1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/Dominators.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/ValueTracking.h" 72 #include "llvm/Assembly/Writer.h" 73 #include "llvm/Target/TargetData.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/ConstantRange.h" 77 #include "llvm/Support/GetElementPtrTypeIterator.h" 78 #include "llvm/Support/InstIterator.h" 79 #include "llvm/Support/ManagedStatic.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/ADT/Statistic.h" 83 #include "llvm/ADT/STLExtras.h" 84 #include <algorithm> 85 using namespace llvm; 86 87 STATISTIC(NumArrayLenItCounts, 88 "Number of trip counts computed with array length"); 89 STATISTIC(NumTripCountsComputed, 90 "Number of loops with predictable loop counts"); 91 STATISTIC(NumTripCountsNotComputed, 92 "Number of loops without predictable loop counts"); 93 STATISTIC(NumBruteForceTripCountsComputed, 94 "Number of loops with trip counts computed by force"); 95 96 static cl::opt<unsigned> 97 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 98 cl::desc("Maximum number of iterations SCEV will " 99 "symbolically execute a constant derived loop"), 100 cl::init(100)); 101 102 static RegisterPass<ScalarEvolution> 103 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 104 char ScalarEvolution::ID = 0; 105 106 //===----------------------------------------------------------------------===// 107 // SCEV class definitions 108 //===----------------------------------------------------------------------===// 109 110 //===----------------------------------------------------------------------===// 111 // Implementation of the SCEV class. 112 // 113 SCEV::~SCEV() {} 114 void SCEV::dump() const { 115 print(errs()); 116 errs() << '\n'; 117 } 118 119 void SCEV::print(std::ostream &o) const { 120 raw_os_ostream OS(o); 121 print(OS); 122 } 123 124 bool SCEV::isZero() const { 125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 126 return SC->getValue()->isZero(); 127 return false; 128 } 129 130 bool SCEV::isOne() const { 131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 132 return SC->getValue()->isOne(); 133 return false; 134 } 135 136 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 137 SCEVCouldNotCompute::~SCEVCouldNotCompute() {} 138 139 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 140 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 141 return false; 142 } 143 144 const Type *SCEVCouldNotCompute::getType() const { 145 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 146 return 0; 147 } 148 149 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 150 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 151 return false; 152 } 153 154 SCEVHandle SCEVCouldNotCompute:: 155 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 156 const SCEVHandle &Conc, 157 ScalarEvolution &SE) const { 158 return this; 159 } 160 161 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 162 OS << "***COULDNOTCOMPUTE***"; 163 } 164 165 bool SCEVCouldNotCompute::classof(const SCEV *S) { 166 return S->getSCEVType() == scCouldNotCompute; 167 } 168 169 170 // SCEVConstants - Only allow the creation of one SCEVConstant for any 171 // particular value. Don't use a SCEVHandle here, or else the object will 172 // never be deleted! 173 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 174 175 176 SCEVConstant::~SCEVConstant() { 177 SCEVConstants->erase(V); 178 } 179 180 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 181 SCEVConstant *&R = (*SCEVConstants)[V]; 182 if (R == 0) R = new SCEVConstant(V); 183 return R; 184 } 185 186 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 187 return getConstant(ConstantInt::get(Val)); 188 } 189 190 SCEVHandle 191 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 192 return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned)); 193 } 194 195 const Type *SCEVConstant::getType() const { return V->getType(); } 196 197 void SCEVConstant::print(raw_ostream &OS) const { 198 WriteAsOperand(OS, V, false); 199 } 200 201 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy, 202 const SCEVHandle &op, const Type *ty) 203 : SCEV(SCEVTy), Op(op), Ty(ty) {} 204 205 SCEVCastExpr::~SCEVCastExpr() {} 206 207 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 208 return Op->dominates(BB, DT); 209 } 210 211 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 212 // particular input. Don't use a SCEVHandle here, or else the object will 213 // never be deleted! 214 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 215 SCEVTruncateExpr*> > SCEVTruncates; 216 217 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 218 : SCEVCastExpr(scTruncate, op, ty) { 219 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 220 (Ty->isInteger() || isa<PointerType>(Ty)) && 221 "Cannot truncate non-integer value!"); 222 } 223 224 SCEVTruncateExpr::~SCEVTruncateExpr() { 225 SCEVTruncates->erase(std::make_pair(Op, Ty)); 226 } 227 228 void SCEVTruncateExpr::print(raw_ostream &OS) const { 229 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 230 } 231 232 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 233 // particular input. Don't use a SCEVHandle here, or else the object will never 234 // be deleted! 235 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 236 SCEVZeroExtendExpr*> > SCEVZeroExtends; 237 238 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 239 : SCEVCastExpr(scZeroExtend, op, ty) { 240 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 241 (Ty->isInteger() || isa<PointerType>(Ty)) && 242 "Cannot zero extend non-integer value!"); 243 } 244 245 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 246 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 247 } 248 249 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 250 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 251 } 252 253 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 254 // particular input. Don't use a SCEVHandle here, or else the object will never 255 // be deleted! 256 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 257 SCEVSignExtendExpr*> > SCEVSignExtends; 258 259 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 260 : SCEVCastExpr(scSignExtend, op, ty) { 261 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 262 (Ty->isInteger() || isa<PointerType>(Ty)) && 263 "Cannot sign extend non-integer value!"); 264 } 265 266 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 267 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 268 } 269 270 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 271 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 272 } 273 274 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 275 // particular input. Don't use a SCEVHandle here, or else the object will never 276 // be deleted! 277 static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >, 278 SCEVCommutativeExpr*> > SCEVCommExprs; 279 280 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 281 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 282 SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps)); 283 } 284 285 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 286 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 287 const char *OpStr = getOperationStr(); 288 OS << "(" << *Operands[0]; 289 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 290 OS << OpStr << *Operands[i]; 291 OS << ")"; 292 } 293 294 SCEVHandle SCEVCommutativeExpr:: 295 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 296 const SCEVHandle &Conc, 297 ScalarEvolution &SE) const { 298 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 299 SCEVHandle H = 300 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 301 if (H != getOperand(i)) { 302 SmallVector<SCEVHandle, 8> NewOps; 303 NewOps.reserve(getNumOperands()); 304 for (unsigned j = 0; j != i; ++j) 305 NewOps.push_back(getOperand(j)); 306 NewOps.push_back(H); 307 for (++i; i != e; ++i) 308 NewOps.push_back(getOperand(i)-> 309 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 310 311 if (isa<SCEVAddExpr>(this)) 312 return SE.getAddExpr(NewOps); 313 else if (isa<SCEVMulExpr>(this)) 314 return SE.getMulExpr(NewOps); 315 else if (isa<SCEVSMaxExpr>(this)) 316 return SE.getSMaxExpr(NewOps); 317 else if (isa<SCEVUMaxExpr>(this)) 318 return SE.getUMaxExpr(NewOps); 319 else 320 assert(0 && "Unknown commutative expr!"); 321 } 322 } 323 return this; 324 } 325 326 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 327 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 328 if (!getOperand(i)->dominates(BB, DT)) 329 return false; 330 } 331 return true; 332 } 333 334 335 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 336 // input. Don't use a SCEVHandle here, or else the object will never be 337 // deleted! 338 static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>, 339 SCEVUDivExpr*> > SCEVUDivs; 340 341 SCEVUDivExpr::~SCEVUDivExpr() { 342 SCEVUDivs->erase(std::make_pair(LHS, RHS)); 343 } 344 345 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 346 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 347 } 348 349 void SCEVUDivExpr::print(raw_ostream &OS) const { 350 OS << "(" << *LHS << " /u " << *RHS << ")"; 351 } 352 353 const Type *SCEVUDivExpr::getType() const { 354 // In most cases the types of LHS and RHS will be the same, but in some 355 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 356 // depend on the type for correctness, but handling types carefully can 357 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 358 // a pointer type than the RHS, so use the RHS' type here. 359 return RHS->getType(); 360 } 361 362 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 363 // particular input. Don't use a SCEVHandle here, or else the object will never 364 // be deleted! 365 static ManagedStatic<std::map<std::pair<const Loop *, 366 std::vector<const SCEV*> >, 367 SCEVAddRecExpr*> > SCEVAddRecExprs; 368 369 SCEVAddRecExpr::~SCEVAddRecExpr() { 370 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 371 SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps)); 372 } 373 374 SCEVHandle SCEVAddRecExpr:: 375 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 376 const SCEVHandle &Conc, 377 ScalarEvolution &SE) const { 378 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 379 SCEVHandle H = 380 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 381 if (H != getOperand(i)) { 382 SmallVector<SCEVHandle, 8> NewOps; 383 NewOps.reserve(getNumOperands()); 384 for (unsigned j = 0; j != i; ++j) 385 NewOps.push_back(getOperand(j)); 386 NewOps.push_back(H); 387 for (++i; i != e; ++i) 388 NewOps.push_back(getOperand(i)-> 389 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 390 391 return SE.getAddRecExpr(NewOps, L); 392 } 393 } 394 return this; 395 } 396 397 398 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 399 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 400 // contain L and if the start is invariant. 