1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/InstructionSimplify.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/Assembly/Writer.h" 76 #include "llvm/Target/TargetData.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/ConstantRange.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GetElementPtrTypeIterator.h" 82 #include "llvm/Support/InstIterator.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/ADT/Statistic.h" 86 #include "llvm/ADT/STLExtras.h" 87 #include "llvm/ADT/SmallPtrSet.h" 88 #include <algorithm> 89 using namespace llvm; 90 91 STATISTIC(NumArrayLenItCounts, 92 "Number of trip counts computed with array length"); 93 STATISTIC(NumTripCountsComputed, 94 "Number of loops with predictable loop counts"); 95 STATISTIC(NumTripCountsNotComputed, 96 "Number of loops without predictable loop counts"); 97 STATISTIC(NumBruteForceTripCountsComputed, 98 "Number of loops with trip counts computed by force"); 99 100 static cl::opt<unsigned> 101 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 102 cl::desc("Maximum number of iterations SCEV will " 103 "symbolically execute a constant " 104 "derived loop"), 105 cl::init(100)); 106 107 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 108 "Scalar Evolution Analysis", false, true) 109 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 110 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 111 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 112 "Scalar Evolution Analysis", false, true) 113 char ScalarEvolution::ID = 0; 114 115 //===----------------------------------------------------------------------===// 116 // SCEV class definitions 117 //===----------------------------------------------------------------------===// 118 119 //===----------------------------------------------------------------------===// 120 // Implementation of the SCEV class. 121 // 122 123 void SCEV::dump() const { 124 print(dbgs()); 125 dbgs() << '\n'; 126 } 127 128 void SCEV::print(raw_ostream &OS) const { 129 switch (getSCEVType()) { 130 case scConstant: 131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false); 132 return; 133 case scTruncate: { 134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 135 const SCEV *Op = Trunc->getOperand(); 136 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 137 << *Trunc->getType() << ")"; 138 return; 139 } 140 case scZeroExtend: { 141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 142 const SCEV *Op = ZExt->getOperand(); 143 OS << "(zext " << *Op->getType() << " " << *Op << " to " 144 << *ZExt->getType() << ")"; 145 return; 146 } 147 case scSignExtend: { 148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 149 const SCEV *Op = SExt->getOperand(); 150 OS << "(sext " << *Op->getType() << " " << *Op << " to " 151 << *SExt->getType() << ")"; 152 return; 153 } 154 case scAddRecExpr: { 155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 156 OS << "{" << *AR->getOperand(0); 157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 158 OS << ",+," << *AR->getOperand(i); 159 OS << "}<"; 160 if (AR->getNoWrapFlags(FlagNUW)) 161 OS << "nuw><"; 162 if (AR->getNoWrapFlags(FlagNSW)) 163 OS << "nsw><"; 164 if (AR->getNoWrapFlags(FlagNW) && 165 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 166 OS << "nw><"; 167 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false); 168 OS << ">"; 169 return; 170 } 171 case scAddExpr: 172 case scMulExpr: 173 case scUMaxExpr: 174 case scSMaxExpr: { 175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 176 const char *OpStr = 0; 177 switch (NAry->getSCEVType()) { 178 case scAddExpr: OpStr = " + "; break; 179 case scMulExpr: OpStr = " * "; break; 180 case scUMaxExpr: OpStr = " umax "; break; 181 case scSMaxExpr: OpStr = " smax "; break; 182 } 183 OS << "("; 184 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 185 I != E; ++I) { 186 OS << **I; 187 if (llvm::next(I) != E) 188 OS << OpStr; 189 } 190 OS << ")"; 191 return; 192 } 193 case scUDivExpr: { 194 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 195 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 196 return; 197 } 198 case scUnknown: { 199 const SCEVUnknown *U = cast<SCEVUnknown>(this); 200 const Type *AllocTy; 201 if (U->isSizeOf(AllocTy)) { 202 OS << "sizeof(" << *AllocTy << ")"; 203 return; 204 } 205 if (U->isAlignOf(AllocTy)) { 206 OS << "alignof(" << *AllocTy << ")"; 207 return; 208 } 209 210 const Type *CTy; 211 Constant *FieldNo; 212 if (U->isOffsetOf(CTy, FieldNo)) { 213 OS << "offsetof(" << *CTy << ", "; 214 WriteAsOperand(OS, FieldNo, false); 215 OS << ")"; 216 return; 217 } 218 219 // Otherwise just print it normally. 220 WriteAsOperand(OS, U->getValue(), false); 221 return; 222 } 223 case scCouldNotCompute: 224 OS << "***COULDNOTCOMPUTE***"; 225 return; 226 default: break; 227 } 228 llvm_unreachable("Unknown SCEV kind!"); 229 } 230 231 const Type *SCEV::getType() const { 232 switch (getSCEVType()) { 233 case scConstant: 234 return cast<SCEVConstant>(this)->getType(); 235 case scTruncate: 236 case scZeroExtend: 237 case scSignExtend: 238 return cast<SCEVCastExpr>(this)->getType(); 239 case scAddRecExpr: 240 case scMulExpr: 241 case scUMaxExpr: 242 case scSMaxExpr: 243 return cast<SCEVNAryExpr>(this)->getType(); 244 case scAddExpr: 245 return cast<SCEVAddExpr>(this)->getType(); 246 case scUDivExpr: 247 return cast<SCEVUDivExpr>(this)->getType(); 248 case scUnknown: 249 return cast<SCEVUnknown>(this)->getType(); 250 case scCouldNotCompute: 251 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 252 return 0; 253 default: break; 254 } 255 llvm_unreachable("Unknown SCEV kind!"); 256 return 0; 257 } 258 259 bool SCEV::isZero() const { 260 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 261 return SC->getValue()->isZero(); 262 return false; 263 } 264 265 bool SCEV::isOne() const { 266 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 267 return SC->getValue()->isOne(); 268 return false; 269 } 270 271 bool SCEV::isAllOnesValue() const { 272 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 273 return SC->getValue()->isAllOnesValue(); 274 return false; 275 } 276 277 SCEVCouldNotCompute::SCEVCouldNotCompute() : 278 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 279 280 bool SCEVCouldNotCompute::classof(const SCEV *S) { 281 return S->getSCEVType() == scCouldNotCompute; 282 } 283 284 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 285 FoldingSetNodeID ID; 286 ID.AddInteger(scConstant); 287 ID.AddPointer(V); 288 void *IP = 0; 289 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 290 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 291 UniqueSCEVs.InsertNode(S, IP); 292 return S; 293 } 294 295 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 296 return getConstant(ConstantInt::get(getContext(), Val)); 297 } 298 299 const SCEV * 300 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 301 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 302 return getConstant(ConstantInt::get(ITy, V, isSigned)); 303 } 304 305 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 306 unsigned SCEVTy, const SCEV *op, const Type *ty) 307 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 308 309 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 310 const SCEV *op, const Type *ty) 311 : SCEVCastExpr(ID, scTruncate, op, ty) { 312 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 313 (Ty->isIntegerTy() || Ty->isPointerTy()) && 314 "Cannot truncate non-integer value!"); 315 } 316 317 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 318 const SCEV *op, const Type *ty) 319 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 320 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 321 (Ty->isIntegerTy() || Ty->isPointerTy()) && 322 "Cannot zero extend non-integer value!"); 323 } 324 325 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 326 const SCEV *op, const Type *ty) 327 : SCEVCastExpr(ID, scSignExtend, op, ty) { 328 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 329 (Ty->isIntegerTy() || Ty->isPointerTy()) && 330 "Cannot sign extend non-integer value!"); 331 } 332 333 void SCEVUnknown::deleted() { 334 // Clear this SCEVUnknown from various maps. 335 SE->forgetMemoizedResults(this); 336 337 // Remove this SCEVUnknown from the uniquing map. 338 SE->UniqueSCEVs.RemoveNode(this); 339 340 // Release the value. 341 setValPtr(0); 342 } 343 344 void SCEVUnknown::allUsesReplacedWith(Value *New) { 345 // Clear this SCEVUnknown from various maps. 346 SE->forgetMemoizedResults(this); 347 348 // Remove this SCEVUnknown from the uniquing map. 349 SE->UniqueSCEVs.RemoveNode(this); 350 351 // Update this SCEVUnknown to point to the new value. This is needed 352 // because there may still be outstanding SCEVs which still point to 353 // this SCEVUnknown. 354 setValPtr(New); 355 } 356 357 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { 358 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 359 if (VCE->getOpcode() == Instruction::PtrToInt) 360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 361 if (CE->getOpcode() == Instruction::GetElementPtr && 362 CE->getOperand(0)->isNullValue() && 363 CE->getNumOperands() == 2) 364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 365 if (CI->isOne()) { 366 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 367 ->getElementType(); 368 return true; 369 } 370 371 return false; 372 } 373 374 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { 375 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 376 if (VCE->getOpcode() == Instruction::PtrToInt) 377 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 378 if (CE->getOpcode() == Instruction::GetElementPtr && 379 CE->getOperand(0)->isNullValue()) { 380 const Type *Ty = 381 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 382 if (const StructType *STy = dyn_cast<StructType>(Ty)) 383 if (!STy->isPacked() && 384 CE->getNumOperands() == 3 && 385 CE->getOperand(1)->isNullValue()) { 386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 387 if (CI->isOne() && 388 STy->getNumElements() == 2 && 389 STy->getElementType(0)->isIntegerTy(1)) { 390 AllocTy = STy->getElementType(1); 391 return true; 392 } 393 } 394 } 395 396 return false; 397 } 398 399 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const { 400 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 401 if (VCE->getOpcode() == Instruction::PtrToInt) 402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 403 if (CE->getOpcode() == Instruction::GetElementPtr && 404 CE->getNumOperands() == 3 && 405 CE->getOperand(0)->isNullValue() && 406 CE->getOperand(1)->isNullValue()) { 407 const Type *Ty = 408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 409 // Ignore vector types here so that ScalarEvolutionExpander doesn't 410 // emit getelementptrs that index into vectors. 411 if (Ty->isStructTy() || Ty->isArrayTy()) { 412 CTy = Ty; 413 FieldNo = CE->getOperand(2); 414 return true; 415 } 416 } 417 418 return false; 419 } 420 421 //===----------------------------------------------------------------------===// 422 // SCEV Utilities 423 //===----------------------------------------------------------------------===// 424 425 namespace { 426 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 427 /// than the complexity of the RHS. This comparator is used to canonicalize 428 /// expressions. 429 class SCEVComplexityCompare { 430 const LoopInfo *const LI; 431 public: 432 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 433 434 // Return true or false if LHS is less than, or at least RHS, respectively. 435 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 436 return compare(LHS, RHS) < 0; 437 } 438 439 // Return negative, zero, or positive, if LHS is less than, equal to, or 440 // greater than RHS, respectively. A three-way result allows recursive 441 // comparisons to be more efficient. 442 int compare(const SCEV *LHS, const SCEV *RHS) const { 443 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 444 if (LHS == RHS) 445 return 0; 446 447 // Primarily, sort the SCEVs by their getSCEVType(). 448 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 449 if (LType != RType) 450 return (int)LType - (int)RType; 451 452 // Aside from the getSCEVType() ordering, the particular ordering 453 // isn't very important except that it's beneficial to be consistent, 454 // so that (a + b) and (b + a) don't end up as different expressions. 455 switch (LType) { 456 case scUnknown: { 457 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 458 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 459 460 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 461 // not as complete as it could be. 462 const Value *LV = LU->getValue(), *RV = RU->getValue(); 463 464 // Order pointer values after integer values. This helps SCEVExpander 465 // form GEPs. 466 bool LIsPointer = LV->getType()->isPointerTy(), 467 RIsPointer = RV->getType()->isPointerTy(); 468 if (LIsPointer != RIsPointer) 469 return (int)LIsPointer - (int)RIsPointer; 470 471 // Compare getValueID values. 472 unsigned LID = LV->getValueID(), 473 RID = RV->getValueID(); 474 if (LID != RID) 475 return (int)LID - (int)RID; 476 477 // Sort arguments by their position. 478 if (const Argument *LA = dyn_cast<Argument>(LV)) { 479 const Argument *RA = cast<Argument>(RV); 480 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 481 return (int)LArgNo - (int)RArgNo; 482 } 483 484 // For instructions, compare their loop depth, and their operand 485 // count. This is pretty loose. 486 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 487 const Instruction *RInst = cast<Instruction>(RV); 488 489 // Compare loop depths. 490 const BasicBlock *LParent = LInst->getParent(), 491 *RParent = RInst->getParent(); 492 if (LParent != RParent) { 493 unsigned LDepth = LI->getLoopDepth(LParent), 494 RDepth = LI->getLoopDepth(RParent); 495 if (LDepth != RDepth) 496 return (int)LDepth - (int)RDepth; 497 } 498 499 // Compare the number of operands. 500 unsigned LNumOps = LInst->getNumOperands(), 501 RNumOps = RInst->getNumOperands(); 502 return (int)LNumOps - (int)RNumOps; 503 } 504 505 return 0; 506 } 507 508 case scConstant: { 509 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 510 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 511 512 // Compare constant values. 513 const APInt &LA = LC->getValue()->getValue(); 514 const APInt &RA = RC->getValue()->getValue(); 515 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 516 if (LBitWidth != RBitWidth) 517 return (int)LBitWidth - (int)RBitWidth; 518 return LA.ult(RA) ? -1 : 1; 519 } 520 521 case scAddRecExpr: { 522 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 523 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 524 525 // Compare addrec loop depths. 526 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 527 if (LLoop != RLoop) { 528 unsigned LDepth = LLoop->getLoopDepth(), 529 RDepth = RLoop->getLoopDepth(); 530 if (LDepth != RDepth) 531 return (int)LDepth - (int)RDepth; 532 } 533 534 // Addrec complexity grows with operand count. 535 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 536 if (LNumOps != RNumOps) 537 return (int)LNumOps - (int)RNumOps; 538 539 // Lexicographically compare. 540 for (unsigned i = 0; i != LNumOps; ++i) { 541 long X = compare(LA->getOperand(i), RA->getOperand(i)); 542 if (X != 0) 543 return X; 544 } 545 546 return 0; 547 } 548 549 case scAddExpr: 550 case scMulExpr: 551 case scSMaxExpr: 552 case scUMaxExpr: { 553 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 554 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 555 556 // Lexicographically compare n-ary expressions. 557 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 558 for (unsigned i = 0; i != LNumOps; ++i) { 559 if (i >= RNumOps) 560 return 1; 561 long X = compare(LC->getOperand(i), RC->getOperand(i)); 562 if (X != 0) 563 return X; 564 } 565 return (int)LNumOps - (int)RNumOps; 566 } 567 568 case scUDivExpr: { 569 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 570 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 571 572 // Lexicographically compare udiv expressions. 573 long X = compare(LC->getLHS(), RC->getLHS()); 574 if (X != 0) 575 return X; 576 return compare(LC->getRHS(), RC->getRHS()); 577 } 578 579 case scTruncate: 580 case scZeroExtend: 581 case scSignExtend: { 582 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 583 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 584 585 // Compare cast expressions by operand. 586 return compare(LC->getOperand(), RC->getOperand()); 587 } 588 589 default: 590 break; 591 } 592 593 llvm_unreachable("Unknown SCEV kind!"); 594 return 0; 595 } 596 }; 597 } 598 599 /// GroupByComplexity - Given a list of SCEV objects, order them by their 600 /// complexity, and group objects of the same complexity together by value. 601 /// When this routine is finished, we know that any duplicates in the vector are 602 /// consecutive and that complexity is monotonically increasing. 603 /// 604 /// Note that we go take special precautions to ensure that we get deterministic 605 /// results from this routine. In other words, we don't want the results of 606 /// this to depend on where the addresses of various SCEV objects happened to 607 /// land in memory. 608 /// 609 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 610 LoopInfo *LI) { 611 if (Ops.size() < 2) return; // Noop 612 if (Ops.size() == 2) { 613 // This is the common case, which also happens to be trivially simple. 614 // Special case it. 615 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 616 if (SCEVComplexityCompare(LI)(RHS, LHS)) 617 std::swap(LHS, RHS); 618 return; 619 } 620 621 // Do the rough sort by complexity. 622 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 623 624 // Now that we are sorted by complexity, group elements of the same 625 // complexity. Note that this is, at worst, N^2, but the vector is likely to 626 // be extremely short in practice. Note that we take this approach because we 627 // do not want to depend on the addresses of the objects we are grouping. 628 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 629 const SCEV *S = Ops[i]; 630 unsigned Complexity = S->getSCEVType(); 631 632 // If there are any objects of the same complexity and same value as this 633 // one, group them. 634 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 635 if (Ops[j] == S) { // Found a duplicate. 636 // Move it to immediately after i'th element. 637 std::swap(Ops[i+1], Ops[j]); 638 ++i; // no need to rescan it. 639 if (i == e-2) return; // Done! 640 } 641 } 642 } 643 } 644 645 646 647 //===----------------------------------------------------------------------===// 648 // Simple SCEV method implementations 649 //===----------------------------------------------------------------------===// 650 651 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 652 /// Assume, K > 0. 653 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 654 ScalarEvolution &SE, 655 const Type* ResultTy) { 656 // Handle the simplest case efficiently. 657 if (K == 1) 658 return SE.getTruncateOrZeroExtend(It, ResultTy); 659 660 // We are using the following formula for BC(It, K): 661 // 662 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 663 // 664 // Suppose, W is the bitwidth of the return value. We must be prepared for 665 // overflow. Hence, we must assure that the result of our computation is 666 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 667 // safe in modular arithmetic. 668 // 669 // However, this code doesn't use exactly that formula; the formula it uses 670 // is something like the following, where T is the number of factors of 2 in 671 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 672 // exponentiation: 673 // 674 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 675 // 676 // This formula is trivially equivalent to the previous formula. However, 677 // this formula can be implemented much more efficiently. The trick is that 678 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 679 // arithmetic. To do exact division in modular arithmetic, all we have 680 // to do is multiply by the inverse. Therefore, this step can be done at 681 // width W. 682 // 683 // The next issue is how to safely do the division by 2^T. The way this 684 // is done is by doing the multiplication step at a width of at least W + T 685 // bits. This way, the bottom W+T bits of the product are accurate. Then, 686 // when we perform the division by 2^T (which is equivalent to a right shift 687 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 688 // truncated out after the division by 2^T. 689 // 690 // In comparison to just directly using the first formula, this technique 691 // is much more efficient; using the first formula requires W * K bits, 692 // but this formula less than W + K bits. Also, the first formula requires 693 // a division step, whereas this formula only requires multiplies and shifts. 694 // 695 // It doesn't matter whether the subtraction step is done in the calculation 696 // width or the input iteration count's width; if the subtraction overflows, 697 // the result must be zero anyway. We prefer here to do it in the width of 698 // the induction variable because it helps a lot for certain cases; CodeGen 699 // isn't smart enough to ignore the overflow, which leads to much less 700 // efficient code if the width of the subtraction is wider than the native 701 // register width. 702 // 703 // (It's possible to not widen at all by pulling out factors of 2 before 704 // the multiplication; for example, K=2 can be calculated as 705 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 706 // extra arithmetic, so it's not an obvious win, and it gets 707 // much more complicated for K > 3.) 708 709 // Protection from insane SCEVs; this bound is conservative, 710 // but it probably doesn't matter. 711 if (K > 1000) 712 return SE.getCouldNotCompute(); 713 714 unsigned W = SE.getTypeSizeInBits(ResultTy); 715 716 // Calculate K! / 2^T and T; we divide out the factors of two before 717 // multiplying for calculating K! / 2^T to avoid overflow. 718 // Other overflow doesn't matter because we only care about the bottom 719 // W bits of the result. 720 APInt OddFactorial(W, 1); 721 unsigned T = 1; 722 for (unsigned i = 3; i <= K; ++i) { 723 APInt Mult(W, i); 724 unsigned TwoFactors = Mult.countTrailingZeros(); 725 T += TwoFactors; 726 Mult = Mult.lshr(TwoFactors); 727 OddFactorial *= Mult; 728 } 729 730 // We need at least W + T bits for the multiplication step 731 unsigned CalculationBits = W + T; 732 733 // Calculate 2^T, at width T+W. 734 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 735 736 // Calculate the multiplicative inverse of K! / 2^T; 737 // this multiplication factor will perform the exact division by 738 // K! / 2^T. 739 APInt Mod = APInt::getSignedMinValue(W+1); 740 APInt MultiplyFactor = OddFactorial.zext(W+1); 741 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 742 MultiplyFactor = MultiplyFactor.trunc(W); 743 744 // Calculate the product, at width T+W 745 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 746 CalculationBits); 747 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 748 for (unsigned i = 1; i != K; ++i) { 749 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 750 Dividend = SE.getMulExpr(Dividend, 751 SE.getTruncateOrZeroExtend(S, CalculationTy)); 752 } 753 754 // Divide by 2^T 755 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 756 757 // Truncate the result, and divide by K! / 2^T. 758 759 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 760 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 761 } 762 763 /// evaluateAtIteration - Return the value of this chain of recurrences at 764 /// the specified iteration number. We can evaluate this recurrence by 765 /// multiplying each element in the chain by the binomial coefficient 766 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 767 /// 768 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 769 /// 770 /// where BC(It, k) stands for binomial coefficient. 771 /// 772 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 773 ScalarEvolution &SE) const { 774 const SCEV *Result = getStart(); 775 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 776 // The computation is correct in the face of overflow provided that the 777 // multiplication is performed _after_ the evaluation of the binomial 778 // coefficient. 779 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 780 if (isa<SCEVCouldNotCompute>(Coeff)) 781 return Coeff; 782 783 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 784 } 785 return Result; 786 } 787 788 //===----------------------------------------------------------------------===// 789 // SCEV Expression folder implementations 790 //===----------------------------------------------------------------------===// 791 792 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 793 const Type *Ty) { 794 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 795 "This is not a truncating conversion!"); 796 assert(isSCEVable(Ty) && 797 "This is not a conversion to a SCEVable type!"); 798 Ty = getEffectiveSCEVType(Ty); 799 800 FoldingSetNodeID ID; 801 ID.AddInteger(scTruncate); 802 ID.AddPointer(Op); 803 ID.AddPointer(Ty); 804 void *IP = 0; 805 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 806 807 // Fold if the operand is constant. 808 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 809 return getConstant( 810 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 811 getEffectiveSCEVType(Ty)))); 812 813 // trunc(trunc(x)) --> trunc(x) 814 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 815 return getTruncateExpr(ST->getOperand(), Ty); 816 817 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 818 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 819 return getTruncateOrSignExtend(SS->getOperand(), Ty); 820 821 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 822 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 823 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 824 825 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 826 // eliminate all the truncates. 827 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 828 SmallVector<const SCEV *, 4> Operands; 829 bool hasTrunc = false; 830 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 831 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 832 hasTrunc = isa<SCEVTruncateExpr>(S); 833 Operands.push_back(S); 834 } 835 if (!hasTrunc) 836 return getAddExpr(Operands); 837 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 838 } 839 840 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 841 // eliminate all the truncates. 842 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 843 SmallVector<const SCEV *, 4> Operands; 844 bool hasTrunc = false; 845 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 846 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 847 hasTrunc = isa<SCEVTruncateExpr>(S); 848 Operands.push_back(S); 849 } 850 if (!hasTrunc) 851 return getMulExpr(Operands); 852 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 853 } 854 855 // If the input value is a chrec scev, truncate the chrec's operands. 856 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 857 SmallVector<const SCEV *, 4> Operands; 858 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 859 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 860 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 861 } 862 863 // As a special case, fold trunc(undef) to undef. We don't want to 864 // know too much about SCEVUnknowns, but this special case is handy 865 // and harmless. 866 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 867 if (isa<UndefValue>(U->getValue())) 868 return getSCEV(UndefValue::get(Ty)); 869 870 // The cast wasn't folded; create an explicit cast node. We can reuse 871 // the existing insert position since if we get here, we won't have 872 // made any changes which would invalidate it. 873 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 874 Op, Ty); 875 UniqueSCEVs.InsertNode(S, IP); 876 return S; 877 } 878 879 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 880 const Type *Ty) { 881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 882 "This is not an extending conversion!"); 883 assert(isSCEVable(Ty) && 884 "This is not a conversion to a SCEVable type!"); 885 Ty = getEffectiveSCEVType(Ty); 886 887 // Fold if the operand is constant. 888 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 889 return getConstant( 890 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 891 getEffectiveSCEVType(Ty)))); 892 893 // zext(zext(x)) --> zext(x) 894 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 895 return getZeroExtendExpr(SZ->getOperand(), Ty); 896 897 // Before doing any expensive analysis, check to see if we've already 898 // computed a SCEV for this Op and Ty. 899 FoldingSetNodeID ID; 900 ID.AddInteger(scZeroExtend); 901 ID.AddPointer(Op); 902 ID.AddPointer(Ty); 903 void *IP = 0; 904 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 905 906 // zext(trunc(x)) --> zext(x) or x or trunc(x) 907 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 908 // It's possible the bits taken off by the truncate were all zero bits. If 909 // so, we should be able to simplify this further. 910 const SCEV *X = ST->getOperand(); 911 ConstantRange CR = getUnsignedRange(X); 912 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 913 unsigned NewBits = getTypeSizeInBits(Ty); 914 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 915 CR.zextOrTrunc(NewBits))) 916 return getTruncateOrZeroExtend(X, Ty); 917 } 918 919 // If the input value is a chrec scev, and we can prove that the value 920 // did not overflow the old, smaller, value, we can zero extend all of the 921 // operands (often constants). This allows analysis of something like 922 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 923 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 924 if (AR->isAffine()) { 925 const SCEV *Start = AR->getStart(); 926 const SCEV *Step = AR->getStepRecurrence(*this); 927 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 928 const Loop *L = AR->getLoop(); 929 930 // If we have special knowledge that this addrec won't overflow, 931 // we don't need to do any further analysis. 