1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/LoopInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Assembly/Writer.h" 75 #include "llvm/Target/TargetData.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/GetElementPtrTypeIterator.h" 81 #include "llvm/Support/InstIterator.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/ADT/Statistic.h" 85 #include "llvm/ADT/STLExtras.h" 86 #include "llvm/ADT/SmallPtrSet.h" 87 #include <algorithm> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant " 103 "derived loop"), 104 cl::init(100)); 105 106 INITIALIZE_PASS(ScalarEvolution, "scalar-evolution", 107 "Scalar Evolution Analysis", false, true); 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 118 SCEV::~SCEV() {} 119 120 void SCEV::dump() const { 121 print(dbgs()); 122 dbgs() << '\n'; 123 } 124 125 bool SCEV::isZero() const { 126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 127 return SC->getValue()->isZero(); 128 return false; 129 } 130 131 bool SCEV::isOne() const { 132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 133 return SC->getValue()->isOne(); 134 return false; 135 } 136 137 bool SCEV::isAllOnesValue() const { 138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 139 return SC->getValue()->isAllOnesValue(); 140 return false; 141 } 142 143 SCEVCouldNotCompute::SCEVCouldNotCompute() : 144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 145 146 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 148 return false; 149 } 150 151 const Type *SCEVCouldNotCompute::getType() const { 152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 153 return 0; 154 } 155 156 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 158 return false; 159 } 160 161 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const { 162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 163 return false; 164 } 165 166 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 167 OS << "***COULDNOTCOMPUTE***"; 168 } 169 170 bool SCEVCouldNotCompute::classof(const SCEV *S) { 171 return S->getSCEVType() == scCouldNotCompute; 172 } 173 174 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 175 FoldingSetNodeID ID; 176 ID.AddInteger(scConstant); 177 ID.AddPointer(V); 178 void *IP = 0; 179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 181 UniqueSCEVs.InsertNode(S, IP); 182 return S; 183 } 184 185 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 186 return getConstant(ConstantInt::get(getContext(), Val)); 187 } 188 189 const SCEV * 190 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 192 return getConstant(ConstantInt::get(ITy, V, isSigned)); 193 } 194 195 const Type *SCEVConstant::getType() const { return V->getType(); } 196 197 void SCEVConstant::print(raw_ostream &OS) const { 198 WriteAsOperand(OS, V, false); 199 } 200 201 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 202 unsigned SCEVTy, const SCEV *op, const Type *ty) 203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 204 205 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 206 return Op->dominates(BB, DT); 207 } 208 209 bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 210 return Op->properlyDominates(BB, DT); 211 } 212 213 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 214 const SCEV *op, const Type *ty) 215 : SCEVCastExpr(ID, scTruncate, op, ty) { 216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 217 (Ty->isIntegerTy() || Ty->isPointerTy()) && 218 "Cannot truncate non-integer value!"); 219 } 220 221 void SCEVTruncateExpr::print(raw_ostream &OS) const { 222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 223 } 224 225 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 226 const SCEV *op, const Type *ty) 227 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 229 (Ty->isIntegerTy() || Ty->isPointerTy()) && 230 "Cannot zero extend non-integer value!"); 231 } 232 233 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 235 } 236 237 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 238 const SCEV *op, const Type *ty) 239 : SCEVCastExpr(ID, scSignExtend, op, ty) { 240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 241 (Ty->isIntegerTy() || Ty->isPointerTy()) && 242 "Cannot sign extend non-integer value!"); 243 } 244 245 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 247 } 248 249 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 250 const char *OpStr = getOperationStr(); 251 OS << "("; 252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) { 253 OS << **I; 254 if (llvm::next(I) != E) 255 OS << OpStr; 256 } 257 OS << ")"; 258 } 259 260 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 262 if (!getOperand(i)->dominates(BB, DT)) 263 return false; 264 } 265 return true; 266 } 267 268 bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 270 if (!getOperand(i)->properlyDominates(BB, DT)) 271 return false; 272 } 273 return true; 274 } 275 276 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 278 } 279 280 bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT); 282 } 283 284 void SCEVUDivExpr::print(raw_ostream &OS) const { 285 OS << "(" << *LHS << " /u " << *RHS << ")"; 286 } 287 288 const Type *SCEVUDivExpr::getType() const { 289 // In most cases the types of LHS and RHS will be the same, but in some 290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 291 // depend on the type for correctness, but handling types carefully can 292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 293 // a pointer type than the RHS, so use the RHS' type here. 294 return RHS->getType(); 295 } 296 297 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 298 // Add recurrences are never invariant in the function-body (null loop). 299 if (!QueryLoop) 300 return false; 301 302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. 303 if (QueryLoop->contains(L)) 304 return false; 305 306 // This recurrence is variant w.r.t. QueryLoop if any of its operands 307 // are variant. 308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 309 if (!getOperand(i)->isLoopInvariant(QueryLoop)) 310 return false; 311 312 // Otherwise it's loop-invariant. 313 return true; 314 } 315 316 bool 317 SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 318 return DT->dominates(L->getHeader(), BB) && 319 SCEVNAryExpr::dominates(BB, DT); 320 } 321 322 bool 323 SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 324 // This uses a "dominates" query instead of "properly dominates" query because 325 // the instruction which produces the addrec's value is a PHI, and a PHI 326 // effectively properly dominates its entire containing block. 327 return DT->dominates(L->getHeader(), BB) && 328 SCEVNAryExpr::properlyDominates(BB, DT); 329 } 330 331 void SCEVAddRecExpr::print(raw_ostream &OS) const { 332 OS << "{" << *Operands[0]; 333 for (unsigned i = 1, e = NumOperands; i != e; ++i) 334 OS << ",+," << *Operands[i]; 335 OS << "}<"; 336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 337 OS << ">"; 338 } 339 340 void SCEVUnknown::deleted() { 341 // Clear this SCEVUnknown from ValuesAtScopes. 342 SE->ValuesAtScopes.erase(this); 343 344 // Remove this SCEVUnknown from the uniquing map. 345 SE->UniqueSCEVs.RemoveNode(this); 346 347 // Release the value. 348 setValPtr(0); 349 } 350 351 void SCEVUnknown::allUsesReplacedWith(Value *New) { 352 // Clear this SCEVUnknown from ValuesAtScopes. 353 SE->ValuesAtScopes.erase(this); 354 355 // Remove this SCEVUnknown from the uniquing map. 356 SE->UniqueSCEVs.RemoveNode(this); 357 358 // Update this SCEVUnknown to point to the new value. This is needed 359 // because there may still be outstanding SCEVs which still point to 360 // this SCEVUnknown. 361 setValPtr(New); 362 } 363 364 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 365 // All non-instruction values are loop invariant. All instructions are loop 366 // invariant if they are not contained in the specified loop. 367 // Instructions are never considered invariant in the function body 368 // (null loop) because they are defined within the "loop". 369 if (Instruction *I = dyn_cast<Instruction>(getValue())) 370 return L && !L->contains(I); 371 return true; 372 } 373 374 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 375 if (Instruction *I = dyn_cast<Instruction>(getValue())) 376 return DT->dominates(I->getParent(), BB); 377 return true; 378 } 379 380 bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 381 if (Instruction *I = dyn_cast<Instruction>(getValue())) 382 return DT->properlyDominates(I->getParent(), BB); 383 return true; 384 } 385 386 const Type *SCEVUnknown::getType() const { 387 return getValue()->getType(); 388 } 389 390 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { 391 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 392 if (VCE->getOpcode() == Instruction::PtrToInt) 393 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 394 if (CE->getOpcode() == Instruction::GetElementPtr && 395 CE->getOperand(0)->isNullValue() && 396 CE->getNumOperands() == 2) 397 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 398 if (CI->isOne()) { 399 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 400 ->getElementType(); 401 return true; 402 } 403 404 return false; 405 } 406 407 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { 408 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 409 if (VCE->getOpcode() == Instruction::PtrToInt) 410 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 411 if (CE->getOpcode() == Instruction::GetElementPtr && 412 CE->getOperand(0)->isNullValue()) { 413 const Type *Ty = 414 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 415 if (const StructType *STy = dyn_cast<StructType>(Ty)) 416 if (!STy->isPacked() && 417 CE->getNumOperands() == 3 && 418 CE->getOperand(1)->isNullValue()) { 419 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 420 if (CI->isOne() && 421 STy->getNumElements() == 2 && 422 STy->getElementType(0)->isIntegerTy(1)) { 423 AllocTy = STy->getElementType(1); 424 return true; 425 } 426 } 427 } 428 429 return false; 430 } 431 432 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const { 433 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 434 if (VCE->getOpcode() == Instruction::PtrToInt) 435 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 436 if (CE->getOpcode() == Instruction::GetElementPtr && 437 CE->getNumOperands() == 3 && 438 CE->getOperand(0)->isNullValue() && 439 CE->getOperand(1)->isNullValue()) { 440 const Type *Ty = 441 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 442 // Ignore vector types here so that ScalarEvolutionExpander doesn't 443 // emit getelementptrs that index into vectors. 444 if (Ty->isStructTy() || Ty->isArrayTy()) { 445 CTy = Ty; 446 FieldNo = CE->getOperand(2); 447 return true; 448 } 449 } 450 451 return false; 452 } 453 454 void SCEVUnknown::print(raw_ostream &OS) const { 455 const Type *AllocTy; 456 if (isSizeOf(AllocTy)) { 457 OS << "sizeof(" << *AllocTy << ")"; 458 return; 459 } 460 if (isAlignOf(AllocTy)) { 461 OS << "alignof(" << *AllocTy << ")"; 462 return; 463 } 464 465 const Type *CTy; 466 Constant *FieldNo; 467 if (isOffsetOf(CTy, FieldNo)) { 468 OS << "offsetof(" << *CTy << ", "; 469 WriteAsOperand(OS, FieldNo, false); 470 OS << ")"; 471 return; 472 } 473 474 // Otherwise just print it normally. 475 WriteAsOperand(OS, getValue(), false); 476 } 477 478 //===----------------------------------------------------------------------===// 479 // SCEV Utilities 480 //===----------------------------------------------------------------------===// 481 482 static bool CompareTypes(const Type *A, const Type *B) { 483 if (A->getTypeID() != B->getTypeID()) 484 return A->getTypeID() < B->getTypeID(); 485 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) { 486 const IntegerType *BI = cast<IntegerType>(B); 487 return AI->getBitWidth() < BI->getBitWidth(); 488 } 489 if (const PointerType *AI = dyn_cast<PointerType>(A)) { 490 const PointerType *BI = cast<PointerType>(B); 491 return CompareTypes(AI->getElementType(), BI->getElementType()); 492 } 493 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) { 494 const ArrayType *BI = cast<ArrayType>(B); 495 if (AI->getNumElements() != BI->getNumElements()) 496 return AI->getNumElements() < BI->getNumElements(); 497 return CompareTypes(AI->getElementType(), BI->getElementType()); 498 } 499 if (const VectorType *AI = dyn_cast<VectorType>(A)) { 500 const VectorType *BI = cast<VectorType>(B); 501 if (AI->getNumElements() != BI->getNumElements()) 502 return AI->getNumElements() < BI->getNumElements(); 503 return CompareTypes(AI->getElementType(), BI->getElementType()); 504 } 505 if (const StructType *AI = dyn_cast<StructType>(A)) { 506 const StructType *BI = cast<StructType>(B); 507 if (AI->getNumElements() != BI->getNumElements()) 508 return AI->getNumElements() < BI->getNumElements(); 509 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i) 510 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) || 511 CompareTypes(BI->getElementType(i), AI->getElementType(i))) 512 return CompareTypes(AI->getElementType(i), BI->getElementType(i)); 513 } 514 return false; 515 } 516 517 namespace { 518 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 519 /// than the complexity of the RHS. This comparator is used to canonicalize 520 /// expressions. 521 class SCEVComplexityCompare { 522 const LoopInfo *LI; 523 public: 524 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 525 526 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 527 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 528 if (LHS == RHS) 529 return false; 530 531 // Primarily, sort the SCEVs by their getSCEVType(). 532 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 533 if (LType != RType) 534 return LType < RType; 535 536 // Aside from the getSCEVType() ordering, the particular ordering 537 // isn't very important except that it's beneficial to be consistent, 538 // so that (a + b) and (b + a) don't end up as different expressions. 539 540 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 541 // not as complete as it could be. 542 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 543 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 544 545 // Order pointer values after integer values. This helps SCEVExpander 546 // form GEPs. 547 bool LIsPointer = LU->getType()->isPointerTy(), 548 RIsPointer = RU->getType()->isPointerTy(); 549 if (LIsPointer != RIsPointer) 550 return RIsPointer; 551 552 // Compare getValueID values. 553 unsigned LID = LU->getValue()->getValueID(), 554 RID = RU->getValue()->getValueID(); 555 if (LID != RID) 556 return LID < RID; 557 558 // Sort arguments by their position. 559 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 560 const Argument *RA = cast<Argument>(RU->getValue()); 561 return LA->getArgNo() < RA->getArgNo(); 562 } 563 564 // For instructions, compare their loop depth, and their opcode. 565 // This is pretty loose. 566 if (const Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 567 const Instruction *RV = cast<Instruction>(RU->getValue()); 568 569 // Compare loop depths. 570 unsigned LDepth = LI->getLoopDepth(LV->getParent()), 571 RDepth = LI->getLoopDepth(RV->getParent()); 572 if (LDepth != RDepth) 573 return LDepth < RDepth; 574 575 // Compare the number of operands. 576 unsigned LNumOps = LV->getNumOperands(), 577 RNumOps = RV->getNumOperands(); 578 if (LNumOps != RNumOps) 579 return LNumOps < RNumOps; 580 } 581 582 return false; 583 } 584 585 // Compare constant values. 586 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 587 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 588 const ConstantInt *LCC = LC->getValue(); 589 const ConstantInt *RCC = RC->getValue(); 590 unsigned LBitWidth = LCC->getBitWidth(), RBitWidth = RCC->getBitWidth(); 591 if (LBitWidth != RBitWidth) 592 return LBitWidth < RBitWidth; 593 return LCC->getValue().ult(RCC->getValue()); 594 } 595 596 // Compare addrec loop depths. 597 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 598 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 599 unsigned LDepth = LA->getLoop()->getLoopDepth(), 600 RDepth = RA->getLoop()->getLoopDepth(); 601 if (LDepth != RDepth) 602 return LDepth < RDepth; 603 } 604 605 // Lexicographically compare n-ary expressions. 606 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 607 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 608 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 609 for (unsigned i = 0; i != LNumOps; ++i) { 610 if (i >= RNumOps) 611 return false; 612 const SCEV *LOp = LC->getOperand(i), *ROp = RC->getOperand(i); 613 if (operator()(LOp, ROp)) 614 return true; 615 if (operator()(ROp, LOp)) 616 return false; 617 } 618 return LNumOps < RNumOps; 619 } 620 621 // Lexicographically compare udiv expressions. 622 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 623 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 624 const SCEV *LL = LC->getLHS(), *LR = LC->getRHS(), 625 *RL = RC->getLHS(), *RR = RC->getRHS(); 626 if (operator()(LL, RL)) 627 return true; 628 if (operator()(RL, LL)) 629 return false; 630 if (operator()(LR, RR)) 631 return true; 632 if (operator()(RR, LR)) 633 return false; 634 return false; 635 } 636 637 // Compare cast expressions by operand. 638 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 639 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 640 return operator()(LC->getOperand(), RC->getOperand()); 641 } 642 643 llvm_unreachable("Unknown SCEV kind!"); 644 return false; 645 } 646 }; 647 } 648 649 /// GroupByComplexity - Given a list of SCEV objects, order them by their 650 /// complexity, and group objects of the same complexity together by value. 651 /// When this routine is finished, we know that any duplicates in the vector are 652 /// consecutive and that complexity is monotonically increasing. 653 /// 654 /// Note that we go take special precautions to ensure that we get deterministic 655 /// results from this routine. In other words, we don't want the results of 656 /// this to depend on where the addresses of various SCEV objects happened to 657 /// land in memory. 658 /// 659 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 660 LoopInfo *LI) { 661 if (Ops.size() < 2) return; // Noop 662 if (Ops.size() == 2) { 663 // This is the common case, which also happens to be trivially simple. 664 // Special case it. 665 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 666 std::swap(Ops[0], Ops[1]); 667 return; 668 } 669 670 // Do the rough sort by complexity. 671 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 672 673 // Now that we are sorted by complexity, group elements of the same 674 // complexity. Note that this is, at worst, N^2, but the vector is likely to 675 // be extremely short in practice. Note that we take this approach because we 676 // do not want to depend on the addresses of the objects we are grouping. 677 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 678 const SCEV *S = Ops[i]; 679 unsigned Complexity = S->getSCEVType(); 680 681 // If there are any objects of the same complexity and same value as this 682 // one, group them. 683 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 684 if (Ops[j] == S) { // Found a duplicate. 685 // Move it to immediately after i'th element. 686 std::swap(Ops[i+1], Ops[j]); 687 ++i; // no need to rescan it. 688 if (i == e-2) return; // Done! 689 } 690 } 691 } 692 } 693 694 695 696 //===----------------------------------------------------------------------===// 697 // Simple SCEV method implementations 698 //===----------------------------------------------------------------------===// 699 700 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 701 /// Assume, K > 0. 702 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 703 ScalarEvolution &SE, 704 const Type* ResultTy) { 705 // Handle the simplest case efficiently. 706 if (K == 1) 707 return SE.getTruncateOrZeroExtend(It, ResultTy); 708 709 // We are using the following formula for BC(It, K): 710 // 711 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 712 // 713 // Suppose, W is the bitwidth of the return value. We must be prepared for 714 // overflow. Hence, we must assure that the result of our computation is 715 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 716 // safe in modular arithmetic. 717 // 718 // However, this code doesn't use exactly that formula; the formula it uses 719 // is something like the following, where T is the number of factors of 2 in 720 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 721 // exponentiation: 722 // 723 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 724 // 725 // This formula is trivially equivalent to the previous formula. However, 726 // this formula can be implemented much more efficiently. The trick is that 727 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 728 // arithmetic. To do exact division in modular arithmetic, all we have 729 // to do is multiply by the inverse. Therefore, this step can be done at 730 // width W. 731 // 732 // The next issue is how to safely do the division by 2^T. The way this 733 // is done is by doing the multiplication step at a width of at least W + T 734 // bits. This way, the bottom W+T bits of the product are accurate. Then, 735 // when we perform the division by 2^T (which is equivalent to a right shift 736 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 737 // truncated out after the division by 2^T. 738 // 739 // In comparison to just directly using the first formula, this technique 740 // is much more efficient; using the first formula requires W * K bits, 741 // but this formula less than W + K bits. Also, the first formula requires 742 // a division step, whereas this formula only requires multiplies and shifts. 743 // 744 // It doesn't matter whether the subtraction step is done in the calculation 745 // width or the input iteration count's width; if the subtraction overflows, 746 // the result must be zero anyway. We prefer here to do it in the width of 747 // the induction variable because it helps a lot for certain cases; CodeGen 748 // isn't smart enough to ignore the overflow, which leads to much less 749 // efficient code if the width of the subtraction is wider than the native 750 // register width. 751 // 752 // (It's possible to not widen at all by pulling out factors of 2 before 753 // the multiplication; for example, K=2 can be calculated as 754 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 755 // extra arithmetic, so it's not an obvious win, and it gets 756 // much more complicated for K > 3.) 757 758 // Protection from insane SCEVs; this bound is conservative, 759 // but it probably doesn't matter. 760 if (K > 1000) 761 return SE.getCouldNotCompute(); 762 763 unsigned W = SE.getTypeSizeInBits(ResultTy); 764 765 // Calculate K! / 2^T and T; we divide out the factors of two before 766 // multiplying for calculating K! / 2^T to avoid overflow. 767 // Other overflow doesn't matter because we only care about the bottom 768 // W bits of the result. 769 APInt OddFactorial(W, 1); 770 unsigned T = 1; 771 for (unsigned i = 3; i <= K; ++i) { 772 APInt Mult(W, i); 773 unsigned TwoFactors = Mult.countTrailingZeros(); 774 T += TwoFactors; 775 Mult = Mult.lshr(TwoFactors); 776 OddFactorial *= Mult; 777 } 778 779 // We need at least W + T bits for the multiplication step 780 unsigned CalculationBits = W + T; 781 782 // Calculate 2^T, at width T+W. 783 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 784 785 // Calculate the multiplicative inverse of K! / 2^T; 786 // this multiplication factor will perform the exact division by 787 // K! / 2^T. 788 APInt Mod = APInt::getSignedMinValue(W+1); 789 APInt MultiplyFactor = OddFactorial.zext(W+1); 790 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 791 MultiplyFactor = MultiplyFactor.trunc(W); 792 793 // Calculate the product, at width T+W 794 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 795 CalculationBits); 796 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 797 for (unsigned i = 1; i != K; ++i) { 798 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 799 Dividend = SE.getMulExpr(Dividend, 800 SE.getTruncateOrZeroExtend(S, CalculationTy)); 801 } 802 803 // Divide by 2^T 804 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 805 806 // Truncate the result, and divide by K! / 2^T. 807 808 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 809 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 810 } 811 812 /// evaluateAtIteration - Return the value of this chain of recurrences at 813 /// the specified iteration number. We can evaluate this recurrence by 814 /// multiplying each element in the chain by the binomial coefficient 815 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 816 /// 817 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 818 /// 819 /// where BC(It, k) stands for binomial coefficient. 820 /// 821 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 822 ScalarEvolution &SE) const { 823 const SCEV *Result = getStart(); 824 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 825 // The computation is correct in the face of overflow provided that the 826 // multiplication is performed _after_ the evaluation of the binomial 827 // coefficient. 828 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 829 if (isa<SCEVCouldNotCompute>(Coeff)) 830 return Coeff; 831 832 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 833 } 834 return Result; 835 } 836 837 //===----------------------------------------------------------------------===// 838 // SCEV Expression folder implementations 839 //===----------------------------------------------------------------------===// 840 841 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 842 const Type *Ty) { 843 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 844 "This is not a truncating conversion!"); 845 assert(isSCEVable(Ty) && 846 "This is not a conversion to a SCEVable type!"); 847 Ty = getEffectiveSCEVType(Ty); 848 849 FoldingSetNodeID ID; 850 ID.AddInteger(scTruncate); 851 ID.AddPointer(Op); 852 ID.AddPointer(Ty); 853 void *IP = 0; 854 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 855 856 // Fold if the operand is constant. 857 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 858 return getConstant( 859 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 860 getEffectiveSCEVType(Ty)))); 861 862 // trunc(trunc(x)) --> trunc(x) 863 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 864 return getTruncateExpr(ST->getOperand(), Ty); 865 866 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 867 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 868 return getTruncateOrSignExtend(SS->getOperand(), Ty); 869 870 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 871 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 872 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 873 874 // If the input value is a chrec scev, truncate the chrec's operands. 