401 // Add recurrences are never invariant in the function-body (null loop). 402 return QueryLoop && 403 !QueryLoop->contains(L->getHeader()) && 404 getOperand(0)->isLoopInvariant(QueryLoop); 405 } 406 407 408 void SCEVAddRecExpr::print(raw_ostream &OS) const { 409 OS << "{" << *Operands[0]; 410 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 411 OS << ",+," << *Operands[i]; 412 OS << "}<" << L->getHeader()->getName() + ">"; 413 } 414 415 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 416 // value. Don't use a SCEVHandle here, or else the object will never be 417 // deleted! 418 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 419 420 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 421 422 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 423 // All non-instruction values are loop invariant. All instructions are loop 424 // invariant if they are not contained in the specified loop. 425 // Instructions are never considered invariant in the function body 426 // (null loop) because they are defined within the "loop". 427 if (Instruction *I = dyn_cast<Instruction>(V)) 428 return L && !L->contains(I->getParent()); 429 return true; 430 } 431 432 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 433 if (Instruction *I = dyn_cast<Instruction>(getValue())) 434 return DT->dominates(I->getParent(), BB); 435 return true; 436 } 437 438 const Type *SCEVUnknown::getType() const { 439 return V->getType(); 440 } 441 442 void SCEVUnknown::print(raw_ostream &OS) const { 443 WriteAsOperand(OS, V, false); 444 } 445 446 //===----------------------------------------------------------------------===// 447 // SCEV Utilities 448 //===----------------------------------------------------------------------===// 449 450 namespace { 451 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 452 /// than the complexity of the RHS. This comparator is used to canonicalize 453 /// expressions. 454 class VISIBILITY_HIDDEN SCEVComplexityCompare { 455 LoopInfo *LI; 456 public: 457 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 458 459 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 460 // Primarily, sort the SCEVs by their getSCEVType(). 461 if (LHS->getSCEVType() != RHS->getSCEVType()) 462 return LHS->getSCEVType() < RHS->getSCEVType(); 463 464 // Aside from the getSCEVType() ordering, the particular ordering 465 // isn't very important except that it's beneficial to be consistent, 466 // so that (a + b) and (b + a) don't end up as different expressions. 467 468 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 469 // not as complete as it could be. 470 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 471 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 472 473 // Order pointer values after integer values. This helps SCEVExpander 474 // form GEPs. 475 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType())) 476 return false; 477 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType())) 478 return true; 479 480 // Compare getValueID values. 481 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 482 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 483 484 // Sort arguments by their position. 485 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 486 const Argument *RA = cast<Argument>(RU->getValue()); 487 return LA->getArgNo() < RA->getArgNo(); 488 } 489 490 // For instructions, compare their loop depth, and their opcode. 491 // This is pretty loose. 492 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 493 Instruction *RV = cast<Instruction>(RU->getValue()); 494 495 // Compare loop depths. 496 if (LI->getLoopDepth(LV->getParent()) != 497 LI->getLoopDepth(RV->getParent())) 498 return LI->getLoopDepth(LV->getParent()) < 499 LI->getLoopDepth(RV->getParent()); 500 501 // Compare opcodes. 502 if (LV->getOpcode() != RV->getOpcode()) 503 return LV->getOpcode() < RV->getOpcode(); 504 505 // Compare the number of operands. 506 if (LV->getNumOperands() != RV->getNumOperands()) 507 return LV->getNumOperands() < RV->getNumOperands(); 508 } 509 510 return false; 511 } 512 513 // Compare constant values. 514 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 515 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 516 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 517 } 518 519 // Compare addrec loop depths. 520 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 521 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 522 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 523 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 524 } 525 526 // Lexicographically compare n-ary expressions. 527 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 528 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 529 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 530 if (i >= RC->getNumOperands()) 531 return false; 532 if (operator()(LC->getOperand(i), RC->getOperand(i))) 533 return true; 534 if (operator()(RC->getOperand(i), LC->getOperand(i))) 535 return false; 536 } 537 return LC->getNumOperands() < RC->getNumOperands(); 538 } 539 540 // Lexicographically compare udiv expressions. 541 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 542 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 543 if (operator()(LC->getLHS(), RC->getLHS())) 544 return true; 545 if (operator()(RC->getLHS(), LC->getLHS())) 546 return false; 547 if (operator()(LC->getRHS(), RC->getRHS())) 548 return true; 549 if (operator()(RC->getRHS(), LC->getRHS())) 550 return false; 551 return false; 552 } 553 554 // Compare cast expressions by operand. 555 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 556 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 557 return operator()(LC->getOperand(), RC->getOperand()); 558 } 559 560 assert(0 && "Unknown SCEV kind!"); 561 return false; 562 } 563 }; 564 } 565 566 /// GroupByComplexity - Given a list of SCEV objects, order them by their 567 /// complexity, and group objects of the same complexity together by value. 568 /// When this routine is finished, we know that any duplicates in the vector are 569 /// consecutive and that complexity is monotonically increasing. 570 /// 571 /// Note that we go take special precautions to ensure that we get determinstic 572 /// results from this routine. In other words, we don't want the results of 573 /// this to depend on where the addresses of various SCEV objects happened to 574 /// land in memory. 575 /// 576 static void GroupByComplexity(SmallVectorImpl<SCEVHandle> &Ops, 577 LoopInfo *LI) { 578 if (Ops.size() < 2) return; // Noop 579 if (Ops.size() == 2) { 580 // This is the common case, which also happens to be trivially simple. 581 // Special case it. 582 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 583 std::swap(Ops[0], Ops[1]); 584 return; 585 } 586 587 // Do the rough sort by complexity. 588 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 589 590 // Now that we are sorted by complexity, group elements of the same 591 // complexity. Note that this is, at worst, N^2, but the vector is likely to 592 // be extremely short in practice. Note that we take this approach because we 593 // do not want to depend on the addresses of the objects we are grouping. 594 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 595 const SCEV *S = Ops[i]; 596 unsigned Complexity = S->getSCEVType(); 597 598 // If there are any objects of the same complexity and same value as this 599 // one, group them. 600 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 601 if (Ops[j] == S) { // Found a duplicate. 602 // Move it to immediately after i'th element. 603 std::swap(Ops[i+1], Ops[j]); 604 ++i; // no need to rescan it. 605 if (i == e-2) return; // Done! 606 } 607 } 608 } 609 } 610 611 612 613 //===----------------------------------------------------------------------===// 614 // Simple SCEV method implementations 615 //===----------------------------------------------------------------------===// 616 617 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 618 /// Assume, K > 0. 619 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, 620 ScalarEvolution &SE, 621 const Type* ResultTy) { 622 // Handle the simplest case efficiently. 623 if (K == 1) 624 return SE.getTruncateOrZeroExtend(It, ResultTy); 625 626 // We are using the following formula for BC(It, K): 627 // 628 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 629 // 630 // Suppose, W is the bitwidth of the return value. We must be prepared for 631 // overflow. Hence, we must assure that the result of our computation is 632 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 633 // safe in modular arithmetic. 634 // 635 // However, this code doesn't use exactly that formula; the formula it uses 636 // is something like the following, where T is the number of factors of 2 in 637 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 638 // exponentiation: 639 // 640 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 641 // 642 // This formula is trivially equivalent to the previous formula. However, 643 // this formula can be implemented much more efficiently. The trick is that 644 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 645 // arithmetic. To do exact division in modular arithmetic, all we have 646 // to do is multiply by the inverse. Therefore, this step can be done at 647 // width W. 648 // 649 // The next issue is how to safely do the division by 2^T. The way this 650 // is done is by doing the multiplication step at a width of at least W + T 651 // bits. This way, the bottom W+T bits of the product are accurate. Then, 652 // when we perform the division by 2^T (which is equivalent to a right shift 653 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 654 // truncated out after the division by 2^T. 655 // 656 // In comparison to just directly using the first formula, this technique 657 // is much more efficient; using the first formula requires W * K bits, 658 // but this formula less than W + K bits. Also, the first formula requires 659 // a division step, whereas this formula only requires multiplies and shifts. 660 // 661 // It doesn't matter whether the subtraction step is done in the calculation 662 // width or the input iteration count's width; if the subtraction overflows, 663 // the result must be zero anyway. We prefer here to do it in the width of 664 // the induction variable because it helps a lot for certain cases; CodeGen 665 // isn't smart enough to ignore the overflow, which leads to much less 666 // efficient code if the width of the subtraction is wider than the native 667 // register width. 668 // 669 // (It's possible to not widen at all by pulling out factors of 2 before 670 // the multiplication; for example, K=2 can be calculated as 671 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 672 // extra arithmetic, so it's not an obvious win, and it gets 673 // much more complicated for K > 3.) 