1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/InstructionSimplify.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/Assembly/Writer.h" 76 #include "llvm/Target/TargetData.h" 77 #include "llvm/Target/TargetLibraryInfo.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/ConstantRange.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GetElementPtrTypeIterator.h" 83 #include "llvm/Support/InstIterator.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/ADT/Statistic.h" 87 #include "llvm/ADT/STLExtras.h" 88 #include "llvm/ADT/SmallPtrSet.h" 89 #include <algorithm> 90 using namespace llvm; 91 92 STATISTIC(NumArrayLenItCounts, 93 "Number of trip counts computed with array length"); 94 STATISTIC(NumTripCountsComputed, 95 "Number of loops with predictable loop counts"); 96 STATISTIC(NumTripCountsNotComputed, 97 "Number of loops without predictable loop counts"); 98 STATISTIC(NumBruteForceTripCountsComputed, 99 "Number of loops with trip counts computed by force"); 100 101 static cl::opt<unsigned> 102 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 103 cl::desc("Maximum number of iterations SCEV will " 104 "symbolically execute a constant " 105 "derived loop"), 106 cl::init(100)); 107 108 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 109 "Scalar Evolution Analysis", false, true) 110 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 111 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 112 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 113 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 114 "Scalar Evolution Analysis", false, true) 115 char ScalarEvolution::ID = 0; 116 117 //===----------------------------------------------------------------------===// 118 // SCEV class definitions 119 //===----------------------------------------------------------------------===// 120 121 //===----------------------------------------------------------------------===// 122 // Implementation of the SCEV class. 123 // 124 125 void SCEV::dump() const { 126 print(dbgs()); 127 dbgs() << '\n'; 128 } 129 130 void SCEV::print(raw_ostream &OS) const { 131 switch (getSCEVType()) { 132 case scConstant: 133 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false); 134 return; 135 case scTruncate: { 136 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 137 const SCEV *Op = Trunc->getOperand(); 138 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 139 << *Trunc->getType() << ")"; 140 return; 141 } 142 case scZeroExtend: { 143 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 144 const SCEV *Op = ZExt->getOperand(); 145 OS << "(zext " << *Op->getType() << " " << *Op << " to " 146 << *ZExt->getType() << ")"; 147 return; 148 } 149 case scSignExtend: { 150 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 151 const SCEV *Op = SExt->getOperand(); 152 OS << "(sext " << *Op->getType() << " " << *Op << " to " 153 << *SExt->getType() << ")"; 154 return; 155 } 156 case scAddRecExpr: { 157 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 158 OS << "{" << *AR->getOperand(0); 159 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 160 OS << ",+," << *AR->getOperand(i); 161 OS << "}<"; 162 if (AR->getNoWrapFlags(FlagNUW)) 163 OS << "nuw><"; 164 if (AR->getNoWrapFlags(FlagNSW)) 165 OS << "nsw><"; 166 if (AR->getNoWrapFlags(FlagNW) && 167 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 168 OS << "nw><"; 169 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false); 170 OS << ">"; 171 return; 172 } 173 case scAddExpr: 174 case scMulExpr: 175 case scUMaxExpr: 176 case scSMaxExpr: { 177 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 178 const char *OpStr = 0; 179 switch (NAry->getSCEVType()) { 180 case scAddExpr: OpStr = " + "; break; 181 case scMulExpr: OpStr = " * "; break; 182 case scUMaxExpr: OpStr = " umax "; break; 183 case scSMaxExpr: OpStr = " smax "; break; 184 } 185 OS << "("; 186 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 187 I != E; ++I) { 188 OS << **I; 189 if (llvm::next(I) != E) 190 OS << OpStr; 191 } 192 OS << ")"; 193 switch (NAry->getSCEVType()) { 194 case scAddExpr: 195 case scMulExpr: 196 if (NAry->getNoWrapFlags(FlagNUW)) 197 OS << "<nuw>"; 198 if (NAry->getNoWrapFlags(FlagNSW)) 199 OS << "<nsw>"; 200 } 201 return; 202 } 203 case scUDivExpr: { 204 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 205 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 206 return; 207 } 208 case scUnknown: { 209 const SCEVUnknown *U = cast<SCEVUnknown>(this); 210 Type *AllocTy; 211 if (U->isSizeOf(AllocTy)) { 212 OS << "sizeof(" << *AllocTy << ")"; 213 return; 214 } 215 if (U->isAlignOf(AllocTy)) { 216 OS << "alignof(" << *AllocTy << ")"; 217 return; 218 } 219 220 Type *CTy; 221 Constant *FieldNo; 222 if (U->isOffsetOf(CTy, FieldNo)) { 223 OS << "offsetof(" << *CTy << ", "; 224 WriteAsOperand(OS, FieldNo, false); 225 OS << ")"; 226 return; 227 } 228 229 // Otherwise just print it normally. 230 WriteAsOperand(OS, U->getValue(), false); 231 return; 232 } 233 case scCouldNotCompute: 234 OS << "***COULDNOTCOMPUTE***"; 235 return; 236 default: break; 237 } 238 llvm_unreachable("Unknown SCEV kind!"); 239 } 240 241 Type *SCEV::getType() const { 242 switch (getSCEVType()) { 243 case scConstant: 244 return cast<SCEVConstant>(this)->getType(); 245 case scTruncate: 246 case scZeroExtend: 247 case scSignExtend: 248 return cast<SCEVCastExpr>(this)->getType(); 249 case scAddRecExpr: 250 case scMulExpr: 251 case scUMaxExpr: 252 case scSMaxExpr: 253 return cast<SCEVNAryExpr>(this)->getType(); 254 case scAddExpr: 255 return cast<SCEVAddExpr>(this)->getType(); 256 case scUDivExpr: 257 return cast<SCEVUDivExpr>(this)->getType(); 258 case scUnknown: 259 return cast<SCEVUnknown>(this)->getType(); 260 case scCouldNotCompute: 261 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 262 return 0; 263 default: break; 264 } 265 llvm_unreachable("Unknown SCEV kind!"); 266 return 0; 267 } 268 269 bool SCEV::isZero() const { 270 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 271 return SC->getValue()->isZero(); 272 return false; 273 } 274 275 bool SCEV::isOne() const { 276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 277 return SC->getValue()->isOne(); 278 return false; 279 } 280 281 bool SCEV::isAllOnesValue() const { 282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 283 return SC->getValue()->isAllOnesValue(); 284 return false; 285 } 286 287 /// isNonConstantNegative - Return true if the specified scev is negated, but 288 /// not a constant. 289 bool SCEV::isNonConstantNegative() const { 290 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 291 if (!Mul) return false; 292 293 // If there is a constant factor, it will be first. 294 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 295 if (!SC) return false; 296 297 // Return true if the value is negative, this matches things like (-42 * V). 298 return SC->getValue()->getValue().isNegative(); 299 } 300 301 SCEVCouldNotCompute::SCEVCouldNotCompute() : 302 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 303 304 bool SCEVCouldNotCompute::classof(const SCEV *S) { 305 return S->getSCEVType() == scCouldNotCompute; 306 } 307 308 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 309 FoldingSetNodeID ID; 310 ID.AddInteger(scConstant); 311 ID.AddPointer(V); 312 void *IP = 0; 313 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 314 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 315 UniqueSCEVs.InsertNode(S, IP); 316 return S; 317 } 318 319 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 320 return getConstant(ConstantInt::get(getContext(), Val)); 321 } 322 323 const SCEV * 324 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 325 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 326 return getConstant(ConstantInt::get(ITy, V, isSigned)); 327 } 328 329 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 330 unsigned SCEVTy, const SCEV *op, Type *ty) 331 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 332 333 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 334 const SCEV *op, Type *ty) 335 : SCEVCastExpr(ID, scTruncate, op, ty) { 336 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 337 (Ty->isIntegerTy() || Ty->isPointerTy()) && 338 "Cannot truncate non-integer value!"); 339 } 340 341 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 342 const SCEV *op, Type *ty) 343 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 345 (Ty->isIntegerTy() || Ty->isPointerTy()) && 346 "Cannot zero extend non-integer value!"); 347 } 348 349 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 350 const SCEV *op, Type *ty) 351 : SCEVCastExpr(ID, scSignExtend, op, ty) { 352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 353 (Ty->isIntegerTy() || Ty->isPointerTy()) && 354 "Cannot sign extend non-integer value!"); 355 } 356 357 void SCEVUnknown::deleted() { 358 // Clear this SCEVUnknown from various maps. 359 SE->forgetMemoizedResults(this); 360 361 // Remove this SCEVUnknown from the uniquing map. 362 SE->UniqueSCEVs.RemoveNode(this); 363 364 // Release the value. 365 setValPtr(0); 366 } 367 368 void SCEVUnknown::allUsesReplacedWith(Value *New) { 369 // Clear this SCEVUnknown from various maps. 370 SE->forgetMemoizedResults(this); 371 372 // Remove this SCEVUnknown from the uniquing map. 373 SE->UniqueSCEVs.RemoveNode(this); 374 375 // Update this SCEVUnknown to point to the new value. This is needed 376 // because there may still be outstanding SCEVs which still point to 377 // this SCEVUnknown. 378 setValPtr(New); 379 } 380 381 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 382 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 383 if (VCE->getOpcode() == Instruction::PtrToInt) 384 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 385 if (CE->getOpcode() == Instruction::GetElementPtr && 386 CE->getOperand(0)->isNullValue() && 387 CE->getNumOperands() == 2) 388 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 389 if (CI->isOne()) { 390 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 391 ->getElementType(); 392 return true; 393 } 394 395 return false; 396 } 397 398 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 399 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 400 if (VCE->getOpcode() == Instruction::PtrToInt) 401 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 402 if (CE->getOpcode() == Instruction::GetElementPtr && 403 CE->getOperand(0)->isNullValue()) { 404 Type *Ty = 405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 406 if (StructType *STy = dyn_cast<StructType>(Ty)) 407 if (!STy->isPacked() && 408 CE->getNumOperands() == 3 && 409 CE->getOperand(1)->isNullValue()) { 410 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 411 if (CI->isOne() && 412 STy->getNumElements() == 2 && 413 STy->getElementType(0)->isIntegerTy(1)) { 414 AllocTy = STy->getElementType(1); 415 return true; 416 } 417 } 418 } 419 420 return false; 421 } 422 423 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 424 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 425 if (VCE->getOpcode() == Instruction::PtrToInt) 426 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 427 if (CE->getOpcode() == Instruction::GetElementPtr && 428 CE->getNumOperands() == 3 && 429 CE->getOperand(0)->isNullValue() && 430 CE->getOperand(1)->isNullValue()) { 431 Type *Ty = 432 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 433 // Ignore vector types here so that ScalarEvolutionExpander doesn't 434 // emit getelementptrs that index into vectors. 435 if (Ty->isStructTy() || Ty->isArrayTy()) { 436 CTy = Ty; 437 FieldNo = CE->getOperand(2); 438 return true; 439 } 440 } 441 442 return false; 443 } 444 445 //===----------------------------------------------------------------------===// 446 // SCEV Utilities 447 //===----------------------------------------------------------------------===// 448 449 namespace { 450 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 451 /// than the complexity of the RHS. This comparator is used to canonicalize 452 /// expressions. 453 class SCEVComplexityCompare { 454 const LoopInfo *const LI; 455 public: 456 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 457 458 // Return true or false if LHS is less than, or at least RHS, respectively. 459 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 460 return compare(LHS, RHS) < 0; 461 } 462 463 // Return negative, zero, or positive, if LHS is less than, equal to, or 464 // greater than RHS, respectively. A three-way result allows recursive 465 // comparisons to be more efficient. 466 int compare(const SCEV *LHS, const SCEV *RHS) const { 467 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 468 if (LHS == RHS) 469 return 0; 470 471 // Primarily, sort the SCEVs by their getSCEVType(). 472 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 473 if (LType != RType) 474 return (int)LType - (int)RType; 475 476 // Aside from the getSCEVType() ordering, the particular ordering 477 // isn't very important except that it's beneficial to be consistent, 478 // so that (a + b) and (b + a) don't end up as different expressions. 479 switch (LType) { 480 case scUnknown: { 481 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 482 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 483 484 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 485 // not as complete as it could be. 486 const Value *LV = LU->getValue(), *RV = RU->getValue(); 487 488 // Order pointer values after integer values. This helps SCEVExpander 489 // form GEPs. 490 bool LIsPointer = LV->getType()->isPointerTy(), 491 RIsPointer = RV->getType()->isPointerTy(); 492 if (LIsPointer != RIsPointer) 493 return (int)LIsPointer - (int)RIsPointer; 494 495 // Compare getValueID values. 496 unsigned LID = LV->getValueID(), 497 RID = RV->getValueID(); 498 if (LID != RID) 499 return (int)LID - (int)RID; 500 501 // Sort arguments by their position. 502 if (const Argument *LA = dyn_cast<Argument>(LV)) { 503 const Argument *RA = cast<Argument>(RV); 504 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 505 return (int)LArgNo - (int)RArgNo; 506 } 507 508 // For instructions, compare their loop depth, and their operand 509 // count. This is pretty loose. 510 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 511 const Instruction *RInst = cast<Instruction>(RV); 512 513 // Compare loop depths. 514 const BasicBlock *LParent = LInst->getParent(), 515 *RParent = RInst->getParent(); 516 if (LParent != RParent) { 517 unsigned LDepth = LI->getLoopDepth(LParent), 518 RDepth = LI->getLoopDepth(RParent); 519 if (LDepth != RDepth) 520 return (int)LDepth - (int)RDepth; 521 } 522 523 // Compare the number of operands. 524 unsigned LNumOps = LInst->getNumOperands(), 525 RNumOps = RInst->getNumOperands(); 526 return (int)LNumOps - (int)RNumOps; 527 } 528 529 return 0; 530 } 531 532 case scConstant: { 533 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 534 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 535 536 // Compare constant values. 537 const APInt &LA = LC->getValue()->getValue(); 538 const APInt &RA = RC->getValue()->getValue(); 539 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 540 if (LBitWidth != RBitWidth) 541 return (int)LBitWidth - (int)RBitWidth; 542 return LA.ult(RA) ? -1 : 1; 543 } 544 545 case scAddRecExpr: { 546 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 547 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 548 549 // Compare addrec loop depths. 550 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 551 if (LLoop != RLoop) { 552 unsigned LDepth = LLoop->getLoopDepth(), 553 RDepth = RLoop->getLoopDepth(); 554 if (LDepth != RDepth) 555 return (int)LDepth - (int)RDepth; 556 } 557 558 // Addrec complexity grows with operand count. 559 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 560 if (LNumOps != RNumOps) 561 return (int)LNumOps - (int)RNumOps; 562 563 // Lexicographically compare. 564 for (unsigned i = 0; i != LNumOps; ++i) { 565 long X = compare(LA->getOperand(i), RA->getOperand(i)); 566 if (X != 0) 567 return X; 568 } 569 570 return 0; 571 } 572 573 case scAddExpr: 574 case scMulExpr: 575 case scSMaxExpr: 576 case scUMaxExpr: { 577 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 578 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 579 580 // Lexicographically compare n-ary expressions. 581 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 582 for (unsigned i = 0; i != LNumOps; ++i) { 583 if (i >= RNumOps) 584 return 1; 585 long X = compare(LC->getOperand(i), RC->getOperand(i)); 586 if (X != 0) 587 return X; 588 } 589 return (int)LNumOps - (int)RNumOps; 590 } 591 592 case scUDivExpr: { 593 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 594 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 595 596 // Lexicographically compare udiv expressions. 597 long X = compare(LC->getLHS(), RC->getLHS()); 598 if (X != 0) 599 return X; 600 return compare(LC->getRHS(), RC->getRHS()); 601 } 602 603 case scTruncate: 604 case scZeroExtend: 605 case scSignExtend: { 606 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 607 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 608 609 // Compare cast expressions by operand. 610 return compare(LC->getOperand(), RC->getOperand()); 611 } 612 613 default: 614 break; 615 } 616 617 llvm_unreachable("Unknown SCEV kind!"); 618 return 0; 619 } 620 }; 621 } 622 623 /// GroupByComplexity - Given a list of SCEV objects, order them by their 624 /// complexity, and group objects of the same complexity together by value. 625 /// When this routine is finished, we know that any duplicates in the vector are 626 /// consecutive and that complexity is monotonically increasing. 627 /// 628 /// Note that we go take special precautions to ensure that we get deterministic 629 /// results from this routine. In other words, we don't want the results of 630 /// this to depend on where the addresses of various SCEV objects happened to 631 /// land in memory. 632 /// 633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 634 LoopInfo *LI) { 635 if (Ops.size() < 2) return; // Noop 636 if (Ops.size() == 2) { 637 // This is the common case, which also happens to be trivially simple. 638 // Special case it. 639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 640 if (SCEVComplexityCompare(LI)(RHS, LHS)) 641 std::swap(LHS, RHS); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 670 671 //===----------------------------------------------------------------------===// 672 // Simple SCEV method implementations 673 //===----------------------------------------------------------------------===// 674 675 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 676 /// Assume, K > 0. 677 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 678 ScalarEvolution &SE, 679 Type *ResultTy) { 680 // Handle the simplest case efficiently. 681 if (K == 1) 682 return SE.getTruncateOrZeroExtend(It, ResultTy); 683 684 // We are using the following formula for BC(It, K): 685 // 686 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 687 // 688 // Suppose, W is the bitwidth of the return value. We must be prepared for 689 // overflow. Hence, we must assure that the result of our computation is 690 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 691 // safe in modular arithmetic. 692 // 693 // However, this code doesn't use exactly that formula; the formula it uses 694 // is something like the following, where T is the number of factors of 2 in 695 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 696 // exponentiation: 697 // 698 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 699 // 700 // This formula is trivially equivalent to the previous formula. However, 701 // this formula can be implemented much more efficiently. The trick is that 702 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 703 // arithmetic. To do exact division in modular arithmetic, all we have 704 // to do is multiply by the inverse. Therefore, this step can be done at 705 // width W. 706 // 707 // The next issue is how to safely do the division by 2^T. The way this 708 // is done is by doing the multiplication step at a width of at least W + T 709 // bits. This way, the bottom W+T bits of the product are accurate. Then, 710 // when we perform the division by 2^T (which is equivalent to a right shift 711 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 712 // truncated out after the division by 2^T. 713 // 714 // In comparison to just directly using the first formula, this technique 715 // is much more efficient; using the first formula requires W * K bits, 716 // but this formula less than W + K bits. Also, the first formula requires 717 // a division step, whereas this formula only requires multiplies and shifts. 718 // 719 // It doesn't matter whether the subtraction step is done in the calculation 720 // width or the input iteration count's width; if the subtraction overflows, 721 // the result must be zero anyway. We prefer here to do it in the width of 722 // the induction variable because it helps a lot for certain cases; CodeGen 723 // isn't smart enough to ignore the overflow, which leads to much less 724 // efficient code if the width of the subtraction is wider than the native 725 // register width. 726 // 727 // (It's possible to not widen at all by pulling out factors of 2 before 728 // the multiplication; for example, K=2 can be calculated as 729 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 730 // extra arithmetic, so it's not an obvious win, and it gets 731 // much more complicated for K > 3.) 732 733 // Protection from insane SCEVs; this bound is conservative, 734 // but it probably doesn't matter. 735 if (K > 1000) 736 return SE.getCouldNotCompute(); 737 738 unsigned W = SE.getTypeSizeInBits(ResultTy); 739 740 // Calculate K! / 2^T and T; we divide out the factors of two before 741 // multiplying for calculating K! / 2^T to avoid overflow. 742 // Other overflow doesn't matter because we only care about the bottom 743 // W bits of the result. 744 APInt OddFactorial(W, 1); 745 unsigned T = 1; 746 for (unsigned i = 3; i <= K; ++i) { 747 APInt Mult(W, i); 748 unsigned TwoFactors = Mult.countTrailingZeros(); 749 T += TwoFactors; 750 Mult = Mult.lshr(TwoFactors); 751 OddFactorial *= Mult; 752 } 753 754 // We need at least W + T bits for the multiplication step 755 unsigned CalculationBits = W + T; 756 757 // Calculate 2^T, at width T+W. 758 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 759 760 // Calculate the multiplicative inverse of K! / 2^T; 761 // this multiplication factor will perform the exact division by 762 // K! / 2^T. 763 APInt Mod = APInt::getSignedMinValue(W+1); 764 APInt MultiplyFactor = OddFactorial.zext(W+1); 765 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 766 MultiplyFactor = MultiplyFactor.trunc(W); 767 768 // Calculate the product, at width T+W 769 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 770 CalculationBits); 771 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 772 for (unsigned i = 1; i != K; ++i) { 773 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 774 Dividend = SE.getMulExpr(Dividend, 775 SE.getTruncateOrZeroExtend(S, CalculationTy)); 776 } 777 778 // Divide by 2^T 779 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 780 781 // Truncate the result, and divide by K! / 2^T. 782 783 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 784 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 785 } 786 787 /// evaluateAtIteration - Return the value of this chain of recurrences at 788 /// the specified iteration number. We can evaluate this recurrence by 789 /// multiplying each element in the chain by the binomial coefficient 790 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 791 /// 792 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 793 /// 794 /// where BC(It, k) stands for binomial coefficient. 795 /// 796 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 797 ScalarEvolution &SE) const { 798 const SCEV *Result = getStart(); 799 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 800 // The computation is correct in the face of overflow provided that the 801 // multiplication is performed _after_ the evaluation of the binomial 802 // coefficient. 803 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 804 if (isa<SCEVCouldNotCompute>(Coeff)) 805 return Coeff; 806 807 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 808 } 809 return Result; 810 } 811 812 //===----------------------------------------------------------------------===// 813 // SCEV Expression folder implementations 814 //===----------------------------------------------------------------------===// 815 816 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 817 Type *Ty) { 818 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 819 "This is not a truncating conversion!"); 820 assert(isSCEVable(Ty) && 821 "This is not a conversion to a SCEVable type!"); 822 Ty = getEffectiveSCEVType(Ty); 823 824 FoldingSetNodeID ID; 825 ID.AddInteger(scTruncate); 826 ID.AddPointer(Op); 827 ID.AddPointer(Ty); 828 void *IP = 0; 829 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 830 831 // Fold if the operand is constant. 832 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 833 return getConstant( 834 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 835 getEffectiveSCEVType(Ty)))); 836 837 // trunc(trunc(x)) --> trunc(x) 838 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 839 return getTruncateExpr(ST->getOperand(), Ty); 840 841 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 842 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 843 return getTruncateOrSignExtend(SS->getOperand(), Ty); 844 845 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 846 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 847 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 848 849 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 850 // eliminate all the truncates. 851 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 852 SmallVector<const SCEV *, 4> Operands; 853 bool hasTrunc = false; 854 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 855 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 856 hasTrunc = isa<SCEVTruncateExpr>(S); 857 Operands.push_back(S); 858 } 859 if (!hasTrunc) 860 return getAddExpr(Operands); 861 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 862 } 863 864 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 865 // eliminate all the truncates. 866 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 867 SmallVector<const SCEV *, 4> Operands; 868 bool hasTrunc = false; 869 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 870 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 871 hasTrunc = isa<SCEVTruncateExpr>(S); 872 Operands.push_back(S); 873 } 874 if (!hasTrunc) 875 return getMulExpr(Operands); 876 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 877 } 878 879 // If the input value is a chrec scev, truncate the chrec's operands. 880 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 881 SmallVector<const SCEV *, 4> Operands; 882 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 883 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 884 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 885 } 886 887 // As a special case, fold trunc(undef) to undef. We don't want to 888 // know too much about SCEVUnknowns, but this special case is handy 889 // and harmless. 890 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 891 if (isa<UndefValue>(U->getValue())) 892 return getSCEV(UndefValue::get(Ty)); 893 894 // The cast wasn't folded; create an explicit cast node. We can reuse 895 // the existing insert position since if we get here, we won't have 896 // made any changes which would invalidate it. 897 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 898 Op, Ty); 899 UniqueSCEVs.InsertNode(S, IP); 900 return S; 901 } 902 903 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 904 Type *Ty) { 905 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 906 "This is not an extending conversion!"); 907 assert(isSCEVable(Ty) && 908 "This is not a conversion to a SCEVable type!"); 909 Ty = getEffectiveSCEVType(Ty); 910 911 // Fold if the operand is constant. 912 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 913 return getConstant( 914 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 915 getEffectiveSCEVType(Ty)))); 916 917 // zext(zext(x)) --> zext(x) 918 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 919 return getZeroExtendExpr(SZ->getOperand(), Ty); 920 921 // Before doing any expensive analysis, check to see if we've already 922 // computed a SCEV for this Op and Ty. 923 FoldingSetNodeID ID; 924 ID.AddInteger(scZeroExtend); 925 ID.AddPointer(Op); 926 ID.AddPointer(Ty); 927 void *IP = 0; 928 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 929 930 // zext(trunc(x)) --> zext(x) or x or trunc(x) 931 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 932 // It's possible the bits taken off by the truncate were all zero bits. If 933 // so, we should be able to simplify this further. 934 const SCEV *X = ST->getOperand(); 935 ConstantRange CR = getUnsignedRange(X); 936 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 937 unsigned NewBits = getTypeSizeInBits(Ty); 938 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 939 CR.zextOrTrunc(NewBits))) 940 return getTruncateOrZeroExtend(X, Ty); 941 } 942 943 // If the input value is a chrec scev, and we can prove that the value 944 // did not overflow the old, smaller, value, we can zero extend all of the 945 // operands (often constants). This allows analysis of something like 946 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 947 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 948 if (AR->isAffine()) { 949 const SCEV *Start = AR->getStart(); 950 const SCEV *Step = AR->getStepRecurrence(*this); 951 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 952 const Loop *L = AR->getLoop(); 953 954 // If we have special knowledge that this addrec won't overflow, 955 // we don't need to do any further analysis. 956 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 957 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 958 getZeroExtendExpr(Step, Ty), 959 L, AR->getNoWrapFlags()); 960 961 // Check whether the backedge-taken count is SCEVCouldNotCompute. 962 // Note that this serves two purposes: It filters out loops that are 963 // simply not analyzable, and it covers the case where this code is 964 // being called from within backedge-taken count analysis, such that 965 // attempting to ask for the backedge-taken count would likely result 966 // in infinite recursion. In the later case, the analysis code will 967 // cope with a conservative value, and it will take care to purge 968 // that value once it has finished. 969 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 970 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 971 // Manually compute the final value for AR, checking for 972 // overflow. 973 974 // Check whether the backedge-taken count can be losslessly casted to 975 // the addrec's type. The count is always unsigned. 976 const SCEV *CastedMaxBECount = 977 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 978 const SCEV *RecastedMaxBECount = 979 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 980 if (MaxBECount == RecastedMaxBECount) { 981 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 982 // Check whether Start+Step*MaxBECount has no unsigned overflow. 983 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 984 const SCEV *Add = getAddExpr(Start, ZMul); 985 const SCEV *OperandExtendedAdd = 986 getAddExpr(getZeroExtendExpr(Start, WideTy), 987 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 988 getZeroExtendExpr(Step, WideTy))); 989 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) { 990 // Cache knowledge of AR NUW, which is propagated to this AddRec. 991 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 992 // Return the expression with the addrec on the outside. 993 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 994 getZeroExtendExpr(Step, Ty), 995 L, AR->getNoWrapFlags()); 996 } 997 // Similar to above, only this time treat the step value as signed. 