932 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 933 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 934 getZeroExtendExpr(Step, Ty), 935 L, AR->getNoWrapFlags()); 936 937 // Check whether the backedge-taken count is SCEVCouldNotCompute. 938 // Note that this serves two purposes: It filters out loops that are 939 // simply not analyzable, and it covers the case where this code is 940 // being called from within backedge-taken count analysis, such that 941 // attempting to ask for the backedge-taken count would likely result 942 // in infinite recursion. In the later case, the analysis code will 943 // cope with a conservative value, and it will take care to purge 944 // that value once it has finished. 945 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 946 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 947 // Manually compute the final value for AR, checking for 948 // overflow. 949 950 // Check whether the backedge-taken count can be losslessly casted to 951 // the addrec's type. The count is always unsigned. 952 const SCEV *CastedMaxBECount = 953 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 954 const SCEV *RecastedMaxBECount = 955 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 956 if (MaxBECount == RecastedMaxBECount) { 957 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 958 // Check whether Start+Step*MaxBECount has no unsigned overflow. 959 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 960 const SCEV *Add = getAddExpr(Start, ZMul); 961 const SCEV *OperandExtendedAdd = 962 getAddExpr(getZeroExtendExpr(Start, WideTy), 963 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 964 getZeroExtendExpr(Step, WideTy))); 965 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) { 966 // Cache knowledge of AR NUW, which is propagated to this AddRec. 967 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 968 // Return the expression with the addrec on the outside. 969 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 970 getZeroExtendExpr(Step, Ty), 971 L, AR->getNoWrapFlags()); 972 } 973 // Similar to above, only this time treat the step value as signed. 974 // This covers loops that count down. 975 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 976 Add = getAddExpr(Start, SMul); 977 OperandExtendedAdd = 978 getAddExpr(getZeroExtendExpr(Start, WideTy), 979 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 980 getSignExtendExpr(Step, WideTy))); 981 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) { 982 // Cache knowledge of AR NW, which is propagated to this AddRec. 983 // Negative step causes unsigned wrap, but it still can't self-wrap. 984 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 985 // Return the expression with the addrec on the outside. 986 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 987 getSignExtendExpr(Step, Ty), 988 L, AR->getNoWrapFlags()); 989 } 990 } 991 992 // If the backedge is guarded by a comparison with the pre-inc value 993 // the addrec is safe. Also, if the entry is guarded by a comparison 994 // with the start value and the backedge is guarded by a comparison 995 // with the post-inc value, the addrec is safe. 996 if (isKnownPositive(Step)) { 997 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 998 getUnsignedRange(Step).getUnsignedMax()); 999 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1000 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1001 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1002 AR->getPostIncExpr(*this), N))) { 1003 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1004 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1005 // Return the expression with the addrec on the outside. 1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1007 getZeroExtendExpr(Step, Ty), 1008 L, AR->getNoWrapFlags()); 1009 } 1010 } else if (isKnownNegative(Step)) { 1011 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1012 getSignedRange(Step).getSignedMin()); 1013 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1014 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1015 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1016 AR->getPostIncExpr(*this), N))) { 1017 // Cache knowledge of AR NW, which is propagated to this AddRec. 1018 // Negative step causes unsigned wrap, but it still can't self-wrap. 1019 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1020 // Return the expression with the addrec on the outside. 1021 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1022 getSignExtendExpr(Step, Ty), 1023 L, AR->getNoWrapFlags()); 1024 } 1025 } 1026 } 1027 } 1028 1029 // The cast wasn't folded; create an explicit cast node. 1030 // Recompute the insert position, as it may have been invalidated. 1031 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1032 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1033 Op, Ty); 1034 UniqueSCEVs.InsertNode(S, IP); 1035 return S; 1036 } 1037 1038 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1039 const Type *Ty) { 1040 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1041 "This is not an extending conversion!"); 1042 assert(isSCEVable(Ty) && 1043 "This is not a conversion to a SCEVable type!"); 1044 Ty = getEffectiveSCEVType(Ty); 1045 1046 // Fold if the operand is constant. 1047 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1048 return getConstant( 1049 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 1050 getEffectiveSCEVType(Ty)))); 1051 1052 // sext(sext(x)) --> sext(x) 1053 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1054 return getSignExtendExpr(SS->getOperand(), Ty); 1055 1056 // sext(zext(x)) --> zext(x) 1057 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1058 return getZeroExtendExpr(SZ->getOperand(), Ty); 1059 1060 // Before doing any expensive analysis, check to see if we've already 1061 // computed a SCEV for this Op and Ty. 1062 FoldingSetNodeID ID; 1063 ID.AddInteger(scSignExtend); 1064 ID.AddPointer(Op); 1065 ID.AddPointer(Ty); 1066 void *IP = 0; 1067 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1068 1069 // If the input value is provably positive, build a zext instead. 1070 if (isKnownNonNegative(Op)) 1071 return getZeroExtendExpr(Op, Ty); 1072 1073 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1074 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1075 // It's possible the bits taken off by the truncate were all sign bits. If 1076 // so, we should be able to simplify this further. 1077 const SCEV *X = ST->getOperand(); 1078 ConstantRange CR = getSignedRange(X); 1079 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1080 unsigned NewBits = getTypeSizeInBits(Ty); 1081 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1082 CR.sextOrTrunc(NewBits))) 1083 return getTruncateOrSignExtend(X, Ty); 1084 } 1085 1086 // If the input value is a chrec scev, and we can prove that the value 1087 // did not overflow the old, smaller, value, we can sign extend all of the 1088 // operands (often constants). This allows analysis of something like 1089 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1090 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1091 if (AR->isAffine()) { 1092 const SCEV *Start = AR->getStart(); 1093 const SCEV *Step = AR->getStepRecurrence(*this); 1094 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1095 const Loop *L = AR->getLoop(); 1096 1097 // If we have special knowledge that this addrec won't overflow, 1098 // we don't need to do any further analysis. 1099 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1100 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1101 getSignExtendExpr(Step, Ty), 1102 L, SCEV::FlagNSW); 1103 1104 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1105 // Note that this serves two purposes: It filters out loops that are 1106 // simply not analyzable, and it covers the case where this code is 1107 // being called from within backedge-taken count analysis, such that 1108 // attempting to ask for the backedge-taken count would likely result 1109 // in infinite recursion. In the later case, the analysis code will 1110 // cope with a conservative value, and it will take care to purge 1111 // that value once it has finished. 1112 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1113 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1114 // Manually compute the final value for AR, checking for 1115 // overflow. 1116 1117 // Check whether the backedge-taken count can be losslessly casted to 1118 // the addrec's type. The count is always unsigned. 1119 const SCEV *CastedMaxBECount = 1120 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1121 const SCEV *RecastedMaxBECount = 1122 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1123 if (MaxBECount == RecastedMaxBECount) { 1124 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1125 // Check whether Start+Step*MaxBECount has no signed overflow. 1126 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1127 const SCEV *Add = getAddExpr(Start, SMul); 1128 const SCEV *OperandExtendedAdd = 1129 getAddExpr(getSignExtendExpr(Start, WideTy), 1130 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1131 getSignExtendExpr(Step, WideTy))); 1132 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) { 1133 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1134 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1135 // Return the expression with the addrec on the outside. 1136 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1137 getSignExtendExpr(Step, Ty), 1138 L, AR->getNoWrapFlags()); 1139 } 1140 // Similar to above, only this time treat the step value as unsigned. 1141 // This covers loops that count up with an unsigned step. 1142 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1143 Add = getAddExpr(Start, UMul); 1144 OperandExtendedAdd = 1145 getAddExpr(getSignExtendExpr(Start, WideTy), 1146 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1147 getZeroExtendExpr(Step, WideTy))); 1148 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) { 1149 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1150 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1151 // Return the expression with the addrec on the outside. 1152 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1153 getZeroExtendExpr(Step, Ty), 1154 L, AR->getNoWrapFlags()); 1155 } 1156 } 1157 1158 // If the backedge is guarded by a comparison with the pre-inc value 1159 // the addrec is safe. Also, if the entry is guarded by a comparison 1160 // with the start value and the backedge is guarded by a comparison 1161 // with the post-inc value, the addrec is safe. 1162 if (isKnownPositive(Step)) { 1163 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1164 getSignedRange(Step).getSignedMax()); 1165 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1166 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1167 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1168 AR->getPostIncExpr(*this), N))) { 1169 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1170 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1171 // Return the expression with the addrec on the outside. 1172 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1173 getSignExtendExpr(Step, Ty), 1174 L, AR->getNoWrapFlags()); 1175 } 1176 } else if (isKnownNegative(Step)) { 1177 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1178 getSignedRange(Step).getSignedMin()); 1179 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1180 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1181 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1182 AR->getPostIncExpr(*this), N))) { 1183 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1184 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1185 // Return the expression with the addrec on the outside. 1186 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1187 getSignExtendExpr(Step, Ty), 1188 L, AR->getNoWrapFlags()); 1189 } 1190 } 1191 } 1192 } 1193 1194 // The cast wasn't folded; create an explicit cast node. 1195 // Recompute the insert position, as it may have been invalidated. 1196 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1197 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1198 Op, Ty); 1199 UniqueSCEVs.InsertNode(S, IP); 1200 return S; 1201 } 1202 1203 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1204 /// unspecified bits out to the given type. 1205 /// 1206 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1207 const Type *Ty) { 1208 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1209 "This is not an extending conversion!"); 1210 assert(isSCEVable(Ty) && 1211 "This is not a conversion to a SCEVable type!"); 1212 Ty = getEffectiveSCEVType(Ty); 1213 1214 // Sign-extend negative constants. 1215 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1216 if (SC->getValue()->getValue().isNegative()) 1217 return getSignExtendExpr(Op, Ty); 1218 1219 // Peel off a truncate cast. 1220 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1221 const SCEV *NewOp = T->getOperand(); 1222 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1223 return getAnyExtendExpr(NewOp, Ty); 1224 return getTruncateOrNoop(NewOp, Ty); 1225 } 1226 1227 // Next try a zext cast. If the cast is folded, use it. 1228 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1229 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1230 return ZExt; 1231 1232 // Next try a sext cast. If the cast is folded, use it. 1233 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1234 if (!isa<SCEVSignExtendExpr>(SExt)) 1235 return SExt; 1236 1237 // Force the cast to be folded into the operands of an addrec. 1238 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1239 SmallVector<const SCEV *, 4> Ops; 1240 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1241 I != E; ++I) 1242 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1243 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1244 } 1245 1246 // As a special case, fold anyext(undef) to undef. We don't want to 1247 // know too much about SCEVUnknowns, but this special case is handy 1248 // and harmless. 1249 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1250 if (isa<UndefValue>(U->getValue())) 1251 return getSCEV(UndefValue::get(Ty)); 1252 1253 // If the expression is obviously signed, use the sext cast value. 1254 if (isa<SCEVSMaxExpr>(Op)) 1255 return SExt; 1256 1257 // Absent any other information, use the zext cast value. 1258 return ZExt; 1259 } 1260 1261 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1262 /// a list of operands to be added under the given scale, update the given 1263 /// map. This is a helper function for getAddRecExpr. As an example of 1264 /// what it does, given a sequence of operands that would form an add 1265 /// expression like this: 1266 /// 1267 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1268 /// 1269 /// where A and B are constants, update the map with these values: 1270 /// 1271 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1272 /// 1273 /// and add 13 + A*B*29 to AccumulatedConstant. 1274 /// This will allow getAddRecExpr to produce this: 1275 /// 1276 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1277 /// 1278 /// This form often exposes folding opportunities that are hidden in 1279 /// the original operand list. 1280 /// 1281 /// Return true iff it appears that any interesting folding opportunities 1282 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1283 /// the common case where no interesting opportunities are present, and 1284 /// is also used as a check to avoid infinite recursion. 1285 /// 1286 static bool 1287 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1288 SmallVector<const SCEV *, 8> &NewOps, 1289 APInt &AccumulatedConstant, 1290 const SCEV *const *Ops, size_t NumOperands, 1291 const APInt &Scale, 1292 ScalarEvolution &SE) { 1293 bool Interesting = false; 1294 1295 // Iterate over the add operands. They are sorted, with constants first. 1296 unsigned i = 0; 1297 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1298 ++i; 1299 // Pull a buried constant out to the outside. 1300 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1301 Interesting = true; 1302 AccumulatedConstant += Scale * C->getValue()->getValue(); 1303 } 1304 1305 // Next comes everything else. We're especially interested in multiplies 1306 // here, but they're in the middle, so just visit the rest with one loop. 1307 for (; i != NumOperands; ++i) { 1308 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1309 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1310 APInt NewScale = 1311 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1312 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1313 // A multiplication of a constant with another add; recurse. 1314 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1315 Interesting |= 1316 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1317 Add->op_begin(), Add->getNumOperands(), 1318 NewScale, SE); 1319 } else { 1320 // A multiplication of a constant with some other value. Update 1321 // the map. 1322 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1323 const SCEV *Key = SE.getMulExpr(MulOps); 1324 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1325 M.insert(std::make_pair(Key, NewScale)); 1326 if (Pair.second) { 1327 NewOps.push_back(Pair.first->first); 1328 } else { 1329 Pair.first->second += NewScale; 1330 // The map already had an entry for this value, which may indicate 1331 // a folding opportunity. 1332 Interesting = true; 1333 } 1334 } 1335 } else { 1336 // An ordinary operand. Update the map. 1337 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1338 M.insert(std::make_pair(Ops[i], Scale)); 1339 if (Pair.second) { 1340 NewOps.push_back(Pair.first->first); 1341 } else { 1342 Pair.first->second += Scale; 1343 // The map already had an entry for this value, which may indicate 1344 // a folding opportunity. 1345 Interesting = true; 1346 } 1347 } 1348 } 1349 1350 return Interesting; 1351 } 1352 1353 namespace { 1354 struct APIntCompare { 1355 bool operator()(const APInt &LHS, const APInt &RHS) const { 1356 return LHS.ult(RHS); 1357 } 1358 }; 1359 } 1360 1361 /// getAddExpr - Get a canonical add expression, or something simpler if 1362 /// possible. 1363 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1364 SCEV::NoWrapFlags Flags) { 1365 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1366 "only nuw or nsw allowed"); 1367 assert(!Ops.empty() && "Cannot get empty add!"); 1368 if (Ops.size() == 1) return Ops[0]; 1369 #ifndef NDEBUG 1370 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1371 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1372 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1373 "SCEVAddExpr operand types don't match!"); 1374 #endif 1375 1376 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1377 // And vice-versa. 1378 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1379 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1380 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1381 bool All = true; 1382 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1383 E = Ops.end(); I != E; ++I) 1384 if (!isKnownNonNegative(*I)) { 1385 All = false; 1386 break; 1387 } 1388 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1389 } 1390 1391 // Sort by complexity, this groups all similar expression types together. 1392 GroupByComplexity(Ops, LI); 1393 1394 // If there are any constants, fold them together. 1395 unsigned Idx = 0; 1396 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1397 ++Idx; 1398 assert(Idx < Ops.size()); 1399 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1400 // We found two constants, fold them together! 1401 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1402 RHSC->getValue()->getValue()); 1403 if (Ops.size() == 2) return Ops[0]; 1404 Ops.erase(Ops.begin()+1); // Erase the folded element 1405 LHSC = cast<SCEVConstant>(Ops[0]); 1406 } 1407 1408 // If we are left with a constant zero being added, strip it off. 1409 if (LHSC->getValue()->isZero()) { 1410 Ops.erase(Ops.begin()); 1411 --Idx; 1412 } 1413 1414 if (Ops.size() == 1) return Ops[0]; 1415 } 1416 1417 // Okay, check to see if the same value occurs in the operand list more than 1418 // once. If so, merge them together into an multiply expression. Since we 1419 // sorted the list, these values are required to be adjacent. 1420 const Type *Ty = Ops[0]->getType(); 1421 bool FoundMatch = false; 1422 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1423 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1424 // Scan ahead to count how many equal operands there are. 1425 unsigned Count = 2; 1426 while (i+Count != e && Ops[i+Count] == Ops[i]) 1427 ++Count; 1428 // Merge the values into a multiply. 1429 const SCEV *Scale = getConstant(Ty, Count); 1430 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1431 if (Ops.size() == Count) 1432 return Mul; 1433 Ops[i] = Mul; 1434 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1435 --i; e -= Count - 1; 1436 FoundMatch = true; 1437 } 1438 if (FoundMatch) 1439 return getAddExpr(Ops, Flags); 1440 1441 // Check for truncates. If all the operands are truncated from the same 1442 // type, see if factoring out the truncate would permit the result to be 1443 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1444 // if the contents of the resulting outer trunc fold to something simple. 1445 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1446 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1447 const Type *DstType = Trunc->getType(); 1448 const Type *SrcType = Trunc->getOperand()->getType(); 1449 SmallVector<const SCEV *, 8> LargeOps; 1450 bool Ok = true; 1451 // Check all the operands to see if they can be represented in the 1452 // source type of the truncate. 1453 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1454 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1455 if (T->getOperand()->getType() != SrcType) { 1456 Ok = false; 1457 break; 1458 } 1459 LargeOps.push_back(T->getOperand()); 1460 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1461 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1462 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1463 SmallVector<const SCEV *, 8> LargeMulOps; 1464 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1465 if (const SCEVTruncateExpr *T = 1466 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1467 if (T->getOperand()->getType() != SrcType) { 1468 Ok = false; 1469 break; 1470 } 1471 LargeMulOps.push_back(T->getOperand()); 1472 } else if (const SCEVConstant *C = 1473 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1474 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1475 } else { 1476 Ok = false; 1477 break; 1478 } 1479 } 1480 if (Ok) 1481 LargeOps.push_back(getMulExpr(LargeMulOps)); 1482 } else { 1483 Ok = false; 1484 break; 1485 } 1486 } 1487 if (Ok) { 1488 // Evaluate the expression in the larger type. 1489 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1490 // If it folds to something simple, use it. Otherwise, don't. 1491 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1492 return getTruncateExpr(Fold, DstType); 1493 } 1494 } 1495 1496 // Skip past any other cast SCEVs. 1497 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1498 ++Idx; 1499 1500 // If there are add operands they would be next. 1501 if (Idx < Ops.size()) { 1502 bool DeletedAdd = false; 1503 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1504 // If we have an add, expand the add operands onto the end of the operands 1505 // list. 1506 Ops.erase(Ops.begin()+Idx); 1507 Ops.append(Add->op_begin(), Add->op_end()); 1508 DeletedAdd = true; 1509 } 1510 1511 // If we deleted at least one add, we added operands to the end of the list, 1512 // and they are not necessarily sorted. Recurse to resort and resimplify 1513 // any operands we just acquired. 1514 if (DeletedAdd) 1515 return getAddExpr(Ops); 1516 } 1517 1518 // Skip over the add expression until we get to a multiply. 1519 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1520 ++Idx; 1521 1522 // Check to see if there are any folding opportunities present with 1523 // operands multiplied by constant values. 1524 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1525 uint64_t BitWidth = getTypeSizeInBits(Ty); 1526 DenseMap<const SCEV *, APInt> M; 1527 SmallVector<const SCEV *, 8> NewOps; 1528 APInt AccumulatedConstant(BitWidth, 0); 1529 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1530 Ops.data(), Ops.size(), 1531 APInt(BitWidth, 1), *this)) { 1532 // Some interesting folding opportunity is present, so its worthwhile to 1533 // re-generate the operands list. Group the operands by constant scale, 1534 // to avoid multiplying by the same constant scale multiple times. 1535 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1536 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(), 1537 E = NewOps.end(); I != E; ++I) 1538 MulOpLists[M.find(*I)->second].push_back(*I); 1539 // Re-generate the operands list. 1540 Ops.clear(); 1541 if (AccumulatedConstant != 0) 1542 Ops.push_back(getConstant(AccumulatedConstant)); 1543 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1544 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1545 if (I->first != 0) 1546 Ops.push_back(getMulExpr(getConstant(I->first), 1547 getAddExpr(I->second))); 1548 if (Ops.empty()) 1549 return getConstant(Ty, 0); 1550 if (Ops.size() == 1) 1551 return Ops[0]; 1552 return getAddExpr(Ops); 1553 } 1554 } 1555 1556 // If we are adding something to a multiply expression, make sure the 1557 // something is not already an operand of the multiply. If so, merge it into 1558 // the multiply. 1559 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1560 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1561 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1562 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1563 if (isa<SCEVConstant>(MulOpSCEV)) 1564 continue; 1565 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1566 if (MulOpSCEV == Ops[AddOp]) { 1567 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1568 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1569 if (Mul->getNumOperands() != 2) { 1570 // If the multiply has more than two operands, we must get the 1571 // Y*Z term. 1572 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1573 Mul->op_begin()+MulOp); 1574 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1575 InnerMul = getMulExpr(MulOps); 1576 } 1577 const SCEV *One = getConstant(Ty, 1); 1578 const SCEV *AddOne = getAddExpr(One, InnerMul); 1579 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1580 if (Ops.size() == 2) return OuterMul; 1581 if (AddOp < Idx) { 1582 Ops.erase(Ops.begin()+AddOp); 1583 Ops.erase(Ops.begin()+Idx-1); 1584 } else { 1585 Ops.erase(Ops.begin()+Idx); 1586 Ops.erase(Ops.begin()+AddOp-1); 1587 } 1588 Ops.push_back(OuterMul); 1589 return getAddExpr(Ops); 1590 } 1591 1592 // Check this multiply against other multiplies being added together. 1593 for (unsigned OtherMulIdx = Idx+1; 1594 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1595 ++OtherMulIdx) { 1596 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1597 // If MulOp occurs in OtherMul, we can fold the two multiplies 1598 // together. 1599 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1600 OMulOp != e; ++OMulOp) 1601 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1602 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1603 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1604 if (Mul->getNumOperands() != 2) { 1605 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1606 Mul->op_begin()+MulOp); 1607 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1608 InnerMul1 = getMulExpr(MulOps); 1609 } 1610 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1611 if (OtherMul->getNumOperands() != 2) { 1612 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1613 OtherMul->op_begin()+OMulOp); 1614 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1615 InnerMul2 = getMulExpr(MulOps); 1616 } 1617 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1618 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1619 if (Ops.size() == 2) return OuterMul; 1620 Ops.erase(Ops.begin()+Idx); 1621 Ops.erase(Ops.begin()+OtherMulIdx-1); 1622 Ops.push_back(OuterMul); 1623 return getAddExpr(Ops); 1624 } 1625 } 1626 } 1627 } 1628 1629 // If there are any add recurrences in the operands list, see if any other 1630 // added values are loop invariant. If so, we can fold them into the 1631 // recurrence. 1632 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1633 ++Idx; 1634 1635 // Scan over all recurrences, trying to fold loop invariants into them. 1636 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1637 // Scan all of the other operands to this add and add them to the vector if 1638 // they are loop invariant w.r.t. the recurrence. 1639 SmallVector<const SCEV *, 8> LIOps; 1640 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1641 const Loop *AddRecLoop = AddRec->getLoop(); 1642 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1643 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1644 LIOps.push_back(Ops[i]); 1645 Ops.erase(Ops.begin()+i); 1646 --i; --e; 1647 } 1648 1649 // If we found some loop invariants, fold them into the recurrence. 1650 if (!LIOps.empty()) { 1651 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1652 LIOps.push_back(AddRec->getStart()); 1653 1654 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1655 AddRec->op_end()); 1656 AddRecOps[0] = getAddExpr(LIOps); 1657 1658 // Build the new addrec. Propagate the NUW and NSW flags if both the 1659 // outer add and the inner addrec are guaranteed to have no overflow. 