674 675 // Protection from insane SCEVs; this bound is conservative, 676 // but it probably doesn't matter. 677 if (K > 1000) 678 return SE.getCouldNotCompute(); 679 680 unsigned W = SE.getTypeSizeInBits(ResultTy); 681 682 // Calculate K! / 2^T and T; we divide out the factors of two before 683 // multiplying for calculating K! / 2^T to avoid overflow. 684 // Other overflow doesn't matter because we only care about the bottom 685 // W bits of the result. 686 APInt OddFactorial(W, 1); 687 unsigned T = 1; 688 for (unsigned i = 3; i <= K; ++i) { 689 APInt Mult(W, i); 690 unsigned TwoFactors = Mult.countTrailingZeros(); 691 T += TwoFactors; 692 Mult = Mult.lshr(TwoFactors); 693 OddFactorial *= Mult; 694 } 695 696 // We need at least W + T bits for the multiplication step 697 unsigned CalculationBits = W + T; 698 699 // Calcuate 2^T, at width T+W. 700 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 701 702 // Calculate the multiplicative inverse of K! / 2^T; 703 // this multiplication factor will perform the exact division by 704 // K! / 2^T. 705 APInt Mod = APInt::getSignedMinValue(W+1); 706 APInt MultiplyFactor = OddFactorial.zext(W+1); 707 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 708 MultiplyFactor = MultiplyFactor.trunc(W); 709 710 // Calculate the product, at width T+W 711 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 712 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 713 for (unsigned i = 1; i != K; ++i) { 714 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 715 Dividend = SE.getMulExpr(Dividend, 716 SE.getTruncateOrZeroExtend(S, CalculationTy)); 717 } 718 719 // Divide by 2^T 720 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 721 722 // Truncate the result, and divide by K! / 2^T. 723 724 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 725 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 726 } 727 728 /// evaluateAtIteration - Return the value of this chain of recurrences at 729 /// the specified iteration number. We can evaluate this recurrence by 730 /// multiplying each element in the chain by the binomial coefficient 731 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 732 /// 733 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 734 /// 735 /// where BC(It, k) stands for binomial coefficient. 736 /// 737 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 738 ScalarEvolution &SE) const { 739 SCEVHandle Result = getStart(); 740 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 741 // The computation is correct in the face of overflow provided that the 742 // multiplication is performed _after_ the evaluation of the binomial 743 // coefficient. 744 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType()); 745 if (isa<SCEVCouldNotCompute>(Coeff)) 746 return Coeff; 747 748 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 749 } 750 return Result; 751 } 752 753 //===----------------------------------------------------------------------===// 754 // SCEV Expression folder implementations 755 //===----------------------------------------------------------------------===// 756 757 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, 758 const Type *Ty) { 759 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 760 "This is not a truncating conversion!"); 761 assert(isSCEVable(Ty) && 762 "This is not a conversion to a SCEVable type!"); 763 Ty = getEffectiveSCEVType(Ty); 764 765 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 766 return getUnknown( 767 ConstantExpr::getTrunc(SC->getValue(), Ty)); 768 769 // trunc(trunc(x)) --> trunc(x) 770 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 771 return getTruncateExpr(ST->getOperand(), Ty); 772 773 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 774 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 775 return getTruncateOrSignExtend(SS->getOperand(), Ty); 776 777 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 778 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 779 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 780 781 // If the input value is a chrec scev made out of constants, truncate 782 // all of the constants. 783 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 784 SmallVector<SCEVHandle, 4> Operands; 785 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 786 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 787 return getAddRecExpr(Operands, AddRec->getLoop()); 788 } 789 790 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 791 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 792 return Result; 793 } 794 795 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, 796 const Type *Ty) { 797 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 798 "This is not an extending conversion!"); 799 assert(isSCEVable(Ty) && 800 "This is not a conversion to a SCEVable type!"); 801 Ty = getEffectiveSCEVType(Ty); 802 803 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 804 const Type *IntTy = getEffectiveSCEVType(Ty); 805 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 806 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 807 return getUnknown(C); 808 } 809 810 // zext(zext(x)) --> zext(x) 811 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 812 return getZeroExtendExpr(SZ->getOperand(), Ty); 813 814 // If the input value is a chrec scev, and we can prove that the value 815 // did not overflow the old, smaller, value, we can zero extend all of the 816 // operands (often constants). This allows analysis of something like 817 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 818 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 819 if (AR->isAffine()) { 820 // Check whether the backedge-taken count is SCEVCouldNotCompute. 821 // Note that this serves two purposes: It filters out loops that are 822 // simply not analyzable, and it covers the case where this code is 823 // being called from within backedge-taken count analysis, such that 824 // attempting to ask for the backedge-taken count would likely result 825 // in infinite recursion. In the later case, the analysis code will 826 // cope with a conservative value, and it will take care to purge 827 // that value once it has finished. 828 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 829 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 830 // Manually compute the final value for AR, checking for 831 // overflow. 832 SCEVHandle Start = AR->getStart(); 833 SCEVHandle Step = AR->getStepRecurrence(*this); 834 835 // Check whether the backedge-taken count can be losslessly casted to 836 // the addrec's type. The count is always unsigned. 837 SCEVHandle CastedMaxBECount = 838 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 839 SCEVHandle RecastedMaxBECount = 840 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 841 if (MaxBECount == RecastedMaxBECount) { 842 const Type *WideTy = 843 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 844 // Check whether Start+Step*MaxBECount has no unsigned overflow. 845 SCEVHandle ZMul = 846 getMulExpr(CastedMaxBECount, 847 getTruncateOrZeroExtend(Step, Start->getType())); 848 SCEVHandle Add = getAddExpr(Start, ZMul); 849 SCEVHandle OperandExtendedAdd = 850 getAddExpr(getZeroExtendExpr(Start, WideTy), 851 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 852 getZeroExtendExpr(Step, WideTy))); 853 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 854 // Return the expression with the addrec on the outside. 855 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 856 getZeroExtendExpr(Step, Ty), 857 AR->getLoop()); 858 859 // Similar to above, only this time treat the step value as signed. 860 // This covers loops that count down. 861 SCEVHandle SMul = 862 getMulExpr(CastedMaxBECount, 863 getTruncateOrSignExtend(Step, Start->getType())); 864 Add = getAddExpr(Start, SMul); 865 OperandExtendedAdd = 866 getAddExpr(getZeroExtendExpr(Start, WideTy), 867 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 868 getSignExtendExpr(Step, WideTy))); 869 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 870 // Return the expression with the addrec on the outside. 871 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 872 getSignExtendExpr(Step, Ty), 873 AR->getLoop()); 874 } 875 } 876 } 877 878 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 879 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 880 return Result; 881 } 882 883 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, 884 const Type *Ty) { 885 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 886 "This is not an extending conversion!"); 887 assert(isSCEVable(Ty) && 888 "This is not a conversion to a SCEVable type!"); 889 Ty = getEffectiveSCEVType(Ty); 890 891 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 892 const Type *IntTy = getEffectiveSCEVType(Ty); 893 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 894 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 895 return getUnknown(C); 896 } 897 898 // sext(sext(x)) --> sext(x) 899 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 900 return getSignExtendExpr(SS->getOperand(), Ty); 901 902 // If the input value is a chrec scev, and we can prove that the value 903 // did not overflow the old, smaller, value, we can sign extend all of the 904 // operands (often constants). This allows analysis of something like 905 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 906 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 907 if (AR->isAffine()) { 908 // Check whether the backedge-taken count is SCEVCouldNotCompute. 909 // Note that this serves two purposes: It filters out loops that are 910 // simply not analyzable, and it covers the case where this code is 911 // being called from within backedge-taken count analysis, such that 912 // attempting to ask for the backedge-taken count would likely result 913 // in infinite recursion. In the later case, the analysis code will 914 // cope with a conservative value, and it will take care to purge 915 // that value once it has finished. 916 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 917 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 918 // Manually compute the final value for AR, checking for 919 // overflow. 920 SCEVHandle Start = AR->getStart(); 921 SCEVHandle Step = AR->getStepRecurrence(*this); 922 923 // Check whether the backedge-taken count can be losslessly casted to 924 // the addrec's type. The count is always unsigned. 925 SCEVHandle CastedMaxBECount = 926 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 927 SCEVHandle RecastedMaxBECount = 928 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 929 if (MaxBECount == RecastedMaxBECount) { 930 const Type *WideTy = 931 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 932 // Check whether Start+Step*MaxBECount has no signed overflow. 