998 // This covers loops that count down. 999 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1000 Add = getAddExpr(Start, SMul); 1001 OperandExtendedAdd = 1002 getAddExpr(getZeroExtendExpr(Start, WideTy), 1003 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1004 getSignExtendExpr(Step, WideTy))); 1005 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) { 1006 // Cache knowledge of AR NW, which is propagated to this AddRec. 1007 // Negative step causes unsigned wrap, but it still can't self-wrap. 1008 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1009 // Return the expression with the addrec on the outside. 1010 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1011 getSignExtendExpr(Step, Ty), 1012 L, AR->getNoWrapFlags()); 1013 } 1014 } 1015 1016 // If the backedge is guarded by a comparison with the pre-inc value 1017 // the addrec is safe. Also, if the entry is guarded by a comparison 1018 // with the start value and the backedge is guarded by a comparison 1019 // with the post-inc value, the addrec is safe. 1020 if (isKnownPositive(Step)) { 1021 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1022 getUnsignedRange(Step).getUnsignedMax()); 1023 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1024 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1025 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1026 AR->getPostIncExpr(*this), N))) { 1027 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1028 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1029 // Return the expression with the addrec on the outside. 1030 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1031 getZeroExtendExpr(Step, Ty), 1032 L, AR->getNoWrapFlags()); 1033 } 1034 } else if (isKnownNegative(Step)) { 1035 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1036 getSignedRange(Step).getSignedMin()); 1037 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1038 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1039 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1040 AR->getPostIncExpr(*this), N))) { 1041 // Cache knowledge of AR NW, which is propagated to this AddRec. 1042 // Negative step causes unsigned wrap, but it still can't self-wrap. 1043 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1044 // Return the expression with the addrec on the outside. 1045 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1046 getSignExtendExpr(Step, Ty), 1047 L, AR->getNoWrapFlags()); 1048 } 1049 } 1050 } 1051 } 1052 1053 // The cast wasn't folded; create an explicit cast node. 1054 // Recompute the insert position, as it may have been invalidated. 1055 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1056 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1057 Op, Ty); 1058 UniqueSCEVs.InsertNode(S, IP); 1059 return S; 1060 } 1061 1062 // Get the limit of a recurrence such that incrementing by Step cannot cause 1063 // signed overflow as long as the value of the recurrence within the loop does 1064 // not exceed this limit before incrementing. 1065 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1066 ICmpInst::Predicate *Pred, 1067 ScalarEvolution *SE) { 1068 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1069 if (SE->isKnownPositive(Step)) { 1070 *Pred = ICmpInst::ICMP_SLT; 1071 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1072 SE->getSignedRange(Step).getSignedMax()); 1073 } 1074 if (SE->isKnownNegative(Step)) { 1075 *Pred = ICmpInst::ICMP_SGT; 1076 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1077 SE->getSignedRange(Step).getSignedMin()); 1078 } 1079 return 0; 1080 } 1081 1082 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1083 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1084 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1085 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1086 // result, the expression "Step + sext(PreIncAR)" is congruent with 1087 // "sext(PostIncAR)" 1088 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1089 Type *Ty, 1090 ScalarEvolution *SE) { 1091 const Loop *L = AR->getLoop(); 1092 const SCEV *Start = AR->getStart(); 1093 const SCEV *Step = AR->getStepRecurrence(*SE); 1094 1095 // Check for a simple looking step prior to loop entry. 1096 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1097 if (!SA) 1098 return 0; 1099 1100 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1101 // subtraction is expensive. For this purpose, perform a quick and dirty 1102 // difference, by checking for Step in the operand list. 1103 SmallVector<const SCEV *, 4> DiffOps; 1104 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end(); 1105 I != E; ++I) { 1106 if (*I != Step) 1107 DiffOps.push_back(*I); 1108 } 1109 if (DiffOps.size() == SA->getNumOperands()) 1110 return 0; 1111 1112 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1113 // same three conditions that getSignExtendedExpr checks. 1114 1115 // 1. NSW flags on the step increment. 1116 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1117 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1118 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1119 1120 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1121 return PreStart; 1122 1123 // 2. Direct overflow check on the step operation's expression. 1124 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1125 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1126 const SCEV *OperandExtendedStart = 1127 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1128 SE->getSignExtendExpr(Step, WideTy)); 1129 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1130 // Cache knowledge of PreAR NSW. 1131 if (PreAR) 1132 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1133 // FIXME: this optimization needs a unit test 1134 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1135 return PreStart; 1136 } 1137 1138 // 3. Loop precondition. 1139 ICmpInst::Predicate Pred; 1140 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1141 1142 if (OverflowLimit && 1143 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1144 return PreStart; 1145 } 1146 return 0; 1147 } 1148 1149 // Get the normalized sign-extended expression for this AddRec's Start. 1150 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1151 Type *Ty, 1152 ScalarEvolution *SE) { 1153 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1154 if (!PreStart) 1155 return SE->getSignExtendExpr(AR->getStart(), Ty); 1156 1157 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1158 SE->getSignExtendExpr(PreStart, Ty)); 1159 } 1160 1161 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1162 Type *Ty) { 1163 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1164 "This is not an extending conversion!"); 1165 assert(isSCEVable(Ty) && 1166 "This is not a conversion to a SCEVable type!"); 1167 Ty = getEffectiveSCEVType(Ty); 1168 1169 // Fold if the operand is constant. 1170 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1171 return getConstant( 1172 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 1173 getEffectiveSCEVType(Ty)))); 1174 1175 // sext(sext(x)) --> sext(x) 1176 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1177 return getSignExtendExpr(SS->getOperand(), Ty); 1178 1179 // sext(zext(x)) --> zext(x) 1180 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1181 return getZeroExtendExpr(SZ->getOperand(), Ty); 1182 1183 // Before doing any expensive analysis, check to see if we've already 1184 // computed a SCEV for this Op and Ty. 1185 FoldingSetNodeID ID; 1186 ID.AddInteger(scSignExtend); 1187 ID.AddPointer(Op); 1188 ID.AddPointer(Ty); 1189 void *IP = 0; 1190 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1191 1192 // If the input value is provably positive, build a zext instead. 1193 if (isKnownNonNegative(Op)) 1194 return getZeroExtendExpr(Op, Ty); 1195 1196 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1197 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1198 // It's possible the bits taken off by the truncate were all sign bits. If 1199 // so, we should be able to simplify this further. 1200 const SCEV *X = ST->getOperand(); 1201 ConstantRange CR = getSignedRange(X); 1202 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1203 unsigned NewBits = getTypeSizeInBits(Ty); 1204 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1205 CR.sextOrTrunc(NewBits))) 1206 return getTruncateOrSignExtend(X, Ty); 1207 } 1208 1209 // If the input value is a chrec scev, and we can prove that the value 1210 // did not overflow the old, smaller, value, we can sign extend all of the 1211 // operands (often constants). This allows analysis of something like 1212 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1213 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1214 if (AR->isAffine()) { 1215 const SCEV *Start = AR->getStart(); 1216 const SCEV *Step = AR->getStepRecurrence(*this); 1217 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1218 const Loop *L = AR->getLoop(); 1219 1220 // If we have special knowledge that this addrec won't overflow, 1221 // we don't need to do any further analysis. 1222 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1223 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1224 getSignExtendExpr(Step, Ty), 1225 L, SCEV::FlagNSW); 1226 1227 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1228 // Note that this serves two purposes: It filters out loops that are 1229 // simply not analyzable, and it covers the case where this code is 1230 // being called from within backedge-taken count analysis, such that 1231 // attempting to ask for the backedge-taken count would likely result 1232 // in infinite recursion. In the later case, the analysis code will 1233 // cope with a conservative value, and it will take care to purge 1234 // that value once it has finished. 1235 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1236 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1237 // Manually compute the final value for AR, checking for 1238 // overflow. 1239 1240 // Check whether the backedge-taken count can be losslessly casted to 1241 // the addrec's type. The count is always unsigned. 1242 const SCEV *CastedMaxBECount = 1243 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1244 const SCEV *RecastedMaxBECount = 1245 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1246 if (MaxBECount == RecastedMaxBECount) { 1247 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1248 // Check whether Start+Step*MaxBECount has no signed overflow. 1249 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1250 const SCEV *Add = getAddExpr(Start, SMul); 1251 const SCEV *OperandExtendedAdd = 1252 getAddExpr(getSignExtendExpr(Start, WideTy), 1253 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1254 getSignExtendExpr(Step, WideTy))); 1255 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) { 1256 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1258 // Return the expression with the addrec on the outside. 1259 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1260 getSignExtendExpr(Step, Ty), 1261 L, AR->getNoWrapFlags()); 1262 } 1263 // Similar to above, only this time treat the step value as unsigned. 1264 // This covers loops that count up with an unsigned step. 1265 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1266 Add = getAddExpr(Start, UMul); 1267 OperandExtendedAdd = 1268 getAddExpr(getSignExtendExpr(Start, WideTy), 1269 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1270 getZeroExtendExpr(Step, WideTy))); 1271 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) { 1272 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1273 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1274 // Return the expression with the addrec on the outside. 1275 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1276 getZeroExtendExpr(Step, Ty), 1277 L, AR->getNoWrapFlags()); 1278 } 1279 } 1280 1281 // If the backedge is guarded by a comparison with the pre-inc value 1282 // the addrec is safe. Also, if the entry is guarded by a comparison 1283 // with the start value and the backedge is guarded by a comparison 1284 // with the post-inc value, the addrec is safe. 1285 ICmpInst::Predicate Pred; 1286 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1287 if (OverflowLimit && 1288 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1289 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1290 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1291 OverflowLimit)))) { 1292 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1293 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1294 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1295 getSignExtendExpr(Step, Ty), 1296 L, AR->getNoWrapFlags()); 1297 } 1298 } 1299 } 1300 1301 // The cast wasn't folded; create an explicit cast node. 1302 // Recompute the insert position, as it may have been invalidated. 1303 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1304 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1305 Op, Ty); 1306 UniqueSCEVs.InsertNode(S, IP); 1307 return S; 1308 } 1309 1310 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1311 /// unspecified bits out to the given type. 1312 /// 1313 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1314 Type *Ty) { 1315 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1316 "This is not an extending conversion!"); 1317 assert(isSCEVable(Ty) && 1318 "This is not a conversion to a SCEVable type!"); 1319 Ty = getEffectiveSCEVType(Ty); 1320 1321 // Sign-extend negative constants. 1322 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1323 if (SC->getValue()->getValue().isNegative()) 1324 return getSignExtendExpr(Op, Ty); 1325 1326 // Peel off a truncate cast. 1327 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1328 const SCEV *NewOp = T->getOperand(); 1329 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1330 return getAnyExtendExpr(NewOp, Ty); 1331 return getTruncateOrNoop(NewOp, Ty); 1332 } 1333 1334 // Next try a zext cast. If the cast is folded, use it. 1335 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1336 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1337 return ZExt; 1338 1339 // Next try a sext cast. If the cast is folded, use it. 1340 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1341 if (!isa<SCEVSignExtendExpr>(SExt)) 1342 return SExt; 1343 1344 // Force the cast to be folded into the operands of an addrec. 1345 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1346 SmallVector<const SCEV *, 4> Ops; 1347 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1348 I != E; ++I) 1349 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1350 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1351 } 1352 1353 // As a special case, fold anyext(undef) to undef. We don't want to 1354 // know too much about SCEVUnknowns, but this special case is handy 1355 // and harmless. 1356 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1357 if (isa<UndefValue>(U->getValue())) 1358 return getSCEV(UndefValue::get(Ty)); 1359 1360 // If the expression is obviously signed, use the sext cast value. 1361 if (isa<SCEVSMaxExpr>(Op)) 1362 return SExt; 1363 1364 // Absent any other information, use the zext cast value. 1365 return ZExt; 1366 } 1367 1368 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1369 /// a list of operands to be added under the given scale, update the given 1370 /// map. This is a helper function for getAddRecExpr. As an example of 1371 /// what it does, given a sequence of operands that would form an add 1372 /// expression like this: 1373 /// 1374 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1375 /// 1376 /// where A and B are constants, update the map with these values: 1377 /// 1378 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1379 /// 1380 /// and add 13 + A*B*29 to AccumulatedConstant. 1381 /// This will allow getAddRecExpr to produce this: 1382 /// 1383 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1384 /// 1385 /// This form often exposes folding opportunities that are hidden in 1386 /// the original operand list. 1387 /// 1388 /// Return true iff it appears that any interesting folding opportunities 1389 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1390 /// the common case where no interesting opportunities are present, and 1391 /// is also used as a check to avoid infinite recursion. 1392 /// 1393 static bool 1394 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1395 SmallVector<const SCEV *, 8> &NewOps, 1396 APInt &AccumulatedConstant, 1397 const SCEV *const *Ops, size_t NumOperands, 1398 const APInt &Scale, 1399 ScalarEvolution &SE) { 1400 bool Interesting = false; 1401 1402 // Iterate over the add operands. They are sorted, with constants first. 1403 unsigned i = 0; 1404 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1405 ++i; 1406 // Pull a buried constant out to the outside. 1407 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1408 Interesting = true; 1409 AccumulatedConstant += Scale * C->getValue()->getValue(); 1410 } 1411 1412 // Next comes everything else. We're especially interested in multiplies 1413 // here, but they're in the middle, so just visit the rest with one loop. 1414 for (; i != NumOperands; ++i) { 1415 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1416 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1417 APInt NewScale = 1418 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1419 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1420 // A multiplication of a constant with another add; recurse. 1421 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1422 Interesting |= 1423 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1424 Add->op_begin(), Add->getNumOperands(), 1425 NewScale, SE); 1426 } else { 1427 // A multiplication of a constant with some other value. Update 1428 // the map. 1429 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1430 const SCEV *Key = SE.getMulExpr(MulOps); 1431 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1432 M.insert(std::make_pair(Key, NewScale)); 1433 if (Pair.second) { 1434 NewOps.push_back(Pair.first->first); 1435 } else { 1436 Pair.first->second += NewScale; 1437 // The map already had an entry for this value, which may indicate 1438 // a folding opportunity. 1439 Interesting = true; 1440 } 1441 } 1442 } else { 1443 // An ordinary operand. Update the map. 1444 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1445 M.insert(std::make_pair(Ops[i], Scale)); 1446 if (Pair.second) { 1447 NewOps.push_back(Pair.first->first); 1448 } else { 1449 Pair.first->second += Scale; 1450 // The map already had an entry for this value, which may indicate 1451 // a folding opportunity. 1452 Interesting = true; 1453 } 1454 } 1455 } 1456 1457 return Interesting; 1458 } 1459 1460 namespace { 1461 struct APIntCompare { 1462 bool operator()(const APInt &LHS, const APInt &RHS) const { 1463 return LHS.ult(RHS); 1464 } 1465 }; 1466 } 1467 1468 /// getAddExpr - Get a canonical add expression, or something simpler if 1469 /// possible. 1470 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1471 SCEV::NoWrapFlags Flags) { 1472 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1473 "only nuw or nsw allowed"); 1474 assert(!Ops.empty() && "Cannot get empty add!"); 1475 if (Ops.size() == 1) return Ops[0]; 1476 #ifndef NDEBUG 1477 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1478 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1479 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1480 "SCEVAddExpr operand types don't match!"); 1481 #endif 1482 1483 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1484 // And vice-versa. 1485 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1486 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1487 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1488 bool All = true; 1489 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1490 E = Ops.end(); I != E; ++I) 1491 if (!isKnownNonNegative(*I)) { 1492 All = false; 1493 break; 1494 } 1495 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1496 } 1497 1498 // Sort by complexity, this groups all similar expression types together. 1499 GroupByComplexity(Ops, LI); 1500 1501 // If there are any constants, fold them together. 1502 unsigned Idx = 0; 1503 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1504 ++Idx; 1505 assert(Idx < Ops.size()); 1506 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1507 // We found two constants, fold them together! 1508 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1509 RHSC->getValue()->getValue()); 1510 if (Ops.size() == 2) return Ops[0]; 1511 Ops.erase(Ops.begin()+1); // Erase the folded element 1512 LHSC = cast<SCEVConstant>(Ops[0]); 1513 } 1514 1515 // If we are left with a constant zero being added, strip it off. 1516 if (LHSC->getValue()->isZero()) { 1517 Ops.erase(Ops.begin()); 1518 --Idx; 1519 } 1520 1521 if (Ops.size() == 1) return Ops[0]; 1522 } 1523 1524 // Okay, check to see if the same value occurs in the operand list more than 1525 // once. If so, merge them together into an multiply expression. Since we 1526 // sorted the list, these values are required to be adjacent. 1527 Type *Ty = Ops[0]->getType(); 1528 bool FoundMatch = false; 1529 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1530 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1531 // Scan ahead to count how many equal operands there are. 1532 unsigned Count = 2; 1533 while (i+Count != e && Ops[i+Count] == Ops[i]) 1534 ++Count; 1535 // Merge the values into a multiply. 1536 const SCEV *Scale = getConstant(Ty, Count); 1537 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1538 if (Ops.size() == Count) 1539 return Mul; 1540 Ops[i] = Mul; 1541 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1542 --i; e -= Count - 1; 1543 FoundMatch = true; 1544 } 1545 if (FoundMatch) 1546 return getAddExpr(Ops, Flags); 1547 1548 // Check for truncates. If all the operands are truncated from the same 1549 // type, see if factoring out the truncate would permit the result to be 1550 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1551 // if the contents of the resulting outer trunc fold to something simple. 1552 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1553 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1554 Type *DstType = Trunc->getType(); 1555 Type *SrcType = Trunc->getOperand()->getType(); 1556 SmallVector<const SCEV *, 8> LargeOps; 1557 bool Ok = true; 1558 // Check all the operands to see if they can be represented in the 1559 // source type of the truncate. 1560 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1561 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1562 if (T->getOperand()->getType() != SrcType) { 1563 Ok = false; 1564 break; 1565 } 1566 LargeOps.push_back(T->getOperand()); 1567 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1568 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1569 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1570 SmallVector<const SCEV *, 8> LargeMulOps; 1571 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1572 if (const SCEVTruncateExpr *T = 1573 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1574 if (T->getOperand()->getType() != SrcType) { 1575 Ok = false; 1576 break; 1577 } 1578 LargeMulOps.push_back(T->getOperand()); 1579 } else if (const SCEVConstant *C = 1580 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1581 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1582 } else { 1583 Ok = false; 1584 break; 1585 } 1586 } 1587 if (Ok) 1588 LargeOps.push_back(getMulExpr(LargeMulOps)); 1589 } else { 1590 Ok = false; 1591 break; 1592 } 1593 } 1594 if (Ok) { 1595 // Evaluate the expression in the larger type. 1596 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1597 // If it folds to something simple, use it. Otherwise, don't. 1598 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1599 return getTruncateExpr(Fold, DstType); 1600 } 1601 } 1602 1603 // Skip past any other cast SCEVs. 1604 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1605 ++Idx; 1606 1607 // If there are add operands they would be next. 1608 if (Idx < Ops.size()) { 1609 bool DeletedAdd = false; 1610 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1611 // If we have an add, expand the add operands onto the end of the operands 1612 // list. 1613 Ops.erase(Ops.begin()+Idx); 1614 Ops.append(Add->op_begin(), Add->op_end()); 1615 DeletedAdd = true; 1616 } 1617 1618 // If we deleted at least one add, we added operands to the end of the list, 1619 // and they are not necessarily sorted. Recurse to resort and resimplify 1620 // any operands we just acquired. 1621 if (DeletedAdd) 1622 return getAddExpr(Ops); 1623 } 1624 1625 // Skip over the add expression until we get to a multiply. 1626 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1627 ++Idx; 1628 1629 // Check to see if there are any folding opportunities present with 1630 // operands multiplied by constant values. 1631 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1632 uint64_t BitWidth = getTypeSizeInBits(Ty); 1633 DenseMap<const SCEV *, APInt> M; 1634 SmallVector<const SCEV *, 8> NewOps; 1635 APInt AccumulatedConstant(BitWidth, 0); 1636 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1637 Ops.data(), Ops.size(), 1638 APInt(BitWidth, 1), *this)) { 1639 // Some interesting folding opportunity is present, so its worthwhile to 1640 // re-generate the operands list. Group the operands by constant scale, 1641 // to avoid multiplying by the same constant scale multiple times. 1642 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1643 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(), 1644 E = NewOps.end(); I != E; ++I) 1645 MulOpLists[M.find(*I)->second].push_back(*I); 1646 // Re-generate the operands list. 1647 Ops.clear(); 1648 if (AccumulatedConstant != 0) 1649 Ops.push_back(getConstant(AccumulatedConstant)); 1650 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1651 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1652 if (I->first != 0) 1653 Ops.push_back(getMulExpr(getConstant(I->first), 1654 getAddExpr(I->second))); 1655 if (Ops.empty()) 1656 return getConstant(Ty, 0); 1657 if (Ops.size() == 1) 1658 return Ops[0]; 1659 return getAddExpr(Ops); 1660 } 1661 } 1662 1663 // If we are adding something to a multiply expression, make sure the 1664 // something is not already an operand of the multiply. If so, merge it into 1665 // the multiply. 1666 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1667 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1668 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1669 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1670 if (isa<SCEVConstant>(MulOpSCEV)) 1671 continue; 1672 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1673 if (MulOpSCEV == Ops[AddOp]) { 1674 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1675 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1676 if (Mul->getNumOperands() != 2) { 1677 // If the multiply has more than two operands, we must get the 1678 // Y*Z term. 1679 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1680 Mul->op_begin()+MulOp); 1681 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1682 InnerMul = getMulExpr(MulOps); 1683 } 1684 const SCEV *One = getConstant(Ty, 1); 1685 const SCEV *AddOne = getAddExpr(One, InnerMul); 1686 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1687 if (Ops.size() == 2) return OuterMul; 1688 if (AddOp < Idx) { 1689 Ops.erase(Ops.begin()+AddOp); 1690 Ops.erase(Ops.begin()+Idx-1); 1691 } else { 1692 Ops.erase(Ops.begin()+Idx); 1693 Ops.erase(Ops.begin()+AddOp-1); 1694 } 1695 Ops.push_back(OuterMul); 1696 return getAddExpr(Ops); 1697 } 1698 1699 // Check this multiply against other multiplies being added together. 1700 for (unsigned OtherMulIdx = Idx+1; 1701 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1702 ++OtherMulIdx) { 1703 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1704 // If MulOp occurs in OtherMul, we can fold the two multiplies 1705 // together. 1706 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1707 OMulOp != e; ++OMulOp) 1708 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1709 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1710 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1711 if (Mul->getNumOperands() != 2) { 1712 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1713 Mul->op_begin()+MulOp); 1714 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1715 InnerMul1 = getMulExpr(MulOps); 1716 } 1717 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1718 if (OtherMul->getNumOperands() != 2) { 1719 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1720 OtherMul->op_begin()+OMulOp); 1721 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1722 InnerMul2 = getMulExpr(MulOps); 1723 } 1724 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1725 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1726 if (Ops.size() == 2) return OuterMul; 1727 Ops.erase(Ops.begin()+Idx); 1728 Ops.erase(Ops.begin()+OtherMulIdx-1); 1729 Ops.push_back(OuterMul); 1730 return getAddExpr(Ops); 1731 } 1732 } 1733 } 1734 } 1735 1736 // If there are any add recurrences in the operands list, see if any other 1737 // added values are loop invariant. If so, we can fold them into the 1738 // recurrence. 1739 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1740 ++Idx; 1741 1742 // Scan over all recurrences, trying to fold loop invariants into them. 1743 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1744 // Scan all of the other operands to this add and add them to the vector if 1745 // they are loop invariant w.r.t. the recurrence. 1746 SmallVector<const SCEV *, 8> LIOps; 1747 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1748 const Loop *AddRecLoop = AddRec->getLoop(); 1749 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1750 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1751 LIOps.push_back(Ops[i]); 1752 Ops.erase(Ops.begin()+i); 1753 --i; --e; 1754 } 1755 1756 // If we found some loop invariants, fold them into the recurrence. 1757 if (!LIOps.empty()) { 1758 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1759 LIOps.push_back(AddRec->getStart()); 1760 1761 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1762 AddRec->op_end()); 1763 AddRecOps[0] = getAddExpr(LIOps); 1764 1765 // Build the new addrec. Propagate the NUW and NSW flags if both the 1766 // outer add and the inner addrec are guaranteed to have no overflow. 1767 // Always propagate NW. 1768 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1769 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1770 1771 // If all of the other operands were loop invariant, we are done. 1772 if (Ops.size() == 1) return NewRec; 1773 1774 // Otherwise, add the folded AddRec by the non-invariant parts. 1775 for (unsigned i = 0;; ++i) 1776 if (Ops[i] == AddRec) { 1777 Ops[i] = NewRec; 1778 break; 1779 } 1780 return getAddExpr(Ops); 1781 } 1782 1783 // Okay, if there weren't any loop invariants to be folded, check to see if 1784 // there are multiple AddRec's with the same loop induction variable being 1785 // added together. If so, we can fold them. 1786 for (unsigned OtherIdx = Idx+1; 1787 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1788 ++OtherIdx) 1789 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1790 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1791 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1792 AddRec->op_end()); 1793 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1794 ++OtherIdx) 1795 if (const SCEVAddRecExpr *OtherAddRec = 1796 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1797 if (OtherAddRec->getLoop() == AddRecLoop) { 1798 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1799 i != e; ++i) { 1800 if (i >= AddRecOps.size()) { 1801 AddRecOps.append(OtherAddRec->op_begin()+i, 1802 OtherAddRec->op_end()); 1803 break; 1804 } 1805 AddRecOps[i] = getAddExpr(AddRecOps[i], 1806 OtherAddRec->getOperand(i)); 1807 } 1808 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1809 } 1810 // Step size has changed, so we cannot guarantee no self-wraparound. 