else
11682     PredBB = BB->getSinglePredecessor();
11683   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
11684        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
11685     const BranchInst *BlockEntryPredicate =
11686         dyn_cast<BranchInst>(Pair.first->getTerminator());
11687     if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional())
11688       continue;
11689 
11690     if (ProveViaCond(BlockEntryPredicate->getCondition(),
11691                      BlockEntryPredicate->getSuccessor(0) != Pair.second))
11692       return true;
11693   }
11694 
11695   // Check conditions due to any @llvm.assume intrinsics.
11696   for (auto &AssumeVH : AC.assumptions()) {
11697     if (!AssumeVH)
11698       continue;
11699     auto *CI = cast<CallInst>(AssumeVH);
11700     if (!DT.dominates(CI, BB))
11701       continue;
11702 
11703     if (ProveViaCond(CI->getArgOperand(0), false))
11704       return true;
11705   }
11706 
11707   // Check conditions due to any @llvm.experimental.guard intrinsics.
11708   auto *GuardDecl = Intrinsic::getDeclarationIfExists(
11709       F.getParent(), Intrinsic::experimental_guard);
11710   if (GuardDecl)
11711     for (const auto *GU : GuardDecl->users())
11712       if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
11713         if (Guard->getFunction() == BB->getParent() && DT.dominates(Guard, BB))
11714           if (ProveViaCond(Guard->getArgOperand(0), false))
11715             return true;
11716   return false;
11717 }
11718 
11719 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred,
11720                                                const SCEV *LHS,
11721                                                const SCEV *RHS) {
11722   // Interpret a null as meaning no loop, where there is obviously no guard
11723   // (interprocedural conditions notwithstanding).
11724   if (!L)
11725     return false;
11726 
11727   // Both LHS and RHS must be available at loop entry.
11728   assert(isAvailableAtLoopEntry(LHS, L) &&
11729          "LHS is not available at Loop Entry");
11730   assert(isAvailableAtLoopEntry(RHS, L) &&
11731          "RHS is not available at Loop Entry");
11732 
11733   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11734     return true;
11735 
11736   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
11737 }
11738 
11739 bool ScalarEvolution::isImpliedCond(CmpPredicate Pred, const SCEV *LHS,
11740                                     const SCEV *RHS,
11741                                     const Value *FoundCondValue, bool Inverse,
11742                                     const Instruction *CtxI) {
11743   // False conditions implies anything. Do not bother analyzing it further.
11744   if (FoundCondValue ==
11745       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
11746     return true;
11747 
11748   if (!PendingLoopPredicates.insert(FoundCondValue).second)
11749     return false;
11750 
11751   auto ClearOnExit =
11752       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
11753 
11754   // Recursively handle And and Or conditions.
11755   const Value *Op0, *Op1;
11756   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
11757     if (!Inverse)
11758       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11759              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11760   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
11761     if (Inverse)
11762       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11763              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11764   }
11765 
11766   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
11767   if (!ICI) return false;
11768 
11769   // Now that we found a conditional branch that dominates the loop or controls
11770   // the loop latch. Check to see if it is the comparison we are looking for.
11771   CmpPredicate FoundPred;
11772   if (Inverse)
11773     FoundPred = ICI->getInverseCmpPredicate();
11774   else
11775     FoundPred = ICI->getCmpPredicate();
11776 
11777   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
11778   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
11779 
11780   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
11781 }
11782 
11783 bool ScalarEvolution::isImpliedCond(CmpPredicate Pred, const SCEV *LHS,
11784                                     const SCEV *RHS, CmpPredicate FoundPred,
11785                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
11786                                     const Instruction *CtxI) {
11787   // Balance the types.
11788   if (getTypeSizeInBits(LHS->getType()) <
11789       getTypeSizeInBits(FoundLHS->getType())) {
11790     // For unsigned and equality predicates, try to prove that both found
11791     // operands fit into narrow unsigned range. If so, try to prove facts in
11792     // narrow types.
11793     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() &&
11794         !FoundRHS->getType()->isPointerTy()) {
11795       auto *NarrowType = LHS->getType();
11796       auto *WideType = FoundLHS->getType();
11797       auto BitWidth = getTypeSizeInBits(NarrowType);
11798       const SCEV *MaxValue = getZeroExtendExpr(
11799           getConstant(APInt::getMaxValue(BitWidth)), WideType);
11800       if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
11801                                           MaxValue) &&
11802           isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
11803                                           MaxValue)) {
11804         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
11805         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
11806         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
11807                                        TruncFoundRHS, CtxI))
11808           return true;
11809       }
11810     }
11811 
11812     if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy())
11813       return false;
11814     if (CmpInst::isSigned(Pred)) {
11815       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
11816       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
11817     } else {
11818       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
11819       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
11820     }
11821   } else if (getTypeSizeInBits(LHS->getType()) >
11822       getTypeSizeInBits(FoundLHS->getType())) {
11823     if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy())
11824       return false;
11825     if (CmpInst::isSigned(FoundPred)) {
11826       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
11827       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
11828     } else {
11829       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
11830       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
11831     }
11832   }
11833   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
11834                                     FoundRHS, CtxI);
11835 }
11836 
11837 bool ScalarEvolution::isImpliedCondBalancedTypes(
11838     CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, CmpPredicate FoundPred,
11839     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
11840   assert(getTypeSizeInBits(LHS->getType()) ==
11841              getTypeSizeInBits(FoundLHS->getType()) &&
11842          "Types should be balanced!");
11843   // Canonicalize the query to match the way instcombine will have
11844   // canonicalized the comparison.
11845   if (SimplifyICmpOperands(Pred, LHS, RHS))
11846     if (LHS == RHS)
11847       return CmpInst::isTrueWhenEqual(Pred);
11848   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
11849     if (FoundLHS == FoundRHS)
11850       return CmpInst::isFalseWhenEqual(FoundPred);
11851 
11852   // Check to see if we can make the LHS or RHS match.
11853   if (LHS == FoundRHS || RHS == FoundLHS) {
11854     if (isa<SCEVConstant>(RHS)) {
11855       std::swap(FoundLHS, FoundRHS);
11856       FoundPred = ICmpInst::getSwappedCmpPredicate(FoundPred);
11857     } else {
11858       std::swap(LHS, RHS);
11859       Pred = ICmpInst::getSwappedCmpPredicate(Pred);
11860     }
11861   }
11862 
11863   // Check whether the found predicate is the same as the desired predicate.
11864   // FIXME: use CmpPredicate::getMatching here.
11865   if (FoundPred == static_cast<CmpInst::Predicate>(Pred))
11866     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11867 
11868   // Check whether swapping the found predicate makes it the same as the
11869   // desired predicate.
11870   // FIXME: use CmpPredicate::getMatching here.
11871   if (ICmpInst::getSwappedCmpPredicate(FoundPred) ==
11872       static_cast<CmpInst::Predicate>(Pred)) {
11873     // We can write the implication
11874     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
11875     // using one of the following ways:
11876     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
11877     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
11878     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
11879     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
11880     // Forms 1. and 2. require swapping the operands of one condition. Don't
11881     // do this if it would break canonical constant/addrec ordering.
11882     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
11883       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
11884                                    CtxI);
11885     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
11886       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
11887 
11888     // There's no clear preference between forms 3. and 4., try both.  Avoid
11889     // forming getNotSCEV of pointer values as the resulting subtract is
11890     // not legal.
11891     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
11892         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
11893                               FoundLHS, FoundRHS, CtxI))
11894       return true;
11895 
11896     if (!FoundLHS->getType()->isPointerTy() &&
11897         !FoundRHS->getType()->isPointerTy() &&
11898         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
11899                               getNotSCEV(FoundRHS), CtxI))
11900       return true;
11901 
11902     return false;
11903   }
11904 
11905   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
11906                                    CmpInst::Predicate P2) {
11907     assert(P1 != P2 && "Handled earlier!");
11908     return CmpInst::isRelational(P2) &&
11909            P1 == ICmpInst::getFlippedSignednessPredicate(P2);
11910   };
11911   if (IsSignFlippedPredicate(Pred, FoundPred)) {
11912     // Unsigned comparison is the same as signed comparison when both the
11913     // operands are non-negative or negative.
11914     if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
11915         (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
11916       return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11917     // Create local copies that we can freely swap and canonicalize our
11918     // conditions to "le/lt".
11919     CmpPredicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
11920     const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
11921                *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
11922     if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
11923       CanonicalPred = ICmpInst::getSwappedCmpPredicate(CanonicalPred);
11924       CanonicalFoundPred = ICmpInst::getSwappedCmpPredicate(CanonicalFoundPred);
11925       std::swap(CanonicalLHS, CanonicalRHS);
11926       std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
11927     }
11928     assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
11929            "Must be!");
11930     assert((ICmpInst::isLT(CanonicalFoundPred) ||
11931             ICmpInst::isLE(CanonicalFoundPred)) &&
11932            "Must be!");
11933     if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
11934       // Use implication:
11935       // x <u y && y >=s 0 --> x <s y.
11936       // If we can prove the left part, the right part is also proven.
11937       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11938                                    CanonicalRHS, CanonicalFoundLHS,
11939                                    CanonicalFoundRHS);
11940     if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
11941       // Use implication:
11942       // x <s y && y <s 0 --> x <u y.
11943       // If we can prove the left part, the right part is also proven.
11944       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11945                                    CanonicalRHS, CanonicalFoundLHS,
11946                                    CanonicalFoundRHS);
11947   }
11948 
11949   // Check if we can make progress by sharpening ranges.
11950   if (FoundPred == ICmpInst::ICMP_NE &&
11951       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
11952 
11953     const SCEVConstant *C = nullptr;
11954     const SCEV *V = nullptr;
11955 
11956     if (isa<SCEVConstant>(FoundLHS)) {
11957       C = cast<SCEVConstant>(FoundLHS);
11958       V = FoundRHS;
11959     } else {
11960       C = cast<SCEVConstant>(FoundRHS);
11961       V = FoundLHS;
11962     }
11963 
11964     // The guarding predicate tells us that C != V. If the known range
11965     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
11966     // range we consider has to correspond to same signedness as the
11967     // predicate we're interested in folding.
11968 
11969     APInt Min = ICmpInst::isSigned(Pred) ?
11970         getSignedRangeMin(V) : getUnsignedRangeMin(V);
11971 
11972     if (Min == C->getAPInt()) {
11973       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11974       // This is true even if (Min + 1) wraps around -- in case of
11975       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11976 
11977       APInt SharperMin = Min + 1;
11978 
11979       switch (Pred) {
11980         case ICmpInst::ICMP_SGE:
11981         case ICmpInst::ICMP_UGE:
11982           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
11983           // RHS, we're done.
11984           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
11985                                     CtxI))
11986             return true;
11987           [[fallthrough]];
11988 
11989         case ICmpInst::ICMP_SGT:
11990         case ICmpInst::ICMP_UGT:
11991           // We know from the range information that (V `Pred` Min ||
11992           // V == Min).  We know from the guarding condition that !(V
11993           // == Min).  This gives us
11994           //
11995           //       V `Pred` Min || V == Min && !(V == Min)
11996           //   =>  V `Pred` Min
11997           //
11998           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11999 
12000           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
12001             return true;
12002           break;
12003 
12004         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
12005         case ICmpInst::ICMP_SLE:
12006         case ICmpInst::ICMP_ULE:
12007           if (isImpliedCondOperands(ICmpInst::getSwappedCmpPredicate(Pred), RHS,
12008                                     LHS, V, getConstant(SharperMin), CtxI))
12009             return true;
12010           [[fallthrough]];
12011 
12012         case ICmpInst::ICMP_SLT:
12013         case ICmpInst::ICMP_ULT:
12014           if (isImpliedCondOperands(ICmpInst::getSwappedCmpPredicate(Pred), RHS,
12015                                     LHS, V, getConstant(Min), CtxI))
12016             return true;
12017           break;
12018 
12019         default:
12020           // No change
12021           break;
12022       }
12023     }
12024   }
12025 
12026   // Check whether the actual condition is beyond sufficient.
12027   if (FoundPred == ICmpInst::ICMP_EQ)
12028     if (ICmpInst::isTrueWhenEqual(Pred))
12029       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
12030         return true;
12031   if (Pred == ICmpInst::ICMP_NE)
12032     if (!ICmpInst::isTrueWhenEqual(FoundPred))
12033       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
12034         return true;
12035 
12036   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS))
12037     return true;
12038 
12039   // Otherwise assume the worst.
12040   return false;
12041 }
12042 
12043 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
12044                                      const SCEV *&L, const SCEV *&R,
12045                                      SCEV::NoWrapFlags &Flags) {
12046   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
12047   if (!AE || AE->getNumOperands() != 2)
12048     return false;
12049 
12050   L = AE->getOperand(0);
12051   R = AE->getOperand(1);
12052   Flags = AE->getNoWrapFlags();
12053   return true;
12054 }
12055 
12056 std::optional<APInt>
12057 ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) {
12058   // We avoid subtracting expressions here because this function is usually
12059   // fairly deep in the call stack (i.e. is called many times).
12060 
12061   unsigned BW = getTypeSizeInBits(More->getType());
12062   APInt Diff(BW, 0);
12063   APInt DiffMul(BW, 1);
12064   // Try various simplifications to reduce the difference to a constant. Limit
12065   // the number of allowed simplifications to keep compile-time low.
12066   for (unsigned I = 0; I < 8; ++I) {
12067     if (More == Less)
12068       return Diff;
12069 
12070     // Reduce addrecs with identical steps to their start value.
12071     if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
12072       const auto *LAR = cast<SCEVAddRecExpr>(Less);
12073       const auto *MAR = cast<SCEVAddRecExpr>(More);
12074 
12075       if (LAR->getLoop() != MAR->getLoop())
12076         return std::nullopt;
12077 
12078       // We look at affine expressions only; not for correctness but to keep
12079       // getStepRecurrence cheap.
12080       if (!LAR->isAffine() || !MAR->isAffine())
12081         return std::nullopt;
12082 
12083       if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
12084         return std::nullopt;
12085 
12086       Less = LAR->getStart();
12087       More = MAR->getStart();
12088       continue;
12089     }
12090 
12091     // Try to match a common constant multiply.
12092     auto MatchConstMul =
12093         [](const SCEV *S) -> std::optional<std::pair<const SCEV *, APInt>> {
12094       auto *M = dyn_cast<SCEVMulExpr>(S);
12095       if (!M || M->getNumOperands() != 2 ||
12096           !isa<SCEVConstant>(M->getOperand(0)))
12097         return std::nullopt;
12098       return {
12099           {M->getOperand(1), cast<SCEVConstant>(M->getOperand(0))->getAPInt()}};
12100     };
12101     if (auto MatchedMore = MatchConstMul(More)) {
12102       if (auto MatchedLess = MatchConstMul(Less)) {
12103         if (MatchedMore->second == MatchedLess->second) {
12104           More = MatchedMore->first;
12105           Less = MatchedLess->first;
12106           DiffMul *= MatchedMore->second;
12107           continue;
12108         }
12109       }
12110     }
12111 
12112     // Try to cancel out common factors in two add expressions.
12113     SmallDenseMap<const SCEV *, int, 8> Multiplicity;
12114     auto Add = [&](const SCEV *S, int Mul) {
12115       if (auto *C = dyn_cast<SCEVConstant>(S)) {
12116         if (Mul == 1) {
12117           Diff += C->getAPInt() * DiffMul;
12118         } else {
12119           assert(Mul == -1);
12120           Diff -= C->getAPInt() * DiffMul;
12121         }
12122       } else
12123         Multiplicity[S] += Mul;
12124     };
12125     auto Decompose = [&](const SCEV *S, int Mul) {
12126       if (isa<SCEVAddExpr>(S)) {
12127         for (const SCEV *Op : S->operands())
12128           Add(Op, Mul);
12129       } else
12130         Add(S, Mul);
12131     };
12132     Decompose(More, 1);
12133     Decompose(Less, -1);
12134 
12135     // Check whether all the non-constants cancel out, or reduce to new
12136     // More/Less values.
12137     const SCEV *NewMore = nullptr, *NewLess = nullptr;
12138     for (const auto &[S, Mul] : Multiplicity) {
12139       if (Mul == 0)
12140         continue;
12141       if (Mul == 1) {
12142         if (NewMore)
12143           return std::nullopt;
12144         NewMore = S;
12145       } else if (Mul == -1) {
12146         if (NewLess)
12147           return std::nullopt;
12148         NewLess = S;
12149       } else
12150         return std::nullopt;
12151     }
12152 
12153     // Values stayed the same, no point in trying further.
12154     if (NewMore == More || NewLess == Less)
12155       return std::nullopt;
12156 
12157     More = NewMore;
12158     Less = NewLess;
12159 
12160     // Reduced to constant.
12161     if (!More && !Less)
12162       return Diff;
12163 
12164     // Left with variable on only one side, bail out.
12165     if (!More || !Less)
12166       return std::nullopt;
12167   }
12168 
12169   // Did not reduce to constant.
12170   return std::nullopt;
12171 }
12172 
12173 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
12174     CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS,
12175     const SCEV *FoundRHS, const Instruction *CtxI) {
12176   // Try to recognize the following pattern:
12177   //
12178   //   FoundRHS = ...
12179   // ...
12180   // loop:
12181   //   FoundLHS = {Start,+,W}
12182   // context_bb: // Basic block from the same loop
12183   //   known(Pred, FoundLHS, FoundRHS)
12184   //
12185   // If some predicate is known in the context of a loop, it is also known on
12186   // each iteration of this loop, including the first iteration. Therefore, in
12187   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
12188   // prove the original pred using this fact.
12189   if (!CtxI)
12190     return false;
12191   const BasicBlock *ContextBB = CtxI->getParent();
12192   // Make sure AR varies in the context block.
12193   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
12194     const Loop *L = AR->getLoop();
12195     // Make sure that context belongs to the loop and executes on 1st iteration
12196     // (if it ever executes at all).
12197     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
12198       return false;
12199     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
12200       return false;
12201     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
12202   }
12203 
12204   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
12205     const Loop *L = AR->getLoop();
12206     // Make sure that context belongs to the loop and executes on 1st iteration
12207     // (if it ever executes at all).
12208     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
12209       return false;
12210     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
12211       return false;
12212     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
12213   }
12214 
12215   return false;
12216 }
12217 
12218 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(CmpPredicate Pred,
12219                                                          const SCEV *LHS,
12220                                                          const SCEV *RHS,
12221                                                          const SCEV *FoundLHS,
12222                                                          const SCEV *FoundRHS) {
12223   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
12224     return false;
12225 
12226   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
12227   if (!AddRecLHS)
12228     return false;
12229 
12230   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
12231   if (!AddRecFoundLHS)
12232     return false;
12233 
12234   // We'd like to let SCEV reason about control dependencies, so we constrain
12235   // both the inequalities to be about add recurrences on the same loop.  This
12236   // way we can use isLoopEntryGuardedByCond later.
12237 
12238   const Loop *L = AddRecFoundLHS->getLoop();
12239   if (L != AddRecLHS->getLoop())
12240     return false;
12241 
12242   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
12243   //
12244   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
12245   //                                                                  ... (2)
12246   //
12247   // Informal proof for (2), assuming (1) [*]:
12248   //
12249   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
12250   //
12251   // Then
12252   //
12253   //       FoundLHS s< FoundRHS s< INT_MIN - C
12254   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
12255   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
12256   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
12257   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
12258   // <=>  FoundLHS + C s< FoundRHS + C
12259   //
12260   // [*]: (1) can be proved by ruling out overflow.