933 SCEVHandle SMul = 934 getMulExpr(CastedMaxBECount, 935 getTruncateOrSignExtend(Step, Start->getType())); 936 SCEVHandle Add = getAddExpr(Start, SMul); 937 SCEVHandle OperandExtendedAdd = 938 getAddExpr(getSignExtendExpr(Start, WideTy), 939 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 940 getSignExtendExpr(Step, WideTy))); 941 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 942 // Return the expression with the addrec on the outside. 943 return getAddRecExpr(getSignExtendExpr(Start, Ty), 944 getSignExtendExpr(Step, Ty), 945 AR->getLoop()); 946 } 947 } 948 } 949 950 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 951 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 952 return Result; 953 } 954 955 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 956 /// unspecified bits out to the given type. 957 /// 958 SCEVHandle ScalarEvolution::getAnyExtendExpr(const SCEVHandle &Op, 959 const Type *Ty) { 960 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 961 "This is not an extending conversion!"); 962 assert(isSCEVable(Ty) && 963 "This is not a conversion to a SCEVable type!"); 964 Ty = getEffectiveSCEVType(Ty); 965 966 // Sign-extend negative constants. 967 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 968 if (SC->getValue()->getValue().isNegative()) 969 return getSignExtendExpr(Op, Ty); 970 971 // Peel off a truncate cast. 972 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 973 SCEVHandle NewOp = T->getOperand(); 974 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 975 return getAnyExtendExpr(NewOp, Ty); 976 return getTruncateOrNoop(NewOp, Ty); 977 } 978 979 // Next try a zext cast. If the cast is folded, use it. 980 SCEVHandle ZExt = getZeroExtendExpr(Op, Ty); 981 if (!isa<SCEVZeroExtendExpr>(ZExt)) 982 return ZExt; 983 984 // Next try a sext cast. If the cast is folded, use it. 985 SCEVHandle SExt = getSignExtendExpr(Op, Ty); 986 if (!isa<SCEVSignExtendExpr>(SExt)) 987 return SExt; 988 989 // If the expression is obviously signed, use the sext cast value. 990 if (isa<SCEVSMaxExpr>(Op)) 991 return SExt; 992 993 // Absent any other information, use the zext cast value. 994 return ZExt; 995 } 996 997 /// CollectAddOperandsWithScales - Process the given Ops list, which is 998 /// a list of operands to be added under the given scale, update the given 999 /// map. This is a helper function for getAddRecExpr. As an example of 1000 /// what it does, given a sequence of operands that would form an add 1001 /// expression like this: 1002 /// 1003 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1004 /// 1005 /// where A and B are constants, update the map with these values: 1006 /// 1007 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1008 /// 1009 /// and add 13 + A*B*29 to AccumulatedConstant. 1010 /// This will allow getAddRecExpr to produce this: 1011 /// 1012 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1013 /// 1014 /// This form often exposes folding opportunities that are hidden in 1015 /// the original operand list. 1016 /// 1017 /// Return true iff it appears that any interesting folding opportunities 1018 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1019 /// the common case where no interesting opportunities are present, and 1020 /// is also used as a check to avoid infinite recursion. 1021 /// 1022 static bool 1023 CollectAddOperandsWithScales(DenseMap<SCEVHandle, APInt> &M, 1024 SmallVector<SCEVHandle, 8> &NewOps, 1025 APInt &AccumulatedConstant, 1026 const SmallVectorImpl<SCEVHandle> &Ops, 1027 const APInt &Scale, 1028 ScalarEvolution &SE) { 1029 bool Interesting = false; 1030 1031 // Iterate over the add operands. 1032 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1033 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1034 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1035 APInt NewScale = 1036 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1037 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1038 // A multiplication of a constant with another add; recurse. 1039 Interesting |= 1040 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1041 cast<SCEVAddExpr>(Mul->getOperand(1)) 1042 ->getOperands(), 1043 NewScale, SE); 1044 } else { 1045 // A multiplication of a constant with some other value. Update 1046 // the map. 1047 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1048 SCEVHandle Key = SE.getMulExpr(MulOps); 1049 std::pair<DenseMap<SCEVHandle, APInt>::iterator, bool> Pair = 1050 M.insert(std::make_pair(Key, APInt())); 1051 if (Pair.second) { 1052 Pair.first->second = NewScale; 1053 NewOps.push_back(Pair.first->first); 1054 } else { 1055 Pair.first->second += NewScale; 1056 // The map already had an entry for this value, which may indicate 1057 // a folding opportunity. 1058 Interesting = true; 1059 } 1060 } 1061 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1062 // Pull a buried constant out to the outside. 1063 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero()) 1064 Interesting = true; 1065 AccumulatedConstant += Scale * C->getValue()->getValue(); 1066 } else { 1067 // An ordinary operand. Update the map. 1068 std::pair<DenseMap<SCEVHandle, APInt>::iterator, bool> Pair = 1069 M.insert(std::make_pair(Ops[i], APInt())); 1070 if (Pair.second) { 1071 Pair.first->second = Scale; 1072 NewOps.push_back(Pair.first->first); 1073 } else { 1074 Pair.first->second += Scale; 1075 // The map already had an entry for this value, which may indicate 1076 // a folding opportunity. 1077 Interesting = true; 1078 } 1079 } 1080 } 1081 1082 return Interesting; 1083 } 1084 1085 namespace { 1086 struct APIntCompare { 1087 bool operator()(const APInt &LHS, const APInt &RHS) const { 1088 return LHS.ult(RHS); 1089 } 1090 }; 1091 } 1092 1093 /// getAddExpr - Get a canonical add expression, or something simpler if 1094 /// possible. 1095 SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1096 assert(!Ops.empty() && "Cannot get empty add!"); 1097 if (Ops.size() == 1) return Ops[0]; 1098 #ifndef NDEBUG 1099 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1100 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1101 getEffectiveSCEVType(Ops[0]->getType()) && 1102 "SCEVAddExpr operand types don't match!"); 1103 #endif 1104 1105 // Sort by complexity, this groups all similar expression types together. 1106 GroupByComplexity(Ops, LI); 1107 1108 // If there are any constants, fold them together. 1109 unsigned Idx = 0; 1110 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1111 ++Idx; 1112 assert(Idx < Ops.size()); 1113 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1114 // We found two constants, fold them together! 1115 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1116 RHSC->getValue()->getValue()); 1117 if (Ops.size() == 2) return Ops[0]; 1118 Ops.erase(Ops.begin()+1); // Erase the folded element 1119 LHSC = cast<SCEVConstant>(Ops[0]); 1120 } 1121 1122 // If we are left with a constant zero being added, strip it off. 1123 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1124 Ops.erase(Ops.begin()); 1125 --Idx; 1126 } 1127 } 1128 1129 if (Ops.size() == 1) return Ops[0]; 1130 1131 // Okay, check to see if the same value occurs in the operand list twice. If 1132 // so, merge them together into an multiply expression. Since we sorted the 1133 // list, these values are required to be adjacent. 1134 const Type *Ty = Ops[0]->getType(); 1135 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1136 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1137 // Found a match, merge the two values into a multiply, and add any 1138 // remaining values to the result. 1139 SCEVHandle Two = getIntegerSCEV(2, Ty); 1140 SCEVHandle Mul = getMulExpr(Ops[i], Two); 1141 if (Ops.size() == 2) 1142 return Mul; 1143 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1144 Ops.push_back(Mul); 1145 return getAddExpr(Ops); 1146 } 1147 1148 // Check for truncates. If all the operands are truncated from the same 1149 // type, see if factoring out the truncate would permit the result to be 1150 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1151 // if the contents of the resulting outer trunc fold to something simple. 1152 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1153 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1154 const Type *DstType = Trunc->getType(); 1155 const Type *SrcType = Trunc->getOperand()->getType(); 1156 SmallVector<SCEVHandle, 8> LargeOps; 1157 bool Ok = true; 1158 // Check all the operands to see if they can be represented in the 1159 // source type of the truncate. 1160 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1161 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1162 if (T->getOperand()->getType() != SrcType) { 1163 Ok = false; 1164 break; 1165 } 1166 LargeOps.push_back(T->getOperand()); 1167 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1168 // This could be either sign or zero extension, but sign extension 1169 // is much more likely to be foldable here. 1170 LargeOps.push_back(getSignExtendExpr(C, SrcType)); 1171 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1172 SmallVector<SCEVHandle, 8> LargeMulOps; 1173 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1174 if (const SCEVTruncateExpr *T = 1175 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1176 if (T->getOperand()->getType() != SrcType) { 1177 Ok = false; 1178 break; 1179 } 1180 LargeMulOps.push_back(T->getOperand()); 1181 } else if (const SCEVConstant *C = 1182 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1183 // This could be either sign or zero extension, but sign extension 1184 // is much more likely to be foldable here. 1185 LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); 1186 } else { 1187 Ok = false; 1188 break; 1189 } 1190 } 1191 if (Ok) 1192 LargeOps.push_back(getMulExpr(LargeMulOps)); 1193 } else { 1194 Ok = false; 1195 break; 1196 } 1197 } 1198 if (Ok) { 1199 // Evaluate the expression in the larger type. 1200 SCEVHandle Fold = getAddExpr(LargeOps); 1201 // If it folds to something simple, use it. Otherwise, don't. 1202 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1203 return getTruncateExpr(Fold, DstType); 1204 } 1205 } 1206 1207 // Skip past any other cast SCEVs. 1208 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1209 ++Idx; 1210 1211 // If there are add operands they would be next. 1212 if (Idx < Ops.size()) { 1213 bool DeletedAdd = false; 1214 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1215 // If we have an add, expand the add operands onto the end of the operands 1216 // list. 1217 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 1218 Ops.erase(Ops.begin()+Idx); 1219 DeletedAdd = true; 1220 } 1221 1222 // If we deleted at least one add, we added operands to the end of the list, 1223 // and they are not necessarily sorted. Recurse to resort and resimplify 1224 // any operands we just aquired. 1225 if (DeletedAdd) 1226 return getAddExpr(Ops); 1227 } 1228 1229 // Skip over the add expression until we get to a multiply. 