1811 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1812 return getAddExpr(Ops); 1813 } 1814 1815 // Otherwise couldn't fold anything into this recurrence. Move onto the 1816 // next one. 1817 } 1818 1819 // Okay, it looks like we really DO need an add expr. Check to see if we 1820 // already have one, otherwise create a new one. 1821 FoldingSetNodeID ID; 1822 ID.AddInteger(scAddExpr); 1823 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1824 ID.AddPointer(Ops[i]); 1825 void *IP = 0; 1826 SCEVAddExpr *S = 1827 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1828 if (!S) { 1829 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1830 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1831 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1832 O, Ops.size()); 1833 UniqueSCEVs.InsertNode(S, IP); 1834 } 1835 S->setNoWrapFlags(Flags); 1836 return S; 1837 } 1838 1839 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 1840 uint64_t k = i*j; 1841 if (j > 1 && k / j != i) Overflow = true; 1842 return k; 1843 } 1844 1845 /// Compute the result of "n choose k", the binomial coefficient. If an 1846 /// intermediate computation overflows, Overflow will be set and the return will 1847 /// be garbage. Overflow is not cleared on absense of overflow. 1848 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 1849 // We use the multiplicative formula: 1850 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 1851 // At each iteration, we take the n-th term of the numeral and divide by the 1852 // (k-n)th term of the denominator. This division will always produce an 1853 // integral result, and helps reduce the chance of overflow in the 1854 // intermediate computations. However, we can still overflow even when the 1855 // final result would fit. 1856 1857 if (n == 0 || n == k) return 1; 1858 if (k > n) return 0; 1859 1860 if (k > n/2) 1861 k = n-k; 1862 1863 uint64_t r = 1; 1864 for (uint64_t i = 1; i <= k; ++i) { 1865 r = umul_ov(r, n-(i-1), Overflow); 1866 r /= i; 1867 } 1868 return r; 1869 } 1870 1871 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1872 /// possible. 1873 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1874 SCEV::NoWrapFlags Flags) { 1875 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1876 "only nuw or nsw allowed"); 1877 assert(!Ops.empty() && "Cannot get empty mul!"); 1878 if (Ops.size() == 1) return Ops[0]; 1879 #ifndef NDEBUG 1880 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1881 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1882 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1883 "SCEVMulExpr operand types don't match!"); 1884 #endif 1885 1886 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1887 // And vice-versa. 1888 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1889 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1890 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1891 bool All = true; 1892 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1893 E = Ops.end(); I != E; ++I) 1894 if (!isKnownNonNegative(*I)) { 1895 All = false; 1896 break; 1897 } 1898 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1899 } 1900 1901 // Sort by complexity, this groups all similar expression types together. 1902 GroupByComplexity(Ops, LI); 1903 1904 // If there are any constants, fold them together. 1905 unsigned Idx = 0; 1906 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1907 1908 // C1*(C2+V) -> C1*C2 + C1*V 1909 if (Ops.size() == 2) 1910 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1911 if (Add->getNumOperands() == 2 && 1912 isa<SCEVConstant>(Add->getOperand(0))) 1913 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1914 getMulExpr(LHSC, Add->getOperand(1))); 1915 1916 ++Idx; 1917 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1918 // We found two constants, fold them together! 1919 ConstantInt *Fold = ConstantInt::get(getContext(), 1920 LHSC->getValue()->getValue() * 1921 RHSC->getValue()->getValue()); 1922 Ops[0] = getConstant(Fold); 1923 Ops.erase(Ops.begin()+1); // Erase the folded element 1924 if (Ops.size() == 1) return Ops[0]; 1925 LHSC = cast<SCEVConstant>(Ops[0]); 1926 } 1927 1928 // If we are left with a constant one being multiplied, strip it off. 1929 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1930 Ops.erase(Ops.begin()); 1931 --Idx; 1932 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1933 // If we have a multiply of zero, it will always be zero. 1934 return Ops[0]; 1935 } else if (Ops[0]->isAllOnesValue()) { 1936 // If we have a mul by -1 of an add, try distributing the -1 among the 1937 // add operands. 1938 if (Ops.size() == 2) { 1939 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1940 SmallVector<const SCEV *, 4> NewOps; 1941 bool AnyFolded = false; 1942 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1943 E = Add->op_end(); I != E; ++I) { 1944 const SCEV *Mul = getMulExpr(Ops[0], *I); 1945 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1946 NewOps.push_back(Mul); 1947 } 1948 if (AnyFolded) 1949 return getAddExpr(NewOps); 1950 } 1951 else if (const SCEVAddRecExpr * 1952 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1953 // Negation preserves a recurrence's no self-wrap property. 1954 SmallVector<const SCEV *, 4> Operands; 1955 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1956 E = AddRec->op_end(); I != E; ++I) { 1957 Operands.push_back(getMulExpr(Ops[0], *I)); 1958 } 1959 return getAddRecExpr(Operands, AddRec->getLoop(), 1960 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1961 } 1962 } 1963 } 1964 1965 if (Ops.size() == 1) 1966 return Ops[0]; 1967 } 1968 1969 // Skip over the add expression until we get to a multiply. 1970 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1971 ++Idx; 1972 1973 // If there are mul operands inline them all into this expression. 1974 if (Idx < Ops.size()) { 1975 bool DeletedMul = false; 1976 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1977 // If we have an mul, expand the mul operands onto the end of the operands 1978 // list. 1979 Ops.erase(Ops.begin()+Idx); 1980 Ops.append(Mul->op_begin(), Mul->op_end()); 1981 DeletedMul = true; 1982 } 1983 1984 // If we deleted at least one mul, we added operands to the end of the list, 1985 // and they are not necessarily sorted. Recurse to resort and resimplify 1986 // any operands we just acquired. 1987 if (DeletedMul) 1988 return getMulExpr(Ops); 1989 } 1990 1991 // If there are any add recurrences in the operands list, see if any other 1992 // added values are loop invariant. If so, we can fold them into the 1993 // recurrence. 1994 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1995 ++Idx; 1996 1997 // Scan over all recurrences, trying to fold loop invariants into them. 1998 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1999 // Scan all of the other operands to this mul and add them to the vector if 2000 // they are loop invariant w.r.t. the recurrence. 2001 SmallVector<const SCEV *, 8> LIOps; 2002 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2003 const Loop *AddRecLoop = AddRec->getLoop(); 2004 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2005 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2006 LIOps.push_back(Ops[i]); 2007 Ops.erase(Ops.begin()+i); 2008 --i; --e; 2009 } 2010 2011 // If we found some loop invariants, fold them into the recurrence. 2012 if (!LIOps.empty()) { 2013 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2014 SmallVector<const SCEV *, 4> NewOps; 2015 NewOps.reserve(AddRec->getNumOperands()); 2016 const SCEV *Scale = getMulExpr(LIOps); 2017 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2018 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2019 2020 // Build the new addrec. Propagate the NUW and NSW flags if both the 2021 // outer mul and the inner addrec are guaranteed to have no overflow. 2022 // 2023 // No self-wrap cannot be guaranteed after changing the step size, but 2024 // will be inferred if either NUW or NSW is true. 2025 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2026 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2027 2028 // If all of the other operands were loop invariant, we are done. 2029 if (Ops.size() == 1) return NewRec; 2030 2031 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2032 for (unsigned i = 0;; ++i) 2033 if (Ops[i] == AddRec) { 2034 Ops[i] = NewRec; 2035 break; 2036 } 2037 return getMulExpr(Ops); 2038 } 2039 2040 // Okay, if there weren't any loop invariants to be folded, check to see if 2041 // there are multiple AddRec's with the same loop induction variable being 2042 // multiplied together. If so, we can fold them. 2043 for (unsigned OtherIdx = Idx+1; 2044 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2045 ++OtherIdx) { 2046 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2047 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2048 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2049 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2050 // ]]],+,...up to x=2n}. 2051 // Note that the arguments to choose() are always integers with values 2052 // known at compile time, never SCEV objects. 2053 // 2054 // The implementation avoids pointless extra computations when the two 2055 // addrec's are of different length (mathematically, it's equivalent to 2056 // an infinite stream of zeros on the right). 2057 bool OpsModified = false; 2058 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2059 ++OtherIdx) 2060 if (const SCEVAddRecExpr *OtherAddRec = 2061 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2062 if (OtherAddRec->getLoop() == AddRecLoop) { 2063 bool Overflow = false; 2064 Type *Ty = AddRec->getType(); 2065 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2066 SmallVector<const SCEV*, 7> AddRecOps; 2067 for (int x = 0, xe = AddRec->getNumOperands() + 2068 OtherAddRec->getNumOperands() - 1; 2069 x != xe && !Overflow; ++x) { 2070 const SCEV *Term = getConstant(Ty, 0); 2071 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2072 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2073 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2074 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2075 z < ze && !Overflow; ++z) { 2076 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2077 uint64_t Coeff; 2078 if (LargerThan64Bits) 2079 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2080 else 2081 Coeff = Coeff1*Coeff2; 2082 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2083 const SCEV *Term1 = AddRec->getOperand(y-z); 2084 const SCEV *Term2 = OtherAddRec->getOperand(z); 2085 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2086 } 2087 } 2088 AddRecOps.push_back(Term); 2089 } 2090 if (!Overflow) { 2091 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, 2092 AddRec->getLoop(), 2093 SCEV::FlagAnyWrap); 2094 if (Ops.size() == 2) return NewAddRec; 2095 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec); 2096 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2097 OpsModified = true; 2098 } 2099 } 2100 if (OpsModified) 2101 return getMulExpr(Ops); 2102 } 2103 } 2104 2105 // Otherwise couldn't fold anything into this recurrence. Move onto the 2106 // next one. 2107 } 2108 2109 // Okay, it looks like we really DO need an mul expr. Check to see if we 2110 // already have one, otherwise create a new one. 2111 FoldingSetNodeID ID; 2112 ID.AddInteger(scMulExpr); 2113 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2114 ID.AddPointer(Ops[i]); 2115 void *IP = 0; 2116 SCEVMulExpr *S = 2117 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2118 if (!S) { 2119 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2120 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2121 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2122 O, Ops.size()); 2123 UniqueSCEVs.InsertNode(S, IP); 2124 } 2125 S->setNoWrapFlags(Flags); 2126 return S; 2127 } 2128 2129 /// getUDivExpr - Get a canonical unsigned division expression, or something 2130 /// simpler if possible. 2131 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2132 const SCEV *RHS) { 2133 assert(getEffectiveSCEVType(LHS->getType()) == 2134 getEffectiveSCEVType(RHS->getType()) && 2135 "SCEVUDivExpr operand types don't match!"); 2136 2137 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2138 if (RHSC->getValue()->equalsInt(1)) 2139 return LHS; // X udiv 1 --> x 2140 // If the denominator is zero, the result of the udiv is undefined. Don't 2141 // try to analyze it, because the resolution chosen here may differ from 2142 // the resolution chosen in other parts of the compiler. 2143 if (!RHSC->getValue()->isZero()) { 2144 // Determine if the division can be folded into the operands of 2145 // its operands. 2146 // TODO: Generalize this to non-constants by using known-bits information. 2147 Type *Ty = LHS->getType(); 2148 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2149 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2150 // For non-power-of-two values, effectively round the value up to the 2151 // nearest power of two. 2152 if (!RHSC->getValue()->getValue().isPowerOf2()) 2153 ++MaxShiftAmt; 2154 IntegerType *ExtTy = 2155 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2156 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2157 if (const SCEVConstant *Step = 2158 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2159 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2160 const APInt &StepInt = Step->getValue()->getValue(); 2161 const APInt &DivInt = RHSC->getValue()->getValue(); 2162 if (!StepInt.urem(DivInt) && 2163 getZeroExtendExpr(AR, ExtTy) == 2164 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2165 getZeroExtendExpr(Step, ExtTy), 2166 AR->getLoop(), SCEV::FlagAnyWrap)) { 2167 SmallVector<const SCEV *, 4> Operands; 2168 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2169 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2170 return getAddRecExpr(Operands, AR->getLoop(), 2171 SCEV::FlagNW); 2172 } 2173 /// Get a canonical UDivExpr for a recurrence. 2174 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2175 // We can currently only fold X%N if X is constant. 2176 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2177 if (StartC && !DivInt.urem(StepInt) && 2178 getZeroExtendExpr(AR, ExtTy) == 2179 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2180 getZeroExtendExpr(Step, ExtTy), 2181 AR->getLoop(), SCEV::FlagAnyWrap)) { 2182 const APInt &StartInt = StartC->getValue()->getValue(); 2183 const APInt &StartRem = StartInt.urem(StepInt); 2184 if (StartRem != 0) 2185 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2186 AR->getLoop(), SCEV::FlagNW); 2187 } 2188 } 2189 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2190 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2191 SmallVector<const SCEV *, 4> Operands; 2192 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2193 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2194 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2195 // Find an operand that's safely divisible. 2196 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2197 const SCEV *Op = M->getOperand(i); 2198 const SCEV *Div = getUDivExpr(Op, RHSC); 2199 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2200 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2201 M->op_end()); 2202 Operands[i] = Div; 2203 return getMulExpr(Operands); 2204 } 2205 } 2206 } 2207 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2208 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2209 SmallVector<const SCEV *, 4> Operands; 2210 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2211 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2212 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2213 Operands.clear(); 2214 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2215 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2216 if (isa<SCEVUDivExpr>(Op) || 2217 getMulExpr(Op, RHS) != A->getOperand(i)) 2218 break; 2219 Operands.push_back(Op); 2220 } 2221 if (Operands.size() == A->getNumOperands()) 2222 return getAddExpr(Operands); 2223 } 2224 } 2225 2226 // Fold if both operands are constant. 2227 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2228 Constant *LHSCV = LHSC->getValue(); 2229 Constant *RHSCV = RHSC->getValue(); 2230 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2231 RHSCV))); 2232 } 2233 } 2234 } 2235 2236 FoldingSetNodeID ID; 2237 ID.AddInteger(scUDivExpr); 2238 ID.AddPointer(LHS); 2239 ID.AddPointer(RHS); 2240 void *IP = 0; 2241 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2242 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2243 LHS, RHS); 2244 UniqueSCEVs.InsertNode(S, IP); 2245 return S; 2246 } 2247 2248 2249 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2250 /// Simplify the expression as much as possible. 2251 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2252 const Loop *L, 2253 SCEV::NoWrapFlags Flags) { 2254 SmallVector<const SCEV *, 4> Operands; 2255 Operands.push_back(Start); 2256 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2257 if (StepChrec->getLoop() == L) { 2258 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2259 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2260 } 2261 2262 Operands.push_back(Step); 2263 return getAddRecExpr(Operands, L, Flags); 2264 } 2265 2266 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2267 /// Simplify the expression as much as possible. 2268 const SCEV * 2269 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2270 const Loop *L, SCEV::NoWrapFlags Flags) { 2271 if (Operands.size() == 1) return Operands[0]; 2272 #ifndef NDEBUG 2273 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2274 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2275 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2276 "SCEVAddRecExpr operand types don't match!"); 2277 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2278 assert(isLoopInvariant(Operands[i], L) && 2279 "SCEVAddRecExpr operand is not loop-invariant!"); 2280 #endif 2281 2282 if (Operands.back()->isZero()) { 2283 Operands.pop_back(); 2284 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2285 } 2286 2287 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2288 // use that information to infer NUW and NSW flags. However, computing a 2289 // BE count requires calling getAddRecExpr, so we may not yet have a 2290 // meaningful BE count at this point (and if we don't, we'd be stuck 2291 // with a SCEVCouldNotCompute as the cached BE count). 2292 2293 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2294 // And vice-versa. 2295 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2296 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2297 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2298 bool All = true; 2299 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2300 E = Operands.end(); I != E; ++I) 2301 if (!isKnownNonNegative(*I)) { 2302 All = false; 2303 break; 2304 } 2305 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2306 } 2307 2308 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2309 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2310 const Loop *NestedLoop = NestedAR->getLoop(); 2311 if (L->contains(NestedLoop) ? 2312 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2313 (!NestedLoop->contains(L) && 2314 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2315 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2316 NestedAR->op_end()); 2317 Operands[0] = NestedAR->getStart(); 2318 // AddRecs require their operands be loop-invariant with respect to their 2319 // loops. Don't perform this transformation if it would break this 2320 // requirement. 2321 bool AllInvariant = true; 2322 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2323 if (!isLoopInvariant(Operands[i], L)) { 2324 AllInvariant = false; 2325 break; 2326 } 2327 if (AllInvariant) { 2328 // Create a recurrence for the outer loop with the same step size. 2329 // 2330 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2331 // inner recurrence has the same property. 2332 SCEV::NoWrapFlags OuterFlags = 2333 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2334 2335 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2336 AllInvariant = true; 2337 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2338 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2339 AllInvariant = false; 2340 break; 2341 } 2342 if (AllInvariant) { 2343 // Ok, both add recurrences are valid after the transformation. 2344 // 2345 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2346 // the outer recurrence has the same property. 2347 SCEV::NoWrapFlags InnerFlags = 2348 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2349 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2350 } 2351 } 2352 // Reset Operands to its original state. 2353 Operands[0] = NestedAR; 2354 } 2355 } 2356 2357 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2358 // already have one, otherwise create a new one. 2359 FoldingSetNodeID ID; 2360 ID.AddInteger(scAddRecExpr); 2361 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2362 ID.AddPointer(Operands[i]); 2363 ID.AddPointer(L); 2364 void *IP = 0; 2365 SCEVAddRecExpr *S = 2366 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2367 if (!S) { 2368 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2369 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2370 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2371 O, Operands.size(), L); 2372 UniqueSCEVs.InsertNode(S, IP); 2373 } 2374 S->setNoWrapFlags(Flags); 2375 return S; 2376 } 2377 2378 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2379 const SCEV *RHS) { 2380 SmallVector<const SCEV *, 2> Ops; 2381 Ops.push_back(LHS); 2382 Ops.push_back(RHS); 2383 return getSMaxExpr(Ops); 2384 } 2385 2386 const SCEV * 2387 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2388 assert(!Ops.empty() && "Cannot get empty smax!"); 2389 if (Ops.size() == 1) return Ops[0]; 2390 #ifndef NDEBUG 2391 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2392 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2393 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2394 "SCEVSMaxExpr operand types don't match!"); 2395 #endif 2396 2397 // Sort by complexity, this groups all similar expression types together. 2398 GroupByComplexity(Ops, LI); 2399 2400 // If there are any constants, fold them together. 2401 unsigned Idx = 0; 2402 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2403 ++Idx; 2404 assert(Idx < Ops.size()); 2405 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2406 // We found two constants, fold them together! 2407 ConstantInt *Fold = ConstantInt::get(getContext(), 2408 APIntOps::smax(LHSC->getValue()->getValue(), 2409 RHSC->getValue()->getValue())); 2410 Ops[0] = getConstant(Fold); 2411 Ops.erase(Ops.begin()+1); // Erase the folded element 2412 if (Ops.size() == 1) return Ops[0]; 2413 LHSC = cast<SCEVConstant>(Ops[0]); 2414 } 2415 2416 // If we are left with a constant minimum-int, strip it off. 2417 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2418 Ops.erase(Ops.begin()); 2419 --Idx; 2420 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2421 // If we have an smax with a constant maximum-int, it will always be 2422 // maximum-int. 2423 return Ops[0]; 2424 } 2425 2426 if (Ops.size() == 1) return Ops[0]; 2427 } 2428 2429 // Find the first SMax 2430 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2431 ++Idx; 2432 2433 // Check to see if one of the operands is an SMax. If so, expand its operands 2434 // onto our operand list, and recurse to simplify. 2435 if (Idx < Ops.size()) { 2436 bool DeletedSMax = false; 2437 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2438 Ops.erase(Ops.begin()+Idx); 2439 Ops.append(SMax->op_begin(), SMax->op_end()); 2440 DeletedSMax = true; 2441 } 2442 2443 if (DeletedSMax) 2444 return getSMaxExpr(Ops); 2445 } 2446 2447 // Okay, check to see if the same value occurs in the operand list twice. If 2448 // so, delete one. Since we sorted the list, these values are required to 2449 // be adjacent. 2450 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2451 // X smax Y smax Y --> X smax Y 2452 // X smax Y --> X, if X is always greater than Y 2453 if (Ops[i] == Ops[i+1] || 2454 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2455 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2456 --i; --e; 2457 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2458 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2459 --i; --e; 2460 } 2461 2462 if (Ops.size() == 1) return Ops[0]; 2463 2464 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2465 2466 // Okay, it looks like we really DO need an smax expr. Check to see if we 2467 // already have one, otherwise create a new one. 2468 FoldingSetNodeID ID; 2469 ID.AddInteger(scSMaxExpr); 2470 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2471 ID.AddPointer(Ops[i]); 2472 void *IP = 0; 2473 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2474 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2475 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2476 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2477 O, Ops.size()); 2478 UniqueSCEVs.InsertNode(S, IP); 2479 return S; 2480 } 2481 2482 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2483 const SCEV *RHS) { 2484 SmallVector<const SCEV *, 2> Ops; 2485 Ops.push_back(LHS); 2486 Ops.push_back(RHS); 2487 return getUMaxExpr(Ops); 2488 } 2489 2490 const SCEV * 2491 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2492 assert(!Ops.empty() && "Cannot get empty umax!"); 2493 if (Ops.size() == 1) return Ops[0]; 2494 #ifndef NDEBUG 2495 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2496 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2497 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2498 "SCEVUMaxExpr operand types don't match!"); 2499 #endif 2500 2501 // Sort by complexity, this groups all similar expression types together. 2502 GroupByComplexity(Ops, LI); 2503 2504 // If there are any constants, fold them together. 2505 unsigned Idx = 0; 2506 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2507 ++Idx; 2508 assert(Idx < Ops.size()); 2509 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2510 // We found two constants, fold them together! 2511 ConstantInt *Fold = ConstantInt::get(getContext(), 2512 APIntOps::umax(LHSC->getValue()->getValue(), 2513 RHSC->getValue()->getValue())); 2514 Ops[0] = getConstant(Fold); 2515 Ops.erase(Ops.begin()+1); // Erase the folded element 2516 if (Ops.size() == 1) return Ops[0]; 2517 LHSC = cast<SCEVConstant>(Ops[0]); 2518 } 2519 2520 // If we are left with a constant minimum-int, strip it off. 2521 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2522 Ops.erase(Ops.begin()); 2523 --Idx; 2524 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2525 // If we have an umax with a constant maximum-int, it will always be 2526 // maximum-int. 2527 return Ops[0]; 2528 } 2529 2530 if (Ops.size() == 1) return Ops[0]; 2531 } 2532 2533 // Find the first UMax 2534 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2535 ++Idx; 2536 2537 // Check to see if one of the operands is a UMax. If so, expand its operands 2538 // onto our operand list, and recurse to simplify. 2539 if (Idx < Ops.size()) { 2540 bool DeletedUMax = false; 2541 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2542 Ops.erase(Ops.begin()+Idx); 2543 Ops.append(UMax->op_begin(), UMax->op_end()); 2544 DeletedUMax = true; 2545 } 2546 2547 if (DeletedUMax) 2548 return getUMaxExpr(Ops); 2549 } 2550 2551 // Okay, check to see if the same value occurs in the operand list twice. If 2552 // so, delete one. Since we sorted the list, these values are required to 2553 // be adjacent. 2554 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2555 // X umax Y umax Y --> X umax Y 2556 // X umax Y --> X, if X is always greater than Y 2557 if (Ops[i] == Ops[i+1] || 2558 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2559 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2560 --i; --e; 2561 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2562 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2563 --i; --e; 2564 } 2565 2566 if (Ops.size() == 1) return Ops[0]; 2567 2568 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2569 2570 // Okay, it looks like we really DO need a umax expr. Check to see if we 2571 // already have one, otherwise create a new one. 2572 FoldingSetNodeID ID; 2573 ID.AddInteger(scUMaxExpr); 2574 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2575 ID.AddPointer(Ops[i]); 2576 void *IP = 0; 2577 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2578 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2579 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2580 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2581 O, Ops.size()); 2582 UniqueSCEVs.InsertNode(S, IP); 2583 return S; 2584 } 2585 2586 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2587 const SCEV *RHS) { 2588 // ~smax(~x, ~y) == smin(x, y). 2589 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2590 } 2591 2592 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2593 const SCEV *RHS) { 2594 // ~umax(~x, ~y) == umin(x, y) 2595 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2596 } 2597 2598 const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) { 2599 // If we have TargetData, we can bypass creating a target-independent 2600 // constant expression and then folding it back into a ConstantInt. 2601 // This is just a compile-time optimization. 2602 if (TD) 2603 return getConstant(TD->getIntPtrType(getContext()), 2604 TD->getTypeAllocSize(AllocTy)); 2605 2606 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2607 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2608 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2609 C = Folded; 2610 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2611 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2612 } 2613 2614 const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) { 2615 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2616 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2617 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2618 C = Folded; 2619 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2620 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2621 } 2622 2623 const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy, 2624 unsigned FieldNo) { 2625 // If we have TargetData, we can bypass creating a target-independent 2626 // constant expression and then folding it back into a ConstantInt. 2627 // This is just a compile-time optimization. 2628 if (TD) 2629 return getConstant(TD->getIntPtrType(getContext()), 2630 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2631 2632 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2633 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2634 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2635 C = Folded; 2636 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2637 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2638 } 2639 2640 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy, 2641 Constant *FieldNo) { 2642 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2643 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2644 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2645 C = Folded; 2646 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2647 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2648 } 2649 2650 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2651 // Don't attempt to do anything other than create a SCEVUnknown object 2652 // here. createSCEV only calls getUnknown after checking for all other 2653 // interesting possibilities, and any other code that calls getUnknown 2654 // is doing so in order to hide a value from SCEV canonicalization. 2655 2656 FoldingSetNodeID ID; 2657 ID.AddInteger(scUnknown); 2658 ID.AddPointer(V); 2659 void *IP = 0; 2660 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2661 assert(cast<SCEVUnknown>(S)->getValue() == V && 2662 "Stale SCEVUnknown in uniquing map!"); 2663 return S; 2664 } 2665 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2666 FirstUnknown); 2667 FirstUnknown = cast<SCEVUnknown>(S); 2668 UniqueSCEVs.InsertNode(S, IP); 2669 return S; 2670 } 2671 2672 //===----------------------------------------------------------------------===// 2673 // Basic SCEV Analysis and PHI Idiom Recognition Code 2674 // 2675 2676 /// isSCEVable - Test if values of the given type are analyzable within 2677 /// the SCEV framework. This primarily includes integer types, and it 2678 /// can optionally include pointer types if the ScalarEvolution class 2679 /// has access to target-specific information. 2680 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2681 // Integers and pointers are always SCEVable. 