12261   //
12262   // [**]: This can be proved by analyzing all the four possibilities:
12263   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
12264   //    (A s>= 0, B s>= 0).
12265   //
12266   // Note:
12267   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
12268   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
12269   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
12270   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
12271   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
12272   // C)".
12273 
12274   std::optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
12275   if (!LDiff)
12276     return false;
12277   std::optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
12278   if (!RDiff || *LDiff != *RDiff)
12279     return false;
12280 
12281   if (LDiff->isMinValue())
12282     return true;
12283 
12284   APInt FoundRHSLimit;
12285 
12286   if (Pred == CmpInst::ICMP_ULT) {
12287     FoundRHSLimit = -(*RDiff);
12288   } else {
12289     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
12290     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
12291   }
12292 
12293   // Try to prove (1) or (2), as needed.
12294   return isAvailableAtLoopEntry(FoundRHS, L) &&
12295          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
12296                                   getConstant(FoundRHSLimit));
12297 }
12298 
12299 bool ScalarEvolution::isImpliedViaMerge(CmpPredicate Pred, const SCEV *LHS,
12300                                         const SCEV *RHS, const SCEV *FoundLHS,
12301                                         const SCEV *FoundRHS, unsigned Depth) {
12302   const PHINode *LPhi = nullptr, *RPhi = nullptr;
12303 
12304   auto ClearOnExit = make_scope_exit([&]() {
12305     if (LPhi) {
12306       bool Erased = PendingMerges.erase(LPhi);
12307       assert(Erased && "Failed to erase LPhi!");
12308       (void)Erased;
12309     }
12310     if (RPhi) {
12311       bool Erased = PendingMerges.erase(RPhi);
12312       assert(Erased && "Failed to erase RPhi!");
12313       (void)Erased;
12314     }
12315   });
12316 
12317   // Find respective Phis and check that they are not being pending.
12318   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
12319     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
12320       if (!PendingMerges.insert(Phi).second)
12321         return false;
12322       LPhi = Phi;
12323     }
12324   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
12325     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
12326       // If we detect a loop of Phi nodes being processed by this method, for
12327       // example:
12328       //
12329       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
12330       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
12331       //
12332       // we don't want to deal with a case that complex, so return conservative
12333       // answer false.
12334       if (!PendingMerges.insert(Phi).second)
12335         return false;
12336       RPhi = Phi;
12337     }
12338 
12339   // If none of LHS, RHS is a Phi, nothing to do here.
12340   if (!LPhi && !RPhi)
12341     return false;
12342 
12343   // If there is a SCEVUnknown Phi we are interested in, make it left.
12344   if (!LPhi) {
12345     std::swap(LHS, RHS);
12346     std::swap(FoundLHS, FoundRHS);
12347     std::swap(LPhi, RPhi);
12348     Pred = ICmpInst::getSwappedCmpPredicate(Pred);
12349   }
12350 
12351   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
12352   const BasicBlock *LBB = LPhi->getParent();
12353   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
12354 
12355   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
12356     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
12357            isImpliedCondOperandsViaRanges(Pred, S1, S2, Pred, FoundLHS, FoundRHS) ||
12358            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
12359   };
12360 
12361   if (RPhi && RPhi->getParent() == LBB) {
12362     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
12363     // If we compare two Phis from the same block, and for each entry block
12364     // the predicate is true for incoming values from this block, then the
12365     // predicate is also true for the Phis.
12366     for (const BasicBlock *IncBB : predecessors(LBB)) {
12367       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
12368       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
12369       if (!ProvedEasily(L, R))
12370         return false;
12371     }
12372   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
12373     // Case two: RHS is also a Phi from the same basic block, and it is an
12374     // AddRec. It means that there is a loop which has both AddRec and Unknown
12375     // PHIs, for it we can compare incoming values of AddRec from above the loop
12376     // and latch with their respective incoming values of LPhi.
12377     // TODO: Generalize to handle loops with many inputs in a header.
12378     if (LPhi->getNumIncomingValues() != 2) return false;
12379 
12380     auto *RLoop = RAR->getLoop();
12381     auto *Predecessor = RLoop->getLoopPredecessor();
12382     assert(Predecessor && "Loop with AddRec with no predecessor?");
12383     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
12384     if (!ProvedEasily(L1, RAR->getStart()))
12385       return false;
12386     auto *Latch = RLoop->getLoopLatch();
12387     assert(Latch && "Loop with AddRec with no latch?");
12388     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
12389     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
12390       return false;
12391   } else {
12392     // In all other cases go over inputs of LHS and compare each of them to RHS,
12393     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
12394     // At this point RHS is either a non-Phi, or it is a Phi from some block
12395     // different from LBB.
12396     for (const BasicBlock *IncBB : predecessors(LBB)) {
12397       // Check that RHS is available in this block.
12398       if (!dominates(RHS, IncBB))
12399         return false;
12400       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
12401       // Make sure L does not refer to a value from a potentially previous
12402       // iteration of a loop.
12403       if (!properlyDominates(L, LBB))
12404         return false;
12405       if (!ProvedEasily(L, RHS))
12406         return false;
12407     }
12408   }
12409   return true;
12410 }
12411 
12412 bool ScalarEvolution::isImpliedCondOperandsViaShift(CmpPredicate Pred,
12413                                                     const SCEV *LHS,
12414                                                     const SCEV *RHS,
12415                                                     const SCEV *FoundLHS,
12416                                                     const SCEV *FoundRHS) {
12417   // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue).  First, make
12418   // sure that we are dealing with same LHS.
12419   if (RHS == FoundRHS) {
12420     std::swap(LHS, RHS);
12421     std::swap(FoundLHS, FoundRHS);
12422     Pred = ICmpInst::getSwappedCmpPredicate(Pred);
12423   }
12424   if (LHS != FoundLHS)
12425     return false;
12426 
12427   auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS);
12428   if (!SUFoundRHS)
12429     return false;
12430 
12431   Value *Shiftee, *ShiftValue;
12432 
12433   using namespace PatternMatch;
12434   if (match(SUFoundRHS->getValue(),
12435             m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) {
12436     auto *ShifteeS = getSCEV(Shiftee);
12437     // Prove one of the following:
12438     // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
12439     // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
12440     // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12441     //   ---> LHS <s RHS
12442     // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12443     //   ---> LHS <=s RHS
12444     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
12445       return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS);
12446     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
12447       if (isKnownNonNegative(ShifteeS))
12448         return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS);
12449   }
12450 
12451   return false;
12452 }
12453 
12454 bool ScalarEvolution::isImpliedCondOperands(CmpPredicate Pred, const SCEV *LHS,
12455                                             const SCEV *RHS,
12456                                             const SCEV *FoundLHS,
12457                                             const SCEV *FoundRHS,
12458                                             const Instruction *CtxI) {
12459   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, Pred, FoundLHS, FoundRHS))
12460     return true;
12461 
12462   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
12463     return true;
12464 
12465   if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS))
12466     return true;
12467 
12468   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
12469                                           CtxI))
12470     return true;
12471 
12472   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
12473                                      FoundLHS, FoundRHS);
12474 }
12475 
12476 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
12477 template <typename MinMaxExprType>
12478 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
12479                                  const SCEV *Candidate) {
12480   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
12481   if (!MinMaxExpr)
12482     return false;
12483 
12484   return is_contained(MinMaxExpr->operands(), Candidate);
12485 }
12486 
12487 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
12488                                            CmpPredicate Pred, const SCEV *LHS,
12489                                            const SCEV *RHS) {
12490   // If both sides are affine addrecs for the same loop, with equal
12491   // steps, and we know the recurrences don't wrap, then we only
12492   // need to check the predicate on the starting values.
12493 
12494   if (!ICmpInst::isRelational(Pred))
12495     return false;
12496 
12497   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
12498   if (!LAR)
12499     return false;
12500   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
12501   if (!RAR)
12502     return false;
12503   if (LAR->getLoop() != RAR->getLoop())
12504     return false;
12505   if (!LAR->isAffine() || !RAR->isAffine())
12506     return false;
12507 
12508   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
12509     return false;
12510 
12511   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
12512                          SCEV::FlagNSW : SCEV::FlagNUW;
12513   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
12514     return false;
12515 
12516   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
12517 }
12518 
12519 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
12520 /// expression?
12521 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, CmpPredicate Pred,
12522                                         const SCEV *LHS, const SCEV *RHS) {
12523   switch (Pred) {
12524   default:
12525     return false;
12526 
12527   case ICmpInst::ICMP_SGE:
12528     std::swap(LHS, RHS);
12529     [[fallthrough]];
12530   case ICmpInst::ICMP_SLE:
12531     return
12532         // min(A, ...) <= A
12533         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
12534         // A <= max(A, ...)
12535         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
12536 
12537   case ICmpInst::ICMP_UGE:
12538     std::swap(LHS, RHS);
12539     [[fallthrough]];
12540   case ICmpInst::ICMP_ULE:
12541     return
12542         // min(A, ...) <= A
12543         // FIXME: what about umin_seq?
12544         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
12545         // A <= max(A, ...)
12546         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
12547   }
12548 
12549   llvm_unreachable("covered switch fell through?!");
12550 }
12551 
12552 bool ScalarEvolution::isImpliedViaOperations(CmpPredicate Pred, const SCEV *LHS,
12553                                              const SCEV *RHS,
12554                                              const SCEV *FoundLHS,
12555                                              const SCEV *FoundRHS,
12556                                              unsigned Depth) {
12557   assert(getTypeSizeInBits(LHS->getType()) ==
12558              getTypeSizeInBits(RHS->getType()) &&
12559          "LHS and RHS have different sizes?");
12560   assert(getTypeSizeInBits(FoundLHS->getType()) ==
12561              getTypeSizeInBits(FoundRHS->getType()) &&
12562          "FoundLHS and FoundRHS have different sizes?");
12563   // We want to avoid hurting the compile time with analysis of too big trees.
12564   if (Depth > MaxSCEVOperationsImplicationDepth)
12565     return false;
12566 
12567   // We only want to work with GT comparison so far.
12568   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
12569     Pred = ICmpInst::getSwappedCmpPredicate(Pred);
12570     std::swap(LHS, RHS);
12571     std::swap(FoundLHS, FoundRHS);
12572   }
12573 
12574   // For unsigned, try to reduce it to corresponding signed comparison.
12575   if (Pred == ICmpInst::ICMP_UGT)
12576     // We can replace unsigned predicate with its signed counterpart if all
12577     // involved values are non-negative.
12578     // TODO: We could have better support for unsigned.
12579     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
12580       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
12581       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
12582       // use this fact to prove that LHS and RHS are non-negative.
12583       const SCEV *MinusOne = getMinusOne(LHS->getType());
12584       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
12585                                 FoundRHS) &&
12586           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
12587                                 FoundRHS))
12588         Pred = ICmpInst::ICMP_SGT;
12589     }
12590 
12591   if (Pred != ICmpInst::ICMP_SGT)
12592     return false;
12593 
12594   auto GetOpFromSExt = [&](const SCEV *S) {
12595     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
12596       return Ext->getOperand();
12597     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
12598     // the constant in some cases.
12599     return S;
12600   };
12601 
12602   // Acquire values from extensions.
12603   auto *OrigLHS = LHS;
12604   auto *OrigFoundLHS = FoundLHS;
12605   LHS = GetOpFromSExt(LHS);
12606   FoundLHS = GetOpFromSExt(FoundLHS);
12607 
12608   // Is the SGT predicate can be proved trivially or using the found context.
12609   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
12610     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
12611            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
12612                                   FoundRHS, Depth + 1);
12613   };
12614 
12615   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
12616     // We want to avoid creation of any new non-constant SCEV. Since we are
12617     // going to compare the operands to RHS, we should be certain that we don't
12618     // need any size extensions for this. So let's decline all cases when the
12619     // sizes of types of LHS and RHS do not match.
12620     // TODO: Maybe try to get RHS from sext to catch more cases?
12621     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
12622       return false;
12623 
12624     // Should not overflow.
12625     if (!LHSAddExpr->hasNoSignedWrap())
12626       return false;
12627 
12628     auto *LL = LHSAddExpr->getOperand(0);
12629     auto *LR = LHSAddExpr->getOperand(1);
12630     auto *MinusOne = getMinusOne(RHS->getType());
12631 
12632     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
12633     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
12634       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
12635     };
12636     // Try to prove the following rule:
12637     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
12638     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
12639     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
12640       return true;
12641   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
12642     Value *LL, *LR;
12643     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
12644 
12645     using namespace llvm::PatternMatch;
12646 
12647     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
12648       // Rules for division.
12649       // We are going to perform some comparisons with Denominator and its
12650       // derivative expressions. In general case, creating a SCEV for it may
12651       // lead to a complex analysis of the entire graph, and in particular it
12652       // can request trip count recalculation for the same loop. This would
12653       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
12654       // this, we only want to create SCEVs that are constants in this section.
12655       // So we bail if Denominator is not a constant.
12656       if (!isa<ConstantInt>(LR))
12657         return false;
12658 
12659       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
12660 
12661       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
12662       // then a SCEV for the numerator already exists and matches with FoundLHS.
12663       auto *Numerator = getExistingSCEV(LL);
12664       if (!Numerator || Numerator->getType() != FoundLHS->getType())
12665         return false;
12666 
12667       // Make sure that the numerator matches with FoundLHS and the denominator
12668       // is positive.
12669       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
12670         return false;
12671 
12672       auto *DTy = Denominator->getType();
12673       auto *FRHSTy = FoundRHS->getType();
12674       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
12675         // One of types is a pointer and another one is not. We cannot extend
12676         // them properly to a wider type, so let us just reject this case.
12677         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
12678         // to avoid this check.
12679         return false;
12680 
12681       // Given that:
12682       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
12683       auto *WTy = getWiderType(DTy, FRHSTy);
12684       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
12685       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
12686 
12687       // Try to prove the following rule:
12688       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
12689       // For example, given that FoundLHS > 2. It means that FoundLHS is at
12690       // least 3. If we divide it by Denominator < 4, we will have at least 1.
12691       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
12692       if (isKnownNonPositive(RHS) &&
12693           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
12694         return true;
12695 
12696       // Try to prove the following rule:
12697       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
12698       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
12699       // If we divide it by Denominator > 2, then:
12700       // 1. If FoundLHS is negative, then the result is 0.
12701       // 2. If FoundLHS is non-negative, then the result is non-negative.
12702       // Anyways, the result is non-negative.
12703       auto *MinusOne = getMinusOne(WTy);
12704       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
12705       if (isKnownNegative(RHS) &&
12706           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
12707         return true;
12708     }
12709   }
12710 
12711   // If our expression contained SCEVUnknown Phis, and we split it down and now
12712   // need to prove something for them, try to prove the predicate for every
12713   // possible incoming values of those Phis.
12714   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
12715     return true;
12716 
12717   return false;
12718 }
12719 
12720 static bool isKnownPredicateExtendIdiom(CmpPredicate Pred, const SCEV *LHS,
12721                                         const SCEV *RHS) {
12722   // zext x u<= sext x, sext x s<= zext x
12723   const SCEV *Op;
12724   switch (Pred) {
12725   case ICmpInst::ICMP_SGE:
12726     std::swap(LHS, RHS);
12727     [[fallthrough]];
12728   case ICmpInst::ICMP_SLE: {
12729     // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt.
12730     return match(LHS, m_scev_SExt(m_SCEV(Op))) &&
12731            match(RHS, m_scev_ZExt(m_Specific(Op)));
12732   }
12733   case ICmpInst::ICMP_UGE:
12734     std::swap(LHS, RHS);
12735     [[fallthrough]];
12736   case ICmpInst::ICMP_ULE: {
12737     // If operand >=u 0 then ZExt == SExt.  If operand <u 0 then ZExt <u SExt.
12738     return match(LHS, m_scev_ZExt(m_SCEV(Op))) &&
12739            match(RHS, m_scev_SExt(m_Specific(Op)));
12740   }
12741   default:
12742     return false;
12743   };
12744   llvm_unreachable("unhandled case");
12745 }
12746 
12747 bool ScalarEvolution::isKnownViaNonRecursiveReasoning(CmpPredicate Pred,
12748                                                       const SCEV *LHS,
12749                                                       const SCEV *RHS) {
12750   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
12751          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
12752          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
12753          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
12754          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
12755 }
12756 
12757 bool ScalarEvolution::isImpliedCondOperandsHelper(CmpPredicate Pred,
12758                                                   const SCEV *LHS,
12759                                                   const SCEV *RHS,
12760                                                   const SCEV *FoundLHS,
12761                                                   const SCEV *FoundRHS) {
12762   switch (Pred) {
12763   default:
12764     llvm_unreachable("Unexpected CmpPredicate value!");
12765   case ICmpInst::ICMP_EQ:
12766   case ICmpInst::ICMP_NE:
12767     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
12768       return true;
12769     break;
12770   case ICmpInst::ICMP_SLT:
12771   case ICmpInst::ICMP_SLE:
12772     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
12773         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
12774       return true;
12775     break;
12776   case ICmpInst::ICMP_SGT:
12777   case ICmpInst::ICMP_SGE:
12778     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
12779         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
12780       return true;
12781     break;
12782   case ICmpInst::ICMP_ULT:
12783   case ICmpInst::ICMP_ULE:
12784     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
12785         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
12786       return true;
12787     break;
12788   case ICmpInst::ICMP_UGT:
12789   case ICmpInst::ICMP_UGE:
12790     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
12791         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
12792       return true;
12793     break;
12794   }
12795 
12796   // Maybe it can be proved via operations?
12797   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
12798     return true;
12799 
12800   return false;
12801 }
12802 
12803 bool ScalarEvolution::isImpliedCondOperandsViaRanges(
12804     CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, CmpPredicate FoundPred,
12805     const SCEV *FoundLHS, const SCEV *FoundRHS) {
12806   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
12807     // The restriction on `FoundRHS` be lifted easily -- it exists only to
12808     // reduce the compile time impact of this optimization.
12809     return false;
12810 
12811   std::optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
12812   if (!Addend)
12813     return false;
12814 
12815   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
12816 
12817   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
12818   // antecedent "`FoundLHS` `FoundPred` `FoundRHS`".
12819   ConstantRange FoundLHSRange =
12820       ConstantRange::makeExactICmpRegion(FoundPred, ConstFoundRHS);
12821 
12822   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
12823   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
12824 
12825   // We can also compute the range of values for `LHS` that satisfy the
12826   // consequent, "`LHS` `Pred` `RHS`":
12827   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
12828   // The antecedent implies the consequent if every value of `LHS` that
12829   // satisfies the antecedent also satisfies the consequent.