1230 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1231 ++Idx; 1232 1233 // Check to see if there are any folding opportunities present with 1234 // operands multiplied by constant values. 1235 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1236 uint64_t BitWidth = getTypeSizeInBits(Ty); 1237 DenseMap<SCEVHandle, APInt> M; 1238 SmallVector<SCEVHandle, 8> NewOps; 1239 APInt AccumulatedConstant(BitWidth, 0); 1240 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1241 Ops, APInt(BitWidth, 1), *this)) { 1242 // Some interesting folding opportunity is present, so its worthwhile to 1243 // re-generate the operands list. Group the operands by constant scale, 1244 // to avoid multiplying by the same constant scale multiple times. 1245 std::map<APInt, SmallVector<SCEVHandle, 4>, APIntCompare> MulOpLists; 1246 for (SmallVector<SCEVHandle, 8>::iterator I = NewOps.begin(), 1247 E = NewOps.end(); I != E; ++I) 1248 MulOpLists[M.find(*I)->second].push_back(*I); 1249 // Re-generate the operands list. 1250 Ops.clear(); 1251 if (AccumulatedConstant != 0) 1252 Ops.push_back(getConstant(AccumulatedConstant)); 1253 for (std::map<APInt, SmallVector<SCEVHandle, 4>, APIntCompare>::iterator I = 1254 MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1255 if (I->first != 0) 1256 Ops.push_back(getMulExpr(getConstant(I->first), getAddExpr(I->second))); 1257 if (Ops.empty()) 1258 return getIntegerSCEV(0, Ty); 1259 if (Ops.size() == 1) 1260 return Ops[0]; 1261 return getAddExpr(Ops); 1262 } 1263 } 1264 1265 // If we are adding something to a multiply expression, make sure the 1266 // something is not already an operand of the multiply. If so, merge it into 1267 // the multiply. 1268 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1269 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1270 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1271 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1272 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1273 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1274 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1275 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 1276 if (Mul->getNumOperands() != 2) { 1277 // If the multiply has more than two operands, we must get the 1278 // Y*Z term. 1279 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1280 MulOps.erase(MulOps.begin()+MulOp); 1281 InnerMul = getMulExpr(MulOps); 1282 } 1283 SCEVHandle One = getIntegerSCEV(1, Ty); 1284 SCEVHandle AddOne = getAddExpr(InnerMul, One); 1285 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1286 if (Ops.size() == 2) return OuterMul; 1287 if (AddOp < Idx) { 1288 Ops.erase(Ops.begin()+AddOp); 1289 Ops.erase(Ops.begin()+Idx-1); 1290 } else { 1291 Ops.erase(Ops.begin()+Idx); 1292 Ops.erase(Ops.begin()+AddOp-1); 1293 } 1294 Ops.push_back(OuterMul); 1295 return getAddExpr(Ops); 1296 } 1297 1298 // Check this multiply against other multiplies being added together. 1299 for (unsigned OtherMulIdx = Idx+1; 1300 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1301 ++OtherMulIdx) { 1302 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1303 // If MulOp occurs in OtherMul, we can fold the two multiplies 1304 // together. 1305 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1306 OMulOp != e; ++OMulOp) 1307 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1308 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1309 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 1310 if (Mul->getNumOperands() != 2) { 1311 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1312 MulOps.erase(MulOps.begin()+MulOp); 1313 InnerMul1 = getMulExpr(MulOps); 1314 } 1315 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1316 if (OtherMul->getNumOperands() != 2) { 1317 SmallVector<SCEVHandle, 4> MulOps(OtherMul->op_begin(), 1318 OtherMul->op_end()); 1319 MulOps.erase(MulOps.begin()+OMulOp); 1320 InnerMul2 = getMulExpr(MulOps); 1321 } 1322 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1323 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1324 if (Ops.size() == 2) return OuterMul; 1325 Ops.erase(Ops.begin()+Idx); 1326 Ops.erase(Ops.begin()+OtherMulIdx-1); 1327 Ops.push_back(OuterMul); 1328 return getAddExpr(Ops); 1329 } 1330 } 1331 } 1332 } 1333 1334 // If there are any add recurrences in the operands list, see if any other 1335 // added values are loop invariant. If so, we can fold them into the 1336 // recurrence. 1337 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1338 ++Idx; 1339 1340 // Scan over all recurrences, trying to fold loop invariants into them. 1341 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1342 // Scan all of the other operands to this add and add them to the vector if 1343 // they are loop invariant w.r.t. the recurrence. 1344 SmallVector<SCEVHandle, 8> LIOps; 1345 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1346 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1347 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1348 LIOps.push_back(Ops[i]); 1349 Ops.erase(Ops.begin()+i); 1350 --i; --e; 1351 } 1352 1353 // If we found some loop invariants, fold them into the recurrence. 1354 if (!LIOps.empty()) { 1355 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1356 LIOps.push_back(AddRec->getStart()); 1357 1358 SmallVector<SCEVHandle, 4> AddRecOps(AddRec->op_begin(), 1359 AddRec->op_end()); 1360 AddRecOps[0] = getAddExpr(LIOps); 1361 1362 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1363 // If all of the other operands were loop invariant, we are done. 1364 if (Ops.size() == 1) return NewRec; 1365 1366 // Otherwise, add the folded AddRec by the non-liv parts. 1367 for (unsigned i = 0;; ++i) 1368 if (Ops[i] == AddRec) { 1369 Ops[i] = NewRec; 1370 break; 1371 } 1372 return getAddExpr(Ops); 1373 } 1374 1375 // Okay, if there weren't any loop invariants to be folded, check to see if 1376 // there are multiple AddRec's with the same loop induction variable being 1377 // added together. If so, we can fold them. 1378 for (unsigned OtherIdx = Idx+1; 1379 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1380 if (OtherIdx != Idx) { 1381 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1382 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1383 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1384 SmallVector<SCEVHandle, 4> NewOps(AddRec->op_begin(), AddRec->op_end()); 1385 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1386 if (i >= NewOps.size()) { 1387 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1388 OtherAddRec->op_end()); 1389 break; 1390 } 1391 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1392 } 1393 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1394 1395 if (Ops.size() == 2) return NewAddRec; 1396 1397 Ops.erase(Ops.begin()+Idx); 1398 Ops.erase(Ops.begin()+OtherIdx-1); 1399 Ops.push_back(NewAddRec); 1400 return getAddExpr(Ops); 1401 } 1402 } 1403 1404 // Otherwise couldn't fold anything into this recurrence. Move onto the 1405 // next one. 1406 } 1407 1408 // Okay, it looks like we really DO need an add expr. Check to see if we 1409 // already have one, otherwise create a new one. 1410 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1411 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 1412 SCEVOps)]; 1413 if (Result == 0) Result = new SCEVAddExpr(Ops); 1414 return Result; 1415 } 1416 1417 1418 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1419 /// possible. 1420 SCEVHandle ScalarEvolution::getMulExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1421 assert(!Ops.empty() && "Cannot get empty mul!"); 1422 #ifndef NDEBUG 1423 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1424 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1425 getEffectiveSCEVType(Ops[0]->getType()) && 1426 "SCEVMulExpr operand types don't match!"); 1427 #endif 1428 1429 // Sort by complexity, this groups all similar expression types together. 1430 GroupByComplexity(Ops, LI); 1431 1432 // If there are any constants, fold them together. 1433 unsigned Idx = 0; 1434 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1435 1436 // C1*(C2+V) -> C1*C2 + C1*V 1437 if (Ops.size() == 2) 1438 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1439 if (Add->getNumOperands() == 2 && 1440 isa<SCEVConstant>(Add->getOperand(0))) 1441 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1442 getMulExpr(LHSC, Add->getOperand(1))); 1443 1444 1445 ++Idx; 1446 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1447 // We found two constants, fold them together! 1448 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 1449 RHSC->getValue()->getValue()); 1450 Ops[0] = getConstant(Fold); 1451 Ops.erase(Ops.begin()+1); // Erase the folded element 1452 if (Ops.size() == 1) return Ops[0]; 1453 LHSC = cast<SCEVConstant>(Ops[0]); 1454 } 1455 1456 // If we are left with a constant one being multiplied, strip it off. 1457 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1458 Ops.erase(Ops.begin()); 1459 --Idx; 1460 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1461 // If we have a multiply of zero, it will always be zero. 1462 return Ops[0]; 1463 } 1464 } 1465 1466 // Skip over the add expression until we get to a multiply. 1467 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1468 ++Idx; 1469 1470 if (Ops.size() == 1) 1471 return Ops[0]; 1472 1473 // If there are mul operands inline them all into this expression. 1474 if (Idx < Ops.size()) { 1475 bool DeletedMul = false; 1476 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1477 // If we have an mul, expand the mul operands onto the end of the operands 1478 // list. 1479 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1480 Ops.erase(Ops.begin()+Idx); 1481 DeletedMul = true; 1482 } 1483 1484 // If we deleted at least one mul, we added operands to the end of the list, 1485 // and they are not necessarily sorted. Recurse to resort and resimplify 1486 // any operands we just aquired. 1487 if (DeletedMul) 1488 return getMulExpr(Ops); 1489 } 1490 1491 // If there are any add recurrences in the operands list, see if any other 1492 // added values are loop invariant. If so, we can fold them into the 1493 // recurrence. 1494 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1495 ++Idx; 1496 1497 // Scan over all recurrences, trying to fold loop invariants into them. 1498 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1499 // Scan all of the other operands to this mul and add them to the vector if 1500 // they are loop invariant w.r.t. the recurrence. 1501 SmallVector<SCEVHandle, 8> LIOps; 1502 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1503 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1504 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1505 LIOps.push_back(Ops[i]); 1506 Ops.erase(Ops.begin()+i); 1507 --i; --e; 1508 } 1509 1510 // If we found some loop invariants, fold them into the recurrence. 