875 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 876 SmallVector<const SCEV *, 4> Operands; 877 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 878 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 879 return getAddRecExpr(Operands, AddRec->getLoop()); 880 } 881 882 // As a special case, fold trunc(undef) to undef. We don't want to 883 // know too much about SCEVUnknowns, but this special case is handy 884 // and harmless. 885 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 886 if (isa<UndefValue>(U->getValue())) 887 return getSCEV(UndefValue::get(Ty)); 888 889 // The cast wasn't folded; create an explicit cast node. We can reuse 890 // the existing insert position since if we get here, we won't have 891 // made any changes which would invalidate it. 892 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 893 Op, Ty); 894 UniqueSCEVs.InsertNode(S, IP); 895 return S; 896 } 897 898 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 899 const Type *Ty) { 900 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 901 "This is not an extending conversion!"); 902 assert(isSCEVable(Ty) && 903 "This is not a conversion to a SCEVable type!"); 904 Ty = getEffectiveSCEVType(Ty); 905 906 // Fold if the operand is constant. 907 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 908 return getConstant( 909 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 910 getEffectiveSCEVType(Ty)))); 911 912 // zext(zext(x)) --> zext(x) 913 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 914 return getZeroExtendExpr(SZ->getOperand(), Ty); 915 916 // Before doing any expensive analysis, check to see if we've already 917 // computed a SCEV for this Op and Ty. 918 FoldingSetNodeID ID; 919 ID.AddInteger(scZeroExtend); 920 ID.AddPointer(Op); 921 ID.AddPointer(Ty); 922 void *IP = 0; 923 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 924 925 // If the input value is a chrec scev, and we can prove that the value 926 // did not overflow the old, smaller, value, we can zero extend all of the 927 // operands (often constants). This allows analysis of something like 928 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 929 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 930 if (AR->isAffine()) { 931 const SCEV *Start = AR->getStart(); 932 const SCEV *Step = AR->getStepRecurrence(*this); 933 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 934 const Loop *L = AR->getLoop(); 935 936 // If we have special knowledge that this addrec won't overflow, 937 // we don't need to do any further analysis. 938 if (AR->hasNoUnsignedWrap()) 939 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 940 getZeroExtendExpr(Step, Ty), 941 L); 942 943 // Check whether the backedge-taken count is SCEVCouldNotCompute. 944 // Note that this serves two purposes: It filters out loops that are 945 // simply not analyzable, and it covers the case where this code is 946 // being called from within backedge-taken count analysis, such that 947 // attempting to ask for the backedge-taken count would likely result 948 // in infinite recursion. In the later case, the analysis code will 949 // cope with a conservative value, and it will take care to purge 950 // that value once it has finished. 951 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 952 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 953 // Manually compute the final value for AR, checking for 954 // overflow. 955 956 // Check whether the backedge-taken count can be losslessly casted to 957 // the addrec's type. The count is always unsigned. 958 const SCEV *CastedMaxBECount = 959 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 960 const SCEV *RecastedMaxBECount = 961 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 962 if (MaxBECount == RecastedMaxBECount) { 963 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 964 // Check whether Start+Step*MaxBECount has no unsigned overflow. 965 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 966 const SCEV *Add = getAddExpr(Start, ZMul); 967 const SCEV *OperandExtendedAdd = 968 getAddExpr(getZeroExtendExpr(Start, WideTy), 969 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 970 getZeroExtendExpr(Step, WideTy))); 971 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 972 // Return the expression with the addrec on the outside. 973 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 974 getZeroExtendExpr(Step, Ty), 975 L); 976 977 // Similar to above, only this time treat the step value as signed. 978 // This covers loops that count down. 979 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 980 Add = getAddExpr(Start, SMul); 981 OperandExtendedAdd = 982 getAddExpr(getZeroExtendExpr(Start, WideTy), 983 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 984 getSignExtendExpr(Step, WideTy))); 985 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 986 // Return the expression with the addrec on the outside. 987 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 988 getSignExtendExpr(Step, Ty), 989 L); 990 } 991 992 // If the backedge is guarded by a comparison with the pre-inc value 993 // the addrec is safe. Also, if the entry is guarded by a comparison 994 // with the start value and the backedge is guarded by a comparison 995 // with the post-inc value, the addrec is safe. 996 if (isKnownPositive(Step)) { 997 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 998 getUnsignedRange(Step).getUnsignedMax()); 999 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1000 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1001 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1002 AR->getPostIncExpr(*this), N))) 1003 // Return the expression with the addrec on the outside. 1004 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1005 getZeroExtendExpr(Step, Ty), 1006 L); 1007 } else if (isKnownNegative(Step)) { 1008 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1009 getSignedRange(Step).getSignedMin()); 1010 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1011 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1012 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1013 AR->getPostIncExpr(*this), N))) 1014 // Return the expression with the addrec on the outside. 1015 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1016 getSignExtendExpr(Step, Ty), 1017 L); 1018 } 1019 } 1020 } 1021 1022 // The cast wasn't folded; create an explicit cast node. 1023 // Recompute the insert position, as it may have been invalidated. 1024 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1025 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1026 Op, Ty); 1027 UniqueSCEVs.InsertNode(S, IP); 1028 return S; 1029 } 1030 1031 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1032 const Type *Ty) { 1033 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1034 "This is not an extending conversion!"); 1035 assert(isSCEVable(Ty) && 1036 "This is not a conversion to a SCEVable type!"); 1037 Ty = getEffectiveSCEVType(Ty); 1038 1039 // Fold if the operand is constant. 1040 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1041 return getConstant( 1042 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 1043 getEffectiveSCEVType(Ty)))); 1044 1045 // sext(sext(x)) --> sext(x) 1046 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1047 return getSignExtendExpr(SS->getOperand(), Ty); 1048 1049 // Before doing any expensive analysis, check to see if we've already 1050 // computed a SCEV for this Op and Ty. 1051 FoldingSetNodeID ID; 1052 ID.AddInteger(scSignExtend); 1053 ID.AddPointer(Op); 1054 ID.AddPointer(Ty); 1055 void *IP = 0; 1056 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1057 1058 // If the input value is a chrec scev, and we can prove that the value 1059 // did not overflow the old, smaller, value, we can sign extend all of the 1060 // operands (often constants). This allows analysis of something like 1061 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1062 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1063 if (AR->isAffine()) { 1064 const SCEV *Start = AR->getStart(); 1065 const SCEV *Step = AR->getStepRecurrence(*this); 1066 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1067 const Loop *L = AR->getLoop(); 1068 1069 // If we have special knowledge that this addrec won't overflow, 1070 // we don't need to do any further analysis. 1071 if (AR->hasNoSignedWrap()) 1072 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1073 getSignExtendExpr(Step, Ty), 1074 L); 1075 1076 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1077 // Note that this serves two purposes: It filters out loops that are 1078 // simply not analyzable, and it covers the case where this code is 1079 // being called from within backedge-taken count analysis, such that 1080 // attempting to ask for the backedge-taken count would likely result 1081 // in infinite recursion. In the later case, the analysis code will 1082 // cope with a conservative value, and it will take care to purge 1083 // that value once it has finished. 1084 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1085 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1086 // Manually compute the final value for AR, checking for 1087 // overflow. 1088 1089 // Check whether the backedge-taken count can be losslessly casted to 1090 // the addrec's type. The count is always unsigned. 1091 const SCEV *CastedMaxBECount = 1092 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1093 const SCEV *RecastedMaxBECount = 1094 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1095 if (MaxBECount == RecastedMaxBECount) { 1096 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1097 // Check whether Start+Step*MaxBECount has no signed overflow. 1098 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1099 const SCEV *Add = getAddExpr(Start, SMul); 1100 const SCEV *OperandExtendedAdd = 1101 getAddExpr(getSignExtendExpr(Start, WideTy), 1102 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1103 getSignExtendExpr(Step, WideTy))); 1104 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1105 // Return the expression with the addrec on the outside. 1106 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1107 getSignExtendExpr(Step, Ty), 1108 L); 1109 1110 // Similar to above, only this time treat the step value as unsigned. 1111 // This covers loops that count up with an unsigned step. 1112 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1113 Add = getAddExpr(Start, UMul); 1114 OperandExtendedAdd = 1115 getAddExpr(getSignExtendExpr(Start, WideTy), 1116 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1117 getZeroExtendExpr(Step, WideTy))); 1118 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1119 // Return the expression with the addrec on the outside. 1120 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1121 getZeroExtendExpr(Step, Ty), 1122 L); 1123 } 1124 1125 // If the backedge is guarded by a comparison with the pre-inc value 1126 // the addrec is safe. Also, if the entry is guarded by a comparison 1127 // with the start value and the backedge is guarded by a comparison 1128 // with the post-inc value, the addrec is safe. 1129 if (isKnownPositive(Step)) { 1130 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1131 getSignedRange(Step).getSignedMax()); 1132 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1133 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1134 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1135 AR->getPostIncExpr(*this), N))) 1136 // Return the expression with the addrec on the outside. 1137 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1138 getSignExtendExpr(Step, Ty), 1139 L); 1140 } else if (isKnownNegative(Step)) { 1141 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1142 getSignedRange(Step).getSignedMin()); 1143 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1144 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1145 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1146 AR->getPostIncExpr(*this), N))) 1147 // Return the expression with the addrec on the outside. 1148 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1149 getSignExtendExpr(Step, Ty), 1150 L); 1151 } 1152 } 1153 } 1154 1155 // The cast wasn't folded; create an explicit cast node. 1156 // Recompute the insert position, as it may have been invalidated. 1157 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1158 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1159 Op, Ty); 1160 UniqueSCEVs.InsertNode(S, IP); 1161 return S; 1162 } 1163 1164 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1165 /// unspecified bits out to the given type. 1166 /// 1167 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1168 const Type *Ty) { 1169 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1170 "This is not an extending conversion!"); 1171 assert(isSCEVable(Ty) && 1172 "This is not a conversion to a SCEVable type!"); 1173 Ty = getEffectiveSCEVType(Ty); 1174 1175 // Sign-extend negative constants. 1176 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1177 if (SC->getValue()->getValue().isNegative()) 1178 return getSignExtendExpr(Op, Ty); 1179 1180 // Peel off a truncate cast. 1181 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1182 const SCEV *NewOp = T->getOperand(); 1183 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1184 return getAnyExtendExpr(NewOp, Ty); 1185 return getTruncateOrNoop(NewOp, Ty); 1186 } 1187 1188 // Next try a zext cast. If the cast is folded, use it. 1189 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1190 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1191 return ZExt; 1192 1193 // Next try a sext cast. If the cast is folded, use it. 1194 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1195 if (!isa<SCEVSignExtendExpr>(SExt)) 1196 return SExt; 1197 1198 // Force the cast to be folded into the operands of an addrec. 1199 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1200 SmallVector<const SCEV *, 4> Ops; 1201 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1202 I != E; ++I) 1203 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1204 return getAddRecExpr(Ops, AR->getLoop()); 1205 } 1206 1207 // As a special case, fold anyext(undef) to undef. We don't want to 1208 // know too much about SCEVUnknowns, but this special case is handy 1209 // and harmless. 1210 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1211 if (isa<UndefValue>(U->getValue())) 1212 return getSCEV(UndefValue::get(Ty)); 1213 1214 // If the expression is obviously signed, use the sext cast value. 1215 if (isa<SCEVSMaxExpr>(Op)) 1216 return SExt; 1217 1218 // Absent any other information, use the zext cast value. 1219 return ZExt; 1220 } 1221 1222 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1223 /// a list of operands to be added under the given scale, update the given 1224 /// map. This is a helper function for getAddRecExpr. As an example of 1225 /// what it does, given a sequence of operands that would form an add 1226 /// expression like this: 1227 /// 1228 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1229 /// 1230 /// where A and B are constants, update the map with these values: 1231 /// 1232 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1233 /// 1234 /// and add 13 + A*B*29 to AccumulatedConstant. 1235 /// This will allow getAddRecExpr to produce this: 1236 /// 1237 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1238 /// 1239 /// This form often exposes folding opportunities that are hidden in 1240 /// the original operand list. 1241 /// 1242 /// Return true iff it appears that any interesting folding opportunities 1243 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1244 /// the common case where no interesting opportunities are present, and 1245 /// is also used as a check to avoid infinite recursion. 1246 /// 1247 static bool 1248 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1249 SmallVector<const SCEV *, 8> &NewOps, 1250 APInt &AccumulatedConstant, 1251 const SCEV *const *Ops, size_t NumOperands, 1252 const APInt &Scale, 1253 ScalarEvolution &SE) { 1254 bool Interesting = false; 1255 1256 // Iterate over the add operands. They are sorted, with constants first. 1257 unsigned i = 0; 1258 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1259 ++i; 1260 // Pull a buried constant out to the outside. 1261 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1262 Interesting = true; 1263 AccumulatedConstant += Scale * C->getValue()->getValue(); 1264 } 1265 1266 // Next comes everything else. We're especially interested in multiplies 1267 // here, but they're in the middle, so just visit the rest with one loop. 1268 for (; i != NumOperands; ++i) { 1269 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1270 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1271 APInt NewScale = 1272 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1273 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1274 // A multiplication of a constant with another add; recurse. 1275 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1276 Interesting |= 1277 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1278 Add->op_begin(), Add->getNumOperands(), 1279 NewScale, SE); 1280 } else { 1281 // A multiplication of a constant with some other value. Update 1282 // the map. 1283 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1284 const SCEV *Key = SE.getMulExpr(MulOps); 1285 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1286 M.insert(std::make_pair(Key, NewScale)); 1287 if (Pair.second) { 1288 NewOps.push_back(Pair.first->first); 1289 } else { 1290 Pair.first->second += NewScale; 1291 // The map already had an entry for this value, which may indicate 1292 // a folding opportunity. 1293 Interesting = true; 1294 } 1295 } 1296 } else { 1297 // An ordinary operand. Update the map. 1298 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1299 M.insert(std::make_pair(Ops[i], Scale)); 1300 if (Pair.second) { 1301 NewOps.push_back(Pair.first->first); 1302 } else { 1303 Pair.first->second += Scale; 1304 // The map already had an entry for this value, which may indicate 1305 // a folding opportunity. 1306 Interesting = true; 1307 } 1308 } 1309 } 1310 1311 return Interesting; 1312 } 1313 1314 namespace { 1315 struct APIntCompare { 1316 bool operator()(const APInt &LHS, const APInt &RHS) const { 1317 return LHS.ult(RHS); 1318 } 1319 }; 1320 } 1321 1322 /// getAddExpr - Get a canonical add expression, or something simpler if 1323 /// possible. 1324 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1325 bool HasNUW, bool HasNSW) { 1326 assert(!Ops.empty() && "Cannot get empty add!"); 1327 if (Ops.size() == 1) return Ops[0]; 1328 #ifndef NDEBUG 1329 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1330 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1331 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1332 "SCEVAddExpr operand types don't match!"); 1333 #endif 1334 1335 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1336 if (!HasNUW && HasNSW) { 1337 bool All = true; 1338 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1339 if (!isKnownNonNegative(Ops[i])) { 1340 All = false; 1341 break; 1342 } 1343 if (All) HasNUW = true; 1344 } 1345 1346 // Sort by complexity, this groups all similar expression types together. 1347 GroupByComplexity(Ops, LI); 1348 1349 // If there are any constants, fold them together. 1350 unsigned Idx = 0; 1351 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1352 ++Idx; 1353 assert(Idx < Ops.size()); 1354 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1355 // We found two constants, fold them together! 1356 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1357 RHSC->getValue()->getValue()); 1358 if (Ops.size() == 2) return Ops[0]; 1359 Ops.erase(Ops.begin()+1); // Erase the folded element 1360 LHSC = cast<SCEVConstant>(Ops[0]); 1361 } 1362 1363 // If we are left with a constant zero being added, strip it off. 1364 if (LHSC->getValue()->isZero()) { 1365 Ops.erase(Ops.begin()); 1366 --Idx; 1367 } 1368 1369 if (Ops.size() == 1) return Ops[0]; 1370 } 1371 1372 // Okay, check to see if the same value occurs in the operand list twice. If 1373 // so, merge them together into an multiply expression. Since we sorted the 1374 // list, these values are required to be adjacent. 1375 const Type *Ty = Ops[0]->getType(); 1376 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1377 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1378 // Found a match, merge the two values into a multiply, and add any 1379 // remaining values to the result. 1380 const SCEV *Two = getConstant(Ty, 2); 1381 const SCEV *Mul = getMulExpr(Ops[i], Two); 1382 if (Ops.size() == 2) 1383 return Mul; 1384 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1385 Ops.push_back(Mul); 1386 return getAddExpr(Ops, HasNUW, HasNSW); 1387 } 1388 1389 // Check for truncates. If all the operands are truncated from the same 1390 // type, see if factoring out the truncate would permit the result to be 1391 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1392 // if the contents of the resulting outer trunc fold to something simple. 1393 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1394 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1395 const Type *DstType = Trunc->getType(); 1396 const Type *SrcType = Trunc->getOperand()->getType(); 1397 SmallVector<const SCEV *, 8> LargeOps; 1398 bool Ok = true; 1399 // Check all the operands to see if they can be represented in the 1400 // source type of the truncate. 1401 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1402 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1403 if (T->getOperand()->getType() != SrcType) { 1404 Ok = false; 1405 break; 1406 } 1407 LargeOps.push_back(T->getOperand()); 1408 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1409 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1410 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1411 SmallVector<const SCEV *, 8> LargeMulOps; 1412 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1413 if (const SCEVTruncateExpr *T = 1414 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1415 if (T->getOperand()->getType() != SrcType) { 1416 Ok = false; 1417 break; 1418 } 1419 LargeMulOps.push_back(T->getOperand()); 1420 } else if (const SCEVConstant *C = 1421 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1422 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1423 } else { 1424 Ok = false; 1425 break; 1426 } 1427 } 1428 if (Ok) 1429 LargeOps.push_back(getMulExpr(LargeMulOps)); 1430 } else { 1431 Ok = false; 1432 break; 1433 } 1434 } 1435 if (Ok) { 1436 // Evaluate the expression in the larger type. 1437 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW); 1438 // If it folds to something simple, use it. Otherwise, don't. 1439 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1440 return getTruncateExpr(Fold, DstType); 1441 } 1442 } 1443 1444 // Skip past any other cast SCEVs. 1445 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1446 ++Idx; 1447 1448 // If there are add operands they would be next. 1449 if (Idx < Ops.size()) { 1450 bool DeletedAdd = false; 1451 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1452 // If we have an add, expand the add operands onto the end of the operands 1453 // list. 1454 Ops.erase(Ops.begin()+Idx); 1455 Ops.append(Add->op_begin(), Add->op_end()); 1456 DeletedAdd = true; 1457 } 1458 1459 // If we deleted at least one add, we added operands to the end of the list, 1460 // and they are not necessarily sorted. Recurse to resort and resimplify 1461 // any operands we just acquired. 1462 if (DeletedAdd) 1463 return getAddExpr(Ops); 1464 } 1465 1466 // Skip over the add expression until we get to a multiply. 1467 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1468 ++Idx; 1469 1470 // Check to see if there are any folding opportunities present with 1471 // operands multiplied by constant values. 1472 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1473 uint64_t BitWidth = getTypeSizeInBits(Ty); 1474 DenseMap<const SCEV *, APInt> M; 1475 SmallVector<const SCEV *, 8> NewOps; 1476 APInt AccumulatedConstant(BitWidth, 0); 1477 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1478 Ops.data(), Ops.size(), 1479 APInt(BitWidth, 1), *this)) { 1480 // Some interesting folding opportunity is present, so its worthwhile to 1481 // re-generate the operands list. Group the operands by constant scale, 1482 // to avoid multiplying by the same constant scale multiple times. 1483 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1484 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), 1485 E = NewOps.end(); I != E; ++I) 1486 MulOpLists[M.find(*I)->second].push_back(*I); 1487 // Re-generate the operands list. 1488 Ops.clear(); 1489 if (AccumulatedConstant != 0) 1490 Ops.push_back(getConstant(AccumulatedConstant)); 1491 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1492 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1493 if (I->first != 0) 1494 Ops.push_back(getMulExpr(getConstant(I->first), 1495 getAddExpr(I->second))); 1496 if (Ops.empty()) 1497 return getConstant(Ty, 0); 1498 if (Ops.size() == 1) 1499 return Ops[0]; 1500 return getAddExpr(Ops); 1501 } 1502 } 1503 1504 // If we are adding something to a multiply expression, make sure the 1505 // something is not already an operand of the multiply. If so, merge it into 1506 // the multiply. 1507 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1508 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1509 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1510 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1511 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1512 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1513 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1514 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1515 if (Mul->getNumOperands() != 2) { 1516 // If the multiply has more than two operands, we must get the 1517 // Y*Z term. 1518 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1519 MulOps.erase(MulOps.begin()+MulOp); 1520 InnerMul = getMulExpr(MulOps); 1521 } 1522 const SCEV *One = getConstant(Ty, 1); 1523 const SCEV *AddOne = getAddExpr(InnerMul, One); 1524 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1525 if (Ops.size() == 2) return OuterMul; 1526 if (AddOp < Idx) { 1527 Ops.erase(Ops.begin()+AddOp); 1528 Ops.erase(Ops.begin()+Idx-1); 1529 } else { 1530 Ops.erase(Ops.begin()+Idx); 1531 Ops.erase(Ops.begin()+AddOp-1); 1532 } 1533 Ops.push_back(OuterMul); 1534 return getAddExpr(Ops); 1535 } 1536 1537 // Check this multiply against other multiplies being added together. 1538 for (unsigned OtherMulIdx = Idx+1; 1539 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1540 ++OtherMulIdx) { 1541 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1542 // If MulOp occurs in OtherMul, we can fold the two multiplies 1543 // together. 