12830   return LHSRange.icmp(Pred, ConstRHS);
12831 }
12832 
12833 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
12834                                         bool IsSigned) {
12835   assert(isKnownPositive(Stride) && "Positive stride expected!");
12836 
12837   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12838   const SCEV *One = getOne(Stride->getType());
12839 
12840   if (IsSigned) {
12841     APInt MaxRHS = getSignedRangeMax(RHS);
12842     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
12843     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12844 
12845     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
12846     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
12847   }
12848 
12849   APInt MaxRHS = getUnsignedRangeMax(RHS);
12850   APInt MaxValue = APInt::getMaxValue(BitWidth);
12851   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12852 
12853   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
12854   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
12855 }
12856 
12857 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
12858                                         bool IsSigned) {
12859 
12860   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12861   const SCEV *One = getOne(Stride->getType());
12862 
12863   if (IsSigned) {
12864     APInt MinRHS = getSignedRangeMin(RHS);
12865     APInt MinValue = APInt::getSignedMinValue(BitWidth);
12866     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12867 
12868     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
12869     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
12870   }
12871 
12872   APInt MinRHS = getUnsignedRangeMin(RHS);
12873   APInt MinValue = APInt::getMinValue(BitWidth);
12874   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12875 
12876   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
12877   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
12878 }
12879 
12880 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
12881   // umin(N, 1) + floor((N - umin(N, 1)) / D)
12882   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
12883   // expression fixes the case of N=0.
12884   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
12885   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
12886   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
12887 }
12888 
12889 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
12890                                                     const SCEV *Stride,
12891                                                     const SCEV *End,
12892                                                     unsigned BitWidth,
12893                                                     bool IsSigned) {
12894   // The logic in this function assumes we can represent a positive stride.
12895   // If we can't, the backedge-taken count must be zero.
12896   if (IsSigned && BitWidth == 1)
12897     return getZero(Stride->getType());
12898 
12899   // This code below only been closely audited for negative strides in the
12900   // unsigned comparison case, it may be correct for signed comparison, but
12901   // that needs to be established.
12902   if (IsSigned && isKnownNegative(Stride))
12903     return getCouldNotCompute();
12904 
12905   // Calculate the maximum backedge count based on the range of values
12906   // permitted by Start, End, and Stride.
12907   APInt MinStart =
12908       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
12909 
12910   APInt MinStride =
12911       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
12912 
12913   // We assume either the stride is positive, or the backedge-taken count
12914   // is zero. So force StrideForMaxBECount to be at least one.
12915   APInt One(BitWidth, 1);
12916   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
12917                                        : APIntOps::umax(One, MinStride);
12918 
12919   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
12920                             : APInt::getMaxValue(BitWidth);
12921   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
12922 
12923   // Although End can be a MAX expression we estimate MaxEnd considering only
12924   // the case End = RHS of the loop termination condition. This is safe because
12925   // in the other case (End - Start) is zero, leading to a zero maximum backedge
12926   // taken count.
12927   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
12928                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
12929 
12930   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
12931   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
12932                     : APIntOps::umax(MaxEnd, MinStart);
12933 
12934   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
12935                          getConstant(StrideForMaxBECount) /* Step */);
12936 }
12937 
12938 ScalarEvolution::ExitLimit
12939 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
12940                                   const Loop *L, bool IsSigned,
12941                                   bool ControlsOnlyExit, bool AllowPredicates) {
12942   SmallVector<const SCEVPredicate *> Predicates;
12943 
12944   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12945   bool PredicatedIV = false;
12946   if (!IV) {
12947     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
12948       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
12949       if (AR && AR->getLoop() == L && AR->isAffine()) {
12950         auto canProveNUW = [&]() {
12951           // We can use the comparison to infer no-wrap flags only if it fully
12952           // controls the loop exit.
12953           if (!ControlsOnlyExit)
12954             return false;
12955 
12956           if (!isLoopInvariant(RHS, L))
12957             return false;
12958 
12959           if (!isKnownNonZero(AR->getStepRecurrence(*this)))
12960             // We need the sequence defined by AR to strictly increase in the
12961             // unsigned integer domain for the logic below to hold.
12962             return false;
12963 
12964           const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType());
12965           const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType());
12966           // If RHS <=u Limit, then there must exist a value V in the sequence
12967           // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12968           // V <=u UINT_MAX.  Thus, we must exit the loop before unsigned
12969           // overflow occurs.  This limit also implies that a signed comparison
12970           // (in the wide bitwidth) is equivalent to an unsigned comparison as
12971           // the high bits on both sides must be zero.
12972           APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this));
12973           APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1);
12974           Limit = Limit.zext(OuterBitWidth);
12975           return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit);
12976         };
12977         auto Flags = AR->getNoWrapFlags();
12978         if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW())
12979           Flags = setFlags(Flags, SCEV::FlagNUW);
12980 
12981         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
12982         if (AR->hasNoUnsignedWrap()) {
12983           // Emulate what getZeroExtendExpr would have done during construction
12984           // if we'd been able to infer the fact just above at that time.
12985           const SCEV *Step = AR->getStepRecurrence(*this);
12986           Type *Ty = ZExt->getType();
12987           auto *S = getAddRecExpr(
12988             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
12989             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
12990           IV = dyn_cast<SCEVAddRecExpr>(S);
12991         }
12992       }
12993     }
12994   }
12995 
12996 
12997   if (!IV && AllowPredicates) {
12998     // Try to make this an AddRec using runtime tests, in the first X
12999     // iterations of this loop, where X is the SCEV expression found by the
13000     // algorithm below.
13001     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
13002     PredicatedIV = true;
13003   }
13004 
13005   // Avoid weird loops
13006   if (!IV || IV->getLoop() != L || !IV->isAffine())
13007     return getCouldNotCompute();
13008 
13009   // A precondition of this method is that the condition being analyzed
13010   // reaches an exiting branch which dominates the latch.  Given that, we can
13011   // assume that an increment which violates the nowrap specification and
13012   // produces poison must cause undefined behavior when the resulting poison
13013   // value is branched upon and thus we can conclude that the backedge is
13014   // taken no more often than would be required to produce that poison value.
13015   // Note that a well defined loop can exit on the iteration which violates
13016   // the nowrap specification if there is another exit (either explicit or
13017   // implicit/exceptional) which causes the loop to execute before the
13018   // exiting instruction we're analyzing would trigger UB.
13019   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
13020   bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType);
13021   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
13022 
13023   const SCEV *Stride = IV->getStepRecurrence(*this);
13024 
13025   bool PositiveStride = isKnownPositive(Stride);
13026 
13027   // Avoid negative or zero stride values.
13028   if (!PositiveStride) {
13029     // We can compute the correct backedge taken count for loops with unknown
13030     // strides if we can prove that the loop is not an infinite loop with side
13031     // effects. Here's the loop structure we are trying to handle -
13032     //
13033     // i = start
13034     // do {
13035     //   A[i] = i;
13036     //   i += s;
13037     // } while (i < end);
13038     //
13039     // The backedge taken count for such loops is evaluated as -
13040     // (max(end, start + stride) - start - 1) /u stride
13041     //
13042     // The additional preconditions that we need to check to prove correctness
13043     // of the above formula is as follows -
13044     //
13045     // a) IV is either nuw or nsw depending upon signedness (indicated by the
13046     //    NoWrap flag).
13047     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
13048     //    no side effects within the loop)
13049     // c) loop has a single static exit (with no abnormal exits)
13050     //
13051     // Precondition a) implies that if the stride is negative, this is a single
13052     // trip loop. The backedge taken count formula reduces to zero in this case.
13053     //
13054     // Precondition b) and c) combine to imply that if rhs is invariant in L,
13055     // then a zero stride means the backedge can't be taken without executing
13056     // undefined behavior.
13057     //
13058     // The positive stride case is the same as isKnownPositive(Stride) returning
13059     // true (original behavior of the function).
13060     //
13061     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
13062         !loopHasNoAbnormalExits(L))
13063       return getCouldNotCompute();
13064 
13065     if (!isKnownNonZero(Stride)) {
13066       // If we have a step of zero, and RHS isn't invariant in L, we don't know
13067       // if it might eventually be greater than start and if so, on which
13068       // iteration.  We can't even produce a useful upper bound.
13069       if (!isLoopInvariant(RHS, L))
13070         return getCouldNotCompute();
13071 
13072       // We allow a potentially zero stride, but we need to divide by stride
13073       // below.  Since the loop can't be infinite and this check must control
13074       // the sole exit, we can infer the exit must be taken on the first
13075       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
13076       // we know the numerator in the divides below must be zero, so we can
13077       // pick an arbitrary non-zero value for the denominator (e.g. stride)
13078       // and produce the right result.
13079       // FIXME: Handle the case where Stride is poison?
13080       auto wouldZeroStrideBeUB = [&]() {
13081         // Proof by contradiction.  Suppose the stride were zero.  If we can
13082         // prove that the backedge *is* taken on the first iteration, then since
13083         // we know this condition controls the sole exit, we must have an
13084         // infinite loop.  We can't have a (well defined) infinite loop per
13085         // check just above.
13086         // Note: The (Start - Stride) term is used to get the start' term from
13087         // (start' + stride,+,stride). Remember that we only care about the
13088         // result of this expression when stride == 0 at runtime.
13089         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
13090         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
13091       };
13092       if (!wouldZeroStrideBeUB()) {
13093         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
13094       }
13095     }
13096   } else if (!NoWrap) {
13097     // Avoid proven overflow cases: this will ensure that the backedge taken
13098     // count will not generate any unsigned overflow.
13099     if (canIVOverflowOnLT(RHS, Stride, IsSigned))
13100       return getCouldNotCompute();
13101   }
13102 
13103   // On all paths just preceeding, we established the following invariant:
13104   //   IV can be assumed not to overflow up to and including the exiting
13105   //   iteration.  We proved this in one of two ways:
13106   //   1) We can show overflow doesn't occur before the exiting iteration
13107   //      1a) canIVOverflowOnLT, and b) step of one
13108   //   2) We can show that if overflow occurs, the loop must execute UB
13109   //      before any possible exit.
13110   // Note that we have not yet proved RHS invariant (in general).
13111 
13112   const SCEV *Start = IV->getStart();
13113 
13114   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
13115   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
13116   // Use integer-typed versions for actual computation; we can't subtract
13117   // pointers in general.
13118   const SCEV *OrigStart = Start;
13119   const SCEV *OrigRHS = RHS;
13120   if (Start->getType()->isPointerTy()) {
13121     Start = getLosslessPtrToIntExpr(Start);
13122     if (isa<SCEVCouldNotCompute>(Start))
13123       return Start;
13124   }
13125   if (RHS->getType()->isPointerTy()) {
13126     RHS = getLosslessPtrToIntExpr(RHS);
13127     if (isa<SCEVCouldNotCompute>(RHS))
13128       return RHS;
13129   }
13130 
13131   const SCEV *End = nullptr, *BECount = nullptr,
13132              *BECountIfBackedgeTaken = nullptr;
13133   if (!isLoopInvariant(RHS, L)) {
13134     const auto *RHSAddRec = dyn_cast<SCEVAddRecExpr>(RHS);
13135     if (PositiveStride && RHSAddRec != nullptr && RHSAddRec->getLoop() == L &&
13136         RHSAddRec->getNoWrapFlags()) {
13137       // The structure of loop we are trying to calculate backedge count of:
13138       //
13139       //  left = left_start
13140       //  right = right_start
13141       //
13142       //  while(left < right){
13143       //    ... do something here ...
13144       //    left += s1; // stride of left is s1 (s1 > 0)
13145       //    right += s2; // stride of right is s2 (s2 < 0)
13146       //  }
13147       //
13148 
13149       const SCEV *RHSStart = RHSAddRec->getStart();
13150       const SCEV *RHSStride = RHSAddRec->getStepRecurrence(*this);
13151 
13152       // If Stride - RHSStride is positive and does not overflow, we can write
13153       // backedge count as ->
13154       //    ceil((End - Start) /u (Stride - RHSStride))
13155       //    Where, End = max(RHSStart, Start)
13156 
13157       // Check if RHSStride < 0 and Stride - RHSStride will not overflow.
13158       if (isKnownNegative(RHSStride) &&
13159           willNotOverflow(Instruction::Sub, /*Signed=*/true, Stride,
13160                           RHSStride)) {
13161 
13162         const SCEV *Denominator = getMinusSCEV(Stride, RHSStride);
13163         if (isKnownPositive(Denominator)) {
13164           End = IsSigned ? getSMaxExpr(RHSStart, Start)
13165                          : getUMaxExpr(RHSStart, Start);
13166 
13167           // We can do this because End >= Start, as End = max(RHSStart, Start)
13168           const SCEV *Delta = getMinusSCEV(End, Start);
13169 
13170           BECount = getUDivCeilSCEV(Delta, Denominator);
13171           BECountIfBackedgeTaken =
13172               getUDivCeilSCEV(getMinusSCEV(RHSStart, Start), Denominator);
13173         }
13174       }
13175     }
13176     if (BECount == nullptr) {
13177       // If we cannot calculate ExactBECount, we can calculate the MaxBECount,
13178       // given the start, stride and max value for the end bound of the
13179       // loop (RHS), and the fact that IV does not overflow (which is
13180       // checked above).
13181       const SCEV *MaxBECount = computeMaxBECountForLT(
13182           Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
13183       return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
13184                        MaxBECount, false /*MaxOrZero*/, Predicates);
13185     }
13186   } else {
13187     // We use the expression (max(End,Start)-Start)/Stride to describe the
13188     // backedge count, as if the backedge is taken at least once
13189     // max(End,Start) is End and so the result is as above, and if not
13190     // max(End,Start) is Start so we get a backedge count of zero.
13191     auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
13192     assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
13193     assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
13194     assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
13195     // Can we prove (max(RHS,Start) > Start - Stride?
13196     if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
13197         isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
13198       // In this case, we can use a refined formula for computing backedge
13199       // taken count.  The general formula remains:
13200       //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
13201       // We want to use the alternate formula:
13202       //   "((End - 1) - (Start - Stride)) /u Stride"
13203       // Let's do a quick case analysis to show these are equivalent under
13204       // our precondition that max(RHS,Start) > Start - Stride.
13205       // * For RHS <= Start, the backedge-taken count must be zero.
13206       //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
13207       //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
13208       //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
13209       //     of Stride.  For 0 stride, we've use umin(1,Stride) above,
13210       //     reducing this to the stride of 1 case.
13211       // * For RHS >= Start, the backedge count must be "RHS-Start /uceil
13212       // Stride".
13213       //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
13214       //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
13215       //   "((RHS - (Start - Stride) - 1) /u Stride".
13216       //   Our preconditions trivially imply no overflow in that form.
13217       const SCEV *MinusOne = getMinusOne(Stride->getType());
13218       const SCEV *Numerator =
13219           getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
13220       BECount = getUDivExpr(Numerator, Stride);
13221     }
13222 
13223     if (!BECount) {
13224       auto canProveRHSGreaterThanEqualStart = [&]() {
13225         auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
13226         const SCEV *GuardedRHS = applyLoopGuards(OrigRHS, L);
13227         const SCEV *GuardedStart = applyLoopGuards(OrigStart, L);
13228 
13229         if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart) ||
13230             isKnownPredicate(CondGE, GuardedRHS, GuardedStart))
13231           return true;
13232 
13233         // (RHS > Start - 1) implies RHS >= Start.
13234         // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
13235         //   "Start - 1" doesn't overflow.
13236         // * For signed comparison, if Start - 1 does overflow, it's equal
13237         //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
13238         // * For unsigned comparison, if Start - 1 does overflow, it's equal
13239         //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
13240         //
13241         // FIXME: Should isLoopEntryGuardedByCond do this for us?
13242         auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13243         auto *StartMinusOne =
13244             getAddExpr(OrigStart, getMinusOne(OrigStart->getType()));
13245         return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
13246       };
13247 
13248       // If we know that RHS >= Start in the context of loop, then we know
13249       // that max(RHS, Start) = RHS at this point.
13250       if (canProveRHSGreaterThanEqualStart()) {
13251         End = RHS;
13252       } else {
13253         // If RHS < Start, the backedge will be taken zero times.  So in
13254         // general, we can write the backedge-taken count as:
13255         //
13256         //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
13257         //
13258         // We convert it to the following to make it more convenient for SCEV:
13259         //
13260         //     ceil(max(RHS, Start) - Start) / Stride
13261         End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
13262 
13263         // See what would happen if we assume the backedge is taken. This is
13264         // used to compute MaxBECount.
13265         BECountIfBackedgeTaken =
13266             getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
13267       }
13268 
13269       // At this point, we know:
13270       //
13271       // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
13272       // 2. The index variable doesn't overflow.
13273       //
13274       // Therefore, we know N exists such that
13275       // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
13276       // doesn't overflow.
13277       //
13278       // Using this information, try to prove whether the addition in
13279       // "(Start - End) + (Stride - 1)" has unsigned overflow.
13280       const SCEV *One = getOne(Stride->getType());
13281       bool MayAddOverflow = [&] {
13282         if (isKnownToBeAPowerOfTwo(Stride)) {
13283           // Suppose Stride is a power of two, and Start/End are unsigned
13284           // integers.  Let UMAX be the largest representable unsigned
13285           // integer.
13286           //
13287           // By the preconditions of this function, we know
13288           // "(Start + Stride * N) >= End", and this doesn't overflow.
13289           // As a formula:
13290           //
13291           //   End <= (Start + Stride * N) <= UMAX
13292           //
13293           // Subtracting Start from all the terms:
13294           //
13295           //   End - Start <= Stride * N <= UMAX - Start
13296           //
13297           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
13298           //
13299           //   End - Start <= Stride * N <= UMAX
13300           //
13301           // Stride * N is a multiple of Stride. Therefore,
13302           //
13303           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
13304           //
13305           // Since Stride is a power of two, UMAX + 1 is divisible by
13306           // Stride. Therefore, UMAX mod Stride == Stride - 1.  So we can
13307           // write:
13308           //
13309           //   End - Start <= Stride * N <= UMAX - Stride - 1
13310           //
13311           // Dropping the middle term:
13312           //
13313           //   End - Start <= UMAX - Stride - 1
13314           //
13315           // Adding Stride - 1 to both sides:
13316           //
13317           //   (End - Start) + (Stride - 1) <= UMAX
13318           //
13319           // In other words, the addition doesn't have unsigned overflow.
13320           //
13321           // A similar proof works if we treat Start/End as signed values.
13322           // Just rewrite steps before "End - Start <= Stride * N <= UMAX"
13323           // to use signed max instead of unsigned max. Note that we're
13324           // trying to prove a lack of unsigned overflow in either case.
13325           return false;
13326         }
13327         if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
13328           // If Start is equal to Stride, (End - Start) + (Stride - 1) == End
13329           // - 1. If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1
13330           // <u End. If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End -
13331           // 1 <s End.
13332           //
13333           // If Start is equal to Stride - 1, (End - Start) + Stride - 1 ==
13334           // End.
13335           return false;
13336         }
13337         return true;
13338       }();
13339 
13340       const SCEV *Delta = getMinusSCEV(End, Start);
13341       if (!MayAddOverflow) {
13342         // floor((D + (S - 1)) / S)
13343         // We prefer this formulation if it's legal because it's fewer
13344         // operations.
13345         BECount =
13346             getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
13347       } else {
13348         BECount = getUDivCeilSCEV(Delta, Stride);
13349       }
13350     }
13351   }
13352 
13353   const SCEV *ConstantMaxBECount;
13354   bool MaxOrZero = false;
13355   if (isa<SCEVConstant>(BECount)) {
13356     ConstantMaxBECount = BECount;
13357   } else if (BECountIfBackedgeTaken &&
13358              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
13359     // If we know exactly how many times the backedge will be taken if it's
13360     // taken at least once, then the backedge count will either be that or
13361     // zero.