1660 // Always propagate NW. 1661 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1662 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1663 1664 // If all of the other operands were loop invariant, we are done. 1665 if (Ops.size() == 1) return NewRec; 1666 1667 // Otherwise, add the folded AddRec by the non-liv parts. 1668 for (unsigned i = 0;; ++i) 1669 if (Ops[i] == AddRec) { 1670 Ops[i] = NewRec; 1671 break; 1672 } 1673 return getAddExpr(Ops); 1674 } 1675 1676 // Okay, if there weren't any loop invariants to be folded, check to see if 1677 // there are multiple AddRec's with the same loop induction variable being 1678 // added together. If so, we can fold them. 1679 for (unsigned OtherIdx = Idx+1; 1680 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1681 ++OtherIdx) 1682 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1683 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1684 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1685 AddRec->op_end()); 1686 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1687 ++OtherIdx) 1688 if (const SCEVAddRecExpr *OtherAddRec = 1689 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1690 if (OtherAddRec->getLoop() == AddRecLoop) { 1691 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1692 i != e; ++i) { 1693 if (i >= AddRecOps.size()) { 1694 AddRecOps.append(OtherAddRec->op_begin()+i, 1695 OtherAddRec->op_end()); 1696 break; 1697 } 1698 AddRecOps[i] = getAddExpr(AddRecOps[i], 1699 OtherAddRec->getOperand(i)); 1700 } 1701 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1702 } 1703 // Step size has changed, so we cannot guarantee no self-wraparound. 1704 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1705 return getAddExpr(Ops); 1706 } 1707 1708 // Otherwise couldn't fold anything into this recurrence. Move onto the 1709 // next one. 1710 } 1711 1712 // Okay, it looks like we really DO need an add expr. Check to see if we 1713 // already have one, otherwise create a new one. 1714 FoldingSetNodeID ID; 1715 ID.AddInteger(scAddExpr); 1716 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1717 ID.AddPointer(Ops[i]); 1718 void *IP = 0; 1719 SCEVAddExpr *S = 1720 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1721 if (!S) { 1722 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1723 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1724 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1725 O, Ops.size()); 1726 UniqueSCEVs.InsertNode(S, IP); 1727 } 1728 S->setNoWrapFlags(Flags); 1729 return S; 1730 } 1731 1732 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1733 /// possible. 1734 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1735 SCEV::NoWrapFlags Flags) { 1736 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1737 "only nuw or nsw allowed"); 1738 assert(!Ops.empty() && "Cannot get empty mul!"); 1739 if (Ops.size() == 1) return Ops[0]; 1740 #ifndef NDEBUG 1741 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1742 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1743 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1744 "SCEVMulExpr operand types don't match!"); 1745 #endif 1746 1747 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1748 // And vice-versa. 1749 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1750 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1751 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1752 bool All = true; 1753 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1754 E = Ops.end(); I != E; ++I) 1755 if (!isKnownNonNegative(*I)) { 1756 All = false; 1757 break; 1758 } 1759 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1760 } 1761 1762 // Sort by complexity, this groups all similar expression types together. 1763 GroupByComplexity(Ops, LI); 1764 1765 // If there are any constants, fold them together. 1766 unsigned Idx = 0; 1767 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1768 1769 // C1*(C2+V) -> C1*C2 + C1*V 1770 if (Ops.size() == 2) 1771 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1772 if (Add->getNumOperands() == 2 && 1773 isa<SCEVConstant>(Add->getOperand(0))) 1774 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1775 getMulExpr(LHSC, Add->getOperand(1))); 1776 1777 ++Idx; 1778 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1779 // We found two constants, fold them together! 1780 ConstantInt *Fold = ConstantInt::get(getContext(), 1781 LHSC->getValue()->getValue() * 1782 RHSC->getValue()->getValue()); 1783 Ops[0] = getConstant(Fold); 1784 Ops.erase(Ops.begin()+1); // Erase the folded element 1785 if (Ops.size() == 1) return Ops[0]; 1786 LHSC = cast<SCEVConstant>(Ops[0]); 1787 } 1788 1789 // If we are left with a constant one being multiplied, strip it off. 1790 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1791 Ops.erase(Ops.begin()); 1792 --Idx; 1793 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1794 // If we have a multiply of zero, it will always be zero. 1795 return Ops[0]; 1796 } else if (Ops[0]->isAllOnesValue()) { 1797 // If we have a mul by -1 of an add, try distributing the -1 among the 1798 // add operands. 1799 if (Ops.size() == 2) { 1800 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1801 SmallVector<const SCEV *, 4> NewOps; 1802 bool AnyFolded = false; 1803 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1804 E = Add->op_end(); I != E; ++I) { 1805 const SCEV *Mul = getMulExpr(Ops[0], *I); 1806 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1807 NewOps.push_back(Mul); 1808 } 1809 if (AnyFolded) 1810 return getAddExpr(NewOps); 1811 } 1812 else if (const SCEVAddRecExpr * 1813 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1814 // Negation preserves a recurrence's no self-wrap property. 1815 SmallVector<const SCEV *, 4> Operands; 1816 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1817 E = AddRec->op_end(); I != E; ++I) { 1818 Operands.push_back(getMulExpr(Ops[0], *I)); 1819 } 1820 return getAddRecExpr(Operands, AddRec->getLoop(), 1821 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1822 } 1823 } 1824 } 1825 1826 if (Ops.size() == 1) 1827 return Ops[0]; 1828 } 1829 1830 // Skip over the add expression until we get to a multiply. 1831 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1832 ++Idx; 1833 1834 // If there are mul operands inline them all into this expression. 1835 if (Idx < Ops.size()) { 1836 bool DeletedMul = false; 1837 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1838 // If we have an mul, expand the mul operands onto the end of the operands 1839 // list. 1840 Ops.erase(Ops.begin()+Idx); 1841 Ops.append(Mul->op_begin(), Mul->op_end()); 1842 DeletedMul = true; 1843 } 1844 1845 // If we deleted at least one mul, we added operands to the end of the list, 1846 // and they are not necessarily sorted. Recurse to resort and resimplify 1847 // any operands we just acquired. 1848 if (DeletedMul) 1849 return getMulExpr(Ops); 1850 } 1851 1852 // If there are any add recurrences in the operands list, see if any other 1853 // added values are loop invariant. If so, we can fold them into the 1854 // recurrence. 1855 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1856 ++Idx; 1857 1858 // Scan over all recurrences, trying to fold loop invariants into them. 1859 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1860 // Scan all of the other operands to this mul and add them to the vector if 1861 // they are loop invariant w.r.t. the recurrence. 1862 SmallVector<const SCEV *, 8> LIOps; 1863 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1864 const Loop *AddRecLoop = AddRec->getLoop(); 1865 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1866 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1867 LIOps.push_back(Ops[i]); 1868 Ops.erase(Ops.begin()+i); 1869 --i; --e; 1870 } 1871 1872 // If we found some loop invariants, fold them into the recurrence. 1873 if (!LIOps.empty()) { 1874 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1875 SmallVector<const SCEV *, 4> NewOps; 1876 NewOps.reserve(AddRec->getNumOperands()); 1877 const SCEV *Scale = getMulExpr(LIOps); 1878 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1879 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1880 1881 // Build the new addrec. Propagate the NUW and NSW flags if both the 1882 // outer mul and the inner addrec are guaranteed to have no overflow. 1883 // 1884 // No self-wrap cannot be guaranteed after changing the step size, but 1885 // will be infered if either NUW or NSW is true. 1886 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 1887 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 1888 1889 // If all of the other operands were loop invariant, we are done. 1890 if (Ops.size() == 1) return NewRec; 1891 1892 // Otherwise, multiply the folded AddRec by the non-liv parts. 1893 for (unsigned i = 0;; ++i) 1894 if (Ops[i] == AddRec) { 1895 Ops[i] = NewRec; 1896 break; 1897 } 1898 return getMulExpr(Ops); 1899 } 1900 1901 // Okay, if there weren't any loop invariants to be folded, check to see if 1902 // there are multiple AddRec's with the same loop induction variable being 1903 // multiplied together. If so, we can fold them. 1904 for (unsigned OtherIdx = Idx+1; 1905 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1906 ++OtherIdx) 1907 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1908 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> --> 1909 // {A*C,+,F*D + G*B + B*D}<L> 1910 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1911 ++OtherIdx) 1912 if (const SCEVAddRecExpr *OtherAddRec = 1913 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1914 if (OtherAddRec->getLoop() == AddRecLoop) { 1915 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1916 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart()); 1917 const SCEV *B = F->getStepRecurrence(*this); 1918 const SCEV *D = G->getStepRecurrence(*this); 1919 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1920 getMulExpr(G, B), 1921 getMulExpr(B, D)); 1922 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1923 F->getLoop(), 1924 SCEV::FlagAnyWrap); 1925 if (Ops.size() == 2) return NewAddRec; 1926 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec); 1927 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1928 } 1929 return getMulExpr(Ops); 1930 } 1931 1932 // Otherwise couldn't fold anything into this recurrence. Move onto the 1933 // next one. 1934 } 1935 1936 // Okay, it looks like we really DO need an mul expr. Check to see if we 1937 // already have one, otherwise create a new one. 1938 FoldingSetNodeID ID; 1939 ID.AddInteger(scMulExpr); 1940 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1941 ID.AddPointer(Ops[i]); 1942 void *IP = 0; 1943 SCEVMulExpr *S = 1944 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1945 if (!S) { 1946 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1947 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1948 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 1949 O, Ops.size()); 1950 UniqueSCEVs.InsertNode(S, IP); 1951 } 1952 S->setNoWrapFlags(Flags); 1953 return S; 1954 } 1955 1956 /// getUDivExpr - Get a canonical unsigned division expression, or something 1957 /// simpler if possible. 1958 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1959 const SCEV *RHS) { 1960 assert(getEffectiveSCEVType(LHS->getType()) == 1961 getEffectiveSCEVType(RHS->getType()) && 1962 "SCEVUDivExpr operand types don't match!"); 1963 1964 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1965 if (RHSC->getValue()->equalsInt(1)) 1966 return LHS; // X udiv 1 --> x 1967 // If the denominator is zero, the result of the udiv is undefined. Don't 1968 // try to analyze it, because the resolution chosen here may differ from 1969 // the resolution chosen in other parts of the compiler. 1970 if (!RHSC->getValue()->isZero()) { 1971 // Determine if the division can be folded into the operands of 1972 // its operands. 1973 // TODO: Generalize this to non-constants by using known-bits information. 1974 const Type *Ty = LHS->getType(); 1975 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1976 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 1977 // For non-power-of-two values, effectively round the value up to the 1978 // nearest power of two. 1979 if (!RHSC->getValue()->getValue().isPowerOf2()) 1980 ++MaxShiftAmt; 1981 const IntegerType *ExtTy = 1982 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1983 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1984 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1985 if (const SCEVConstant *Step = 1986 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1987 if (!Step->getValue()->getValue() 1988 .urem(RHSC->getValue()->getValue()) && 1989 getZeroExtendExpr(AR, ExtTy) == 1990 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1991 getZeroExtendExpr(Step, ExtTy), 1992 AR->getLoop(), SCEV::FlagAnyWrap)) { 1993 SmallVector<const SCEV *, 4> Operands; 1994 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1995 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1996 return getAddRecExpr(Operands, AR->getLoop(), 1997 SCEV::FlagNW); 1998 } 1999 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2000 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2001 SmallVector<const SCEV *, 4> Operands; 2002 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2003 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2004 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2005 // Find an operand that's safely divisible. 2006 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2007 const SCEV *Op = M->getOperand(i); 2008 const SCEV *Div = getUDivExpr(Op, RHSC); 2009 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2010 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2011 M->op_end()); 2012 Operands[i] = Div; 2013 return getMulExpr(Operands); 2014 } 2015 } 2016 } 2017 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2018 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 2019 SmallVector<const SCEV *, 4> Operands; 2020 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2021 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2022 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2023 Operands.clear(); 2024 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2025 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2026 if (isa<SCEVUDivExpr>(Op) || 2027 getMulExpr(Op, RHS) != A->getOperand(i)) 2028 break; 2029 Operands.push_back(Op); 2030 } 2031 if (Operands.size() == A->getNumOperands()) 2032 return getAddExpr(Operands); 2033 } 2034 } 2035 2036 // Fold if both operands are constant. 2037 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2038 Constant *LHSCV = LHSC->getValue(); 2039 Constant *RHSCV = RHSC->getValue(); 2040 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2041 RHSCV))); 2042 } 2043 } 2044 } 2045 2046 FoldingSetNodeID ID; 2047 ID.AddInteger(scUDivExpr); 2048 ID.AddPointer(LHS); 2049 ID.AddPointer(RHS); 2050 void *IP = 0; 2051 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2052 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2053 LHS, RHS); 2054 UniqueSCEVs.InsertNode(S, IP); 2055 return S; 2056 } 2057 2058 2059 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2060 /// Simplify the expression as much as possible. 2061 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2062 const Loop *L, 2063 SCEV::NoWrapFlags Flags) { 2064 SmallVector<const SCEV *, 4> Operands; 2065 Operands.push_back(Start); 2066 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2067 if (StepChrec->getLoop() == L) { 2068 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2069 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2070 } 2071 2072 Operands.push_back(Step); 2073 return getAddRecExpr(Operands, L, Flags); 2074 } 2075 2076 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2077 /// Simplify the expression as much as possible. 2078 const SCEV * 2079 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2080 const Loop *L, SCEV::NoWrapFlags Flags) { 2081 if (Operands.size() == 1) return Operands[0]; 2082 #ifndef NDEBUG 2083 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2084 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2085 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2086 "SCEVAddRecExpr operand types don't match!"); 2087 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2088 assert(isLoopInvariant(Operands[i], L) && 2089 "SCEVAddRecExpr operand is not loop-invariant!"); 2090 #endif 2091 2092 if (Operands.back()->isZero()) { 2093 Operands.pop_back(); 2094 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2095 } 2096 2097 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2098 // use that information to infer NUW and NSW flags. However, computing a 2099 // BE count requires calling getAddRecExpr, so we may not yet have a 2100 // meaningful BE count at this point (and if we don't, we'd be stuck 2101 // with a SCEVCouldNotCompute as the cached BE count). 2102 2103 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2104 // And vice-versa. 2105 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2106 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2107 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2108 bool All = true; 2109 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2110 E = Operands.end(); I != E; ++I) 2111 if (!isKnownNonNegative(*I)) { 2112 All = false; 2113 break; 2114 } 2115 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2116 } 2117 2118 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2119 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2120 const Loop *NestedLoop = NestedAR->getLoop(); 2121 if (L->contains(NestedLoop) ? 2122 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2123 (!NestedLoop->contains(L) && 2124 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2125 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2126 NestedAR->op_end()); 2127 Operands[0] = NestedAR->getStart(); 2128 // AddRecs require their operands be loop-invariant with respect to their 2129 // loops. Don't perform this transformation if it would break this 2130 // requirement. 2131 bool AllInvariant = true; 2132 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2133 if (!isLoopInvariant(Operands[i], L)) { 2134 AllInvariant = false; 2135 break; 2136 } 2137 if (AllInvariant) { 2138 // Create a recurrence for the outer loop with the same step size. 2139 // 2140 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2141 // inner recurrence has the same property. 2142 SCEV::NoWrapFlags OuterFlags = 2143 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2144 2145 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2146 AllInvariant = true; 2147 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2148 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2149 AllInvariant = false; 2150 break; 2151 } 2152 if (AllInvariant) { 2153 // Ok, both add recurrences are valid after the transformation. 2154 // 2155 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2156 // the outer recurrence has the same property. 2157 SCEV::NoWrapFlags InnerFlags = 2158 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2159 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2160 } 2161 } 2162 // Reset Operands to its original state. 2163 Operands[0] = NestedAR; 2164 } 2165 } 2166 2167 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2168 // already have one, otherwise create a new one. 2169 FoldingSetNodeID ID; 2170 ID.AddInteger(scAddRecExpr); 2171 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2172 ID.AddPointer(Operands[i]); 2173 ID.AddPointer(L); 2174 void *IP = 0; 2175 SCEVAddRecExpr *S = 2176 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2177 if (!S) { 2178 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2179 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2180 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2181 O, Operands.size(), L); 2182 UniqueSCEVs.InsertNode(S, IP); 2183 } 2184 S->setNoWrapFlags(Flags); 2185 return S; 2186 } 2187 2188 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2189 const SCEV *RHS) { 2190 SmallVector<const SCEV *, 2> Ops; 2191 Ops.push_back(LHS); 2192 Ops.push_back(RHS); 2193 return getSMaxExpr(Ops); 2194 } 2195 2196 const SCEV * 2197 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2198 assert(!Ops.empty() && "Cannot get empty smax!"); 2199 if (Ops.size() == 1) return Ops[0]; 2200 #ifndef NDEBUG 2201 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2202 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2203 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2204 "SCEVSMaxExpr operand types don't match!"); 2205 #endif 2206 2207 // Sort by complexity, this groups all similar expression types together. 2208 GroupByComplexity(Ops, LI); 2209 2210 // If there are any constants, fold them together. 2211 unsigned Idx = 0; 2212 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2213 ++Idx; 2214 assert(Idx < Ops.size()); 2215 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2216 // We found two constants, fold them together! 2217 ConstantInt *Fold = ConstantInt::get(getContext(), 2218 APIntOps::smax(LHSC->getValue()->getValue(), 2219 RHSC->getValue()->getValue())); 2220 Ops[0] = getConstant(Fold); 2221 Ops.erase(Ops.begin()+1); // Erase the folded element 2222 if (Ops.size() == 1) return Ops[0]; 2223 LHSC = cast<SCEVConstant>(Ops[0]); 2224 } 2225 2226 // If we are left with a constant minimum-int, strip it off. 2227 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2228 Ops.erase(Ops.begin()); 2229 --Idx; 2230 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2231 // If we have an smax with a constant maximum-int, it will always be 2232 // maximum-int. 2233 return Ops[0]; 2234 } 2235 2236 if (Ops.size() == 1) return Ops[0]; 2237 } 2238 2239 // Find the first SMax 2240 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2241 ++Idx; 2242 2243 // Check to see if one of the operands is an SMax. If so, expand its operands 2244 // onto our operand list, and recurse to simplify. 2245 if (Idx < Ops.size()) { 2246 bool DeletedSMax = false; 2247 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2248 Ops.erase(Ops.begin()+Idx); 2249 Ops.append(SMax->op_begin(), SMax->op_end()); 2250 DeletedSMax = true; 2251 } 2252 2253 if (DeletedSMax) 2254 return getSMaxExpr(Ops); 2255 } 2256 2257 // Okay, check to see if the same value occurs in the operand list twice. If 2258 // so, delete one. Since we sorted the list, these values are required to 2259 // be adjacent. 2260 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2261 // X smax Y smax Y --> X smax Y 2262 // X smax Y --> X, if X is always greater than Y 2263 if (Ops[i] == Ops[i+1] || 2264 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2265 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2266 --i; --e; 2267 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2268 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2269 --i; --e; 2270 } 2271 2272 if (Ops.size() == 1) return Ops[0]; 2273 2274 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2275 2276 // Okay, it looks like we really DO need an smax expr. Check to see if we 2277 // already have one, otherwise create a new one. 2278 FoldingSetNodeID ID; 2279 ID.AddInteger(scSMaxExpr); 2280 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2281 ID.AddPointer(Ops[i]); 2282 void *IP = 0; 2283 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2284 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2285 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2286 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2287 O, Ops.size()); 2288 UniqueSCEVs.InsertNode(S, IP); 2289 return S; 2290 } 2291 2292 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2293 const SCEV *RHS) { 2294 SmallVector<const SCEV *, 2> Ops; 2295 Ops.push_back(LHS); 2296 Ops.push_back(RHS); 2297 return getUMaxExpr(Ops); 2298 } 2299 2300 const SCEV * 2301 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2302 assert(!Ops.empty() && "Cannot get empty umax!"); 2303 if (Ops.size() == 1) return Ops[0]; 2304 #ifndef NDEBUG 2305 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2306 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2307 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2308 "SCEVUMaxExpr operand types don't match!"); 2309 #endif 2310 2311 // Sort by complexity, this groups all similar expression types together. 2312 GroupByComplexity(Ops, LI); 2313 2314 // If there are any constants, fold them together. 2315 unsigned Idx = 0; 2316 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2317 ++Idx; 2318 assert(Idx < Ops.size()); 2319 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2320 // We found two constants, fold them together! 2321 ConstantInt *Fold = ConstantInt::get(getContext(), 2322 APIntOps::umax(LHSC->getValue()->getValue(), 2323 RHSC->getValue()->getValue())); 2324 Ops[0] = getConstant(Fold); 2325 Ops.erase(Ops.begin()+1); // Erase the folded element 2326 if (Ops.size() == 1) return Ops[0]; 2327 LHSC = cast<SCEVConstant>(Ops[0]); 2328 } 2329 2330 // If we are left with a constant minimum-int, strip it off. 2331 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2332 Ops.erase(Ops.begin()); 2333 --Idx; 2334 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2335 // If we have an umax with a constant maximum-int, it will always be 2336 // maximum-int. 2337 return Ops[0]; 2338 } 2339 2340 if (Ops.size() == 1) return Ops[0]; 2341 } 2342 2343 // Find the first UMax 2344 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2345 ++Idx; 2346 2347 // Check to see if one of the operands is a UMax. If so, expand its operands 2348 // onto our operand list, and recurse to simplify. 2349 if (Idx < Ops.size()) { 2350 bool DeletedUMax = false; 2351 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2352 Ops.erase(Ops.begin()+Idx); 2353 Ops.append(UMax->op_begin(), UMax->op_end()); 2354 DeletedUMax = true; 2355 } 2356 2357 if (DeletedUMax) 2358 return getUMaxExpr(Ops); 2359 } 2360 2361 // Okay, check to see if the same value occurs in the operand list twice. If 2362 // so, delete one. Since we sorted the list, these values are required to 2363 // be adjacent. 2364 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2365 // X umax Y umax Y --> X umax Y 2366 // X umax Y --> X, if X is always greater than Y 2367 if (Ops[i] == Ops[i+1] || 2368 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2369 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2370 --i; --e; 2371 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2372 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2373 --i; --e; 2374 } 2375 2376 if (Ops.size() == 1) return Ops[0]; 2377 2378 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2379 2380 // Okay, it looks like we really DO need a umax expr. Check to see if we 2381 // already have one, otherwise create a new one. 2382 FoldingSetNodeID ID; 2383 ID.AddInteger(scUMaxExpr); 2384 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2385 ID.AddPointer(Ops[i]); 2386 void *IP = 0; 2387 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2388 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2389 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2390 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2391 O, Ops.size()); 2392 UniqueSCEVs.InsertNode(S, IP); 2393 return S; 2394 } 2395 2396 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2397 const SCEV *RHS) { 2398 // ~smax(~x, ~y) == smin(x, y). 2399 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2400 } 2401 2402 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2403 const SCEV *RHS) { 2404 // ~umax(~x, ~y) == umin(x, y) 2405 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2406 } 2407 2408 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) { 2409 // If we have TargetData, we can bypass creating a target-independent 2410 // constant expression and then folding it back into a ConstantInt. 2411 // This is just a compile-time optimization. 2412 if (TD) 2413 return getConstant(TD->getIntPtrType(getContext()), 2414 TD->getTypeAllocSize(AllocTy)); 2415 2416 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2417 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2418 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2419 C = Folded; 2420 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2421 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2422 } 2423 2424 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) { 2425 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2426 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2427 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2428 C = Folded; 2429 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2430 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2431 } 2432 2433 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy, 2434 unsigned FieldNo) { 2435 // If we have TargetData, we can bypass creating a target-independent 2436 // constant expression and then folding it back into a ConstantInt. 2437 // This is just a compile-time optimization. 2438 if (TD) 2439 return getConstant(TD->getIntPtrType(getContext()), 2440 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2441 2442 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2443 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2444 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2445 C = Folded; 2446 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2447 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2448 } 2449 2450 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy, 2451 Constant *FieldNo) { 2452 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2453 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2454 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2455 C = Folded; 2456 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2457 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2458 } 2459 2460 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2461 // Don't attempt to do anything other than create a SCEVUnknown object 2462 // here. createSCEV only calls getUnknown after checking for all other 2463 // interesting possibilities, and any other code that calls getUnknown 2464 // is doing so in order to hide a value from SCEV canonicalization. 