1544 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1545 OMulOp != e; ++OMulOp) 1546 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1547 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1548 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1549 if (Mul->getNumOperands() != 2) { 1550 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1551 Mul->op_end()); 1552 MulOps.erase(MulOps.begin()+MulOp); 1553 InnerMul1 = getMulExpr(MulOps); 1554 } 1555 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1556 if (OtherMul->getNumOperands() != 2) { 1557 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1558 OtherMul->op_end()); 1559 MulOps.erase(MulOps.begin()+OMulOp); 1560 InnerMul2 = getMulExpr(MulOps); 1561 } 1562 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1563 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1564 if (Ops.size() == 2) return OuterMul; 1565 Ops.erase(Ops.begin()+Idx); 1566 Ops.erase(Ops.begin()+OtherMulIdx-1); 1567 Ops.push_back(OuterMul); 1568 return getAddExpr(Ops); 1569 } 1570 } 1571 } 1572 } 1573 1574 // If there are any add recurrences in the operands list, see if any other 1575 // added values are loop invariant. If so, we can fold them into the 1576 // recurrence. 1577 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1578 ++Idx; 1579 1580 // Scan over all recurrences, trying to fold loop invariants into them. 1581 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1582 // Scan all of the other operands to this add and add them to the vector if 1583 // they are loop invariant w.r.t. the recurrence. 1584 SmallVector<const SCEV *, 8> LIOps; 1585 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1586 const Loop *AddRecLoop = AddRec->getLoop(); 1587 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1588 if (Ops[i]->isLoopInvariant(AddRecLoop)) { 1589 LIOps.push_back(Ops[i]); 1590 Ops.erase(Ops.begin()+i); 1591 --i; --e; 1592 } 1593 1594 // If we found some loop invariants, fold them into the recurrence. 1595 if (!LIOps.empty()) { 1596 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1597 LIOps.push_back(AddRec->getStart()); 1598 1599 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1600 AddRec->op_end()); 1601 AddRecOps[0] = getAddExpr(LIOps); 1602 1603 // Build the new addrec. Propagate the NUW and NSW flags if both the 1604 // outer add and the inner addrec are guaranteed to have no overflow. 1605 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, 1606 HasNUW && AddRec->hasNoUnsignedWrap(), 1607 HasNSW && AddRec->hasNoSignedWrap()); 1608 1609 // If all of the other operands were loop invariant, we are done. 1610 if (Ops.size() == 1) return NewRec; 1611 1612 // Otherwise, add the folded AddRec by the non-liv parts. 1613 for (unsigned i = 0;; ++i) 1614 if (Ops[i] == AddRec) { 1615 Ops[i] = NewRec; 1616 break; 1617 } 1618 return getAddExpr(Ops); 1619 } 1620 1621 // Okay, if there weren't any loop invariants to be folded, check to see if 1622 // there are multiple AddRec's with the same loop induction variable being 1623 // added together. If so, we can fold them. 1624 for (unsigned OtherIdx = Idx+1; 1625 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1626 if (OtherIdx != Idx) { 1627 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1628 if (AddRecLoop == OtherAddRec->getLoop()) { 1629 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1630 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), 1631 AddRec->op_end()); 1632 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1633 if (i >= NewOps.size()) { 1634 NewOps.append(OtherAddRec->op_begin()+i, 1635 OtherAddRec->op_end()); 1636 break; 1637 } 1638 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1639 } 1640 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop); 1641 1642 if (Ops.size() == 2) return NewAddRec; 1643 1644 Ops.erase(Ops.begin()+Idx); 1645 Ops.erase(Ops.begin()+OtherIdx-1); 1646 Ops.push_back(NewAddRec); 1647 return getAddExpr(Ops); 1648 } 1649 } 1650 1651 // Otherwise couldn't fold anything into this recurrence. Move onto the 1652 // next one. 1653 } 1654 1655 // Okay, it looks like we really DO need an add expr. Check to see if we 1656 // already have one, otherwise create a new one. 1657 FoldingSetNodeID ID; 1658 ID.AddInteger(scAddExpr); 1659 ID.AddInteger(Ops.size()); 1660 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1661 ID.AddPointer(Ops[i]); 1662 void *IP = 0; 1663 SCEVAddExpr *S = 1664 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1665 if (!S) { 1666 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1667 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1668 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1669 O, Ops.size()); 1670 UniqueSCEVs.InsertNode(S, IP); 1671 } 1672 if (HasNUW) S->setHasNoUnsignedWrap(true); 1673 if (HasNSW) S->setHasNoSignedWrap(true); 1674 return S; 1675 } 1676 1677 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1678 /// possible. 1679 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1680 bool HasNUW, bool HasNSW) { 1681 assert(!Ops.empty() && "Cannot get empty mul!"); 1682 if (Ops.size() == 1) return Ops[0]; 1683 #ifndef NDEBUG 1684 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1685 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1686 getEffectiveSCEVType(Ops[0]->getType()) && 1687 "SCEVMulExpr operand types don't match!"); 1688 #endif 1689 1690 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1691 if (!HasNUW && HasNSW) { 1692 bool All = true; 1693 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1694 if (!isKnownNonNegative(Ops[i])) { 1695 All = false; 1696 break; 1697 } 1698 if (All) HasNUW = true; 1699 } 1700 1701 // Sort by complexity, this groups all similar expression types together. 1702 GroupByComplexity(Ops, LI); 1703 1704 // If there are any constants, fold them together. 1705 unsigned Idx = 0; 1706 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1707 1708 // C1*(C2+V) -> C1*C2 + C1*V 1709 if (Ops.size() == 2) 1710 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1711 if (Add->getNumOperands() == 2 && 1712 isa<SCEVConstant>(Add->getOperand(0))) 1713 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1714 getMulExpr(LHSC, Add->getOperand(1))); 1715 1716 ++Idx; 1717 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1718 // We found two constants, fold them together! 1719 ConstantInt *Fold = ConstantInt::get(getContext(), 1720 LHSC->getValue()->getValue() * 1721 RHSC->getValue()->getValue()); 1722 Ops[0] = getConstant(Fold); 1723 Ops.erase(Ops.begin()+1); // Erase the folded element 1724 if (Ops.size() == 1) return Ops[0]; 1725 LHSC = cast<SCEVConstant>(Ops[0]); 1726 } 1727 1728 // If we are left with a constant one being multiplied, strip it off. 1729 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1730 Ops.erase(Ops.begin()); 1731 --Idx; 1732 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1733 // If we have a multiply of zero, it will always be zero. 1734 return Ops[0]; 1735 } else if (Ops[0]->isAllOnesValue()) { 1736 // If we have a mul by -1 of an add, try distributing the -1 among the 1737 // add operands. 1738 if (Ops.size() == 2) 1739 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1740 SmallVector<const SCEV *, 4> NewOps; 1741 bool AnyFolded = false; 1742 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1743 I != E; ++I) { 1744 const SCEV *Mul = getMulExpr(Ops[0], *I); 1745 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1746 NewOps.push_back(Mul); 1747 } 1748 if (AnyFolded) 1749 return getAddExpr(NewOps); 1750 } 1751 } 1752 1753 if (Ops.size() == 1) 1754 return Ops[0]; 1755 } 1756 1757 // Skip over the add expression until we get to a multiply. 1758 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1759 ++Idx; 1760 1761 // If there are mul operands inline them all into this expression. 1762 if (Idx < Ops.size()) { 1763 bool DeletedMul = false; 1764 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1765 // If we have an mul, expand the mul operands onto the end of the operands 1766 // list. 1767 Ops.erase(Ops.begin()+Idx); 1768 Ops.append(Mul->op_begin(), Mul->op_end()); 1769 DeletedMul = true; 1770 } 1771 1772 // If we deleted at least one mul, we added operands to the end of the list, 1773 // and they are not necessarily sorted. Recurse to resort and resimplify 1774 // any operands we just acquired. 1775 if (DeletedMul) 1776 return getMulExpr(Ops); 1777 } 1778 1779 // If there are any add recurrences in the operands list, see if any other 1780 // added values are loop invariant. If so, we can fold them into the 1781 // recurrence. 1782 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1783 ++Idx; 1784 1785 // Scan over all recurrences, trying to fold loop invariants into them. 1786 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1787 // Scan all of the other operands to this mul and add them to the vector if 1788 // they are loop invariant w.r.t. the recurrence. 1789 SmallVector<const SCEV *, 8> LIOps; 1790 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1791 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1792 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1793 LIOps.push_back(Ops[i]); 1794 Ops.erase(Ops.begin()+i); 1795 --i; --e; 1796 } 1797 1798 // If we found some loop invariants, fold them into the recurrence. 1799 if (!LIOps.empty()) { 1800 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1801 SmallVector<const SCEV *, 4> NewOps; 1802 NewOps.reserve(AddRec->getNumOperands()); 1803 const SCEV *Scale = getMulExpr(LIOps); 1804 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1805 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1806 1807 // Build the new addrec. Propagate the NUW and NSW flags if both the 1808 // outer mul and the inner addrec are guaranteed to have no overflow. 1809 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), 1810 HasNUW && AddRec->hasNoUnsignedWrap(), 1811 HasNSW && AddRec->hasNoSignedWrap()); 1812 1813 // If all of the other operands were loop invariant, we are done. 1814 if (Ops.size() == 1) return NewRec; 1815 1816 // Otherwise, multiply the folded AddRec by the non-liv parts. 1817 for (unsigned i = 0;; ++i) 1818 if (Ops[i] == AddRec) { 1819 Ops[i] = NewRec; 1820 break; 1821 } 1822 return getMulExpr(Ops); 1823 } 1824 1825 // Okay, if there weren't any loop invariants to be folded, check to see if 1826 // there are multiple AddRec's with the same loop induction variable being 1827 // multiplied together. If so, we can fold them. 1828 for (unsigned OtherIdx = Idx+1; 1829 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1830 if (OtherIdx != Idx) { 1831 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1832 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1833 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1834 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1835 const SCEV *NewStart = getMulExpr(F->getStart(), 1836 G->getStart()); 1837 const SCEV *B = F->getStepRecurrence(*this); 1838 const SCEV *D = G->getStepRecurrence(*this); 1839 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1840 getMulExpr(G, B), 1841 getMulExpr(B, D)); 1842 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1843 F->getLoop()); 1844 if (Ops.size() == 2) return NewAddRec; 1845 1846 Ops.erase(Ops.begin()+Idx); 1847 Ops.erase(Ops.begin()+OtherIdx-1); 1848 Ops.push_back(NewAddRec); 1849 return getMulExpr(Ops); 1850 } 1851 } 1852 1853 // Otherwise couldn't fold anything into this recurrence. Move onto the 1854 // next one. 1855 } 1856 1857 // Okay, it looks like we really DO need an mul expr. Check to see if we 1858 // already have one, otherwise create a new one. 1859 FoldingSetNodeID ID; 1860 ID.AddInteger(scMulExpr); 1861 ID.AddInteger(Ops.size()); 1862 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1863 ID.AddPointer(Ops[i]); 1864 void *IP = 0; 1865 SCEVMulExpr *S = 1866 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1867 if (!S) { 1868 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1869 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1870 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 1871 O, Ops.size()); 1872 UniqueSCEVs.InsertNode(S, IP); 1873 } 1874 if (HasNUW) S->setHasNoUnsignedWrap(true); 1875 if (HasNSW) S->setHasNoSignedWrap(true); 1876 return S; 1877 } 1878 1879 /// getUDivExpr - Get a canonical unsigned division expression, or something 1880 /// simpler if possible. 1881 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1882 const SCEV *RHS) { 1883 assert(getEffectiveSCEVType(LHS->getType()) == 1884 getEffectiveSCEVType(RHS->getType()) && 1885 "SCEVUDivExpr operand types don't match!"); 1886 1887 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1888 if (RHSC->getValue()->equalsInt(1)) 1889 return LHS; // X udiv 1 --> x 1890 // If the denominator is zero, the result of the udiv is undefined. Don't 1891 // try to analyze it, because the resolution chosen here may differ from 1892 // the resolution chosen in other parts of the compiler. 1893 if (!RHSC->getValue()->isZero()) { 1894 // Determine if the division can be folded into the operands of 1895 // its operands. 1896 // TODO: Generalize this to non-constants by using known-bits information. 1897 const Type *Ty = LHS->getType(); 1898 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1899 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 1900 // For non-power-of-two values, effectively round the value up to the 1901 // nearest power of two. 1902 if (!RHSC->getValue()->getValue().isPowerOf2()) 1903 ++MaxShiftAmt; 1904 const IntegerType *ExtTy = 1905 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1906 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1907 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1908 if (const SCEVConstant *Step = 1909 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1910 if (!Step->getValue()->getValue() 1911 .urem(RHSC->getValue()->getValue()) && 1912 getZeroExtendExpr(AR, ExtTy) == 1913 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1914 getZeroExtendExpr(Step, ExtTy), 1915 AR->getLoop())) { 1916 SmallVector<const SCEV *, 4> Operands; 1917 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1918 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1919 return getAddRecExpr(Operands, AR->getLoop()); 1920 } 1921 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1922 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1923 SmallVector<const SCEV *, 4> Operands; 1924 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1925 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1926 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1927 // Find an operand that's safely divisible. 1928 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1929 const SCEV *Op = M->getOperand(i); 1930 const SCEV *Div = getUDivExpr(Op, RHSC); 1931 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1932 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 1933 M->op_end()); 1934 Operands[i] = Div; 1935 return getMulExpr(Operands); 1936 } 1937 } 1938 } 1939 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1940 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1941 SmallVector<const SCEV *, 4> Operands; 1942 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1943 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1944 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1945 Operands.clear(); 1946 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1947 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1948 if (isa<SCEVUDivExpr>(Op) || 1949 getMulExpr(Op, RHS) != A->getOperand(i)) 1950 break; 1951 Operands.push_back(Op); 1952 } 1953 if (Operands.size() == A->getNumOperands()) 1954 return getAddExpr(Operands); 1955 } 1956 } 1957 1958 // Fold if both operands are constant. 1959 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1960 Constant *LHSCV = LHSC->getValue(); 1961 Constant *RHSCV = RHSC->getValue(); 1962 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1963 RHSCV))); 1964 } 1965 } 1966 } 1967 1968 FoldingSetNodeID ID; 1969 ID.AddInteger(scUDivExpr); 1970 ID.AddPointer(LHS); 1971 ID.AddPointer(RHS); 1972 void *IP = 0; 1973 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1974 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 1975 LHS, RHS); 1976 UniqueSCEVs.InsertNode(S, IP); 1977 return S; 1978 } 1979 1980 1981 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1982 /// Simplify the expression as much as possible. 1983 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 1984 const SCEV *Step, const Loop *L, 1985 bool HasNUW, bool HasNSW) { 1986 SmallVector<const SCEV *, 4> Operands; 1987 Operands.push_back(Start); 1988 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1989 if (StepChrec->getLoop() == L) { 1990 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 1991 return getAddRecExpr(Operands, L); 1992 } 1993 1994 Operands.push_back(Step); 1995 return getAddRecExpr(Operands, L, HasNUW, HasNSW); 1996 } 1997 1998 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1999 /// Simplify the expression as much as possible. 2000 const SCEV * 2001 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2002 const Loop *L, 2003 bool HasNUW, bool HasNSW) { 2004 if (Operands.size() == 1) return Operands[0]; 2005 #ifndef NDEBUG 2006 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2007 assert(getEffectiveSCEVType(Operands[i]->getType()) == 2008 getEffectiveSCEVType(Operands[0]->getType()) && 2009 "SCEVAddRecExpr operand types don't match!"); 2010 #endif 2011 2012 if (Operands.back()->isZero()) { 2013 Operands.pop_back(); 2014 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X 2015 } 2016 2017 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2018 // use that information to infer NUW and NSW flags. However, computing a 2019 // BE count requires calling getAddRecExpr, so we may not yet have a 2020 // meaningful BE count at this point (and if we don't, we'd be stuck 2021 // with a SCEVCouldNotCompute as the cached BE count). 2022 2023 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 2024 if (!HasNUW && HasNSW) { 2025 bool All = true; 2026 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2027 if (!isKnownNonNegative(Operands[i])) { 2028 All = false; 2029 break; 2030 } 2031 if (All) HasNUW = true; 2032 } 2033 2034 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2035 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2036 const Loop *NestedLoop = NestedAR->getLoop(); 2037 if (L->contains(NestedLoop->getHeader()) ? 2038 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2039 (!NestedLoop->contains(L->getHeader()) && 2040 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2041 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2042 NestedAR->op_end()); 2043 Operands[0] = NestedAR->getStart(); 2044 // AddRecs require their operands be loop-invariant with respect to their 2045 // loops. Don't perform this transformation if it would break this 2046 // requirement. 2047 bool AllInvariant = true; 2048 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2049 if (!Operands[i]->isLoopInvariant(L)) { 2050 AllInvariant = false; 2051 break; 2052 } 2053 if (AllInvariant) { 2054 NestedOperands[0] = getAddRecExpr(Operands, L); 2055 AllInvariant = true; 2056 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2057 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { 2058 AllInvariant = false; 2059 break; 2060 } 2061 if (AllInvariant) 2062 // Ok, both add recurrences are valid after the transformation. 2063 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW); 2064 } 2065 // Reset Operands to its original state. 2066 Operands[0] = NestedAR; 2067 } 2068 } 2069 2070 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2071 // already have one, otherwise create a new one. 2072 FoldingSetNodeID ID; 2073 ID.AddInteger(scAddRecExpr); 2074 ID.AddInteger(Operands.size()); 2075 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2076 ID.AddPointer(Operands[i]); 2077 ID.AddPointer(L); 2078 void *IP = 0; 2079 SCEVAddRecExpr *S = 2080 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2081 if (!S) { 2082 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2083 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2084 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2085 O, Operands.size(), L); 2086 UniqueSCEVs.InsertNode(S, IP); 2087 } 2088 if (HasNUW) S->setHasNoUnsignedWrap(true); 2089 if (HasNSW) S->setHasNoSignedWrap(true); 2090 return S; 2091 } 2092 2093 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2094 const SCEV *RHS) { 2095 SmallVector<const SCEV *, 2> Ops; 2096 Ops.push_back(LHS); 2097 Ops.push_back(RHS); 2098 return getSMaxExpr(Ops); 2099 } 2100 2101 const SCEV * 2102 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2103 assert(!Ops.empty() && "Cannot get empty smax!"); 2104 if (Ops.size() == 1) return Ops[0]; 2105 #ifndef NDEBUG 2106 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2107 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2108 getEffectiveSCEVType(Ops[0]->getType()) && 2109 "SCEVSMaxExpr operand types don't match!"); 2110 #endif 2111 2112 // Sort by complexity, this groups all similar expression types together. 2113 GroupByComplexity(Ops, LI); 2114 2115 // If there are any constants, fold them together. 2116 unsigned Idx = 0; 2117 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2118 ++Idx; 2119 assert(Idx < Ops.size()); 2120 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2121 // We found two constants, fold them together! 2122 ConstantInt *Fold = ConstantInt::get(getContext(), 2123 APIntOps::smax(LHSC->getValue()->getValue(), 2124 RHSC->getValue()->getValue())); 2125 Ops[0] = getConstant(Fold); 2126 Ops.erase(Ops.begin()+1); // Erase the folded element 2127 if (Ops.size() == 1) return Ops[0]; 2128 LHSC = cast<SCEVConstant>(Ops[0]); 2129 } 2130 2131 // If we are left with a constant minimum-int, strip it off. 2132 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2133 Ops.erase(Ops.begin()); 2134 --Idx; 2135 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2136 // If we have an smax with a constant maximum-int, it will always be 2137 // maximum-int. 2138 return Ops[0]; 2139 } 2140 2141 if (Ops.size() == 1) return Ops[0]; 2142 } 2143 2144 // Find the first SMax 2145 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2146 ++Idx; 2147 2148 // Check to see if one of the operands is an SMax. If so, expand its operands 2149 // onto our operand list, and recurse to simplify. 2150 if (Idx < Ops.size()) { 2151 bool DeletedSMax = false; 2152 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2153 Ops.erase(Ops.begin()+Idx); 2154 Ops.append(SMax->op_begin(), SMax->op_end()); 2155 DeletedSMax = true; 2156 } 2157 2158 if (DeletedSMax) 2159 return getSMaxExpr(Ops); 2160 } 2161 2162 // Okay, check to see if the same value occurs in the operand list twice. If 2163 // so, delete one. Since we sorted the list, these values are required to 2164 // be adjacent. 2165 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2166 // X smax Y smax Y --> X smax Y 2167 // X smax Y --> X, if X is always greater than Y 2168 if (Ops[i] == Ops[i+1] || 2169 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2170 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2171 --i; --e; 2172 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2173 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2174 --i; --e; 2175 } 2176 2177 if (Ops.size() == 1) return Ops[0]; 2178 2179 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2180 2181 // Okay, it looks like we really DO need an smax expr. Check to see if we 2182 // already have one, otherwise create a new one. 2183 FoldingSetNodeID ID; 2184 ID.AddInteger(scSMaxExpr); 2185 ID.AddInteger(Ops.size()); 2186 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2187 ID.AddPointer(Ops[i]); 2188 void *IP = 0; 2189 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2190 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2191 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2192 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2193 O, Ops.size()); 2194 UniqueSCEVs.InsertNode(S, IP); 2195 return S; 2196 } 2197 2198 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2199 const SCEV *RHS) { 2200 SmallVector<const SCEV *, 2> Ops; 2201 Ops.push_back(LHS); 2202 Ops.push_back(RHS); 2203 return getUMaxExpr(Ops); 2204 } 2205 2206 const SCEV * 2207 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2208 assert(!Ops.empty() && "Cannot get empty umax!"); 2209 if (Ops.size() == 1) return Ops[0]; 2210 #ifndef NDEBUG 2211 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2212 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2213 getEffectiveSCEVType(Ops[0]->getType()) && 2214 "SCEVUMaxExpr operand types don't match!"); 2215 #endif 2216 2217 // Sort by complexity, this groups all similar expression types together. 2218 GroupByComplexity(Ops, LI); 2219 2220 // If there are any constants, fold them together. 2221 unsigned Idx = 0; 2222 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2223 ++Idx; 2224 assert(Idx < Ops.size()); 2225 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2226 // We found two constants, fold them together! 2227 ConstantInt *Fold = ConstantInt::get(getContext(), 2228 APIntOps::umax(LHSC->getValue()->getValue(), 2229 RHSC->getValue()->getValue())); 2230 Ops[0] = getConstant(Fold); 2231 Ops.erase(Ops.begin()+1); // Erase the folded element 2232 if (Ops.size() == 1) return Ops[0]; 2233 LHSC = cast<SCEVConstant>(Ops[0]); 2234 } 2235 2236 // If we are left with a constant minimum-int, strip it off. 2237 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2238 Ops.erase(Ops.begin()); 2239 --Idx; 2240 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2241 // If we have an umax with a constant maximum-int, it will always be 2242 // maximum-int. 2243 return Ops[0]; 2244 } 2245 2246 if (Ops.size() == 1) return Ops[0]; 2247 } 2248 2249 // Find the first UMax 2250 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2251 ++Idx; 2252 2253 // Check to see if one of the operands is a UMax. If so, expand its operands 2254 // onto our operand list, and recurse to simplify. 2255 if (Idx < Ops.size()) { 2256 bool DeletedUMax = false; 2257 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2258 Ops.erase(Ops.begin()+Idx); 2259 Ops.append(UMax->op_begin(), UMax->op_end()); 2260 DeletedUMax = true; 2261 } 2262 2263 if (DeletedUMax) 2264 return getUMaxExpr(Ops); 2265 } 2266 2267 // Okay, check to see if the same value occurs in the operand list twice. If 2268 // so, delete one. Since we sorted the list, these values are required to 2269 // be adjacent. 