13362     ConstantMaxBECount = BECountIfBackedgeTaken;
13363     MaxOrZero = true;
13364   } else {
13365     ConstantMaxBECount = computeMaxBECountForLT(
13366         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
13367   }
13368 
13369   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
13370       !isa<SCEVCouldNotCompute>(BECount))
13371     ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
13372 
13373   const SCEV *SymbolicMaxBECount =
13374       isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
13375   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero,
13376                    Predicates);
13377 }
13378 
13379 ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans(
13380     const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned,
13381     bool ControlsOnlyExit, bool AllowPredicates) {
13382   SmallVector<const SCEVPredicate *> Predicates;
13383   // We handle only IV > Invariant
13384   if (!isLoopInvariant(RHS, L))
13385     return getCouldNotCompute();
13386 
13387   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
13388   if (!IV && AllowPredicates)
13389     // Try to make this an AddRec using runtime tests, in the first X
13390     // iterations of this loop, where X is the SCEV expression found by the
13391     // algorithm below.
13392     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
13393 
13394   // Avoid weird loops
13395   if (!IV || IV->getLoop() != L || !IV->isAffine())
13396     return getCouldNotCompute();
13397 
13398   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
13399   bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType);
13400   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13401 
13402   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
13403 
13404   // Avoid negative or zero stride values
13405   if (!isKnownPositive(Stride))
13406     return getCouldNotCompute();
13407 
13408   // Avoid proven overflow cases: this will ensure that the backedge taken count
13409   // will not generate any unsigned overflow. Relaxed no-overflow conditions
13410   // exploit NoWrapFlags, allowing to optimize in presence of undefined
13411   // behaviors like the case of C language.
13412   if (!Stride->isOne() && !NoWrap)
13413     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
13414       return getCouldNotCompute();
13415 
13416   const SCEV *Start = IV->getStart();
13417   const SCEV *End = RHS;
13418   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
13419     // If we know that Start >= RHS in the context of loop, then we know that
13420     // min(RHS, Start) = RHS at this point.
13421     if (isLoopEntryGuardedByCond(
13422             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
13423       End = RHS;
13424     else
13425       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
13426   }
13427 
13428   if (Start->getType()->isPointerTy()) {
13429     Start = getLosslessPtrToIntExpr(Start);
13430     if (isa<SCEVCouldNotCompute>(Start))
13431       return Start;
13432   }
13433   if (End->getType()->isPointerTy()) {
13434     End = getLosslessPtrToIntExpr(End);
13435     if (isa<SCEVCouldNotCompute>(End))
13436       return End;
13437   }
13438 
13439   // Compute ((Start - End) + (Stride - 1)) / Stride.
13440   // FIXME: This can overflow. Holding off on fixing this for now;
13441   // howManyGreaterThans will hopefully be gone soon.
13442   const SCEV *One = getOne(Stride->getType());
13443   const SCEV *BECount = getUDivExpr(
13444       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
13445 
13446   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
13447                             : getUnsignedRangeMax(Start);
13448 
13449   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
13450                              : getUnsignedRangeMin(Stride);
13451 
13452   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
13453   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
13454                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
13455 
13456   // Although End can be a MIN expression we estimate MinEnd considering only
13457   // the case End = RHS. This is safe because in the other case (Start - End)
13458   // is zero, leading to a zero maximum backedge taken count.
13459   APInt MinEnd =
13460     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
13461              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
13462 
13463   const SCEV *ConstantMaxBECount =
13464       isa<SCEVConstant>(BECount)
13465           ? BECount
13466           : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
13467                             getConstant(MinStride));
13468 
13469   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount))
13470     ConstantMaxBECount = BECount;
13471   const SCEV *SymbolicMaxBECount =
13472       isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
13473 
13474   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
13475                    Predicates);
13476 }
13477 
13478 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
13479                                                     ScalarEvolution &SE) const {
13480   if (Range.isFullSet())  // Infinite loop.
13481     return SE.getCouldNotCompute();
13482 
13483   // If the start is a non-zero constant, shift the range to simplify things.
13484   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
13485     if (!SC->getValue()->isZero()) {
13486       SmallVector<const SCEV *, 4> Operands(operands());
13487       Operands[0] = SE.getZero(SC->getType());
13488       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
13489                                              getNoWrapFlags(FlagNW));
13490       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
13491         return ShiftedAddRec->getNumIterationsInRange(
13492             Range.subtract(SC->getAPInt()), SE);
13493       // This is strange and shouldn't happen.
13494       return SE.getCouldNotCompute();
13495     }
13496 
13497   // The only time we can solve this is when we have all constant indices.
13498   // Otherwise, we cannot determine the overflow conditions.
13499   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
13500     return SE.getCouldNotCompute();
13501 
13502   // Okay at this point we know that all elements of the chrec are constants and
13503   // that the start element is zero.
13504 
13505   // First check to see if the range contains zero.  If not, the first
13506   // iteration exits.
13507   unsigned BitWidth = SE.getTypeSizeInBits(getType());
13508   if (!Range.contains(APInt(BitWidth, 0)))
13509     return SE.getZero(getType());
13510 
13511   if (isAffine()) {
13512     // If this is an affine expression then we have this situation:
13513     //   Solve {0,+,A} in Range  ===  Ax in Range
13514 
13515     // We know that zero is in the range.  If A is positive then we know that
13516     // the upper value of the range must be the first possible exit value.
13517     // If A is negative then the lower of the range is the last possible loop
13518     // value.  Also note that we already checked for a full range.
13519     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
13520     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
13521 
13522     // The exit value should be (End+A)/A.
13523     APInt ExitVal = (End + A).udiv(A);
13524     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
13525 
13526     // Evaluate at the exit value.  If we really did fall out of the valid
13527     // range, then we computed our trip count, otherwise wrap around or other
13528     // things must have happened.
13529     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
13530     if (Range.contains(Val->getValue()))
13531       return SE.getCouldNotCompute();  // Something strange happened
13532 
13533     // Ensure that the previous value is in the range.
13534     assert(Range.contains(
13535            EvaluateConstantChrecAtConstant(this,
13536            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
13537            "Linear scev computation is off in a bad way!");
13538     return SE.getConstant(ExitValue);
13539   }
13540 
13541   if (isQuadratic()) {
13542     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
13543       return SE.getConstant(*S);
13544   }
13545 
13546   return SE.getCouldNotCompute();
13547 }
13548 
13549 const SCEVAddRecExpr *
13550 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
13551   assert(getNumOperands() > 1 && "AddRec with zero step?");
13552   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
13553   // but in this case we cannot guarantee that the value returned will be an
13554   // AddRec because SCEV does not have a fixed point where it stops
13555   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
13556   // may happen if we reach arithmetic depth limit while simplifying. So we
13557   // construct the returned value explicitly.
13558   SmallVector<const SCEV *, 3> Ops;
13559   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
13560   // (this + Step) is {A+B,+,B+C,+...,+,N}.
13561   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
13562     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
13563   // We know that the last operand is not a constant zero (otherwise it would
13564   // have been popped out earlier). This guarantees us that if the result has
13565   // the same last operand, then it will also not be popped out, meaning that
13566   // the returned value will be an AddRec.
13567   const SCEV *Last = getOperand(getNumOperands() - 1);
13568   assert(!Last->isZero() && "Recurrency with zero step?");
13569   Ops.push_back(Last);
13570   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
13571                                                SCEV::FlagAnyWrap));
13572 }
13573 
13574 // Return true when S contains at least an undef value.
13575 bool ScalarEvolution::containsUndefs(const SCEV *S) const {
13576   return SCEVExprContains(S, [](const SCEV *S) {
13577     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13578       return isa<UndefValue>(SU->getValue());
13579     return false;
13580   });
13581 }
13582 
13583 // Return true when S contains a value that is a nullptr.
13584 bool ScalarEvolution::containsErasedValue(const SCEV *S) const {
13585   return SCEVExprContains(S, [](const SCEV *S) {
13586     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13587       return SU->getValue() == nullptr;
13588     return false;
13589   });
13590 }
13591 
13592 /// Return the size of an element read or written by Inst.
13593 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
13594   Type *Ty;
13595   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
13596     Ty = Store->getValueOperand()->getType();
13597   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
13598     Ty = Load->getType();
13599   else
13600     return nullptr;
13601 
13602   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Inst->getContext()));
13603   return getSizeOfExpr(ETy, Ty);
13604 }
13605 
13606 //===----------------------------------------------------------------------===//
13607 //                   SCEVCallbackVH Class Implementation
13608 //===----------------------------------------------------------------------===//
13609 
13610 void ScalarEvolution::SCEVCallbackVH::deleted() {
13611   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13612   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
13613     SE->ConstantEvolutionLoopExitValue.erase(PN);
13614   SE->eraseValueFromMap(getValPtr());
13615   // this now dangles!
13616 }
13617 
13618 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
13619   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13620 
13621   // Forget all the expressions associated with users of the old value,
13622   // so that future queries will recompute the expressions using the new
13623   // value.
13624   SE->forgetValue(getValPtr());
13625   // this now dangles!
13626 }
13627 
13628 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
13629   : CallbackVH(V), SE(se) {}
13630 
13631 //===----------------------------------------------------------------------===//
13632 //                   ScalarEvolution Class Implementation
13633 //===----------------------------------------------------------------------===//
13634 
13635 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
13636                                  AssumptionCache &AC, DominatorTree &DT,
13637                                  LoopInfo &LI)
13638     : F(F), DL(F.getDataLayout()), TLI(TLI), AC(AC), DT(DT), LI(LI),
13639       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
13640       LoopDispositions(64), BlockDispositions(64) {
13641   // To use guards for proving predicates, we need to scan every instruction in
13642   // relevant basic blocks, and not just terminators.  Doing this is a waste of
13643   // time if the IR does not actually contain any calls to
13644   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
13645   //
13646   // This pessimizes the case where a pass that preserves ScalarEvolution wants
13647   // to _add_ guards to the module when there weren't any before, and wants
13648   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
13649   // efficient in lieu of being smart in that rather obscure case.
13650 
13651   auto *GuardDecl = Intrinsic::getDeclarationIfExists(
13652       F.getParent(), Intrinsic::experimental_guard);
13653   HasGuards = GuardDecl && !GuardDecl->use_empty();
13654 }
13655 
13656 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
13657     : F(Arg.F), DL(Arg.DL), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC),
13658       DT(Arg.DT), LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
13659       ValueExprMap(std::move(Arg.ValueExprMap)),
13660       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
13661       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
13662       PendingMerges(std::move(Arg.PendingMerges)),
13663       ConstantMultipleCache(std::move(Arg.ConstantMultipleCache)),
13664       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
13665       PredicatedBackedgeTakenCounts(
13666           std::move(Arg.PredicatedBackedgeTakenCounts)),
13667       BECountUsers(std::move(Arg.BECountUsers)),
13668       ConstantEvolutionLoopExitValue(
13669           std::move(Arg.ConstantEvolutionLoopExitValue)),
13670       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
13671       ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)),
13672       LoopDispositions(std::move(Arg.LoopDispositions)),
13673       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
13674       BlockDispositions(std::move(Arg.BlockDispositions)),
13675       SCEVUsers(std::move(Arg.SCEVUsers)),
13676       UnsignedRanges(std::move(Arg.UnsignedRanges)),
13677       SignedRanges(std::move(Arg.SignedRanges)),
13678       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
13679       UniquePreds(std::move(Arg.UniquePreds)),
13680       SCEVAllocator(std::move(Arg.SCEVAllocator)),
13681       LoopUsers(std::move(Arg.LoopUsers)),
13682       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
13683       FirstUnknown(Arg.FirstUnknown) {
13684   Arg.FirstUnknown = nullptr;
13685 }
13686 
13687 ScalarEvolution::~ScalarEvolution() {
13688   // Iterate through all the SCEVUnknown instances and call their
13689   // destructors, so that they release their references to their values.
13690   for (SCEVUnknown *U = FirstUnknown; U;) {
13691     SCEVUnknown *Tmp = U;
13692     U = U->Next;
13693     Tmp->~SCEVUnknown();
13694   }
13695   FirstUnknown = nullptr;
13696 
13697   ExprValueMap.clear();
13698   ValueExprMap.clear();
13699   HasRecMap.clear();
13700   BackedgeTakenCounts.clear();
13701   PredicatedBackedgeTakenCounts.clear();
13702 
13703   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
13704   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
13705   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
13706   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
13707   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
13708 }
13709 
13710 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
13711   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
13712 }
13713 
13714 /// When printing a top-level SCEV for trip counts, it's helpful to include
13715 /// a type for constants which are otherwise hard to disambiguate.
13716 static void PrintSCEVWithTypeHint(raw_ostream &OS, const SCEV* S) {
13717   if (isa<SCEVConstant>(S))
13718     OS << *S->getType() << " ";
13719   OS << *S;
13720 }
13721 
13722 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
13723                           const Loop *L) {
13724   // Print all inner loops first
13725   for (Loop *I : *L)
13726     PrintLoopInfo(OS, SE, I);
13727 
13728   OS << "Loop ";
13729   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13730   OS << ": ";
13731 
13732   SmallVector<BasicBlock *, 8> ExitingBlocks;
13733   L->getExitingBlocks(ExitingBlocks);
13734   if (ExitingBlocks.size() != 1)
13735     OS << "<multiple exits> ";
13736 
13737   auto *BTC = SE->getBackedgeTakenCount(L);
13738   if (!isa<SCEVCouldNotCompute>(BTC)) {
13739     OS << "backedge-taken count is ";
13740     PrintSCEVWithTypeHint(OS, BTC);
13741   } else
13742     OS << "Unpredictable backedge-taken count.";
13743   OS << "\n";
13744 
13745   if (ExitingBlocks.size() > 1)
13746     for (BasicBlock *ExitingBlock : ExitingBlocks) {
13747       OS << "  exit count for " << ExitingBlock->getName() << ": ";
13748       const SCEV *EC = SE->getExitCount(L, ExitingBlock);
13749       PrintSCEVWithTypeHint(OS, EC);
13750       if (isa<SCEVCouldNotCompute>(EC)) {
13751         // Retry with predicates.
13752         SmallVector<const SCEVPredicate *> Predicates;
13753         EC = SE->getPredicatedExitCount(L, ExitingBlock, &Predicates);
13754         if (!isa<SCEVCouldNotCompute>(EC)) {
13755           OS << "\n  predicated exit count for " << ExitingBlock->getName()
13756              << ": ";
13757           PrintSCEVWithTypeHint(OS, EC);
13758           OS << "\n   Predicates:\n";
13759           for (const auto *P : Predicates)
13760             P->print(OS, 4);
13761         }
13762       }
13763       OS << "\n";
13764     }
13765 
13766   OS << "Loop ";
13767   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13768   OS << ": ";
13769 
13770   auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L);
13771   if (!isa<SCEVCouldNotCompute>(ConstantBTC)) {
13772     OS << "constant max backedge-taken count is ";
13773     PrintSCEVWithTypeHint(OS, ConstantBTC);
13774     if (SE->isBackedgeTakenCountMaxOrZero(L))
13775       OS << ", actual taken count either this or zero.";
13776   } else {
13777     OS << "Unpredictable constant max backedge-taken count. ";
13778   }
13779 
13780   OS << "\n"
13781         "Loop ";
13782   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13783   OS << ": ";
13784 
13785   auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L);
13786   if (!isa<SCEVCouldNotCompute>(SymbolicBTC)) {
13787     OS << "symbolic max backedge-taken count is ";
13788     PrintSCEVWithTypeHint(OS, SymbolicBTC);
13789     if (SE->isBackedgeTakenCountMaxOrZero(L))
13790       OS << ", actual taken count either this or zero.";
13791   } else {
13792     OS << "Unpredictable symbolic max backedge-taken count. ";
13793   }
13794   OS << "\n";
13795 
13796   if (ExitingBlocks.size() > 1)
13797     for (BasicBlock *ExitingBlock : ExitingBlocks) {
13798       OS << "  symbolic max exit count for " << ExitingBlock->getName() << ": ";
13799       auto *ExitBTC = SE->getExitCount(L, ExitingBlock,
13800                                        ScalarEvolution::SymbolicMaximum);
13801       PrintSCEVWithTypeHint(OS, ExitBTC);
13802       if (isa<SCEVCouldNotCompute>(ExitBTC)) {
13803         // Retry with predicates.
13804         SmallVector<const SCEVPredicate *> Predicates;
13805         ExitBTC = SE->getPredicatedExitCount(L, ExitingBlock, &Predicates,
13806                                              ScalarEvolution::SymbolicMaximum);
13807         if (!isa<SCEVCouldNotCompute>(ExitBTC)) {
13808           OS << "\n  predicated symbolic max exit count for "
13809              << ExitingBlock->getName() << ": ";
13810           PrintSCEVWithTypeHint(OS, ExitBTC);
13811           OS << "\n   Predicates:\n";
13812           for (const auto *P : Predicates)
13813             P->print(OS, 4);
13814         }
13815       }
13816       OS << "\n";
13817     }
13818 
13819   SmallVector<const SCEVPredicate *, 4> Preds;
13820   auto *PBT = SE->getPredicatedBackedgeTakenCount(L, Preds);
13821   if (PBT != BTC) {
13822     assert(!Preds.empty() && "Different predicated BTC, but no predicates");
13823     OS << "Loop ";
13824     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13825     OS << ": ";
13826     if (!isa<SCEVCouldNotCompute>(PBT)) {
13827       OS << "Predicated backedge-taken count is ";
13828       PrintSCEVWithTypeHint(OS, PBT);
13829     } else
13830       OS << "Unpredictable predicated backedge-taken count.";
13831     OS << "\n";
13832     OS << " Predicates:\n";
13833     for (const auto *P : Preds)
13834       P->print(OS, 4);
13835   }
13836   Preds.clear();
13837 
13838   auto *PredConstantMax =
13839       SE->getPredicatedConstantMaxBackedgeTakenCount(L, Preds);
13840   if (PredConstantMax != ConstantBTC) {
13841     assert(!Preds.empty() &&
13842            "different predicated constant max BTC but no predicates");
13843     OS << "Loop ";
13844     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13845     OS << ": ";
13846     if (!isa<SCEVCouldNotCompute>(PredConstantMax)) {
13847       OS << "Predicated constant max backedge-taken count is ";
13848       PrintSCEVWithTypeHint(OS, PredConstantMax);
13849     } else
13850       OS << "Unpredictable predicated constant max backedge-taken count.";
13851     OS << "\n";
13852     OS << " Predicates:\n";
13853     for (const auto *P : Preds)
13854       P->print(OS, 4);
13855   }
13856   Preds.clear();
13857 
13858   auto *PredSymbolicMax =
13859       SE->getPredicatedSymbolicMaxBackedgeTakenCount(L, Preds);
13860   if (SymbolicBTC != PredSymbolicMax) {
13861     assert(!Preds.empty() &&
13862            "Different predicated symbolic max BTC, but no predicates");
13863     OS << "Loop ";
13864     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13865     OS << ": ";
13866     if (!isa<SCEVCouldNotCompute>(PredSymbolicMax)) {
13867       OS << "Predicated symbolic max backedge-taken count is ";
13868       PrintSCEVWithTypeHint(OS, PredSymbolicMax);
13869     } else
13870       OS << "Unpredictable predicated symbolic max backedge-taken count.";
13871     OS << "\n";
13872     OS << " Predicates:\n";
13873     for (const auto *P : Preds)
13874       P->print(OS, 4);
13875   }
13876 
13877   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
13878     OS << "Loop ";
13879     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13880     OS << ": ";
13881     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
13882   }
13883 }
13884 
13885 namespace llvm {
13886 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::LoopDisposition LD) {
13887   switch (LD) {
13888   case ScalarEvolution::LoopVariant:
13889     OS << "Variant";
13890     break;
13891   case ScalarEvolution::LoopInvariant:
13892     OS << "Invariant";
13893     break;
13894   case ScalarEvolution::LoopComputable:
13895     OS << "Computable";
13896     break;
13897   }
13898   return OS;
13899 }
13900 
13901 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::BlockDisposition BD) {
13902   switch (BD) {
13903   case ScalarEvolution::DoesNotDominateBlock:
13904     OS << "DoesNotDominate";
13905     break;
13906   case ScalarEvolution::DominatesBlock:
13907     OS << "Dominates";
13908     break;
13909   case ScalarEvolution::ProperlyDominatesBlock:
13910     OS << "ProperlyDominates";
13911     break;
13912   }
13913   return OS;
13914 }
13915 } // namespace llvm
13916 
13917 void ScalarEvolution::print(raw_ostream &OS) const {
13918   // ScalarEvolution's implementation of the print method is to print
13919   // out SCEV values of all instructions that are interesting. Doing
13920   // this potentially causes it to create new SCEV objects though,
13921   // which technically conflicts with the const qualifier. This isn't
13922   // observable from outside the class though, so casting away the
13923   // const isn't dangerous.