2465 2466 FoldingSetNodeID ID; 2467 ID.AddInteger(scUnknown); 2468 ID.AddPointer(V); 2469 void *IP = 0; 2470 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2471 assert(cast<SCEVUnknown>(S)->getValue() == V && 2472 "Stale SCEVUnknown in uniquing map!"); 2473 return S; 2474 } 2475 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2476 FirstUnknown); 2477 FirstUnknown = cast<SCEVUnknown>(S); 2478 UniqueSCEVs.InsertNode(S, IP); 2479 return S; 2480 } 2481 2482 //===----------------------------------------------------------------------===// 2483 // Basic SCEV Analysis and PHI Idiom Recognition Code 2484 // 2485 2486 /// isSCEVable - Test if values of the given type are analyzable within 2487 /// the SCEV framework. This primarily includes integer types, and it 2488 /// can optionally include pointer types if the ScalarEvolution class 2489 /// has access to target-specific information. 2490 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2491 // Integers and pointers are always SCEVable. 2492 return Ty->isIntegerTy() || Ty->isPointerTy(); 2493 } 2494 2495 /// getTypeSizeInBits - Return the size in bits of the specified type, 2496 /// for which isSCEVable must return true. 2497 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2498 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2499 2500 // If we have a TargetData, use it! 2501 if (TD) 2502 return TD->getTypeSizeInBits(Ty); 2503 2504 // Integer types have fixed sizes. 2505 if (Ty->isIntegerTy()) 2506 return Ty->getPrimitiveSizeInBits(); 2507 2508 // The only other support type is pointer. Without TargetData, conservatively 2509 // assume pointers are 64-bit. 2510 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2511 return 64; 2512 } 2513 2514 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2515 /// the given type and which represents how SCEV will treat the given 2516 /// type, for which isSCEVable must return true. For pointer types, 2517 /// this is the pointer-sized integer type. 2518 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2519 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2520 2521 if (Ty->isIntegerTy()) 2522 return Ty; 2523 2524 // The only other support type is pointer. 2525 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2526 if (TD) return TD->getIntPtrType(getContext()); 2527 2528 // Without TargetData, conservatively assume pointers are 64-bit. 2529 return Type::getInt64Ty(getContext()); 2530 } 2531 2532 const SCEV *ScalarEvolution::getCouldNotCompute() { 2533 return &CouldNotCompute; 2534 } 2535 2536 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2537 /// expression and create a new one. 2538 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2539 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2540 2541 ValueExprMapType::const_iterator I = ValueExprMap.find(V); 2542 if (I != ValueExprMap.end()) return I->second; 2543 const SCEV *S = createSCEV(V); 2544 2545 // The process of creating a SCEV for V may have caused other SCEVs 2546 // to have been created, so it's necessary to insert the new entry 2547 // from scratch, rather than trying to remember the insert position 2548 // above. 2549 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2550 return S; 2551 } 2552 2553 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2554 /// 2555 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2556 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2557 return getConstant( 2558 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2559 2560 const Type *Ty = V->getType(); 2561 Ty = getEffectiveSCEVType(Ty); 2562 return getMulExpr(V, 2563 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2564 } 2565 2566 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2567 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2568 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2569 return getConstant( 2570 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2571 2572 const Type *Ty = V->getType(); 2573 Ty = getEffectiveSCEVType(Ty); 2574 const SCEV *AllOnes = 2575 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2576 return getMinusSCEV(AllOnes, V); 2577 } 2578 2579 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2580 /// 2581 /// FIXME: prohibit FlagNUW here, as soon as getMinusSCEVForExitTest goes. 2582 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2583 SCEV::NoWrapFlags Flags) { 2584 // Fast path: X - X --> 0. 2585 if (LHS == RHS) 2586 return getConstant(LHS->getType(), 0); 2587 2588 // X - Y --> X + -Y 2589 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2590 } 2591 2592 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2593 /// input value to the specified type. If the type must be extended, it is zero 2594 /// extended. 2595 const SCEV * 2596 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) { 2597 const Type *SrcTy = V->getType(); 2598 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2599 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2600 "Cannot truncate or zero extend with non-integer arguments!"); 2601 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2602 return V; // No conversion 2603 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2604 return getTruncateExpr(V, Ty); 2605 return getZeroExtendExpr(V, Ty); 2606 } 2607 2608 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2609 /// input value to the specified type. If the type must be extended, it is sign 2610 /// extended. 2611 const SCEV * 2612 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2613 const Type *Ty) { 2614 const Type *SrcTy = V->getType(); 2615 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2616 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2617 "Cannot truncate or zero extend with non-integer arguments!"); 2618 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2619 return V; // No conversion 2620 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2621 return getTruncateExpr(V, Ty); 2622 return getSignExtendExpr(V, Ty); 2623 } 2624 2625 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2626 /// input value to the specified type. If the type must be extended, it is zero 2627 /// extended. The conversion must not be narrowing. 2628 const SCEV * 2629 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2630 const Type *SrcTy = V->getType(); 2631 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2632 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2633 "Cannot noop or zero extend with non-integer arguments!"); 2634 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2635 "getNoopOrZeroExtend cannot truncate!"); 2636 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2637 return V; // No conversion 2638 return getZeroExtendExpr(V, Ty); 2639 } 2640 2641 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2642 /// input value to the specified type. If the type must be extended, it is sign 2643 /// extended. The conversion must not be narrowing. 2644 const SCEV * 2645 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2646 const Type *SrcTy = V->getType(); 2647 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2648 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2649 "Cannot noop or sign extend with non-integer arguments!"); 2650 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2651 "getNoopOrSignExtend cannot truncate!"); 2652 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2653 return V; // No conversion 2654 return getSignExtendExpr(V, Ty); 2655 } 2656 2657 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2658 /// the input value to the specified type. If the type must be extended, 2659 /// it is extended with unspecified bits. The conversion must not be 2660 /// narrowing. 2661 const SCEV * 2662 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2663 const Type *SrcTy = V->getType(); 2664 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2665 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2666 "Cannot noop or any extend with non-integer arguments!"); 2667 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2668 "getNoopOrAnyExtend cannot truncate!"); 2669 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2670 return V; // No conversion 2671 return getAnyExtendExpr(V, Ty); 2672 } 2673 2674 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2675 /// input value to the specified type. The conversion must not be widening. 2676 const SCEV * 2677 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2678 const Type *SrcTy = V->getType(); 2679 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2680 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2681 "Cannot truncate or noop with non-integer arguments!"); 2682 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2683 "getTruncateOrNoop cannot extend!"); 2684 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2685 return V; // No conversion 2686 return getTruncateExpr(V, Ty); 2687 } 2688 2689 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2690 /// the types using zero-extension, and then perform a umax operation 2691 /// with them. 2692 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2693 const SCEV *RHS) { 2694 const SCEV *PromotedLHS = LHS; 2695 const SCEV *PromotedRHS = RHS; 2696 2697 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2698 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2699 else 2700 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2701 2702 return getUMaxExpr(PromotedLHS, PromotedRHS); 2703 } 2704 2705 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2706 /// the types using zero-extension, and then perform a umin operation 2707 /// with them. 2708 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2709 const SCEV *RHS) { 2710 const SCEV *PromotedLHS = LHS; 2711 const SCEV *PromotedRHS = RHS; 2712 2713 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2714 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2715 else 2716 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2717 2718 return getUMinExpr(PromotedLHS, PromotedRHS); 2719 } 2720 2721 /// PushDefUseChildren - Push users of the given Instruction 2722 /// onto the given Worklist. 2723 static void 2724 PushDefUseChildren(Instruction *I, 2725 SmallVectorImpl<Instruction *> &Worklist) { 2726 // Push the def-use children onto the Worklist stack. 2727 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2728 UI != UE; ++UI) 2729 Worklist.push_back(cast<Instruction>(*UI)); 2730 } 2731 2732 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2733 /// instructions that depend on the given instruction and removes them from 2734 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2735 /// resolution. 2736 void 2737 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2738 SmallVector<Instruction *, 16> Worklist; 2739 PushDefUseChildren(PN, Worklist); 2740 2741 SmallPtrSet<Instruction *, 8> Visited; 2742 Visited.insert(PN); 2743 while (!Worklist.empty()) { 2744 Instruction *I = Worklist.pop_back_val(); 2745 if (!Visited.insert(I)) continue; 2746 2747 ValueExprMapType::iterator It = 2748 ValueExprMap.find(static_cast<Value *>(I)); 2749 if (It != ValueExprMap.end()) { 2750 const SCEV *Old = It->second; 2751 2752 // Short-circuit the def-use traversal if the symbolic name 2753 // ceases to appear in expressions. 2754 if (Old != SymName && !hasOperand(Old, SymName)) 2755 continue; 2756 2757 // SCEVUnknown for a PHI either means that it has an unrecognized 2758 // structure, it's a PHI that's in the progress of being computed 2759 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2760 // additional loop trip count information isn't going to change anything. 2761 // In the second case, createNodeForPHI will perform the necessary 2762 // updates on its own when it gets to that point. In the third, we do 2763 // want to forget the SCEVUnknown. 2764 if (!isa<PHINode>(I) || 2765 !isa<SCEVUnknown>(Old) || 2766 (I != PN && Old == SymName)) { 2767 forgetMemoizedResults(Old); 2768 ValueExprMap.erase(It); 2769 } 2770 } 2771 2772 PushDefUseChildren(I, Worklist); 2773 } 2774 } 2775 2776 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2777 /// a loop header, making it a potential recurrence, or it doesn't. 2778 /// 2779 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2780 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2781 if (L->getHeader() == PN->getParent()) { 2782 // The loop may have multiple entrances or multiple exits; we can analyze 2783 // this phi as an addrec if it has a unique entry value and a unique 2784 // backedge value. 2785 Value *BEValueV = 0, *StartValueV = 0; 2786 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2787 Value *V = PN->getIncomingValue(i); 2788 if (L->contains(PN->getIncomingBlock(i))) { 2789 if (!BEValueV) { 2790 BEValueV = V; 2791 } else if (BEValueV != V) { 2792 BEValueV = 0; 2793 break; 2794 } 2795 } else if (!StartValueV) { 2796 StartValueV = V; 2797 } else if (StartValueV != V) { 2798 StartValueV = 0; 2799 break; 2800 } 2801 } 2802 if (BEValueV && StartValueV) { 2803 // While we are analyzing this PHI node, handle its value symbolically. 2804 const SCEV *SymbolicName = getUnknown(PN); 2805 assert(ValueExprMap.find(PN) == ValueExprMap.end() && 2806 "PHI node already processed?"); 2807 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2808 2809 // Using this symbolic name for the PHI, analyze the value coming around 2810 // the back-edge. 2811 const SCEV *BEValue = getSCEV(BEValueV); 2812 2813 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2814 // has a special value for the first iteration of the loop. 2815 2816 // If the value coming around the backedge is an add with the symbolic 2817 // value we just inserted, then we found a simple induction variable! 2818 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2819 // If there is a single occurrence of the symbolic value, replace it 2820 // with a recurrence. 2821 unsigned FoundIndex = Add->getNumOperands(); 2822 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2823 if (Add->getOperand(i) == SymbolicName) 2824 if (FoundIndex == e) { 2825 FoundIndex = i; 2826 break; 2827 } 2828 2829 if (FoundIndex != Add->getNumOperands()) { 2830 // Create an add with everything but the specified operand. 2831 SmallVector<const SCEV *, 8> Ops; 2832 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2833 if (i != FoundIndex) 2834 Ops.push_back(Add->getOperand(i)); 2835 const SCEV *Accum = getAddExpr(Ops); 2836 2837 // This is not a valid addrec if the step amount is varying each 2838 // loop iteration, but is not itself an addrec in this loop. 2839 if (isLoopInvariant(Accum, L) || 2840 (isa<SCEVAddRecExpr>(Accum) && 2841 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2842 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 2843 2844 // If the increment doesn't overflow, then neither the addrec nor 2845 // the post-increment will overflow. 2846 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2847 if (OBO->hasNoUnsignedWrap()) 2848 Flags = setFlags(Flags, SCEV::FlagNUW); 2849 if (OBO->hasNoSignedWrap()) 2850 Flags = setFlags(Flags, SCEV::FlagNSW); 2851 } else if (const GEPOperator *GEP = 2852 dyn_cast<GEPOperator>(BEValueV)) { 2853 // If the increment is an inbounds GEP, then we know the address 2854 // space cannot be wrapped around. We cannot make any guarantee 2855 // about signed or unsigned overflow because pointers are 2856 // unsigned but we may have a negative index from the base 2857 // pointer. 2858 if (GEP->isInBounds()) 2859 Flags = setFlags(Flags, SCEV::FlagNW); 2860 } 2861 2862 const SCEV *StartVal = getSCEV(StartValueV); 2863 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 2864 2865 // Since the no-wrap flags are on the increment, they apply to the 2866 // post-incremented value as well. 2867 if (isLoopInvariant(Accum, L)) 2868 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2869 Accum, L, Flags); 2870 2871 // Okay, for the entire analysis of this edge we assumed the PHI 2872 // to be symbolic. We now need to go back and purge all of the 2873 // entries for the scalars that use the symbolic expression. 2874 ForgetSymbolicName(PN, SymbolicName); 2875 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 2876 return PHISCEV; 2877 } 2878 } 2879 } else if (const SCEVAddRecExpr *AddRec = 2880 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2881 // Otherwise, this could be a loop like this: 2882 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2883 // In this case, j = {1,+,1} and BEValue is j. 2884 // Because the other in-value of i (0) fits the evolution of BEValue 2885 // i really is an addrec evolution. 2886 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2887 const SCEV *StartVal = getSCEV(StartValueV); 2888 2889 // If StartVal = j.start - j.stride, we can use StartVal as the 2890 // initial step of the addrec evolution. 2891 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2892 AddRec->getOperand(1))) { 2893 // FIXME: For constant StartVal, we should be able to infer 2894 // no-wrap flags. 2895 const SCEV *PHISCEV = 2896 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 2897 SCEV::FlagAnyWrap); 2898 2899 // Okay, for the entire analysis of this edge we assumed the PHI 2900 // to be symbolic. We now need to go back and purge all of the 2901 // entries for the scalars that use the symbolic expression. 2902 ForgetSymbolicName(PN, SymbolicName); 2903 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 2904 return PHISCEV; 2905 } 2906 } 2907 } 2908 } 2909 } 2910 2911 // If the PHI has a single incoming value, follow that value, unless the 2912 // PHI's incoming blocks are in a different loop, in which case doing so 2913 // risks breaking LCSSA form. Instcombine would normally zap these, but 2914 // it doesn't have DominatorTree information, so it may miss cases. 2915 if (Value *V = SimplifyInstruction(PN, TD, DT)) 2916 if (LI->replacementPreservesLCSSAForm(PN, V)) 2917 return getSCEV(V); 2918 2919 // If it's not a loop phi, we can't handle it yet. 2920 return getUnknown(PN); 2921 } 2922 2923 /// createNodeForGEP - Expand GEP instructions into add and multiply 2924 /// operations. This allows them to be analyzed by regular SCEV code. 2925 /// 2926 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 2927 2928 // Don't blindly transfer the inbounds flag from the GEP instruction to the 2929 // Add expression, because the Instruction may be guarded by control flow 2930 // and the no-overflow bits may not be valid for the expression in any 2931 // context. 2932 bool isInBounds = GEP->isInBounds(); 2933 2934 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2935 Value *Base = GEP->getOperand(0); 2936 // Don't attempt to analyze GEPs over unsized objects. 2937 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2938 return getUnknown(GEP); 2939 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2940 gep_type_iterator GTI = gep_type_begin(GEP); 2941 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 2942 E = GEP->op_end(); 2943 I != E; ++I) { 2944 Value *Index = *I; 2945 // Compute the (potentially symbolic) offset in bytes for this index. 2946 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2947 // For a struct, add the member offset. 2948 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2949 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 2950 2951 // Add the field offset to the running total offset. 2952 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2953 } else { 2954 // For an array, add the element offset, explicitly scaled. 2955 const SCEV *ElementSize = getSizeOfExpr(*GTI); 2956 const SCEV *IndexS = getSCEV(Index); 2957 // Getelementptr indices are signed. 2958 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 2959 2960 // Multiply the index by the element size to compute the element offset. 2961 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, 2962 isInBounds ? SCEV::FlagNSW : 2963 SCEV::FlagAnyWrap); 2964 2965 // Add the element offset to the running total offset. 2966 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2967 } 2968 } 2969 2970 // Get the SCEV for the GEP base. 2971 const SCEV *BaseS = getSCEV(Base); 2972 2973 // Add the total offset from all the GEP indices to the base. 2974 return getAddExpr(BaseS, TotalOffset, 2975 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap); 2976 } 2977 2978 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2979 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2980 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2981 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2982 uint32_t 2983 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2984 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2985 return C->getValue()->getValue().countTrailingZeros(); 2986 2987 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2988 return std::min(GetMinTrailingZeros(T->getOperand()), 2989 (uint32_t)getTypeSizeInBits(T->getType())); 2990 2991 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2992 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2993 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2994 getTypeSizeInBits(E->getType()) : OpRes; 2995 } 2996 2997 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2998 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2999 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3000 getTypeSizeInBits(E->getType()) : OpRes; 3001 } 3002 3003 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3004 // The result is the min of all operands results. 3005 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3006 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3007 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3008 return MinOpRes; 3009 } 3010 3011 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3012 // The result is the sum of all operands results. 3013 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3014 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3015 for (unsigned i = 1, e = M->getNumOperands(); 3016 SumOpRes != BitWidth && i != e; ++i) 3017 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3018 BitWidth); 3019 return SumOpRes; 3020 } 3021 3022 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3023 // The result is the min of all operands results. 3024 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3025 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3026 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3027 return MinOpRes; 3028 } 3029 3030 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3031 // The result is the min of all operands results. 3032 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3033 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3034 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3035 return MinOpRes; 3036 } 3037 3038 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3039 // The result is the min of all operands results. 3040 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3041 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3042 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3043 return MinOpRes; 3044 } 3045 3046 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3047 // For a SCEVUnknown, ask ValueTracking. 3048 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3049 APInt Mask = APInt::getAllOnesValue(BitWidth); 3050 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3051 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 3052 return Zeros.countTrailingOnes(); 3053 } 3054 3055 // SCEVUDivExpr 3056 return 0; 3057 } 3058 3059 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3060 /// 3061 ConstantRange 3062 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3063 // See if we've computed this range already. 3064 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3065 if (I != UnsignedRanges.end()) 3066 return I->second; 3067 3068 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3069 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3070 3071 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3072 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3073 3074 // If the value has known zeros, the maximum unsigned value will have those 3075 // known zeros as well. 3076 uint32_t TZ = GetMinTrailingZeros(S); 3077 if (TZ != 0) 3078 ConservativeResult = 3079 ConstantRange(APInt::getMinValue(BitWidth), 3080 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3081 3082 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3083 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3084 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3085 X = X.add(getUnsignedRange(Add->getOperand(i))); 3086 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3087 } 3088 3089 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3090 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3091 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3092 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3093 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3094 } 3095 3096 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3097 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3098 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3099 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3100 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3101 } 3102 3103 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3104 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3105 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3106 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3107 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3108 } 3109 3110 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3111 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3112 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3113 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3114 } 3115 3116 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3117 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3118 return setUnsignedRange(ZExt, 3119 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3120 } 3121 3122 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3123 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3124 return setUnsignedRange(SExt, 3125 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3126 } 3127 3128 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3129 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3130 return setUnsignedRange(Trunc, 3131 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3132 } 3133 3134 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3135 // If there's no unsigned wrap, the value will never be less than its 3136 // initial value. 3137 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3138 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3139 if (!C->getValue()->isZero()) 3140 ConservativeResult = 3141 ConservativeResult.intersectWith( 3142 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3143 3144 // TODO: non-affine addrec 3145 if (AddRec->isAffine()) { 3146 const Type *Ty = AddRec->getType(); 3147 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3148 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3149 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3150 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3151 3152 const SCEV *Start = AddRec->getStart(); 3153 const SCEV *Step = AddRec->getStepRecurrence(*this); 3154 3155 ConstantRange StartRange = getUnsignedRange(Start); 3156 ConstantRange StepRange = getSignedRange(Step); 3157 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3158 ConstantRange EndRange = 3159 StartRange.add(MaxBECountRange.multiply(StepRange)); 3160 3161 // Check for overflow. This must be done with ConstantRange arithmetic 3162 // because we could be called from within the ScalarEvolution overflow 3163 // checking code. 3164 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3165 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3166 ConstantRange ExtMaxBECountRange = 3167 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3168 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3169 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3170 ExtEndRange) 3171 return setUnsignedRange(AddRec, ConservativeResult); 3172 3173 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3174 EndRange.getUnsignedMin()); 3175 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3176 EndRange.getUnsignedMax()); 3177 if (Min.isMinValue() && Max.isMaxValue()) 3178 return setUnsignedRange(AddRec, ConservativeResult); 3179 return setUnsignedRange(AddRec, 3180 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3181 } 3182 } 3183 3184 return setUnsignedRange(AddRec, ConservativeResult); 3185 } 3186 3187 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3188 // For a SCEVUnknown, ask ValueTracking. 3189 APInt Mask = APInt::getAllOnesValue(BitWidth); 3190 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3191 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3192 if (Ones == ~Zeros + 1) 3193 return setUnsignedRange(U, ConservativeResult); 3194 return setUnsignedRange(U, 3195 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3196 } 3197 3198 return setUnsignedRange(S, ConservativeResult); 3199 } 3200 3201 /// getSignedRange - Determine the signed range for a particular SCEV. 3202 /// 3203 ConstantRange 3204 ScalarEvolution::getSignedRange(const SCEV *S) { 3205 // See if we've computed this range already. 