2270 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2271 // X umax Y umax Y --> X umax Y 2272 // X umax Y --> X, if X is always greater than Y 2273 if (Ops[i] == Ops[i+1] || 2274 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2275 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2276 --i; --e; 2277 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2278 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2279 --i; --e; 2280 } 2281 2282 if (Ops.size() == 1) return Ops[0]; 2283 2284 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2285 2286 // Okay, it looks like we really DO need a umax expr. Check to see if we 2287 // already have one, otherwise create a new one. 2288 FoldingSetNodeID ID; 2289 ID.AddInteger(scUMaxExpr); 2290 ID.AddInteger(Ops.size()); 2291 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2292 ID.AddPointer(Ops[i]); 2293 void *IP = 0; 2294 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2295 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2296 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2297 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2298 O, Ops.size()); 2299 UniqueSCEVs.InsertNode(S, IP); 2300 return S; 2301 } 2302 2303 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2304 const SCEV *RHS) { 2305 // ~smax(~x, ~y) == smin(x, y). 2306 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2307 } 2308 2309 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2310 const SCEV *RHS) { 2311 // ~umax(~x, ~y) == umin(x, y) 2312 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2313 } 2314 2315 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) { 2316 // If we have TargetData, we can bypass creating a target-independent 2317 // constant expression and then folding it back into a ConstantInt. 2318 // This is just a compile-time optimization. 2319 if (TD) 2320 return getConstant(TD->getIntPtrType(getContext()), 2321 TD->getTypeAllocSize(AllocTy)); 2322 2323 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2324 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2325 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2326 C = Folded; 2327 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2328 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2329 } 2330 2331 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) { 2332 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2333 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2334 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2335 C = Folded; 2336 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2337 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2338 } 2339 2340 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy, 2341 unsigned FieldNo) { 2342 // If we have TargetData, we can bypass creating a target-independent 2343 // constant expression and then folding it back into a ConstantInt. 2344 // This is just a compile-time optimization. 2345 if (TD) 2346 return getConstant(TD->getIntPtrType(getContext()), 2347 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2348 2349 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2350 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2351 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2352 C = Folded; 2353 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2354 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2355 } 2356 2357 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy, 2358 Constant *FieldNo) { 2359 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2361 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2362 C = Folded; 2363 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2364 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2365 } 2366 2367 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2368 // Don't attempt to do anything other than create a SCEVUnknown object 2369 // here. createSCEV only calls getUnknown after checking for all other 2370 // interesting possibilities, and any other code that calls getUnknown 2371 // is doing so in order to hide a value from SCEV canonicalization. 2372 2373 FoldingSetNodeID ID; 2374 ID.AddInteger(scUnknown); 2375 ID.AddPointer(V); 2376 void *IP = 0; 2377 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2378 assert(cast<SCEVUnknown>(S)->getValue() == V && 2379 "Stale SCEVUnknown in uniquing map!"); 2380 return S; 2381 } 2382 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2383 FirstUnknown); 2384 FirstUnknown = cast<SCEVUnknown>(S); 2385 UniqueSCEVs.InsertNode(S, IP); 2386 return S; 2387 } 2388 2389 //===----------------------------------------------------------------------===// 2390 // Basic SCEV Analysis and PHI Idiom Recognition Code 2391 // 2392 2393 /// isSCEVable - Test if values of the given type are analyzable within 2394 /// the SCEV framework. This primarily includes integer types, and it 2395 /// can optionally include pointer types if the ScalarEvolution class 2396 /// has access to target-specific information. 2397 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2398 // Integers and pointers are always SCEVable. 2399 return Ty->isIntegerTy() || Ty->isPointerTy(); 2400 } 2401 2402 /// getTypeSizeInBits - Return the size in bits of the specified type, 2403 /// for which isSCEVable must return true. 2404 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2405 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2406 2407 // If we have a TargetData, use it! 2408 if (TD) 2409 return TD->getTypeSizeInBits(Ty); 2410 2411 // Integer types have fixed sizes. 2412 if (Ty->isIntegerTy()) 2413 return Ty->getPrimitiveSizeInBits(); 2414 2415 // The only other support type is pointer. Without TargetData, conservatively 2416 // assume pointers are 64-bit. 2417 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2418 return 64; 2419 } 2420 2421 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2422 /// the given type and which represents how SCEV will treat the given 2423 /// type, for which isSCEVable must return true. For pointer types, 2424 /// this is the pointer-sized integer type. 2425 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2426 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2427 2428 if (Ty->isIntegerTy()) 2429 return Ty; 2430 2431 // The only other support type is pointer. 2432 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2433 if (TD) return TD->getIntPtrType(getContext()); 2434 2435 // Without TargetData, conservatively assume pointers are 64-bit. 2436 return Type::getInt64Ty(getContext()); 2437 } 2438 2439 const SCEV *ScalarEvolution::getCouldNotCompute() { 2440 return &CouldNotCompute; 2441 } 2442 2443 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2444 /// expression and create a new one. 2445 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2446 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2447 2448 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); 2449 if (I != Scalars.end()) return I->second; 2450 const SCEV *S = createSCEV(V); 2451 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2452 return S; 2453 } 2454 2455 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2456 /// 2457 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2458 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2459 return getConstant( 2460 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2461 2462 const Type *Ty = V->getType(); 2463 Ty = getEffectiveSCEVType(Ty); 2464 return getMulExpr(V, 2465 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2466 } 2467 2468 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2469 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2470 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2471 return getConstant( 2472 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2473 2474 const Type *Ty = V->getType(); 2475 Ty = getEffectiveSCEVType(Ty); 2476 const SCEV *AllOnes = 2477 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2478 return getMinusSCEV(AllOnes, V); 2479 } 2480 2481 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2482 /// 2483 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2484 const SCEV *RHS) { 2485 // Fast path: X - X --> 0. 2486 if (LHS == RHS) 2487 return getConstant(LHS->getType(), 0); 2488 2489 // X - Y --> X + -Y 2490 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2491 } 2492 2493 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2494 /// input value to the specified type. If the type must be extended, it is zero 2495 /// extended. 2496 const SCEV * 2497 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, 2498 const Type *Ty) { 2499 const Type *SrcTy = V->getType(); 2500 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2501 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2502 "Cannot truncate or zero extend with non-integer arguments!"); 2503 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2504 return V; // No conversion 2505 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2506 return getTruncateExpr(V, Ty); 2507 return getZeroExtendExpr(V, Ty); 2508 } 2509 2510 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2511 /// input value to the specified type. If the type must be extended, it is sign 2512 /// extended. 2513 const SCEV * 2514 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2515 const Type *Ty) { 2516 const Type *SrcTy = V->getType(); 2517 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2518 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2519 "Cannot truncate or zero extend with non-integer arguments!"); 2520 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2521 return V; // No conversion 2522 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2523 return getTruncateExpr(V, Ty); 2524 return getSignExtendExpr(V, Ty); 2525 } 2526 2527 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2528 /// input value to the specified type. If the type must be extended, it is zero 2529 /// extended. The conversion must not be narrowing. 2530 const SCEV * 2531 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2532 const Type *SrcTy = V->getType(); 2533 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2534 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2535 "Cannot noop or zero extend with non-integer arguments!"); 2536 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2537 "getNoopOrZeroExtend cannot truncate!"); 2538 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2539 return V; // No conversion 2540 return getZeroExtendExpr(V, Ty); 2541 } 2542 2543 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2544 /// input value to the specified type. If the type must be extended, it is sign 2545 /// extended. The conversion must not be narrowing. 2546 const SCEV * 2547 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2548 const Type *SrcTy = V->getType(); 2549 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2550 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2551 "Cannot noop or sign extend with non-integer arguments!"); 2552 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2553 "getNoopOrSignExtend cannot truncate!"); 2554 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2555 return V; // No conversion 2556 return getSignExtendExpr(V, Ty); 2557 } 2558 2559 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2560 /// the input value to the specified type. If the type must be extended, 2561 /// it is extended with unspecified bits. The conversion must not be 2562 /// narrowing. 2563 const SCEV * 2564 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2565 const Type *SrcTy = V->getType(); 2566 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2567 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2568 "Cannot noop or any extend with non-integer arguments!"); 2569 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2570 "getNoopOrAnyExtend cannot truncate!"); 2571 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2572 return V; // No conversion 2573 return getAnyExtendExpr(V, Ty); 2574 } 2575 2576 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2577 /// input value to the specified type. The conversion must not be widening. 2578 const SCEV * 2579 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2580 const Type *SrcTy = V->getType(); 2581 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2582 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2583 "Cannot truncate or noop with non-integer arguments!"); 2584 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2585 "getTruncateOrNoop cannot extend!"); 2586 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2587 return V; // No conversion 2588 return getTruncateExpr(V, Ty); 2589 } 2590 2591 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2592 /// the types using zero-extension, and then perform a umax operation 2593 /// with them. 2594 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2595 const SCEV *RHS) { 2596 const SCEV *PromotedLHS = LHS; 2597 const SCEV *PromotedRHS = RHS; 2598 2599 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2600 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2601 else 2602 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2603 2604 return getUMaxExpr(PromotedLHS, PromotedRHS); 2605 } 2606 2607 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2608 /// the types using zero-extension, and then perform a umin operation 2609 /// with them. 2610 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2611 const SCEV *RHS) { 2612 const SCEV *PromotedLHS = LHS; 2613 const SCEV *PromotedRHS = RHS; 2614 2615 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2616 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2617 else 2618 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2619 2620 return getUMinExpr(PromotedLHS, PromotedRHS); 2621 } 2622 2623 /// PushDefUseChildren - Push users of the given Instruction 2624 /// onto the given Worklist. 2625 static void 2626 PushDefUseChildren(Instruction *I, 2627 SmallVectorImpl<Instruction *> &Worklist) { 2628 // Push the def-use children onto the Worklist stack. 2629 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2630 UI != UE; ++UI) 2631 Worklist.push_back(cast<Instruction>(*UI)); 2632 } 2633 2634 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2635 /// instructions that depend on the given instruction and removes them from 2636 /// the Scalars map if they reference SymName. This is used during PHI 2637 /// resolution. 2638 void 2639 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2640 SmallVector<Instruction *, 16> Worklist; 2641 PushDefUseChildren(PN, Worklist); 2642 2643 SmallPtrSet<Instruction *, 8> Visited; 2644 Visited.insert(PN); 2645 while (!Worklist.empty()) { 2646 Instruction *I = Worklist.pop_back_val(); 2647 if (!Visited.insert(I)) continue; 2648 2649 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 2650 Scalars.find(static_cast<Value *>(I)); 2651 if (It != Scalars.end()) { 2652 // Short-circuit the def-use traversal if the symbolic name 2653 // ceases to appear in expressions. 2654 if (It->second != SymName && !It->second->hasOperand(SymName)) 2655 continue; 2656 2657 // SCEVUnknown for a PHI either means that it has an unrecognized 2658 // structure, it's a PHI that's in the progress of being computed 2659 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2660 // additional loop trip count information isn't going to change anything. 2661 // In the second case, createNodeForPHI will perform the necessary 2662 // updates on its own when it gets to that point. In the third, we do 2663 // want to forget the SCEVUnknown. 2664 if (!isa<PHINode>(I) || 2665 !isa<SCEVUnknown>(It->second) || 2666 (I != PN && It->second == SymName)) { 2667 ValuesAtScopes.erase(It->second); 2668 Scalars.erase(It); 2669 } 2670 } 2671 2672 PushDefUseChildren(I, Worklist); 2673 } 2674 } 2675 2676 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2677 /// a loop header, making it a potential recurrence, or it doesn't. 2678 /// 2679 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2680 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2681 if (L->getHeader() == PN->getParent()) { 2682 // The loop may have multiple entrances or multiple exits; we can analyze 2683 // this phi as an addrec if it has a unique entry value and a unique 2684 // backedge value. 2685 Value *BEValueV = 0, *StartValueV = 0; 2686 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2687 Value *V = PN->getIncomingValue(i); 2688 if (L->contains(PN->getIncomingBlock(i))) { 2689 if (!BEValueV) { 2690 BEValueV = V; 2691 } else if (BEValueV != V) { 2692 BEValueV = 0; 2693 break; 2694 } 2695 } else if (!StartValueV) { 2696 StartValueV = V; 2697 } else if (StartValueV != V) { 2698 StartValueV = 0; 2699 break; 2700 } 2701 } 2702 if (BEValueV && StartValueV) { 2703 // While we are analyzing this PHI node, handle its value symbolically. 2704 const SCEV *SymbolicName = getUnknown(PN); 2705 assert(Scalars.find(PN) == Scalars.end() && 2706 "PHI node already processed?"); 2707 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2708 2709 // Using this symbolic name for the PHI, analyze the value coming around 2710 // the back-edge. 2711 const SCEV *BEValue = getSCEV(BEValueV); 2712 2713 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2714 // has a special value for the first iteration of the loop. 2715 2716 // If the value coming around the backedge is an add with the symbolic 2717 // value we just inserted, then we found a simple induction variable! 2718 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2719 // If there is a single occurrence of the symbolic value, replace it 2720 // with a recurrence. 2721 unsigned FoundIndex = Add->getNumOperands(); 2722 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2723 if (Add->getOperand(i) == SymbolicName) 2724 if (FoundIndex == e) { 2725 FoundIndex = i; 2726 break; 2727 } 2728 2729 if (FoundIndex != Add->getNumOperands()) { 2730 // Create an add with everything but the specified operand. 2731 SmallVector<const SCEV *, 8> Ops; 2732 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2733 if (i != FoundIndex) 2734 Ops.push_back(Add->getOperand(i)); 2735 const SCEV *Accum = getAddExpr(Ops); 2736 2737 // This is not a valid addrec if the step amount is varying each 2738 // loop iteration, but is not itself an addrec in this loop. 2739 if (Accum->isLoopInvariant(L) || 2740 (isa<SCEVAddRecExpr>(Accum) && 2741 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2742 bool HasNUW = false; 2743 bool HasNSW = false; 2744 2745 // If the increment doesn't overflow, then neither the addrec nor 2746 // the post-increment will overflow. 2747 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2748 if (OBO->hasNoUnsignedWrap()) 2749 HasNUW = true; 2750 if (OBO->hasNoSignedWrap()) 2751 HasNSW = true; 2752 } 2753 2754 const SCEV *StartVal = getSCEV(StartValueV); 2755 const SCEV *PHISCEV = 2756 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW); 2757 2758 // Since the no-wrap flags are on the increment, they apply to the 2759 // post-incremented value as well. 2760 if (Accum->isLoopInvariant(L)) 2761 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2762 Accum, L, HasNUW, HasNSW); 2763 2764 // Okay, for the entire analysis of this edge we assumed the PHI 2765 // to be symbolic. We now need to go back and purge all of the 2766 // entries for the scalars that use the symbolic expression. 2767 ForgetSymbolicName(PN, SymbolicName); 2768 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2769 return PHISCEV; 2770 } 2771 } 2772 } else if (const SCEVAddRecExpr *AddRec = 2773 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2774 // Otherwise, this could be a loop like this: 2775 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2776 // In this case, j = {1,+,1} and BEValue is j. 2777 // Because the other in-value of i (0) fits the evolution of BEValue 2778 // i really is an addrec evolution. 2779 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2780 const SCEV *StartVal = getSCEV(StartValueV); 2781 2782 // If StartVal = j.start - j.stride, we can use StartVal as the 2783 // initial step of the addrec evolution. 2784 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2785 AddRec->getOperand(1))) { 2786 const SCEV *PHISCEV = 2787 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2788 2789 // Okay, for the entire analysis of this edge we assumed the PHI 2790 // to be symbolic. We now need to go back and purge all of the 2791 // entries for the scalars that use the symbolic expression. 2792 ForgetSymbolicName(PN, SymbolicName); 2793 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2794 return PHISCEV; 2795 } 2796 } 2797 } 2798 } 2799 } 2800 2801 // If the PHI has a single incoming value, follow that value, unless the 2802 // PHI's incoming blocks are in a different loop, in which case doing so 2803 // risks breaking LCSSA form. Instcombine would normally zap these, but 2804 // it doesn't have DominatorTree information, so it may miss cases. 2805 if (Value *V = PN->hasConstantValue(DT)) { 2806 bool AllSameLoop = true; 2807 Loop *PNLoop = LI->getLoopFor(PN->getParent()); 2808 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2809 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) { 2810 AllSameLoop = false; 2811 break; 2812 } 2813 if (AllSameLoop) 2814 return getSCEV(V); 2815 } 2816 2817 // If it's not a loop phi, we can't handle it yet. 2818 return getUnknown(PN); 2819 } 2820 2821 /// createNodeForGEP - Expand GEP instructions into add and multiply 2822 /// operations. This allows them to be analyzed by regular SCEV code. 2823 /// 2824 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 2825 2826 // Don't blindly transfer the inbounds flag from the GEP instruction to the 2827 // Add expression, because the Instruction may be guarded by control flow 2828 // and the no-overflow bits may not be valid for the expression in any 2829 // context. 2830 2831 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2832 Value *Base = GEP->getOperand(0); 2833 // Don't attempt to analyze GEPs over unsized objects. 2834 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2835 return getUnknown(GEP); 2836 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2837 gep_type_iterator GTI = gep_type_begin(GEP); 2838 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 2839 E = GEP->op_end(); 2840 I != E; ++I) { 2841 Value *Index = *I; 2842 // Compute the (potentially symbolic) offset in bytes for this index. 2843 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2844 // For a struct, add the member offset. 2845 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2846 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 2847 2848 // Add the field offset to the running total offset. 2849 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2850 } else { 2851 // For an array, add the element offset, explicitly scaled. 2852 const SCEV *ElementSize = getSizeOfExpr(*GTI); 2853 const SCEV *IndexS = getSCEV(Index); 2854 // Getelementptr indices are signed. 2855 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 2856 2857 // Multiply the index by the element size to compute the element offset. 2858 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize); 2859 2860 // Add the element offset to the running total offset. 2861 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2862 } 2863 } 2864 2865 // Get the SCEV for the GEP base. 2866 const SCEV *BaseS = getSCEV(Base); 2867 2868 // Add the total offset from all the GEP indices to the base. 2869 return getAddExpr(BaseS, TotalOffset); 2870 } 2871 2872 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2873 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2874 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2875 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2876 uint32_t 2877 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2878 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2879 return C->getValue()->getValue().countTrailingZeros(); 2880 2881 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2882 return std::min(GetMinTrailingZeros(T->getOperand()), 2883 (uint32_t)getTypeSizeInBits(T->getType())); 2884 2885 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2886 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2887 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2888 getTypeSizeInBits(E->getType()) : OpRes; 2889 } 2890 2891 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2892 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2893 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2894 getTypeSizeInBits(E->getType()) : OpRes; 2895 } 2896 2897 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2898 // The result is the min of all operands results. 2899 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2900 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2901 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2902 return MinOpRes; 2903 } 2904 2905 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2906 // The result is the sum of all operands results. 2907 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2908 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2909 for (unsigned i = 1, e = M->getNumOperands(); 2910 SumOpRes != BitWidth && i != e; ++i) 2911 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2912 BitWidth); 2913 return SumOpRes; 2914 } 2915 2916 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2917 // The result is the min of all operands results. 2918 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2919 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2920 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2921 return MinOpRes; 2922 } 2923 2924 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2925 // The result is the min of all operands results. 2926 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2927 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2928 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2929 return MinOpRes; 2930 } 2931 2932 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2933 // The result is the min of all operands results. 2934 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2935 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2936 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2937 return MinOpRes; 2938 } 2939 2940 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2941 // For a SCEVUnknown, ask ValueTracking. 