2682 return Ty->isIntegerTy() || Ty->isPointerTy(); 2683 } 2684 2685 /// getTypeSizeInBits - Return the size in bits of the specified type, 2686 /// for which isSCEVable must return true. 2687 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2688 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2689 2690 // If we have a TargetData, use it! 2691 if (TD) 2692 return TD->getTypeSizeInBits(Ty); 2693 2694 // Integer types have fixed sizes. 2695 if (Ty->isIntegerTy()) 2696 return Ty->getPrimitiveSizeInBits(); 2697 2698 // The only other support type is pointer. Without TargetData, conservatively 2699 // assume pointers are 64-bit. 2700 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2701 return 64; 2702 } 2703 2704 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2705 /// the given type and which represents how SCEV will treat the given 2706 /// type, for which isSCEVable must return true. For pointer types, 2707 /// this is the pointer-sized integer type. 2708 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2709 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2710 2711 if (Ty->isIntegerTy()) 2712 return Ty; 2713 2714 // The only other support type is pointer. 2715 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2716 if (TD) return TD->getIntPtrType(getContext()); 2717 2718 // Without TargetData, conservatively assume pointers are 64-bit. 2719 return Type::getInt64Ty(getContext()); 2720 } 2721 2722 const SCEV *ScalarEvolution::getCouldNotCompute() { 2723 return &CouldNotCompute; 2724 } 2725 2726 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2727 /// expression and create a new one. 2728 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2729 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2730 2731 ValueExprMapType::const_iterator I = ValueExprMap.find(V); 2732 if (I != ValueExprMap.end()) return I->second; 2733 const SCEV *S = createSCEV(V); 2734 2735 // The process of creating a SCEV for V may have caused other SCEVs 2736 // to have been created, so it's necessary to insert the new entry 2737 // from scratch, rather than trying to remember the insert position 2738 // above. 2739 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2740 return S; 2741 } 2742 2743 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2744 /// 2745 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2746 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2747 return getConstant( 2748 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2749 2750 Type *Ty = V->getType(); 2751 Ty = getEffectiveSCEVType(Ty); 2752 return getMulExpr(V, 2753 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2754 } 2755 2756 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2757 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2758 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2759 return getConstant( 2760 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2761 2762 Type *Ty = V->getType(); 2763 Ty = getEffectiveSCEVType(Ty); 2764 const SCEV *AllOnes = 2765 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2766 return getMinusSCEV(AllOnes, V); 2767 } 2768 2769 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2770 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2771 SCEV::NoWrapFlags Flags) { 2772 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2773 2774 // Fast path: X - X --> 0. 2775 if (LHS == RHS) 2776 return getConstant(LHS->getType(), 0); 2777 2778 // X - Y --> X + -Y 2779 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2780 } 2781 2782 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2783 /// input value to the specified type. If the type must be extended, it is zero 2784 /// extended. 2785 const SCEV * 2786 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2787 Type *SrcTy = V->getType(); 2788 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2789 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2790 "Cannot truncate or zero extend with non-integer arguments!"); 2791 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2792 return V; // No conversion 2793 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2794 return getTruncateExpr(V, Ty); 2795 return getZeroExtendExpr(V, Ty); 2796 } 2797 2798 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2799 /// input value to the specified type. If the type must be extended, it is sign 2800 /// extended. 2801 const SCEV * 2802 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2803 Type *Ty) { 2804 Type *SrcTy = V->getType(); 2805 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2806 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2807 "Cannot truncate or zero extend with non-integer arguments!"); 2808 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2809 return V; // No conversion 2810 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2811 return getTruncateExpr(V, Ty); 2812 return getSignExtendExpr(V, Ty); 2813 } 2814 2815 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2816 /// input value to the specified type. If the type must be extended, it is zero 2817 /// extended. The conversion must not be narrowing. 2818 const SCEV * 2819 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2820 Type *SrcTy = V->getType(); 2821 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2822 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2823 "Cannot noop or zero extend with non-integer arguments!"); 2824 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2825 "getNoopOrZeroExtend cannot truncate!"); 2826 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2827 return V; // No conversion 2828 return getZeroExtendExpr(V, Ty); 2829 } 2830 2831 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2832 /// input value to the specified type. If the type must be extended, it is sign 2833 /// extended. The conversion must not be narrowing. 2834 const SCEV * 2835 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2836 Type *SrcTy = V->getType(); 2837 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2838 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2839 "Cannot noop or sign extend with non-integer arguments!"); 2840 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2841 "getNoopOrSignExtend cannot truncate!"); 2842 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2843 return V; // No conversion 2844 return getSignExtendExpr(V, Ty); 2845 } 2846 2847 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2848 /// the input value to the specified type. If the type must be extended, 2849 /// it is extended with unspecified bits. The conversion must not be 2850 /// narrowing. 2851 const SCEV * 2852 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2853 Type *SrcTy = V->getType(); 2854 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2855 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2856 "Cannot noop or any extend with non-integer arguments!"); 2857 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2858 "getNoopOrAnyExtend cannot truncate!"); 2859 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2860 return V; // No conversion 2861 return getAnyExtendExpr(V, Ty); 2862 } 2863 2864 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2865 /// input value to the specified type. The conversion must not be widening. 2866 const SCEV * 2867 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2868 Type *SrcTy = V->getType(); 2869 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2870 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2871 "Cannot truncate or noop with non-integer arguments!"); 2872 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2873 "getTruncateOrNoop cannot extend!"); 2874 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2875 return V; // No conversion 2876 return getTruncateExpr(V, Ty); 2877 } 2878 2879 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2880 /// the types using zero-extension, and then perform a umax operation 2881 /// with them. 2882 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2883 const SCEV *RHS) { 2884 const SCEV *PromotedLHS = LHS; 2885 const SCEV *PromotedRHS = RHS; 2886 2887 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2888 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2889 else 2890 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2891 2892 return getUMaxExpr(PromotedLHS, PromotedRHS); 2893 } 2894 2895 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2896 /// the types using zero-extension, and then perform a umin operation 2897 /// with them. 2898 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2899 const SCEV *RHS) { 2900 const SCEV *PromotedLHS = LHS; 2901 const SCEV *PromotedRHS = RHS; 2902 2903 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2904 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2905 else 2906 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2907 2908 return getUMinExpr(PromotedLHS, PromotedRHS); 2909 } 2910 2911 /// getPointerBase - Transitively follow the chain of pointer-type operands 2912 /// until reaching a SCEV that does not have a single pointer operand. This 2913 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 2914 /// but corner cases do exist. 2915 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 2916 // A pointer operand may evaluate to a nonpointer expression, such as null. 2917 if (!V->getType()->isPointerTy()) 2918 return V; 2919 2920 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 2921 return getPointerBase(Cast->getOperand()); 2922 } 2923 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 2924 const SCEV *PtrOp = 0; 2925 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 2926 I != E; ++I) { 2927 if ((*I)->getType()->isPointerTy()) { 2928 // Cannot find the base of an expression with multiple pointer operands. 2929 if (PtrOp) 2930 return V; 2931 PtrOp = *I; 2932 } 2933 } 2934 if (!PtrOp) 2935 return V; 2936 return getPointerBase(PtrOp); 2937 } 2938 return V; 2939 } 2940 2941 /// PushDefUseChildren - Push users of the given Instruction 2942 /// onto the given Worklist. 2943 static void 2944 PushDefUseChildren(Instruction *I, 2945 SmallVectorImpl<Instruction *> &Worklist) { 2946 // Push the def-use children onto the Worklist stack. 2947 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2948 UI != UE; ++UI) 2949 Worklist.push_back(cast<Instruction>(*UI)); 2950 } 2951 2952 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2953 /// instructions that depend on the given instruction and removes them from 2954 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2955 /// resolution. 2956 void 2957 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2958 SmallVector<Instruction *, 16> Worklist; 2959 PushDefUseChildren(PN, Worklist); 2960 2961 SmallPtrSet<Instruction *, 8> Visited; 2962 Visited.insert(PN); 2963 while (!Worklist.empty()) { 2964 Instruction *I = Worklist.pop_back_val(); 2965 if (!Visited.insert(I)) continue; 2966 2967 ValueExprMapType::iterator It = 2968 ValueExprMap.find(static_cast<Value *>(I)); 2969 if (It != ValueExprMap.end()) { 2970 const SCEV *Old = It->second; 2971 2972 // Short-circuit the def-use traversal if the symbolic name 2973 // ceases to appear in expressions. 2974 if (Old != SymName && !hasOperand(Old, SymName)) 2975 continue; 2976 2977 // SCEVUnknown for a PHI either means that it has an unrecognized 2978 // structure, it's a PHI that's in the progress of being computed 2979 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2980 // additional loop trip count information isn't going to change anything. 2981 // In the second case, createNodeForPHI will perform the necessary 2982 // updates on its own when it gets to that point. In the third, we do 2983 // want to forget the SCEVUnknown. 2984 if (!isa<PHINode>(I) || 2985 !isa<SCEVUnknown>(Old) || 2986 (I != PN && Old == SymName)) { 2987 forgetMemoizedResults(Old); 2988 ValueExprMap.erase(It); 2989 } 2990 } 2991 2992 PushDefUseChildren(I, Worklist); 2993 } 2994 } 2995 2996 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2997 /// a loop header, making it a potential recurrence, or it doesn't. 2998 /// 2999 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3000 if (const Loop *L = LI->getLoopFor(PN->getParent())) 3001 if (L->getHeader() == PN->getParent()) { 3002 // The loop may have multiple entrances or multiple exits; we can analyze 3003 // this phi as an addrec if it has a unique entry value and a unique 3004 // backedge value. 3005 Value *BEValueV = 0, *StartValueV = 0; 3006 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3007 Value *V = PN->getIncomingValue(i); 3008 if (L->contains(PN->getIncomingBlock(i))) { 3009 if (!BEValueV) { 3010 BEValueV = V; 3011 } else if (BEValueV != V) { 3012 BEValueV = 0; 3013 break; 3014 } 3015 } else if (!StartValueV) { 3016 StartValueV = V; 3017 } else if (StartValueV != V) { 3018 StartValueV = 0; 3019 break; 3020 } 3021 } 3022 if (BEValueV && StartValueV) { 3023 // While we are analyzing this PHI node, handle its value symbolically. 3024 const SCEV *SymbolicName = getUnknown(PN); 3025 assert(ValueExprMap.find(PN) == ValueExprMap.end() && 3026 "PHI node already processed?"); 3027 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3028 3029 // Using this symbolic name for the PHI, analyze the value coming around 3030 // the back-edge. 3031 const SCEV *BEValue = getSCEV(BEValueV); 3032 3033 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3034 // has a special value for the first iteration of the loop. 3035 3036 // If the value coming around the backedge is an add with the symbolic 3037 // value we just inserted, then we found a simple induction variable! 3038 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3039 // If there is a single occurrence of the symbolic value, replace it 3040 // with a recurrence. 3041 unsigned FoundIndex = Add->getNumOperands(); 3042 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3043 if (Add->getOperand(i) == SymbolicName) 3044 if (FoundIndex == e) { 3045 FoundIndex = i; 3046 break; 3047 } 3048 3049 if (FoundIndex != Add->getNumOperands()) { 3050 // Create an add with everything but the specified operand. 3051 SmallVector<const SCEV *, 8> Ops; 3052 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3053 if (i != FoundIndex) 3054 Ops.push_back(Add->getOperand(i)); 3055 const SCEV *Accum = getAddExpr(Ops); 3056 3057 // This is not a valid addrec if the step amount is varying each 3058 // loop iteration, but is not itself an addrec in this loop. 3059 if (isLoopInvariant(Accum, L) || 3060 (isa<SCEVAddRecExpr>(Accum) && 3061 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3062 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3063 3064 // If the increment doesn't overflow, then neither the addrec nor 3065 // the post-increment will overflow. 3066 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3067 if (OBO->hasNoUnsignedWrap()) 3068 Flags = setFlags(Flags, SCEV::FlagNUW); 3069 if (OBO->hasNoSignedWrap()) 3070 Flags = setFlags(Flags, SCEV::FlagNSW); 3071 } else if (const GEPOperator *GEP = 3072 dyn_cast<GEPOperator>(BEValueV)) { 3073 // If the increment is an inbounds GEP, then we know the address 3074 // space cannot be wrapped around. We cannot make any guarantee 3075 // about signed or unsigned overflow because pointers are 3076 // unsigned but we may have a negative index from the base 3077 // pointer. 3078 if (GEP->isInBounds()) 3079 Flags = setFlags(Flags, SCEV::FlagNW); 3080 } 3081 3082 const SCEV *StartVal = getSCEV(StartValueV); 3083 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3084 3085 // Since the no-wrap flags are on the increment, they apply to the 3086 // post-incremented value as well. 3087 if (isLoopInvariant(Accum, L)) 3088 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3089 Accum, L, Flags); 3090 3091 // Okay, for the entire analysis of this edge we assumed the PHI 3092 // to be symbolic. We now need to go back and purge all of the 3093 // entries for the scalars that use the symbolic expression. 3094 ForgetSymbolicName(PN, SymbolicName); 3095 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3096 return PHISCEV; 3097 } 3098 } 3099 } else if (const SCEVAddRecExpr *AddRec = 3100 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3101 // Otherwise, this could be a loop like this: 3102 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3103 // In this case, j = {1,+,1} and BEValue is j. 3104 // Because the other in-value of i (0) fits the evolution of BEValue 3105 // i really is an addrec evolution. 3106 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3107 const SCEV *StartVal = getSCEV(StartValueV); 3108 3109 // If StartVal = j.start - j.stride, we can use StartVal as the 3110 // initial step of the addrec evolution. 3111 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3112 AddRec->getOperand(1))) { 3113 // FIXME: For constant StartVal, we should be able to infer 3114 // no-wrap flags. 3115 const SCEV *PHISCEV = 3116 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3117 SCEV::FlagAnyWrap); 3118 3119 // Okay, for the entire analysis of this edge we assumed the PHI 3120 // to be symbolic. We now need to go back and purge all of the 3121 // entries for the scalars that use the symbolic expression. 3122 ForgetSymbolicName(PN, SymbolicName); 3123 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3124 return PHISCEV; 3125 } 3126 } 3127 } 3128 } 3129 } 3130 3131 // If the PHI has a single incoming value, follow that value, unless the 3132 // PHI's incoming blocks are in a different loop, in which case doing so 3133 // risks breaking LCSSA form. Instcombine would normally zap these, but 3134 // it doesn't have DominatorTree information, so it may miss cases. 3135 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT)) 3136 if (LI->replacementPreservesLCSSAForm(PN, V)) 3137 return getSCEV(V); 3138 3139 // If it's not a loop phi, we can't handle it yet. 3140 return getUnknown(PN); 3141 } 3142 3143 /// createNodeForGEP - Expand GEP instructions into add and multiply 3144 /// operations. This allows them to be analyzed by regular SCEV code. 3145 /// 3146 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3147 3148 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3149 // Add expression, because the Instruction may be guarded by control flow 3150 // and the no-overflow bits may not be valid for the expression in any 3151 // context. 3152 bool isInBounds = GEP->isInBounds(); 3153 3154 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3155 Value *Base = GEP->getOperand(0); 3156 // Don't attempt to analyze GEPs over unsized objects. 3157 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 3158 return getUnknown(GEP); 3159 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3160 gep_type_iterator GTI = gep_type_begin(GEP); 3161 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 3162 E = GEP->op_end(); 3163 I != E; ++I) { 3164 Value *Index = *I; 3165 // Compute the (potentially symbolic) offset in bytes for this index. 3166 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3167 // For a struct, add the member offset. 3168 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3169 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 3170 3171 // Add the field offset to the running total offset. 3172 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3173 } else { 3174 // For an array, add the element offset, explicitly scaled. 3175 const SCEV *ElementSize = getSizeOfExpr(*GTI); 3176 const SCEV *IndexS = getSCEV(Index); 3177 // Getelementptr indices are signed. 3178 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3179 3180 // Multiply the index by the element size to compute the element offset. 3181 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, 3182 isInBounds ? SCEV::FlagNSW : 3183 SCEV::FlagAnyWrap); 3184 3185 // Add the element offset to the running total offset. 3186 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3187 } 3188 } 3189 3190 // Get the SCEV for the GEP base. 3191 const SCEV *BaseS = getSCEV(Base); 3192 3193 // Add the total offset from all the GEP indices to the base. 3194 return getAddExpr(BaseS, TotalOffset, 3195 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap); 3196 } 3197 3198 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3199 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3200 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3201 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3202 uint32_t 3203 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3204 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3205 return C->getValue()->getValue().countTrailingZeros(); 3206 3207 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3208 return std::min(GetMinTrailingZeros(T->getOperand()), 3209 (uint32_t)getTypeSizeInBits(T->getType())); 3210 3211 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3212 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3213 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3214 getTypeSizeInBits(E->getType()) : OpRes; 3215 } 3216 3217 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3218 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3219 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3220 getTypeSizeInBits(E->getType()) : OpRes; 3221 } 3222 3223 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3224 // The result is the min of all operands results. 3225 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3226 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3227 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3228 return MinOpRes; 3229 } 3230 3231 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3232 // The result is the sum of all operands results. 3233 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3234 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3235 for (unsigned i = 1, e = M->getNumOperands(); 3236 SumOpRes != BitWidth && i != e; ++i) 3237 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3238 BitWidth); 3239 return SumOpRes; 3240 } 3241 3242 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3243 // The result is the min of all operands results. 3244 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3245 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3246 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3247 return MinOpRes; 3248 } 3249 3250 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3251 // The result is the min of all operands results. 3252 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3253 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3254 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3255 return MinOpRes; 3256 } 3257 3258 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3259 // The result is the min of all operands results. 3260 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3261 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3262 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3263 return MinOpRes; 3264 } 3265 3266 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3267 // For a SCEVUnknown, ask ValueTracking. 3268 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3269 APInt Mask = APInt::getAllOnesValue(BitWidth); 3270 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3271 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 3272 return Zeros.countTrailingOnes(); 3273 } 3274 3275 // SCEVUDivExpr 3276 return 0; 3277 } 3278 3279 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3280 /// 3281 ConstantRange 3282 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3283 // See if we've computed this range already. 3284 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3285 if (I != UnsignedRanges.end()) 3286 return I->second; 3287 3288 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3289 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3290 3291 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3292 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3293 3294 // If the value has known zeros, the maximum unsigned value will have those 3295 // known zeros as well. 3296 uint32_t TZ = GetMinTrailingZeros(S); 3297 if (TZ != 0) 3298 ConservativeResult = 3299 ConstantRange(APInt::getMinValue(BitWidth), 3300 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3301 3302 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3303 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3304 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3305 X = X.add(getUnsignedRange(Add->getOperand(i))); 3306 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3307 } 3308 3309 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3310 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3311 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3312 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3313 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3314 } 3315 3316 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3317 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3318 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3319 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3320 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3321 } 3322 3323 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3324 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3325 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3326 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3327 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3328 } 3329 3330 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3331 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3332 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3333 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3334 } 3335 3336 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3337 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3338 return setUnsignedRange(ZExt, 3339 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3340 } 3341 3342 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3343 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3344 return setUnsignedRange(SExt, 3345 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3346 } 3347 3348 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3349 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3350 return setUnsignedRange(Trunc, 3351 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3352 } 3353 3354 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3355 // If there's no unsigned wrap, the value will never be less than its 3356 // initial value. 3357 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3358 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3359 if (!C->getValue()->isZero()) 3360 ConservativeResult = 3361 ConservativeResult.intersectWith( 3362 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3363 3364 // TODO: non-affine addrec 3365 if (AddRec->isAffine()) { 3366 Type *Ty = AddRec->getType(); 3367 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3368 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3369 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3370 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3371 3372 const SCEV *Start = AddRec->getStart(); 3373 const SCEV *Step = AddRec->getStepRecurrence(*this); 3374 3375 ConstantRange StartRange = getUnsignedRange(Start); 3376 ConstantRange StepRange = getSignedRange(Step); 3377 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3378 ConstantRange EndRange = 3379 StartRange.add(MaxBECountRange.multiply(StepRange)); 3380 3381 // Check for overflow. This must be done with ConstantRange arithmetic 3382 // because we could be called from within the ScalarEvolution overflow 3383 // checking code. 3384 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3385 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3386 ConstantRange ExtMaxBECountRange = 3387 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3388 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3389 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3390 ExtEndRange) 3391 return setUnsignedRange(AddRec, ConservativeResult); 3392 3393 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3394 EndRange.getUnsignedMin()); 3395 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3396 EndRange.getUnsignedMax()); 3397 if (Min.isMinValue() && Max.isMaxValue()) 3398 return setUnsignedRange(AddRec, ConservativeResult); 3399 return setUnsignedRange(AddRec, 3400 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3401 } 3402 } 3403 3404 return setUnsignedRange(AddRec, ConservativeResult); 3405 } 3406 3407 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3408 // For a SCEVUnknown, ask ValueTracking. 3409 APInt Mask = APInt::getAllOnesValue(BitWidth); 3410 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3411 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3412 if (Ones == ~Zeros + 1) 3413 return setUnsignedRange(U, ConservativeResult); 3414 return setUnsignedRange(U, 3415 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3416 } 3417 3418 return setUnsignedRange(S, ConservativeResult); 3419 } 3420 3421 /// getSignedRange - Determine the signed range for a particular SCEV. 3422 /// 3423 ConstantRange 3424 ScalarEvolution::getSignedRange(const SCEV *S) { 3425 // See if we've computed this range already. 3426 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3427 if (I != SignedRanges.end()) 3428 return I->second; 3429 3430 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3431 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3432 3433 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3434 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3435 3436 // If the value has known zeros, the maximum signed value will have those 3437 // known zeros as well. 3438 uint32_t TZ = GetMinTrailingZeros(S); 3439 if (TZ != 0) 3440 ConservativeResult = 3441 ConstantRange(APInt::getSignedMinValue(BitWidth), 3442 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3443 3444 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3445 ConstantRange X = getSignedRange(Add->getOperand(0)); 3446 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3447 X = X.add(getSignedRange(Add->getOperand(i))); 3448 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3449 } 3450 3451 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3452 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3453 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3454 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3455 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3456 } 3457 3458 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3459 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3460 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3461 X = X.smax(getSignedRange(SMax->getOperand(i))); 3462 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3463 } 3464 3465 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3466 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3467 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3468 X = X.umax(getSignedRange(UMax->getOperand(i))); 3469 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3470 } 3471 3472 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3473 ConstantRange X = getSignedRange(UDiv->getLHS()); 3474 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3475 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3476 } 3477 3478 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3479 ConstantRange X = getSignedRange(ZExt->getOperand()); 3480 return setSignedRange(ZExt, 3481 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3482 } 3483 3484 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3485 ConstantRange X = getSignedRange(SExt->getOperand()); 3486 return setSignedRange(SExt, 3487 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3488 } 3489 3490 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3491 ConstantRange X = getSignedRange(Trunc->getOperand()); 3492 return setSignedRange(Trunc, 3493 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3494 } 3495 3496 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3497 // If there's no signed wrap, and all the operands have the same sign or 3498 // zero, the value won't ever change sign. 3499 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3500 bool AllNonNeg = true; 3501 bool AllNonPos = true; 3502 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3503 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3504 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3505 } 3506 if (AllNonNeg) 3507 ConservativeResult = ConservativeResult.intersectWith( 3508 ConstantRange(APInt(BitWidth, 0), 3509 APInt::getSignedMinValue(BitWidth))); 3510 else if (AllNonPos) 3511 ConservativeResult = ConservativeResult.intersectWith( 3512 ConstantRange(APInt::getSignedMinValue(BitWidth), 3513 APInt(BitWidth, 1))); 3514 } 3515 3516 // TODO: non-affine addrec 3517 if (AddRec->isAffine()) { 3518 Type *Ty = AddRec->getType(); 3519 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3520 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3521 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3522 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3523 3524 const SCEV *Start = AddRec->getStart(); 3525 const SCEV *Step = AddRec->getStepRecurrence(*this); 3526 3527 ConstantRange StartRange = getSignedRange(Start); 3528 ConstantRange StepRange = getSignedRange(Step); 3529 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3530 ConstantRange EndRange = 3531 StartRange.add(MaxBECountRange.multiply(StepRange)); 3532 3533 // Check for overflow. This must be done with ConstantRange arithmetic 3534 // because we could be called from within the ScalarEvolution overflow 3535 // checking code. 3536 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3537 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3538 ConstantRange ExtMaxBECountRange = 3539 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3540 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3541 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3542 ExtEndRange) 3543 return setSignedRange(AddRec, ConservativeResult); 3544 3545 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3546 EndRange.getSignedMin()); 3547 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3548 EndRange.getSignedMax()); 3549 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3550 return setSignedRange(AddRec, ConservativeResult); 3551 return setSignedRange(AddRec, 3552 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3553 } 3554 } 3555 3556 return setSignedRange(AddRec, ConservativeResult); 3557 } 3558 3559 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3560 // For a SCEVUnknown, ask ValueTracking. 