3206 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3207 if (I != SignedRanges.end()) 3208 return I->second; 3209 3210 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3211 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3212 3213 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3214 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3215 3216 // If the value has known zeros, the maximum signed value will have those 3217 // known zeros as well. 3218 uint32_t TZ = GetMinTrailingZeros(S); 3219 if (TZ != 0) 3220 ConservativeResult = 3221 ConstantRange(APInt::getSignedMinValue(BitWidth), 3222 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3223 3224 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3225 ConstantRange X = getSignedRange(Add->getOperand(0)); 3226 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3227 X = X.add(getSignedRange(Add->getOperand(i))); 3228 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3229 } 3230 3231 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3232 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3233 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3234 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3235 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3236 } 3237 3238 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3239 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3240 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3241 X = X.smax(getSignedRange(SMax->getOperand(i))); 3242 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3243 } 3244 3245 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3246 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3247 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3248 X = X.umax(getSignedRange(UMax->getOperand(i))); 3249 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3250 } 3251 3252 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3253 ConstantRange X = getSignedRange(UDiv->getLHS()); 3254 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3255 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3256 } 3257 3258 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3259 ConstantRange X = getSignedRange(ZExt->getOperand()); 3260 return setSignedRange(ZExt, 3261 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3262 } 3263 3264 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3265 ConstantRange X = getSignedRange(SExt->getOperand()); 3266 return setSignedRange(SExt, 3267 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3268 } 3269 3270 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3271 ConstantRange X = getSignedRange(Trunc->getOperand()); 3272 return setSignedRange(Trunc, 3273 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3274 } 3275 3276 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3277 // If there's no signed wrap, and all the operands have the same sign or 3278 // zero, the value won't ever change sign. 3279 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3280 bool AllNonNeg = true; 3281 bool AllNonPos = true; 3282 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3283 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3284 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3285 } 3286 if (AllNonNeg) 3287 ConservativeResult = ConservativeResult.intersectWith( 3288 ConstantRange(APInt(BitWidth, 0), 3289 APInt::getSignedMinValue(BitWidth))); 3290 else if (AllNonPos) 3291 ConservativeResult = ConservativeResult.intersectWith( 3292 ConstantRange(APInt::getSignedMinValue(BitWidth), 3293 APInt(BitWidth, 1))); 3294 } 3295 3296 // TODO: non-affine addrec 3297 if (AddRec->isAffine()) { 3298 const Type *Ty = AddRec->getType(); 3299 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3300 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3301 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3302 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3303 3304 const SCEV *Start = AddRec->getStart(); 3305 const SCEV *Step = AddRec->getStepRecurrence(*this); 3306 3307 ConstantRange StartRange = getSignedRange(Start); 3308 ConstantRange StepRange = getSignedRange(Step); 3309 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3310 ConstantRange EndRange = 3311 StartRange.add(MaxBECountRange.multiply(StepRange)); 3312 3313 // Check for overflow. This must be done with ConstantRange arithmetic 3314 // because we could be called from within the ScalarEvolution overflow 3315 // checking code. 3316 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3317 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3318 ConstantRange ExtMaxBECountRange = 3319 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3320 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3321 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3322 ExtEndRange) 3323 return setSignedRange(AddRec, ConservativeResult); 3324 3325 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3326 EndRange.getSignedMin()); 3327 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3328 EndRange.getSignedMax()); 3329 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3330 return setSignedRange(AddRec, ConservativeResult); 3331 return setSignedRange(AddRec, 3332 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3333 } 3334 } 3335 3336 return setSignedRange(AddRec, ConservativeResult); 3337 } 3338 3339 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3340 // For a SCEVUnknown, ask ValueTracking. 3341 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3342 return setSignedRange(U, ConservativeResult); 3343 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3344 if (NS == 1) 3345 return setSignedRange(U, ConservativeResult); 3346 return setSignedRange(U, ConservativeResult.intersectWith( 3347 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3348 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3349 } 3350 3351 return setSignedRange(S, ConservativeResult); 3352 } 3353 3354 /// createSCEV - We know that there is no SCEV for the specified value. 3355 /// Analyze the expression. 3356 /// 3357 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3358 if (!isSCEVable(V->getType())) 3359 return getUnknown(V); 3360 3361 unsigned Opcode = Instruction::UserOp1; 3362 if (Instruction *I = dyn_cast<Instruction>(V)) { 3363 Opcode = I->getOpcode(); 3364 3365 // Don't attempt to analyze instructions in blocks that aren't 3366 // reachable. Such instructions don't matter, and they aren't required 3367 // to obey basic rules for definitions dominating uses which this 3368 // analysis depends on. 3369 if (!DT->isReachableFromEntry(I->getParent())) 3370 return getUnknown(V); 3371 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3372 Opcode = CE->getOpcode(); 3373 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3374 return getConstant(CI); 3375 else if (isa<ConstantPointerNull>(V)) 3376 return getConstant(V->getType(), 0); 3377 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3378 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3379 else 3380 return getUnknown(V); 3381 3382 Operator *U = cast<Operator>(V); 3383 switch (Opcode) { 3384 case Instruction::Add: { 3385 // The simple thing to do would be to just call getSCEV on both operands 3386 // and call getAddExpr with the result. However if we're looking at a 3387 // bunch of things all added together, this can be quite inefficient, 3388 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3389 // Instead, gather up all the operands and make a single getAddExpr call. 3390 // LLVM IR canonical form means we need only traverse the left operands. 3391 SmallVector<const SCEV *, 4> AddOps; 3392 AddOps.push_back(getSCEV(U->getOperand(1))); 3393 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3394 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3395 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3396 break; 3397 U = cast<Operator>(Op); 3398 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3399 if (Opcode == Instruction::Sub) 3400 AddOps.push_back(getNegativeSCEV(Op1)); 3401 else 3402 AddOps.push_back(Op1); 3403 } 3404 AddOps.push_back(getSCEV(U->getOperand(0))); 3405 return getAddExpr(AddOps); 3406 } 3407 case Instruction::Mul: { 3408 // See the Add code above. 3409 SmallVector<const SCEV *, 4> MulOps; 3410 MulOps.push_back(getSCEV(U->getOperand(1))); 3411 for (Value *Op = U->getOperand(0); 3412 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3413 Op = U->getOperand(0)) { 3414 U = cast<Operator>(Op); 3415 MulOps.push_back(getSCEV(U->getOperand(1))); 3416 } 3417 MulOps.push_back(getSCEV(U->getOperand(0))); 3418 return getMulExpr(MulOps); 3419 } 3420 case Instruction::UDiv: 3421 return getUDivExpr(getSCEV(U->getOperand(0)), 3422 getSCEV(U->getOperand(1))); 3423 case Instruction::Sub: 3424 return getMinusSCEV(getSCEV(U->getOperand(0)), 3425 getSCEV(U->getOperand(1))); 3426 case Instruction::And: 3427 // For an expression like x&255 that merely masks off the high bits, 3428 // use zext(trunc(x)) as the SCEV expression. 3429 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3430 if (CI->isNullValue()) 3431 return getSCEV(U->getOperand(1)); 3432 if (CI->isAllOnesValue()) 3433 return getSCEV(U->getOperand(0)); 3434 const APInt &A = CI->getValue(); 3435 3436 // Instcombine's ShrinkDemandedConstant may strip bits out of 3437 // constants, obscuring what would otherwise be a low-bits mask. 3438 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3439 // knew about to reconstruct a low-bits mask value. 3440 unsigned LZ = A.countLeadingZeros(); 3441 unsigned BitWidth = A.getBitWidth(); 3442 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3443 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3444 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3445 3446 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3447 3448 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3449 return 3450 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3451 IntegerType::get(getContext(), BitWidth - LZ)), 3452 U->getType()); 3453 } 3454 break; 3455 3456 case Instruction::Or: 3457 // If the RHS of the Or is a constant, we may have something like: 3458 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3459 // optimizations will transparently handle this case. 3460 // 3461 // In order for this transformation to be safe, the LHS must be of the 3462 // form X*(2^n) and the Or constant must be less than 2^n. 3463 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3464 const SCEV *LHS = getSCEV(U->getOperand(0)); 3465 const APInt &CIVal = CI->getValue(); 3466 if (GetMinTrailingZeros(LHS) >= 3467 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3468 // Build a plain add SCEV. 3469 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3470 // If the LHS of the add was an addrec and it has no-wrap flags, 3471 // transfer the no-wrap flags, since an or won't introduce a wrap. 3472 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3473 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3474 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3475 OldAR->getNoWrapFlags()); 3476 } 3477 return S; 3478 } 3479 } 3480 break; 3481 case Instruction::Xor: 3482 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3483 // If the RHS of the xor is a signbit, then this is just an add. 3484 // Instcombine turns add of signbit into xor as a strength reduction step. 3485 if (CI->getValue().isSignBit()) 3486 return getAddExpr(getSCEV(U->getOperand(0)), 3487 getSCEV(U->getOperand(1))); 3488 3489 // If the RHS of xor is -1, then this is a not operation. 3490 if (CI->isAllOnesValue()) 3491 return getNotSCEV(getSCEV(U->getOperand(0))); 3492 3493 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3494 // This is a variant of the check for xor with -1, and it handles 3495 // the case where instcombine has trimmed non-demanded bits out 3496 // of an xor with -1. 3497 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3498 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3499 if (BO->getOpcode() == Instruction::And && 3500 LCI->getValue() == CI->getValue()) 3501 if (const SCEVZeroExtendExpr *Z = 3502 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3503 const Type *UTy = U->getType(); 3504 const SCEV *Z0 = Z->getOperand(); 3505 const Type *Z0Ty = Z0->getType(); 3506 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3507 3508 // If C is a low-bits mask, the zero extend is serving to 3509 // mask off the high bits. Complement the operand and 3510 // re-apply the zext. 3511 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3512 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3513 3514 // If C is a single bit, it may be in the sign-bit position 3515 // before the zero-extend. In this case, represent the xor 3516 // using an add, which is equivalent, and re-apply the zext. 3517 APInt Trunc = CI->getValue().trunc(Z0TySize); 3518 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3519 Trunc.isSignBit()) 3520 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3521 UTy); 3522 } 3523 } 3524 break; 3525 3526 case Instruction::Shl: 3527 // Turn shift left of a constant amount into a multiply. 3528 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3529 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3530 3531 // If the shift count is not less than the bitwidth, the result of 3532 // the shift is undefined. Don't try to analyze it, because the 3533 // resolution chosen here may differ from the resolution chosen in 3534 // other parts of the compiler. 3535 if (SA->getValue().uge(BitWidth)) 3536 break; 3537 3538 Constant *X = ConstantInt::get(getContext(), 3539 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3540 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3541 } 3542 break; 3543 3544 case Instruction::LShr: 3545 // Turn logical shift right of a constant into a unsigned divide. 3546 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3547 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3548 3549 // If the shift count is not less than the bitwidth, the result of 3550 // the shift is undefined. Don't try to analyze it, because the 3551 // resolution chosen here may differ from the resolution chosen in 3552 // other parts of the compiler. 3553 if (SA->getValue().uge(BitWidth)) 3554 break; 3555 3556 Constant *X = ConstantInt::get(getContext(), 3557 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3558 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3559 } 3560 break; 3561 3562 case Instruction::AShr: 3563 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3564 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3565 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3566 if (L->getOpcode() == Instruction::Shl && 3567 L->getOperand(1) == U->getOperand(1)) { 3568 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3569 3570 // If the shift count is not less than the bitwidth, the result of 3571 // the shift is undefined. Don't try to analyze it, because the 3572 // resolution chosen here may differ from the resolution chosen in 3573 // other parts of the compiler. 3574 if (CI->getValue().uge(BitWidth)) 3575 break; 3576 3577 uint64_t Amt = BitWidth - CI->getZExtValue(); 3578 if (Amt == BitWidth) 3579 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3580 return 3581 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3582 IntegerType::get(getContext(), 3583 Amt)), 3584 U->getType()); 3585 } 3586 break; 3587 3588 case Instruction::Trunc: 3589 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3590 3591 case Instruction::ZExt: 3592 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3593 3594 case Instruction::SExt: 3595 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3596 3597 case Instruction::BitCast: 3598 // BitCasts are no-op casts so we just eliminate the cast. 3599 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3600 return getSCEV(U->getOperand(0)); 3601 break; 3602 3603 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3604 // lead to pointer expressions which cannot safely be expanded to GEPs, 3605 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3606 // simplifying integer expressions. 3607 3608 case Instruction::GetElementPtr: 3609 return createNodeForGEP(cast<GEPOperator>(U)); 3610 3611 case Instruction::PHI: 3612 return createNodeForPHI(cast<PHINode>(U)); 3613 3614 case Instruction::Select: 3615 // This could be a smax or umax that was lowered earlier. 3616 // Try to recover it. 3617 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3618 Value *LHS = ICI->getOperand(0); 3619 Value *RHS = ICI->getOperand(1); 3620 switch (ICI->getPredicate()) { 3621 case ICmpInst::ICMP_SLT: 3622 case ICmpInst::ICMP_SLE: 3623 std::swap(LHS, RHS); 3624 // fall through 3625 case ICmpInst::ICMP_SGT: 3626 case ICmpInst::ICMP_SGE: 3627 // a >s b ? a+x : b+x -> smax(a, b)+x 3628 // a >s b ? b+x : a+x -> smin(a, b)+x 3629 if (LHS->getType() == U->getType()) { 3630 const SCEV *LS = getSCEV(LHS); 3631 const SCEV *RS = getSCEV(RHS); 3632 const SCEV *LA = getSCEV(U->getOperand(1)); 3633 const SCEV *RA = getSCEV(U->getOperand(2)); 3634 const SCEV *LDiff = getMinusSCEV(LA, LS); 3635 const SCEV *RDiff = getMinusSCEV(RA, RS); 3636 if (LDiff == RDiff) 3637 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3638 LDiff = getMinusSCEV(LA, RS); 3639 RDiff = getMinusSCEV(RA, LS); 3640 if (LDiff == RDiff) 3641 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3642 } 3643 break; 3644 case ICmpInst::ICMP_ULT: 3645 case ICmpInst::ICMP_ULE: 3646 std::swap(LHS, RHS); 3647 // fall through 3648 case ICmpInst::ICMP_UGT: 3649 case ICmpInst::ICMP_UGE: 3650 // a >u b ? a+x : b+x -> umax(a, b)+x 3651 // a >u b ? b+x : a+x -> umin(a, b)+x 3652 if (LHS->getType() == U->getType()) { 3653 const SCEV *LS = getSCEV(LHS); 3654 const SCEV *RS = getSCEV(RHS); 3655 const SCEV *LA = getSCEV(U->getOperand(1)); 3656 const SCEV *RA = getSCEV(U->getOperand(2)); 3657 const SCEV *LDiff = getMinusSCEV(LA, LS); 3658 const SCEV *RDiff = getMinusSCEV(RA, RS); 3659 if (LDiff == RDiff) 3660 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3661 LDiff = getMinusSCEV(LA, RS); 3662 RDiff = getMinusSCEV(RA, LS); 3663 if (LDiff == RDiff) 3664 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3665 } 3666 break; 3667 case ICmpInst::ICMP_NE: 3668 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3669 if (LHS->getType() == U->getType() && 3670 isa<ConstantInt>(RHS) && 3671 cast<ConstantInt>(RHS)->isZero()) { 3672 const SCEV *One = getConstant(LHS->getType(), 1); 3673 const SCEV *LS = getSCEV(LHS); 3674 const SCEV *LA = getSCEV(U->getOperand(1)); 3675 const SCEV *RA = getSCEV(U->getOperand(2)); 3676 const SCEV *LDiff = getMinusSCEV(LA, LS); 3677 const SCEV *RDiff = getMinusSCEV(RA, One); 3678 if (LDiff == RDiff) 3679 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3680 } 3681 break; 3682 case ICmpInst::ICMP_EQ: 3683 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3684 if (LHS->getType() == U->getType() && 3685 isa<ConstantInt>(RHS) && 3686 cast<ConstantInt>(RHS)->isZero()) { 3687 const SCEV *One = getConstant(LHS->getType(), 1); 3688 const SCEV *LS = getSCEV(LHS); 3689 const SCEV *LA = getSCEV(U->getOperand(1)); 3690 const SCEV *RA = getSCEV(U->getOperand(2)); 3691 const SCEV *LDiff = getMinusSCEV(LA, One); 3692 const SCEV *RDiff = getMinusSCEV(RA, LS); 3693 if (LDiff == RDiff) 3694 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3695 } 3696 break; 3697 default: 3698 break; 3699 } 3700 } 3701 3702 default: // We cannot analyze this expression. 3703 break; 3704 } 3705 3706 return getUnknown(V); 3707 } 3708 3709 3710 3711 //===----------------------------------------------------------------------===// 3712 // Iteration Count Computation Code 3713 // 3714 3715 /// getBackedgeTakenCount - If the specified loop has a predictable 3716 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3717 /// object. The backedge-taken count is the number of times the loop header 3718 /// will be branched to from within the loop. This is one less than the 3719 /// trip count of the loop, since it doesn't count the first iteration, 3720 /// when the header is branched to from outside the loop. 3721 /// 3722 /// Note that it is not valid to call this method on a loop without a 3723 /// loop-invariant backedge-taken count (see 3724 /// hasLoopInvariantBackedgeTakenCount). 3725 /// 3726 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3727 return getBackedgeTakenInfo(L).Exact; 3728 } 3729 3730 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3731 /// return the least SCEV value that is known never to be less than the 3732 /// actual backedge taken count. 3733 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3734 return getBackedgeTakenInfo(L).Max; 3735 } 3736 3737 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3738 /// onto the given Worklist. 3739 static void 3740 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3741 BasicBlock *Header = L->getHeader(); 3742 3743 // Push all Loop-header PHIs onto the Worklist stack. 3744 for (BasicBlock::iterator I = Header->begin(); 3745 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3746 Worklist.push_back(PN); 3747 } 3748 3749 const ScalarEvolution::BackedgeTakenInfo & 3750 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3751 // Initially insert a CouldNotCompute for this loop. If the insertion 3752 // succeeds, proceed to actually compute a backedge-taken count and 3753 // update the value. The temporary CouldNotCompute value tells SCEV 3754 // code elsewhere that it shouldn't attempt to request a new 3755 // backedge-taken count, which could result in infinite recursion. 3756 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3757 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3758 if (!Pair.second) 3759 return Pair.first->second; 3760 3761 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L); 3762 if (BECount.Exact != getCouldNotCompute()) { 3763 assert(isLoopInvariant(BECount.Exact, L) && 3764 isLoopInvariant(BECount.Max, L) && 3765 "Computed backedge-taken count isn't loop invariant for loop!"); 3766 ++NumTripCountsComputed; 3767 3768 // Update the value in the map. 3769 Pair.first->second = BECount; 3770 } else { 3771 if (BECount.Max != getCouldNotCompute()) 3772 // Update the value in the map. 3773 Pair.first->second = BECount; 3774 if (isa<PHINode>(L->getHeader()->begin())) 3775 // Only count loops that have phi nodes as not being computable. 3776 ++NumTripCountsNotComputed; 3777 } 3778 3779 // Now that we know more about the trip count for this loop, forget any 3780 // existing SCEV values for PHI nodes in this loop since they are only 3781 // conservative estimates made without the benefit of trip count 3782 // information. This is similar to the code in forgetLoop, except that 3783 // it handles SCEVUnknown PHI nodes specially. 3784 if (BECount.hasAnyInfo()) { 3785 SmallVector<Instruction *, 16> Worklist; 3786 PushLoopPHIs(L, Worklist); 3787 3788 SmallPtrSet<Instruction *, 8> Visited; 3789 while (!Worklist.empty()) { 3790 Instruction *I = Worklist.pop_back_val(); 3791 if (!Visited.insert(I)) continue; 3792 3793 ValueExprMapType::iterator It = 3794 ValueExprMap.find(static_cast<Value *>(I)); 3795 if (It != ValueExprMap.end()) { 3796 const SCEV *Old = It->second; 3797 3798 // SCEVUnknown for a PHI either means that it has an unrecognized 3799 // structure, or it's a PHI that's in the progress of being computed 3800 // by createNodeForPHI. In the former case, additional loop trip 3801 // count information isn't going to change anything. In the later 3802 // case, createNodeForPHI will perform the necessary updates on its 3803 // own when it gets to that point. 3804 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 3805 forgetMemoizedResults(Old); 3806 ValueExprMap.erase(It); 3807 } 3808 if (PHINode *PN = dyn_cast<PHINode>(I)) 3809 ConstantEvolutionLoopExitValue.erase(PN); 3810 } 3811 3812 PushDefUseChildren(I, Worklist); 3813 } 3814 } 3815 return Pair.first->second; 3816 } 3817 3818 /// forgetLoop - This method should be called by the client when it has 3819 /// changed a loop in a way that may effect ScalarEvolution's ability to 3820 /// compute a trip count, or if the loop is deleted. 3821 void ScalarEvolution::forgetLoop(const Loop *L) { 3822 // Drop any stored trip count value. 3823 BackedgeTakenCounts.erase(L); 3824 3825 // Drop information about expressions based on loop-header PHIs. 3826 SmallVector<Instruction *, 16> Worklist; 3827 PushLoopPHIs(L, Worklist); 3828 3829 SmallPtrSet<Instruction *, 8> Visited; 3830 while (!Worklist.empty()) { 3831 Instruction *I = Worklist.pop_back_val(); 3832 if (!Visited.insert(I)) continue; 3833 3834 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 3835 if (It != ValueExprMap.end()) { 3836 forgetMemoizedResults(It->second); 3837 ValueExprMap.erase(It); 3838 if (PHINode *PN = dyn_cast<PHINode>(I)) 3839 ConstantEvolutionLoopExitValue.erase(PN); 3840 } 3841 3842 PushDefUseChildren(I, Worklist); 3843 } 3844 3845 // Forget all contained loops too, to avoid dangling entries in the 3846 // ValuesAtScopes map. 3847 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3848 forgetLoop(*I); 3849 } 3850 3851 /// forgetValue - This method should be called by the client when it has 3852 /// changed a value in a way that may effect its value, or which may 3853 /// disconnect it from a def-use chain linking it to a loop. 3854 void ScalarEvolution::forgetValue(Value *V) { 3855 Instruction *I = dyn_cast<Instruction>(V); 3856 if (!I) return; 3857 3858 // Drop information about expressions based on loop-header PHIs. 3859 SmallVector<Instruction *, 16> Worklist; 3860 Worklist.push_back(I); 3861 3862 SmallPtrSet<Instruction *, 8> Visited; 3863 while (!Worklist.empty()) { 3864 I = Worklist.pop_back_val(); 3865 if (!Visited.insert(I)) continue; 3866 3867 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 3868 if (It != ValueExprMap.end()) { 3869 forgetMemoizedResults(It->second); 3870 ValueExprMap.erase(It); 3871 if (PHINode *PN = dyn_cast<PHINode>(I)) 3872 ConstantEvolutionLoopExitValue.erase(PN); 3873 } 3874 3875 PushDefUseChildren(I, Worklist); 3876 } 3877 } 3878 3879 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3880 /// of the specified loop will execute. 3881 ScalarEvolution::BackedgeTakenInfo 3882 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3883 SmallVector<BasicBlock *, 8> ExitingBlocks; 3884 L->getExitingBlocks(ExitingBlocks); 3885 3886 // Examine all exits and pick the most conservative values. 3887 const SCEV *BECount = getCouldNotCompute(); 3888 const SCEV *MaxBECount = getCouldNotCompute(); 3889 bool CouldNotComputeBECount = false; 3890 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3891 BackedgeTakenInfo NewBTI = 3892 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3893 3894 if (NewBTI.Exact == getCouldNotCompute()) { 3895 // We couldn't compute an exact value for this exit, so 3896 // we won't be able to compute an exact value for the loop. 3897 CouldNotComputeBECount = true; 3898 BECount = getCouldNotCompute(); 3899 } else if (!CouldNotComputeBECount) { 3900 if (BECount == getCouldNotCompute()) 3901 BECount = NewBTI.Exact; 3902 else 3903 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3904 } 3905 if (MaxBECount == getCouldNotCompute()) 3906 MaxBECount = NewBTI.Max; 3907 else if (NewBTI.Max != getCouldNotCompute()) 3908 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3909 } 3910 3911 return BackedgeTakenInfo(BECount, MaxBECount); 3912 } 3913 3914 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3915 /// of the specified loop will execute if it exits via the specified block. 3916 ScalarEvolution::BackedgeTakenInfo 3917 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3918 BasicBlock *ExitingBlock) { 3919 3920 // Okay, we've chosen an exiting block. See what condition causes us to 3921 // exit at this block. 3922 // 3923 // FIXME: we should be able to handle switch instructions (with a single exit) 3924 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3925 if (ExitBr == 0) return getCouldNotCompute(); 3926 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3927 3928 // At this point, we know we have a conditional branch that determines whether 3929 // the loop is exited. However, we don't know if the branch is executed each 3930 // time through the loop. If not, then the execution count of the branch will 3931 // not be equal to the trip count of the loop. 3932 // 3933 // Currently we check for this by checking to see if the Exit branch goes to 3934 // the loop header. If so, we know it will always execute the same number of 3935 // times as the loop. We also handle the case where the exit block *is* the 3936 // loop header. This is common for un-rotated loops. 3937 // 3938 // If both of those tests fail, walk up the unique predecessor chain to the 3939 // header, stopping if there is an edge that doesn't exit the loop. If the 3940 // header is reached, the execution count of the branch will be equal to the 3941 // trip count of the loop. 3942 // 3943 // More extensive analysis could be done to handle more cases here. 3944 // 3945 if (ExitBr->getSuccessor(0) != L->getHeader() && 3946 ExitBr->getSuccessor(1) != L->getHeader() && 3947 ExitBr->getParent() != L->getHeader()) { 3948 // The simple checks failed, try climbing the unique predecessor chain 3949 // up to the header. 3950 bool Ok = false; 3951 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3952 BasicBlock *Pred = BB->getUniquePredecessor(); 3953 if (!Pred) 3954 return getCouldNotCompute(); 3955 TerminatorInst *PredTerm = Pred->getTerminator(); 3956 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3957 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3958 if (PredSucc == BB) 3959 continue; 3960 // If the predecessor has a successor that isn't BB and isn't 3961 // outside the loop, assume the worst. 3962 if (L->contains(PredSucc)) 3963 return getCouldNotCompute(); 3964 } 3965 if (Pred == L->getHeader()) { 3966 Ok = true; 3967 break; 3968 } 3969 BB = Pred; 3970 } 3971 if (!Ok) 3972 return getCouldNotCompute(); 3973 } 3974 3975 // Proceed to the next level to examine the exit condition expression. 