2942 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2943 APInt Mask = APInt::getAllOnesValue(BitWidth); 2944 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2945 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2946 return Zeros.countTrailingOnes(); 2947 } 2948 2949 // SCEVUDivExpr 2950 return 0; 2951 } 2952 2953 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2954 /// 2955 ConstantRange 2956 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2957 2958 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2959 return ConstantRange(C->getValue()->getValue()); 2960 2961 unsigned BitWidth = getTypeSizeInBits(S->getType()); 2962 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 2963 2964 // If the value has known zeros, the maximum unsigned value will have those 2965 // known zeros as well. 2966 uint32_t TZ = GetMinTrailingZeros(S); 2967 if (TZ != 0) 2968 ConservativeResult = 2969 ConstantRange(APInt::getMinValue(BitWidth), 2970 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 2971 2972 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2973 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 2974 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2975 X = X.add(getUnsignedRange(Add->getOperand(i))); 2976 return ConservativeResult.intersectWith(X); 2977 } 2978 2979 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2980 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 2981 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2982 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 2983 return ConservativeResult.intersectWith(X); 2984 } 2985 2986 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2987 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 2988 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2989 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 2990 return ConservativeResult.intersectWith(X); 2991 } 2992 2993 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2994 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 2995 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2996 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 2997 return ConservativeResult.intersectWith(X); 2998 } 2999 3000 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3001 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3002 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3003 return ConservativeResult.intersectWith(X.udiv(Y)); 3004 } 3005 3006 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3007 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3008 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 3009 } 3010 3011 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3012 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3013 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 3014 } 3015 3016 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3017 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3018 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 3019 } 3020 3021 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3022 // If there's no unsigned wrap, the value will never be less than its 3023 // initial value. 3024 if (AddRec->hasNoUnsignedWrap()) 3025 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3026 if (!C->getValue()->isZero()) 3027 ConservativeResult = 3028 ConservativeResult.intersectWith( 3029 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3030 3031 // TODO: non-affine addrec 3032 if (AddRec->isAffine()) { 3033 const Type *Ty = AddRec->getType(); 3034 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3035 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3036 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3037 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3038 3039 const SCEV *Start = AddRec->getStart(); 3040 const SCEV *Step = AddRec->getStepRecurrence(*this); 3041 3042 ConstantRange StartRange = getUnsignedRange(Start); 3043 ConstantRange StepRange = getSignedRange(Step); 3044 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3045 ConstantRange EndRange = 3046 StartRange.add(MaxBECountRange.multiply(StepRange)); 3047 3048 // Check for overflow. This must be done with ConstantRange arithmetic 3049 // because we could be called from within the ScalarEvolution overflow 3050 // checking code. 3051 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3052 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3053 ConstantRange ExtMaxBECountRange = 3054 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3055 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3056 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3057 ExtEndRange) 3058 return ConservativeResult; 3059 3060 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3061 EndRange.getUnsignedMin()); 3062 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3063 EndRange.getUnsignedMax()); 3064 if (Min.isMinValue() && Max.isMaxValue()) 3065 return ConservativeResult; 3066 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3067 } 3068 } 3069 3070 return ConservativeResult; 3071 } 3072 3073 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3074 // For a SCEVUnknown, ask ValueTracking. 3075 APInt Mask = APInt::getAllOnesValue(BitWidth); 3076 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3077 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3078 if (Ones == ~Zeros + 1) 3079 return ConservativeResult; 3080 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 3081 } 3082 3083 return ConservativeResult; 3084 } 3085 3086 /// getSignedRange - Determine the signed range for a particular SCEV. 3087 /// 3088 ConstantRange 3089 ScalarEvolution::getSignedRange(const SCEV *S) { 3090 3091 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3092 return ConstantRange(C->getValue()->getValue()); 3093 3094 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3095 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3096 3097 // If the value has known zeros, the maximum signed value will have those 3098 // known zeros as well. 3099 uint32_t TZ = GetMinTrailingZeros(S); 3100 if (TZ != 0) 3101 ConservativeResult = 3102 ConstantRange(APInt::getSignedMinValue(BitWidth), 3103 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3104 3105 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3106 ConstantRange X = getSignedRange(Add->getOperand(0)); 3107 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3108 X = X.add(getSignedRange(Add->getOperand(i))); 3109 return ConservativeResult.intersectWith(X); 3110 } 3111 3112 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3113 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3114 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3115 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3116 return ConservativeResult.intersectWith(X); 3117 } 3118 3119 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3120 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3121 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3122 X = X.smax(getSignedRange(SMax->getOperand(i))); 3123 return ConservativeResult.intersectWith(X); 3124 } 3125 3126 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3127 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3128 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3129 X = X.umax(getSignedRange(UMax->getOperand(i))); 3130 return ConservativeResult.intersectWith(X); 3131 } 3132 3133 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3134 ConstantRange X = getSignedRange(UDiv->getLHS()); 3135 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3136 return ConservativeResult.intersectWith(X.udiv(Y)); 3137 } 3138 3139 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3140 ConstantRange X = getSignedRange(ZExt->getOperand()); 3141 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 3142 } 3143 3144 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3145 ConstantRange X = getSignedRange(SExt->getOperand()); 3146 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 3147 } 3148 3149 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3150 ConstantRange X = getSignedRange(Trunc->getOperand()); 3151 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 3152 } 3153 3154 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3155 // If there's no signed wrap, and all the operands have the same sign or 3156 // zero, the value won't ever change sign. 3157 if (AddRec->hasNoSignedWrap()) { 3158 bool AllNonNeg = true; 3159 bool AllNonPos = true; 3160 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3161 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3162 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3163 } 3164 if (AllNonNeg) 3165 ConservativeResult = ConservativeResult.intersectWith( 3166 ConstantRange(APInt(BitWidth, 0), 3167 APInt::getSignedMinValue(BitWidth))); 3168 else if (AllNonPos) 3169 ConservativeResult = ConservativeResult.intersectWith( 3170 ConstantRange(APInt::getSignedMinValue(BitWidth), 3171 APInt(BitWidth, 1))); 3172 } 3173 3174 // TODO: non-affine addrec 3175 if (AddRec->isAffine()) { 3176 const Type *Ty = AddRec->getType(); 3177 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3178 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3179 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3180 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3181 3182 const SCEV *Start = AddRec->getStart(); 3183 const SCEV *Step = AddRec->getStepRecurrence(*this); 3184 3185 ConstantRange StartRange = getSignedRange(Start); 3186 ConstantRange StepRange = getSignedRange(Step); 3187 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3188 ConstantRange EndRange = 3189 StartRange.add(MaxBECountRange.multiply(StepRange)); 3190 3191 // Check for overflow. This must be done with ConstantRange arithmetic 3192 // because we could be called from within the ScalarEvolution overflow 3193 // checking code. 3194 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3195 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3196 ConstantRange ExtMaxBECountRange = 3197 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3198 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3199 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3200 ExtEndRange) 3201 return ConservativeResult; 3202 3203 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3204 EndRange.getSignedMin()); 3205 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3206 EndRange.getSignedMax()); 3207 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3208 return ConservativeResult; 3209 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3210 } 3211 } 3212 3213 return ConservativeResult; 3214 } 3215 3216 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3217 // For a SCEVUnknown, ask ValueTracking. 3218 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3219 return ConservativeResult; 3220 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3221 if (NS == 1) 3222 return ConservativeResult; 3223 return ConservativeResult.intersectWith( 3224 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3225 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)); 3226 } 3227 3228 return ConservativeResult; 3229 } 3230 3231 /// createSCEV - We know that there is no SCEV for the specified value. 3232 /// Analyze the expression. 3233 /// 3234 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3235 if (!isSCEVable(V->getType())) 3236 return getUnknown(V); 3237 3238 unsigned Opcode = Instruction::UserOp1; 3239 if (Instruction *I = dyn_cast<Instruction>(V)) { 3240 Opcode = I->getOpcode(); 3241 3242 // Don't attempt to analyze instructions in blocks that aren't 3243 // reachable. Such instructions don't matter, and they aren't required 3244 // to obey basic rules for definitions dominating uses which this 3245 // analysis depends on. 3246 if (!DT->isReachableFromEntry(I->getParent())) 3247 return getUnknown(V); 3248 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3249 Opcode = CE->getOpcode(); 3250 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3251 return getConstant(CI); 3252 else if (isa<ConstantPointerNull>(V)) 3253 return getConstant(V->getType(), 0); 3254 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3255 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3256 else 3257 return getUnknown(V); 3258 3259 Operator *U = cast<Operator>(V); 3260 switch (Opcode) { 3261 case Instruction::Add: 3262 return getAddExpr(getSCEV(U->getOperand(0)), 3263 getSCEV(U->getOperand(1))); 3264 case Instruction::Mul: 3265 return getMulExpr(getSCEV(U->getOperand(0)), 3266 getSCEV(U->getOperand(1))); 3267 case Instruction::UDiv: 3268 return getUDivExpr(getSCEV(U->getOperand(0)), 3269 getSCEV(U->getOperand(1))); 3270 case Instruction::Sub: 3271 return getMinusSCEV(getSCEV(U->getOperand(0)), 3272 getSCEV(U->getOperand(1))); 3273 case Instruction::And: 3274 // For an expression like x&255 that merely masks off the high bits, 3275 // use zext(trunc(x)) as the SCEV expression. 3276 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3277 if (CI->isNullValue()) 3278 return getSCEV(U->getOperand(1)); 3279 if (CI->isAllOnesValue()) 3280 return getSCEV(U->getOperand(0)); 3281 const APInt &A = CI->getValue(); 3282 3283 // Instcombine's ShrinkDemandedConstant may strip bits out of 3284 // constants, obscuring what would otherwise be a low-bits mask. 3285 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3286 // knew about to reconstruct a low-bits mask value. 3287 unsigned LZ = A.countLeadingZeros(); 3288 unsigned BitWidth = A.getBitWidth(); 3289 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3290 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3291 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3292 3293 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3294 3295 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3296 return 3297 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3298 IntegerType::get(getContext(), BitWidth - LZ)), 3299 U->getType()); 3300 } 3301 break; 3302 3303 case Instruction::Or: 3304 // If the RHS of the Or is a constant, we may have something like: 3305 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3306 // optimizations will transparently handle this case. 3307 // 3308 // In order for this transformation to be safe, the LHS must be of the 3309 // form X*(2^n) and the Or constant must be less than 2^n. 3310 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3311 const SCEV *LHS = getSCEV(U->getOperand(0)); 3312 const APInt &CIVal = CI->getValue(); 3313 if (GetMinTrailingZeros(LHS) >= 3314 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3315 // Build a plain add SCEV. 3316 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3317 // If the LHS of the add was an addrec and it has no-wrap flags, 3318 // transfer the no-wrap flags, since an or won't introduce a wrap. 3319 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3320 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3321 if (OldAR->hasNoUnsignedWrap()) 3322 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true); 3323 if (OldAR->hasNoSignedWrap()) 3324 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true); 3325 } 3326 return S; 3327 } 3328 } 3329 break; 3330 case Instruction::Xor: 3331 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3332 // If the RHS of the xor is a signbit, then this is just an add. 3333 // Instcombine turns add of signbit into xor as a strength reduction step. 3334 if (CI->getValue().isSignBit()) 3335 return getAddExpr(getSCEV(U->getOperand(0)), 3336 getSCEV(U->getOperand(1))); 3337 3338 // If the RHS of xor is -1, then this is a not operation. 3339 if (CI->isAllOnesValue()) 3340 return getNotSCEV(getSCEV(U->getOperand(0))); 3341 3342 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3343 // This is a variant of the check for xor with -1, and it handles 3344 // the case where instcombine has trimmed non-demanded bits out 3345 // of an xor with -1. 3346 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3347 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3348 if (BO->getOpcode() == Instruction::And && 3349 LCI->getValue() == CI->getValue()) 3350 if (const SCEVZeroExtendExpr *Z = 3351 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3352 const Type *UTy = U->getType(); 3353 const SCEV *Z0 = Z->getOperand(); 3354 const Type *Z0Ty = Z0->getType(); 3355 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3356 3357 // If C is a low-bits mask, the zero extend is serving to 3358 // mask off the high bits. Complement the operand and 3359 // re-apply the zext. 3360 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3361 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3362 3363 // If C is a single bit, it may be in the sign-bit position 3364 // before the zero-extend. In this case, represent the xor 3365 // using an add, which is equivalent, and re-apply the zext. 3366 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 3367 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3368 Trunc.isSignBit()) 3369 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3370 UTy); 3371 } 3372 } 3373 break; 3374 3375 case Instruction::Shl: 3376 // Turn shift left of a constant amount into a multiply. 3377 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3378 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3379 3380 // If the shift count is not less than the bitwidth, the result of 3381 // the shift is undefined. Don't try to analyze it, because the 3382 // resolution chosen here may differ from the resolution chosen in 3383 // other parts of the compiler. 3384 if (SA->getValue().uge(BitWidth)) 3385 break; 3386 3387 Constant *X = ConstantInt::get(getContext(), 3388 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3389 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3390 } 3391 break; 3392 3393 case Instruction::LShr: 3394 // Turn logical shift right of a constant into a unsigned divide. 3395 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3396 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3397 3398 // If the shift count is not less than the bitwidth, the result of 3399 // the shift is undefined. Don't try to analyze it, because the 3400 // resolution chosen here may differ from the resolution chosen in 3401 // other parts of the compiler. 3402 if (SA->getValue().uge(BitWidth)) 3403 break; 3404 3405 Constant *X = ConstantInt::get(getContext(), 3406 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3407 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3408 } 3409 break; 3410 3411 case Instruction::AShr: 3412 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3413 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3414 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3415 if (L->getOpcode() == Instruction::Shl && 3416 L->getOperand(1) == U->getOperand(1)) { 3417 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3418 3419 // If the shift count is not less than the bitwidth, the result of 3420 // the shift is undefined. Don't try to analyze it, because the 3421 // resolution chosen here may differ from the resolution chosen in 3422 // other parts of the compiler. 3423 if (CI->getValue().uge(BitWidth)) 3424 break; 3425 3426 uint64_t Amt = BitWidth - CI->getZExtValue(); 3427 if (Amt == BitWidth) 3428 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3429 return 3430 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3431 IntegerType::get(getContext(), 3432 Amt)), 3433 U->getType()); 3434 } 3435 break; 3436 3437 case Instruction::Trunc: 3438 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3439 3440 case Instruction::ZExt: 3441 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3442 3443 case Instruction::SExt: 3444 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3445 3446 case Instruction::BitCast: 3447 // BitCasts are no-op casts so we just eliminate the cast. 3448 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3449 return getSCEV(U->getOperand(0)); 3450 break; 3451 3452 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3453 // lead to pointer expressions which cannot safely be expanded to GEPs, 3454 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3455 // simplifying integer expressions. 3456 3457 case Instruction::GetElementPtr: 3458 return createNodeForGEP(cast<GEPOperator>(U)); 3459 3460 case Instruction::PHI: 3461 return createNodeForPHI(cast<PHINode>(U)); 3462 3463 case Instruction::Select: 3464 // This could be a smax or umax that was lowered earlier. 3465 // Try to recover it. 3466 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3467 Value *LHS = ICI->getOperand(0); 3468 Value *RHS = ICI->getOperand(1); 3469 switch (ICI->getPredicate()) { 3470 case ICmpInst::ICMP_SLT: 3471 case ICmpInst::ICMP_SLE: 3472 std::swap(LHS, RHS); 3473 // fall through 3474 case ICmpInst::ICMP_SGT: 3475 case ICmpInst::ICMP_SGE: 3476 // a >s b ? a+x : b+x -> smax(a, b)+x 3477 // a >s b ? b+x : a+x -> smin(a, b)+x 3478 if (LHS->getType() == U->getType()) { 3479 const SCEV *LS = getSCEV(LHS); 3480 const SCEV *RS = getSCEV(RHS); 3481 const SCEV *LA = getSCEV(U->getOperand(1)); 3482 const SCEV *RA = getSCEV(U->getOperand(2)); 3483 const SCEV *LDiff = getMinusSCEV(LA, LS); 3484 const SCEV *RDiff = getMinusSCEV(RA, RS); 3485 if (LDiff == RDiff) 3486 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3487 LDiff = getMinusSCEV(LA, RS); 3488 RDiff = getMinusSCEV(RA, LS); 3489 if (LDiff == RDiff) 3490 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3491 } 3492 break; 3493 case ICmpInst::ICMP_ULT: 3494 case ICmpInst::ICMP_ULE: 3495 std::swap(LHS, RHS); 3496 // fall through 3497 case ICmpInst::ICMP_UGT: 3498 case ICmpInst::ICMP_UGE: 3499 // a >u b ? a+x : b+x -> umax(a, b)+x 3500 // a >u b ? b+x : a+x -> umin(a, b)+x 3501 if (LHS->getType() == U->getType()) { 3502 const SCEV *LS = getSCEV(LHS); 3503 const SCEV *RS = getSCEV(RHS); 3504 const SCEV *LA = getSCEV(U->getOperand(1)); 3505 const SCEV *RA = getSCEV(U->getOperand(2)); 3506 const SCEV *LDiff = getMinusSCEV(LA, LS); 3507 const SCEV *RDiff = getMinusSCEV(RA, RS); 3508 if (LDiff == RDiff) 3509 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3510 LDiff = getMinusSCEV(LA, RS); 3511 RDiff = getMinusSCEV(RA, LS); 3512 if (LDiff == RDiff) 3513 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3514 } 3515 break; 3516 case ICmpInst::ICMP_NE: 3517 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3518 if (LHS->getType() == U->getType() && 3519 isa<ConstantInt>(RHS) && 3520 cast<ConstantInt>(RHS)->isZero()) { 3521 const SCEV *One = getConstant(LHS->getType(), 1); 3522 const SCEV *LS = getSCEV(LHS); 3523 const SCEV *LA = getSCEV(U->getOperand(1)); 3524 const SCEV *RA = getSCEV(U->getOperand(2)); 3525 const SCEV *LDiff = getMinusSCEV(LA, LS); 3526 const SCEV *RDiff = getMinusSCEV(RA, One); 3527 if (LDiff == RDiff) 3528 return getAddExpr(getUMaxExpr(LS, One), LDiff); 3529 } 3530 break; 3531 case ICmpInst::ICMP_EQ: 3532 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3533 if (LHS->getType() == U->getType() && 3534 isa<ConstantInt>(RHS) && 3535 cast<ConstantInt>(RHS)->isZero()) { 3536 const SCEV *One = getConstant(LHS->getType(), 1); 3537 const SCEV *LS = getSCEV(LHS); 3538 const SCEV *LA = getSCEV(U->getOperand(1)); 3539 const SCEV *RA = getSCEV(U->getOperand(2)); 3540 const SCEV *LDiff = getMinusSCEV(LA, One); 3541 const SCEV *RDiff = getMinusSCEV(RA, LS); 3542 if (LDiff == RDiff) 3543 return getAddExpr(getUMaxExpr(LS, One), LDiff); 3544 } 3545 break; 3546 default: 3547 break; 3548 } 3549 } 3550 3551 default: // We cannot analyze this expression. 3552 break; 3553 } 3554 3555 return getUnknown(V); 3556 } 3557 3558 3559 3560 //===----------------------------------------------------------------------===// 3561 // Iteration Count Computation Code 3562 // 3563 3564 /// getBackedgeTakenCount - If the specified loop has a predictable 3565 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3566 /// object. The backedge-taken count is the number of times the loop header 3567 /// will be branched to from within the loop. This is one less than the 3568 /// trip count of the loop, since it doesn't count the first iteration, 3569 /// when the header is branched to from outside the loop. 3570 /// 3571 /// Note that it is not valid to call this method on a loop without a 3572 /// loop-invariant backedge-taken count (see 3573 /// hasLoopInvariantBackedgeTakenCount). 3574 /// 3575 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3576 return getBackedgeTakenInfo(L).Exact; 3577 } 3578 3579 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3580 /// return the least SCEV value that is known never to be less than the 3581 /// actual backedge taken count. 3582 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3583 return getBackedgeTakenInfo(L).Max; 3584 } 3585 3586 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3587 /// onto the given Worklist. 3588 static void 3589 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3590 BasicBlock *Header = L->getHeader(); 3591 3592 // Push all Loop-header PHIs onto the Worklist stack. 3593 for (BasicBlock::iterator I = Header->begin(); 3594 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3595 Worklist.push_back(PN); 3596 } 3597 3598 const ScalarEvolution::BackedgeTakenInfo & 3599 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3600 // Initially insert a CouldNotCompute for this loop. If the insertion 3601 // succeeds, proceed to actually compute a backedge-taken count and 3602 // update the value. The temporary CouldNotCompute value tells SCEV 3603 // code elsewhere that it shouldn't attempt to request a new 3604 // backedge-taken count, which could result in infinite recursion. 3605 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3606 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3607 if (Pair.second) { 3608 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L); 3609 if (BECount.Exact != getCouldNotCompute()) { 3610 assert(BECount.Exact->isLoopInvariant(L) && 3611 BECount.Max->isLoopInvariant(L) && 3612 "Computed backedge-taken count isn't loop invariant for loop!"); 3613 ++NumTripCountsComputed; 3614 3615 // Update the value in the map. 3616 Pair.first->second = BECount; 3617 } else { 3618 if (BECount.Max != getCouldNotCompute()) 3619 // Update the value in the map. 3620 Pair.first->second = BECount; 3621 if (isa<PHINode>(L->getHeader()->begin())) 3622 // Only count loops that have phi nodes as not being computable. 3623 ++NumTripCountsNotComputed; 3624 } 3625 3626 // Now that we know more about the trip count for this loop, forget any 3627 // existing SCEV values for PHI nodes in this loop since they are only 3628 // conservative estimates made without the benefit of trip count 3629 // information. This is similar to the code in forgetLoop, except that 3630 // it handles SCEVUnknown PHI nodes specially. 3631 if (BECount.hasAnyInfo()) { 3632 SmallVector<Instruction *, 16> Worklist; 3633 PushLoopPHIs(L, Worklist); 3634 3635 SmallPtrSet<Instruction *, 8> Visited; 3636 while (!Worklist.empty()) { 3637 Instruction *I = Worklist.pop_back_val(); 3638 if (!Visited.insert(I)) continue; 3639 3640 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3641 Scalars.find(static_cast<Value *>(I)); 3642 if (It != Scalars.end()) { 3643 // SCEVUnknown for a PHI either means that it has an unrecognized 3644 // structure, or it's a PHI that's in the progress of being computed 3645 // by createNodeForPHI. In the former case, additional loop trip 3646 // count information isn't going to change anything. In the later 3647 // case, createNodeForPHI will perform the necessary updates on its 3648 // own when it gets to that point. 3649 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { 3650 ValuesAtScopes.erase(It->second); 3651 Scalars.erase(It); 3652 } 3653 if (PHINode *PN = dyn_cast<PHINode>(I)) 3654 ConstantEvolutionLoopExitValue.erase(PN); 3655 } 3656 3657 PushDefUseChildren(I, Worklist); 3658 } 3659 } 3660 } 3661 return Pair.first->second; 3662 } 3663 3664 /// forgetLoop - This method should be called by the client when it has 3665 /// changed a loop in a way that may effect ScalarEvolution's ability to 3666 /// compute a trip count, or if the loop is deleted. 3667 void ScalarEvolution::forgetLoop(const Loop *L) { 3668 // Drop any stored trip count value. 