13924   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13925 
13926   if (ClassifyExpressions) {
13927     OS << "Classifying expressions for: ";
13928     F.printAsOperand(OS, /*PrintType=*/false);
13929     OS << "\n";
13930     for (Instruction &I : instructions(F))
13931       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
13932         OS << I << '\n';
13933         OS << "  -->  ";
13934         const SCEV *SV = SE.getSCEV(&I);
13935         SV->print(OS);
13936         if (!isa<SCEVCouldNotCompute>(SV)) {
13937           OS << " U: ";
13938           SE.getUnsignedRange(SV).print(OS);
13939           OS << " S: ";
13940           SE.getSignedRange(SV).print(OS);
13941         }
13942 
13943         const Loop *L = LI.getLoopFor(I.getParent());
13944 
13945         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
13946         if (AtUse != SV) {
13947           OS << "  -->  ";
13948           AtUse->print(OS);
13949           if (!isa<SCEVCouldNotCompute>(AtUse)) {
13950             OS << " U: ";
13951             SE.getUnsignedRange(AtUse).print(OS);
13952             OS << " S: ";
13953             SE.getSignedRange(AtUse).print(OS);
13954           }
13955         }
13956 
13957         if (L) {
13958           OS << "\t\t" "Exits: ";
13959           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
13960           if (!SE.isLoopInvariant(ExitValue, L)) {
13961             OS << "<<Unknown>>";
13962           } else {
13963             OS << *ExitValue;
13964           }
13965 
13966           bool First = true;
13967           for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
13968             if (First) {
13969               OS << "\t\t" "LoopDispositions: { ";
13970               First = false;
13971             } else {
13972               OS << ", ";
13973             }
13974 
13975             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13976             OS << ": " << SE.getLoopDisposition(SV, Iter);
13977           }
13978 
13979           for (const auto *InnerL : depth_first(L)) {
13980             if (InnerL == L)
13981               continue;
13982             if (First) {
13983               OS << "\t\t" "LoopDispositions: { ";
13984               First = false;
13985             } else {
13986               OS << ", ";
13987             }
13988 
13989             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13990             OS << ": " << SE.getLoopDisposition(SV, InnerL);
13991           }
13992 
13993           OS << " }";
13994         }
13995 
13996         OS << "\n";
13997       }
13998   }
13999 
14000   OS << "Determining loop execution counts for: ";
14001   F.printAsOperand(OS, /*PrintType=*/false);
14002   OS << "\n";
14003   for (Loop *I : LI)
14004     PrintLoopInfo(OS, &SE, I);
14005 }
14006 
14007 ScalarEvolution::LoopDisposition
14008 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
14009   auto &Values = LoopDispositions[S];
14010   for (auto &V : Values) {
14011     if (V.getPointer() == L)
14012       return V.getInt();
14013   }
14014   Values.emplace_back(L, LoopVariant);
14015   LoopDisposition D = computeLoopDisposition(S, L);
14016   auto &Values2 = LoopDispositions[S];
14017   for (auto &V : llvm::reverse(Values2)) {
14018     if (V.getPointer() == L) {
14019       V.setInt(D);
14020       break;
14021     }
14022   }
14023   return D;
14024 }
14025 
14026 ScalarEvolution::LoopDisposition
14027 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
14028   switch (S->getSCEVType()) {
14029   case scConstant:
14030   case scVScale:
14031     return LoopInvariant;
14032   case scAddRecExpr: {
14033     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
14034 
14035     // If L is the addrec's loop, it's computable.
14036     if (AR->getLoop() == L)
14037       return LoopComputable;
14038 
14039     // Add recurrences are never invariant in the function-body (null loop).
14040     if (!L)
14041       return LoopVariant;
14042 
14043     // Everything that is not defined at loop entry is variant.
14044     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
14045       return LoopVariant;
14046     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
14047            " dominate the contained loop's header?");
14048 
14049     // This recurrence is invariant w.r.t. L if AR's loop contains L.
14050     if (AR->getLoop()->contains(L))
14051       return LoopInvariant;
14052 
14053     // This recurrence is variant w.r.t. L if any of its operands
14054     // are variant.
14055     for (const auto *Op : AR->operands())
14056       if (!isLoopInvariant(Op, L))
14057         return LoopVariant;
14058 
14059     // Otherwise it's loop-invariant.
14060     return LoopInvariant;
14061   }
14062   case scTruncate:
14063   case scZeroExtend:
14064   case scSignExtend:
14065   case scPtrToInt:
14066   case scAddExpr:
14067   case scMulExpr:
14068   case scUDivExpr:
14069   case scUMaxExpr:
14070   case scSMaxExpr:
14071   case scUMinExpr:
14072   case scSMinExpr:
14073   case scSequentialUMinExpr: {
14074     bool HasVarying = false;
14075     for (const auto *Op : S->operands()) {
14076       LoopDisposition D = getLoopDisposition(Op, L);
14077       if (D == LoopVariant)
14078         return LoopVariant;
14079       if (D == LoopComputable)
14080         HasVarying = true;
14081     }
14082     return HasVarying ? LoopComputable : LoopInvariant;
14083   }
14084   case scUnknown:
14085     // All non-instruction values are loop invariant.  All instructions are loop
14086     // invariant if they are not contained in the specified loop.
14087     // Instructions are never considered invariant in the function body
14088     // (null loop) because they are defined within the "loop".
14089     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
14090       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
14091     return LoopInvariant;
14092   case scCouldNotCompute:
14093     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
14094   }
14095   llvm_unreachable("Unknown SCEV kind!");
14096 }
14097 
14098 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
14099   return getLoopDisposition(S, L) == LoopInvariant;
14100 }
14101 
14102 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
14103   return getLoopDisposition(S, L) == LoopComputable;
14104 }
14105 
14106 ScalarEvolution::BlockDisposition
14107 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
14108   auto &Values = BlockDispositions[S];
14109   for (auto &V : Values) {
14110     if (V.getPointer() == BB)
14111       return V.getInt();
14112   }
14113   Values.emplace_back(BB, DoesNotDominateBlock);
14114   BlockDisposition D = computeBlockDisposition(S, BB);
14115   auto &Values2 = BlockDispositions[S];
14116   for (auto &V : llvm::reverse(Values2)) {
14117     if (V.getPointer() == BB) {
14118       V.setInt(D);
14119       break;
14120     }
14121   }
14122   return D;
14123 }
14124 
14125 ScalarEvolution::BlockDisposition
14126 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
14127   switch (S->getSCEVType()) {
14128   case scConstant:
14129   case scVScale:
14130     return ProperlyDominatesBlock;
14131   case scAddRecExpr: {
14132     // This uses a "dominates" query instead of "properly dominates" query
14133     // to test for proper dominance too, because the instruction which
14134     // produces the addrec's value is a PHI, and a PHI effectively properly
14135     // dominates its entire containing block.
14136     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
14137     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
14138       return DoesNotDominateBlock;
14139 
14140     // Fall through into SCEVNAryExpr handling.
14141     [[fallthrough]];
14142   }
14143   case scTruncate:
14144   case scZeroExtend:
14145   case scSignExtend:
14146   case scPtrToInt:
14147   case scAddExpr:
14148   case scMulExpr:
14149   case scUDivExpr:
14150   case scUMaxExpr:
14151   case scSMaxExpr:
14152   case scUMinExpr:
14153   case scSMinExpr:
14154   case scSequentialUMinExpr: {
14155     bool Proper = true;
14156     for (const SCEV *NAryOp : S->operands()) {
14157       BlockDisposition D = getBlockDisposition(NAryOp, BB);
14158       if (D == DoesNotDominateBlock)
14159         return DoesNotDominateBlock;
14160       if (D == DominatesBlock)
14161         Proper = false;
14162     }
14163     return Proper ? ProperlyDominatesBlock : DominatesBlock;
14164   }
14165   case scUnknown:
14166     if (Instruction *I =
14167           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
14168       if (I->getParent() == BB)
14169         return DominatesBlock;
14170       if (DT.properlyDominates(I->getParent(), BB))
14171         return ProperlyDominatesBlock;
14172       return DoesNotDominateBlock;
14173     }
14174     return ProperlyDominatesBlock;
14175   case scCouldNotCompute:
14176     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
14177   }
14178   llvm_unreachable("Unknown SCEV kind!");
14179 }
14180 
14181 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
14182   return getBlockDisposition(S, BB) >= DominatesBlock;
14183 }
14184 
14185 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
14186   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
14187 }
14188 
14189 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
14190   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
14191 }
14192 
14193 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L,
14194                                                 bool Predicated) {
14195   auto &BECounts =
14196       Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
14197   auto It = BECounts.find(L);
14198   if (It != BECounts.end()) {
14199     for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
14200       for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
14201         if (!isa<SCEVConstant>(S)) {
14202           auto UserIt = BECountUsers.find(S);
14203           assert(UserIt != BECountUsers.end());
14204           UserIt->second.erase({L, Predicated});
14205         }
14206       }
14207     }
14208     BECounts.erase(It);
14209   }
14210 }
14211 
14212 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
14213   SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
14214   SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
14215 
14216   while (!Worklist.empty()) {
14217     const SCEV *Curr = Worklist.pop_back_val();
14218     auto Users = SCEVUsers.find(Curr);
14219     if (Users != SCEVUsers.end())
14220       for (const auto *User : Users->second)
14221         if (ToForget.insert(User).second)
14222           Worklist.push_back(User);
14223   }
14224 
14225   for (const auto *S : ToForget)
14226     forgetMemoizedResultsImpl(S);
14227 
14228   for (auto I = PredicatedSCEVRewrites.begin();
14229        I != PredicatedSCEVRewrites.end();) {
14230     std::pair<const SCEV *, const Loop *> Entry = I->first;
14231     if (ToForget.count(Entry.first))
14232       PredicatedSCEVRewrites.erase(I++);
14233     else
14234       ++I;
14235   }
14236 }
14237 
14238 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
14239   LoopDispositions.erase(S);
14240   BlockDispositions.erase(S);
14241   UnsignedRanges.erase(S);
14242   SignedRanges.erase(S);
14243   HasRecMap.erase(S);
14244   ConstantMultipleCache.erase(S);
14245 
14246   if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) {
14247     UnsignedWrapViaInductionTried.erase(AR);
14248     SignedWrapViaInductionTried.erase(AR);
14249   }
14250 
14251   auto ExprIt = ExprValueMap.find(S);
14252   if (ExprIt != ExprValueMap.end()) {
14253     for (Value *V : ExprIt->second) {
14254       auto ValueIt = ValueExprMap.find_as(V);
14255       if (ValueIt != ValueExprMap.end())
14256         ValueExprMap.erase(ValueIt);
14257     }
14258     ExprValueMap.erase(ExprIt);
14259   }
14260 
14261   auto ScopeIt = ValuesAtScopes.find(S);
14262   if (ScopeIt != ValuesAtScopes.end()) {
14263     for (const auto &Pair : ScopeIt->second)
14264       if (!isa_and_nonnull<SCEVConstant>(Pair.second))
14265         llvm::erase(ValuesAtScopesUsers[Pair.second],
14266                     std::make_pair(Pair.first, S));
14267     ValuesAtScopes.erase(ScopeIt);
14268   }
14269 
14270   auto ScopeUserIt = ValuesAtScopesUsers.find(S);
14271   if (ScopeUserIt != ValuesAtScopesUsers.end()) {
14272     for (const auto &Pair : ScopeUserIt->second)
14273       llvm::erase(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S));
14274     ValuesAtScopesUsers.erase(ScopeUserIt);
14275   }
14276 
14277   auto BEUsersIt = BECountUsers.find(S);
14278   if (BEUsersIt != BECountUsers.end()) {
14279     // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
14280     auto Copy = BEUsersIt->second;
14281     for (const auto &Pair : Copy)
14282       forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt());
14283     BECountUsers.erase(BEUsersIt);
14284   }
14285 
14286   auto FoldUser = FoldCacheUser.find(S);
14287   if (FoldUser != FoldCacheUser.end())
14288     for (auto &KV : FoldUser->second)
14289       FoldCache.erase(KV);
14290   FoldCacheUser.erase(S);
14291 }
14292 
14293 void
14294 ScalarEvolution::getUsedLoops(const SCEV *S,
14295                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
14296   struct FindUsedLoops {
14297     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
14298         : LoopsUsed(LoopsUsed) {}
14299     SmallPtrSetImpl<const Loop *> &LoopsUsed;
14300     bool follow(const SCEV *S) {
14301       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
14302         LoopsUsed.insert(AR->getLoop());
14303       return true;
14304     }
14305 
14306     bool isDone() const { return false; }
14307   };
14308 
14309   FindUsedLoops F(LoopsUsed);
14310   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
14311 }
14312 
14313 void ScalarEvolution::getReachableBlocks(
14314     SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) {
14315   SmallVector<BasicBlock *> Worklist;
14316   Worklist.push_back(&F.getEntryBlock());
14317   while (!Worklist.empty()) {
14318     BasicBlock *BB = Worklist.pop_back_val();
14319     if (!Reachable.insert(BB).second)
14320       continue;
14321 
14322     Value *Cond;
14323     BasicBlock *TrueBB, *FalseBB;
14324     if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB),
14325                                         m_BasicBlock(FalseBB)))) {
14326       if (auto *C = dyn_cast<ConstantInt>(Cond)) {
14327         Worklist.push_back(C->isOne() ? TrueBB : FalseBB);
14328         continue;
14329       }
14330 
14331       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
14332         const SCEV *L = getSCEV(Cmp->getOperand(0));
14333         const SCEV *R = getSCEV(Cmp->getOperand(1));
14334         if (isKnownPredicateViaConstantRanges(Cmp->getCmpPredicate(), L, R)) {
14335           Worklist.push_back(TrueBB);
14336           continue;
14337         }
14338         if (isKnownPredicateViaConstantRanges(Cmp->getInverseCmpPredicate(), L,
14339                                               R)) {
14340           Worklist.push_back(FalseBB);
14341           continue;
14342         }
14343       }
14344     }
14345 
14346     append_range(Worklist, successors(BB));
14347   }
14348 }
14349 
14350 void ScalarEvolution::verify() const {
14351   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
14352   ScalarEvolution SE2(F, TLI, AC, DT, LI);
14353 
14354   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
14355 
14356   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
14357   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
14358     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
14359 
14360     const SCEV *visitConstant(const SCEVConstant *Constant) {
14361       return SE.getConstant(Constant->getAPInt());
14362     }
14363 
14364     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14365       return SE.getUnknown(Expr->getValue());
14366     }
14367 
14368     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
14369       return SE.getCouldNotCompute();
14370     }
14371   };
14372 
14373   SCEVMapper SCM(SE2);
14374   SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
14375   SE2.getReachableBlocks(ReachableBlocks, F);
14376 
14377   auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * {
14378     if (containsUndefs(Old) || containsUndefs(New)) {
14379       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
14380       // not propagate undef aggressively).  This means we can (and do) fail
14381       // verification in cases where a transform makes a value go from "undef"
14382       // to "undef+1" (say).  The transform is fine, since in both cases the
14383       // result is "undef", but SCEV thinks the value increased by 1.
14384       return nullptr;
14385     }
14386 
14387     // Unless VerifySCEVStrict is set, we only compare constant deltas.
14388     const SCEV *Delta = SE2.getMinusSCEV(Old, New);
14389     if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta))
14390       return nullptr;
14391 
14392     return Delta;
14393   };
14394 
14395   while (!LoopStack.empty()) {
14396     auto *L = LoopStack.pop_back_val();
14397     llvm::append_range(LoopStack, *L);
14398 
14399     // Only verify BECounts in reachable loops. For an unreachable loop,
14400     // any BECount is legal.
14401     if (!ReachableBlocks.contains(L->getHeader()))
14402       continue;
14403 
14404     // Only verify cached BECounts. Computing new BECounts may change the
14405     // results of subsequent SCEV uses.
14406     auto It = BackedgeTakenCounts.find(L);
14407     if (It == BackedgeTakenCounts.end())
14408       continue;
14409 
14410     auto *CurBECount =
14411         SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this)));
14412     auto *NewBECount = SE2.getBackedgeTakenCount(L);
14413 
14414     if (CurBECount == SE2.getCouldNotCompute() ||
14415         NewBECount == SE2.getCouldNotCompute()) {
14416       // NB! This situation is legal, but is very suspicious -- whatever pass
14417       // change the loop to make a trip count go from could not compute to
14418       // computable or vice-versa *should have* invalidated SCEV.  However, we
14419       // choose not to assert here (for now) since we don't want false
14420       // positives.
14421       continue;
14422     }
14423 
14424     if (SE.getTypeSizeInBits(CurBECount->getType()) >
14425         SE.getTypeSizeInBits(NewBECount->getType()))
14426       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
14427     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
14428              SE.getTypeSizeInBits(NewBECount->getType()))
14429       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
14430 
14431     const SCEV *Delta = GetDelta(CurBECount, NewBECount);
14432     if (Delta && !Delta->isZero()) {
14433       dbgs() << "Trip Count for " << *L << " Changed!\n";
14434       dbgs() << "Old: " << *CurBECount << "\n";
14435       dbgs() << "New: " << *NewBECount << "\n";
14436       dbgs() << "Delta: " << *Delta << "\n";
14437       std::abort();
14438     }
14439   }
14440 
14441   // Collect all valid loops currently in LoopInfo.
14442   SmallPtrSet<Loop *, 32> ValidLoops;
14443   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
14444   while (!Worklist.empty()) {
14445     Loop *L = Worklist.pop_back_val();
14446     if (ValidLoops.insert(L).second)
14447       Worklist.append(L->begin(), L->end());
14448   }
14449   for (const auto &KV : ValueExprMap) {
14450 #ifndef NDEBUG
14451     // Check for SCEV expressions referencing invalid/deleted loops.
14452     if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) {
14453       assert(ValidLoops.contains(AR->getLoop()) &&
14454              "AddRec references invalid loop");
14455     }
14456 #endif
14457 
14458     // Check that the value is also part of the reverse map.