3976 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3977 ExitBr->getSuccessor(0), 3978 ExitBr->getSuccessor(1)); 3979 } 3980 3981 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3982 /// backedge of the specified loop will execute if its exit condition 3983 /// were a conditional branch of ExitCond, TBB, and FBB. 3984 ScalarEvolution::BackedgeTakenInfo 3985 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3986 Value *ExitCond, 3987 BasicBlock *TBB, 3988 BasicBlock *FBB) { 3989 // Check if the controlling expression for this loop is an And or Or. 3990 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3991 if (BO->getOpcode() == Instruction::And) { 3992 // Recurse on the operands of the and. 3993 BackedgeTakenInfo BTI0 = 3994 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3995 BackedgeTakenInfo BTI1 = 3996 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3997 const SCEV *BECount = getCouldNotCompute(); 3998 const SCEV *MaxBECount = getCouldNotCompute(); 3999 if (L->contains(TBB)) { 4000 // Both conditions must be true for the loop to continue executing. 4001 // Choose the less conservative count. 4002 if (BTI0.Exact == getCouldNotCompute() || 4003 BTI1.Exact == getCouldNotCompute()) 4004 BECount = getCouldNotCompute(); 4005 else 4006 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 4007 if (BTI0.Max == getCouldNotCompute()) 4008 MaxBECount = BTI1.Max; 4009 else if (BTI1.Max == getCouldNotCompute()) 4010 MaxBECount = BTI0.Max; 4011 else 4012 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 4013 } else { 4014 // Both conditions must be true at the same time for the loop to exit. 4015 // For now, be conservative. 4016 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4017 if (BTI0.Max == BTI1.Max) 4018 MaxBECount = BTI0.Max; 4019 if (BTI0.Exact == BTI1.Exact) 4020 BECount = BTI0.Exact; 4021 } 4022 4023 return BackedgeTakenInfo(BECount, MaxBECount); 4024 } 4025 if (BO->getOpcode() == Instruction::Or) { 4026 // Recurse on the operands of the or. 4027 BackedgeTakenInfo BTI0 = 4028 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 4029 BackedgeTakenInfo BTI1 = 4030 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 4031 const SCEV *BECount = getCouldNotCompute(); 4032 const SCEV *MaxBECount = getCouldNotCompute(); 4033 if (L->contains(FBB)) { 4034 // Both conditions must be false for the loop to continue executing. 4035 // Choose the less conservative count. 4036 if (BTI0.Exact == getCouldNotCompute() || 4037 BTI1.Exact == getCouldNotCompute()) 4038 BECount = getCouldNotCompute(); 4039 else 4040 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 4041 if (BTI0.Max == getCouldNotCompute()) 4042 MaxBECount = BTI1.Max; 4043 else if (BTI1.Max == getCouldNotCompute()) 4044 MaxBECount = BTI0.Max; 4045 else 4046 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 4047 } else { 4048 // Both conditions must be false at the same time for the loop to exit. 4049 // For now, be conservative. 4050 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4051 if (BTI0.Max == BTI1.Max) 4052 MaxBECount = BTI0.Max; 4053 if (BTI0.Exact == BTI1.Exact) 4054 BECount = BTI0.Exact; 4055 } 4056 4057 return BackedgeTakenInfo(BECount, MaxBECount); 4058 } 4059 } 4060 4061 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4062 // Proceed to the next level to examine the icmp. 4063 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4064 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 4065 4066 // Check for a constant condition. These are normally stripped out by 4067 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4068 // preserve the CFG and is temporarily leaving constant conditions 4069 // in place. 4070 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4071 if (L->contains(FBB) == !CI->getZExtValue()) 4072 // The backedge is always taken. 4073 return getCouldNotCompute(); 4074 else 4075 // The backedge is never taken. 4076 return getConstant(CI->getType(), 0); 4077 } 4078 4079 // If it's not an integer or pointer comparison then compute it the hard way. 4080 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 4081 } 4082 4083 static const SCEVAddRecExpr * 4084 isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) { 4085 const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S); 4086 4087 // The SCEV must be an addrec of this loop. 4088 if (!SA || SA->getLoop() != L || !SA->isAffine()) 4089 return 0; 4090 4091 // The SCEV must be known to not wrap in some way to be interesting. 4092 if (!SA->getNoWrapFlags(SCEV::FlagNW)) 4093 return 0; 4094 4095 // The stride must be a constant so that we know if it is striding up or down. 4096 if (!isa<SCEVConstant>(SA->getOperand(1))) 4097 return 0; 4098 return SA; 4099 } 4100 4101 /// getMinusSCEVForExitTest - When considering an exit test for a loop with a 4102 /// "x != y" exit test, we turn this into a computation that evaluates x-y != 0, 4103 /// and this function returns the expression to use for x-y. We know and take 4104 /// advantage of the fact that this subtraction is only being used in a 4105 /// comparison by zero context. 4106 /// 4107 /// FIXME: this can be completely removed once AddRec FlagNWs are propagated. 4108 static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS, 4109 const Loop *L, ScalarEvolution &SE) { 4110 // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not 4111 // self-wrap, then we know that the value will either become the other one 4112 // (and thus the loop terminates), that the loop will terminate through some 4113 // other exit condition first, or that the loop has undefined behavior. This 4114 // information is useful when the addrec has a stride that is != 1 or -1, 4115 // because it means we can't "miss" the exit value. 4116 // 4117 // In any of these three cases, it is safe to turn the exit condition into a 4118 // "counting down" AddRec (to zero) by subtracting the two inputs as normal, 4119 // but since we know that the "end cannot be missed" we can force the 4120 // resulting AddRec to be a NUW addrec. Since it is counting down, this means 4121 // that the AddRec *cannot* pass zero. 4122 4123 // See if LHS and RHS are addrec's we can handle. 4124 const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L); 4125 const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L); 4126 4127 // If neither addrec is interesting, just return a minus. 4128 if (RHSA == 0 && LHSA == 0) 4129 return SE.getMinusSCEV(LHS, RHS); 4130 4131 // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS. 4132 if (RHSA && LHSA == 0) { 4133 // Safe because a-b === b-a for comparisons against zero. 4134 std::swap(LHS, RHS); 4135 std::swap(LHSA, RHSA); 4136 } 4137 4138 // Handle the case when only one is advancing in a non-overflowing way. 4139 if (RHSA == 0) { 4140 // If RHS is loop varying, then we can't predict when LHS will cross it. 4141 if (!SE.isLoopInvariant(RHS, L)) 4142 return SE.getMinusSCEV(LHS, RHS); 4143 4144 // If LHS has a positive stride, then we compute RHS-LHS, because the loop 4145 // is counting up until it crosses RHS (which must be larger than LHS). If 4146 // it is negative, we compute LHS-RHS because we're counting down to RHS. 4147 const ConstantInt *Stride = 4148 cast<SCEVConstant>(LHSA->getOperand(1))->getValue(); 4149 if (Stride->getValue().isNegative()) 4150 std::swap(LHS, RHS); 4151 4152 return SE.getMinusSCEV(RHS, LHS, SCEV::FlagNUW); 4153 } 4154 4155 // If both LHS and RHS are interesting, we have something like: 4156 // a+i*4 != b+i*8. 4157 const ConstantInt *LHSStride = 4158 cast<SCEVConstant>(LHSA->getOperand(1))->getValue(); 4159 const ConstantInt *RHSStride = 4160 cast<SCEVConstant>(RHSA->getOperand(1))->getValue(); 4161 4162 // If the strides are equal, then this is just a (complex) loop invariant 4163 // comparison of a and b. 4164 if (LHSStride == RHSStride) 4165 return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart()); 4166 4167 // If the signs of the strides differ, then the negative stride is counting 4168 // down to the positive stride. 4169 if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){ 4170 if (RHSStride->getValue().isNegative()) 4171 std::swap(LHS, RHS); 4172 } else { 4173 // If LHS's stride is smaller than RHS's stride, then "b" must be less than 4174 // "a" and "b" is RHS is counting up (catching up) to LHS. This is true 4175 // whether the strides are positive or negative. 4176 if (RHSStride->getValue().slt(LHSStride->getValue())) 4177 std::swap(LHS, RHS); 4178 } 4179 4180 return SE.getMinusSCEV(LHS, RHS, SCEV::FlagNUW); 4181 } 4182 4183 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 4184 /// backedge of the specified loop will execute if its exit condition 4185 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4186 ScalarEvolution::BackedgeTakenInfo 4187 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 4188 ICmpInst *ExitCond, 4189 BasicBlock *TBB, 4190 BasicBlock *FBB) { 4191 4192 // If the condition was exit on true, convert the condition to exit on false 4193 ICmpInst::Predicate Cond; 4194 if (!L->contains(FBB)) 4195 Cond = ExitCond->getPredicate(); 4196 else 4197 Cond = ExitCond->getInversePredicate(); 4198 4199 // Handle common loops like: for (X = "string"; *X; ++X) 4200 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4201 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4202 BackedgeTakenInfo ItCnt = 4203 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 4204 if (ItCnt.hasAnyInfo()) 4205 return ItCnt; 4206 } 4207 4208 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4209 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4210 4211 // Try to evaluate any dependencies out of the loop. 4212 LHS = getSCEVAtScope(LHS, L); 4213 RHS = getSCEVAtScope(RHS, L); 4214 4215 // At this point, we would like to compute how many iterations of the 4216 // loop the predicate will return true for these inputs. 4217 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4218 // If there is a loop-invariant, force it into the RHS. 4219 std::swap(LHS, RHS); 4220 Cond = ICmpInst::getSwappedPredicate(Cond); 4221 } 4222 4223 // Simplify the operands before analyzing them. 4224 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4225 4226 // If we have a comparison of a chrec against a constant, try to use value 4227 // ranges to answer this query. 4228 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4229 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4230 if (AddRec->getLoop() == L) { 4231 // Form the constant range. 4232 ConstantRange CompRange( 4233 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4234 4235 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4236 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4237 } 4238 4239 switch (Cond) { 4240 case ICmpInst::ICMP_NE: { // while (X != Y) 4241 // Convert to: while (X-Y != 0) 4242 // FIXME: Once AddRec FlagNW are propagated, should be: 4243 // BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L); 4244 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L, 4245 *this), L); 4246 if (BTI.hasAnyInfo()) return BTI; 4247 break; 4248 } 4249 case ICmpInst::ICMP_EQ: { // while (X == Y) 4250 // Convert to: while (X-Y == 0) 4251 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4252 if (BTI.hasAnyInfo()) return BTI; 4253 break; 4254 } 4255 case ICmpInst::ICMP_SLT: { 4256 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 4257 if (BTI.hasAnyInfo()) return BTI; 4258 break; 4259 } 4260 case ICmpInst::ICMP_SGT: { 4261 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4262 getNotSCEV(RHS), L, true); 4263 if (BTI.hasAnyInfo()) return BTI; 4264 break; 4265 } 4266 case ICmpInst::ICMP_ULT: { 4267 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 4268 if (BTI.hasAnyInfo()) return BTI; 4269 break; 4270 } 4271 case ICmpInst::ICMP_UGT: { 4272 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4273 getNotSCEV(RHS), L, false); 4274 if (BTI.hasAnyInfo()) return BTI; 4275 break; 4276 } 4277 default: 4278 #if 0 4279 dbgs() << "ComputeBackedgeTakenCount "; 4280 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4281 dbgs() << "[unsigned] "; 4282 dbgs() << *LHS << " " 4283 << Instruction::getOpcodeName(Instruction::ICmp) 4284 << " " << *RHS << "\n"; 4285 #endif 4286 break; 4287 } 4288 return 4289 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 4290 } 4291 4292 static ConstantInt * 4293 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4294 ScalarEvolution &SE) { 4295 const SCEV *InVal = SE.getConstant(C); 4296 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4297 assert(isa<SCEVConstant>(Val) && 4298 "Evaluation of SCEV at constant didn't fold correctly?"); 4299 return cast<SCEVConstant>(Val)->getValue(); 4300 } 4301 4302 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 4303 /// and a GEP expression (missing the pointer index) indexing into it, return 4304 /// the addressed element of the initializer or null if the index expression is 4305 /// invalid. 4306 static Constant * 4307 GetAddressedElementFromGlobal(GlobalVariable *GV, 4308 const std::vector<ConstantInt*> &Indices) { 4309 Constant *Init = GV->getInitializer(); 4310 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 4311 uint64_t Idx = Indices[i]->getZExtValue(); 4312 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 4313 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 4314 Init = cast<Constant>(CS->getOperand(Idx)); 4315 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4316 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4317 Init = cast<Constant>(CA->getOperand(Idx)); 4318 } else if (isa<ConstantAggregateZero>(Init)) { 4319 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 4320 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4321 Init = Constant::getNullValue(STy->getElementType(Idx)); 4322 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4323 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4324 Init = Constant::getNullValue(ATy->getElementType()); 4325 } else { 4326 llvm_unreachable("Unknown constant aggregate type!"); 4327 } 4328 return 0; 4329 } else { 4330 return 0; // Unknown initializer type 4331 } 4332 } 4333 return Init; 4334 } 4335 4336 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 4337 /// 'icmp op load X, cst', try to see if we can compute the backedge 4338 /// execution count. 4339 ScalarEvolution::BackedgeTakenInfo 4340 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 4341 LoadInst *LI, 4342 Constant *RHS, 4343 const Loop *L, 4344 ICmpInst::Predicate predicate) { 4345 if (LI->isVolatile()) return getCouldNotCompute(); 4346 4347 // Check to see if the loaded pointer is a getelementptr of a global. 4348 // TODO: Use SCEV instead of manually grubbing with GEPs. 4349 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4350 if (!GEP) return getCouldNotCompute(); 4351 4352 // Make sure that it is really a constant global we are gepping, with an 4353 // initializer, and make sure the first IDX is really 0. 4354 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4355 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4356 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4357 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4358 return getCouldNotCompute(); 4359 4360 // Okay, we allow one non-constant index into the GEP instruction. 4361 Value *VarIdx = 0; 4362 std::vector<ConstantInt*> Indexes; 4363 unsigned VarIdxNum = 0; 4364 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4365 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4366 Indexes.push_back(CI); 4367 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4368 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4369 VarIdx = GEP->getOperand(i); 4370 VarIdxNum = i-2; 4371 Indexes.push_back(0); 4372 } 4373 4374 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4375 // Check to see if X is a loop variant variable value now. 4376 const SCEV *Idx = getSCEV(VarIdx); 4377 Idx = getSCEVAtScope(Idx, L); 4378 4379 // We can only recognize very limited forms of loop index expressions, in 4380 // particular, only affine AddRec's like {C1,+,C2}. 4381 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4382 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4383 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4384 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4385 return getCouldNotCompute(); 4386 4387 unsigned MaxSteps = MaxBruteForceIterations; 4388 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4389 ConstantInt *ItCst = ConstantInt::get( 4390 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4391 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4392 4393 // Form the GEP offset. 4394 Indexes[VarIdxNum] = Val; 4395 4396 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4397 if (Result == 0) break; // Cannot compute! 4398 4399 // Evaluate the condition for this iteration. 4400 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4401 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4402 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4403 #if 0 4404 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4405 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4406 << "***\n"; 4407 #endif 4408 ++NumArrayLenItCounts; 4409 return getConstant(ItCst); // Found terminating iteration! 4410 } 4411 } 4412 return getCouldNotCompute(); 4413 } 4414 4415 4416 /// CanConstantFold - Return true if we can constant fold an instruction of the 4417 /// specified type, assuming that all operands were constants. 4418 static bool CanConstantFold(const Instruction *I) { 4419 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4420 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4421 return true; 4422 4423 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4424 if (const Function *F = CI->getCalledFunction()) 4425 return canConstantFoldCallTo(F); 4426 return false; 4427 } 4428 4429 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4430 /// in the loop that V is derived from. We allow arbitrary operations along the 4431 /// way, but the operands of an operation must either be constants or a value 4432 /// derived from a constant PHI. If this expression does not fit with these 4433 /// constraints, return null. 4434 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4435 // If this is not an instruction, or if this is an instruction outside of the 4436 // loop, it can't be derived from a loop PHI. 4437 Instruction *I = dyn_cast<Instruction>(V); 4438 if (I == 0 || !L->contains(I)) return 0; 4439 4440 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4441 if (L->getHeader() == I->getParent()) 4442 return PN; 4443 else 4444 // We don't currently keep track of the control flow needed to evaluate 4445 // PHIs, so we cannot handle PHIs inside of loops. 4446 return 0; 4447 } 4448 4449 // If we won't be able to constant fold this expression even if the operands 4450 // are constants, return early. 4451 if (!CanConstantFold(I)) return 0; 4452 4453 // Otherwise, we can evaluate this instruction if all of its operands are 4454 // constant or derived from a PHI node themselves. 4455 PHINode *PHI = 0; 4456 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4457 if (!isa<Constant>(I->getOperand(Op))) { 4458 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4459 if (P == 0) return 0; // Not evolving from PHI 4460 if (PHI == 0) 4461 PHI = P; 4462 else if (PHI != P) 4463 return 0; // Evolving from multiple different PHIs. 4464 } 4465 4466 // This is a expression evolving from a constant PHI! 4467 return PHI; 4468 } 4469 4470 /// EvaluateExpression - Given an expression that passes the 4471 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4472 /// in the loop has the value PHIVal. If we can't fold this expression for some 4473 /// reason, return null. 4474 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4475 const TargetData *TD) { 4476 if (isa<PHINode>(V)) return PHIVal; 4477 if (Constant *C = dyn_cast<Constant>(V)) return C; 4478 Instruction *I = cast<Instruction>(V); 4479 4480 std::vector<Constant*> Operands(I->getNumOperands()); 4481 4482 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4483 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4484 if (Operands[i] == 0) return 0; 4485 } 4486 4487 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4488 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4489 Operands[1], TD); 4490 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4491 &Operands[0], Operands.size(), TD); 4492 } 4493 4494 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4495 /// in the header of its containing loop, we know the loop executes a 4496 /// constant number of times, and the PHI node is just a recurrence 4497 /// involving constants, fold it. 4498 Constant * 4499 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4500 const APInt &BEs, 4501 const Loop *L) { 4502 std::map<PHINode*, Constant*>::const_iterator I = 4503 ConstantEvolutionLoopExitValue.find(PN); 4504 if (I != ConstantEvolutionLoopExitValue.end()) 4505 return I->second; 4506 4507 if (BEs.ugt(MaxBruteForceIterations)) 4508 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4509 4510 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4511 4512 // Since the loop is canonicalized, the PHI node must have two entries. One 4513 // entry must be a constant (coming in from outside of the loop), and the 4514 // second must be derived from the same PHI. 4515 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4516 Constant *StartCST = 4517 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4518 if (StartCST == 0) 4519 return RetVal = 0; // Must be a constant. 4520 4521 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4522 if (getConstantEvolvingPHI(BEValue, L) != PN && 4523 !isa<Constant>(BEValue)) 4524 return RetVal = 0; // Not derived from same PHI. 4525 4526 // Execute the loop symbolically to determine the exit value. 4527 if (BEs.getActiveBits() >= 32) 4528 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4529 4530 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4531 unsigned IterationNum = 0; 4532 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4533 if (IterationNum == NumIterations) 4534 return RetVal = PHIVal; // Got exit value! 4535 4536 // Compute the value of the PHI node for the next iteration. 4537 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4538 if (NextPHI == PHIVal) 4539 return RetVal = NextPHI; // Stopped evolving! 4540 if (NextPHI == 0) 4541 return 0; // Couldn't evaluate! 4542 PHIVal = NextPHI; 4543 } 4544 } 4545 4546 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 4547 /// constant number of times (the condition evolves only from constants), 4548 /// try to evaluate a few iterations of the loop until we get the exit 4549 /// condition gets a value of ExitWhen (true or false). If we cannot 4550 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4551 const SCEV * 4552 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 4553 Value *Cond, 4554 bool ExitWhen) { 4555 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4556 if (PN == 0) return getCouldNotCompute(); 4557 4558 // If the loop is canonicalized, the PHI will have exactly two entries. 4559 // That's the only form we support here. 4560 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4561 4562 // One entry must be a constant (coming in from outside of the loop), and the 4563 // second must be derived from the same PHI. 4564 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4565 Constant *StartCST = 4566 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4567 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4568 4569 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4570 if (getConstantEvolvingPHI(BEValue, L) != PN && 4571 !isa<Constant>(BEValue)) 4572 return getCouldNotCompute(); // Not derived from same PHI. 4573 4574 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4575 // the loop symbolically to determine when the condition gets a value of 4576 // "ExitWhen". 4577 unsigned IterationNum = 0; 4578 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4579 for (Constant *PHIVal = StartCST; 4580 IterationNum != MaxIterations; ++IterationNum) { 4581 ConstantInt *CondVal = 4582 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4583 4584 // Couldn't symbolically evaluate. 4585 if (!CondVal) return getCouldNotCompute(); 4586 4587 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4588 ++NumBruteForceTripCountsComputed; 4589 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4590 } 4591 4592 // Compute the value of the PHI node for the next iteration. 4593 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4594 if (NextPHI == 0 || NextPHI == PHIVal) 4595 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4596 PHIVal = NextPHI; 4597 } 4598 4599 // Too many iterations were needed to evaluate. 4600 return getCouldNotCompute(); 4601 } 4602 4603 /// getSCEVAtScope - Return a SCEV expression for the specified value 4604 /// at the specified scope in the program. The L value specifies a loop 4605 /// nest to evaluate the expression at, where null is the top-level or a 4606 /// specified loop is immediately inside of the loop. 4607 /// 4608 /// This method can be used to compute the exit value for a variable defined 4609 /// in a loop by querying what the value will hold in the parent loop. 4610 /// 4611 /// In the case that a relevant loop exit value cannot be computed, the 4612 /// original value V is returned. 4613 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4614 // Check to see if we've folded this expression at this loop before. 4615 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4616 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4617 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4618 if (!Pair.second) 4619 return Pair.first->second ? Pair.first->second : V; 4620 4621 // Otherwise compute it. 4622 const SCEV *C = computeSCEVAtScope(V, L); 4623 ValuesAtScopes[V][L] = C; 4624 return C; 4625 } 4626 4627 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4628 if (isa<SCEVConstant>(V)) return V; 4629 4630 // If this instruction is evolved from a constant-evolving PHI, compute the 4631 // exit value from the loop without using SCEVs. 4632 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4633 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4634 const Loop *LI = (*this->LI)[I->getParent()]; 4635 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4636 if (PHINode *PN = dyn_cast<PHINode>(I)) 4637 if (PN->getParent() == LI->getHeader()) { 4638 // Okay, there is no closed form solution for the PHI node. Check 4639 // to see if the loop that contains it has a known backedge-taken 4640 // count. If so, we may be able to force computation of the exit 4641 // value. 4642 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4643 if (const SCEVConstant *BTCC = 4644 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4645 // Okay, we know how many times the containing loop executes. If 4646 // this is a constant evolving PHI node, get the final value at 4647 // the specified iteration number. 4648 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4649 BTCC->getValue()->getValue(), 4650 LI); 4651 if (RV) return getSCEV(RV); 4652 } 4653 } 4654 4655 // Okay, this is an expression that we cannot symbolically evaluate 4656 // into a SCEV. Check to see if it's possible to symbolically evaluate 4657 // the arguments into constants, and if so, try to constant propagate the 4658 // result. This is particularly useful for computing loop exit values. 4659 if (CanConstantFold(I)) { 4660 SmallVector<Constant *, 4> Operands; 4661 bool MadeImprovement = false; 4662 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4663 Value *Op = I->getOperand(i); 4664 if (Constant *C = dyn_cast<Constant>(Op)) { 4665 Operands.push_back(C); 4666 continue; 4667 } 4668 4669 // If any of the operands is non-constant and if they are 4670 // non-integer and non-pointer, don't even try to analyze them 4671 // with scev techniques. 4672 if (!isSCEVable(Op->getType())) 4673 return V; 4674 4675 const SCEV *OrigV = getSCEV(Op); 4676 const SCEV *OpV = getSCEVAtScope(OrigV, L); 4677 MadeImprovement |= OrigV != OpV; 4678 4679 Constant *C = 0; 4680 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 4681 C = SC->getValue(); 4682 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) 4683 C = dyn_cast<Constant>(SU->getValue()); 4684 if (!C) return V; 4685 if (C->getType() != Op->getType()) 4686 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4687 Op->getType(), 4688 false), 4689 C, Op->getType()); 4690 Operands.push_back(C); 4691 } 4692 4693 // Check to see if getSCEVAtScope actually made an improvement. 4694 if (MadeImprovement) { 4695 Constant *C = 0; 4696 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4697 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4698 Operands[0], Operands[1], TD); 4699 else 4700 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4701 &Operands[0], Operands.size(), TD); 4702 if (!C) return V; 4703 return getSCEV(C); 4704 } 4705 } 4706 } 4707 4708 // This is some other type of SCEVUnknown, just return it. 4709 return V; 4710 } 4711 4712 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4713 // Avoid performing the look-up in the common case where the specified 4714 // expression has no loop-variant portions. 4715 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4716 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4717 if (OpAtScope != Comm->getOperand(i)) { 4718 // Okay, at least one of these operands is loop variant but might be 4719 // foldable. Build a new instance of the folded commutative expression. 4720 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4721 Comm->op_begin()+i); 4722 NewOps.push_back(OpAtScope); 4723 4724 for (++i; i != e; ++i) { 4725 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4726 NewOps.push_back(OpAtScope); 4727 } 4728 if (isa<SCEVAddExpr>(Comm)) 4729 return getAddExpr(NewOps); 4730 if (isa<SCEVMulExpr>(Comm)) 4731 return getMulExpr(NewOps); 4732 if (isa<SCEVSMaxExpr>(Comm)) 4733 return getSMaxExpr(NewOps); 4734 if (isa<SCEVUMaxExpr>(Comm)) 4735 return getUMaxExpr(NewOps); 4736 llvm_unreachable("Unknown commutative SCEV type!"); 4737 } 4738 } 4739 // If we got here, all operands are loop invariant. 