3561 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3562 return setSignedRange(U, ConservativeResult); 3563 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3564 if (NS == 1) 3565 return setSignedRange(U, ConservativeResult); 3566 return setSignedRange(U, ConservativeResult.intersectWith( 3567 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3568 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3569 } 3570 3571 return setSignedRange(S, ConservativeResult); 3572 } 3573 3574 /// createSCEV - We know that there is no SCEV for the specified value. 3575 /// Analyze the expression. 3576 /// 3577 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3578 if (!isSCEVable(V->getType())) 3579 return getUnknown(V); 3580 3581 unsigned Opcode = Instruction::UserOp1; 3582 if (Instruction *I = dyn_cast<Instruction>(V)) { 3583 Opcode = I->getOpcode(); 3584 3585 // Don't attempt to analyze instructions in blocks that aren't 3586 // reachable. Such instructions don't matter, and they aren't required 3587 // to obey basic rules for definitions dominating uses which this 3588 // analysis depends on. 3589 if (!DT->isReachableFromEntry(I->getParent())) 3590 return getUnknown(V); 3591 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3592 Opcode = CE->getOpcode(); 3593 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3594 return getConstant(CI); 3595 else if (isa<ConstantPointerNull>(V)) 3596 return getConstant(V->getType(), 0); 3597 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3598 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3599 else 3600 return getUnknown(V); 3601 3602 Operator *U = cast<Operator>(V); 3603 switch (Opcode) { 3604 case Instruction::Add: { 3605 // The simple thing to do would be to just call getSCEV on both operands 3606 // and call getAddExpr with the result. However if we're looking at a 3607 // bunch of things all added together, this can be quite inefficient, 3608 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3609 // Instead, gather up all the operands and make a single getAddExpr call. 3610 // LLVM IR canonical form means we need only traverse the left operands. 3611 // 3612 // Don't apply this instruction's NSW or NUW flags to the new 3613 // expression. The instruction may be guarded by control flow that the 3614 // no-wrap behavior depends on. Non-control-equivalent instructions can be 3615 // mapped to the same SCEV expression, and it would be incorrect to transfer 3616 // NSW/NUW semantics to those operations. 3617 SmallVector<const SCEV *, 4> AddOps; 3618 AddOps.push_back(getSCEV(U->getOperand(1))); 3619 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3620 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3621 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3622 break; 3623 U = cast<Operator>(Op); 3624 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3625 if (Opcode == Instruction::Sub) 3626 AddOps.push_back(getNegativeSCEV(Op1)); 3627 else 3628 AddOps.push_back(Op1); 3629 } 3630 AddOps.push_back(getSCEV(U->getOperand(0))); 3631 return getAddExpr(AddOps); 3632 } 3633 case Instruction::Mul: { 3634 // Don't transfer NSW/NUW for the same reason as AddExpr. 3635 SmallVector<const SCEV *, 4> MulOps; 3636 MulOps.push_back(getSCEV(U->getOperand(1))); 3637 for (Value *Op = U->getOperand(0); 3638 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3639 Op = U->getOperand(0)) { 3640 U = cast<Operator>(Op); 3641 MulOps.push_back(getSCEV(U->getOperand(1))); 3642 } 3643 MulOps.push_back(getSCEV(U->getOperand(0))); 3644 return getMulExpr(MulOps); 3645 } 3646 case Instruction::UDiv: 3647 return getUDivExpr(getSCEV(U->getOperand(0)), 3648 getSCEV(U->getOperand(1))); 3649 case Instruction::Sub: 3650 return getMinusSCEV(getSCEV(U->getOperand(0)), 3651 getSCEV(U->getOperand(1))); 3652 case Instruction::And: 3653 // For an expression like x&255 that merely masks off the high bits, 3654 // use zext(trunc(x)) as the SCEV expression. 3655 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3656 if (CI->isNullValue()) 3657 return getSCEV(U->getOperand(1)); 3658 if (CI->isAllOnesValue()) 3659 return getSCEV(U->getOperand(0)); 3660 const APInt &A = CI->getValue(); 3661 3662 // Instcombine's ShrinkDemandedConstant may strip bits out of 3663 // constants, obscuring what would otherwise be a low-bits mask. 3664 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3665 // knew about to reconstruct a low-bits mask value. 3666 unsigned LZ = A.countLeadingZeros(); 3667 unsigned BitWidth = A.getBitWidth(); 3668 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3669 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3670 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3671 3672 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3673 3674 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3675 return 3676 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3677 IntegerType::get(getContext(), BitWidth - LZ)), 3678 U->getType()); 3679 } 3680 break; 3681 3682 case Instruction::Or: 3683 // If the RHS of the Or is a constant, we may have something like: 3684 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3685 // optimizations will transparently handle this case. 3686 // 3687 // In order for this transformation to be safe, the LHS must be of the 3688 // form X*(2^n) and the Or constant must be less than 2^n. 3689 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3690 const SCEV *LHS = getSCEV(U->getOperand(0)); 3691 const APInt &CIVal = CI->getValue(); 3692 if (GetMinTrailingZeros(LHS) >= 3693 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3694 // Build a plain add SCEV. 3695 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3696 // If the LHS of the add was an addrec and it has no-wrap flags, 3697 // transfer the no-wrap flags, since an or won't introduce a wrap. 3698 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3699 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3700 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3701 OldAR->getNoWrapFlags()); 3702 } 3703 return S; 3704 } 3705 } 3706 break; 3707 case Instruction::Xor: 3708 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3709 // If the RHS of the xor is a signbit, then this is just an add. 3710 // Instcombine turns add of signbit into xor as a strength reduction step. 3711 if (CI->getValue().isSignBit()) 3712 return getAddExpr(getSCEV(U->getOperand(0)), 3713 getSCEV(U->getOperand(1))); 3714 3715 // If the RHS of xor is -1, then this is a not operation. 3716 if (CI->isAllOnesValue()) 3717 return getNotSCEV(getSCEV(U->getOperand(0))); 3718 3719 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3720 // This is a variant of the check for xor with -1, and it handles 3721 // the case where instcombine has trimmed non-demanded bits out 3722 // of an xor with -1. 3723 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3724 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3725 if (BO->getOpcode() == Instruction::And && 3726 LCI->getValue() == CI->getValue()) 3727 if (const SCEVZeroExtendExpr *Z = 3728 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3729 Type *UTy = U->getType(); 3730 const SCEV *Z0 = Z->getOperand(); 3731 Type *Z0Ty = Z0->getType(); 3732 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3733 3734 // If C is a low-bits mask, the zero extend is serving to 3735 // mask off the high bits. Complement the operand and 3736 // re-apply the zext. 3737 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3738 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3739 3740 // If C is a single bit, it may be in the sign-bit position 3741 // before the zero-extend. In this case, represent the xor 3742 // using an add, which is equivalent, and re-apply the zext. 3743 APInt Trunc = CI->getValue().trunc(Z0TySize); 3744 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3745 Trunc.isSignBit()) 3746 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3747 UTy); 3748 } 3749 } 3750 break; 3751 3752 case Instruction::Shl: 3753 // Turn shift left of a constant amount into a multiply. 3754 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3755 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3756 3757 // If the shift count is not less than the bitwidth, the result of 3758 // the shift is undefined. Don't try to analyze it, because the 3759 // resolution chosen here may differ from the resolution chosen in 3760 // other parts of the compiler. 3761 if (SA->getValue().uge(BitWidth)) 3762 break; 3763 3764 Constant *X = ConstantInt::get(getContext(), 3765 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3766 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3767 } 3768 break; 3769 3770 case Instruction::LShr: 3771 // Turn logical shift right of a constant into a unsigned divide. 3772 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3773 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3774 3775 // If the shift count is not less than the bitwidth, the result of 3776 // the shift is undefined. Don't try to analyze it, because the 3777 // resolution chosen here may differ from the resolution chosen in 3778 // other parts of the compiler. 3779 if (SA->getValue().uge(BitWidth)) 3780 break; 3781 3782 Constant *X = ConstantInt::get(getContext(), 3783 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3784 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3785 } 3786 break; 3787 3788 case Instruction::AShr: 3789 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3790 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3791 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3792 if (L->getOpcode() == Instruction::Shl && 3793 L->getOperand(1) == U->getOperand(1)) { 3794 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3795 3796 // If the shift count is not less than the bitwidth, the result of 3797 // the shift is undefined. Don't try to analyze it, because the 3798 // resolution chosen here may differ from the resolution chosen in 3799 // other parts of the compiler. 3800 if (CI->getValue().uge(BitWidth)) 3801 break; 3802 3803 uint64_t Amt = BitWidth - CI->getZExtValue(); 3804 if (Amt == BitWidth) 3805 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3806 return 3807 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3808 IntegerType::get(getContext(), 3809 Amt)), 3810 U->getType()); 3811 } 3812 break; 3813 3814 case Instruction::Trunc: 3815 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3816 3817 case Instruction::ZExt: 3818 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3819 3820 case Instruction::SExt: 3821 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3822 3823 case Instruction::BitCast: 3824 // BitCasts are no-op casts so we just eliminate the cast. 3825 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3826 return getSCEV(U->getOperand(0)); 3827 break; 3828 3829 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3830 // lead to pointer expressions which cannot safely be expanded to GEPs, 3831 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3832 // simplifying integer expressions. 3833 3834 case Instruction::GetElementPtr: 3835 return createNodeForGEP(cast<GEPOperator>(U)); 3836 3837 case Instruction::PHI: 3838 return createNodeForPHI(cast<PHINode>(U)); 3839 3840 case Instruction::Select: 3841 // This could be a smax or umax that was lowered earlier. 3842 // Try to recover it. 3843 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3844 Value *LHS = ICI->getOperand(0); 3845 Value *RHS = ICI->getOperand(1); 3846 switch (ICI->getPredicate()) { 3847 case ICmpInst::ICMP_SLT: 3848 case ICmpInst::ICMP_SLE: 3849 std::swap(LHS, RHS); 3850 // fall through 3851 case ICmpInst::ICMP_SGT: 3852 case ICmpInst::ICMP_SGE: 3853 // a >s b ? a+x : b+x -> smax(a, b)+x 3854 // a >s b ? b+x : a+x -> smin(a, b)+x 3855 if (LHS->getType() == U->getType()) { 3856 const SCEV *LS = getSCEV(LHS); 3857 const SCEV *RS = getSCEV(RHS); 3858 const SCEV *LA = getSCEV(U->getOperand(1)); 3859 const SCEV *RA = getSCEV(U->getOperand(2)); 3860 const SCEV *LDiff = getMinusSCEV(LA, LS); 3861 const SCEV *RDiff = getMinusSCEV(RA, RS); 3862 if (LDiff == RDiff) 3863 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3864 LDiff = getMinusSCEV(LA, RS); 3865 RDiff = getMinusSCEV(RA, LS); 3866 if (LDiff == RDiff) 3867 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3868 } 3869 break; 3870 case ICmpInst::ICMP_ULT: 3871 case ICmpInst::ICMP_ULE: 3872 std::swap(LHS, RHS); 3873 // fall through 3874 case ICmpInst::ICMP_UGT: 3875 case ICmpInst::ICMP_UGE: 3876 // a >u b ? a+x : b+x -> umax(a, b)+x 3877 // a >u b ? b+x : a+x -> umin(a, b)+x 3878 if (LHS->getType() == U->getType()) { 3879 const SCEV *LS = getSCEV(LHS); 3880 const SCEV *RS = getSCEV(RHS); 3881 const SCEV *LA = getSCEV(U->getOperand(1)); 3882 const SCEV *RA = getSCEV(U->getOperand(2)); 3883 const SCEV *LDiff = getMinusSCEV(LA, LS); 3884 const SCEV *RDiff = getMinusSCEV(RA, RS); 3885 if (LDiff == RDiff) 3886 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3887 LDiff = getMinusSCEV(LA, RS); 3888 RDiff = getMinusSCEV(RA, LS); 3889 if (LDiff == RDiff) 3890 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3891 } 3892 break; 3893 case ICmpInst::ICMP_NE: 3894 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3895 if (LHS->getType() == U->getType() && 3896 isa<ConstantInt>(RHS) && 3897 cast<ConstantInt>(RHS)->isZero()) { 3898 const SCEV *One = getConstant(LHS->getType(), 1); 3899 const SCEV *LS = getSCEV(LHS); 3900 const SCEV *LA = getSCEV(U->getOperand(1)); 3901 const SCEV *RA = getSCEV(U->getOperand(2)); 3902 const SCEV *LDiff = getMinusSCEV(LA, LS); 3903 const SCEV *RDiff = getMinusSCEV(RA, One); 3904 if (LDiff == RDiff) 3905 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3906 } 3907 break; 3908 case ICmpInst::ICMP_EQ: 3909 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3910 if (LHS->getType() == U->getType() && 3911 isa<ConstantInt>(RHS) && 3912 cast<ConstantInt>(RHS)->isZero()) { 3913 const SCEV *One = getConstant(LHS->getType(), 1); 3914 const SCEV *LS = getSCEV(LHS); 3915 const SCEV *LA = getSCEV(U->getOperand(1)); 3916 const SCEV *RA = getSCEV(U->getOperand(2)); 3917 const SCEV *LDiff = getMinusSCEV(LA, One); 3918 const SCEV *RDiff = getMinusSCEV(RA, LS); 3919 if (LDiff == RDiff) 3920 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3921 } 3922 break; 3923 default: 3924 break; 3925 } 3926 } 3927 3928 default: // We cannot analyze this expression. 3929 break; 3930 } 3931 3932 return getUnknown(V); 3933 } 3934 3935 3936 3937 //===----------------------------------------------------------------------===// 3938 // Iteration Count Computation Code 3939 // 3940 3941 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 3942 /// normal unsigned value. Returns 0 if the trip count is unknown or not 3943 /// constant. Will also return 0 if the maximum trip count is very large (>= 3944 /// 2^32). 3945 /// 3946 /// This "trip count" assumes that control exits via ExitingBlock. More 3947 /// precisely, it is the number of times that control may reach ExitingBlock 3948 /// before taking the branch. For loops with multiple exits, it may not be the 3949 /// number times that the loop header executes because the loop may exit 3950 /// prematurely via another branch. 3951 unsigned ScalarEvolution:: 3952 getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) { 3953 const SCEVConstant *ExitCount = 3954 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 3955 if (!ExitCount) 3956 return 0; 3957 3958 ConstantInt *ExitConst = ExitCount->getValue(); 3959 3960 // Guard against huge trip counts. 3961 if (ExitConst->getValue().getActiveBits() > 32) 3962 return 0; 3963 3964 // In case of integer overflow, this returns 0, which is correct. 3965 return ((unsigned)ExitConst->getZExtValue()) + 1; 3966 } 3967 3968 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 3969 /// trip count of this loop as a normal unsigned value, if possible. This 3970 /// means that the actual trip count is always a multiple of the returned 3971 /// value (don't forget the trip count could very well be zero as well!). 3972 /// 3973 /// Returns 1 if the trip count is unknown or not guaranteed to be the 3974 /// multiple of a constant (which is also the case if the trip count is simply 3975 /// constant, use getSmallConstantTripCount for that case), Will also return 1 3976 /// if the trip count is very large (>= 2^32). 3977 /// 3978 /// As explained in the comments for getSmallConstantTripCount, this assumes 3979 /// that control exits the loop via ExitingBlock. 3980 unsigned ScalarEvolution:: 3981 getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) { 3982 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 3983 if (ExitCount == getCouldNotCompute()) 3984 return 1; 3985 3986 // Get the trip count from the BE count by adding 1. 3987 const SCEV *TCMul = getAddExpr(ExitCount, 3988 getConstant(ExitCount->getType(), 1)); 3989 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 3990 // to factor simple cases. 3991 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 3992 TCMul = Mul->getOperand(0); 3993 3994 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 3995 if (!MulC) 3996 return 1; 3997 3998 ConstantInt *Result = MulC->getValue(); 3999 4000 // Guard against huge trip counts. 4001 if (!Result || Result->getValue().getActiveBits() > 32) 4002 return 1; 4003 4004 return (unsigned)Result->getZExtValue(); 4005 } 4006 4007 // getExitCount - Get the expression for the number of loop iterations for which 4008 // this loop is guaranteed not to exit via ExitintBlock. Otherwise return 4009 // SCEVCouldNotCompute. 4010 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4011 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4012 } 4013 4014 /// getBackedgeTakenCount - If the specified loop has a predictable 4015 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4016 /// object. The backedge-taken count is the number of times the loop header 4017 /// will be branched to from within the loop. This is one less than the 4018 /// trip count of the loop, since it doesn't count the first iteration, 4019 /// when the header is branched to from outside the loop. 4020 /// 4021 /// Note that it is not valid to call this method on a loop without a 4022 /// loop-invariant backedge-taken count (see 4023 /// hasLoopInvariantBackedgeTakenCount). 4024 /// 4025 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4026 return getBackedgeTakenInfo(L).getExact(this); 4027 } 4028 4029 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4030 /// return the least SCEV value that is known never to be less than the 4031 /// actual backedge taken count. 4032 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4033 return getBackedgeTakenInfo(L).getMax(this); 4034 } 4035 4036 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4037 /// onto the given Worklist. 4038 static void 4039 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4040 BasicBlock *Header = L->getHeader(); 4041 4042 // Push all Loop-header PHIs onto the Worklist stack. 4043 for (BasicBlock::iterator I = Header->begin(); 4044 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4045 Worklist.push_back(PN); 4046 } 4047 4048 const ScalarEvolution::BackedgeTakenInfo & 4049 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4050 // Initially insert an invalid entry for this loop. If the insertion 4051 // succeeds, proceed to actually compute a backedge-taken count and 4052 // update the value. The temporary CouldNotCompute value tells SCEV 4053 // code elsewhere that it shouldn't attempt to request a new 4054 // backedge-taken count, which could result in infinite recursion. 4055 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4056 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4057 if (!Pair.second) 4058 return Pair.first->second; 4059 4060 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4061 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4062 // must be cleared in this scope. 4063 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4064 4065 if (Result.getExact(this) != getCouldNotCompute()) { 4066 assert(isLoopInvariant(Result.getExact(this), L) && 4067 isLoopInvariant(Result.getMax(this), L) && 4068 "Computed backedge-taken count isn't loop invariant for loop!"); 4069 ++NumTripCountsComputed; 4070 } 4071 else if (Result.getMax(this) == getCouldNotCompute() && 4072 isa<PHINode>(L->getHeader()->begin())) { 4073 // Only count loops that have phi nodes as not being computable. 4074 ++NumTripCountsNotComputed; 4075 } 4076 4077 // Now that we know more about the trip count for this loop, forget any 4078 // existing SCEV values for PHI nodes in this loop since they are only 4079 // conservative estimates made without the benefit of trip count 4080 // information. This is similar to the code in forgetLoop, except that 4081 // it handles SCEVUnknown PHI nodes specially. 4082 if (Result.hasAnyInfo()) { 4083 SmallVector<Instruction *, 16> Worklist; 4084 PushLoopPHIs(L, Worklist); 4085 4086 SmallPtrSet<Instruction *, 8> Visited; 4087 while (!Worklist.empty()) { 4088 Instruction *I = Worklist.pop_back_val(); 4089 if (!Visited.insert(I)) continue; 4090 4091 ValueExprMapType::iterator It = 4092 ValueExprMap.find(static_cast<Value *>(I)); 4093 if (It != ValueExprMap.end()) { 4094 const SCEV *Old = It->second; 4095 4096 // SCEVUnknown for a PHI either means that it has an unrecognized 4097 // structure, or it's a PHI that's in the progress of being computed 4098 // by createNodeForPHI. In the former case, additional loop trip 4099 // count information isn't going to change anything. In the later 4100 // case, createNodeForPHI will perform the necessary updates on its 4101 // own when it gets to that point. 4102 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4103 forgetMemoizedResults(Old); 4104 ValueExprMap.erase(It); 4105 } 4106 if (PHINode *PN = dyn_cast<PHINode>(I)) 4107 ConstantEvolutionLoopExitValue.erase(PN); 4108 } 4109 4110 PushDefUseChildren(I, Worklist); 4111 } 4112 } 4113 4114 // Re-lookup the insert position, since the call to 4115 // ComputeBackedgeTakenCount above could result in a 4116 // recusive call to getBackedgeTakenInfo (on a different 4117 // loop), which would invalidate the iterator computed 4118 // earlier. 4119 return BackedgeTakenCounts.find(L)->second = Result; 4120 } 4121 4122 /// forgetLoop - This method should be called by the client when it has 4123 /// changed a loop in a way that may effect ScalarEvolution's ability to 4124 /// compute a trip count, or if the loop is deleted. 4125 void ScalarEvolution::forgetLoop(const Loop *L) { 4126 // Drop any stored trip count value. 4127 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4128 BackedgeTakenCounts.find(L); 4129 if (BTCPos != BackedgeTakenCounts.end()) { 4130 BTCPos->second.clear(); 4131 BackedgeTakenCounts.erase(BTCPos); 4132 } 4133 4134 // Drop information about expressions based on loop-header PHIs. 4135 SmallVector<Instruction *, 16> Worklist; 4136 PushLoopPHIs(L, Worklist); 4137 4138 SmallPtrSet<Instruction *, 8> Visited; 4139 while (!Worklist.empty()) { 4140 Instruction *I = Worklist.pop_back_val(); 4141 if (!Visited.insert(I)) continue; 4142 4143 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 4144 if (It != ValueExprMap.end()) { 4145 forgetMemoizedResults(It->second); 4146 ValueExprMap.erase(It); 4147 if (PHINode *PN = dyn_cast<PHINode>(I)) 4148 ConstantEvolutionLoopExitValue.erase(PN); 4149 } 4150 4151 PushDefUseChildren(I, Worklist); 4152 } 4153 4154 // Forget all contained loops too, to avoid dangling entries in the 4155 // ValuesAtScopes map. 4156 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4157 forgetLoop(*I); 4158 } 4159 4160 /// forgetValue - This method should be called by the client when it has 4161 /// changed a value in a way that may effect its value, or which may 4162 /// disconnect it from a def-use chain linking it to a loop. 4163 void ScalarEvolution::forgetValue(Value *V) { 4164 Instruction *I = dyn_cast<Instruction>(V); 4165 if (!I) return; 4166 4167 // Drop information about expressions based on loop-header PHIs. 4168 SmallVector<Instruction *, 16> Worklist; 4169 Worklist.push_back(I); 4170 4171 SmallPtrSet<Instruction *, 8> Visited; 4172 while (!Worklist.empty()) { 4173 I = Worklist.pop_back_val(); 4174 if (!Visited.insert(I)) continue; 4175 4176 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 4177 if (It != ValueExprMap.end()) { 4178 forgetMemoizedResults(It->second); 4179 ValueExprMap.erase(It); 4180 if (PHINode *PN = dyn_cast<PHINode>(I)) 4181 ConstantEvolutionLoopExitValue.erase(PN); 4182 } 4183 4184 PushDefUseChildren(I, Worklist); 4185 } 4186 } 4187 4188 /// getExact - Get the exact loop backedge taken count considering all loop 4189 /// exits. A computable result can only be return for loops with a single exit. 4190 /// Returning the minimum taken count among all exits is incorrect because one 4191 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4192 /// the limit of each loop test is never skipped. This is a valid assumption as 4193 /// long as the loop exits via that test. For precise results, it is the 4194 /// caller's responsibility to specify the relevant loop exit using 4195 /// getExact(ExitingBlock, SE). 4196 const SCEV * 4197 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4198 // If any exits were not computable, the loop is not computable. 4199 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4200 4201 // We need exactly one computable exit. 4202 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4203 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4204 4205 const SCEV *BECount = 0; 4206 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4207 ENT != 0; ENT = ENT->getNextExit()) { 4208 4209 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4210 4211 if (!BECount) 4212 BECount = ENT->ExactNotTaken; 4213 else if (BECount != ENT->ExactNotTaken) 4214 return SE->getCouldNotCompute(); 4215 } 4216 assert(BECount && "Invalid not taken count for loop exit"); 4217 return BECount; 4218 } 4219 4220 /// getExact - Get the exact not taken count for this loop exit. 4221 const SCEV * 4222 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4223 ScalarEvolution *SE) const { 4224 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4225 ENT != 0; ENT = ENT->getNextExit()) { 4226 4227 if (ENT->ExitingBlock == ExitingBlock) 4228 return ENT->ExactNotTaken; 4229 } 4230 return SE->getCouldNotCompute(); 4231 } 4232 4233 /// getMax - Get the max backedge taken count for the loop. 4234 const SCEV * 4235 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4236 return Max ? Max : SE->getCouldNotCompute(); 4237 } 4238 4239 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4240 /// computable exit into a persistent ExitNotTakenInfo array. 4241 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4242 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4243 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4244 4245 if (!Complete) 4246 ExitNotTaken.setIncomplete(); 4247 4248 unsigned NumExits = ExitCounts.size(); 4249 if (NumExits == 0) return; 4250 4251 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4252 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4253 if (NumExits == 1) return; 4254 4255 // Handle the rare case of multiple computable exits. 4256 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4257 4258 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4259 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4260 PrevENT->setNextExit(ENT); 4261 ENT->ExitingBlock = ExitCounts[i].first; 4262 ENT->ExactNotTaken = ExitCounts[i].second; 4263 } 4264 } 4265 4266 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4267 void ScalarEvolution::BackedgeTakenInfo::clear() { 4268 ExitNotTaken.ExitingBlock = 0; 4269 ExitNotTaken.ExactNotTaken = 0; 4270 delete[] ExitNotTaken.getNextExit(); 4271 } 4272 4273 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4274 /// of the specified loop will execute. 4275 ScalarEvolution::BackedgeTakenInfo 4276 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4277 SmallVector<BasicBlock *, 8> ExitingBlocks; 4278 L->getExitingBlocks(ExitingBlocks); 4279 4280 // Examine all exits and pick the most conservative values. 4281 const SCEV *MaxBECount = getCouldNotCompute(); 4282 bool CouldComputeBECount = true; 4283 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4284 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4285 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); 4286 if (EL.Exact == getCouldNotCompute()) 4287 // We couldn't compute an exact value for this exit, so 4288 // we won't be able to compute an exact value for the loop. 4289 CouldComputeBECount = false; 4290 else 4291 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); 4292 4293 if (MaxBECount == getCouldNotCompute()) 4294 MaxBECount = EL.Max; 4295 else if (EL.Max != getCouldNotCompute()) { 4296 // We cannot take the "min" MaxBECount, because non-unit stride loops may 4297 // skip some loop tests. Taking the max over the exits is sufficiently 4298 // conservative. TODO: We could do better taking into consideration 4299 // that (1) the loop has unit stride (2) the last loop test is 4300 // less-than/greater-than (3) any loop test is less-than/greater-than AND 4301 // falls-through some constant times less then the other tests. 4302 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max); 4303 } 4304 } 4305 4306 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4307 } 4308 4309 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4310 /// loop will execute if it exits via the specified block. 4311 ScalarEvolution::ExitLimit 4312 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4313 4314 // Okay, we've chosen an exiting block. See what condition causes us to 4315 // exit at this block. 