3669 BackedgeTakenCounts.erase(L); 3670 3671 // Drop information about expressions based on loop-header PHIs. 3672 SmallVector<Instruction *, 16> Worklist; 3673 PushLoopPHIs(L, Worklist); 3674 3675 SmallPtrSet<Instruction *, 8> Visited; 3676 while (!Worklist.empty()) { 3677 Instruction *I = Worklist.pop_back_val(); 3678 if (!Visited.insert(I)) continue; 3679 3680 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3681 Scalars.find(static_cast<Value *>(I)); 3682 if (It != Scalars.end()) { 3683 ValuesAtScopes.erase(It->second); 3684 Scalars.erase(It); 3685 if (PHINode *PN = dyn_cast<PHINode>(I)) 3686 ConstantEvolutionLoopExitValue.erase(PN); 3687 } 3688 3689 PushDefUseChildren(I, Worklist); 3690 } 3691 } 3692 3693 /// forgetValue - This method should be called by the client when it has 3694 /// changed a value in a way that may effect its value, or which may 3695 /// disconnect it from a def-use chain linking it to a loop. 3696 void ScalarEvolution::forgetValue(Value *V) { 3697 Instruction *I = dyn_cast<Instruction>(V); 3698 if (!I) return; 3699 3700 // Drop information about expressions based on loop-header PHIs. 3701 SmallVector<Instruction *, 16> Worklist; 3702 Worklist.push_back(I); 3703 3704 SmallPtrSet<Instruction *, 8> Visited; 3705 while (!Worklist.empty()) { 3706 I = Worklist.pop_back_val(); 3707 if (!Visited.insert(I)) continue; 3708 3709 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3710 Scalars.find(static_cast<Value *>(I)); 3711 if (It != Scalars.end()) { 3712 ValuesAtScopes.erase(It->second); 3713 Scalars.erase(It); 3714 if (PHINode *PN = dyn_cast<PHINode>(I)) 3715 ConstantEvolutionLoopExitValue.erase(PN); 3716 } 3717 3718 PushDefUseChildren(I, Worklist); 3719 } 3720 } 3721 3722 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3723 /// of the specified loop will execute. 3724 ScalarEvolution::BackedgeTakenInfo 3725 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3726 SmallVector<BasicBlock *, 8> ExitingBlocks; 3727 L->getExitingBlocks(ExitingBlocks); 3728 3729 // Examine all exits and pick the most conservative values. 3730 const SCEV *BECount = getCouldNotCompute(); 3731 const SCEV *MaxBECount = getCouldNotCompute(); 3732 bool CouldNotComputeBECount = false; 3733 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3734 BackedgeTakenInfo NewBTI = 3735 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3736 3737 if (NewBTI.Exact == getCouldNotCompute()) { 3738 // We couldn't compute an exact value for this exit, so 3739 // we won't be able to compute an exact value for the loop. 3740 CouldNotComputeBECount = true; 3741 BECount = getCouldNotCompute(); 3742 } else if (!CouldNotComputeBECount) { 3743 if (BECount == getCouldNotCompute()) 3744 BECount = NewBTI.Exact; 3745 else 3746 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3747 } 3748 if (MaxBECount == getCouldNotCompute()) 3749 MaxBECount = NewBTI.Max; 3750 else if (NewBTI.Max != getCouldNotCompute()) 3751 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3752 } 3753 3754 return BackedgeTakenInfo(BECount, MaxBECount); 3755 } 3756 3757 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3758 /// of the specified loop will execute if it exits via the specified block. 3759 ScalarEvolution::BackedgeTakenInfo 3760 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3761 BasicBlock *ExitingBlock) { 3762 3763 // Okay, we've chosen an exiting block. See what condition causes us to 3764 // exit at this block. 3765 // 3766 // FIXME: we should be able to handle switch instructions (with a single exit) 3767 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3768 if (ExitBr == 0) return getCouldNotCompute(); 3769 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3770 3771 // At this point, we know we have a conditional branch that determines whether 3772 // the loop is exited. However, we don't know if the branch is executed each 3773 // time through the loop. If not, then the execution count of the branch will 3774 // not be equal to the trip count of the loop. 3775 // 3776 // Currently we check for this by checking to see if the Exit branch goes to 3777 // the loop header. If so, we know it will always execute the same number of 3778 // times as the loop. We also handle the case where the exit block *is* the 3779 // loop header. This is common for un-rotated loops. 3780 // 3781 // If both of those tests fail, walk up the unique predecessor chain to the 3782 // header, stopping if there is an edge that doesn't exit the loop. If the 3783 // header is reached, the execution count of the branch will be equal to the 3784 // trip count of the loop. 3785 // 3786 // More extensive analysis could be done to handle more cases here. 3787 // 3788 if (ExitBr->getSuccessor(0) != L->getHeader() && 3789 ExitBr->getSuccessor(1) != L->getHeader() && 3790 ExitBr->getParent() != L->getHeader()) { 3791 // The simple checks failed, try climbing the unique predecessor chain 3792 // up to the header. 3793 bool Ok = false; 3794 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3795 BasicBlock *Pred = BB->getUniquePredecessor(); 3796 if (!Pred) 3797 return getCouldNotCompute(); 3798 TerminatorInst *PredTerm = Pred->getTerminator(); 3799 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3800 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3801 if (PredSucc == BB) 3802 continue; 3803 // If the predecessor has a successor that isn't BB and isn't 3804 // outside the loop, assume the worst. 3805 if (L->contains(PredSucc)) 3806 return getCouldNotCompute(); 3807 } 3808 if (Pred == L->getHeader()) { 3809 Ok = true; 3810 break; 3811 } 3812 BB = Pred; 3813 } 3814 if (!Ok) 3815 return getCouldNotCompute(); 3816 } 3817 3818 // Proceed to the next level to examine the exit condition expression. 3819 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3820 ExitBr->getSuccessor(0), 3821 ExitBr->getSuccessor(1)); 3822 } 3823 3824 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3825 /// backedge of the specified loop will execute if its exit condition 3826 /// were a conditional branch of ExitCond, TBB, and FBB. 3827 ScalarEvolution::BackedgeTakenInfo 3828 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3829 Value *ExitCond, 3830 BasicBlock *TBB, 3831 BasicBlock *FBB) { 3832 // Check if the controlling expression for this loop is an And or Or. 3833 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3834 if (BO->getOpcode() == Instruction::And) { 3835 // Recurse on the operands of the and. 3836 BackedgeTakenInfo BTI0 = 3837 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3838 BackedgeTakenInfo BTI1 = 3839 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3840 const SCEV *BECount = getCouldNotCompute(); 3841 const SCEV *MaxBECount = getCouldNotCompute(); 3842 if (L->contains(TBB)) { 3843 // Both conditions must be true for the loop to continue executing. 3844 // Choose the less conservative count. 3845 if (BTI0.Exact == getCouldNotCompute() || 3846 BTI1.Exact == getCouldNotCompute()) 3847 BECount = getCouldNotCompute(); 3848 else 3849 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3850 if (BTI0.Max == getCouldNotCompute()) 3851 MaxBECount = BTI1.Max; 3852 else if (BTI1.Max == getCouldNotCompute()) 3853 MaxBECount = BTI0.Max; 3854 else 3855 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3856 } else { 3857 // Both conditions must be true at the same time for the loop to exit. 3858 // For now, be conservative. 3859 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3860 if (BTI0.Max == BTI1.Max) 3861 MaxBECount = BTI0.Max; 3862 if (BTI0.Exact == BTI1.Exact) 3863 BECount = BTI0.Exact; 3864 } 3865 3866 return BackedgeTakenInfo(BECount, MaxBECount); 3867 } 3868 if (BO->getOpcode() == Instruction::Or) { 3869 // Recurse on the operands of the or. 3870 BackedgeTakenInfo BTI0 = 3871 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3872 BackedgeTakenInfo BTI1 = 3873 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3874 const SCEV *BECount = getCouldNotCompute(); 3875 const SCEV *MaxBECount = getCouldNotCompute(); 3876 if (L->contains(FBB)) { 3877 // Both conditions must be false for the loop to continue executing. 3878 // Choose the less conservative count. 3879 if (BTI0.Exact == getCouldNotCompute() || 3880 BTI1.Exact == getCouldNotCompute()) 3881 BECount = getCouldNotCompute(); 3882 else 3883 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3884 if (BTI0.Max == getCouldNotCompute()) 3885 MaxBECount = BTI1.Max; 3886 else if (BTI1.Max == getCouldNotCompute()) 3887 MaxBECount = BTI0.Max; 3888 else 3889 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3890 } else { 3891 // Both conditions must be false at the same time for the loop to exit. 3892 // For now, be conservative. 3893 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3894 if (BTI0.Max == BTI1.Max) 3895 MaxBECount = BTI0.Max; 3896 if (BTI0.Exact == BTI1.Exact) 3897 BECount = BTI0.Exact; 3898 } 3899 3900 return BackedgeTakenInfo(BECount, MaxBECount); 3901 } 3902 } 3903 3904 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3905 // Proceed to the next level to examine the icmp. 3906 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3907 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3908 3909 // Check for a constant condition. These are normally stripped out by 3910 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 3911 // preserve the CFG and is temporarily leaving constant conditions 3912 // in place. 3913 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 3914 if (L->contains(FBB) == !CI->getZExtValue()) 3915 // The backedge is always taken. 3916 return getCouldNotCompute(); 3917 else 3918 // The backedge is never taken. 3919 return getConstant(CI->getType(), 0); 3920 } 3921 3922 // If it's not an integer or pointer comparison then compute it the hard way. 3923 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3924 } 3925 3926 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3927 /// backedge of the specified loop will execute if its exit condition 3928 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3929 ScalarEvolution::BackedgeTakenInfo 3930 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3931 ICmpInst *ExitCond, 3932 BasicBlock *TBB, 3933 BasicBlock *FBB) { 3934 3935 // If the condition was exit on true, convert the condition to exit on false 3936 ICmpInst::Predicate Cond; 3937 if (!L->contains(FBB)) 3938 Cond = ExitCond->getPredicate(); 3939 else 3940 Cond = ExitCond->getInversePredicate(); 3941 3942 // Handle common loops like: for (X = "string"; *X; ++X) 3943 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3944 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3945 BackedgeTakenInfo ItCnt = 3946 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3947 if (ItCnt.hasAnyInfo()) 3948 return ItCnt; 3949 } 3950 3951 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 3952 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 3953 3954 // Try to evaluate any dependencies out of the loop. 3955 LHS = getSCEVAtScope(LHS, L); 3956 RHS = getSCEVAtScope(RHS, L); 3957 3958 // At this point, we would like to compute how many iterations of the 3959 // loop the predicate will return true for these inputs. 3960 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3961 // If there is a loop-invariant, force it into the RHS. 3962 std::swap(LHS, RHS); 3963 Cond = ICmpInst::getSwappedPredicate(Cond); 3964 } 3965 3966 // Simplify the operands before analyzing them. 3967 (void)SimplifyICmpOperands(Cond, LHS, RHS); 3968 3969 // If we have a comparison of a chrec against a constant, try to use value 3970 // ranges to answer this query. 3971 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3972 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3973 if (AddRec->getLoop() == L) { 3974 // Form the constant range. 3975 ConstantRange CompRange( 3976 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3977 3978 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3979 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3980 } 3981 3982 switch (Cond) { 3983 case ICmpInst::ICMP_NE: { // while (X != Y) 3984 // Convert to: while (X-Y != 0) 3985 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3986 if (BTI.hasAnyInfo()) return BTI; 3987 break; 3988 } 3989 case ICmpInst::ICMP_EQ: { // while (X == Y) 3990 // Convert to: while (X-Y == 0) 3991 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 3992 if (BTI.hasAnyInfo()) return BTI; 3993 break; 3994 } 3995 case ICmpInst::ICMP_SLT: { 3996 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 3997 if (BTI.hasAnyInfo()) return BTI; 3998 break; 3999 } 4000 case ICmpInst::ICMP_SGT: { 4001 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4002 getNotSCEV(RHS), L, true); 4003 if (BTI.hasAnyInfo()) return BTI; 4004 break; 4005 } 4006 case ICmpInst::ICMP_ULT: { 4007 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 4008 if (BTI.hasAnyInfo()) return BTI; 4009 break; 4010 } 4011 case ICmpInst::ICMP_UGT: { 4012 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4013 getNotSCEV(RHS), L, false); 4014 if (BTI.hasAnyInfo()) return BTI; 4015 break; 4016 } 4017 default: 4018 #if 0 4019 dbgs() << "ComputeBackedgeTakenCount "; 4020 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4021 dbgs() << "[unsigned] "; 4022 dbgs() << *LHS << " " 4023 << Instruction::getOpcodeName(Instruction::ICmp) 4024 << " " << *RHS << "\n"; 4025 #endif 4026 break; 4027 } 4028 return 4029 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 4030 } 4031 4032 static ConstantInt * 4033 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4034 ScalarEvolution &SE) { 4035 const SCEV *InVal = SE.getConstant(C); 4036 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4037 assert(isa<SCEVConstant>(Val) && 4038 "Evaluation of SCEV at constant didn't fold correctly?"); 4039 return cast<SCEVConstant>(Val)->getValue(); 4040 } 4041 4042 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 4043 /// and a GEP expression (missing the pointer index) indexing into it, return 4044 /// the addressed element of the initializer or null if the index expression is 4045 /// invalid. 4046 static Constant * 4047 GetAddressedElementFromGlobal(GlobalVariable *GV, 4048 const std::vector<ConstantInt*> &Indices) { 4049 Constant *Init = GV->getInitializer(); 4050 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 4051 uint64_t Idx = Indices[i]->getZExtValue(); 4052 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 4053 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 4054 Init = cast<Constant>(CS->getOperand(Idx)); 4055 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4056 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4057 Init = cast<Constant>(CA->getOperand(Idx)); 4058 } else if (isa<ConstantAggregateZero>(Init)) { 4059 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 4060 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4061 Init = Constant::getNullValue(STy->getElementType(Idx)); 4062 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4063 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4064 Init = Constant::getNullValue(ATy->getElementType()); 4065 } else { 4066 llvm_unreachable("Unknown constant aggregate type!"); 4067 } 4068 return 0; 4069 } else { 4070 return 0; // Unknown initializer type 4071 } 4072 } 4073 return Init; 4074 } 4075 4076 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 4077 /// 'icmp op load X, cst', try to see if we can compute the backedge 4078 /// execution count. 4079 ScalarEvolution::BackedgeTakenInfo 4080 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 4081 LoadInst *LI, 4082 Constant *RHS, 4083 const Loop *L, 4084 ICmpInst::Predicate predicate) { 4085 if (LI->isVolatile()) return getCouldNotCompute(); 4086 4087 // Check to see if the loaded pointer is a getelementptr of a global. 4088 // TODO: Use SCEV instead of manually grubbing with GEPs. 4089 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4090 if (!GEP) return getCouldNotCompute(); 4091 4092 // Make sure that it is really a constant global we are gepping, with an 4093 // initializer, and make sure the first IDX is really 0. 4094 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4095 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4096 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4097 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4098 return getCouldNotCompute(); 4099 4100 // Okay, we allow one non-constant index into the GEP instruction. 4101 Value *VarIdx = 0; 4102 std::vector<ConstantInt*> Indexes; 4103 unsigned VarIdxNum = 0; 4104 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4105 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4106 Indexes.push_back(CI); 4107 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4108 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4109 VarIdx = GEP->getOperand(i); 4110 VarIdxNum = i-2; 4111 Indexes.push_back(0); 4112 } 4113 4114 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4115 // Check to see if X is a loop variant variable value now. 4116 const SCEV *Idx = getSCEV(VarIdx); 4117 Idx = getSCEVAtScope(Idx, L); 4118 4119 // We can only recognize very limited forms of loop index expressions, in 4120 // particular, only affine AddRec's like {C1,+,C2}. 4121 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4122 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 4123 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4124 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4125 return getCouldNotCompute(); 4126 4127 unsigned MaxSteps = MaxBruteForceIterations; 4128 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4129 ConstantInt *ItCst = ConstantInt::get( 4130 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4131 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4132 4133 // Form the GEP offset. 4134 Indexes[VarIdxNum] = Val; 4135 4136 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4137 if (Result == 0) break; // Cannot compute! 4138 4139 // Evaluate the condition for this iteration. 4140 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4141 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4142 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4143 #if 0 4144 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4145 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4146 << "***\n"; 4147 #endif 4148 ++NumArrayLenItCounts; 4149 return getConstant(ItCst); // Found terminating iteration! 4150 } 4151 } 4152 return getCouldNotCompute(); 4153 } 4154 4155 4156 /// CanConstantFold - Return true if we can constant fold an instruction of the 4157 /// specified type, assuming that all operands were constants. 4158 static bool CanConstantFold(const Instruction *I) { 4159 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4160 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4161 return true; 4162 4163 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4164 if (const Function *F = CI->getCalledFunction()) 4165 return canConstantFoldCallTo(F); 4166 return false; 4167 } 4168 4169 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4170 /// in the loop that V is derived from. We allow arbitrary operations along the 4171 /// way, but the operands of an operation must either be constants or a value 4172 /// derived from a constant PHI. If this expression does not fit with these 4173 /// constraints, return null. 4174 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4175 // If this is not an instruction, or if this is an instruction outside of the 4176 // loop, it can't be derived from a loop PHI. 4177 Instruction *I = dyn_cast<Instruction>(V); 4178 if (I == 0 || !L->contains(I)) return 0; 4179 4180 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4181 if (L->getHeader() == I->getParent()) 4182 return PN; 4183 else 4184 // We don't currently keep track of the control flow needed to evaluate 4185 // PHIs, so we cannot handle PHIs inside of loops. 4186 return 0; 4187 } 4188 4189 // If we won't be able to constant fold this expression even if the operands 4190 // are constants, return early. 4191 if (!CanConstantFold(I)) return 0; 4192 4193 // Otherwise, we can evaluate this instruction if all of its operands are 4194 // constant or derived from a PHI node themselves. 4195 PHINode *PHI = 0; 4196 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4197 if (!isa<Constant>(I->getOperand(Op))) { 4198 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4199 if (P == 0) return 0; // Not evolving from PHI 4200 if (PHI == 0) 4201 PHI = P; 4202 else if (PHI != P) 4203 return 0; // Evolving from multiple different PHIs. 4204 } 4205 4206 // This is a expression evolving from a constant PHI! 4207 return PHI; 4208 } 4209 4210 /// EvaluateExpression - Given an expression that passes the 4211 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4212 /// in the loop has the value PHIVal. If we can't fold this expression for some 4213 /// reason, return null. 4214 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4215 const TargetData *TD) { 4216 if (isa<PHINode>(V)) return PHIVal; 4217 if (Constant *C = dyn_cast<Constant>(V)) return C; 4218 Instruction *I = cast<Instruction>(V); 4219 4220 std::vector<Constant*> Operands(I->getNumOperands()); 4221 4222 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4223 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4224 if (Operands[i] == 0) return 0; 4225 } 4226 4227 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4228 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4229 Operands[1], TD); 4230 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4231 &Operands[0], Operands.size(), TD); 4232 } 4233 4234 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4235 /// in the header of its containing loop, we know the loop executes a 4236 /// constant number of times, and the PHI node is just a recurrence 4237 /// involving constants, fold it. 4238 Constant * 4239 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4240 const APInt &BEs, 4241 const Loop *L) { 4242 std::map<PHINode*, Constant*>::iterator I = 4243 ConstantEvolutionLoopExitValue.find(PN); 4244 if (I != ConstantEvolutionLoopExitValue.end()) 4245 return I->second; 4246 4247 if (BEs.ugt(MaxBruteForceIterations)) 4248 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4249 4250 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4251 4252 // Since the loop is canonicalized, the PHI node must have two entries. One 4253 // entry must be a constant (coming in from outside of the loop), and the 4254 // second must be derived from the same PHI. 4255 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4256 Constant *StartCST = 4257 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4258 if (StartCST == 0) 4259 return RetVal = 0; // Must be a constant. 4260 4261 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4262 if (getConstantEvolvingPHI(BEValue, L) != PN && 4263 !isa<Constant>(BEValue)) 4264 return RetVal = 0; // Not derived from same PHI. 4265 4266 // Execute the loop symbolically to determine the exit value. 4267 if (BEs.getActiveBits() >= 32) 4268 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4269 4270 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4271 unsigned IterationNum = 0; 4272 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4273 if (IterationNum == NumIterations) 4274 return RetVal = PHIVal; // Got exit value! 4275 4276 // Compute the value of the PHI node for the next iteration. 4277 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4278 if (NextPHI == PHIVal) 4279 return RetVal = NextPHI; // Stopped evolving! 4280 if (NextPHI == 0) 4281 return 0; // Couldn't evaluate! 4282 PHIVal = NextPHI; 4283 } 4284 } 4285 4286 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 4287 /// constant number of times (the condition evolves only from constants), 4288 /// try to evaluate a few iterations of the loop until we get the exit 4289 /// condition gets a value of ExitWhen (true or false). If we cannot 4290 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4291 const SCEV * 4292 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 4293 Value *Cond, 4294 bool ExitWhen) { 4295 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4296 if (PN == 0) return getCouldNotCompute(); 4297 4298 // If the loop is canonicalized, the PHI will have exactly two entries. 4299 // That's the only form we support here. 4300 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4301 4302 // One entry must be a constant (coming in from outside of the loop), and the 4303 // second must be derived from the same PHI. 4304 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4305 Constant *StartCST = 4306 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4307 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4308 4309 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4310 if (getConstantEvolvingPHI(BEValue, L) != PN && 4311 !isa<Constant>(BEValue)) 4312 return getCouldNotCompute(); // Not derived from same PHI. 4313 4314 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4315 // the loop symbolically to determine when the condition gets a value of 4316 // "ExitWhen". 4317 unsigned IterationNum = 0; 4318 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4319 for (Constant *PHIVal = StartCST; 4320 IterationNum != MaxIterations; ++IterationNum) { 4321 ConstantInt *CondVal = 4322 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4323 4324 // Couldn't symbolically evaluate. 4325 if (!CondVal) return getCouldNotCompute(); 4326 4327 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4328 ++NumBruteForceTripCountsComputed; 4329 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4330 } 4331 4332 // Compute the value of the PHI node for the next iteration. 4333 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4334 if (NextPHI == 0 || NextPHI == PHIVal) 4335 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4336 PHIVal = NextPHI; 4337 } 4338 4339 // Too many iterations were needed to evaluate. 4340 return getCouldNotCompute(); 4341 } 4342 4343 /// getSCEVAtScope - Return a SCEV expression for the specified value 4344 /// at the specified scope in the program. The L value specifies a loop 4345 /// nest to evaluate the expression at, where null is the top-level or a 4346 /// specified loop is immediately inside of the loop. 4347 /// 4348 /// This method can be used to compute the exit value for a variable defined 4349 /// in a loop by querying what the value will hold in the parent loop. 4350 /// 4351 /// In the case that a relevant loop exit value cannot be computed, the 4352 /// original value V is returned. 4353 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4354 // Check to see if we've folded this expression at this loop before. 