4740 return Comm; 4741 } 4742 4743 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4744 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4745 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4746 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4747 return Div; // must be loop invariant 4748 return getUDivExpr(LHS, RHS); 4749 } 4750 4751 // If this is a loop recurrence for a loop that does not contain L, then we 4752 // are dealing with the final value computed by the loop. 4753 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4754 // First, attempt to evaluate each operand. 4755 // Avoid performing the look-up in the common case where the specified 4756 // expression has no loop-variant portions. 4757 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4758 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 4759 if (OpAtScope == AddRec->getOperand(i)) 4760 continue; 4761 4762 // Okay, at least one of these operands is loop variant but might be 4763 // foldable. Build a new instance of the folded commutative expression. 4764 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 4765 AddRec->op_begin()+i); 4766 NewOps.push_back(OpAtScope); 4767 for (++i; i != e; ++i) 4768 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 4769 4770 AddRec = cast<SCEVAddRecExpr>( 4771 getAddRecExpr(NewOps, AddRec->getLoop(), 4772 AddRec->getNoWrapFlags(SCEV::FlagNW))); 4773 break; 4774 } 4775 4776 // If the scope is outside the addrec's loop, evaluate it by using the 4777 // loop exit value of the addrec. 4778 if (!AddRec->getLoop()->contains(L)) { 4779 // To evaluate this recurrence, we need to know how many times the AddRec 4780 // loop iterates. Compute this now. 4781 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4782 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4783 4784 // Then, evaluate the AddRec. 4785 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4786 } 4787 4788 return AddRec; 4789 } 4790 4791 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4792 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4793 if (Op == Cast->getOperand()) 4794 return Cast; // must be loop invariant 4795 return getZeroExtendExpr(Op, Cast->getType()); 4796 } 4797 4798 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4799 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4800 if (Op == Cast->getOperand()) 4801 return Cast; // must be loop invariant 4802 return getSignExtendExpr(Op, Cast->getType()); 4803 } 4804 4805 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4806 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4807 if (Op == Cast->getOperand()) 4808 return Cast; // must be loop invariant 4809 return getTruncateExpr(Op, Cast->getType()); 4810 } 4811 4812 llvm_unreachable("Unknown SCEV type!"); 4813 return 0; 4814 } 4815 4816 /// getSCEVAtScope - This is a convenience function which does 4817 /// getSCEVAtScope(getSCEV(V), L). 4818 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4819 return getSCEVAtScope(getSCEV(V), L); 4820 } 4821 4822 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4823 /// following equation: 4824 /// 4825 /// A * X = B (mod N) 4826 /// 4827 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4828 /// A and B isn't important. 4829 /// 4830 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4831 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4832 ScalarEvolution &SE) { 4833 uint32_t BW = A.getBitWidth(); 4834 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4835 assert(A != 0 && "A must be non-zero."); 4836 4837 // 1. D = gcd(A, N) 4838 // 4839 // The gcd of A and N may have only one prime factor: 2. The number of 4840 // trailing zeros in A is its multiplicity 4841 uint32_t Mult2 = A.countTrailingZeros(); 4842 // D = 2^Mult2 4843 4844 // 2. Check if B is divisible by D. 4845 // 4846 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4847 // is not less than multiplicity of this prime factor for D. 4848 if (B.countTrailingZeros() < Mult2) 4849 return SE.getCouldNotCompute(); 4850 4851 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4852 // modulo (N / D). 4853 // 4854 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4855 // bit width during computations. 4856 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4857 APInt Mod(BW + 1, 0); 4858 Mod.setBit(BW - Mult2); // Mod = N / D 4859 APInt I = AD.multiplicativeInverse(Mod); 4860 4861 // 4. Compute the minimum unsigned root of the equation: 4862 // I * (B / D) mod (N / D) 4863 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4864 4865 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4866 // bits. 4867 return SE.getConstant(Result.trunc(BW)); 4868 } 4869 4870 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4871 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4872 /// might be the same) or two SCEVCouldNotCompute objects. 4873 /// 4874 static std::pair<const SCEV *,const SCEV *> 4875 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4876 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4877 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4878 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4879 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4880 4881 // We currently can only solve this if the coefficients are constants. 4882 if (!LC || !MC || !NC) { 4883 const SCEV *CNC = SE.getCouldNotCompute(); 4884 return std::make_pair(CNC, CNC); 4885 } 4886 4887 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4888 const APInt &L = LC->getValue()->getValue(); 4889 const APInt &M = MC->getValue()->getValue(); 4890 const APInt &N = NC->getValue()->getValue(); 4891 APInt Two(BitWidth, 2); 4892 APInt Four(BitWidth, 4); 4893 4894 { 4895 using namespace APIntOps; 4896 const APInt& C = L; 4897 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4898 // The B coefficient is M-N/2 4899 APInt B(M); 4900 B -= sdiv(N,Two); 4901 4902 // The A coefficient is N/2 4903 APInt A(N.sdiv(Two)); 4904 4905 // Compute the B^2-4ac term. 4906 APInt SqrtTerm(B); 4907 SqrtTerm *= B; 4908 SqrtTerm -= Four * (A * C); 4909 4910 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4911 // integer value or else APInt::sqrt() will assert. 4912 APInt SqrtVal(SqrtTerm.sqrt()); 4913 4914 // Compute the two solutions for the quadratic formula. 4915 // The divisions must be performed as signed divisions. 4916 APInt NegB(-B); 4917 APInt TwoA( A << 1 ); 4918 if (TwoA.isMinValue()) { 4919 const SCEV *CNC = SE.getCouldNotCompute(); 4920 return std::make_pair(CNC, CNC); 4921 } 4922 4923 LLVMContext &Context = SE.getContext(); 4924 4925 ConstantInt *Solution1 = 4926 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4927 ConstantInt *Solution2 = 4928 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4929 4930 return std::make_pair(SE.getConstant(Solution1), 4931 SE.getConstant(Solution2)); 4932 } // end APIntOps namespace 4933 } 4934 4935 /// HowFarToZero - Return the number of times a backedge comparing the specified 4936 /// value to zero will execute. If not computable, return CouldNotCompute. 4937 /// 4938 /// This is only used for loops with a "x != y" exit test. The exit condition is 4939 /// now expressed as a single expression, V = x-y. So the exit test is 4940 /// effectively V != 0. We know and take advantage of the fact that this 4941 /// expression only being used in a comparison by zero context. 4942 ScalarEvolution::BackedgeTakenInfo 4943 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4944 // If the value is a constant 4945 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4946 // If the value is already zero, the branch will execute zero times. 4947 if (C->getValue()->isZero()) return C; 4948 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4949 } 4950 4951 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4952 if (!AddRec || AddRec->getLoop() != L) 4953 return getCouldNotCompute(); 4954 4955 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4956 // the quadratic equation to solve it. 4957 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 4958 std::pair<const SCEV *,const SCEV *> Roots = 4959 SolveQuadraticEquation(AddRec, *this); 4960 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4961 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4962 if (R1 && R2) { 4963 #if 0 4964 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 4965 << " sol#2: " << *R2 << "\n"; 4966 #endif 4967 // Pick the smallest positive root value. 4968 if (ConstantInt *CB = 4969 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 4970 R1->getValue(), 4971 R2->getValue()))) { 4972 if (CB->getZExtValue() == false) 4973 std::swap(R1, R2); // R1 is the minimum root now. 4974 4975 // We can only use this value if the chrec ends up with an exact zero 4976 // value at this index. When solving for "X*X != 5", for example, we 4977 // should not accept a root of 2. 4978 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4979 if (Val->isZero()) 4980 return R1; // We found a quadratic root! 4981 } 4982 } 4983 return getCouldNotCompute(); 4984 } 4985 4986 // Otherwise we can only handle this if it is affine. 4987 if (!AddRec->isAffine()) 4988 return getCouldNotCompute(); 4989 4990 // If this is an affine expression, the execution count of this branch is 4991 // the minimum unsigned root of the following equation: 4992 // 4993 // Start + Step*N = 0 (mod 2^BW) 4994 // 4995 // equivalent to: 4996 // 4997 // Step*N = -Start (mod 2^BW) 4998 // 4999 // where BW is the common bit width of Start and Step. 5000 5001 // Get the initial value for the loop. 5002 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5003 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5004 5005 // For now we handle only constant steps. 5006 // 5007 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5008 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5009 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5010 // We have not yet seen any such cases. 5011 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5012 if (StepC == 0) 5013 return getCouldNotCompute(); 5014 5015 // For positive steps (counting up until unsigned overflow): 5016 // N = -Start/Step (as unsigned) 5017 // For negative steps (counting down to zero): 5018 // N = Start/-Step 5019 // First compute the unsigned distance from zero in the direction of Step. 5020 bool CountDown = StepC->getValue()->getValue().isNegative(); 5021 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5022 5023 // Handle unitary steps, which cannot wraparound. 5024 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5025 // N = Distance (as unsigned) 5026 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) 5027 return Distance; 5028 5029 // If the recurrence is known not to wraparound, unsigned divide computes the 5030 // back edge count. We know that the value will either become zero (and thus 5031 // the loop terminates), that the loop will terminate through some other exit 5032 // condition first, or that the loop has undefined behavior. This means 5033 // we can't "miss" the exit value, even with nonunit stride. 5034 // 5035 // FIXME: Prove that loops always exhibits *acceptable* undefined 5036 // behavior. Loops must exhibit defined behavior until a wrapped value is 5037 // actually used. So the trip count computed by udiv could be smaller than the 5038 // number of well-defined iterations. 5039 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) 5040 // FIXME: We really want an "isexact" bit for udiv. 5041 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5042 5043 // Then, try to solve the above equation provided that Start is constant. 5044 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5045 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5046 -StartC->getValue()->getValue(), 5047 *this); 5048 return getCouldNotCompute(); 5049 } 5050 5051 /// HowFarToNonZero - Return the number of times a backedge checking the 5052 /// specified value for nonzero will execute. If not computable, return 5053 /// CouldNotCompute 5054 ScalarEvolution::BackedgeTakenInfo 5055 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5056 // Loops that look like: while (X == 0) are very strange indeed. We don't 5057 // handle them yet except for the trivial case. This could be expanded in the 5058 // future as needed. 5059 5060 // If the value is a constant, check to see if it is known to be non-zero 5061 // already. If so, the backedge will execute zero times. 5062 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5063 if (!C->getValue()->isNullValue()) 5064 return getConstant(C->getType(), 0); 5065 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5066 } 5067 5068 // We could implement others, but I really doubt anyone writes loops like 5069 // this, and if they did, they would already be constant folded. 5070 return getCouldNotCompute(); 5071 } 5072 5073 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5074 /// (which may not be an immediate predecessor) which has exactly one 5075 /// successor from which BB is reachable, or null if no such block is 5076 /// found. 5077 /// 5078 std::pair<BasicBlock *, BasicBlock *> 5079 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5080 // If the block has a unique predecessor, then there is no path from the 5081 // predecessor to the block that does not go through the direct edge 5082 // from the predecessor to the block. 5083 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5084 return std::make_pair(Pred, BB); 5085 5086 // A loop's header is defined to be a block that dominates the loop. 5087 // If the header has a unique predecessor outside the loop, it must be 5088 // a block that has exactly one successor that can reach the loop. 5089 if (Loop *L = LI->getLoopFor(BB)) 5090 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5091 5092 return std::pair<BasicBlock *, BasicBlock *>(); 5093 } 5094 5095 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5096 /// testing whether two expressions are equal, however for the purposes of 5097 /// looking for a condition guarding a loop, it can be useful to be a little 5098 /// more general, since a front-end may have replicated the controlling 5099 /// expression. 5100 /// 5101 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5102 // Quick check to see if they are the same SCEV. 5103 if (A == B) return true; 5104 5105 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5106 // two different instructions with the same value. Check for this case. 5107 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5108 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5109 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5110 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5111 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5112 return true; 5113 5114 // Otherwise assume they may have a different value. 5115 return false; 5116 } 5117 5118 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5119 /// predicate Pred. Return true iff any changes were made. 5120 /// 5121 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5122 const SCEV *&LHS, const SCEV *&RHS) { 5123 bool Changed = false; 5124 5125 // Canonicalize a constant to the right side. 5126 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5127 // Check for both operands constant. 5128 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5129 if (ConstantExpr::getICmp(Pred, 5130 LHSC->getValue(), 5131 RHSC->getValue())->isNullValue()) 5132 goto trivially_false; 5133 else 5134 goto trivially_true; 5135 } 5136 // Otherwise swap the operands to put the constant on the right. 5137 std::swap(LHS, RHS); 5138 Pred = ICmpInst::getSwappedPredicate(Pred); 5139 Changed = true; 5140 } 5141 5142 // If we're comparing an addrec with a value which is loop-invariant in the 5143 // addrec's loop, put the addrec on the left. Also make a dominance check, 5144 // as both operands could be addrecs loop-invariant in each other's loop. 5145 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5146 const Loop *L = AR->getLoop(); 5147 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5148 std::swap(LHS, RHS); 5149 Pred = ICmpInst::getSwappedPredicate(Pred); 5150 Changed = true; 5151 } 5152 } 5153 5154 // If there's a constant operand, canonicalize comparisons with boundary 5155 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5156 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5157 const APInt &RA = RC->getValue()->getValue(); 5158 switch (Pred) { 5159 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5160 case ICmpInst::ICMP_EQ: 5161 case ICmpInst::ICMP_NE: 5162 break; 5163 case ICmpInst::ICMP_UGE: 5164 if ((RA - 1).isMinValue()) { 5165 Pred = ICmpInst::ICMP_NE; 5166 RHS = getConstant(RA - 1); 5167 Changed = true; 5168 break; 5169 } 5170 if (RA.isMaxValue()) { 5171 Pred = ICmpInst::ICMP_EQ; 5172 Changed = true; 5173 break; 5174 } 5175 if (RA.isMinValue()) goto trivially_true; 5176 5177 Pred = ICmpInst::ICMP_UGT; 5178 RHS = getConstant(RA - 1); 5179 Changed = true; 5180 break; 5181 case ICmpInst::ICMP_ULE: 5182 if ((RA + 1).isMaxValue()) { 5183 Pred = ICmpInst::ICMP_NE; 5184 RHS = getConstant(RA + 1); 5185 Changed = true; 5186 break; 5187 } 5188 if (RA.isMinValue()) { 5189 Pred = ICmpInst::ICMP_EQ; 5190 Changed = true; 5191 break; 5192 } 5193 if (RA.isMaxValue()) goto trivially_true; 5194 5195 Pred = ICmpInst::ICMP_ULT; 5196 RHS = getConstant(RA + 1); 5197 Changed = true; 5198 break; 5199 case ICmpInst::ICMP_SGE: 5200 if ((RA - 1).isMinSignedValue()) { 5201 Pred = ICmpInst::ICMP_NE; 5202 RHS = getConstant(RA - 1); 5203 Changed = true; 5204 break; 5205 } 5206 if (RA.isMaxSignedValue()) { 5207 Pred = ICmpInst::ICMP_EQ; 5208 Changed = true; 5209 break; 5210 } 5211 if (RA.isMinSignedValue()) goto trivially_true; 5212 5213 Pred = ICmpInst::ICMP_SGT; 5214 RHS = getConstant(RA - 1); 5215 Changed = true; 5216 break; 5217 case ICmpInst::ICMP_SLE: 5218 if ((RA + 1).isMaxSignedValue()) { 5219 Pred = ICmpInst::ICMP_NE; 5220 RHS = getConstant(RA + 1); 5221 Changed = true; 5222 break; 5223 } 5224 if (RA.isMinSignedValue()) { 5225 Pred = ICmpInst::ICMP_EQ; 5226 Changed = true; 5227 break; 5228 } 5229 if (RA.isMaxSignedValue()) goto trivially_true; 5230 5231 Pred = ICmpInst::ICMP_SLT; 5232 RHS = getConstant(RA + 1); 5233 Changed = true; 5234 break; 5235 case ICmpInst::ICMP_UGT: 5236 if (RA.isMinValue()) { 5237 Pred = ICmpInst::ICMP_NE; 5238 Changed = true; 5239 break; 5240 } 5241 if ((RA + 1).isMaxValue()) { 5242 Pred = ICmpInst::ICMP_EQ; 5243 RHS = getConstant(RA + 1); 5244 Changed = true; 5245 break; 5246 } 5247 if (RA.isMaxValue()) goto trivially_false; 5248 break; 5249 case ICmpInst::ICMP_ULT: 5250 if (RA.isMaxValue()) { 5251 Pred = ICmpInst::ICMP_NE; 5252 Changed = true; 5253 break; 5254 } 5255 if ((RA - 1).isMinValue()) { 5256 Pred = ICmpInst::ICMP_EQ; 5257 RHS = getConstant(RA - 1); 5258 Changed = true; 5259 break; 5260 } 5261 if (RA.isMinValue()) goto trivially_false; 5262 break; 5263 case ICmpInst::ICMP_SGT: 5264 if (RA.isMinSignedValue()) { 5265 Pred = ICmpInst::ICMP_NE; 5266 Changed = true; 5267 break; 5268 } 5269 if ((RA + 1).isMaxSignedValue()) { 5270 Pred = ICmpInst::ICMP_EQ; 5271 RHS = getConstant(RA + 1); 5272 Changed = true; 5273 break; 5274 } 5275 if (RA.isMaxSignedValue()) goto trivially_false; 5276 break; 5277 case ICmpInst::ICMP_SLT: 5278 if (RA.isMaxSignedValue()) { 5279 Pred = ICmpInst::ICMP_NE; 5280 Changed = true; 5281 break; 5282 } 5283 if ((RA - 1).isMinSignedValue()) { 5284 Pred = ICmpInst::ICMP_EQ; 5285 RHS = getConstant(RA - 1); 5286 Changed = true; 5287 break; 5288 } 5289 if (RA.isMinSignedValue()) goto trivially_false; 5290 break; 5291 } 5292 } 5293 5294 // Check for obvious equality. 5295 if (HasSameValue(LHS, RHS)) { 5296 if (ICmpInst::isTrueWhenEqual(Pred)) 5297 goto trivially_true; 5298 if (ICmpInst::isFalseWhenEqual(Pred)) 5299 goto trivially_false; 5300 } 5301 5302 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5303 // adding or subtracting 1 from one of the operands. 5304 switch (Pred) { 5305 case ICmpInst::ICMP_SLE: 5306 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5307 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5308 SCEV::FlagNSW); 5309 Pred = ICmpInst::ICMP_SLT; 5310 Changed = true; 5311 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5312 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5313 SCEV::FlagNSW); 5314 Pred = ICmpInst::ICMP_SLT; 5315 Changed = true; 5316 } 5317 break; 5318 case ICmpInst::ICMP_SGE: 5319 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5320 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5321 SCEV::FlagNSW); 5322 Pred = ICmpInst::ICMP_SGT; 5323 Changed = true; 5324 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5325 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5326 SCEV::FlagNSW); 5327 Pred = ICmpInst::ICMP_SGT; 5328 Changed = true; 5329 } 5330 break; 5331 case ICmpInst::ICMP_ULE: 5332 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5333 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5334 SCEV::FlagNUW); 5335 Pred = ICmpInst::ICMP_ULT; 5336 Changed = true; 5337 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5338 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5339 SCEV::FlagNUW); 5340 Pred = ICmpInst::ICMP_ULT; 5341 Changed = true; 5342 } 5343 break; 5344 case ICmpInst::ICMP_UGE: 5345 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5346 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5347 SCEV::FlagNUW); 5348 Pred = ICmpInst::ICMP_UGT; 5349 Changed = true; 5350 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5351 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5352 SCEV::FlagNUW); 5353 Pred = ICmpInst::ICMP_UGT; 5354 Changed = true; 5355 } 5356 break; 5357 default: 5358 break; 5359 } 5360 5361 // TODO: More simplifications are possible here. 5362 5363 return Changed; 5364 5365 trivially_true: 5366 // Return 0 == 0. 5367 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5368 Pred = ICmpInst::ICMP_EQ; 5369 return true; 5370 5371 trivially_false: 5372 // Return 0 != 0. 5373 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5374 Pred = ICmpInst::ICMP_NE; 5375 return true; 5376 } 5377 5378 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5379 return getSignedRange(S).getSignedMax().isNegative(); 5380 } 5381 5382 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5383 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5384 } 5385 5386 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5387 return !getSignedRange(S).getSignedMin().isNegative(); 5388 } 5389 5390 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5391 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5392 } 5393 5394 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5395 return isKnownNegative(S) || isKnownPositive(S); 5396 } 5397 5398 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5399 const SCEV *LHS, const SCEV *RHS) { 5400 // Canonicalize the inputs first. 5401 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5402 5403 // If LHS or RHS is an addrec, check to see if the condition is true in 5404 // every iteration of the loop. 5405 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5406 if (isLoopEntryGuardedByCond( 5407 AR->getLoop(), Pred, AR->getStart(), RHS) && 5408 isLoopBackedgeGuardedByCond( 5409 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5410 return true; 5411 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5412 if (isLoopEntryGuardedByCond( 5413 AR->getLoop(), Pred, LHS, AR->getStart()) && 5414 isLoopBackedgeGuardedByCond( 5415 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5416 return true; 5417 5418 // Otherwise see what can be done with known constant ranges. 5419 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5420 } 5421 5422 bool 5423 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5424 const SCEV *LHS, const SCEV *RHS) { 5425 if (HasSameValue(LHS, RHS)) 5426 return ICmpInst::isTrueWhenEqual(Pred); 5427 5428 // This code is split out from isKnownPredicate because it is called from 5429 // within isLoopEntryGuardedByCond. 5430 switch (Pred) { 5431 default: 5432 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5433 break; 5434 case ICmpInst::ICMP_SGT: 5435 Pred = ICmpInst::ICMP_SLT; 5436 std::swap(LHS, RHS); 5437 case ICmpInst::ICMP_SLT: { 5438 ConstantRange LHSRange = getSignedRange(LHS); 5439 ConstantRange RHSRange = getSignedRange(RHS); 5440 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5441 return true; 5442 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5443 return false; 5444 break; 5445 } 5446 case ICmpInst::ICMP_SGE: 5447 Pred = ICmpInst::ICMP_SLE; 5448 std::swap(LHS, RHS); 5449 case ICmpInst::ICMP_SLE: { 5450 ConstantRange LHSRange = getSignedRange(LHS); 5451 ConstantRange RHSRange = getSignedRange(RHS); 5452 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5453 return true; 5454 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5455 return false; 5456 break; 5457 } 5458 case ICmpInst::ICMP_UGT: 5459 Pred = ICmpInst::ICMP_ULT; 5460 std::swap(LHS, RHS); 5461 case ICmpInst::ICMP_ULT: { 5462 ConstantRange LHSRange = getUnsignedRange(LHS); 5463 ConstantRange RHSRange = getUnsignedRange(RHS); 5464 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5465 return true; 5466 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5467 return false; 5468 break; 5469 } 5470 case ICmpInst::ICMP_UGE: 5471 Pred = ICmpInst::ICMP_ULE; 5472 std::swap(LHS, RHS); 5473 case ICmpInst::ICMP_ULE: { 5474 ConstantRange LHSRange = getUnsignedRange(LHS); 5475 ConstantRange RHSRange = getUnsignedRange(RHS); 5476 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5477 return true; 5478 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5479 return false; 5480 break; 5481 } 5482 case ICmpInst::ICMP_NE: { 5483 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5484 return true; 5485 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5486 return true; 5487 5488 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5489 if (isKnownNonZero(Diff)) 5490 return true; 5491 break; 5492 } 5493 case ICmpInst::ICMP_EQ: 5494 // The check at the top of the function catches the case where 5495 // the values are known to be equal. 5496 break; 5497 } 5498 return false; 5499 } 5500 5501 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5502 /// protected by a conditional between LHS and RHS. This is used to 5503 /// to eliminate casts. 5504 bool 5505 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5506 ICmpInst::Predicate Pred, 5507 const SCEV *LHS, const SCEV *RHS) { 5508 // Interpret a null as meaning no loop, where there is obviously no guard 5509 // (interprocedural conditions notwithstanding). 5510 if (!L) return true; 5511 5512 BasicBlock *Latch = L->getLoopLatch(); 5513 if (!Latch) 5514 return false; 5515 5516 BranchInst *LoopContinuePredicate = 5517 dyn_cast<BranchInst>(Latch->getTerminator()); 5518 if (!LoopContinuePredicate || 5519 LoopContinuePredicate->isUnconditional()) 5520 return false; 5521 5522 return isImpliedCond(Pred, LHS, RHS, 5523 LoopContinuePredicate->getCondition(), 5524 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5525 } 5526 5527 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5528 /// by a conditional between LHS and RHS. This is used to help avoid max 5529 /// expressions in loop trip counts, and to eliminate casts. 5530 bool 5531 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5532 ICmpInst::Predicate Pred, 5533 const SCEV *LHS, const SCEV *RHS) { 5534 // Interpret a null as meaning no loop, where there is obviously no guard 5535 // (interprocedural conditions notwithstanding). 5536 if (!L) return false; 5537 5538 // Starting at the loop predecessor, climb up the predecessor chain, as long 5539 // as there are predecessors that can be found that have unique successors 5540 // leading to the original header. 5541 for (std::pair<BasicBlock *, BasicBlock *> 5542 Pair(L->getLoopPredecessor(), L->getHeader()); 5543 Pair.first; 5544 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5545 5546 BranchInst *LoopEntryPredicate = 5547 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5548 if (!LoopEntryPredicate || 5549 LoopEntryPredicate->isUnconditional()) 5550 continue; 5551 5552 if (isImpliedCond(Pred, LHS, RHS, 5553 LoopEntryPredicate->getCondition(), 5554 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5555 return true; 5556 } 5557 5558 return false; 5559 } 5560 5561 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5562 /// and RHS is true whenever the given Cond value evaluates to true. 5563 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 5564 const SCEV *LHS, const SCEV *RHS, 5565 Value *FoundCondValue, 5566 bool Inverse) { 5567 // Recursively handle And and Or conditions. 5568 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 5569 if (BO->getOpcode() == Instruction::And) { 5570 if (!Inverse) 5571 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5572 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5573 } else if (BO->getOpcode() == Instruction::Or) { 5574 if (Inverse) 5575 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5576 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5577 } 5578 } 5579 5580 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 5581 if (!ICI) return false; 5582 5583 // Bail if the ICmp's operands' types are wider than the needed type 5584 // before attempting to call getSCEV on them. This avoids infinite 5585 // recursion, since the analysis of widening casts can require loop 5586 // exit condition information for overflow checking, which would 5587 // lead back here. 5588 if (getTypeSizeInBits(LHS->getType()) < 5589 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5590 return false; 5591 5592 // Now that we found a conditional branch that dominates the loop, check to 5593 // see if it is the comparison we are looking for. 5594 ICmpInst::Predicate FoundPred; 5595 if (Inverse) 5596 FoundPred = ICI->getInversePredicate(); 5597 else 5598 FoundPred = ICI->getPredicate(); 5599 5600 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5601 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5602 5603 // Balance the types. The case where FoundLHS' type is wider than 5604 // LHS' type is checked for above. 