14459     auto It = ExprValueMap.find(KV.second);
14460     if (It == ExprValueMap.end() || !It->second.contains(KV.first)) {
14461       dbgs() << "Value " << *KV.first
14462              << " is in ValueExprMap but not in ExprValueMap\n";
14463       std::abort();
14464     }
14465 
14466     if (auto *I = dyn_cast<Instruction>(&*KV.first)) {
14467       if (!ReachableBlocks.contains(I->getParent()))
14468         continue;
14469       const SCEV *OldSCEV = SCM.visit(KV.second);
14470       const SCEV *NewSCEV = SE2.getSCEV(I);
14471       const SCEV *Delta = GetDelta(OldSCEV, NewSCEV);
14472       if (Delta && !Delta->isZero()) {
14473         dbgs() << "SCEV for value " << *I << " changed!\n"
14474                << "Old: " << *OldSCEV << "\n"
14475                << "New: " << *NewSCEV << "\n"
14476                << "Delta: " << *Delta << "\n";
14477         std::abort();
14478       }
14479     }
14480   }
14481 
14482   for (const auto &KV : ExprValueMap) {
14483     for (Value *V : KV.second) {
14484       auto It = ValueExprMap.find_as(V);
14485       if (It == ValueExprMap.end()) {
14486         dbgs() << "Value " << *V
14487                << " is in ExprValueMap but not in ValueExprMap\n";
14488         std::abort();
14489       }
14490       if (It->second != KV.first) {
14491         dbgs() << "Value " << *V << " mapped to " << *It->second
14492                << " rather than " << *KV.first << "\n";
14493         std::abort();
14494       }
14495     }
14496   }
14497 
14498   // Verify integrity of SCEV users.
14499   for (const auto &S : UniqueSCEVs) {
14500     for (const auto *Op : S.operands()) {
14501       // We do not store dependencies of constants.
14502       if (isa<SCEVConstant>(Op))
14503         continue;
14504       auto It = SCEVUsers.find(Op);
14505       if (It != SCEVUsers.end() && It->second.count(&S))
14506         continue;
14507       dbgs() << "Use of operand  " << *Op << " by user " << S
14508              << " is not being tracked!\n";
14509       std::abort();
14510     }
14511   }
14512 
14513   // Verify integrity of ValuesAtScopes users.
14514   for (const auto &ValueAndVec : ValuesAtScopes) {
14515     const SCEV *Value = ValueAndVec.first;
14516     for (const auto &LoopAndValueAtScope : ValueAndVec.second) {
14517       const Loop *L = LoopAndValueAtScope.first;
14518       const SCEV *ValueAtScope = LoopAndValueAtScope.second;
14519       if (!isa<SCEVConstant>(ValueAtScope)) {
14520         auto It = ValuesAtScopesUsers.find(ValueAtScope);
14521         if (It != ValuesAtScopesUsers.end() &&
14522             is_contained(It->second, std::make_pair(L, Value)))
14523           continue;
14524         dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14525                << *ValueAtScope << " missing in ValuesAtScopesUsers\n";
14526         std::abort();
14527       }
14528     }
14529   }
14530 
14531   for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
14532     const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
14533     for (const auto &LoopAndValue : ValueAtScopeAndVec.second) {
14534       const Loop *L = LoopAndValue.first;
14535       const SCEV *Value = LoopAndValue.second;
14536       assert(!isa<SCEVConstant>(Value));
14537       auto It = ValuesAtScopes.find(Value);
14538       if (It != ValuesAtScopes.end() &&
14539           is_contained(It->second, std::make_pair(L, ValueAtScope)))
14540         continue;
14541       dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14542              << *ValueAtScope << " missing in ValuesAtScopes\n";
14543       std::abort();
14544     }
14545   }
14546 
14547   // Verify integrity of BECountUsers.
14548   auto VerifyBECountUsers = [&](bool Predicated) {
14549     auto &BECounts =
14550         Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
14551     for (const auto &LoopAndBEInfo : BECounts) {
14552       for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
14553         for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
14554           if (!isa<SCEVConstant>(S)) {
14555             auto UserIt = BECountUsers.find(S);
14556             if (UserIt != BECountUsers.end() &&
14557                 UserIt->second.contains({ LoopAndBEInfo.first, Predicated }))
14558               continue;
14559             dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first
14560                    << " missing from BECountUsers\n";
14561             std::abort();
14562           }
14563         }
14564       }
14565     }
14566   };
14567   VerifyBECountUsers(/* Predicated */ false);
14568   VerifyBECountUsers(/* Predicated */ true);
14569 
14570   // Verify intergity of loop disposition cache.
14571   for (auto &[S, Values] : LoopDispositions) {
14572     for (auto [Loop, CachedDisposition] : Values) {
14573       const auto RecomputedDisposition = SE2.getLoopDisposition(S, Loop);
14574       if (CachedDisposition != RecomputedDisposition) {
14575         dbgs() << "Cached disposition of " << *S << " for loop " << *Loop
14576                << " is incorrect: cached " << CachedDisposition << ", actual "
14577                << RecomputedDisposition << "\n";
14578         std::abort();
14579       }
14580     }
14581   }
14582 
14583   // Verify integrity of the block disposition cache.
14584   for (auto &[S, Values] : BlockDispositions) {
14585     for (auto [BB, CachedDisposition] : Values) {
14586       const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB);
14587       if (CachedDisposition != RecomputedDisposition) {
14588         dbgs() << "Cached disposition of " << *S << " for block %"
14589                << BB->getName() << " is incorrect: cached " << CachedDisposition
14590                << ", actual " << RecomputedDisposition << "\n";
14591         std::abort();
14592       }
14593     }
14594   }
14595 
14596   // Verify FoldCache/FoldCacheUser caches.
14597   for (auto [FoldID, Expr] : FoldCache) {
14598     auto I = FoldCacheUser.find(Expr);
14599     if (I == FoldCacheUser.end()) {
14600       dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr
14601              << "!\n";
14602       std::abort();
14603     }
14604     if (!is_contained(I->second, FoldID)) {
14605       dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n";
14606       std::abort();
14607     }
14608   }
14609   for (auto [Expr, IDs] : FoldCacheUser) {
14610     for (auto &FoldID : IDs) {
14611       auto I = FoldCache.find(FoldID);
14612       if (I == FoldCache.end()) {
14613         dbgs() << "Missing entry in FoldCache for expression " << *Expr
14614                << "!\n";
14615         std::abort();
14616       }
14617       if (I->second != Expr) {
14618         dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: "
14619                << *I->second << " != " << *Expr << "!\n";
14620         std::abort();
14621       }
14622     }
14623   }
14624 
14625   // Verify that ConstantMultipleCache computations are correct. We check that
14626   // cached multiples and recomputed multiples are multiples of each other to
14627   // verify correctness. It is possible that a recomputed multiple is different
14628   // from the cached multiple due to strengthened no wrap flags or changes in
14629   // KnownBits computations.
14630   for (auto [S, Multiple] : ConstantMultipleCache) {
14631     APInt RecomputedMultiple = SE2.getConstantMultiple(S);
14632     if ((Multiple != 0 && RecomputedMultiple != 0 &&
14633          Multiple.urem(RecomputedMultiple) != 0 &&
14634          RecomputedMultiple.urem(Multiple) != 0)) {
14635       dbgs() << "Incorrect cached computation in ConstantMultipleCache for "
14636              << *S << " : Computed " << RecomputedMultiple
14637              << " but cache contains " << Multiple << "!\n";
14638       std::abort();
14639     }
14640   }
14641 }
14642 
14643 bool ScalarEvolution::invalidate(
14644     Function &F, const PreservedAnalyses &PA,
14645     FunctionAnalysisManager::Invalidator &Inv) {
14646   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
14647   // of its dependencies is invalidated.
14648   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
14649   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
14650          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
14651          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
14652          Inv.invalidate<LoopAnalysis>(F, PA);
14653 }
14654 
14655 AnalysisKey ScalarEvolutionAnalysis::Key;
14656 
14657 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
14658                                              FunctionAnalysisManager &AM) {
14659   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
14660   auto &AC = AM.getResult<AssumptionAnalysis>(F);
14661   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
14662   auto &LI = AM.getResult<LoopAnalysis>(F);
14663   return ScalarEvolution(F, TLI, AC, DT, LI);
14664 }
14665 
14666 PreservedAnalyses
14667 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
14668   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
14669   return PreservedAnalyses::all();
14670 }
14671 
14672 PreservedAnalyses
14673 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
14674   // For compatibility with opt's -analyze feature under legacy pass manager
14675   // which was not ported to NPM. This keeps tests using
14676   // update_analyze_test_checks.py working.
14677   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
14678      << F.getName() << "':\n";
14679   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
14680   return PreservedAnalyses::all();
14681 }
14682 
14683 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
14684                       "Scalar Evolution Analysis", false, true)
14685 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
14686 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
14687 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
14688 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
14689 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
14690                     "Scalar Evolution Analysis", false, true)
14691 
14692 char ScalarEvolutionWrapperPass::ID = 0;
14693 
14694 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
14695   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
14696 }
14697 
14698 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
14699   SE.reset(new ScalarEvolution(
14700       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
14701       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
14702       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
14703       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
14704   return false;
14705 }
14706 
14707 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
14708 
14709 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
14710   SE->print(OS);
14711 }
14712 
14713 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
14714   if (!VerifySCEV)
14715     return;
14716 
14717   SE->verify();
14718 }
14719 
14720 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
14721   AU.setPreservesAll();
14722   AU.addRequiredTransitive<AssumptionCacheTracker>();
14723   AU.addRequiredTransitive<LoopInfoWrapperPass>();
14724   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
14725   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
14726 }
14727 
14728 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
14729                                                         const SCEV *RHS) {
14730   return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS);
14731 }
14732 
14733 const SCEVPredicate *
14734 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred,
14735                                      const SCEV *LHS, const SCEV *RHS) {
14736   FoldingSetNodeID ID;
14737   assert(LHS->getType() == RHS->getType() &&
14738          "Type mismatch between LHS and RHS");
14739   // Unique this node based on the arguments
14740   ID.AddInteger(SCEVPredicate::P_Compare);
14741   ID.AddInteger(Pred);
14742   ID.AddPointer(LHS);
14743   ID.AddPointer(RHS);
14744   void *IP = nullptr;
14745   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14746     return S;
14747   SCEVComparePredicate *Eq = new (SCEVAllocator)
14748     SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS);
14749   UniquePreds.InsertNode(Eq, IP);
14750   return Eq;
14751 }
14752 
14753 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
14754     const SCEVAddRecExpr *AR,
14755     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14756   FoldingSetNodeID ID;
14757   // Unique this node based on the arguments
14758   ID.AddInteger(SCEVPredicate::P_Wrap);
14759   ID.AddPointer(AR);
14760   ID.AddInteger(AddedFlags);
14761   void *IP = nullptr;
14762   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14763     return S;
14764   auto *OF = new (SCEVAllocator)
14765       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
14766   UniquePreds.InsertNode(OF, IP);
14767   return OF;
14768 }
14769 
14770 namespace {
14771 
14772 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
14773 public:
14774 
14775   /// Rewrites \p S in the context of a loop L and the SCEV predication
14776   /// infrastructure.
14777   ///
14778   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
14779   /// equivalences present in \p Pred.
14780   ///
14781   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
14782   /// \p NewPreds such that the result will be an AddRecExpr.
14783   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
14784                              SmallVectorImpl<const SCEVPredicate *> *NewPreds,
14785                              const SCEVPredicate *Pred) {
14786     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
14787     return Rewriter.visit(S);
14788   }
14789 
14790   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14791     if (Pred) {
14792       if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) {
14793         for (const auto *Pred : U->getPredicates())
14794           if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred))
14795             if (IPred->getLHS() == Expr &&
14796                 IPred->getPredicate() == ICmpInst::ICMP_EQ)
14797               return IPred->getRHS();
14798       } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) {
14799         if (IPred->getLHS() == Expr &&
14800             IPred->getPredicate() == ICmpInst::ICMP_EQ)
14801           return IPred->getRHS();
14802       }
14803     }
14804     return convertToAddRecWithPreds(Expr);
14805   }
14806 
14807   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14808     const SCEV *Operand = visit(Expr->getOperand());
14809     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14810     if (AR && AR->getLoop() == L && AR->isAffine()) {
14811       // This couldn't be folded because the operand didn't have the nuw
14812       // flag. Add the nusw flag as an assumption that we could make.
14813       const SCEV *Step = AR->getStepRecurrence(SE);
14814       Type *Ty = Expr->getType();
14815       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
14816         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
14817                                 SE.getSignExtendExpr(Step, Ty), L,
14818                                 AR->getNoWrapFlags());
14819     }
14820     return SE.getZeroExtendExpr(Operand, Expr->getType());
14821   }
14822 
14823   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
14824     const SCEV *Operand = visit(Expr->getOperand());
14825     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14826     if (AR && AR->getLoop() == L && AR->isAffine()) {
14827       // This couldn't be folded because the operand didn't have the nsw
14828       // flag. Add the nssw flag as an assumption that we could make.
14829       const SCEV *Step = AR->getStepRecurrence(SE);
14830       Type *Ty = Expr->getType();
14831       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
14832         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
14833                                 SE.getSignExtendExpr(Step, Ty), L,
14834                                 AR->getNoWrapFlags());
14835     }
14836     return SE.getSignExtendExpr(Operand, Expr->getType());
14837   }
14838 
14839 private:
14840   explicit SCEVPredicateRewriter(
14841       const Loop *L, ScalarEvolution &SE,
14842       SmallVectorImpl<const SCEVPredicate *> *NewPreds,
14843       const SCEVPredicate *Pred)
14844       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
14845 
14846   bool addOverflowAssumption(const SCEVPredicate *P) {
14847     if (!NewPreds) {
14848       // Check if we've already made this assumption.
14849       return Pred && Pred->implies(P, SE);
14850     }
14851     NewPreds->push_back(P);
14852     return true;
14853   }
14854 
14855   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
14856                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14857     auto *A = SE.getWrapPredicate(AR, AddedFlags);
14858     return addOverflowAssumption(A);
14859   }
14860 
14861   // If \p Expr represents a PHINode, we try to see if it can be represented
14862   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
14863   // to add this predicate as a runtime overflow check, we return the AddRec.
14864   // If \p Expr does not meet these conditions (is not a PHI node, or we
14865   // couldn't create an AddRec for it, or couldn't add the predicate), we just
14866   // return \p Expr.
14867   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
14868     if (!isa<PHINode>(Expr->getValue()))
14869       return Expr;
14870     std::optional<
14871         std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
14872         PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
14873     if (!PredicatedRewrite)
14874       return Expr;
14875     for (const auto *P : PredicatedRewrite->second){
14876       // Wrap predicates from outer loops are not supported.
14877       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
14878         if (L != WP->getExpr()->getLoop())
14879           return Expr;
14880       }
14881       if (!addOverflowAssumption(P))
14882         return Expr;
14883     }
14884     return PredicatedRewrite->first;
14885   }
14886 
14887   SmallVectorImpl<const SCEVPredicate *> *NewPreds;
14888   const SCEVPredicate *Pred;
14889   const Loop *L;
14890 };
14891 
14892 } // end anonymous namespace
14893 
14894 const SCEV *
14895 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
14896                                        const SCEVPredicate &Preds) {
14897   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
14898 }
14899 
14900 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
14901     const SCEV *S, const Loop *L,
14902     SmallVectorImpl<const SCEVPredicate *> &Preds) {
14903   SmallVector<const SCEVPredicate *> TransformPreds;
14904   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
14905   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
14906 
14907   if (!AddRec)
14908     return nullptr;
14909 
14910   // Since the transformation was successful, we can now transfer the SCEV
14911   // predicates.
14912   Preds.append(TransformPreds.begin(), TransformPreds.end());
14913 
14914   return AddRec;
14915 }
14916 
14917 /// SCEV predicates
14918 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
14919                              SCEVPredicateKind Kind)
14920     : FastID(ID), Kind(Kind) {}
14921 
14922 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID,
14923                                    const ICmpInst::Predicate Pred,
14924                                    const SCEV *LHS, const SCEV *RHS)
14925   : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) {
14926   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
14927   assert(LHS != RHS && "LHS and RHS are the same SCEV");
14928 }
14929 
14930 bool SCEVComparePredicate::implies(const SCEVPredicate *N,
14931                                    ScalarEvolution &SE) const {
14932   const auto *Op = dyn_cast<SCEVComparePredicate>(N);
14933 
14934   if (!Op)
14935     return false;
14936 
14937   if (Pred != ICmpInst::ICMP_EQ)
14938     return false;
14939 
14940   return Op->LHS == LHS && Op->RHS == RHS;
14941 }
14942 
14943 bool SCEVComparePredicate::isAlwaysTrue() const { return false; }
14944 
14945 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const {
14946   if (Pred == ICmpInst::ICMP_EQ)
14947     OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
14948   else
14949     OS.indent(Depth) << "Compare predicate: " << *LHS << " " << Pred << ") "
14950                      << *RHS << "\n";
14951 
14952 }
14953 
14954 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
14955                                      const SCEVAddRecExpr *AR,
14956                                      IncrementWrapFlags Flags)
14957     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
14958 
14959 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; }
14960 
14961 bool SCEVWrapPredicate::implies(const SCEVPredicate *N,
14962                                 ScalarEvolution &SE) const {
14963   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
14964   if (!Op || setFlags(Flags, Op->Flags) != Flags)
14965     return false;
14966 
14967   if (Op->AR == AR)
14968     return true;
14969 
14970   if (Flags != SCEVWrapPredicate::IncrementNSSW &&
14971       Flags != SCEVWrapPredicate::IncrementNUSW)
14972     return false;
14973 
14974   const SCEV *Start = AR->getStart();
14975   const SCEV *OpStart = Op->AR->getStart();
14976   if (Start->getType()->isPointerTy() != OpStart->getType()->isPointerTy())
14977     return false;
14978 
14979   const SCEV *Step = AR->getStepRecurrence(SE);
14980   const SCEV *OpStep = Op->AR->getStepRecurrence(SE);
14981   if (!SE.isKnownPositive(Step) || !SE.isKnownPositive(OpStep))
14982     return false;
14983 
14984   // If both steps are positive, this implies N, if N's start and step are
14985   // ULE/SLE (for NSUW/NSSW) than this'.
14986   Type *WiderTy = SE.getWiderType(Step->getType(), OpStep->getType());
14987   Step = SE.getNoopOrZeroExtend(Step, WiderTy);
14988   OpStep = SE.getNoopOrZeroExtend(OpStep, WiderTy);
14989 
14990   bool IsNUW = Flags == SCEVWrapPredicate::IncrementNUSW;
14991   OpStart = IsNUW ? SE.getNoopOrZeroExtend(OpStart, WiderTy)
14992                   : SE.getNoopOrSignExtend(OpStart, WiderTy);
14993   Start = IsNUW ? SE.getNoopOrZeroExtend(Start, WiderTy)
14994                 : SE.getNoopOrSignExtend(Start, WiderTy);
14995   CmpInst::Predicate Pred = IsNUW ? CmpInst::ICMP_ULE : CmpInst::ICMP_SLE;
14996   return SE.isKnownPredicate(Pred, OpStep, Step) &&
14997          SE.isKnownPredicate(Pred, OpStart, Start);
14998 }
14999 
15000 bool SCEVWrapPredicate::isAlwaysTrue() const {
15001   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
15002   IncrementWrapFlags IFlags = Flags;
15003 
15004   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
15005     IFlags = clearFlags(IFlags, IncrementNSSW);
15006 
15007   return IFlags == IncrementAnyWrap;
15008 }
15009 
15010 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
15011   OS.indent(Depth) << *getExpr() << " Added Flags: ";
15012   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
15013     OS << "<nusw>";
15014   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
15015     OS << "<nssw>";
15016   OS << "\n";
15017 }
15018 
15019 SCEVWrapPredicate::IncrementWrapFlags
15020 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
15021                                    ScalarEvolution &SE) {
15022   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
15023   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
15024 
15025   // We can safely transfer the NSW flag as NSSW.