4355 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4356 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4357 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4358 if (!Pair.second) 4359 return Pair.first->second ? Pair.first->second : V; 4360 4361 // Otherwise compute it. 4362 const SCEV *C = computeSCEVAtScope(V, L); 4363 ValuesAtScopes[V][L] = C; 4364 return C; 4365 } 4366 4367 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4368 if (isa<SCEVConstant>(V)) return V; 4369 4370 // If this instruction is evolved from a constant-evolving PHI, compute the 4371 // exit value from the loop without using SCEVs. 4372 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4373 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4374 const Loop *LI = (*this->LI)[I->getParent()]; 4375 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4376 if (PHINode *PN = dyn_cast<PHINode>(I)) 4377 if (PN->getParent() == LI->getHeader()) { 4378 // Okay, there is no closed form solution for the PHI node. Check 4379 // to see if the loop that contains it has a known backedge-taken 4380 // count. If so, we may be able to force computation of the exit 4381 // value. 4382 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4383 if (const SCEVConstant *BTCC = 4384 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4385 // Okay, we know how many times the containing loop executes. If 4386 // this is a constant evolving PHI node, get the final value at 4387 // the specified iteration number. 4388 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4389 BTCC->getValue()->getValue(), 4390 LI); 4391 if (RV) return getSCEV(RV); 4392 } 4393 } 4394 4395 // Okay, this is an expression that we cannot symbolically evaluate 4396 // into a SCEV. Check to see if it's possible to symbolically evaluate 4397 // the arguments into constants, and if so, try to constant propagate the 4398 // result. This is particularly useful for computing loop exit values. 4399 if (CanConstantFold(I)) { 4400 SmallVector<Constant *, 4> Operands; 4401 bool MadeImprovement = false; 4402 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4403 Value *Op = I->getOperand(i); 4404 if (Constant *C = dyn_cast<Constant>(Op)) { 4405 Operands.push_back(C); 4406 continue; 4407 } 4408 4409 // If any of the operands is non-constant and if they are 4410 // non-integer and non-pointer, don't even try to analyze them 4411 // with scev techniques. 4412 if (!isSCEVable(Op->getType())) 4413 return V; 4414 4415 const SCEV *OrigV = getSCEV(Op); 4416 const SCEV *OpV = getSCEVAtScope(OrigV, L); 4417 MadeImprovement |= OrigV != OpV; 4418 4419 Constant *C = 0; 4420 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 4421 C = SC->getValue(); 4422 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) 4423 C = dyn_cast<Constant>(SU->getValue()); 4424 if (!C) return V; 4425 if (C->getType() != Op->getType()) 4426 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4427 Op->getType(), 4428 false), 4429 C, Op->getType()); 4430 Operands.push_back(C); 4431 } 4432 4433 // Check to see if getSCEVAtScope actually made an improvement. 4434 if (MadeImprovement) { 4435 Constant *C = 0; 4436 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4437 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4438 Operands[0], Operands[1], TD); 4439 else 4440 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4441 &Operands[0], Operands.size(), TD); 4442 if (!C) return V; 4443 return getSCEV(C); 4444 } 4445 } 4446 } 4447 4448 // This is some other type of SCEVUnknown, just return it. 4449 return V; 4450 } 4451 4452 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4453 // Avoid performing the look-up in the common case where the specified 4454 // expression has no loop-variant portions. 4455 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4456 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4457 if (OpAtScope != Comm->getOperand(i)) { 4458 // Okay, at least one of these operands is loop variant but might be 4459 // foldable. Build a new instance of the folded commutative expression. 4460 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4461 Comm->op_begin()+i); 4462 NewOps.push_back(OpAtScope); 4463 4464 for (++i; i != e; ++i) { 4465 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4466 NewOps.push_back(OpAtScope); 4467 } 4468 if (isa<SCEVAddExpr>(Comm)) 4469 return getAddExpr(NewOps); 4470 if (isa<SCEVMulExpr>(Comm)) 4471 return getMulExpr(NewOps); 4472 if (isa<SCEVSMaxExpr>(Comm)) 4473 return getSMaxExpr(NewOps); 4474 if (isa<SCEVUMaxExpr>(Comm)) 4475 return getUMaxExpr(NewOps); 4476 llvm_unreachable("Unknown commutative SCEV type!"); 4477 } 4478 } 4479 // If we got here, all operands are loop invariant. 4480 return Comm; 4481 } 4482 4483 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4484 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4485 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4486 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4487 return Div; // must be loop invariant 4488 return getUDivExpr(LHS, RHS); 4489 } 4490 4491 // If this is a loop recurrence for a loop that does not contain L, then we 4492 // are dealing with the final value computed by the loop. 4493 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4494 // First, attempt to evaluate each operand. 4495 // Avoid performing the look-up in the common case where the specified 4496 // expression has no loop-variant portions. 4497 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4498 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 4499 if (OpAtScope == AddRec->getOperand(i)) 4500 continue; 4501 4502 // Okay, at least one of these operands is loop variant but might be 4503 // foldable. Build a new instance of the folded commutative expression. 4504 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 4505 AddRec->op_begin()+i); 4506 NewOps.push_back(OpAtScope); 4507 for (++i; i != e; ++i) 4508 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 4509 4510 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop())); 4511 break; 4512 } 4513 4514 // If the scope is outside the addrec's loop, evaluate it by using the 4515 // loop exit value of the addrec. 4516 if (!AddRec->getLoop()->contains(L)) { 4517 // To evaluate this recurrence, we need to know how many times the AddRec 4518 // loop iterates. Compute this now. 4519 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4520 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4521 4522 // Then, evaluate the AddRec. 4523 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4524 } 4525 4526 return AddRec; 4527 } 4528 4529 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4530 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4531 if (Op == Cast->getOperand()) 4532 return Cast; // must be loop invariant 4533 return getZeroExtendExpr(Op, Cast->getType()); 4534 } 4535 4536 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4537 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4538 if (Op == Cast->getOperand()) 4539 return Cast; // must be loop invariant 4540 return getSignExtendExpr(Op, Cast->getType()); 4541 } 4542 4543 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4544 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4545 if (Op == Cast->getOperand()) 4546 return Cast; // must be loop invariant 4547 return getTruncateExpr(Op, Cast->getType()); 4548 } 4549 4550 llvm_unreachable("Unknown SCEV type!"); 4551 return 0; 4552 } 4553 4554 /// getSCEVAtScope - This is a convenience function which does 4555 /// getSCEVAtScope(getSCEV(V), L). 4556 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4557 return getSCEVAtScope(getSCEV(V), L); 4558 } 4559 4560 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4561 /// following equation: 4562 /// 4563 /// A * X = B (mod N) 4564 /// 4565 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4566 /// A and B isn't important. 4567 /// 4568 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4569 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4570 ScalarEvolution &SE) { 4571 uint32_t BW = A.getBitWidth(); 4572 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4573 assert(A != 0 && "A must be non-zero."); 4574 4575 // 1. D = gcd(A, N) 4576 // 4577 // The gcd of A and N may have only one prime factor: 2. The number of 4578 // trailing zeros in A is its multiplicity 4579 uint32_t Mult2 = A.countTrailingZeros(); 4580 // D = 2^Mult2 4581 4582 // 2. Check if B is divisible by D. 4583 // 4584 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4585 // is not less than multiplicity of this prime factor for D. 4586 if (B.countTrailingZeros() < Mult2) 4587 return SE.getCouldNotCompute(); 4588 4589 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4590 // modulo (N / D). 4591 // 4592 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4593 // bit width during computations. 4594 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4595 APInt Mod(BW + 1, 0); 4596 Mod.set(BW - Mult2); // Mod = N / D 4597 APInt I = AD.multiplicativeInverse(Mod); 4598 4599 // 4. Compute the minimum unsigned root of the equation: 4600 // I * (B / D) mod (N / D) 4601 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4602 4603 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4604 // bits. 4605 return SE.getConstant(Result.trunc(BW)); 4606 } 4607 4608 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4609 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4610 /// might be the same) or two SCEVCouldNotCompute objects. 4611 /// 4612 static std::pair<const SCEV *,const SCEV *> 4613 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4614 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4615 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4616 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4617 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4618 4619 // We currently can only solve this if the coefficients are constants. 4620 if (!LC || !MC || !NC) { 4621 const SCEV *CNC = SE.getCouldNotCompute(); 4622 return std::make_pair(CNC, CNC); 4623 } 4624 4625 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4626 const APInt &L = LC->getValue()->getValue(); 4627 const APInt &M = MC->getValue()->getValue(); 4628 const APInt &N = NC->getValue()->getValue(); 4629 APInt Two(BitWidth, 2); 4630 APInt Four(BitWidth, 4); 4631 4632 { 4633 using namespace APIntOps; 4634 const APInt& C = L; 4635 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4636 // The B coefficient is M-N/2 4637 APInt B(M); 4638 B -= sdiv(N,Two); 4639 4640 // The A coefficient is N/2 4641 APInt A(N.sdiv(Two)); 4642 4643 // Compute the B^2-4ac term. 4644 APInt SqrtTerm(B); 4645 SqrtTerm *= B; 4646 SqrtTerm -= Four * (A * C); 4647 4648 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4649 // integer value or else APInt::sqrt() will assert. 4650 APInt SqrtVal(SqrtTerm.sqrt()); 4651 4652 // Compute the two solutions for the quadratic formula. 4653 // The divisions must be performed as signed divisions. 4654 APInt NegB(-B); 4655 APInt TwoA( A << 1 ); 4656 if (TwoA.isMinValue()) { 4657 const SCEV *CNC = SE.getCouldNotCompute(); 4658 return std::make_pair(CNC, CNC); 4659 } 4660 4661 LLVMContext &Context = SE.getContext(); 4662 4663 ConstantInt *Solution1 = 4664 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4665 ConstantInt *Solution2 = 4666 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4667 4668 return std::make_pair(SE.getConstant(Solution1), 4669 SE.getConstant(Solution2)); 4670 } // end APIntOps namespace 4671 } 4672 4673 /// HowFarToZero - Return the number of times a backedge comparing the specified 4674 /// value to zero will execute. If not computable, return CouldNotCompute. 4675 ScalarEvolution::BackedgeTakenInfo 4676 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4677 // If the value is a constant 4678 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4679 // If the value is already zero, the branch will execute zero times. 4680 if (C->getValue()->isZero()) return C; 4681 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4682 } 4683 4684 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4685 if (!AddRec || AddRec->getLoop() != L) 4686 return getCouldNotCompute(); 4687 4688 if (AddRec->isAffine()) { 4689 // If this is an affine expression, the execution count of this branch is 4690 // the minimum unsigned root of the following equation: 4691 // 4692 // Start + Step*N = 0 (mod 2^BW) 4693 // 4694 // equivalent to: 4695 // 4696 // Step*N = -Start (mod 2^BW) 4697 // 4698 // where BW is the common bit width of Start and Step. 4699 4700 // Get the initial value for the loop. 4701 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 4702 L->getParentLoop()); 4703 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 4704 L->getParentLoop()); 4705 4706 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 4707 // For now we handle only constant steps. 4708 4709 // First, handle unitary steps. 4710 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4711 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4712 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4713 return Start; // N = Start (as unsigned) 4714 4715 // Then, try to solve the above equation provided that Start is constant. 4716 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4717 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4718 -StartC->getValue()->getValue(), 4719 *this); 4720 } 4721 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 4722 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4723 // the quadratic equation to solve it. 4724 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, 4725 *this); 4726 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4727 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4728 if (R1) { 4729 #if 0 4730 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 4731 << " sol#2: " << *R2 << "\n"; 4732 #endif 4733 // Pick the smallest positive root value. 4734 if (ConstantInt *CB = 4735 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4736 R1->getValue(), R2->getValue()))) { 4737 if (CB->getZExtValue() == false) 4738 std::swap(R1, R2); // R1 is the minimum root now. 4739 4740 // We can only use this value if the chrec ends up with an exact zero 4741 // value at this index. When solving for "X*X != 5", for example, we 4742 // should not accept a root of 2. 4743 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4744 if (Val->isZero()) 4745 return R1; // We found a quadratic root! 4746 } 4747 } 4748 } 4749 4750 return getCouldNotCompute(); 4751 } 4752 4753 /// HowFarToNonZero - Return the number of times a backedge checking the 4754 /// specified value for nonzero will execute. If not computable, return 4755 /// CouldNotCompute 4756 ScalarEvolution::BackedgeTakenInfo 4757 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4758 // Loops that look like: while (X == 0) are very strange indeed. We don't 4759 // handle them yet except for the trivial case. This could be expanded in the 4760 // future as needed. 4761 4762 // If the value is a constant, check to see if it is known to be non-zero 4763 // already. If so, the backedge will execute zero times. 4764 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4765 if (!C->getValue()->isNullValue()) 4766 return getConstant(C->getType(), 0); 4767 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4768 } 4769 4770 // We could implement others, but I really doubt anyone writes loops like 4771 // this, and if they did, they would already be constant folded. 4772 return getCouldNotCompute(); 4773 } 4774 4775 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4776 /// (which may not be an immediate predecessor) which has exactly one 4777 /// successor from which BB is reachable, or null if no such block is 4778 /// found. 4779 /// 4780 std::pair<BasicBlock *, BasicBlock *> 4781 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4782 // If the block has a unique predecessor, then there is no path from the 4783 // predecessor to the block that does not go through the direct edge 4784 // from the predecessor to the block. 4785 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4786 return std::make_pair(Pred, BB); 4787 4788 // A loop's header is defined to be a block that dominates the loop. 4789 // If the header has a unique predecessor outside the loop, it must be 4790 // a block that has exactly one successor that can reach the loop. 4791 if (Loop *L = LI->getLoopFor(BB)) 4792 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 4793 4794 return std::pair<BasicBlock *, BasicBlock *>(); 4795 } 4796 4797 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4798 /// testing whether two expressions are equal, however for the purposes of 4799 /// looking for a condition guarding a loop, it can be useful to be a little 4800 /// more general, since a front-end may have replicated the controlling 4801 /// expression. 4802 /// 4803 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4804 // Quick check to see if they are the same SCEV. 4805 if (A == B) return true; 4806 4807 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4808 // two different instructions with the same value. Check for this case. 4809 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4810 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4811 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4812 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4813 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 4814 return true; 4815 4816 // Otherwise assume they may have a different value. 4817 return false; 4818 } 4819 4820 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 4821 /// predicate Pred. Return true iff any changes were made. 4822 /// 4823 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 4824 const SCEV *&LHS, const SCEV *&RHS) { 4825 bool Changed = false; 4826 4827 // Canonicalize a constant to the right side. 4828 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 4829 // Check for both operands constant. 4830 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 4831 if (ConstantExpr::getICmp(Pred, 4832 LHSC->getValue(), 4833 RHSC->getValue())->isNullValue()) 4834 goto trivially_false; 4835 else 4836 goto trivially_true; 4837 } 4838 // Otherwise swap the operands to put the constant on the right. 4839 std::swap(LHS, RHS); 4840 Pred = ICmpInst::getSwappedPredicate(Pred); 4841 Changed = true; 4842 } 4843 4844 // If we're comparing an addrec with a value which is loop-invariant in the 4845 // addrec's loop, put the addrec on the left. Also make a dominance check, 4846 // as both operands could be addrecs loop-invariant in each other's loop. 4847 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 4848 const Loop *L = AR->getLoop(); 4849 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) { 4850 std::swap(LHS, RHS); 4851 Pred = ICmpInst::getSwappedPredicate(Pred); 4852 Changed = true; 4853 } 4854 } 4855 4856 // If there's a constant operand, canonicalize comparisons with boundary 4857 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 4858 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 4859 const APInt &RA = RC->getValue()->getValue(); 4860 switch (Pred) { 4861 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4862 case ICmpInst::ICMP_EQ: 4863 case ICmpInst::ICMP_NE: 4864 break; 4865 case ICmpInst::ICMP_UGE: 4866 if ((RA - 1).isMinValue()) { 4867 Pred = ICmpInst::ICMP_NE; 4868 RHS = getConstant(RA - 1); 4869 Changed = true; 4870 break; 4871 } 4872 if (RA.isMaxValue()) { 4873 Pred = ICmpInst::ICMP_EQ; 4874 Changed = true; 4875 break; 4876 } 4877 if (RA.isMinValue()) goto trivially_true; 4878 4879 Pred = ICmpInst::ICMP_UGT; 4880 RHS = getConstant(RA - 1); 4881 Changed = true; 4882 break; 4883 case ICmpInst::ICMP_ULE: 4884 if ((RA + 1).isMaxValue()) { 4885 Pred = ICmpInst::ICMP_NE; 4886 RHS = getConstant(RA + 1); 4887 Changed = true; 4888 break; 4889 } 4890 if (RA.isMinValue()) { 4891 Pred = ICmpInst::ICMP_EQ; 4892 Changed = true; 4893 break; 4894 } 4895 if (RA.isMaxValue()) goto trivially_true; 4896 4897 Pred = ICmpInst::ICMP_ULT; 4898 RHS = getConstant(RA + 1); 4899 Changed = true; 4900 break; 4901 case ICmpInst::ICMP_SGE: 4902 if ((RA - 1).isMinSignedValue()) { 4903 Pred = ICmpInst::ICMP_NE; 4904 RHS = getConstant(RA - 1); 4905 Changed = true; 4906 break; 4907 } 4908 if (RA.isMaxSignedValue()) { 4909 Pred = ICmpInst::ICMP_EQ; 4910 Changed = true; 4911 break; 4912 } 4913 if (RA.isMinSignedValue()) goto trivially_true; 4914 4915 Pred = ICmpInst::ICMP_SGT; 4916 RHS = getConstant(RA - 1); 4917 Changed = true; 4918 break; 4919 case ICmpInst::ICMP_SLE: 4920 if ((RA + 1).isMaxSignedValue()) { 4921 Pred = ICmpInst::ICMP_NE; 4922 RHS = getConstant(RA + 1); 4923 Changed = true; 4924 break; 4925 } 4926 if (RA.isMinSignedValue()) { 4927 Pred = ICmpInst::ICMP_EQ; 4928 Changed = true; 4929 break; 4930 } 4931 if (RA.isMaxSignedValue()) goto trivially_true; 4932 4933 Pred = ICmpInst::ICMP_SLT; 4934 RHS = getConstant(RA + 1); 4935 Changed = true; 4936 break; 4937 case ICmpInst::ICMP_UGT: 4938 if (RA.isMinValue()) { 4939 Pred = ICmpInst::ICMP_NE; 4940 Changed = true; 4941 break; 4942 } 4943 if ((RA + 1).isMaxValue()) { 4944 Pred = ICmpInst::ICMP_EQ; 4945 RHS = getConstant(RA + 1); 4946 Changed = true; 4947 break; 4948 } 4949 if (RA.isMaxValue()) goto trivially_false; 4950 break; 4951 case ICmpInst::ICMP_ULT: 4952 if (RA.isMaxValue()) { 4953 Pred = ICmpInst::ICMP_NE; 4954 Changed = true; 4955 break; 4956 } 4957 if ((RA - 1).isMinValue()) { 4958 Pred = ICmpInst::ICMP_EQ; 4959 RHS = getConstant(RA - 1); 4960 Changed = true; 4961 break; 4962 } 4963 if (RA.isMinValue()) goto trivially_false; 4964 break; 4965 case ICmpInst::ICMP_SGT: 4966 if (RA.isMinSignedValue()) { 4967 Pred = ICmpInst::ICMP_NE; 4968 Changed = true; 4969 break; 4970 } 4971 if ((RA + 1).isMaxSignedValue()) { 4972 Pred = ICmpInst::ICMP_EQ; 4973 RHS = getConstant(RA + 1); 4974 Changed = true; 4975 break; 4976 } 4977 if (RA.isMaxSignedValue()) goto trivially_false; 4978 break; 4979 case ICmpInst::ICMP_SLT: 4980 if (RA.isMaxSignedValue()) { 4981 Pred = ICmpInst::ICMP_NE; 4982 Changed = true; 4983 break; 4984 } 4985 if ((RA - 1).isMinSignedValue()) { 4986 Pred = ICmpInst::ICMP_EQ; 4987 RHS = getConstant(RA - 1); 4988 Changed = true; 4989 break; 4990 } 4991 if (RA.isMinSignedValue()) goto trivially_false; 4992 break; 4993 } 4994 } 4995 4996 // Check for obvious equality. 4997 if (HasSameValue(LHS, RHS)) { 4998 if (ICmpInst::isTrueWhenEqual(Pred)) 4999 goto trivially_true; 5000 if (ICmpInst::isFalseWhenEqual(Pred)) 5001 goto trivially_false; 5002 } 5003 5004 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5005 // adding or subtracting 1 from one of the operands. 5006 switch (Pred) { 5007 case ICmpInst::ICMP_SLE: 5008 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5009 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5010 /*HasNUW=*/false, /*HasNSW=*/true); 5011 Pred = ICmpInst::ICMP_SLT; 5012 Changed = true; 5013 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5014 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5015 /*HasNUW=*/false, /*HasNSW=*/true); 5016 Pred = ICmpInst::ICMP_SLT; 5017 Changed = true; 5018 } 5019 break; 5020 case ICmpInst::ICMP_SGE: 5021 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5022 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5023 /*HasNUW=*/false, /*HasNSW=*/true); 5024 Pred = ICmpInst::ICMP_SGT; 5025 Changed = true; 5026 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5027 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5028 /*HasNUW=*/false, /*HasNSW=*/true); 5029 Pred = ICmpInst::ICMP_SGT; 5030 Changed = true; 5031 } 5032 break; 5033 case ICmpInst::ICMP_ULE: 5034 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5035 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5036 /*HasNUW=*/true, /*HasNSW=*/false); 5037 Pred = ICmpInst::ICMP_ULT; 5038 Changed = true; 5039 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5040 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5041 /*HasNUW=*/true, /*HasNSW=*/false); 5042 Pred = ICmpInst::ICMP_ULT; 5043 Changed = true; 5044 } 5045 break; 5046 case ICmpInst::ICMP_UGE: 5047 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5048 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5049 /*HasNUW=*/true, /*HasNSW=*/false); 5050 Pred = ICmpInst::ICMP_UGT; 5051 Changed = true; 5052 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5053 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5054 /*HasNUW=*/true, /*HasNSW=*/false); 5055 Pred = ICmpInst::ICMP_UGT; 5056 Changed = true; 5057 } 5058 break; 5059 default: 5060 break; 5061 } 5062 5063 // TODO: More simplifications are possible here. 5064 5065 return Changed; 5066 5067 trivially_true: 5068 // Return 0 == 0. 5069 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5070 Pred = ICmpInst::ICMP_EQ; 5071 return true; 5072 5073 trivially_false: 5074 // Return 0 != 0. 5075 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5076 Pred = ICmpInst::ICMP_NE; 5077 return true; 5078 } 5079 5080 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5081 return getSignedRange(S).getSignedMax().isNegative(); 5082 } 5083 5084 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5085 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5086 } 5087 5088 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5089 return !getSignedRange(S).getSignedMin().isNegative(); 5090 } 5091 5092 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5093 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5094 } 5095 5096 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5097 return isKnownNegative(S) || isKnownPositive(S); 5098 } 5099 5100 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5101 const SCEV *LHS, const SCEV *RHS) { 5102 // Canonicalize the inputs first. 5103 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5104 5105 // If LHS or RHS is an addrec, check to see if the condition is true in 5106 // every iteration of the loop. 5107 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5108 if (isLoopEntryGuardedByCond( 5109 AR->getLoop(), Pred, AR->getStart(), RHS) && 5110 isLoopBackedgeGuardedByCond( 5111 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5112 return true; 5113 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5114 if (isLoopEntryGuardedByCond( 5115 AR->getLoop(), Pred, LHS, AR->getStart()) && 5116 isLoopBackedgeGuardedByCond( 5117 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5118 return true; 5119 5120 // Otherwise see what can be done with known constant ranges. 5121 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5122 } 5123 5124 bool 5125 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5126 const SCEV *LHS, const SCEV *RHS) { 5127 if (HasSameValue(LHS, RHS)) 5128 return ICmpInst::isTrueWhenEqual(Pred); 5129 5130 // This code is split out from isKnownPredicate because it is called from 5131 // within isLoopEntryGuardedByCond. 