5605 if (getTypeSizeInBits(LHS->getType()) > 5606 getTypeSizeInBits(FoundLHS->getType())) { 5607 if (CmpInst::isSigned(Pred)) { 5608 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5609 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5610 } else { 5611 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5612 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5613 } 5614 } 5615 5616 // Canonicalize the query to match the way instcombine will have 5617 // canonicalized the comparison. 5618 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5619 if (LHS == RHS) 5620 return CmpInst::isTrueWhenEqual(Pred); 5621 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5622 if (FoundLHS == FoundRHS) 5623 return CmpInst::isFalseWhenEqual(Pred); 5624 5625 // Check to see if we can make the LHS or RHS match. 5626 if (LHS == FoundRHS || RHS == FoundLHS) { 5627 if (isa<SCEVConstant>(RHS)) { 5628 std::swap(FoundLHS, FoundRHS); 5629 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5630 } else { 5631 std::swap(LHS, RHS); 5632 Pred = ICmpInst::getSwappedPredicate(Pred); 5633 } 5634 } 5635 5636 // Check whether the found predicate is the same as the desired predicate. 5637 if (FoundPred == Pred) 5638 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5639 5640 // Check whether swapping the found predicate makes it the same as the 5641 // desired predicate. 5642 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5643 if (isa<SCEVConstant>(RHS)) 5644 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5645 else 5646 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5647 RHS, LHS, FoundLHS, FoundRHS); 5648 } 5649 5650 // Check whether the actual condition is beyond sufficient. 5651 if (FoundPred == ICmpInst::ICMP_EQ) 5652 if (ICmpInst::isTrueWhenEqual(Pred)) 5653 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5654 return true; 5655 if (Pred == ICmpInst::ICMP_NE) 5656 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5657 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5658 return true; 5659 5660 // Otherwise assume the worst. 5661 return false; 5662 } 5663 5664 /// isImpliedCondOperands - Test whether the condition described by Pred, 5665 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5666 /// and FoundRHS is true. 5667 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5668 const SCEV *LHS, const SCEV *RHS, 5669 const SCEV *FoundLHS, 5670 const SCEV *FoundRHS) { 5671 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5672 FoundLHS, FoundRHS) || 5673 // ~x < ~y --> x > y 5674 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5675 getNotSCEV(FoundRHS), 5676 getNotSCEV(FoundLHS)); 5677 } 5678 5679 /// isImpliedCondOperandsHelper - Test whether the condition described by 5680 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5681 /// FoundLHS, and FoundRHS is true. 5682 bool 5683 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5684 const SCEV *LHS, const SCEV *RHS, 5685 const SCEV *FoundLHS, 5686 const SCEV *FoundRHS) { 5687 switch (Pred) { 5688 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5689 case ICmpInst::ICMP_EQ: 5690 case ICmpInst::ICMP_NE: 5691 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5692 return true; 5693 break; 5694 case ICmpInst::ICMP_SLT: 5695 case ICmpInst::ICMP_SLE: 5696 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5697 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5698 return true; 5699 break; 5700 case ICmpInst::ICMP_SGT: 5701 case ICmpInst::ICMP_SGE: 5702 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5703 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5704 return true; 5705 break; 5706 case ICmpInst::ICMP_ULT: 5707 case ICmpInst::ICMP_ULE: 5708 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5709 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5710 return true; 5711 break; 5712 case ICmpInst::ICMP_UGT: 5713 case ICmpInst::ICMP_UGE: 5714 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5715 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5716 return true; 5717 break; 5718 } 5719 5720 return false; 5721 } 5722 5723 /// getBECount - Subtract the end and start values and divide by the step, 5724 /// rounding up, to get the number of times the backedge is executed. Return 5725 /// CouldNotCompute if an intermediate computation overflows. 5726 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5727 const SCEV *End, 5728 const SCEV *Step, 5729 bool NoWrap) { 5730 assert(!isKnownNegative(Step) && 5731 "This code doesn't handle negative strides yet!"); 5732 5733 const Type *Ty = Start->getType(); 5734 5735 // When Start == End, we have an exact BECount == 0. Short-circuit this case 5736 // here because SCEV may not be able to determine that the unsigned division 5737 // after rounding is zero. 5738 if (Start == End) 5739 return getConstant(Ty, 0); 5740 5741 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5742 const SCEV *Diff = getMinusSCEV(End, Start); 5743 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5744 5745 // Add an adjustment to the difference between End and Start so that 5746 // the division will effectively round up. 5747 const SCEV *Add = getAddExpr(Diff, RoundUp); 5748 5749 if (!NoWrap) { 5750 // Check Add for unsigned overflow. 5751 // TODO: More sophisticated things could be done here. 5752 const Type *WideTy = IntegerType::get(getContext(), 5753 getTypeSizeInBits(Ty) + 1); 5754 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5755 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5756 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5757 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5758 return getCouldNotCompute(); 5759 } 5760 5761 return getUDivExpr(Add, Step); 5762 } 5763 5764 /// HowManyLessThans - Return the number of times a backedge containing the 5765 /// specified less-than comparison will execute. If not computable, return 5766 /// CouldNotCompute. 5767 ScalarEvolution::BackedgeTakenInfo 5768 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5769 const Loop *L, bool isSigned) { 5770 // Only handle: "ADDREC < LoopInvariant". 5771 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); 5772 5773 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5774 if (!AddRec || AddRec->getLoop() != L) 5775 return getCouldNotCompute(); 5776 5777 // Check to see if we have a flag which makes analysis easy. 5778 bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) : 5779 AddRec->getNoWrapFlags(SCEV::FlagNUW); 5780 5781 if (AddRec->isAffine()) { 5782 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5783 const SCEV *Step = AddRec->getStepRecurrence(*this); 5784 5785 if (Step->isZero()) 5786 return getCouldNotCompute(); 5787 if (Step->isOne()) { 5788 // With unit stride, the iteration never steps past the limit value. 5789 } else if (isKnownPositive(Step)) { 5790 // Test whether a positive iteration can step past the limit 5791 // value and past the maximum value for its type in a single step. 5792 // Note that it's not sufficient to check NoWrap here, because even 5793 // though the value after a wrap is undefined, it's not undefined 5794 // behavior, so if wrap does occur, the loop could either terminate or 5795 // loop infinitely, but in either case, the loop is guaranteed to 5796 // iterate at least until the iteration where the wrapping occurs. 5797 const SCEV *One = getConstant(Step->getType(), 1); 5798 if (isSigned) { 5799 APInt Max = APInt::getSignedMaxValue(BitWidth); 5800 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5801 .slt(getSignedRange(RHS).getSignedMax())) 5802 return getCouldNotCompute(); 5803 } else { 5804 APInt Max = APInt::getMaxValue(BitWidth); 5805 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5806 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5807 return getCouldNotCompute(); 5808 } 5809 } else 5810 // TODO: Handle negative strides here and below. 5811 return getCouldNotCompute(); 5812 5813 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5814 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5815 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5816 // treat m-n as signed nor unsigned due to overflow possibility. 5817 5818 // First, we get the value of the LHS in the first iteration: n 5819 const SCEV *Start = AddRec->getOperand(0); 5820 5821 // Determine the minimum constant start value. 5822 const SCEV *MinStart = getConstant(isSigned ? 5823 getSignedRange(Start).getSignedMin() : 5824 getUnsignedRange(Start).getUnsignedMin()); 5825 5826 // If we know that the condition is true in order to enter the loop, 5827 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5828 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5829 // the division must round up. 5830 const SCEV *End = RHS; 5831 if (!isLoopEntryGuardedByCond(L, 5832 isSigned ? ICmpInst::ICMP_SLT : 5833 ICmpInst::ICMP_ULT, 5834 getMinusSCEV(Start, Step), RHS)) 5835 End = isSigned ? getSMaxExpr(RHS, Start) 5836 : getUMaxExpr(RHS, Start); 5837 5838 // Determine the maximum constant end value. 5839 const SCEV *MaxEnd = getConstant(isSigned ? 5840 getSignedRange(End).getSignedMax() : 5841 getUnsignedRange(End).getUnsignedMax()); 5842 5843 // If MaxEnd is within a step of the maximum integer value in its type, 5844 // adjust it down to the minimum value which would produce the same effect. 5845 // This allows the subsequent ceiling division of (N+(step-1))/step to 5846 // compute the correct value. 5847 const SCEV *StepMinusOne = getMinusSCEV(Step, 5848 getConstant(Step->getType(), 1)); 5849 MaxEnd = isSigned ? 5850 getSMinExpr(MaxEnd, 5851 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5852 StepMinusOne)) : 5853 getUMinExpr(MaxEnd, 5854 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5855 StepMinusOne)); 5856 5857 // Finally, we subtract these two values and divide, rounding up, to get 5858 // the number of times the backedge is executed. 5859 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5860 5861 // The maximum backedge count is similar, except using the minimum start 5862 // value and the maximum end value. 5863 // If we already have an exact constant BECount, use it instead. 5864 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount 5865 : getBECount(MinStart, MaxEnd, Step, NoWrap); 5866 5867 // If the stride is nonconstant, and NoWrap == true, then 5868 // getBECount(MinStart, MaxEnd) may not compute. This would result in an 5869 // exact BECount and invalid MaxBECount, which should be avoided to catch 5870 // more optimization opportunities. 5871 if (isa<SCEVCouldNotCompute>(MaxBECount)) 5872 MaxBECount = BECount; 5873 5874 return BackedgeTakenInfo(BECount, MaxBECount); 5875 } 5876 5877 return getCouldNotCompute(); 5878 } 5879 5880 /// getNumIterationsInRange - Return the number of iterations of this loop that 5881 /// produce values in the specified constant range. Another way of looking at 5882 /// this is that it returns the first iteration number where the value is not in 5883 /// the condition, thus computing the exit count. If the iteration count can't 5884 /// be computed, an instance of SCEVCouldNotCompute is returned. 5885 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5886 ScalarEvolution &SE) const { 5887 if (Range.isFullSet()) // Infinite loop. 5888 return SE.getCouldNotCompute(); 5889 5890 // If the start is a non-zero constant, shift the range to simplify things. 5891 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5892 if (!SC->getValue()->isZero()) { 5893 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5894 Operands[0] = SE.getConstant(SC->getType(), 0); 5895 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 5896 getNoWrapFlags(FlagNW)); 5897 if (const SCEVAddRecExpr *ShiftedAddRec = 5898 dyn_cast<SCEVAddRecExpr>(Shifted)) 5899 return ShiftedAddRec->getNumIterationsInRange( 5900 Range.subtract(SC->getValue()->getValue()), SE); 5901 // This is strange and shouldn't happen. 5902 return SE.getCouldNotCompute(); 5903 } 5904 5905 // The only time we can solve this is when we have all constant indices. 5906 // Otherwise, we cannot determine the overflow conditions. 5907 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 5908 if (!isa<SCEVConstant>(getOperand(i))) 5909 return SE.getCouldNotCompute(); 5910 5911 5912 // Okay at this point we know that all elements of the chrec are constants and 5913 // that the start element is zero. 5914 5915 // First check to see if the range contains zero. If not, the first 5916 // iteration exits. 5917 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 5918 if (!Range.contains(APInt(BitWidth, 0))) 5919 return SE.getConstant(getType(), 0); 5920 5921 if (isAffine()) { 5922 // If this is an affine expression then we have this situation: 5923 // Solve {0,+,A} in Range === Ax in Range 5924 5925 // We know that zero is in the range. If A is positive then we know that 5926 // the upper value of the range must be the first possible exit value. 5927 // If A is negative then the lower of the range is the last possible loop 5928 // value. Also note that we already checked for a full range. 5929 APInt One(BitWidth,1); 5930 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 5931 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 5932 5933 // The exit value should be (End+A)/A. 5934 APInt ExitVal = (End + A).udiv(A); 5935 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 5936 5937 // Evaluate at the exit value. If we really did fall out of the valid 5938 // range, then we computed our trip count, otherwise wrap around or other 5939 // things must have happened. 5940 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 5941 if (Range.contains(Val->getValue())) 5942 return SE.getCouldNotCompute(); // Something strange happened 5943 5944 // Ensure that the previous value is in the range. This is a sanity check. 5945 assert(Range.contains( 5946 EvaluateConstantChrecAtConstant(this, 5947 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 5948 "Linear scev computation is off in a bad way!"); 5949 return SE.getConstant(ExitValue); 5950 } else if (isQuadratic()) { 5951 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 5952 // quadratic equation to solve it. To do this, we must frame our problem in 5953 // terms of figuring out when zero is crossed, instead of when 5954 // Range.getUpper() is crossed. 5955 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 5956 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 5957 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 5958 // getNoWrapFlags(FlagNW) 5959 FlagAnyWrap); 5960 5961 // Next, solve the constructed addrec 5962 std::pair<const SCEV *,const SCEV *> Roots = 5963 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 5964 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5965 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5966 if (R1) { 5967 // Pick the smallest positive root value. 5968 if (ConstantInt *CB = 5969 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 5970 R1->getValue(), R2->getValue()))) { 5971 if (CB->getZExtValue() == false) 5972 std::swap(R1, R2); // R1 is the minimum root now. 5973 5974 // Make sure the root is not off by one. The returned iteration should 5975 // not be in the range, but the previous one should be. When solving 5976 // for "X*X < 5", for example, we should not return a root of 2. 5977 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5978 R1->getValue(), 5979 SE); 5980 if (Range.contains(R1Val->getValue())) { 5981 // The next iteration must be out of the range... 5982 ConstantInt *NextVal = 5983 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5984 5985 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5986 if (!Range.contains(R1Val->getValue())) 5987 return SE.getConstant(NextVal); 5988 return SE.getCouldNotCompute(); // Something strange happened 5989 } 5990 5991 // If R1 was not in the range, then it is a good return value. Make 5992 // sure that R1-1 WAS in the range though, just in case. 5993 ConstantInt *NextVal = 5994 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5995 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5996 if (Range.contains(R1Val->getValue())) 5997 return R1; 5998 return SE.getCouldNotCompute(); // Something strange happened 5999 } 6000 } 6001 } 6002 6003 return SE.getCouldNotCompute(); 6004 } 6005 6006 6007 6008 //===----------------------------------------------------------------------===// 6009 // SCEVCallbackVH Class Implementation 6010 //===----------------------------------------------------------------------===// 6011 6012 void ScalarEvolution::SCEVCallbackVH::deleted() { 6013 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6014 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 6015 SE->ConstantEvolutionLoopExitValue.erase(PN); 6016 SE->ValueExprMap.erase(getValPtr()); 6017 // this now dangles! 6018 } 6019 6020 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 6021 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6022 6023 // Forget all the expressions associated with users of the old value, 6024 // so that future queries will recompute the expressions using the new 6025 // value. 6026 Value *Old = getValPtr(); 6027 SmallVector<User *, 16> Worklist; 6028 SmallPtrSet<User *, 8> Visited; 6029 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 6030 UI != UE; ++UI) 6031 Worklist.push_back(*UI); 6032 while (!Worklist.empty()) { 6033 User *U = Worklist.pop_back_val(); 6034 // Deleting the Old value will cause this to dangle. Postpone 6035 // that until everything else is done. 6036 if (U == Old) 6037 continue; 6038 if (!Visited.insert(U)) 6039 continue; 6040 if (PHINode *PN = dyn_cast<PHINode>(U)) 6041 SE->ConstantEvolutionLoopExitValue.erase(PN); 6042 SE->ValueExprMap.erase(U); 6043 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 6044 UI != UE; ++UI) 6045 Worklist.push_back(*UI); 6046 } 6047 // Delete the Old value. 6048 if (PHINode *PN = dyn_cast<PHINode>(Old)) 6049 SE->ConstantEvolutionLoopExitValue.erase(PN); 6050 SE->ValueExprMap.erase(Old); 6051 // this now dangles! 6052 } 6053 6054 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 6055 : CallbackVH(V), SE(se) {} 6056 6057 //===----------------------------------------------------------------------===// 6058 // ScalarEvolution Class Implementation 6059 //===----------------------------------------------------------------------===// 6060 6061 ScalarEvolution::ScalarEvolution() 6062 : FunctionPass(ID), FirstUnknown(0) { 6063 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 6064 } 6065 6066 bool ScalarEvolution::runOnFunction(Function &F) { 6067 this->F = &F; 6068 LI = &getAnalysis<LoopInfo>(); 6069 TD = getAnalysisIfAvailable<TargetData>(); 6070 DT = &getAnalysis<DominatorTree>(); 6071 return false; 6072 } 6073 6074 void ScalarEvolution::releaseMemory() { 6075 // Iterate through all the SCEVUnknown instances and call their 6076 // destructors, so that they release their references to their values. 6077 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 6078 U->~SCEVUnknown(); 6079 FirstUnknown = 0; 6080 6081 ValueExprMap.clear(); 6082 BackedgeTakenCounts.clear(); 6083 ConstantEvolutionLoopExitValue.clear(); 6084 ValuesAtScopes.clear(); 6085 LoopDispositions.clear(); 6086 BlockDispositions.clear(); 6087 UnsignedRanges.clear(); 6088 SignedRanges.clear(); 6089 UniqueSCEVs.clear(); 6090 SCEVAllocator.Reset(); 6091 } 6092 6093 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 6094 AU.setPreservesAll(); 6095 AU.addRequiredTransitive<LoopInfo>(); 6096 AU.addRequiredTransitive<DominatorTree>(); 6097 } 6098 6099 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 6100 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 6101 } 6102 6103 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 6104 const Loop *L) { 6105 // Print all inner loops first 6106 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 6107 PrintLoopInfo(OS, SE, *I); 6108 6109 OS << "Loop "; 6110 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6111 OS << ": "; 6112 6113 SmallVector<BasicBlock *, 8> ExitBlocks; 6114 L->getExitBlocks(ExitBlocks); 6115 if (ExitBlocks.size() != 1) 6116 OS << "<multiple exits> "; 6117 6118 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 6119 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 6120 } else { 6121 OS << "Unpredictable backedge-taken count. "; 6122 } 6123 6124 OS << "\n" 6125 "Loop "; 6126 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6127 OS << ": "; 6128 6129 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 6130 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 6131 } else { 6132 OS << "Unpredictable max backedge-taken count. "; 6133 } 6134 6135 OS << "\n"; 6136 } 6137 6138 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 6139 // ScalarEvolution's implementation of the print method is to print 6140 // out SCEV values of all instructions that are interesting. Doing 6141 // this potentially causes it to create new SCEV objects though, 6142 // which technically conflicts with the const qualifier. This isn't 6143 // observable from outside the class though, so casting away the 6144 // const isn't dangerous. 6145 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 6146 6147 OS << "Classifying expressions for: "; 6148 WriteAsOperand(OS, F, /*PrintType=*/false); 6149 OS << "\n"; 6150 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 6151 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 6152 OS << *I << '\n'; 6153 OS << " --> "; 6154 const SCEV *SV = SE.getSCEV(&*I); 6155 SV->print(OS); 6156 6157 const Loop *L = LI->getLoopFor((*I).getParent()); 6158 6159 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 6160 if (AtUse != SV) { 6161 OS << " --> "; 6162 AtUse->print(OS); 6163 } 6164 6165 if (L) { 6166 OS << "\t\t" "Exits: "; 6167 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 6168 if (!SE.isLoopInvariant(ExitValue, L)) { 6169 OS << "<<Unknown>>"; 6170 } else { 6171 OS << *ExitValue; 6172 } 6173 } 6174 6175 OS << "\n"; 6176 } 6177 6178 OS << "Determining loop execution counts for: "; 6179 WriteAsOperand(OS, F, /*PrintType=*/false); 6180 OS << "\n"; 6181 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 6182 PrintLoopInfo(OS, &SE, *I); 6183 } 6184 6185 ScalarEvolution::LoopDisposition 6186 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 6187 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S]; 6188 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair = 6189 Values.insert(std::make_pair(L, LoopVariant)); 6190 if (!Pair.second) 6191 return Pair.first->second; 6192 6193 LoopDisposition D = computeLoopDisposition(S, L); 6194 return LoopDispositions[S][L] = D; 6195 } 6196 6197 ScalarEvolution::LoopDisposition 6198 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 6199 switch (S->getSCEVType()) { 6200 case scConstant: 6201 return LoopInvariant; 6202 case scTruncate: 6203 case scZeroExtend: 6204 case scSignExtend: 6205 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 6206 case scAddRecExpr: { 6207 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6208 6209 // If L is the addrec's loop, it's computable. 6210 if (AR->getLoop() == L) 6211 return LoopComputable; 6212 6213 // Add recurrences are never invariant in the function-body (null loop). 6214 if (!L) 6215 return LoopVariant; 6216 6217 // This recurrence is variant w.r.t. L if L contains AR's loop. 6218 if (L->contains(AR->getLoop())) 6219 return LoopVariant; 6220 6221 // This recurrence is invariant w.r.t. L if AR's loop contains L. 6222 if (AR->getLoop()->contains(L)) 6223 return LoopInvariant; 6224 6225 // This recurrence is variant w.r.t. L if any of its operands 6226 // are variant. 6227 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 6228 I != E; ++I) 6229 if (!isLoopInvariant(*I, L)) 6230 return LoopVariant; 6231 6232 // Otherwise it's loop-invariant. 6233 return LoopInvariant; 6234 } 6235 case scAddExpr: 6236 case scMulExpr: 6237 case scUMaxExpr: 6238 case scSMaxExpr: { 6239 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6240 bool HasVarying = false; 6241 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6242 I != E; ++I) { 6243 LoopDisposition D = getLoopDisposition(*I, L); 6244 if (D == LoopVariant) 6245 return LoopVariant; 6246 if (D == LoopComputable) 6247 HasVarying = true; 6248 } 6249 return HasVarying ? LoopComputable : LoopInvariant; 6250 } 6251 case scUDivExpr: { 6252 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6253 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 6254 if (LD == LoopVariant) 6255 return LoopVariant; 6256 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 6257 if (RD == LoopVariant) 6258 return LoopVariant; 6259 return (LD == LoopInvariant && RD == LoopInvariant) ? 6260 LoopInvariant : LoopComputable; 6261 } 6262 case scUnknown: 6263 // All non-instruction values are loop invariant. All instructions are loop 6264 // invariant if they are not contained in the specified loop. 6265 // Instructions are never considered invariant in the function body 6266 // (null loop) because they are defined within the "loop". 6267 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 6268 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 6269 return LoopInvariant; 6270 case scCouldNotCompute: 6271 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6272 return LoopVariant; 6273 default: break; 6274 } 6275 llvm_unreachable("Unknown SCEV kind!"); 6276 return LoopVariant; 6277 } 6278 6279 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 6280 return getLoopDisposition(S, L) == LoopInvariant; 6281 } 6282 6283 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 6284 return getLoopDisposition(S, L) == LoopComputable; 6285 } 6286 6287 ScalarEvolution::BlockDisposition 6288 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6289 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S]; 6290 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool> 6291 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock)); 6292 if (!Pair.second) 6293 return Pair.first->second; 6294 6295 BlockDisposition D = computeBlockDisposition(S, BB); 6296 return BlockDispositions[S][BB] = D; 6297 } 6298 6299 ScalarEvolution::BlockDisposition 6300 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6301 switch (S->getSCEVType()) { 6302 case scConstant: 6303 return ProperlyDominatesBlock; 6304 case scTruncate: 6305 case scZeroExtend: 6306 case scSignExtend: 6307 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 6308 case scAddRecExpr: { 6309 // This uses a "dominates" query instead of "properly dominates" query 6310 // to test for proper dominance too, because the instruction which 6311 // produces the addrec's value is a PHI, and a PHI effectively properly 6312 // dominates its entire containing block. 6313 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6314 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 6315 return DoesNotDominateBlock; 6316 } 6317 // FALL THROUGH into SCEVNAryExpr handling. 6318 case scAddExpr: 6319 case scMulExpr: 6320 case scUMaxExpr: 6321 case scSMaxExpr: { 6322 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6323 bool Proper = true; 6324 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6325 I != E; ++I) { 6326 BlockDisposition D = getBlockDisposition(*I, BB); 6327 if (D == DoesNotDominateBlock) 6328 return DoesNotDominateBlock; 6329 if (D == DominatesBlock) 6330 Proper = false; 6331 } 6332 return Proper ? ProperlyDominatesBlock : DominatesBlock; 6333 } 6334 case scUDivExpr: { 6335 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6336 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6337 BlockDisposition LD = getBlockDisposition(LHS, BB); 6338 if (LD == DoesNotDominateBlock) 6339 return DoesNotDominateBlock; 6340 BlockDisposition RD = getBlockDisposition(RHS, BB); 6341 if (RD == DoesNotDominateBlock) 6342 return DoesNotDominateBlock; 6343 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 6344 ProperlyDominatesBlock : DominatesBlock; 6345 } 6346 case scUnknown: 6347 if (Instruction *I = 6348 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 6349 if (I->getParent() == BB) 6350 return DominatesBlock; 6351 if (DT->properlyDominates(I->getParent(), BB)) 6352 return ProperlyDominatesBlock; 6353 return DoesNotDominateBlock; 6354 } 6355 return ProperlyDominatesBlock; 6356 case scCouldNotCompute: 6357 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6358 return DoesNotDominateBlock; 6359 default: break; 6360 } 6361 llvm_unreachable("Unknown SCEV kind!"); 6362 return DoesNotDominateBlock; 6363 } 6364 6365 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 6366 return getBlockDisposition(S, BB) >= DominatesBlock; 6367 } 6368 6369 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 6370 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 6371 } 6372 6373 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 6374 switch (S->getSCEVType()) { 6375 case scConstant: 6376 return false; 6377 case scTruncate: 6378 case scZeroExtend: 6379 case scSignExtend: { 6380 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S); 6381 const SCEV *CastOp = Cast->getOperand(); 6382 return Op == CastOp || hasOperand(CastOp, Op); 6383 } 6384 case scAddRecExpr: 6385 case scAddExpr: 6386 case scMulExpr: 6387 case scUMaxExpr: 6388 case scSMaxExpr: { 6389 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6390 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6391 I != E; ++I) { 6392 const SCEV *NAryOp = *I; 6393 if (NAryOp == Op || hasOperand(NAryOp, Op)) 6394 return true; 6395 } 6396 return false; 6397 } 6398 case scUDivExpr: { 6399 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6400 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6401 return LHS == Op || hasOperand(LHS, Op) || 6402 RHS == Op || hasOperand(RHS, Op); 6403 } 6404 case scUnknown: 6405 return false; 6406 case scCouldNotCompute: 6407 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6408 return false; 6409 default: break; 6410 } 6411 llvm_unreachable("Unknown SCEV kind!"); 6412 return false; 6413 } 6414 6415 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 6416 ValuesAtScopes.erase(S); 6417 LoopDispositions.erase(S); 6418 BlockDispositions.erase(S); 6419 UnsignedRanges.erase(S); 6420 SignedRanges.erase(S); 6421 } 6422