15026   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
15027     ImpliedFlags = IncrementNSSW;
15028 
15029   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
15030     // If the increment is positive, the SCEV NUW flag will also imply the
15031     // WrapPredicate NUSW flag.
15032     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
15033       if (Step->getValue()->getValue().isNonNegative())
15034         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
15035   }
15036 
15037   return ImpliedFlags;
15038 }
15039 
15040 /// Union predicates don't get cached so create a dummy set ID for it.
15041 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds,
15042                                        ScalarEvolution &SE)
15043     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {
15044   for (const auto *P : Preds)
15045     add(P, SE);
15046 }
15047 
15048 bool SCEVUnionPredicate::isAlwaysTrue() const {
15049   return all_of(Preds,
15050                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
15051 }
15052 
15053 bool SCEVUnionPredicate::implies(const SCEVPredicate *N,
15054                                  ScalarEvolution &SE) const {
15055   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
15056     return all_of(Set->Preds, [this, &SE](const SCEVPredicate *I) {
15057       return this->implies(I, SE);
15058     });
15059 
15060   return any_of(Preds,
15061                 [N, &SE](const SCEVPredicate *I) { return I->implies(N, SE); });
15062 }
15063 
15064 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
15065   for (const auto *Pred : Preds)
15066     Pred->print(OS, Depth);
15067 }
15068 
15069 void SCEVUnionPredicate::add(const SCEVPredicate *N, ScalarEvolution &SE) {
15070   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
15071     for (const auto *Pred : Set->Preds)
15072       add(Pred, SE);
15073     return;
15074   }
15075 
15076   // Only add predicate if it is not already implied by this union predicate.
15077   if (implies(N, SE))
15078     return;
15079 
15080   // Build a new vector containing the current predicates, except the ones that
15081   // are implied by the new predicate N.
15082   SmallVector<const SCEVPredicate *> PrunedPreds;
15083   for (auto *P : Preds) {
15084     if (N->implies(P, SE))
15085       continue;
15086     PrunedPreds.push_back(P);
15087   }
15088   Preds = std::move(PrunedPreds);
15089   Preds.push_back(N);
15090 }
15091 
15092 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
15093                                                      Loop &L)
15094     : SE(SE), L(L) {
15095   SmallVector<const SCEVPredicate*, 4> Empty;
15096   Preds = std::make_unique<SCEVUnionPredicate>(Empty, SE);
15097 }
15098 
15099 void ScalarEvolution::registerUser(const SCEV *User,
15100                                    ArrayRef<const SCEV *> Ops) {
15101   for (const auto *Op : Ops)
15102     // We do not expect that forgetting cached data for SCEVConstants will ever
15103     // open any prospects for sharpening or introduce any correctness issues,
15104     // so we don't bother storing their dependencies.
15105     if (!isa<SCEVConstant>(Op))
15106       SCEVUsers[Op].insert(User);
15107 }
15108 
15109 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
15110   const SCEV *Expr = SE.getSCEV(V);
15111   RewriteEntry &Entry = RewriteMap[Expr];
15112 
15113   // If we already have an entry and the version matches, return it.
15114   if (Entry.second && Generation == Entry.first)
15115     return Entry.second;
15116 
15117   // We found an entry but it's stale. Rewrite the stale entry
15118   // according to the current predicate.
15119   if (Entry.second)
15120     Expr = Entry.second;
15121 
15122   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds);
15123   Entry = {Generation, NewSCEV};
15124 
15125   return NewSCEV;
15126 }
15127 
15128 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
15129   if (!BackedgeCount) {
15130     SmallVector<const SCEVPredicate *, 4> Preds;
15131     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds);
15132     for (const auto *P : Preds)
15133       addPredicate(*P);
15134   }
15135   return BackedgeCount;
15136 }
15137 
15138 const SCEV *PredicatedScalarEvolution::getSymbolicMaxBackedgeTakenCount() {
15139   if (!SymbolicMaxBackedgeCount) {
15140     SmallVector<const SCEVPredicate *, 4> Preds;
15141     SymbolicMaxBackedgeCount =
15142         SE.getPredicatedSymbolicMaxBackedgeTakenCount(&L, Preds);
15143     for (const auto *P : Preds)
15144       addPredicate(*P);
15145   }
15146   return SymbolicMaxBackedgeCount;
15147 }
15148 
15149 unsigned PredicatedScalarEvolution::getSmallConstantMaxTripCount() {
15150   if (!SmallConstantMaxTripCount) {
15151     SmallVector<const SCEVPredicate *, 4> Preds;
15152     SmallConstantMaxTripCount = SE.getSmallConstantMaxTripCount(&L, &Preds);
15153     for (const auto *P : Preds)
15154       addPredicate(*P);
15155   }
15156   return *SmallConstantMaxTripCount;
15157 }
15158 
15159 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
15160   if (Preds->implies(&Pred, SE))
15161     return;
15162 
15163   SmallVector<const SCEVPredicate *, 4> NewPreds(Preds->getPredicates());
15164   NewPreds.push_back(&Pred);
15165   Preds = std::make_unique<SCEVUnionPredicate>(NewPreds, SE);
15166   updateGeneration();
15167 }
15168 
15169 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const {
15170   return *Preds;
15171 }
15172 
15173 void PredicatedScalarEvolution::updateGeneration() {
15174   // If the generation number wrapped recompute everything.
15175   if (++Generation == 0) {
15176     for (auto &II : RewriteMap) {
15177       const SCEV *Rewritten = II.second.second;
15178       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)};
15179     }
15180   }
15181 }
15182 
15183 void PredicatedScalarEvolution::setNoOverflow(
15184     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
15185   const SCEV *Expr = getSCEV(V);
15186   const auto *AR = cast<SCEVAddRecExpr>(Expr);
15187 
15188   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
15189 
15190   // Clear the statically implied flags.
15191   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
15192   addPredicate(*SE.getWrapPredicate(AR, Flags));
15193 
15194   auto II = FlagsMap.insert({V, Flags});
15195   if (!II.second)
15196     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
15197 }
15198 
15199 bool PredicatedScalarEvolution::hasNoOverflow(
15200     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
15201   const SCEV *Expr = getSCEV(V);
15202   const auto *AR = cast<SCEVAddRecExpr>(Expr);
15203 
15204   Flags = SCEVWrapPredicate::clearFlags(
15205       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
15206 
15207   auto II = FlagsMap.find(V);
15208 
15209   if (II != FlagsMap.end())
15210     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
15211 
15212   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
15213 }
15214 
15215 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
15216   const SCEV *Expr = this->getSCEV(V);
15217   SmallVector<const SCEVPredicate *, 4> NewPreds;
15218   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
15219 
15220   if (!New)
15221     return nullptr;
15222 
15223   for (const auto *P : NewPreds)
15224     addPredicate(*P);
15225 
15226   RewriteMap[SE.getSCEV(V)] = {Generation, New};
15227   return New;
15228 }
15229 
15230 PredicatedScalarEvolution::PredicatedScalarEvolution(
15231     const PredicatedScalarEvolution &Init)
15232     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L),
15233       Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates(),
15234                                                  SE)),
15235       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
15236   for (auto I : Init.FlagsMap)
15237     FlagsMap.insert(I);
15238 }
15239 
15240 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
15241   // For each block.
15242   for (auto *BB : L.getBlocks())
15243     for (auto &I : *BB) {
15244       if (!SE.isSCEVable(I.getType()))
15245         continue;
15246 
15247       auto *Expr = SE.getSCEV(&I);
15248       auto II = RewriteMap.find(Expr);
15249 
15250       if (II == RewriteMap.end())
15251         continue;
15252 
15253       // Don't print things that are not interesting.
15254       if (II->second.second == Expr)
15255         continue;
15256 
15257       OS.indent(Depth) << "[PSE]" << I << ":\n";
15258       OS.indent(Depth + 2) << *Expr << "\n";
15259       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
15260     }
15261 }
15262 
15263 // Match the mathematical pattern A - (A / B) * B, where A and B can be
15264 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
15265 // for URem with constant power-of-2 second operands.
15266 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
15267 // 4, A / B becomes X / 8).
15268 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
15269                                 const SCEV *&RHS) {
15270   if (Expr->getType()->isPointerTy())
15271     return false;
15272 
15273   // Try to match 'zext (trunc A to iB) to iY', which is used
15274   // for URem with constant power-of-2 second operands. Make sure the size of
15275   // the operand A matches the size of the whole expressions.
15276   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
15277     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
15278       LHS = Trunc->getOperand();
15279       // Bail out if the type of the LHS is larger than the type of the
15280       // expression for now.
15281       if (getTypeSizeInBits(LHS->getType()) >
15282           getTypeSizeInBits(Expr->getType()))
15283         return false;
15284       if (LHS->getType() != Expr->getType())
15285         LHS = getZeroExtendExpr(LHS, Expr->getType());
15286       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
15287                         << getTypeSizeInBits(Trunc->getType()));
15288       return true;
15289     }
15290   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
15291   if (Add == nullptr || Add->getNumOperands() != 2)
15292     return false;
15293 
15294   const SCEV *A = Add->getOperand(1);
15295   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
15296 
15297   if (Mul == nullptr)
15298     return false;
15299 
15300   const auto MatchURemWithDivisor = [&](const SCEV *B) {
15301     // (SomeExpr + (-(SomeExpr / B) * B)).
15302     if (Expr == getURemExpr(A, B)) {
15303       LHS = A;
15304       RHS = B;
15305       return true;
15306     }
15307     return false;
15308   };
15309 
15310   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
15311   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
15312     return MatchURemWithDivisor(Mul->getOperand(1)) ||
15313            MatchURemWithDivisor(Mul->getOperand(2));
15314 
15315   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
15316   if (Mul->getNumOperands() == 2)
15317     return MatchURemWithDivisor(Mul->getOperand(1)) ||
15318            MatchURemWithDivisor(Mul->getOperand(0)) ||
15319            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
15320            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
15321   return false;
15322 }
15323 
15324 ScalarEvolution::LoopGuards
15325 ScalarEvolution::LoopGuards::collect(const Loop *L, ScalarEvolution &SE) {
15326   BasicBlock *Header = L->getHeader();
15327   BasicBlock *Pred = L->getLoopPredecessor();
15328   LoopGuards Guards(SE);
15329   if (!Pred)
15330     return Guards;
15331   SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
15332   collectFromBlock(SE, Guards, Header, Pred, VisitedBlocks);
15333   return Guards;
15334 }
15335 
15336 void ScalarEvolution::LoopGuards::collectFromPHI(
15337     ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards,
15338     const PHINode &Phi, SmallPtrSetImpl<const BasicBlock *> &VisitedBlocks,
15339     SmallDenseMap<const BasicBlock *, LoopGuards> &IncomingGuards,
15340     unsigned Depth) {
15341   if (!SE.isSCEVable(Phi.getType()))
15342     return;
15343 
15344   using MinMaxPattern = std::pair<const SCEVConstant *, SCEVTypes>;
15345   auto GetMinMaxConst = [&](unsigned IncomingIdx) -> MinMaxPattern {
15346     const BasicBlock *InBlock = Phi.getIncomingBlock(IncomingIdx);
15347     if (!VisitedBlocks.insert(InBlock).second)
15348       return {nullptr, scCouldNotCompute};
15349     auto [G, Inserted] = IncomingGuards.try_emplace(InBlock, LoopGuards(SE));
15350     if (Inserted)
15351       collectFromBlock(SE, G->second, Phi.getParent(), InBlock, VisitedBlocks,
15352                        Depth + 1);
15353     auto &RewriteMap = G->second.RewriteMap;
15354     if (RewriteMap.empty())
15355       return {nullptr, scCouldNotCompute};
15356     auto S = RewriteMap.find(SE.getSCEV(Phi.getIncomingValue(IncomingIdx)));
15357     if (S == RewriteMap.end())
15358       return {nullptr, scCouldNotCompute};
15359     auto *SM = dyn_cast_if_present<SCEVMinMaxExpr>(S->second);
15360     if (!SM)
15361       return {nullptr, scCouldNotCompute};
15362     if (const SCEVConstant *C0 = dyn_cast<SCEVConstant>(SM->getOperand(0)))
15363       return {C0, SM->getSCEVType()};
15364     return {nullptr, scCouldNotCompute};
15365   };
15366   auto MergeMinMaxConst = [](MinMaxPattern P1,
15367                              MinMaxPattern P2) -> MinMaxPattern {
15368     auto [C1, T1] = P1;
15369     auto [C2, T2] = P2;
15370     if (!C1 || !C2 || T1 != T2)
15371       return {nullptr, scCouldNotCompute};
15372     switch (T1) {
15373     case scUMaxExpr:
15374       return {C1->getAPInt().ult(C2->getAPInt()) ? C1 : C2, T1};
15375     case scSMaxExpr:
15376       return {C1->getAPInt().slt(C2->getAPInt()) ? C1 : C2, T1};
15377     case scUMinExpr:
15378       return {C1->getAPInt().ugt(C2->getAPInt()) ? C1 : C2, T1};
15379     case scSMinExpr:
15380       return {C1->getAPInt().sgt(C2->getAPInt()) ? C1 : C2, T1};
15381     default:
15382       llvm_unreachable("Trying to merge non-MinMaxExpr SCEVs.");
15383     }
15384   };
15385   auto P = GetMinMaxConst(0);
15386   for (unsigned int In = 1; In < Phi.getNumIncomingValues(); In++) {
15387     if (!P.first)
15388       break;
15389     P = MergeMinMaxConst(P, GetMinMaxConst(In));
15390   }
15391   if (P.first) {
15392     const SCEV *LHS = SE.getSCEV(const_cast<PHINode *>(&Phi));
15393     SmallVector<const SCEV *, 2> Ops({P.first, LHS});
15394     const SCEV *RHS = SE.getMinMaxExpr(P.second, Ops);
15395     Guards.RewriteMap.insert({LHS, RHS});
15396   }
15397 }
15398 
15399 void ScalarEvolution::LoopGuards::collectFromBlock(
15400     ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards,
15401     const BasicBlock *Block, const BasicBlock *Pred,
15402     SmallPtrSetImpl<const BasicBlock *> &VisitedBlocks, unsigned Depth) {
15403   SmallVector<const SCEV *> ExprsToRewrite;
15404   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
15405                               const SCEV *RHS,
15406                               DenseMap<const SCEV *, const SCEV *>
15407                                   &RewriteMap) {
15408     // WARNING: It is generally unsound to apply any wrap flags to the proposed
15409     // replacement SCEV which isn't directly implied by the structure of that
15410     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
15411     // legal.  See the scoping rules for flags in the header to understand why.
15412 
15413     // If LHS is a constant, apply information to the other expression.
15414     if (isa<SCEVConstant>(LHS)) {
15415       std::swap(LHS, RHS);
15416       Predicate = CmpInst::getSwappedPredicate(Predicate);
15417     }
15418 
15419     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
15420     // create this form when combining two checks of the form (X u< C2 + C1) and
15421     // (X >=u C1).
15422     auto MatchRangeCheckIdiom = [&SE, Predicate, LHS, RHS, &RewriteMap,
15423                                  &ExprsToRewrite]() {
15424       const SCEVConstant *C1;
15425       const SCEVUnknown *LHSUnknown;
15426       auto *C2 = dyn_cast<SCEVConstant>(RHS);
15427       if (!match(LHS,
15428                  m_scev_Add(m_SCEVConstant(C1), m_SCEVUnknown(LHSUnknown))) ||
15429           !C2)
15430         return false;
15431 
15432       auto ExactRegion =
15433           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
15434               .sub(C1->getAPInt());
15435 
15436       // Bail out, unless we have a non-wrapping, monotonic range.
15437       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
15438         return false;
15439       auto I = RewriteMap.find(LHSUnknown);
15440       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
15441       RewriteMap[LHSUnknown] = SE.getUMaxExpr(
15442           SE.getConstant(ExactRegion.getUnsignedMin()),
15443           SE.getUMinExpr(RewrittenLHS,
15444                          SE.getConstant(ExactRegion.getUnsignedMax())));
15445       ExprsToRewrite.push_back(LHSUnknown);
15446       return true;
15447     };
15448     if (MatchRangeCheckIdiom())
15449       return;
15450 
15451     // Return true if \p Expr is a MinMax SCEV expression with a non-negative
15452     // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS
15453     // the non-constant operand and in \p LHS the constant operand.
15454     auto IsMinMaxSCEVWithNonNegativeConstant =
15455         [&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS,
15456             const SCEV *&RHS) {
15457           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) {
15458             if (MinMax->getNumOperands() != 2)
15459               return false;
15460             if (auto *C = dyn_cast<SCEVConstant>(MinMax->getOperand(0))) {
15461               if (C->getAPInt().isNegative())
15462                 return false;
15463               SCTy = MinMax->getSCEVType();
15464               LHS = MinMax->getOperand(0);
15465               RHS = MinMax->getOperand(1);
15466               return true;
15467             }
15468           }
15469           return false;
15470         };
15471 
15472     // Checks whether Expr is a non-negative constant, and Divisor is a positive
15473     // constant, and returns their APInt in ExprVal and in DivisorVal.
15474     auto GetNonNegExprAndPosDivisor = [&](const SCEV *Expr, const SCEV *Divisor,
15475                                           APInt &ExprVal, APInt &DivisorVal) {
15476       auto *ConstExpr = dyn_cast<SCEVConstant>(Expr);
15477       auto *ConstDivisor = dyn_cast<SCEVConstant>(Divisor);
15478       if (!ConstExpr || !ConstDivisor)
15479         return false;
15480       ExprVal = ConstExpr->getAPInt();
15481       DivisorVal = ConstDivisor->getAPInt();
15482       return ExprVal.isNonNegative() && !DivisorVal.isNonPositive();
15483     };
15484 
15485     // Return a new SCEV that modifies \p Expr to the closest number divides by
15486     // \p Divisor and greater or equal than Expr.
15487     // For now, only handle constant Expr and Divisor.
15488     auto GetNextSCEVDividesByDivisor = [&](const SCEV *Expr,
15489                                            const SCEV *Divisor) {
15490       APInt ExprVal;
15491       APInt DivisorVal;
15492       if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15493         return Expr;
15494       APInt Rem = ExprVal.urem(DivisorVal);
15495       if (!Rem.isZero())
15496         // return the SCEV: Expr + Divisor - Expr % Divisor
15497         return SE.getConstant(ExprVal + DivisorVal - Rem);
15498       return Expr;
15499     };
15500 
15501     // Return a new SCEV that modifies \p Expr to the closest number divides by
15502     // \p Divisor and less or equal than Expr.
15503     // For now, only handle constant Expr and Divisor.
15504     auto GetPreviousSCEVDividesByDivisor = [&](const SCEV *Expr,
15505                                                const SCEV *Divisor) {
15506       APInt ExprVal;
15507       APInt DivisorVal;
15508       if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15509         return Expr;
15510       APInt Rem = ExprVal.urem(DivisorVal);
15511       // return the SCEV: Expr - Expr % Divisor
15512       return SE.getConstant(ExprVal - Rem);
15513     };
15514 
15515     // Apply divisibilty by \p Divisor on MinMaxExpr with constant values,
15516     // recursively. This is done by aligning up/down the constant value to the
15517     // Divisor.