4316 // 4317 // FIXME: we should be able to handle switch instructions (with a single exit) 4318 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 4319 if (ExitBr == 0) return getCouldNotCompute(); 4320 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 4321 4322 // At this point, we know we have a conditional branch that determines whether 4323 // the loop is exited. However, we don't know if the branch is executed each 4324 // time through the loop. If not, then the execution count of the branch will 4325 // not be equal to the trip count of the loop. 4326 // 4327 // Currently we check for this by checking to see if the Exit branch goes to 4328 // the loop header. If so, we know it will always execute the same number of 4329 // times as the loop. We also handle the case where the exit block *is* the 4330 // loop header. This is common for un-rotated loops. 4331 // 4332 // If both of those tests fail, walk up the unique predecessor chain to the 4333 // header, stopping if there is an edge that doesn't exit the loop. If the 4334 // header is reached, the execution count of the branch will be equal to the 4335 // trip count of the loop. 4336 // 4337 // More extensive analysis could be done to handle more cases here. 4338 // 4339 if (ExitBr->getSuccessor(0) != L->getHeader() && 4340 ExitBr->getSuccessor(1) != L->getHeader() && 4341 ExitBr->getParent() != L->getHeader()) { 4342 // The simple checks failed, try climbing the unique predecessor chain 4343 // up to the header. 4344 bool Ok = false; 4345 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 4346 BasicBlock *Pred = BB->getUniquePredecessor(); 4347 if (!Pred) 4348 return getCouldNotCompute(); 4349 TerminatorInst *PredTerm = Pred->getTerminator(); 4350 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4351 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4352 if (PredSucc == BB) 4353 continue; 4354 // If the predecessor has a successor that isn't BB and isn't 4355 // outside the loop, assume the worst. 4356 if (L->contains(PredSucc)) 4357 return getCouldNotCompute(); 4358 } 4359 if (Pred == L->getHeader()) { 4360 Ok = true; 4361 break; 4362 } 4363 BB = Pred; 4364 } 4365 if (!Ok) 4366 return getCouldNotCompute(); 4367 } 4368 4369 // Proceed to the next level to examine the exit condition expression. 4370 return ComputeExitLimitFromCond(L, ExitBr->getCondition(), 4371 ExitBr->getSuccessor(0), 4372 ExitBr->getSuccessor(1)); 4373 } 4374 4375 /// ComputeExitLimitFromCond - Compute the number of times the 4376 /// backedge of the specified loop will execute if its exit condition 4377 /// were a conditional branch of ExitCond, TBB, and FBB. 4378 ScalarEvolution::ExitLimit 4379 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4380 Value *ExitCond, 4381 BasicBlock *TBB, 4382 BasicBlock *FBB) { 4383 // Check if the controlling expression for this loop is an And or Or. 4384 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4385 if (BO->getOpcode() == Instruction::And) { 4386 // Recurse on the operands of the and. 4387 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4388 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4389 const SCEV *BECount = getCouldNotCompute(); 4390 const SCEV *MaxBECount = getCouldNotCompute(); 4391 if (L->contains(TBB)) { 4392 // Both conditions must be true for the loop to continue executing. 4393 // Choose the less conservative count. 4394 if (EL0.Exact == getCouldNotCompute() || 4395 EL1.Exact == getCouldNotCompute()) 4396 BECount = getCouldNotCompute(); 4397 else 4398 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4399 if (EL0.Max == getCouldNotCompute()) 4400 MaxBECount = EL1.Max; 4401 else if (EL1.Max == getCouldNotCompute()) 4402 MaxBECount = EL0.Max; 4403 else 4404 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4405 } else { 4406 // Both conditions must be true at the same time for the loop to exit. 4407 // For now, be conservative. 4408 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4409 if (EL0.Max == EL1.Max) 4410 MaxBECount = EL0.Max; 4411 if (EL0.Exact == EL1.Exact) 4412 BECount = EL0.Exact; 4413 } 4414 4415 return ExitLimit(BECount, MaxBECount); 4416 } 4417 if (BO->getOpcode() == Instruction::Or) { 4418 // Recurse on the operands of the or. 4419 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4420 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4421 const SCEV *BECount = getCouldNotCompute(); 4422 const SCEV *MaxBECount = getCouldNotCompute(); 4423 if (L->contains(FBB)) { 4424 // Both conditions must be false for the loop to continue executing. 4425 // Choose the less conservative count. 4426 if (EL0.Exact == getCouldNotCompute() || 4427 EL1.Exact == getCouldNotCompute()) 4428 BECount = getCouldNotCompute(); 4429 else 4430 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4431 if (EL0.Max == getCouldNotCompute()) 4432 MaxBECount = EL1.Max; 4433 else if (EL1.Max == getCouldNotCompute()) 4434 MaxBECount = EL0.Max; 4435 else 4436 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4437 } else { 4438 // Both conditions must be false at the same time for the loop to exit. 4439 // For now, be conservative. 4440 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4441 if (EL0.Max == EL1.Max) 4442 MaxBECount = EL0.Max; 4443 if (EL0.Exact == EL1.Exact) 4444 BECount = EL0.Exact; 4445 } 4446 4447 return ExitLimit(BECount, MaxBECount); 4448 } 4449 } 4450 4451 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4452 // Proceed to the next level to examine the icmp. 4453 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4454 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB); 4455 4456 // Check for a constant condition. These are normally stripped out by 4457 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4458 // preserve the CFG and is temporarily leaving constant conditions 4459 // in place. 4460 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4461 if (L->contains(FBB) == !CI->getZExtValue()) 4462 // The backedge is always taken. 4463 return getCouldNotCompute(); 4464 else 4465 // The backedge is never taken. 4466 return getConstant(CI->getType(), 0); 4467 } 4468 4469 // If it's not an integer or pointer comparison then compute it the hard way. 4470 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4471 } 4472 4473 /// ComputeExitLimitFromICmp - Compute the number of times the 4474 /// backedge of the specified loop will execute if its exit condition 4475 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4476 ScalarEvolution::ExitLimit 4477 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4478 ICmpInst *ExitCond, 4479 BasicBlock *TBB, 4480 BasicBlock *FBB) { 4481 4482 // If the condition was exit on true, convert the condition to exit on false 4483 ICmpInst::Predicate Cond; 4484 if (!L->contains(FBB)) 4485 Cond = ExitCond->getPredicate(); 4486 else 4487 Cond = ExitCond->getInversePredicate(); 4488 4489 // Handle common loops like: for (X = "string"; *X; ++X) 4490 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4491 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4492 ExitLimit ItCnt = 4493 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4494 if (ItCnt.hasAnyInfo()) 4495 return ItCnt; 4496 } 4497 4498 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4499 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4500 4501 // Try to evaluate any dependencies out of the loop. 4502 LHS = getSCEVAtScope(LHS, L); 4503 RHS = getSCEVAtScope(RHS, L); 4504 4505 // At this point, we would like to compute how many iterations of the 4506 // loop the predicate will return true for these inputs. 4507 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4508 // If there is a loop-invariant, force it into the RHS. 4509 std::swap(LHS, RHS); 4510 Cond = ICmpInst::getSwappedPredicate(Cond); 4511 } 4512 4513 // Simplify the operands before analyzing them. 4514 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4515 4516 // If we have a comparison of a chrec against a constant, try to use value 4517 // ranges to answer this query. 4518 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4519 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4520 if (AddRec->getLoop() == L) { 4521 // Form the constant range. 4522 ConstantRange CompRange( 4523 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4524 4525 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4526 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4527 } 4528 4529 switch (Cond) { 4530 case ICmpInst::ICMP_NE: { // while (X != Y) 4531 // Convert to: while (X-Y != 0) 4532 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L); 4533 if (EL.hasAnyInfo()) return EL; 4534 break; 4535 } 4536 case ICmpInst::ICMP_EQ: { // while (X == Y) 4537 // Convert to: while (X-Y == 0) 4538 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4539 if (EL.hasAnyInfo()) return EL; 4540 break; 4541 } 4542 case ICmpInst::ICMP_SLT: { 4543 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true); 4544 if (EL.hasAnyInfo()) return EL; 4545 break; 4546 } 4547 case ICmpInst::ICMP_SGT: { 4548 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4549 getNotSCEV(RHS), L, true); 4550 if (EL.hasAnyInfo()) return EL; 4551 break; 4552 } 4553 case ICmpInst::ICMP_ULT: { 4554 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false); 4555 if (EL.hasAnyInfo()) return EL; 4556 break; 4557 } 4558 case ICmpInst::ICMP_UGT: { 4559 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4560 getNotSCEV(RHS), L, false); 4561 if (EL.hasAnyInfo()) return EL; 4562 break; 4563 } 4564 default: 4565 #if 0 4566 dbgs() << "ComputeBackedgeTakenCount "; 4567 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4568 dbgs() << "[unsigned] "; 4569 dbgs() << *LHS << " " 4570 << Instruction::getOpcodeName(Instruction::ICmp) 4571 << " " << *RHS << "\n"; 4572 #endif 4573 break; 4574 } 4575 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4576 } 4577 4578 static ConstantInt * 4579 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4580 ScalarEvolution &SE) { 4581 const SCEV *InVal = SE.getConstant(C); 4582 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4583 assert(isa<SCEVConstant>(Val) && 4584 "Evaluation of SCEV at constant didn't fold correctly?"); 4585 return cast<SCEVConstant>(Val)->getValue(); 4586 } 4587 4588 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 4589 /// and a GEP expression (missing the pointer index) indexing into it, return 4590 /// the addressed element of the initializer or null if the index expression is 4591 /// invalid. 4592 static Constant * 4593 GetAddressedElementFromGlobal(GlobalVariable *GV, 4594 const std::vector<ConstantInt*> &Indices) { 4595 Constant *Init = GV->getInitializer(); 4596 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 4597 uint64_t Idx = Indices[i]->getZExtValue(); 4598 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 4599 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 4600 Init = cast<Constant>(CS->getOperand(Idx)); 4601 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4602 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4603 Init = cast<Constant>(CA->getOperand(Idx)); 4604 } else if (isa<ConstantAggregateZero>(Init)) { 4605 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 4606 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4607 Init = Constant::getNullValue(STy->getElementType(Idx)); 4608 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4609 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4610 Init = Constant::getNullValue(ATy->getElementType()); 4611 } else { 4612 llvm_unreachable("Unknown constant aggregate type!"); 4613 } 4614 } else { 4615 return 0; // Unknown initializer type 4616 } 4617 } 4618 return Init; 4619 } 4620 4621 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4622 /// 'icmp op load X, cst', try to see if we can compute the backedge 4623 /// execution count. 4624 ScalarEvolution::ExitLimit 4625 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4626 LoadInst *LI, 4627 Constant *RHS, 4628 const Loop *L, 4629 ICmpInst::Predicate predicate) { 4630 4631 if (LI->isVolatile()) return getCouldNotCompute(); 4632 4633 // Check to see if the loaded pointer is a getelementptr of a global. 4634 // TODO: Use SCEV instead of manually grubbing with GEPs. 4635 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4636 if (!GEP) return getCouldNotCompute(); 4637 4638 // Make sure that it is really a constant global we are gepping, with an 4639 // initializer, and make sure the first IDX is really 0. 4640 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4641 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4642 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4643 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4644 return getCouldNotCompute(); 4645 4646 // Okay, we allow one non-constant index into the GEP instruction. 4647 Value *VarIdx = 0; 4648 std::vector<ConstantInt*> Indexes; 4649 unsigned VarIdxNum = 0; 4650 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4651 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4652 Indexes.push_back(CI); 4653 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4654 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4655 VarIdx = GEP->getOperand(i); 4656 VarIdxNum = i-2; 4657 Indexes.push_back(0); 4658 } 4659 4660 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4661 // Check to see if X is a loop variant variable value now. 4662 const SCEV *Idx = getSCEV(VarIdx); 4663 Idx = getSCEVAtScope(Idx, L); 4664 4665 // We can only recognize very limited forms of loop index expressions, in 4666 // particular, only affine AddRec's like {C1,+,C2}. 4667 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4668 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4669 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4670 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4671 return getCouldNotCompute(); 4672 4673 unsigned MaxSteps = MaxBruteForceIterations; 4674 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4675 ConstantInt *ItCst = ConstantInt::get( 4676 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4677 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4678 4679 // Form the GEP offset. 4680 Indexes[VarIdxNum] = Val; 4681 4682 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4683 if (Result == 0) break; // Cannot compute! 4684 4685 // Evaluate the condition for this iteration. 4686 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4687 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4688 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4689 #if 0 4690 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4691 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4692 << "***\n"; 4693 #endif 4694 ++NumArrayLenItCounts; 4695 return getConstant(ItCst); // Found terminating iteration! 4696 } 4697 } 4698 return getCouldNotCompute(); 4699 } 4700 4701 4702 /// CanConstantFold - Return true if we can constant fold an instruction of the 4703 /// specified type, assuming that all operands were constants. 4704 static bool CanConstantFold(const Instruction *I) { 4705 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4706 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4707 isa<LoadInst>(I)) 4708 return true; 4709 4710 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4711 if (const Function *F = CI->getCalledFunction()) 4712 return canConstantFoldCallTo(F); 4713 return false; 4714 } 4715 4716 /// Determine whether this instruction can constant evolve within this loop 4717 /// assuming its operands can all constant evolve. 4718 static bool canConstantEvolve(Instruction *I, const Loop *L) { 4719 // An instruction outside of the loop can't be derived from a loop PHI. 4720 if (!L->contains(I)) return false; 4721 4722 if (isa<PHINode>(I)) { 4723 if (L->getHeader() == I->getParent()) 4724 return true; 4725 else 4726 // We don't currently keep track of the control flow needed to evaluate 4727 // PHIs, so we cannot handle PHIs inside of loops. 4728 return false; 4729 } 4730 4731 // If we won't be able to constant fold this expression even if the operands 4732 // are constants, bail early. 4733 return CanConstantFold(I); 4734 } 4735 4736 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 4737 /// recursing through each instruction operand until reaching a loop header phi. 4738 static PHINode * 4739 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 4740 DenseMap<Instruction *, PHINode *> &PHIMap) { 4741 4742 // Otherwise, we can evaluate this instruction if all of its operands are 4743 // constant or derived from a PHI node themselves. 4744 PHINode *PHI = 0; 4745 for (Instruction::op_iterator OpI = UseInst->op_begin(), 4746 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 4747 4748 if (isa<Constant>(*OpI)) continue; 4749 4750 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 4751 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0; 4752 4753 PHINode *P = dyn_cast<PHINode>(OpInst); 4754 if (!P) 4755 // If this operand is already visited, reuse the prior result. 4756 // We may have P != PHI if this is the deepest point at which the 4757 // inconsistent paths meet. 4758 P = PHIMap.lookup(OpInst); 4759 if (!P) { 4760 // Recurse and memoize the results, whether a phi is found or not. 4761 // This recursive call invalidates pointers into PHIMap. 4762 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 4763 PHIMap[OpInst] = P; 4764 } 4765 if (P == 0) return 0; // Not evolving from PHI 4766 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs. 4767 PHI = P; 4768 } 4769 // This is a expression evolving from a constant PHI! 4770 return PHI; 4771 } 4772 4773 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4774 /// in the loop that V is derived from. We allow arbitrary operations along the 4775 /// way, but the operands of an operation must either be constants or a value 4776 /// derived from a constant PHI. If this expression does not fit with these 4777 /// constraints, return null. 4778 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4779 Instruction *I = dyn_cast<Instruction>(V); 4780 if (I == 0 || !canConstantEvolve(I, L)) return 0; 4781 4782 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4783 return PN; 4784 } 4785 4786 // Record non-constant instructions contained by the loop. 4787 DenseMap<Instruction *, PHINode *> PHIMap; 4788 return getConstantEvolvingPHIOperands(I, L, PHIMap); 4789 } 4790 4791 /// EvaluateExpression - Given an expression that passes the 4792 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4793 /// in the loop has the value PHIVal. If we can't fold this expression for some 4794 /// reason, return null. 4795 static Constant *EvaluateExpression(Value *V, const Loop *L, 4796 DenseMap<Instruction *, Constant *> &Vals, 4797 const TargetData *TD, 4798 const TargetLibraryInfo *TLI) { 4799 // Convenient constant check, but redundant for recursive calls. 4800 if (Constant *C = dyn_cast<Constant>(V)) return C; 4801 Instruction *I = dyn_cast<Instruction>(V); 4802 if (!I) return 0; 4803 4804 if (Constant *C = Vals.lookup(I)) return C; 4805 4806 // An instruction inside the loop depends on a value outside the loop that we 4807 // weren't given a mapping for, or a value such as a call inside the loop. 4808 if (!canConstantEvolve(I, L)) return 0; 4809 4810 // An unmapped PHI can be due to a branch or another loop inside this loop, 4811 // or due to this not being the initial iteration through a loop where we 4812 // couldn't compute the evolution of this particular PHI last time. 4813 if (isa<PHINode>(I)) return 0; 4814 4815 std::vector<Constant*> Operands(I->getNumOperands()); 4816 4817 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4818 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 4819 if (!Operand) { 4820 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 4821 if (!Operands[i]) return 0; 4822 continue; 4823 } 4824 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI); 4825 Vals[Operand] = C; 4826 if (!C) return 0; 4827 Operands[i] = C; 4828 } 4829 4830 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4831 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4832 Operands[1], TD, TLI); 4833 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4834 if (!LI->isVolatile()) 4835 return ConstantFoldLoadFromConstPtr(Operands[0], TD); 4836 } 4837 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD, 4838 TLI); 4839 } 4840 4841 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4842 /// in the header of its containing loop, we know the loop executes a 4843 /// constant number of times, and the PHI node is just a recurrence 4844 /// involving constants, fold it. 4845 Constant * 4846 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4847 const APInt &BEs, 4848 const Loop *L) { 4849 DenseMap<PHINode*, Constant*>::const_iterator I = 4850 ConstantEvolutionLoopExitValue.find(PN); 4851 if (I != ConstantEvolutionLoopExitValue.end()) 4852 return I->second; 4853 4854 if (BEs.ugt(MaxBruteForceIterations)) 4855 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4856 4857 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4858 4859 DenseMap<Instruction *, Constant *> CurrentIterVals; 4860 BasicBlock *Header = L->getHeader(); 4861 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4862 4863 // Since the loop is canonicalized, the PHI node must have two entries. One 4864 // entry must be a constant (coming in from outside of the loop), and the 4865 // second must be derived from the same PHI. 4866 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4867 PHINode *PHI = 0; 4868 for (BasicBlock::iterator I = Header->begin(); 4869 (PHI = dyn_cast<PHINode>(I)); ++I) { 4870 Constant *StartCST = 4871 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 4872 if (StartCST == 0) continue; 4873 CurrentIterVals[PHI] = StartCST; 4874 } 4875 if (!CurrentIterVals.count(PN)) 4876 return RetVal = 0; 4877 4878 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4879 4880 // Execute the loop symbolically to determine the exit value. 4881 if (BEs.getActiveBits() >= 32) 4882 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4883 4884 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4885 unsigned IterationNum = 0; 4886 for (; ; ++IterationNum) { 4887 if (IterationNum == NumIterations) 4888 return RetVal = CurrentIterVals[PN]; // Got exit value! 4889 4890 // Compute the value of the PHIs for the next iteration. 4891 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 4892 DenseMap<Instruction *, Constant *> NextIterVals; 4893 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, 4894 TLI); 4895 if (NextPHI == 0) 4896 return 0; // Couldn't evaluate! 4897 NextIterVals[PN] = NextPHI; 4898 4899 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 4900 4901 // Also evaluate the other PHI nodes. However, we don't get to stop if we 4902 // cease to be able to evaluate one of them or if they stop evolving, 4903 // because that doesn't necessarily prevent us from computing PN. 4904 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 4905 for (DenseMap<Instruction *, Constant *>::const_iterator 4906 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 4907 PHINode *PHI = dyn_cast<PHINode>(I->first); 4908 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 4909 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 4910 } 4911 // We use two distinct loops because EvaluateExpression may invalidate any 4912 // iterators into CurrentIterVals. 4913 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 4914 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 4915 PHINode *PHI = I->first; 4916 Constant *&NextPHI = NextIterVals[PHI]; 4917 if (!NextPHI) { // Not already computed. 4918 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 4919 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 4920 } 4921 if (NextPHI != I->second) 4922 StoppedEvolving = false; 4923 } 4924 4925 // If all entries in CurrentIterVals == NextIterVals then we can stop 4926 // iterating, the loop can't continue to change. 4927 if (StoppedEvolving) 4928 return RetVal = CurrentIterVals[PN]; 4929 4930 CurrentIterVals.swap(NextIterVals); 4931 } 4932 } 4933 4934 /// ComputeExitCountExhaustively - If the loop is known to execute a 4935 /// constant number of times (the condition evolves only from constants), 4936 /// try to evaluate a few iterations of the loop until we get the exit 4937 /// condition gets a value of ExitWhen (true or false). If we cannot 4938 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4939 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 4940 Value *Cond, 4941 bool ExitWhen) { 4942 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4943 if (PN == 0) return getCouldNotCompute(); 4944 4945 // If the loop is canonicalized, the PHI will have exactly two entries. 4946 // That's the only form we support here. 4947 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4948 4949 DenseMap<Instruction *, Constant *> CurrentIterVals; 4950 BasicBlock *Header = L->getHeader(); 4951 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4952 4953 // One entry must be a constant (coming in from outside of the loop), and the 4954 // second must be derived from the same PHI. 4955 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4956 PHINode *PHI = 0; 4957 for (BasicBlock::iterator I = Header->begin(); 4958 (PHI = dyn_cast<PHINode>(I)); ++I) { 4959 Constant *StartCST = 4960 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 4961 if (StartCST == 0) continue; 4962 CurrentIterVals[PHI] = StartCST; 4963 } 4964 if (!CurrentIterVals.count(PN)) 4965 return getCouldNotCompute(); 4966 4967 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4968 // the loop symbolically to determine when the condition gets a value of 4969 // "ExitWhen". 4970 4971 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4972 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 4973 ConstantInt *CondVal = 4974 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 4975 TD, TLI)); 4976 4977 // Couldn't symbolically evaluate. 4978 if (!CondVal) return getCouldNotCompute(); 4979 4980 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4981 ++NumBruteForceTripCountsComputed; 4982 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4983 } 4984 4985 // Update all the PHI nodes for the next iteration. 4986 DenseMap<Instruction *, Constant *> NextIterVals; 4987 4988 // Create a list of which PHIs we need to compute. We want to do this before 4989 // calling EvaluateExpression on them because that may invalidate iterators 4990 // into CurrentIterVals. 4991 SmallVector<PHINode *, 8> PHIsToCompute; 4992 for (DenseMap<Instruction *, Constant *>::const_iterator 4993 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 4994 PHINode *PHI = dyn_cast<PHINode>(I->first); 4995 if (!PHI || PHI->getParent() != Header) continue; 4996 PHIsToCompute.push_back(PHI); 4997 } 4998 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 4999 E = PHIsToCompute.end(); I != E; ++I) { 5000 PHINode *PHI = *I; 5001 Constant *&NextPHI = NextIterVals[PHI]; 5002 if (NextPHI) continue; // Already computed! 5003 5004 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5005 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 5006 } 5007 CurrentIterVals.swap(NextIterVals); 5008 } 5009 5010 // Too many iterations were needed to evaluate. 5011 return getCouldNotCompute(); 5012 } 5013 5014 /// getSCEVAtScope - Return a SCEV expression for the specified value 5015 /// at the specified scope in the program. The L value specifies a loop 5016 /// nest to evaluate the expression at, where null is the top-level or a 5017 /// specified loop is immediately inside of the loop. 5018 /// 5019 /// This method can be used to compute the exit value for a variable defined 5020 /// in a loop by querying what the value will hold in the parent loop. 5021 /// 5022 /// In the case that a relevant loop exit value cannot be computed, the 5023 /// original value V is returned. 5024 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5025 // Check to see if we've folded this expression at this loop before. 5026 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 5027 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 5028 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 5029 if (!Pair.second) 5030 return Pair.first->second ? Pair.first->second : V; 5031 5032 // Otherwise compute it. 5033 const SCEV *C = computeSCEVAtScope(V, L); 5034 ValuesAtScopes[V][L] = C; 5035 return C; 5036 } 5037 5038 /// This builds up a Constant using the ConstantExpr interface. That way, we 5039 /// will return Constants for objects which aren't represented by a 5040 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5041 /// Returns NULL if the SCEV isn't representable as a Constant. 5042 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5043 switch (V->getSCEVType()) { 5044 default: // TODO: smax, umax. 5045 case scCouldNotCompute: 5046 case scAddRecExpr: 5047 break; 5048 case scConstant: 5049 return cast<SCEVConstant>(V)->getValue(); 5050 case scUnknown: 5051 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5052 case scSignExtend: { 5053 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5054 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5055 return ConstantExpr::getSExt(CastOp, SS->getType()); 5056 break; 5057 } 5058 case scZeroExtend: { 5059 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5060 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5061 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5062 break; 5063 } 5064 case scTruncate: { 5065 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5066 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5067 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5068 break; 5069 } 5070 case scAddExpr: { 5071 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5072 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5073 if (C->getType()->isPointerTy()) 5074 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext())); 5075 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5076 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5077 if (!C2) return 0; 5078 5079 // First pointer! 5080 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5081 std::swap(C, C2); 5082 // The offsets have been converted to bytes. We can add bytes to an 5083 // i8* by GEP with the byte count in the first index. 5084 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext())); 5085 } 5086 5087 // Don't bother trying to sum two pointers. We probably can't 5088 // statically compute a load that results from it anyway. 5089 if (C2->getType()->isPointerTy()) 5090 return 0; 5091 5092 if (C->getType()->isPointerTy()) { 5093 if (cast<PointerType>(C->getType())->getElementType()->isStructTy()) 5094 C2 = ConstantExpr::getIntegerCast( 5095 C2, Type::getInt32Ty(C->getContext()), true); 5096 C = ConstantExpr::getGetElementPtr(C, C2); 5097 } else 5098 C = ConstantExpr::getAdd(C, C2); 5099 } 5100 return C; 5101 } 5102 break; 5103 } 5104 case scMulExpr: { 5105 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5106 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5107 // Don't bother with pointers at all. 5108 if (C->getType()->isPointerTy()) return 0; 5109 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5110 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5111 if (!C2 || C2->getType()->isPointerTy()) return 0; 5112 C = ConstantExpr::getMul(C, C2); 5113 } 5114 return C; 5115 } 5116 break; 5117 } 5118 case scUDivExpr: { 5119 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5120 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5121 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5122 if (LHS->getType() == RHS->getType()) 5123 return ConstantExpr::getUDiv(LHS, RHS); 5124 break; 5125 } 5126 } 5127 return 0; 5128 } 5129 5130 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5131 if (isa<SCEVConstant>(V)) return V; 5132 5133 // If this instruction is evolved from a constant-evolving PHI, compute the 5134 // exit value from the loop without using SCEVs. 5135 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5136 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5137 const Loop *LI = (*this->LI)[I->getParent()]; 5138 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5139 if (PHINode *PN = dyn_cast<PHINode>(I)) 5140 if (PN->getParent() == LI->getHeader()) { 5141 // Okay, there is no closed form solution for the PHI node. Check 5142 // to see if the loop that contains it has a known backedge-taken 5143 // count. If so, we may be able to force computation of the exit 5144 // value. 5145 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5146 if (const SCEVConstant *BTCC = 5147 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5148 // Okay, we know how many times the containing loop executes. If 5149 // this is a constant evolving PHI node, get the final value at 5150 // the specified iteration number. 