1511 if (!LIOps.empty()) { 1512 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1513 SmallVector<SCEVHandle, 4> NewOps; 1514 NewOps.reserve(AddRec->getNumOperands()); 1515 if (LIOps.size() == 1) { 1516 const SCEV *Scale = LIOps[0]; 1517 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1518 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1519 } else { 1520 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1521 SmallVector<SCEVHandle, 4> MulOps(LIOps.begin(), LIOps.end()); 1522 MulOps.push_back(AddRec->getOperand(i)); 1523 NewOps.push_back(getMulExpr(MulOps)); 1524 } 1525 } 1526 1527 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1528 1529 // If all of the other operands were loop invariant, we are done. 1530 if (Ops.size() == 1) return NewRec; 1531 1532 // Otherwise, multiply the folded AddRec by the non-liv parts. 1533 for (unsigned i = 0;; ++i) 1534 if (Ops[i] == AddRec) { 1535 Ops[i] = NewRec; 1536 break; 1537 } 1538 return getMulExpr(Ops); 1539 } 1540 1541 // Okay, if there weren't any loop invariants to be folded, check to see if 1542 // there are multiple AddRec's with the same loop induction variable being 1543 // multiplied together. If so, we can fold them. 1544 for (unsigned OtherIdx = Idx+1; 1545 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1546 if (OtherIdx != Idx) { 1547 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1548 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1549 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1550 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1551 SCEVHandle NewStart = getMulExpr(F->getStart(), 1552 G->getStart()); 1553 SCEVHandle B = F->getStepRecurrence(*this); 1554 SCEVHandle D = G->getStepRecurrence(*this); 1555 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1556 getMulExpr(G, B), 1557 getMulExpr(B, D)); 1558 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1559 F->getLoop()); 1560 if (Ops.size() == 2) return NewAddRec; 1561 1562 Ops.erase(Ops.begin()+Idx); 1563 Ops.erase(Ops.begin()+OtherIdx-1); 1564 Ops.push_back(NewAddRec); 1565 return getMulExpr(Ops); 1566 } 1567 } 1568 1569 // Otherwise couldn't fold anything into this recurrence. Move onto the 1570 // next one. 1571 } 1572 1573 // Okay, it looks like we really DO need an mul expr. Check to see if we 1574 // already have one, otherwise create a new one. 1575 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1576 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1577 SCEVOps)]; 1578 if (Result == 0) 1579 Result = new SCEVMulExpr(Ops); 1580 return Result; 1581 } 1582 1583 /// getUDivExpr - Get a canonical multiply expression, or something simpler if 1584 /// possible. 1585 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, 1586 const SCEVHandle &RHS) { 1587 assert(getEffectiveSCEVType(LHS->getType()) == 1588 getEffectiveSCEVType(RHS->getType()) && 1589 "SCEVUDivExpr operand types don't match!"); 1590 1591 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1592 if (RHSC->getValue()->equalsInt(1)) 1593 return LHS; // X udiv 1 --> x 1594 if (RHSC->isZero()) 1595 return getIntegerSCEV(0, LHS->getType()); // value is undefined 1596 1597 // Determine if the division can be folded into the operands of 1598 // its operands. 1599 // TODO: Generalize this to non-constants by using known-bits information. 1600 const Type *Ty = LHS->getType(); 1601 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1602 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1603 // For non-power-of-two values, effectively round the value up to the 1604 // nearest power of two. 1605 if (!RHSC->getValue()->getValue().isPowerOf2()) 1606 ++MaxShiftAmt; 1607 const IntegerType *ExtTy = 1608 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt); 1609 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1610 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1611 if (const SCEVConstant *Step = 1612 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1613 if (!Step->getValue()->getValue() 1614 .urem(RHSC->getValue()->getValue()) && 1615 getZeroExtendExpr(AR, ExtTy) == 1616 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1617 getZeroExtendExpr(Step, ExtTy), 1618 AR->getLoop())) { 1619 SmallVector<SCEVHandle, 4> Operands; 1620 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1621 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1622 return getAddRecExpr(Operands, AR->getLoop()); 1623 } 1624 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1625 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1626 SmallVector<SCEVHandle, 4> Operands; 1627 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1628 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1629 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1630 // Find an operand that's safely divisible. 1631 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1632 SCEVHandle Op = M->getOperand(i); 1633 SCEVHandle Div = getUDivExpr(Op, RHSC); 1634 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1635 const SmallVectorImpl<SCEVHandle> &MOperands = M->getOperands(); 1636 Operands = SmallVector<SCEVHandle, 4>(MOperands.begin(), 1637 MOperands.end()); 1638 Operands[i] = Div; 1639 return getMulExpr(Operands); 1640 } 1641 } 1642 } 1643 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1644 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1645 SmallVector<SCEVHandle, 4> Operands; 1646 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1647 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1648 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1649 Operands.clear(); 1650 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1651 SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS); 1652 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) 1653 break; 1654 Operands.push_back(Op); 1655 } 1656 if (Operands.size() == A->getNumOperands()) 1657 return getAddExpr(Operands); 1658 } 1659 } 1660 1661 // Fold if both operands are constant. 1662 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1663 Constant *LHSCV = LHSC->getValue(); 1664 Constant *RHSCV = RHSC->getValue(); 1665 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1666 } 1667 } 1668 1669 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; 1670 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); 1671 return Result; 1672 } 1673 1674 1675 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1676 /// Simplify the expression as much as possible. 1677 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1678 const SCEVHandle &Step, const Loop *L) { 1679 SmallVector<SCEVHandle, 4> Operands; 1680 Operands.push_back(Start); 1681 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1682 if (StepChrec->getLoop() == L) { 1683 Operands.insert(Operands.end(), StepChrec->op_begin(), 1684 StepChrec->op_end()); 1685 return getAddRecExpr(Operands, L); 1686 } 1687 1688 Operands.push_back(Step); 1689 return getAddRecExpr(Operands, L); 1690 } 1691 1692 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1693 /// Simplify the expression as much as possible. 1694 SCEVHandle ScalarEvolution::getAddRecExpr(SmallVectorImpl<SCEVHandle> &Operands, 1695 const Loop *L) { 1696 if (Operands.size() == 1) return Operands[0]; 1697 #ifndef NDEBUG 1698 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1699 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1700 getEffectiveSCEVType(Operands[0]->getType()) && 1701 "SCEVAddRecExpr operand types don't match!"); 1702 #endif 1703 1704 if (Operands.back()->isZero()) { 1705 Operands.pop_back(); 1706 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1707 } 1708 1709 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1710 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1711 const Loop* NestedLoop = NestedAR->getLoop(); 1712 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1713 SmallVector<SCEVHandle, 4> NestedOperands(NestedAR->op_begin(), 1714 NestedAR->op_end()); 1715 SCEVHandle NestedARHandle(NestedAR); 1716 Operands[0] = NestedAR->getStart(); 1717 NestedOperands[0] = getAddRecExpr(Operands, L); 1718 return getAddRecExpr(NestedOperands, NestedLoop); 1719 } 1720 } 1721 1722 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 1723 SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)]; 1724 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1725 return Result; 1726 } 1727 1728 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, 1729 const SCEVHandle &RHS) { 1730 SmallVector<SCEVHandle, 2> Ops; 1731 Ops.push_back(LHS); 1732 Ops.push_back(RHS); 1733 return getSMaxExpr(Ops); 1734 } 1735 1736 SCEVHandle 1737 ScalarEvolution::getSMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1738 assert(!Ops.empty() && "Cannot get empty smax!"); 1739 if (Ops.size() == 1) return Ops[0]; 1740 #ifndef NDEBUG 1741 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1742 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1743 getEffectiveSCEVType(Ops[0]->getType()) && 1744 "SCEVSMaxExpr operand types don't match!"); 1745 #endif 1746 1747 // Sort by complexity, this groups all similar expression types together. 1748 GroupByComplexity(Ops, LI); 1749 1750 // If there are any constants, fold them together. 1751 unsigned Idx = 0; 1752 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1753 ++Idx; 1754 assert(Idx < Ops.size()); 1755 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1756 // We found two constants, fold them together! 1757 ConstantInt *Fold = ConstantInt::get( 1758 APIntOps::smax(LHSC->getValue()->getValue(), 1759 RHSC->getValue()->getValue())); 1760 Ops[0] = getConstant(Fold); 1761 Ops.erase(Ops.begin()+1); // Erase the folded element 1762 if (Ops.size() == 1) return Ops[0]; 1763 LHSC = cast<SCEVConstant>(Ops[0]); 1764 } 1765 1766 // If we are left with a constant -inf, strip it off. 1767 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1768 Ops.erase(Ops.begin()); 1769 --Idx; 1770 } 1771 } 1772 1773 if (Ops.size() == 1) return Ops[0]; 1774 1775 // Find the first SMax 1776 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1777 ++Idx; 1778 1779 // Check to see if one of the operands is an SMax. If so, expand its operands 1780 // onto our operand list, and recurse to simplify. 1781 if (Idx < Ops.size()) { 1782 bool DeletedSMax = false; 1783 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1784 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1785 Ops.erase(Ops.begin()+Idx); 1786 DeletedSMax = true; 1787 } 1788 1789 if (DeletedSMax) 1790 return getSMaxExpr(Ops); 1791 } 1792 1793 // Okay, check to see if the same value occurs in the operand list twice. If 1794 // so, delete one. Since we sorted the list, these values are required to 1795 // be adjacent. 