15518     std::function<const SCEV *(const SCEV *, const SCEV *)>
15519         ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr,
15520                                            const SCEV *Divisor) {
15521           const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr;
15522           SCEVTypes SCTy;
15523           if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS,
15524                                                    MinMaxRHS))
15525             return MinMaxExpr;
15526           auto IsMin =
15527               isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr);
15528           assert(SE.isKnownNonNegative(MinMaxLHS) &&
15529                  "Expected non-negative operand!");
15530           auto *DivisibleExpr =
15531               IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor)
15532                     : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor);
15533           SmallVector<const SCEV *> Ops = {
15534               ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr};
15535           return SE.getMinMaxExpr(SCTy, Ops);
15536         };
15537 
15538     // If we have LHS == 0, check if LHS is computing a property of some unknown
15539     // SCEV %v which we can rewrite %v to express explicitly.
15540     if (Predicate == CmpInst::ICMP_EQ && match(RHS, m_scev_Zero())) {
15541       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
15542       // explicitly express that.
15543       const SCEV *URemLHS = nullptr;
15544       const SCEV *URemRHS = nullptr;
15545       if (SE.matchURem(LHS, URemLHS, URemRHS)) {
15546         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
15547           auto I = RewriteMap.find(LHSUnknown);
15548           const SCEV *RewrittenLHS =
15549               I != RewriteMap.end() ? I->second : LHSUnknown;
15550           RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS);
15551           const auto *Multiple =
15552               SE.getMulExpr(SE.getUDivExpr(RewrittenLHS, URemRHS), URemRHS);
15553           RewriteMap[LHSUnknown] = Multiple;
15554           ExprsToRewrite.push_back(LHSUnknown);
15555           return;
15556         }
15557       }
15558     }
15559 
15560     // Do not apply information for constants or if RHS contains an AddRec.
15561     if (isa<SCEVConstant>(LHS) || SE.containsAddRecurrence(RHS))
15562       return;
15563 
15564     // If RHS is SCEVUnknown, make sure the information is applied to it.
15565     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
15566       std::swap(LHS, RHS);
15567       Predicate = CmpInst::getSwappedPredicate(Predicate);
15568     }
15569 
15570     // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From
15571     // and \p FromRewritten are the same (i.e. there has been no rewrite
15572     // registered for \p From), then puts this value in the list of rewritten
15573     // expressions.
15574     auto AddRewrite = [&](const SCEV *From, const SCEV *FromRewritten,
15575                           const SCEV *To) {
15576       if (From == FromRewritten)
15577         ExprsToRewrite.push_back(From);
15578       RewriteMap[From] = To;
15579     };
15580 
15581     // Checks whether \p S has already been rewritten. In that case returns the
15582     // existing rewrite because we want to chain further rewrites onto the
15583     // already rewritten value. Otherwise returns \p S.
15584     auto GetMaybeRewritten = [&](const SCEV *S) {
15585       auto I = RewriteMap.find(S);
15586       return I != RewriteMap.end() ? I->second : S;
15587     };
15588 
15589     // Check for the SCEV expression (A /u B) * B while B is a constant, inside
15590     // \p Expr. The check is done recuresively on \p Expr, which is assumed to
15591     // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A
15592     // /u B) * B was found, and return the divisor B in \p DividesBy. For
15593     // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since
15594     // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p
15595     // DividesBy.
15596     std::function<bool(const SCEV *, const SCEV *&)> HasDivisibiltyInfo =
15597         [&](const SCEV *Expr, const SCEV *&DividesBy) {
15598           if (auto *Mul = dyn_cast<SCEVMulExpr>(Expr)) {
15599             if (Mul->getNumOperands() != 2)
15600               return false;
15601             auto *MulLHS = Mul->getOperand(0);
15602             auto *MulRHS = Mul->getOperand(1);
15603             if (isa<SCEVConstant>(MulLHS))
15604               std::swap(MulLHS, MulRHS);
15605             if (auto *Div = dyn_cast<SCEVUDivExpr>(MulLHS))
15606               if (Div->getOperand(1) == MulRHS) {
15607                 DividesBy = MulRHS;
15608                 return true;
15609               }
15610           }
15611           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr))
15612             return HasDivisibiltyInfo(MinMax->getOperand(0), DividesBy) ||
15613                    HasDivisibiltyInfo(MinMax->getOperand(1), DividesBy);
15614           return false;
15615         };
15616 
15617     // Return true if Expr known to divide by \p DividesBy.
15618     std::function<bool(const SCEV *, const SCEV *&)> IsKnownToDivideBy =
15619         [&](const SCEV *Expr, const SCEV *DividesBy) {
15620           if (SE.getURemExpr(Expr, DividesBy)->isZero())
15621             return true;
15622           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr))
15623             return IsKnownToDivideBy(MinMax->getOperand(0), DividesBy) &&
15624                    IsKnownToDivideBy(MinMax->getOperand(1), DividesBy);
15625           return false;
15626         };
15627 
15628     const SCEV *RewrittenLHS = GetMaybeRewritten(LHS);
15629     const SCEV *DividesBy = nullptr;
15630     if (HasDivisibiltyInfo(RewrittenLHS, DividesBy))
15631       // Check that the whole expression is divided by DividesBy
15632       DividesBy =
15633           IsKnownToDivideBy(RewrittenLHS, DividesBy) ? DividesBy : nullptr;
15634 
15635     // Collect rewrites for LHS and its transitive operands based on the
15636     // condition.
15637     // For min/max expressions, also apply the guard to its operands:
15638     //  'min(a, b) >= c'   ->   '(a >= c) and (b >= c)',
15639     //  'min(a, b) >  c'   ->   '(a >  c) and (b >  c)',
15640     //  'max(a, b) <= c'   ->   '(a <= c) and (b <= c)',
15641     //  'max(a, b) <  c'   ->   '(a <  c) and (b <  c)'.
15642 
15643     // We cannot express strict predicates in SCEV, so instead we replace them
15644     // with non-strict ones against plus or minus one of RHS depending on the
15645     // predicate.
15646     const SCEV *One = SE.getOne(RHS->getType());
15647     switch (Predicate) {
15648       case CmpInst::ICMP_ULT:
15649         if (RHS->getType()->isPointerTy())
15650           return;
15651         RHS = SE.getUMaxExpr(RHS, One);
15652         [[fallthrough]];
15653       case CmpInst::ICMP_SLT: {
15654         RHS = SE.getMinusSCEV(RHS, One);
15655         RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15656         break;
15657       }
15658       case CmpInst::ICMP_UGT:
15659       case CmpInst::ICMP_SGT:
15660         RHS = SE.getAddExpr(RHS, One);
15661         RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15662         break;
15663       case CmpInst::ICMP_ULE:
15664       case CmpInst::ICMP_SLE:
15665         RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15666         break;
15667       case CmpInst::ICMP_UGE:
15668       case CmpInst::ICMP_SGE:
15669         RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15670         break;
15671       default:
15672         break;
15673     }
15674 
15675     SmallVector<const SCEV *, 16> Worklist(1, LHS);
15676     SmallPtrSet<const SCEV *, 16> Visited;
15677 
15678     auto EnqueueOperands = [&Worklist](const SCEVNAryExpr *S) {
15679       append_range(Worklist, S->operands());
15680     };
15681 
15682     while (!Worklist.empty()) {
15683       const SCEV *From = Worklist.pop_back_val();
15684       if (isa<SCEVConstant>(From))
15685         continue;
15686       if (!Visited.insert(From).second)
15687         continue;
15688       const SCEV *FromRewritten = GetMaybeRewritten(From);
15689       const SCEV *To = nullptr;
15690 
15691       switch (Predicate) {
15692       case CmpInst::ICMP_ULT:
15693       case CmpInst::ICMP_ULE:
15694         To = SE.getUMinExpr(FromRewritten, RHS);
15695         if (auto *UMax = dyn_cast<SCEVUMaxExpr>(FromRewritten))
15696           EnqueueOperands(UMax);
15697         break;
15698       case CmpInst::ICMP_SLT:
15699       case CmpInst::ICMP_SLE:
15700         To = SE.getSMinExpr(FromRewritten, RHS);
15701         if (auto *SMax = dyn_cast<SCEVSMaxExpr>(FromRewritten))
15702           EnqueueOperands(SMax);
15703         break;
15704       case CmpInst::ICMP_UGT:
15705       case CmpInst::ICMP_UGE:
15706         To = SE.getUMaxExpr(FromRewritten, RHS);
15707         if (auto *UMin = dyn_cast<SCEVUMinExpr>(FromRewritten))
15708           EnqueueOperands(UMin);
15709         break;
15710       case CmpInst::ICMP_SGT:
15711       case CmpInst::ICMP_SGE:
15712         To = SE.getSMaxExpr(FromRewritten, RHS);
15713         if (auto *SMin = dyn_cast<SCEVSMinExpr>(FromRewritten))
15714           EnqueueOperands(SMin);
15715         break;
15716       case CmpInst::ICMP_EQ:
15717         if (isa<SCEVConstant>(RHS))
15718           To = RHS;
15719         break;
15720       case CmpInst::ICMP_NE:
15721         if (match(RHS, m_scev_Zero())) {
15722           const SCEV *OneAlignedUp =
15723               DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One;
15724           To = SE.getUMaxExpr(FromRewritten, OneAlignedUp);
15725         }
15726         break;
15727       default:
15728         break;
15729       }
15730 
15731       if (To)
15732         AddRewrite(From, FromRewritten, To);
15733     }
15734   };
15735 
15736   SmallVector<PointerIntPair<Value *, 1, bool>> Terms;
15737   // First, collect information from assumptions dominating the loop.
15738   for (auto &AssumeVH : SE.AC.assumptions()) {
15739     if (!AssumeVH)
15740       continue;
15741     auto *AssumeI = cast<CallInst>(AssumeVH);
15742     if (!SE.DT.dominates(AssumeI, Block))
15743       continue;
15744     Terms.emplace_back(AssumeI->getOperand(0), true);
15745   }
15746 
15747   // Second, collect information from llvm.experimental.guards dominating the loop.
15748   auto *GuardDecl = Intrinsic::getDeclarationIfExists(
15749       SE.F.getParent(), Intrinsic::experimental_guard);
15750   if (GuardDecl)
15751     for (const auto *GU : GuardDecl->users())
15752       if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
15753         if (Guard->getFunction() == Block->getParent() &&
15754             SE.DT.dominates(Guard, Block))
15755           Terms.emplace_back(Guard->getArgOperand(0), true);
15756 
15757   // Third, collect conditions from dominating branches. Starting at the loop
15758   // predecessor, climb up the predecessor chain, as long as there are
15759   // predecessors that can be found that have unique successors leading to the
15760   // original header.
15761   // TODO: share this logic with isLoopEntryGuardedByCond.
15762   unsigned NumCollectedConditions = 0;
15763   VisitedBlocks.insert(Block);
15764   std::pair<const BasicBlock *, const BasicBlock *> Pair(Pred, Block);
15765   for (; Pair.first;
15766        Pair = SE.getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
15767     VisitedBlocks.insert(Pair.second);
15768     const BranchInst *LoopEntryPredicate =
15769         dyn_cast<BranchInst>(Pair.first->getTerminator());
15770     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
15771       continue;
15772 
15773     Terms.emplace_back(LoopEntryPredicate->getCondition(),
15774                        LoopEntryPredicate->getSuccessor(0) == Pair.second);
15775     NumCollectedConditions++;
15776 
15777     // If we are recursively collecting guards stop after 2
15778     // conditions to limit compile-time impact for now.
15779     if (Depth > 0 && NumCollectedConditions == 2)
15780       break;
15781   }
15782   // Finally, if we stopped climbing the predecessor chain because
15783   // there wasn't a unique one to continue, try to collect conditions
15784   // for PHINodes by recursively following all of their incoming
15785   // blocks and try to merge the found conditions to build a new one
15786   // for the Phi.
15787   if (Pair.second->hasNPredecessorsOrMore(2) &&
15788       Depth < MaxLoopGuardCollectionDepth) {
15789     SmallDenseMap<const BasicBlock *, LoopGuards> IncomingGuards;
15790     for (auto &Phi : Pair.second->phis())
15791       collectFromPHI(SE, Guards, Phi, VisitedBlocks, IncomingGuards, Depth);
15792   }
15793 
15794   // Now apply the information from the collected conditions to
15795   // Guards.RewriteMap. Conditions are processed in reverse order, so the
15796   // earliest conditions is processed first. This ensures the SCEVs with the
15797   // shortest dependency chains are constructed first.
15798   for (auto [Term, EnterIfTrue] : reverse(Terms)) {
15799     SmallVector<Value *, 8> Worklist;
15800     SmallPtrSet<Value *, 8> Visited;
15801     Worklist.push_back(Term);
15802     while (!Worklist.empty()) {
15803       Value *Cond = Worklist.pop_back_val();
15804       if (!Visited.insert(Cond).second)
15805         continue;
15806 
15807       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
15808         auto Predicate =
15809             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
15810         const auto *LHS = SE.getSCEV(Cmp->getOperand(0));
15811         const auto *RHS = SE.getSCEV(Cmp->getOperand(1));
15812         CollectCondition(Predicate, LHS, RHS, Guards.RewriteMap);
15813         continue;
15814       }
15815 
15816       Value *L, *R;
15817       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
15818                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
15819         Worklist.push_back(L);
15820         Worklist.push_back(R);
15821       }
15822     }
15823   }
15824 
15825   // Let the rewriter preserve NUW/NSW flags if the unsigned/signed ranges of
15826   // the replacement expressions are contained in the ranges of the replaced
15827   // expressions.
15828   Guards.PreserveNUW = true;
15829   Guards.PreserveNSW = true;
15830   for (const SCEV *Expr : ExprsToRewrite) {
15831     const SCEV *RewriteTo = Guards.RewriteMap[Expr];
15832     Guards.PreserveNUW &=
15833         SE.getUnsignedRange(Expr).contains(SE.getUnsignedRange(RewriteTo));
15834     Guards.PreserveNSW &=
15835         SE.getSignedRange(Expr).contains(SE.getSignedRange(RewriteTo));
15836   }
15837 
15838   // Now that all rewrite information is collect, rewrite the collected
15839   // expressions with the information in the map. This applies information to
15840   // sub-expressions.
15841   if (ExprsToRewrite.size() > 1) {
15842     for (const SCEV *Expr : ExprsToRewrite) {
15843       const SCEV *RewriteTo = Guards.RewriteMap[Expr];
15844       Guards.RewriteMap.erase(Expr);
15845       Guards.RewriteMap.insert({Expr, Guards.rewrite(RewriteTo)});
15846     }
15847   }
15848 }
15849 
15850 const SCEV *ScalarEvolution::LoopGuards::rewrite(const SCEV *Expr) const {
15851   /// A rewriter to replace SCEV expressions in Map with the corresponding entry
15852   /// in the map. It skips AddRecExpr because we cannot guarantee that the
15853   /// replacement is loop invariant in the loop of the AddRec.
15854   class SCEVLoopGuardRewriter
15855       : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
15856     const DenseMap<const SCEV *, const SCEV *> &Map;
15857 
15858     SCEV::NoWrapFlags FlagMask = SCEV::FlagAnyWrap;
15859 
15860   public:
15861     SCEVLoopGuardRewriter(ScalarEvolution &SE,
15862                           const ScalarEvolution::LoopGuards &Guards)
15863         : SCEVRewriteVisitor(SE), Map(Guards.RewriteMap) {
15864       if (Guards.PreserveNUW)
15865         FlagMask = ScalarEvolution::setFlags(FlagMask, SCEV::FlagNUW);
15866       if (Guards.PreserveNSW)
15867         FlagMask = ScalarEvolution::setFlags(FlagMask, SCEV::FlagNSW);
15868     }
15869 
15870     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
15871 
15872     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
15873       auto I = Map.find(Expr);
15874       if (I == Map.end())
15875         return Expr;
15876       return I->second;
15877     }
15878 
15879     const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
15880       auto I = Map.find(Expr);
15881       if (I == Map.end()) {
15882         // If we didn't find the extact ZExt expr in the map, check if there's
15883         // an entry for a smaller ZExt we can use instead.
15884         Type *Ty = Expr->getType();
15885         const SCEV *Op = Expr->getOperand(0);
15886         unsigned Bitwidth = Ty->getScalarSizeInBits() / 2;
15887         while (Bitwidth % 8 == 0 && Bitwidth >= 8 &&
15888                Bitwidth > Op->getType()->getScalarSizeInBits()) {
15889           Type *NarrowTy = IntegerType::get(SE.getContext(), Bitwidth);
15890           auto *NarrowExt = SE.getZeroExtendExpr(Op, NarrowTy);
15891           auto I = Map.find(NarrowExt);
15892           if (I != Map.end())
15893             return SE.getZeroExtendExpr(I->second, Ty);
15894           Bitwidth = Bitwidth / 2;
15895         }
15896 
15897         return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr(
15898             Expr);
15899       }
15900       return I->second;
15901     }
15902 
15903     const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
15904       auto I = Map.find(Expr);
15905       if (I == Map.end())
15906         return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSignExtendExpr(
15907             Expr);
15908       return I->second;
15909     }
15910 
15911     const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) {
15912       auto I = Map.find(Expr);
15913       if (I == Map.end())
15914         return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitUMinExpr(Expr);
15915       return I->second;
15916     }
15917 
15918     const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) {
15919       auto I = Map.find(Expr);
15920       if (I == Map.end())
15921         return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSMinExpr(Expr);
15922       return I->second;
15923     }
15924 
15925     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
15926       SmallVector<const SCEV *, 2> Operands;
15927       bool Changed = false;
15928       for (const auto *Op : Expr->operands()) {
15929         Operands.push_back(
15930             SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visit(Op));
15931         Changed |= Op != Operands.back();
15932       }
15933       // We are only replacing operands with equivalent values, so transfer the
15934       // flags from the original expression.
15935       return !Changed ? Expr
15936                       : SE.getAddExpr(Operands,
15937                                       ScalarEvolution::maskFlags(
15938                                           Expr->getNoWrapFlags(), FlagMask));
15939     }
15940 
15941     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
15942       SmallVector<const SCEV *, 2> Operands;
15943       bool Changed = false;
15944       for (const auto *Op : Expr->operands()) {
15945         Operands.push_back(
15946             SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visit(Op));
15947         Changed |= Op != Operands.back();
15948       }
15949       // We are only replacing operands with equivalent values, so transfer the
15950       // flags from the original expression.
15951       return !Changed ? Expr
15952                       : SE.getMulExpr(Operands,
15953                                       ScalarEvolution::maskFlags(
15954                                           Expr->getNoWrapFlags(), FlagMask));
15955     }
15956   };
15957 
15958   if (RewriteMap.empty())
15959     return Expr;
15960 
15961   SCEVLoopGuardRewriter Rewriter(SE, *this);
15962   return Rewriter.visit(Expr);
15963 }
15964 
15965 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
15966   return applyLoopGuards(Expr, LoopGuards::collect(L, *this));
15967 }
15968 
15969 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr,
15970                                              const LoopGuards &Guards) {
15971   return Guards.rewrite(Expr);
15972 }
15973