5151 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5152 BTCC->getValue()->getValue(), 5153 LI); 5154 if (RV) return getSCEV(RV); 5155 } 5156 } 5157 5158 // Okay, this is an expression that we cannot symbolically evaluate 5159 // into a SCEV. Check to see if it's possible to symbolically evaluate 5160 // the arguments into constants, and if so, try to constant propagate the 5161 // result. This is particularly useful for computing loop exit values. 5162 if (CanConstantFold(I)) { 5163 SmallVector<Constant *, 4> Operands; 5164 bool MadeImprovement = false; 5165 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5166 Value *Op = I->getOperand(i); 5167 if (Constant *C = dyn_cast<Constant>(Op)) { 5168 Operands.push_back(C); 5169 continue; 5170 } 5171 5172 // If any of the operands is non-constant and if they are 5173 // non-integer and non-pointer, don't even try to analyze them 5174 // with scev techniques. 5175 if (!isSCEVable(Op->getType())) 5176 return V; 5177 5178 const SCEV *OrigV = getSCEV(Op); 5179 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5180 MadeImprovement |= OrigV != OpV; 5181 5182 Constant *C = BuildConstantFromSCEV(OpV); 5183 if (!C) return V; 5184 if (C->getType() != Op->getType()) 5185 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5186 Op->getType(), 5187 false), 5188 C, Op->getType()); 5189 Operands.push_back(C); 5190 } 5191 5192 // Check to see if getSCEVAtScope actually made an improvement. 5193 if (MadeImprovement) { 5194 Constant *C = 0; 5195 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5196 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5197 Operands[0], Operands[1], TD, 5198 TLI); 5199 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5200 if (!LI->isVolatile()) 5201 C = ConstantFoldLoadFromConstPtr(Operands[0], TD); 5202 } else 5203 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5204 Operands, TD, TLI); 5205 if (!C) return V; 5206 return getSCEV(C); 5207 } 5208 } 5209 } 5210 5211 // This is some other type of SCEVUnknown, just return it. 5212 return V; 5213 } 5214 5215 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5216 // Avoid performing the look-up in the common case where the specified 5217 // expression has no loop-variant portions. 5218 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5219 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5220 if (OpAtScope != Comm->getOperand(i)) { 5221 // Okay, at least one of these operands is loop variant but might be 5222 // foldable. Build a new instance of the folded commutative expression. 5223 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5224 Comm->op_begin()+i); 5225 NewOps.push_back(OpAtScope); 5226 5227 for (++i; i != e; ++i) { 5228 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5229 NewOps.push_back(OpAtScope); 5230 } 5231 if (isa<SCEVAddExpr>(Comm)) 5232 return getAddExpr(NewOps); 5233 if (isa<SCEVMulExpr>(Comm)) 5234 return getMulExpr(NewOps); 5235 if (isa<SCEVSMaxExpr>(Comm)) 5236 return getSMaxExpr(NewOps); 5237 if (isa<SCEVUMaxExpr>(Comm)) 5238 return getUMaxExpr(NewOps); 5239 llvm_unreachable("Unknown commutative SCEV type!"); 5240 } 5241 } 5242 // If we got here, all operands are loop invariant. 5243 return Comm; 5244 } 5245 5246 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5247 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5248 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5249 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5250 return Div; // must be loop invariant 5251 return getUDivExpr(LHS, RHS); 5252 } 5253 5254 // If this is a loop recurrence for a loop that does not contain L, then we 5255 // are dealing with the final value computed by the loop. 5256 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5257 // First, attempt to evaluate each operand. 5258 // Avoid performing the look-up in the common case where the specified 5259 // expression has no loop-variant portions. 5260 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5261 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5262 if (OpAtScope == AddRec->getOperand(i)) 5263 continue; 5264 5265 // Okay, at least one of these operands is loop variant but might be 5266 // foldable. Build a new instance of the folded commutative expression. 5267 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5268 AddRec->op_begin()+i); 5269 NewOps.push_back(OpAtScope); 5270 for (++i; i != e; ++i) 5271 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5272 5273 const SCEV *FoldedRec = 5274 getAddRecExpr(NewOps, AddRec->getLoop(), 5275 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5276 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5277 // The addrec may be folded to a nonrecurrence, for example, if the 5278 // induction variable is multiplied by zero after constant folding. Go 5279 // ahead and return the folded value. 5280 if (!AddRec) 5281 return FoldedRec; 5282 break; 5283 } 5284 5285 // If the scope is outside the addrec's loop, evaluate it by using the 5286 // loop exit value of the addrec. 5287 if (!AddRec->getLoop()->contains(L)) { 5288 // To evaluate this recurrence, we need to know how many times the AddRec 5289 // loop iterates. Compute this now. 5290 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5291 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5292 5293 // Then, evaluate the AddRec. 5294 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5295 } 5296 5297 return AddRec; 5298 } 5299 5300 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5301 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5302 if (Op == Cast->getOperand()) 5303 return Cast; // must be loop invariant 5304 return getZeroExtendExpr(Op, Cast->getType()); 5305 } 5306 5307 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5308 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5309 if (Op == Cast->getOperand()) 5310 return Cast; // must be loop invariant 5311 return getSignExtendExpr(Op, Cast->getType()); 5312 } 5313 5314 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5315 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5316 if (Op == Cast->getOperand()) 5317 return Cast; // must be loop invariant 5318 return getTruncateExpr(Op, Cast->getType()); 5319 } 5320 5321 llvm_unreachable("Unknown SCEV type!"); 5322 return 0; 5323 } 5324 5325 /// getSCEVAtScope - This is a convenience function which does 5326 /// getSCEVAtScope(getSCEV(V), L). 5327 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5328 return getSCEVAtScope(getSCEV(V), L); 5329 } 5330 5331 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5332 /// following equation: 5333 /// 5334 /// A * X = B (mod N) 5335 /// 5336 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5337 /// A and B isn't important. 5338 /// 5339 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5340 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5341 ScalarEvolution &SE) { 5342 uint32_t BW = A.getBitWidth(); 5343 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5344 assert(A != 0 && "A must be non-zero."); 5345 5346 // 1. D = gcd(A, N) 5347 // 5348 // The gcd of A and N may have only one prime factor: 2. The number of 5349 // trailing zeros in A is its multiplicity 5350 uint32_t Mult2 = A.countTrailingZeros(); 5351 // D = 2^Mult2 5352 5353 // 2. Check if B is divisible by D. 5354 // 5355 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5356 // is not less than multiplicity of this prime factor for D. 5357 if (B.countTrailingZeros() < Mult2) 5358 return SE.getCouldNotCompute(); 5359 5360 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5361 // modulo (N / D). 5362 // 5363 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5364 // bit width during computations. 5365 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5366 APInt Mod(BW + 1, 0); 5367 Mod.setBit(BW - Mult2); // Mod = N / D 5368 APInt I = AD.multiplicativeInverse(Mod); 5369 5370 // 4. Compute the minimum unsigned root of the equation: 5371 // I * (B / D) mod (N / D) 5372 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5373 5374 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5375 // bits. 5376 return SE.getConstant(Result.trunc(BW)); 5377 } 5378 5379 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5380 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5381 /// might be the same) or two SCEVCouldNotCompute objects. 5382 /// 5383 static std::pair<const SCEV *,const SCEV *> 5384 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5385 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5386 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5387 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5388 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5389 5390 // We currently can only solve this if the coefficients are constants. 5391 if (!LC || !MC || !NC) { 5392 const SCEV *CNC = SE.getCouldNotCompute(); 5393 return std::make_pair(CNC, CNC); 5394 } 5395 5396 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5397 const APInt &L = LC->getValue()->getValue(); 5398 const APInt &M = MC->getValue()->getValue(); 5399 const APInt &N = NC->getValue()->getValue(); 5400 APInt Two(BitWidth, 2); 5401 APInt Four(BitWidth, 4); 5402 5403 { 5404 using namespace APIntOps; 5405 const APInt& C = L; 5406 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5407 // The B coefficient is M-N/2 5408 APInt B(M); 5409 B -= sdiv(N,Two); 5410 5411 // The A coefficient is N/2 5412 APInt A(N.sdiv(Two)); 5413 5414 // Compute the B^2-4ac term. 5415 APInt SqrtTerm(B); 5416 SqrtTerm *= B; 5417 SqrtTerm -= Four * (A * C); 5418 5419 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5420 // integer value or else APInt::sqrt() will assert. 5421 APInt SqrtVal(SqrtTerm.sqrt()); 5422 5423 // Compute the two solutions for the quadratic formula. 5424 // The divisions must be performed as signed divisions. 5425 APInt NegB(-B); 5426 APInt TwoA(A << 1); 5427 if (TwoA.isMinValue()) { 5428 const SCEV *CNC = SE.getCouldNotCompute(); 5429 return std::make_pair(CNC, CNC); 5430 } 5431 5432 LLVMContext &Context = SE.getContext(); 5433 5434 ConstantInt *Solution1 = 5435 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5436 ConstantInt *Solution2 = 5437 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5438 5439 return std::make_pair(SE.getConstant(Solution1), 5440 SE.getConstant(Solution2)); 5441 } // end APIntOps namespace 5442 } 5443 5444 /// HowFarToZero - Return the number of times a backedge comparing the specified 5445 /// value to zero will execute. If not computable, return CouldNotCompute. 5446 /// 5447 /// This is only used for loops with a "x != y" exit test. The exit condition is 5448 /// now expressed as a single expression, V = x-y. So the exit test is 5449 /// effectively V != 0. We know and take advantage of the fact that this 5450 /// expression only being used in a comparison by zero context. 5451 ScalarEvolution::ExitLimit 5452 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 5453 // If the value is a constant 5454 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5455 // If the value is already zero, the branch will execute zero times. 5456 if (C->getValue()->isZero()) return C; 5457 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5458 } 5459 5460 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5461 if (!AddRec || AddRec->getLoop() != L) 5462 return getCouldNotCompute(); 5463 5464 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5465 // the quadratic equation to solve it. 5466 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5467 std::pair<const SCEV *,const SCEV *> Roots = 5468 SolveQuadraticEquation(AddRec, *this); 5469 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5470 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5471 if (R1 && R2) { 5472 #if 0 5473 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5474 << " sol#2: " << *R2 << "\n"; 5475 #endif 5476 // Pick the smallest positive root value. 5477 if (ConstantInt *CB = 5478 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5479 R1->getValue(), 5480 R2->getValue()))) { 5481 if (CB->getZExtValue() == false) 5482 std::swap(R1, R2); // R1 is the minimum root now. 5483 5484 // We can only use this value if the chrec ends up with an exact zero 5485 // value at this index. When solving for "X*X != 5", for example, we 5486 // should not accept a root of 2. 5487 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5488 if (Val->isZero()) 5489 return R1; // We found a quadratic root! 5490 } 5491 } 5492 return getCouldNotCompute(); 5493 } 5494 5495 // Otherwise we can only handle this if it is affine. 5496 if (!AddRec->isAffine()) 5497 return getCouldNotCompute(); 5498 5499 // If this is an affine expression, the execution count of this branch is 5500 // the minimum unsigned root of the following equation: 5501 // 5502 // Start + Step*N = 0 (mod 2^BW) 5503 // 5504 // equivalent to: 5505 // 5506 // Step*N = -Start (mod 2^BW) 5507 // 5508 // where BW is the common bit width of Start and Step. 5509 5510 // Get the initial value for the loop. 5511 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5512 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5513 5514 // For now we handle only constant steps. 5515 // 5516 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5517 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5518 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5519 // We have not yet seen any such cases. 5520 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5521 if (StepC == 0) 5522 return getCouldNotCompute(); 5523 5524 // For positive steps (counting up until unsigned overflow): 5525 // N = -Start/Step (as unsigned) 5526 // For negative steps (counting down to zero): 5527 // N = Start/-Step 5528 // First compute the unsigned distance from zero in the direction of Step. 5529 bool CountDown = StepC->getValue()->getValue().isNegative(); 5530 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5531 5532 // Handle unitary steps, which cannot wraparound. 5533 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5534 // N = Distance (as unsigned) 5535 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 5536 ConstantRange CR = getUnsignedRange(Start); 5537 const SCEV *MaxBECount; 5538 if (!CountDown && CR.getUnsignedMin().isMinValue()) 5539 // When counting up, the worst starting value is 1, not 0. 5540 MaxBECount = CR.getUnsignedMax().isMinValue() 5541 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 5542 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 5543 else 5544 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 5545 : -CR.getUnsignedMin()); 5546 return ExitLimit(Distance, MaxBECount); 5547 } 5548 5549 // If the recurrence is known not to wraparound, unsigned divide computes the 5550 // back edge count. We know that the value will either become zero (and thus 5551 // the loop terminates), that the loop will terminate through some other exit 5552 // condition first, or that the loop has undefined behavior. This means 5553 // we can't "miss" the exit value, even with nonunit stride. 5554 // 5555 // FIXME: Prove that loops always exhibits *acceptable* undefined 5556 // behavior. Loops must exhibit defined behavior until a wrapped value is 5557 // actually used. So the trip count computed by udiv could be smaller than the 5558 // number of well-defined iterations. 5559 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) { 5560 // FIXME: We really want an "isexact" bit for udiv. 5561 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5562 } 5563 // Then, try to solve the above equation provided that Start is constant. 5564 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5565 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5566 -StartC->getValue()->getValue(), 5567 *this); 5568 return getCouldNotCompute(); 5569 } 5570 5571 /// HowFarToNonZero - Return the number of times a backedge checking the 5572 /// specified value for nonzero will execute. If not computable, return 5573 /// CouldNotCompute 5574 ScalarEvolution::ExitLimit 5575 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5576 // Loops that look like: while (X == 0) are very strange indeed. We don't 5577 // handle them yet except for the trivial case. This could be expanded in the 5578 // future as needed. 5579 5580 // If the value is a constant, check to see if it is known to be non-zero 5581 // already. If so, the backedge will execute zero times. 5582 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5583 if (!C->getValue()->isNullValue()) 5584 return getConstant(C->getType(), 0); 5585 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5586 } 5587 5588 // We could implement others, but I really doubt anyone writes loops like 5589 // this, and if they did, they would already be constant folded. 5590 return getCouldNotCompute(); 5591 } 5592 5593 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5594 /// (which may not be an immediate predecessor) which has exactly one 5595 /// successor from which BB is reachable, or null if no such block is 5596 /// found. 5597 /// 5598 std::pair<BasicBlock *, BasicBlock *> 5599 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5600 // If the block has a unique predecessor, then there is no path from the 5601 // predecessor to the block that does not go through the direct edge 5602 // from the predecessor to the block. 5603 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5604 return std::make_pair(Pred, BB); 5605 5606 // A loop's header is defined to be a block that dominates the loop. 5607 // If the header has a unique predecessor outside the loop, it must be 5608 // a block that has exactly one successor that can reach the loop. 5609 if (Loop *L = LI->getLoopFor(BB)) 5610 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5611 5612 return std::pair<BasicBlock *, BasicBlock *>(); 5613 } 5614 5615 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5616 /// testing whether two expressions are equal, however for the purposes of 5617 /// looking for a condition guarding a loop, it can be useful to be a little 5618 /// more general, since a front-end may have replicated the controlling 5619 /// expression. 5620 /// 5621 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5622 // Quick check to see if they are the same SCEV. 5623 if (A == B) return true; 5624 5625 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5626 // two different instructions with the same value. Check for this case. 5627 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5628 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5629 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5630 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5631 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5632 return true; 5633 5634 // Otherwise assume they may have a different value. 5635 return false; 5636 } 5637 5638 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5639 /// predicate Pred. Return true iff any changes were made. 5640 /// 5641 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5642 const SCEV *&LHS, const SCEV *&RHS) { 5643 bool Changed = false; 5644 5645 // Canonicalize a constant to the right side. 5646 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5647 // Check for both operands constant. 5648 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5649 if (ConstantExpr::getICmp(Pred, 5650 LHSC->getValue(), 5651 RHSC->getValue())->isNullValue()) 5652 goto trivially_false; 5653 else 5654 goto trivially_true; 5655 } 5656 // Otherwise swap the operands to put the constant on the right. 5657 std::swap(LHS, RHS); 5658 Pred = ICmpInst::getSwappedPredicate(Pred); 5659 Changed = true; 5660 } 5661 5662 // If we're comparing an addrec with a value which is loop-invariant in the 5663 // addrec's loop, put the addrec on the left. Also make a dominance check, 5664 // as both operands could be addrecs loop-invariant in each other's loop. 5665 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5666 const Loop *L = AR->getLoop(); 5667 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5668 std::swap(LHS, RHS); 5669 Pred = ICmpInst::getSwappedPredicate(Pred); 5670 Changed = true; 5671 } 5672 } 5673 5674 // If there's a constant operand, canonicalize comparisons with boundary 5675 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5676 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5677 const APInt &RA = RC->getValue()->getValue(); 5678 switch (Pred) { 5679 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5680 case ICmpInst::ICMP_EQ: 5681 case ICmpInst::ICMP_NE: 5682 break; 5683 case ICmpInst::ICMP_UGE: 5684 if ((RA - 1).isMinValue()) { 5685 Pred = ICmpInst::ICMP_NE; 5686 RHS = getConstant(RA - 1); 5687 Changed = true; 5688 break; 5689 } 5690 if (RA.isMaxValue()) { 5691 Pred = ICmpInst::ICMP_EQ; 5692 Changed = true; 5693 break; 5694 } 5695 if (RA.isMinValue()) goto trivially_true; 5696 5697 Pred = ICmpInst::ICMP_UGT; 5698 RHS = getConstant(RA - 1); 5699 Changed = true; 5700 break; 5701 case ICmpInst::ICMP_ULE: 5702 if ((RA + 1).isMaxValue()) { 5703 Pred = ICmpInst::ICMP_NE; 5704 RHS = getConstant(RA + 1); 5705 Changed = true; 5706 break; 5707 } 5708 if (RA.isMinValue()) { 5709 Pred = ICmpInst::ICMP_EQ; 5710 Changed = true; 5711 break; 5712 } 5713 if (RA.isMaxValue()) goto trivially_true; 5714 5715 Pred = ICmpInst::ICMP_ULT; 5716 RHS = getConstant(RA + 1); 5717 Changed = true; 5718 break; 5719 case ICmpInst::ICMP_SGE: 5720 if ((RA - 1).isMinSignedValue()) { 5721 Pred = ICmpInst::ICMP_NE; 5722 RHS = getConstant(RA - 1); 5723 Changed = true; 5724 break; 5725 } 5726 if (RA.isMaxSignedValue()) { 5727 Pred = ICmpInst::ICMP_EQ; 5728 Changed = true; 5729 break; 5730 } 5731 if (RA.isMinSignedValue()) goto trivially_true; 5732 5733 Pred = ICmpInst::ICMP_SGT; 5734 RHS = getConstant(RA - 1); 5735 Changed = true; 5736 break; 5737 case ICmpInst::ICMP_SLE: 5738 if ((RA + 1).isMaxSignedValue()) { 5739 Pred = ICmpInst::ICMP_NE; 5740 RHS = getConstant(RA + 1); 5741 Changed = true; 5742 break; 5743 } 5744 if (RA.isMinSignedValue()) { 5745 Pred = ICmpInst::ICMP_EQ; 5746 Changed = true; 5747 break; 5748 } 5749 if (RA.isMaxSignedValue()) goto trivially_true; 5750 5751 Pred = ICmpInst::ICMP_SLT; 5752 RHS = getConstant(RA + 1); 5753 Changed = true; 5754 break; 5755 case ICmpInst::ICMP_UGT: 5756 if (RA.isMinValue()) { 5757 Pred = ICmpInst::ICMP_NE; 5758 Changed = true; 5759 break; 5760 } 5761 if ((RA + 1).isMaxValue()) { 5762 Pred = ICmpInst::ICMP_EQ; 5763 RHS = getConstant(RA + 1); 5764 Changed = true; 5765 break; 5766 } 5767 if (RA.isMaxValue()) goto trivially_false; 5768 break; 5769 case ICmpInst::ICMP_ULT: 5770 if (RA.isMaxValue()) { 5771 Pred = ICmpInst::ICMP_NE; 5772 Changed = true; 5773 break; 5774 } 5775 if ((RA - 1).isMinValue()) { 5776 Pred = ICmpInst::ICMP_EQ; 5777 RHS = getConstant(RA - 1); 5778 Changed = true; 5779 break; 5780 } 5781 if (RA.isMinValue()) goto trivially_false; 5782 break; 5783 case ICmpInst::ICMP_SGT: 5784 if (RA.isMinSignedValue()) { 5785 Pred = ICmpInst::ICMP_NE; 5786 Changed = true; 5787 break; 5788 } 5789 if ((RA + 1).isMaxSignedValue()) { 5790 Pred = ICmpInst::ICMP_EQ; 5791 RHS = getConstant(RA + 1); 5792 Changed = true; 5793 break; 5794 } 5795 if (RA.isMaxSignedValue()) goto trivially_false; 5796 break; 5797 case ICmpInst::ICMP_SLT: 5798 if (RA.isMaxSignedValue()) { 5799 Pred = ICmpInst::ICMP_NE; 5800 Changed = true; 5801 break; 5802 } 5803 if ((RA - 1).isMinSignedValue()) { 5804 Pred = ICmpInst::ICMP_EQ; 5805 RHS = getConstant(RA - 1); 5806 Changed = true; 5807 break; 5808 } 5809 if (RA.isMinSignedValue()) goto trivially_false; 5810 break; 5811 } 5812 } 5813 5814 // Check for obvious equality. 5815 if (HasSameValue(LHS, RHS)) { 5816 if (ICmpInst::isTrueWhenEqual(Pred)) 5817 goto trivially_true; 5818 if (ICmpInst::isFalseWhenEqual(Pred)) 5819 goto trivially_false; 5820 } 5821 5822 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5823 // adding or subtracting 1 from one of the operands. 5824 switch (Pred) { 5825 case ICmpInst::ICMP_SLE: 5826 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5827 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5828 SCEV::FlagNSW); 5829 Pred = ICmpInst::ICMP_SLT; 5830 Changed = true; 5831 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5832 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5833 SCEV::FlagNSW); 5834 Pred = ICmpInst::ICMP_SLT; 5835 Changed = true; 5836 } 5837 break; 5838 case ICmpInst::ICMP_SGE: 5839 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5840 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5841 SCEV::FlagNSW); 5842 Pred = ICmpInst::ICMP_SGT; 5843 Changed = true; 5844 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5845 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5846 SCEV::FlagNSW); 5847 Pred = ICmpInst::ICMP_SGT; 5848 Changed = true; 5849 } 5850 break; 5851 case ICmpInst::ICMP_ULE: 5852 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5853 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5854 SCEV::FlagNUW); 5855 Pred = ICmpInst::ICMP_ULT; 5856 Changed = true; 5857 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5858 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5859 SCEV::FlagNUW); 5860 Pred = ICmpInst::ICMP_ULT; 5861 Changed = true; 5862 } 5863 break; 5864 case ICmpInst::ICMP_UGE: 5865 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5866 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5867 SCEV::FlagNUW); 5868 Pred = ICmpInst::ICMP_UGT; 5869 Changed = true; 5870 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5871 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5872 SCEV::FlagNUW); 5873 Pred = ICmpInst::ICMP_UGT; 5874 Changed = true; 5875 } 5876 break; 5877 default: 5878 break; 5879 } 5880 5881 // TODO: More simplifications are possible here. 5882 5883 return Changed; 5884 5885 trivially_true: 5886 // Return 0 == 0. 5887 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5888 Pred = ICmpInst::ICMP_EQ; 5889 return true; 5890 5891 trivially_false: 5892 // Return 0 != 0. 5893 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5894 Pred = ICmpInst::ICMP_NE; 5895 return true; 5896 } 5897 5898 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5899 return getSignedRange(S).getSignedMax().isNegative(); 5900 } 5901 5902 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5903 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5904 } 5905 5906 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5907 return !getSignedRange(S).getSignedMin().isNegative(); 5908 } 5909 5910 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5911 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5912 } 5913 5914 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5915 return isKnownNegative(S) || isKnownPositive(S); 5916 } 5917 5918 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5919 const SCEV *LHS, const SCEV *RHS) { 5920 // Canonicalize the inputs first. 5921 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5922 5923 // If LHS or RHS is an addrec, check to see if the condition is true in 5924 // every iteration of the loop. 5925 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5926 if (isLoopEntryGuardedByCond( 5927 AR->getLoop(), Pred, AR->getStart(), RHS) && 5928 isLoopBackedgeGuardedByCond( 5929 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5930 return true; 5931 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5932 if (isLoopEntryGuardedByCond( 5933 AR->getLoop(), Pred, LHS, AR->getStart()) && 5934 isLoopBackedgeGuardedByCond( 5935 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5936 return true; 5937 5938 // Otherwise see what can be done with known constant ranges. 5939 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5940 } 5941 5942 bool 5943 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5944 const SCEV *LHS, const SCEV *RHS) { 5945 if (HasSameValue(LHS, RHS)) 5946 return ICmpInst::isTrueWhenEqual(Pred); 5947 5948 // This code is split out from isKnownPredicate because it is called from 5949 // within isLoopEntryGuardedByCond. 5950 switch (Pred) { 5951 default: 5952 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5953 break; 5954 case ICmpInst::ICMP_SGT: 5955 Pred = ICmpInst::ICMP_SLT; 5956 std::swap(LHS, RHS); 5957 case ICmpInst::ICMP_SLT: { 5958 ConstantRange LHSRange = getSignedRange(LHS); 5959 ConstantRange RHSRange = getSignedRange(RHS); 5960 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5961 return true; 5962 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5963 return false; 5964 break; 5965 } 5966 case ICmpInst::ICMP_SGE: 5967 Pred = ICmpInst::ICMP_SLE; 5968 std::swap(LHS, RHS); 5969 case ICmpInst::ICMP_SLE: { 5970 ConstantRange LHSRange = getSignedRange(LHS); 5971 ConstantRange RHSRange = getSignedRange(RHS); 5972 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5973 return true; 5974 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5975 return false; 5976 break; 5977 } 5978 case ICmpInst::ICMP_UGT: 5979 Pred = ICmpInst::ICMP_ULT; 5980 std::swap(LHS, RHS); 5981 case ICmpInst::ICMP_ULT: { 5982 ConstantRange LHSRange = getUnsignedRange(LHS); 5983 ConstantRange RHSRange = getUnsignedRange(RHS); 5984 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5985 return true; 5986 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5987 return false; 5988 break; 5989 } 5990 case ICmpInst::ICMP_UGE: 5991 Pred = ICmpInst::ICMP_ULE; 5992 std::swap(LHS, RHS); 5993 case ICmpInst::ICMP_ULE: { 5994 ConstantRange LHSRange = getUnsignedRange(LHS); 5995 ConstantRange RHSRange = getUnsignedRange(RHS); 5996 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5997 return true; 5998 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5999 return false; 6000 break; 6001 } 6002 case ICmpInst::ICMP_NE: { 6003 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6004 return true; 6005 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6006 return true; 6007 6008 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6009 if (isKnownNonZero(Diff)) 6010 return true; 6011 break; 6012 } 6013 case ICmpInst::ICMP_EQ: 6014 // The check at the top of the function catches the case where 6015 // the values are known to be equal. 6016 break; 6017 } 6018 return false; 6019 } 6020 6021 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6022 /// protected by a conditional between LHS and RHS. This is used to 6023 /// to eliminate casts. 6024 bool 6025 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6026 ICmpInst::Predicate Pred, 6027 const SCEV *LHS, const SCEV *RHS) { 6028 // Interpret a null as meaning no loop, where there is obviously no guard 6029 // (interprocedural conditions notwithstanding). 6030 if (!L) return true; 6031 6032 BasicBlock *Latch = L->getLoopLatch(); 6033 if (!Latch) 6034 return false; 6035 6036 BranchInst *LoopContinuePredicate = 6037 dyn_cast<BranchInst>(Latch->getTerminator()); 6038 if (!LoopContinuePredicate || 6039 LoopContinuePredicate->isUnconditional()) 6040 return false; 6041 6042 return isImpliedCond(Pred, LHS, RHS, 6043 LoopContinuePredicate->getCondition(), 6044 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 6045 } 6046 6047 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6048 /// by a conditional between LHS and RHS. This is used to help avoid max 6049 /// expressions in loop trip counts, and to eliminate casts. 6050 bool 6051 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6052 ICmpInst::Predicate Pred, 6053 const SCEV *LHS, const SCEV *RHS) { 6054 // Interpret a null as meaning no loop, where there is obviously no guard 6055 // (interprocedural conditions notwithstanding). 6056 if (!L) return false; 6057 6058 // Starting at the loop predecessor, climb up the predecessor chain, as long 6059 // as there are predecessors that can be found that have unique successors 6060 // leading to the original header. 6061 for (std::pair<BasicBlock *, BasicBlock *> 6062 Pair(L->getLoopPredecessor(), L->getHeader()); 6063 Pair.first; 6064 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6065 6066 BranchInst *LoopEntryPredicate = 6067 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6068 if (!LoopEntryPredicate || 6069 LoopEntryPredicate->isUnconditional()) 6070 continue; 6071 6072 if (isImpliedCond(Pred, LHS, RHS, 6073 LoopEntryPredicate->getCondition(), 6074 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6075 return true; 6076 } 6077 6078 return false; 6079 } 6080 6081 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6082 /// and RHS is true whenever the given Cond value evaluates to true. 6083 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6084 const SCEV *LHS, const SCEV *RHS, 6085 Value *FoundCondValue, 6086 bool Inverse) { 6087 // Recursively handle And and Or conditions. 