1796 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1797 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1798 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1799 --i; --e; 1800 } 1801 1802 if (Ops.size() == 1) return Ops[0]; 1803 1804 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1805 1806 // Okay, it looks like we really DO need an smax expr. Check to see if we 1807 // already have one, otherwise create a new one. 1808 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1809 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, 1810 SCEVOps)]; 1811 if (Result == 0) Result = new SCEVSMaxExpr(Ops); 1812 return Result; 1813 } 1814 1815 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, 1816 const SCEVHandle &RHS) { 1817 SmallVector<SCEVHandle, 2> Ops; 1818 Ops.push_back(LHS); 1819 Ops.push_back(RHS); 1820 return getUMaxExpr(Ops); 1821 } 1822 1823 SCEVHandle 1824 ScalarEvolution::getUMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1825 assert(!Ops.empty() && "Cannot get empty umax!"); 1826 if (Ops.size() == 1) return Ops[0]; 1827 #ifndef NDEBUG 1828 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1829 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1830 getEffectiveSCEVType(Ops[0]->getType()) && 1831 "SCEVUMaxExpr operand types don't match!"); 1832 #endif 1833 1834 // Sort by complexity, this groups all similar expression types together. 1835 GroupByComplexity(Ops, LI); 1836 1837 // If there are any constants, fold them together. 1838 unsigned Idx = 0; 1839 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1840 ++Idx; 1841 assert(Idx < Ops.size()); 1842 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1843 // We found two constants, fold them together! 1844 ConstantInt *Fold = ConstantInt::get( 1845 APIntOps::umax(LHSC->getValue()->getValue(), 1846 RHSC->getValue()->getValue())); 1847 Ops[0] = getConstant(Fold); 1848 Ops.erase(Ops.begin()+1); // Erase the folded element 1849 if (Ops.size() == 1) return Ops[0]; 1850 LHSC = cast<SCEVConstant>(Ops[0]); 1851 } 1852 1853 // If we are left with a constant zero, strip it off. 1854 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1855 Ops.erase(Ops.begin()); 1856 --Idx; 1857 } 1858 } 1859 1860 if (Ops.size() == 1) return Ops[0]; 1861 1862 // Find the first UMax 1863 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1864 ++Idx; 1865 1866 // Check to see if one of the operands is a UMax. If so, expand its operands 1867 // onto our operand list, and recurse to simplify. 1868 if (Idx < Ops.size()) { 1869 bool DeletedUMax = false; 1870 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1871 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1872 Ops.erase(Ops.begin()+Idx); 1873 DeletedUMax = true; 1874 } 1875 1876 if (DeletedUMax) 1877 return getUMaxExpr(Ops); 1878 } 1879 1880 // Okay, check to see if the same value occurs in the operand list twice. If 1881 // so, delete one. Since we sorted the list, these values are required to 1882 // be adjacent. 1883 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1884 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1885 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1886 --i; --e; 1887 } 1888 1889 if (Ops.size() == 1) return Ops[0]; 1890 1891 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1892 1893 // Okay, it looks like we really DO need a umax expr. Check to see if we 1894 // already have one, otherwise create a new one. 1895 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1896 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, 1897 SCEVOps)]; 1898 if (Result == 0) Result = new SCEVUMaxExpr(Ops); 1899 return Result; 1900 } 1901 1902 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1903 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1904 return getConstant(CI); 1905 if (isa<ConstantPointerNull>(V)) 1906 return getIntegerSCEV(0, V->getType()); 1907 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1908 if (Result == 0) Result = new SCEVUnknown(V); 1909 return Result; 1910 } 1911 1912 //===----------------------------------------------------------------------===// 1913 // Basic SCEV Analysis and PHI Idiom Recognition Code 1914 // 1915 1916 /// isSCEVable - Test if values of the given type are analyzable within 1917 /// the SCEV framework. This primarily includes integer types, and it 1918 /// can optionally include pointer types if the ScalarEvolution class 1919 /// has access to target-specific information. 1920 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 1921 // Integers are always SCEVable. 1922 if (Ty->isInteger()) 1923 return true; 1924 1925 // Pointers are SCEVable if TargetData information is available 1926 // to provide pointer size information. 1927 if (isa<PointerType>(Ty)) 1928 return TD != NULL; 1929 1930 // Otherwise it's not SCEVable. 1931 return false; 1932 } 1933 1934 /// getTypeSizeInBits - Return the size in bits of the specified type, 1935 /// for which isSCEVable must return true. 1936 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 1937 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1938 1939 // If we have a TargetData, use it! 1940 if (TD) 1941 return TD->getTypeSizeInBits(Ty); 1942 1943 // Otherwise, we support only integer types. 1944 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!"); 1945 return Ty->getPrimitiveSizeInBits(); 1946 } 1947 1948 /// getEffectiveSCEVType - Return a type with the same bitwidth as 1949 /// the given type and which represents how SCEV will treat the given 1950 /// type, for which isSCEVable must return true. For pointer types, 1951 /// this is the pointer-sized integer type. 1952 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 1953 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1954 1955 if (Ty->isInteger()) 1956 return Ty; 1957 1958 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); 1959 return TD->getIntPtrType(); 1960 } 1961 1962 SCEVHandle ScalarEvolution::getCouldNotCompute() { 1963 return CouldNotCompute; 1964 } 1965 1966 /// hasSCEV - Return true if the SCEV for this value has already been 1967 /// computed. 1968 bool ScalarEvolution::hasSCEV(Value *V) const { 1969 return Scalars.count(V); 1970 } 1971 1972 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1973 /// expression and create a new one. 1974 SCEVHandle ScalarEvolution::getSCEV(Value *V) { 1975 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 1976 1977 std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V); 1978 if (I != Scalars.end()) return I->second; 1979 SCEVHandle S = createSCEV(V); 1980 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 1981 return S; 1982 } 1983 1984 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 1985 /// specified signed integer value and return a SCEV for the constant. 1986 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 1987 Ty = getEffectiveSCEVType(Ty); 1988 Constant *C; 1989 if (Val == 0) 1990 C = Constant::getNullValue(Ty); 1991 else if (Ty->isFloatingPoint()) 1992 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 1993 APFloat::IEEEdouble, Val)); 1994 else 1995 C = ConstantInt::get(Ty, Val); 1996 return getUnknown(C); 1997 } 1998 1999 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2000 /// 2001 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 2002 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2003 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 2004 2005 const Type *Ty = V->getType(); 2006 Ty = getEffectiveSCEVType(Ty); 2007 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty))); 2008 } 2009 2010 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2011 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { 2012 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2013 return getUnknown(ConstantExpr::getNot(VC->getValue())); 2014 2015 const Type *Ty = V->getType(); 2016 Ty = getEffectiveSCEVType(Ty); 2017 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); 2018 return getMinusSCEV(AllOnes, V); 2019 } 2020 2021 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2022 /// 2023 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 2024 const SCEVHandle &RHS) { 2025 // X - Y --> X + -Y 2026 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2027 } 2028 2029 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2030 /// input value to the specified type. If the type must be extended, it is zero 2031 /// extended. 2032 SCEVHandle 2033 ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, 2034 const Type *Ty) { 2035 const Type *SrcTy = V->getType(); 2036 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2037 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2038 "Cannot truncate or zero extend with non-integer arguments!"); 2039 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2040 return V; // No conversion 2041 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2042 return getTruncateExpr(V, Ty); 2043 return getZeroExtendExpr(V, Ty); 2044 } 2045 2046 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2047 /// input value to the specified type. If the type must be extended, it is sign 2048 /// extended. 2049 SCEVHandle 2050 ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V, 2051 const Type *Ty) { 2052 const Type *SrcTy = V->getType(); 2053 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2054 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2055 "Cannot truncate or zero extend with non-integer arguments!"); 2056 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2057 return V; // No conversion 2058 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2059 return getTruncateExpr(V, Ty); 2060 return getSignExtendExpr(V, Ty); 2061 } 2062 2063 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2064 /// input value to the specified type. If the type must be extended, it is zero 2065 /// extended. The conversion must not be narrowing. 2066 SCEVHandle 2067 ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) { 2068 const Type *SrcTy = V->getType(); 2069 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2070 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2071 "Cannot noop or zero extend with non-integer arguments!"); 2072 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2073 "getNoopOrZeroExtend cannot truncate!"); 2074 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2075 return V; // No conversion 2076 return getZeroExtendExpr(V, Ty); 2077 } 2078 2079 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2080 /// input value to the specified type. If the type must be extended, it is sign 2081 /// extended. The conversion must not be narrowing. 2082 SCEVHandle 2083 ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) { 2084 const Type *SrcTy = V->getType(); 2085 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2086 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2087 "Cannot noop or sign extend with non-integer arguments!"); 2088 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2089 "getNoopOrSignExtend cannot truncate!"); 2090 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2091 return V; // No conversion 2092 return getSignExtendExpr(V, Ty); 2093 } 2094 2095 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2096 /// the input value to the specified type. If the type must be extended, 2097 /// it is extended with unspecified bits. The conversion must not be 2098 /// narrowing. 