5132 switch (Pred) { 5133 default: 5134 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5135 break; 5136 case ICmpInst::ICMP_SGT: 5137 Pred = ICmpInst::ICMP_SLT; 5138 std::swap(LHS, RHS); 5139 case ICmpInst::ICMP_SLT: { 5140 ConstantRange LHSRange = getSignedRange(LHS); 5141 ConstantRange RHSRange = getSignedRange(RHS); 5142 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5143 return true; 5144 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5145 return false; 5146 break; 5147 } 5148 case ICmpInst::ICMP_SGE: 5149 Pred = ICmpInst::ICMP_SLE; 5150 std::swap(LHS, RHS); 5151 case ICmpInst::ICMP_SLE: { 5152 ConstantRange LHSRange = getSignedRange(LHS); 5153 ConstantRange RHSRange = getSignedRange(RHS); 5154 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5155 return true; 5156 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5157 return false; 5158 break; 5159 } 5160 case ICmpInst::ICMP_UGT: 5161 Pred = ICmpInst::ICMP_ULT; 5162 std::swap(LHS, RHS); 5163 case ICmpInst::ICMP_ULT: { 5164 ConstantRange LHSRange = getUnsignedRange(LHS); 5165 ConstantRange RHSRange = getUnsignedRange(RHS); 5166 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5167 return true; 5168 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5169 return false; 5170 break; 5171 } 5172 case ICmpInst::ICMP_UGE: 5173 Pred = ICmpInst::ICMP_ULE; 5174 std::swap(LHS, RHS); 5175 case ICmpInst::ICMP_ULE: { 5176 ConstantRange LHSRange = getUnsignedRange(LHS); 5177 ConstantRange RHSRange = getUnsignedRange(RHS); 5178 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5179 return true; 5180 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5181 return false; 5182 break; 5183 } 5184 case ICmpInst::ICMP_NE: { 5185 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5186 return true; 5187 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5188 return true; 5189 5190 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5191 if (isKnownNonZero(Diff)) 5192 return true; 5193 break; 5194 } 5195 case ICmpInst::ICMP_EQ: 5196 // The check at the top of the function catches the case where 5197 // the values are known to be equal. 5198 break; 5199 } 5200 return false; 5201 } 5202 5203 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5204 /// protected by a conditional between LHS and RHS. This is used to 5205 /// to eliminate casts. 5206 bool 5207 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5208 ICmpInst::Predicate Pred, 5209 const SCEV *LHS, const SCEV *RHS) { 5210 // Interpret a null as meaning no loop, where there is obviously no guard 5211 // (interprocedural conditions notwithstanding). 5212 if (!L) return true; 5213 5214 BasicBlock *Latch = L->getLoopLatch(); 5215 if (!Latch) 5216 return false; 5217 5218 BranchInst *LoopContinuePredicate = 5219 dyn_cast<BranchInst>(Latch->getTerminator()); 5220 if (!LoopContinuePredicate || 5221 LoopContinuePredicate->isUnconditional()) 5222 return false; 5223 5224 return isImpliedCond(Pred, LHS, RHS, 5225 LoopContinuePredicate->getCondition(), 5226 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5227 } 5228 5229 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5230 /// by a conditional between LHS and RHS. This is used to help avoid max 5231 /// expressions in loop trip counts, and to eliminate casts. 5232 bool 5233 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5234 ICmpInst::Predicate Pred, 5235 const SCEV *LHS, const SCEV *RHS) { 5236 // Interpret a null as meaning no loop, where there is obviously no guard 5237 // (interprocedural conditions notwithstanding). 5238 if (!L) return false; 5239 5240 // Starting at the loop predecessor, climb up the predecessor chain, as long 5241 // as there are predecessors that can be found that have unique successors 5242 // leading to the original header. 5243 for (std::pair<BasicBlock *, BasicBlock *> 5244 Pair(L->getLoopPredecessor(), L->getHeader()); 5245 Pair.first; 5246 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5247 5248 BranchInst *LoopEntryPredicate = 5249 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5250 if (!LoopEntryPredicate || 5251 LoopEntryPredicate->isUnconditional()) 5252 continue; 5253 5254 if (isImpliedCond(Pred, LHS, RHS, 5255 LoopEntryPredicate->getCondition(), 5256 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5257 return true; 5258 } 5259 5260 return false; 5261 } 5262 5263 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5264 /// and RHS is true whenever the given Cond value evaluates to true. 5265 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 5266 const SCEV *LHS, const SCEV *RHS, 5267 Value *FoundCondValue, 5268 bool Inverse) { 5269 // Recursively handle And and Or conditions. 5270 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 5271 if (BO->getOpcode() == Instruction::And) { 5272 if (!Inverse) 5273 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5274 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5275 } else if (BO->getOpcode() == Instruction::Or) { 5276 if (Inverse) 5277 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5278 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5279 } 5280 } 5281 5282 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 5283 if (!ICI) return false; 5284 5285 // Bail if the ICmp's operands' types are wider than the needed type 5286 // before attempting to call getSCEV on them. This avoids infinite 5287 // recursion, since the analysis of widening casts can require loop 5288 // exit condition information for overflow checking, which would 5289 // lead back here. 5290 if (getTypeSizeInBits(LHS->getType()) < 5291 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5292 return false; 5293 5294 // Now that we found a conditional branch that dominates the loop, check to 5295 // see if it is the comparison we are looking for. 5296 ICmpInst::Predicate FoundPred; 5297 if (Inverse) 5298 FoundPred = ICI->getInversePredicate(); 5299 else 5300 FoundPred = ICI->getPredicate(); 5301 5302 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5303 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5304 5305 // Balance the types. The case where FoundLHS' type is wider than 5306 // LHS' type is checked for above. 5307 if (getTypeSizeInBits(LHS->getType()) > 5308 getTypeSizeInBits(FoundLHS->getType())) { 5309 if (CmpInst::isSigned(Pred)) { 5310 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5311 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5312 } else { 5313 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5314 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5315 } 5316 } 5317 5318 // Canonicalize the query to match the way instcombine will have 5319 // canonicalized the comparison. 5320 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5321 if (LHS == RHS) 5322 return CmpInst::isTrueWhenEqual(Pred); 5323 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5324 if (FoundLHS == FoundRHS) 5325 return CmpInst::isFalseWhenEqual(Pred); 5326 5327 // Check to see if we can make the LHS or RHS match. 5328 if (LHS == FoundRHS || RHS == FoundLHS) { 5329 if (isa<SCEVConstant>(RHS)) { 5330 std::swap(FoundLHS, FoundRHS); 5331 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5332 } else { 5333 std::swap(LHS, RHS); 5334 Pred = ICmpInst::getSwappedPredicate(Pred); 5335 } 5336 } 5337 5338 // Check whether the found predicate is the same as the desired predicate. 5339 if (FoundPred == Pred) 5340 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5341 5342 // Check whether swapping the found predicate makes it the same as the 5343 // desired predicate. 5344 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5345 if (isa<SCEVConstant>(RHS)) 5346 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5347 else 5348 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5349 RHS, LHS, FoundLHS, FoundRHS); 5350 } 5351 5352 // Check whether the actual condition is beyond sufficient. 5353 if (FoundPred == ICmpInst::ICMP_EQ) 5354 if (ICmpInst::isTrueWhenEqual(Pred)) 5355 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5356 return true; 5357 if (Pred == ICmpInst::ICMP_NE) 5358 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5359 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5360 return true; 5361 5362 // Otherwise assume the worst. 5363 return false; 5364 } 5365 5366 /// isImpliedCondOperands - Test whether the condition described by Pred, 5367 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5368 /// and FoundRHS is true. 5369 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5370 const SCEV *LHS, const SCEV *RHS, 5371 const SCEV *FoundLHS, 5372 const SCEV *FoundRHS) { 5373 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5374 FoundLHS, FoundRHS) || 5375 // ~x < ~y --> x > y 5376 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5377 getNotSCEV(FoundRHS), 5378 getNotSCEV(FoundLHS)); 5379 } 5380 5381 /// isImpliedCondOperandsHelper - Test whether the condition described by 5382 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5383 /// FoundLHS, and FoundRHS is true. 5384 bool 5385 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5386 const SCEV *LHS, const SCEV *RHS, 5387 const SCEV *FoundLHS, 5388 const SCEV *FoundRHS) { 5389 switch (Pred) { 5390 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5391 case ICmpInst::ICMP_EQ: 5392 case ICmpInst::ICMP_NE: 5393 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5394 return true; 5395 break; 5396 case ICmpInst::ICMP_SLT: 5397 case ICmpInst::ICMP_SLE: 5398 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5399 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5400 return true; 5401 break; 5402 case ICmpInst::ICMP_SGT: 5403 case ICmpInst::ICMP_SGE: 5404 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5405 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5406 return true; 5407 break; 5408 case ICmpInst::ICMP_ULT: 5409 case ICmpInst::ICMP_ULE: 5410 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5411 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5412 return true; 5413 break; 5414 case ICmpInst::ICMP_UGT: 5415 case ICmpInst::ICMP_UGE: 5416 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5417 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5418 return true; 5419 break; 5420 } 5421 5422 return false; 5423 } 5424 5425 /// getBECount - Subtract the end and start values and divide by the step, 5426 /// rounding up, to get the number of times the backedge is executed. Return 5427 /// CouldNotCompute if an intermediate computation overflows. 5428 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5429 const SCEV *End, 5430 const SCEV *Step, 5431 bool NoWrap) { 5432 assert(!isKnownNegative(Step) && 5433 "This code doesn't handle negative strides yet!"); 5434 5435 const Type *Ty = Start->getType(); 5436 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5437 const SCEV *Diff = getMinusSCEV(End, Start); 5438 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5439 5440 // Add an adjustment to the difference between End and Start so that 5441 // the division will effectively round up. 5442 const SCEV *Add = getAddExpr(Diff, RoundUp); 5443 5444 if (!NoWrap) { 5445 // Check Add for unsigned overflow. 5446 // TODO: More sophisticated things could be done here. 5447 const Type *WideTy = IntegerType::get(getContext(), 5448 getTypeSizeInBits(Ty) + 1); 5449 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5450 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5451 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5452 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5453 return getCouldNotCompute(); 5454 } 5455 5456 return getUDivExpr(Add, Step); 5457 } 5458 5459 /// HowManyLessThans - Return the number of times a backedge containing the 5460 /// specified less-than comparison will execute. If not computable, return 5461 /// CouldNotCompute. 5462 ScalarEvolution::BackedgeTakenInfo 5463 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5464 const Loop *L, bool isSigned) { 5465 // Only handle: "ADDREC < LoopInvariant". 5466 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); 5467 5468 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5469 if (!AddRec || AddRec->getLoop() != L) 5470 return getCouldNotCompute(); 5471 5472 // Check to see if we have a flag which makes analysis easy. 5473 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() : 5474 AddRec->hasNoUnsignedWrap(); 5475 5476 if (AddRec->isAffine()) { 5477 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5478 const SCEV *Step = AddRec->getStepRecurrence(*this); 5479 5480 if (Step->isZero()) 5481 return getCouldNotCompute(); 5482 if (Step->isOne()) { 5483 // With unit stride, the iteration never steps past the limit value. 5484 } else if (isKnownPositive(Step)) { 5485 // Test whether a positive iteration can step past the limit 5486 // value and past the maximum value for its type in a single step. 5487 // Note that it's not sufficient to check NoWrap here, because even 5488 // though the value after a wrap is undefined, it's not undefined 5489 // behavior, so if wrap does occur, the loop could either terminate or 5490 // loop infinitely, but in either case, the loop is guaranteed to 5491 // iterate at least until the iteration where the wrapping occurs. 5492 const SCEV *One = getConstant(Step->getType(), 1); 5493 if (isSigned) { 5494 APInt Max = APInt::getSignedMaxValue(BitWidth); 5495 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5496 .slt(getSignedRange(RHS).getSignedMax())) 5497 return getCouldNotCompute(); 5498 } else { 5499 APInt Max = APInt::getMaxValue(BitWidth); 5500 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5501 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5502 return getCouldNotCompute(); 5503 } 5504 } else 5505 // TODO: Handle negative strides here and below. 5506 return getCouldNotCompute(); 5507 5508 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5509 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5510 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5511 // treat m-n as signed nor unsigned due to overflow possibility. 5512 5513 // First, we get the value of the LHS in the first iteration: n 5514 const SCEV *Start = AddRec->getOperand(0); 5515 5516 // Determine the minimum constant start value. 5517 const SCEV *MinStart = getConstant(isSigned ? 5518 getSignedRange(Start).getSignedMin() : 5519 getUnsignedRange(Start).getUnsignedMin()); 5520 5521 // If we know that the condition is true in order to enter the loop, 5522 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5523 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5524 // the division must round up. 5525 const SCEV *End = RHS; 5526 if (!isLoopEntryGuardedByCond(L, 5527 isSigned ? ICmpInst::ICMP_SLT : 5528 ICmpInst::ICMP_ULT, 5529 getMinusSCEV(Start, Step), RHS)) 5530 End = isSigned ? getSMaxExpr(RHS, Start) 5531 : getUMaxExpr(RHS, Start); 5532 5533 // Determine the maximum constant end value. 5534 const SCEV *MaxEnd = getConstant(isSigned ? 5535 getSignedRange(End).getSignedMax() : 5536 getUnsignedRange(End).getUnsignedMax()); 5537 5538 // If MaxEnd is within a step of the maximum integer value in its type, 5539 // adjust it down to the minimum value which would produce the same effect. 5540 // This allows the subsequent ceiling division of (N+(step-1))/step to 5541 // compute the correct value. 5542 const SCEV *StepMinusOne = getMinusSCEV(Step, 5543 getConstant(Step->getType(), 1)); 5544 MaxEnd = isSigned ? 5545 getSMinExpr(MaxEnd, 5546 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5547 StepMinusOne)) : 5548 getUMinExpr(MaxEnd, 5549 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5550 StepMinusOne)); 5551 5552 // Finally, we subtract these two values and divide, rounding up, to get 5553 // the number of times the backedge is executed. 5554 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5555 5556 // The maximum backedge count is similar, except using the minimum start 5557 // value and the maximum end value. 5558 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap); 5559 5560 return BackedgeTakenInfo(BECount, MaxBECount); 5561 } 5562 5563 return getCouldNotCompute(); 5564 } 5565 5566 /// getNumIterationsInRange - Return the number of iterations of this loop that 5567 /// produce values in the specified constant range. Another way of looking at 5568 /// this is that it returns the first iteration number where the value is not in 5569 /// the condition, thus computing the exit count. If the iteration count can't 5570 /// be computed, an instance of SCEVCouldNotCompute is returned. 5571 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5572 ScalarEvolution &SE) const { 5573 if (Range.isFullSet()) // Infinite loop. 5574 return SE.getCouldNotCompute(); 5575 5576 // If the start is a non-zero constant, shift the range to simplify things. 5577 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5578 if (!SC->getValue()->isZero()) { 5579 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5580 Operands[0] = SE.getConstant(SC->getType(), 0); 5581 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 5582 if (const SCEVAddRecExpr *ShiftedAddRec = 5583 dyn_cast<SCEVAddRecExpr>(Shifted)) 5584 return ShiftedAddRec->getNumIterationsInRange( 5585 Range.subtract(SC->getValue()->getValue()), SE); 5586 // This is strange and shouldn't happen. 5587 return SE.getCouldNotCompute(); 5588 } 5589 5590 // The only time we can solve this is when we have all constant indices. 5591 // Otherwise, we cannot determine the overflow conditions. 5592 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 5593 if (!isa<SCEVConstant>(getOperand(i))) 5594 return SE.getCouldNotCompute(); 5595 5596 5597 // Okay at this point we know that all elements of the chrec are constants and 5598 // that the start element is zero. 5599 5600 // First check to see if the range contains zero. If not, the first 5601 // iteration exits. 5602 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 5603 if (!Range.contains(APInt(BitWidth, 0))) 5604 return SE.getConstant(getType(), 0); 5605 5606 if (isAffine()) { 5607 // If this is an affine expression then we have this situation: 5608 // Solve {0,+,A} in Range === Ax in Range 5609 5610 // We know that zero is in the range. If A is positive then we know that 5611 // the upper value of the range must be the first possible exit value. 5612 // If A is negative then the lower of the range is the last possible loop 5613 // value. Also note that we already checked for a full range. 5614 APInt One(BitWidth,1); 5615 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 5616 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 5617 5618 // The exit value should be (End+A)/A. 5619 APInt ExitVal = (End + A).udiv(A); 5620 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 5621 5622 // Evaluate at the exit value. If we really did fall out of the valid 5623 // range, then we computed our trip count, otherwise wrap around or other 5624 // things must have happened. 5625 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 5626 if (Range.contains(Val->getValue())) 5627 return SE.getCouldNotCompute(); // Something strange happened 5628 5629 // Ensure that the previous value is in the range. This is a sanity check. 5630 assert(Range.contains( 5631 EvaluateConstantChrecAtConstant(this, 5632 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 5633 "Linear scev computation is off in a bad way!"); 5634 return SE.getConstant(ExitValue); 5635 } else if (isQuadratic()) { 5636 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 5637 // quadratic equation to solve it. To do this, we must frame our problem in 5638 // terms of figuring out when zero is crossed, instead of when 5639 // Range.getUpper() is crossed. 5640 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 5641 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 5642 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 5643 5644 // Next, solve the constructed addrec 5645 std::pair<const SCEV *,const SCEV *> Roots = 5646 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 5647 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5648 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5649 if (R1) { 5650 // Pick the smallest positive root value. 5651 if (ConstantInt *CB = 5652 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 5653 R1->getValue(), R2->getValue()))) { 5654 if (CB->getZExtValue() == false) 5655 std::swap(R1, R2); // R1 is the minimum root now. 5656 5657 // Make sure the root is not off by one. The returned iteration should 5658 // not be in the range, but the previous one should be. When solving 5659 // for "X*X < 5", for example, we should not return a root of 2. 5660 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5661 R1->getValue(), 5662 SE); 5663 if (Range.contains(R1Val->getValue())) { 5664 // The next iteration must be out of the range... 5665 ConstantInt *NextVal = 5666 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5667 5668 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5669 if (!Range.contains(R1Val->getValue())) 5670 return SE.getConstant(NextVal); 5671 return SE.getCouldNotCompute(); // Something strange happened 5672 } 5673 5674 // If R1 was not in the range, then it is a good return value. Make 5675 // sure that R1-1 WAS in the range though, just in case. 5676 ConstantInt *NextVal = 5677 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5678 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5679 if (Range.contains(R1Val->getValue())) 5680 return R1; 5681 return SE.getCouldNotCompute(); // Something strange happened 5682 } 5683 } 5684 } 5685 5686 return SE.getCouldNotCompute(); 5687 } 5688 5689 5690 5691 //===----------------------------------------------------------------------===// 5692 // SCEVCallbackVH Class Implementation 5693 //===----------------------------------------------------------------------===// 5694 5695 void ScalarEvolution::SCEVCallbackVH::deleted() { 5696 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5697 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5698 SE->ConstantEvolutionLoopExitValue.erase(PN); 5699 SE->Scalars.erase(getValPtr()); 5700 // this now dangles! 5701 } 5702 5703 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 5704 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5705 5706 // Forget all the expressions associated with users of the old value, 5707 // so that future queries will recompute the expressions using the new 5708 // value. 5709 Value *Old = getValPtr(); 5710 SmallVector<User *, 16> Worklist; 5711 SmallPtrSet<User *, 8> Visited; 5712 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5713 UI != UE; ++UI) 5714 Worklist.push_back(*UI); 5715 while (!Worklist.empty()) { 5716 User *U = Worklist.pop_back_val(); 5717 // Deleting the Old value will cause this to dangle. Postpone 5718 // that until everything else is done. 5719 if (U == Old) 5720 continue; 5721 if (!Visited.insert(U)) 5722 continue; 5723 if (PHINode *PN = dyn_cast<PHINode>(U)) 5724 SE->ConstantEvolutionLoopExitValue.erase(PN); 5725 SE->Scalars.erase(U); 5726 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5727 UI != UE; ++UI) 5728 Worklist.push_back(*UI); 5729 } 5730 // Delete the Old value. 5731 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5732 SE->ConstantEvolutionLoopExitValue.erase(PN); 5733 SE->Scalars.erase(Old); 5734 // this now dangles! 5735 } 5736 5737 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5738 : CallbackVH(V), SE(se) {} 5739 5740 //===----------------------------------------------------------------------===// 5741 // ScalarEvolution Class Implementation 5742 //===----------------------------------------------------------------------===// 5743 5744 ScalarEvolution::ScalarEvolution() 5745 : FunctionPass(ID), FirstUnknown(0) { 5746 } 5747 5748 bool ScalarEvolution::runOnFunction(Function &F) { 5749 this->F = &F; 5750 LI = &getAnalysis<LoopInfo>(); 5751 TD = getAnalysisIfAvailable<TargetData>(); 5752 DT = &getAnalysis<DominatorTree>(); 5753 return false; 5754 } 5755 5756 void ScalarEvolution::releaseMemory() { 5757 // Iterate through all the SCEVUnknown instances and call their 5758 // destructors, so that they release their references to their values. 5759 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 5760 U->~SCEVUnknown(); 5761 FirstUnknown = 0; 5762 5763 Scalars.clear(); 5764 BackedgeTakenCounts.clear(); 5765 ConstantEvolutionLoopExitValue.clear(); 5766 ValuesAtScopes.clear(); 5767 UniqueSCEVs.clear(); 5768 SCEVAllocator.Reset(); 5769 } 5770 5771 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5772 AU.setPreservesAll(); 5773 AU.addRequiredTransitive<LoopInfo>(); 5774 AU.addRequiredTransitive<DominatorTree>(); 5775 } 5776 5777 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5778 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5779 } 5780 5781 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5782 const Loop *L) { 5783 // Print all inner loops first 5784 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5785 PrintLoopInfo(OS, SE, *I); 5786 5787 OS << "Loop "; 5788 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5789 OS << ": "; 5790 5791 SmallVector<BasicBlock *, 8> ExitBlocks; 5792 L->getExitBlocks(ExitBlocks); 5793 if (ExitBlocks.size() != 1) 5794 OS << "<multiple exits> "; 5795 5796 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5797 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5798 } else { 5799 OS << "Unpredictable backedge-taken count. "; 5800 } 5801 5802 OS << "\n" 5803 "Loop "; 5804 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5805 OS << ": "; 5806 5807 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5808 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5809 } else { 5810 OS << "Unpredictable max backedge-taken count. "; 5811 } 5812 5813 OS << "\n"; 5814 } 5815 5816 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 5817 // ScalarEvolution's implementation of the print method is to print 5818 // out SCEV values of all instructions that are interesting. Doing 5819 // this potentially causes it to create new SCEV objects though, 5820 // which technically conflicts with the const qualifier. This isn't 5821 // observable from outside the class though, so casting away the 5822 // const isn't dangerous. 5823 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 5824 5825 OS << "Classifying expressions for: "; 5826 WriteAsOperand(OS, F, /*PrintType=*/false); 5827 OS << "\n"; 5828 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 5829 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 5830 OS << *I << '\n'; 5831 OS << " --> "; 5832 const SCEV *SV = SE.getSCEV(&*I); 5833 SV->print(OS); 5834 5835 const Loop *L = LI->getLoopFor((*I).getParent()); 5836 5837 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 5838 if (AtUse != SV) { 5839 OS << " --> "; 5840 AtUse->print(OS); 5841 } 5842 5843 if (L) { 5844 OS << "\t\t" "Exits: "; 5845 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 5846 if (!ExitValue->isLoopInvariant(L)) { 5847 OS << "<<Unknown>>"; 5848 } else { 5849 OS << *ExitValue; 5850 } 5851 } 5852 5853 OS << "\n"; 5854 } 5855 5856 OS << "Determining loop execution counts for: "; 5857 WriteAsOperand(OS, F, /*PrintType=*/false); 5858 OS << "\n"; 5859 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 5860 PrintLoopInfo(OS, &SE, *I); 5861 } 5862 5863