6088 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6089 if (BO->getOpcode() == Instruction::And) { 6090 if (!Inverse) 6091 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6092 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6093 } else if (BO->getOpcode() == Instruction::Or) { 6094 if (Inverse) 6095 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6096 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6097 } 6098 } 6099 6100 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6101 if (!ICI) return false; 6102 6103 // Bail if the ICmp's operands' types are wider than the needed type 6104 // before attempting to call getSCEV on them. This avoids infinite 6105 // recursion, since the analysis of widening casts can require loop 6106 // exit condition information for overflow checking, which would 6107 // lead back here. 6108 if (getTypeSizeInBits(LHS->getType()) < 6109 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6110 return false; 6111 6112 // Now that we found a conditional branch that dominates the loop, check to 6113 // see if it is the comparison we are looking for. 6114 ICmpInst::Predicate FoundPred; 6115 if (Inverse) 6116 FoundPred = ICI->getInversePredicate(); 6117 else 6118 FoundPred = ICI->getPredicate(); 6119 6120 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6121 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6122 6123 // Balance the types. The case where FoundLHS' type is wider than 6124 // LHS' type is checked for above. 6125 if (getTypeSizeInBits(LHS->getType()) > 6126 getTypeSizeInBits(FoundLHS->getType())) { 6127 if (CmpInst::isSigned(Pred)) { 6128 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6129 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6130 } else { 6131 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6132 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6133 } 6134 } 6135 6136 // Canonicalize the query to match the way instcombine will have 6137 // canonicalized the comparison. 6138 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6139 if (LHS == RHS) 6140 return CmpInst::isTrueWhenEqual(Pred); 6141 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6142 if (FoundLHS == FoundRHS) 6143 return CmpInst::isFalseWhenEqual(Pred); 6144 6145 // Check to see if we can make the LHS or RHS match. 6146 if (LHS == FoundRHS || RHS == FoundLHS) { 6147 if (isa<SCEVConstant>(RHS)) { 6148 std::swap(FoundLHS, FoundRHS); 6149 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6150 } else { 6151 std::swap(LHS, RHS); 6152 Pred = ICmpInst::getSwappedPredicate(Pred); 6153 } 6154 } 6155 6156 // Check whether the found predicate is the same as the desired predicate. 6157 if (FoundPred == Pred) 6158 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6159 6160 // Check whether swapping the found predicate makes it the same as the 6161 // desired predicate. 6162 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6163 if (isa<SCEVConstant>(RHS)) 6164 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6165 else 6166 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6167 RHS, LHS, FoundLHS, FoundRHS); 6168 } 6169 6170 // Check whether the actual condition is beyond sufficient. 6171 if (FoundPred == ICmpInst::ICMP_EQ) 6172 if (ICmpInst::isTrueWhenEqual(Pred)) 6173 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6174 return true; 6175 if (Pred == ICmpInst::ICMP_NE) 6176 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6177 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6178 return true; 6179 6180 // Otherwise assume the worst. 6181 return false; 6182 } 6183 6184 /// isImpliedCondOperands - Test whether the condition described by Pred, 6185 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 6186 /// and FoundRHS is true. 6187 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 6188 const SCEV *LHS, const SCEV *RHS, 6189 const SCEV *FoundLHS, 6190 const SCEV *FoundRHS) { 6191 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 6192 FoundLHS, FoundRHS) || 6193 // ~x < ~y --> x > y 6194 isImpliedCondOperandsHelper(Pred, LHS, RHS, 6195 getNotSCEV(FoundRHS), 6196 getNotSCEV(FoundLHS)); 6197 } 6198 6199 /// isImpliedCondOperandsHelper - Test whether the condition described by 6200 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 6201 /// FoundLHS, and FoundRHS is true. 6202 bool 6203 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 6204 const SCEV *LHS, const SCEV *RHS, 6205 const SCEV *FoundLHS, 6206 const SCEV *FoundRHS) { 6207 switch (Pred) { 6208 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6209 case ICmpInst::ICMP_EQ: 6210 case ICmpInst::ICMP_NE: 6211 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 6212 return true; 6213 break; 6214 case ICmpInst::ICMP_SLT: 6215 case ICmpInst::ICMP_SLE: 6216 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 6217 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 6218 return true; 6219 break; 6220 case ICmpInst::ICMP_SGT: 6221 case ICmpInst::ICMP_SGE: 6222 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 6223 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 6224 return true; 6225 break; 6226 case ICmpInst::ICMP_ULT: 6227 case ICmpInst::ICMP_ULE: 6228 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 6229 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 6230 return true; 6231 break; 6232 case ICmpInst::ICMP_UGT: 6233 case ICmpInst::ICMP_UGE: 6234 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 6235 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 6236 return true; 6237 break; 6238 } 6239 6240 return false; 6241 } 6242 6243 /// getBECount - Subtract the end and start values and divide by the step, 6244 /// rounding up, to get the number of times the backedge is executed. Return 6245 /// CouldNotCompute if an intermediate computation overflows. 6246 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 6247 const SCEV *End, 6248 const SCEV *Step, 6249 bool NoWrap) { 6250 assert(!isKnownNegative(Step) && 6251 "This code doesn't handle negative strides yet!"); 6252 6253 Type *Ty = Start->getType(); 6254 6255 // When Start == End, we have an exact BECount == 0. Short-circuit this case 6256 // here because SCEV may not be able to determine that the unsigned division 6257 // after rounding is zero. 6258 if (Start == End) 6259 return getConstant(Ty, 0); 6260 6261 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 6262 const SCEV *Diff = getMinusSCEV(End, Start); 6263 const SCEV *RoundUp = getAddExpr(Step, NegOne); 6264 6265 // Add an adjustment to the difference between End and Start so that 6266 // the division will effectively round up. 6267 const SCEV *Add = getAddExpr(Diff, RoundUp); 6268 6269 if (!NoWrap) { 6270 // Check Add for unsigned overflow. 6271 // TODO: More sophisticated things could be done here. 6272 Type *WideTy = IntegerType::get(getContext(), 6273 getTypeSizeInBits(Ty) + 1); 6274 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 6275 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 6276 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 6277 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 6278 return getCouldNotCompute(); 6279 } 6280 6281 return getUDivExpr(Add, Step); 6282 } 6283 6284 /// HowManyLessThans - Return the number of times a backedge containing the 6285 /// specified less-than comparison will execute. If not computable, return 6286 /// CouldNotCompute. 6287 ScalarEvolution::ExitLimit 6288 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 6289 const Loop *L, bool isSigned) { 6290 // Only handle: "ADDREC < LoopInvariant". 6291 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); 6292 6293 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 6294 if (!AddRec || AddRec->getLoop() != L) 6295 return getCouldNotCompute(); 6296 6297 // Check to see if we have a flag which makes analysis easy. 6298 bool NoWrap = isSigned ? 6299 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) : 6300 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW)); 6301 6302 if (AddRec->isAffine()) { 6303 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 6304 const SCEV *Step = AddRec->getStepRecurrence(*this); 6305 6306 if (Step->isZero()) 6307 return getCouldNotCompute(); 6308 if (Step->isOne()) { 6309 // With unit stride, the iteration never steps past the limit value. 6310 } else if (isKnownPositive(Step)) { 6311 // Test whether a positive iteration can step past the limit 6312 // value and past the maximum value for its type in a single step. 6313 // Note that it's not sufficient to check NoWrap here, because even 6314 // though the value after a wrap is undefined, it's not undefined 6315 // behavior, so if wrap does occur, the loop could either terminate or 6316 // loop infinitely, but in either case, the loop is guaranteed to 6317 // iterate at least until the iteration where the wrapping occurs. 6318 const SCEV *One = getConstant(Step->getType(), 1); 6319 if (isSigned) { 6320 APInt Max = APInt::getSignedMaxValue(BitWidth); 6321 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 6322 .slt(getSignedRange(RHS).getSignedMax())) 6323 return getCouldNotCompute(); 6324 } else { 6325 APInt Max = APInt::getMaxValue(BitWidth); 6326 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 6327 .ult(getUnsignedRange(RHS).getUnsignedMax())) 6328 return getCouldNotCompute(); 6329 } 6330 } else 6331 // TODO: Handle negative strides here and below. 6332 return getCouldNotCompute(); 6333 6334 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 6335 // m. So, we count the number of iterations in which {n,+,s} < m is true. 6336 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 6337 // treat m-n as signed nor unsigned due to overflow possibility. 6338 6339 // First, we get the value of the LHS in the first iteration: n 6340 const SCEV *Start = AddRec->getOperand(0); 6341 6342 // Determine the minimum constant start value. 6343 const SCEV *MinStart = getConstant(isSigned ? 6344 getSignedRange(Start).getSignedMin() : 6345 getUnsignedRange(Start).getUnsignedMin()); 6346 6347 // If we know that the condition is true in order to enter the loop, 6348 // then we know that it will run exactly (m-n)/s times. Otherwise, we 6349 // only know that it will execute (max(m,n)-n)/s times. In both cases, 6350 // the division must round up. 6351 const SCEV *End = RHS; 6352 if (!isLoopEntryGuardedByCond(L, 6353 isSigned ? ICmpInst::ICMP_SLT : 6354 ICmpInst::ICMP_ULT, 6355 getMinusSCEV(Start, Step), RHS)) 6356 End = isSigned ? getSMaxExpr(RHS, Start) 6357 : getUMaxExpr(RHS, Start); 6358 6359 // Determine the maximum constant end value. 6360 const SCEV *MaxEnd = getConstant(isSigned ? 6361 getSignedRange(End).getSignedMax() : 6362 getUnsignedRange(End).getUnsignedMax()); 6363 6364 // If MaxEnd is within a step of the maximum integer value in its type, 6365 // adjust it down to the minimum value which would produce the same effect. 6366 // This allows the subsequent ceiling division of (N+(step-1))/step to 6367 // compute the correct value. 6368 const SCEV *StepMinusOne = getMinusSCEV(Step, 6369 getConstant(Step->getType(), 1)); 6370 MaxEnd = isSigned ? 6371 getSMinExpr(MaxEnd, 6372 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 6373 StepMinusOne)) : 6374 getUMinExpr(MaxEnd, 6375 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 6376 StepMinusOne)); 6377 6378 // Finally, we subtract these two values and divide, rounding up, to get 6379 // the number of times the backedge is executed. 6380 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 6381 6382 // The maximum backedge count is similar, except using the minimum start 6383 // value and the maximum end value. 6384 // If we already have an exact constant BECount, use it instead. 6385 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount 6386 : getBECount(MinStart, MaxEnd, Step, NoWrap); 6387 6388 // If the stride is nonconstant, and NoWrap == true, then 6389 // getBECount(MinStart, MaxEnd) may not compute. This would result in an 6390 // exact BECount and invalid MaxBECount, which should be avoided to catch 6391 // more optimization opportunities. 6392 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6393 MaxBECount = BECount; 6394 6395 return ExitLimit(BECount, MaxBECount); 6396 } 6397 6398 return getCouldNotCompute(); 6399 } 6400 6401 /// getNumIterationsInRange - Return the number of iterations of this loop that 6402 /// produce values in the specified constant range. Another way of looking at 6403 /// this is that it returns the first iteration number where the value is not in 6404 /// the condition, thus computing the exit count. If the iteration count can't 6405 /// be computed, an instance of SCEVCouldNotCompute is returned. 6406 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6407 ScalarEvolution &SE) const { 6408 if (Range.isFullSet()) // Infinite loop. 6409 return SE.getCouldNotCompute(); 6410 6411 // If the start is a non-zero constant, shift the range to simplify things. 6412 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6413 if (!SC->getValue()->isZero()) { 6414 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6415 Operands[0] = SE.getConstant(SC->getType(), 0); 6416 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6417 getNoWrapFlags(FlagNW)); 6418 if (const SCEVAddRecExpr *ShiftedAddRec = 6419 dyn_cast<SCEVAddRecExpr>(Shifted)) 6420 return ShiftedAddRec->getNumIterationsInRange( 6421 Range.subtract(SC->getValue()->getValue()), SE); 6422 // This is strange and shouldn't happen. 6423 return SE.getCouldNotCompute(); 6424 } 6425 6426 // The only time we can solve this is when we have all constant indices. 6427 // Otherwise, we cannot determine the overflow conditions. 6428 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6429 if (!isa<SCEVConstant>(getOperand(i))) 6430 return SE.getCouldNotCompute(); 6431 6432 6433 // Okay at this point we know that all elements of the chrec are constants and 6434 // that the start element is zero. 6435 6436 // First check to see if the range contains zero. If not, the first 6437 // iteration exits. 6438 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6439 if (!Range.contains(APInt(BitWidth, 0))) 6440 return SE.getConstant(getType(), 0); 6441 6442 if (isAffine()) { 6443 // If this is an affine expression then we have this situation: 6444 // Solve {0,+,A} in Range === Ax in Range 6445 6446 // We know that zero is in the range. If A is positive then we know that 6447 // the upper value of the range must be the first possible exit value. 6448 // If A is negative then the lower of the range is the last possible loop 6449 // value. Also note that we already checked for a full range. 6450 APInt One(BitWidth,1); 6451 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6452 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6453 6454 // The exit value should be (End+A)/A. 6455 APInt ExitVal = (End + A).udiv(A); 6456 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6457 6458 // Evaluate at the exit value. If we really did fall out of the valid 6459 // range, then we computed our trip count, otherwise wrap around or other 6460 // things must have happened. 6461 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6462 if (Range.contains(Val->getValue())) 6463 return SE.getCouldNotCompute(); // Something strange happened 6464 6465 // Ensure that the previous value is in the range. This is a sanity check. 6466 assert(Range.contains( 6467 EvaluateConstantChrecAtConstant(this, 6468 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6469 "Linear scev computation is off in a bad way!"); 6470 return SE.getConstant(ExitValue); 6471 } else if (isQuadratic()) { 6472 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6473 // quadratic equation to solve it. To do this, we must frame our problem in 6474 // terms of figuring out when zero is crossed, instead of when 6475 // Range.getUpper() is crossed. 6476 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6477 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6478 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6479 // getNoWrapFlags(FlagNW) 6480 FlagAnyWrap); 6481 6482 // Next, solve the constructed addrec 6483 std::pair<const SCEV *,const SCEV *> Roots = 6484 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6485 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6486 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6487 if (R1) { 6488 // Pick the smallest positive root value. 6489 if (ConstantInt *CB = 6490 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6491 R1->getValue(), R2->getValue()))) { 6492 if (CB->getZExtValue() == false) 6493 std::swap(R1, R2); // R1 is the minimum root now. 6494 6495 // Make sure the root is not off by one. The returned iteration should 6496 // not be in the range, but the previous one should be. When solving 6497 // for "X*X < 5", for example, we should not return a root of 2. 6498 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6499 R1->getValue(), 6500 SE); 6501 if (Range.contains(R1Val->getValue())) { 6502 // The next iteration must be out of the range... 6503 ConstantInt *NextVal = 6504 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6505 6506 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6507 if (!Range.contains(R1Val->getValue())) 6508 return SE.getConstant(NextVal); 6509 return SE.getCouldNotCompute(); // Something strange happened 6510 } 6511 6512 // If R1 was not in the range, then it is a good return value. Make 6513 // sure that R1-1 WAS in the range though, just in case. 6514 ConstantInt *NextVal = 6515 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6516 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6517 if (Range.contains(R1Val->getValue())) 6518 return R1; 6519 return SE.getCouldNotCompute(); // Something strange happened 6520 } 6521 } 6522 } 6523 6524 return SE.getCouldNotCompute(); 6525 } 6526 6527 6528 6529 //===----------------------------------------------------------------------===// 6530 // SCEVCallbackVH Class Implementation 6531 //===----------------------------------------------------------------------===// 6532 6533 void ScalarEvolution::SCEVCallbackVH::deleted() { 6534 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6535 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 6536 SE->ConstantEvolutionLoopExitValue.erase(PN); 6537 SE->ValueExprMap.erase(getValPtr()); 6538 // this now dangles! 6539 } 6540 6541 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 6542 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6543 6544 // Forget all the expressions associated with users of the old value, 6545 // so that future queries will recompute the expressions using the new 6546 // value. 6547 Value *Old = getValPtr(); 6548 SmallVector<User *, 16> Worklist; 6549 SmallPtrSet<User *, 8> Visited; 6550 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 6551 UI != UE; ++UI) 6552 Worklist.push_back(*UI); 6553 while (!Worklist.empty()) { 6554 User *U = Worklist.pop_back_val(); 6555 // Deleting the Old value will cause this to dangle. Postpone 6556 // that until everything else is done. 6557 if (U == Old) 6558 continue; 6559 if (!Visited.insert(U)) 6560 continue; 6561 if (PHINode *PN = dyn_cast<PHINode>(U)) 6562 SE->ConstantEvolutionLoopExitValue.erase(PN); 6563 SE->ValueExprMap.erase(U); 6564 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 6565 UI != UE; ++UI) 6566 Worklist.push_back(*UI); 6567 } 6568 // Delete the Old value. 6569 if (PHINode *PN = dyn_cast<PHINode>(Old)) 6570 SE->ConstantEvolutionLoopExitValue.erase(PN); 6571 SE->ValueExprMap.erase(Old); 6572 // this now dangles! 6573 } 6574 6575 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 6576 : CallbackVH(V), SE(se) {} 6577 6578 //===----------------------------------------------------------------------===// 6579 // ScalarEvolution Class Implementation 6580 //===----------------------------------------------------------------------===// 6581 6582 ScalarEvolution::ScalarEvolution() 6583 : FunctionPass(ID), FirstUnknown(0) { 6584 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 6585 } 6586 6587 bool ScalarEvolution::runOnFunction(Function &F) { 6588 this->F = &F; 6589 LI = &getAnalysis<LoopInfo>(); 6590 TD = getAnalysisIfAvailable<TargetData>(); 6591 TLI = &getAnalysis<TargetLibraryInfo>(); 6592 DT = &getAnalysis<DominatorTree>(); 6593 return false; 6594 } 6595 6596 void ScalarEvolution::releaseMemory() { 6597 // Iterate through all the SCEVUnknown instances and call their 6598 // destructors, so that they release their references to their values. 6599 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 6600 U->~SCEVUnknown(); 6601 FirstUnknown = 0; 6602 6603 ValueExprMap.clear(); 6604 6605 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 6606 // that a loop had multiple computable exits. 6607 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 6608 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 6609 I != E; ++I) { 6610 I->second.clear(); 6611 } 6612 6613 BackedgeTakenCounts.clear(); 6614 ConstantEvolutionLoopExitValue.clear(); 6615 ValuesAtScopes.clear(); 6616 LoopDispositions.clear(); 6617 BlockDispositions.clear(); 6618 UnsignedRanges.clear(); 6619 SignedRanges.clear(); 6620 UniqueSCEVs.clear(); 6621 SCEVAllocator.Reset(); 6622 } 6623 6624 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 6625 AU.setPreservesAll(); 6626 AU.addRequiredTransitive<LoopInfo>(); 6627 AU.addRequiredTransitive<DominatorTree>(); 6628 AU.addRequired<TargetLibraryInfo>(); 6629 } 6630 6631 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 6632 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 6633 } 6634 6635 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 6636 const Loop *L) { 6637 // Print all inner loops first 6638 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 6639 PrintLoopInfo(OS, SE, *I); 6640 6641 OS << "Loop "; 6642 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6643 OS << ": "; 6644 6645 SmallVector<BasicBlock *, 8> ExitBlocks; 6646 L->getExitBlocks(ExitBlocks); 6647 if (ExitBlocks.size() != 1) 6648 OS << "<multiple exits> "; 6649 6650 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 6651 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 6652 } else { 6653 OS << "Unpredictable backedge-taken count. "; 6654 } 6655 6656 OS << "\n" 6657 "Loop "; 6658 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6659 OS << ": "; 6660 6661 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 6662 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 6663 } else { 6664 OS << "Unpredictable max backedge-taken count. "; 6665 } 6666 6667 OS << "\n"; 6668 } 6669 6670 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 6671 // ScalarEvolution's implementation of the print method is to print 6672 // out SCEV values of all instructions that are interesting. Doing 6673 // this potentially causes it to create new SCEV objects though, 6674 // which technically conflicts with the const qualifier. This isn't 6675 // observable from outside the class though, so casting away the 6676 // const isn't dangerous. 6677 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 6678 6679 OS << "Classifying expressions for: "; 6680 WriteAsOperand(OS, F, /*PrintType=*/false); 6681 OS << "\n"; 6682 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 6683 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 6684 OS << *I << '\n'; 6685 OS << " --> "; 6686 const SCEV *SV = SE.getSCEV(&*I); 6687 SV->print(OS); 6688 6689 const Loop *L = LI->getLoopFor((*I).getParent()); 6690 6691 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 6692 if (AtUse != SV) { 6693 OS << " --> "; 6694 AtUse->print(OS); 6695 } 6696 6697 if (L) { 6698 OS << "\t\t" "Exits: "; 6699 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 6700 if (!SE.isLoopInvariant(ExitValue, L)) { 6701 OS << "<<Unknown>>"; 6702 } else { 6703 OS << *ExitValue; 6704 } 6705 } 6706 6707 OS << "\n"; 6708 } 6709 6710 OS << "Determining loop execution counts for: "; 6711 WriteAsOperand(OS, F, /*PrintType=*/false); 6712 OS << "\n"; 6713 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 6714 PrintLoopInfo(OS, &SE, *I); 6715 } 6716 6717 ScalarEvolution::LoopDisposition 6718 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 6719 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S]; 6720 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair = 6721 Values.insert(std::make_pair(L, LoopVariant)); 6722 if (!Pair.second) 6723 return Pair.first->second; 6724 6725 LoopDisposition D = computeLoopDisposition(S, L); 6726 return LoopDispositions[S][L] = D; 6727 } 6728 6729 ScalarEvolution::LoopDisposition 6730 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 6731 switch (S->getSCEVType()) { 6732 case scConstant: 6733 return LoopInvariant; 6734 case scTruncate: 6735 case scZeroExtend: 6736 case scSignExtend: 6737 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 6738 case scAddRecExpr: { 6739 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6740 6741 // If L is the addrec's loop, it's computable. 6742 if (AR->getLoop() == L) 6743 return LoopComputable; 6744 6745 // Add recurrences are never invariant in the function-body (null loop). 6746 if (!L) 6747 return LoopVariant; 6748 6749 // This recurrence is variant w.r.t. L if L contains AR's loop. 6750 if (L->contains(AR->getLoop())) 6751 return LoopVariant; 6752 6753 // This recurrence is invariant w.r.t. L if AR's loop contains L. 6754 if (AR->getLoop()->contains(L)) 6755 return LoopInvariant; 6756 6757 // This recurrence is variant w.r.t. L if any of its operands 6758 // are variant. 6759 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 6760 I != E; ++I) 6761 if (!isLoopInvariant(*I, L)) 6762 return LoopVariant; 6763 6764 // Otherwise it's loop-invariant. 6765 return LoopInvariant; 6766 } 6767 case scAddExpr: 6768 case scMulExpr: 6769 case scUMaxExpr: 6770 case scSMaxExpr: { 6771 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6772 bool HasVarying = false; 6773 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6774 I != E; ++I) { 6775 LoopDisposition D = getLoopDisposition(*I, L); 6776 if (D == LoopVariant) 6777 return LoopVariant; 6778 if (D == LoopComputable) 6779 HasVarying = true; 6780 } 6781 return HasVarying ? LoopComputable : LoopInvariant; 6782 } 6783 case scUDivExpr: { 6784 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6785 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 6786 if (LD == LoopVariant) 6787 return LoopVariant; 6788 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 6789 if (RD == LoopVariant) 6790 return LoopVariant; 6791 return (LD == LoopInvariant && RD == LoopInvariant) ? 6792 LoopInvariant : LoopComputable; 6793 } 6794 case scUnknown: 6795 // All non-instruction values are loop invariant. All instructions are loop 6796 // invariant if they are not contained in the specified loop. 6797 // Instructions are never considered invariant in the function body 6798 // (null loop) because they are defined within the "loop". 6799 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 6800 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 6801 return LoopInvariant; 6802 case scCouldNotCompute: 6803 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6804 return LoopVariant; 6805 default: break; 6806 } 6807 llvm_unreachable("Unknown SCEV kind!"); 6808 return LoopVariant; 6809 } 6810 6811 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 6812 return getLoopDisposition(S, L) == LoopInvariant; 6813 } 6814 6815 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 6816 return getLoopDisposition(S, L) == LoopComputable; 6817 } 6818 6819 ScalarEvolution::BlockDisposition 6820 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6821 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S]; 6822 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool> 6823 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock)); 6824 if (!Pair.second) 6825 return Pair.first->second; 6826 6827 BlockDisposition D = computeBlockDisposition(S, BB); 6828 return BlockDispositions[S][BB] = D; 6829 } 6830 6831 ScalarEvolution::BlockDisposition 6832 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6833 switch (S->getSCEVType()) { 6834 case scConstant: 6835 return ProperlyDominatesBlock; 6836 case scTruncate: 6837 case scZeroExtend: 6838 case scSignExtend: 6839 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 6840 case scAddRecExpr: { 6841 // This uses a "dominates" query instead of "properly dominates" query 6842 // to test for proper dominance too, because the instruction which 6843 // produces the addrec's value is a PHI, and a PHI effectively properly 6844 // dominates its entire containing block. 6845 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6846 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 6847 return DoesNotDominateBlock; 6848 } 6849 // FALL THROUGH into SCEVNAryExpr handling. 6850 case scAddExpr: 6851 case scMulExpr: 6852 case scUMaxExpr: 6853 case scSMaxExpr: { 6854 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6855 bool Proper = true; 6856 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6857 I != E; ++I) { 6858 BlockDisposition D = getBlockDisposition(*I, BB); 6859 if (D == DoesNotDominateBlock) 6860 return DoesNotDominateBlock; 6861 if (D == DominatesBlock) 6862 Proper = false; 6863 } 6864 return Proper ? ProperlyDominatesBlock : DominatesBlock; 6865 } 6866 case scUDivExpr: { 6867 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6868 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6869 BlockDisposition LD = getBlockDisposition(LHS, BB); 6870 if (LD == DoesNotDominateBlock) 6871 return DoesNotDominateBlock; 6872 BlockDisposition RD = getBlockDisposition(RHS, BB); 6873 if (RD == DoesNotDominateBlock) 6874 return DoesNotDominateBlock; 6875 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 6876 ProperlyDominatesBlock : DominatesBlock; 6877 } 6878 case scUnknown: 6879 if (Instruction *I = 6880 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 6881 if (I->getParent() == BB) 6882 return DominatesBlock; 6883 if (DT->properlyDominates(I->getParent(), BB)) 6884 return ProperlyDominatesBlock; 6885 return DoesNotDominateBlock; 6886 } 6887 return ProperlyDominatesBlock; 6888 case scCouldNotCompute: 6889 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6890 return DoesNotDominateBlock; 6891 default: break; 6892 } 6893 llvm_unreachable("Unknown SCEV kind!"); 6894 return DoesNotDominateBlock; 6895 } 6896 6897 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 6898 return getBlockDisposition(S, BB) >= DominatesBlock; 6899 } 6900 6901 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 6902 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 6903 } 6904 6905 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 6906 switch (S->getSCEVType()) { 6907 case scConstant: 6908 return false; 6909 case scTruncate: 6910 case scZeroExtend: 6911 case scSignExtend: { 6912 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S); 6913 const SCEV *CastOp = Cast->getOperand(); 6914 return Op == CastOp || hasOperand(CastOp, Op); 6915 } 6916 case scAddRecExpr: 6917 case scAddExpr: 6918 case scMulExpr: 6919 case scUMaxExpr: 6920 case scSMaxExpr: { 6921 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6922 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6923 I != E; ++I) { 6924 const SCEV *NAryOp = *I; 6925 if (NAryOp == Op || hasOperand(NAryOp, Op)) 6926 return true; 6927 } 6928 return false; 6929 } 6930 case scUDivExpr: { 6931 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6932 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6933 return LHS == Op || hasOperand(LHS, Op) || 6934 RHS == Op || hasOperand(RHS, Op); 6935 } 6936 case scUnknown: 6937 return false; 6938 case scCouldNotCompute: 6939 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6940 return false; 6941 default: break; 6942 } 6943 llvm_unreachable("Unknown SCEV kind!"); 6944 return false; 6945 } 6946 6947 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 6948 ValuesAtScopes.erase(S); 6949 LoopDispositions.erase(S); 6950 BlockDispositions.erase(S); 6951 UnsignedRanges.erase(S); 6952 SignedRanges.erase(S); 6953 } 6954