2099 SCEVHandle 2100 ScalarEvolution::getNoopOrAnyExtend(const SCEVHandle &V, const Type *Ty) { 2101 const Type *SrcTy = V->getType(); 2102 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2103 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2104 "Cannot noop or any extend with non-integer arguments!"); 2105 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2106 "getNoopOrAnyExtend cannot truncate!"); 2107 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2108 return V; // No conversion 2109 return getAnyExtendExpr(V, Ty); 2110 } 2111 2112 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2113 /// input value to the specified type. The conversion must not be widening. 2114 SCEVHandle 2115 ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) { 2116 const Type *SrcTy = V->getType(); 2117 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2118 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2119 "Cannot truncate or noop with non-integer arguments!"); 2120 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2121 "getTruncateOrNoop cannot extend!"); 2122 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2123 return V; // No conversion 2124 return getTruncateExpr(V, Ty); 2125 } 2126 2127 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 2128 /// the specified instruction and replaces any references to the symbolic value 2129 /// SymName with the specified value. This is used during PHI resolution. 2130 void ScalarEvolution:: 2131 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 2132 const SCEVHandle &NewVal) { 2133 std::map<SCEVCallbackVH, SCEVHandle>::iterator SI = 2134 Scalars.find(SCEVCallbackVH(I, this)); 2135 if (SI == Scalars.end()) return; 2136 2137 SCEVHandle NV = 2138 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this); 2139 if (NV == SI->second) return; // No change. 2140 2141 SI->second = NV; // Update the scalars map! 2142 2143 // Any instruction values that use this instruction might also need to be 2144 // updated! 2145 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 2146 UI != E; ++UI) 2147 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 2148 } 2149 2150 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2151 /// a loop header, making it a potential recurrence, or it doesn't. 2152 /// 2153 SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { 2154 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 2155 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2156 if (L->getHeader() == PN->getParent()) { 2157 // If it lives in the loop header, it has two incoming values, one 2158 // from outside the loop, and one from inside. 2159 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 2160 unsigned BackEdge = IncomingEdge^1; 2161 2162 // While we are analyzing this PHI node, handle its value symbolically. 2163 SCEVHandle SymbolicName = getUnknown(PN); 2164 assert(Scalars.find(PN) == Scalars.end() && 2165 "PHI node already processed?"); 2166 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2167 2168 // Using this symbolic name for the PHI, analyze the value coming around 2169 // the back-edge. 2170 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 2171 2172 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2173 // has a special value for the first iteration of the loop. 2174 2175 // If the value coming around the backedge is an add with the symbolic 2176 // value we just inserted, then we found a simple induction variable! 2177 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2178 // If there is a single occurrence of the symbolic value, replace it 2179 // with a recurrence. 2180 unsigned FoundIndex = Add->getNumOperands(); 2181 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2182 if (Add->getOperand(i) == SymbolicName) 2183 if (FoundIndex == e) { 2184 FoundIndex = i; 2185 break; 2186 } 2187 2188 if (FoundIndex != Add->getNumOperands()) { 2189 // Create an add with everything but the specified operand. 2190 SmallVector<SCEVHandle, 8> Ops; 2191 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2192 if (i != FoundIndex) 2193 Ops.push_back(Add->getOperand(i)); 2194 SCEVHandle Accum = getAddExpr(Ops); 2195 2196 // This is not a valid addrec if the step amount is varying each 2197 // loop iteration, but is not itself an addrec in this loop. 2198 if (Accum->isLoopInvariant(L) || 2199 (isa<SCEVAddRecExpr>(Accum) && 2200 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2201 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2202 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L); 2203 2204 // Okay, for the entire analysis of this edge we assumed the PHI 2205 // to be symbolic. We now need to go back and update all of the 2206 // entries for the scalars that use the PHI (except for the PHI 2207 // itself) to use the new analyzed value instead of the "symbolic" 2208 // value. 2209 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 2210 return PHISCEV; 2211 } 2212 } 2213 } else if (const SCEVAddRecExpr *AddRec = 2214 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2215 // Otherwise, this could be a loop like this: 2216 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2217 // In this case, j = {1,+,1} and BEValue is j. 2218 // Because the other in-value of i (0) fits the evolution of BEValue 2219 // i really is an addrec evolution. 2220 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2221 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2222 2223 // If StartVal = j.start - j.stride, we can use StartVal as the 2224 // initial step of the addrec evolution. 2225 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2226 AddRec->getOperand(1))) { 2227 SCEVHandle PHISCEV = 2228 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2229 2230 // Okay, for the entire analysis of this edge we assumed the PHI 2231 // to be symbolic. We now need to go back and update all of the 2232 // entries for the scalars that use the PHI (except for the PHI 2233 // itself) to use the new analyzed value instead of the "symbolic" 2234 // value. 2235 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 2236 return PHISCEV; 2237 } 2238 } 2239 } 2240 2241 return SymbolicName; 2242 } 2243 2244 // If it's not a loop phi, we can't handle it yet. 2245 return getUnknown(PN); 2246 } 2247 2248 /// createNodeForGEP - Expand GEP instructions into add and multiply 2249 /// operations. This allows them to be analyzed by regular SCEV code. 2250 /// 2251 SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) { 2252 2253 const Type *IntPtrTy = TD->getIntPtrType(); 2254 Value *Base = GEP->getOperand(0); 2255 // Don't attempt to analyze GEPs over unsized objects. 2256 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2257 return getUnknown(GEP); 2258 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy); 2259 gep_type_iterator GTI = gep_type_begin(GEP); 2260 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2261 E = GEP->op_end(); 2262 I != E; ++I) { 2263 Value *Index = *I; 2264 // Compute the (potentially symbolic) offset in bytes for this index. 2265 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2266 // For a struct, add the member offset. 2267 const StructLayout &SL = *TD->getStructLayout(STy); 2268 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2269 uint64_t Offset = SL.getElementOffset(FieldNo); 2270 TotalOffset = getAddExpr(TotalOffset, 2271 getIntegerSCEV(Offset, IntPtrTy)); 2272 } else { 2273 // For an array, add the element offset, explicitly scaled. 2274 SCEVHandle LocalOffset = getSCEV(Index); 2275 if (!isa<PointerType>(LocalOffset->getType())) 2276 // Getelementptr indicies are signed. 2277 LocalOffset = getTruncateOrSignExtend(LocalOffset, 2278 IntPtrTy); 2279 LocalOffset = 2280 getMulExpr(LocalOffset, 2281 getIntegerSCEV(TD->getTypeAllocSize(*GTI), 2282 IntPtrTy)); 2283 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2284 } 2285 } 2286 return getAddExpr(getSCEV(Base), TotalOffset); 2287 } 2288 2289 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2290 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2291 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2292 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2293 static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) { 2294 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2295 return C->getValue()->getValue().countTrailingZeros(); 2296 2297 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2298 return std::min(GetMinTrailingZeros(T->getOperand(), SE), 2299 (uint32_t)SE.getTypeSizeInBits(T->getType())); 2300 2301 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2302 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE); 2303 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ? 2304 SE.getTypeSizeInBits(E->getType()) : OpRes; 2305 } 2306 2307 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2308 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE); 2309 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ? 2310 SE.getTypeSizeInBits(E->getType()) : OpRes; 2311 } 2312 2313 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2314 // The result is the min of all operands results. 2315 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE); 2316 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2317 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE)); 2318 return MinOpRes; 2319 } 2320 2321 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2322 // The result is the sum of all operands results. 2323 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 2324 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType()); 2325 for (unsigned i = 1, e = M->getNumOperands(); 2326 SumOpRes != BitWidth && i != e; ++i) 2327 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE), 2328 BitWidth); 2329 return SumOpRes; 2330 } 2331 2332 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2333 // The result is the min of all operands results. 2334 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE); 2335 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2336 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE)); 2337 return MinOpRes; 2338 } 2339 2340 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2341 // The result is the min of all operands results. 2342 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 2343 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2344 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE)); 2345 return MinOpRes; 2346 } 2347 2348 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2349 // The result is the min of all operands results. 2350 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 2351 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2352 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE)); 2353 return MinOpRes; 2354 } 2355 2356 // SCEVUDivExpr, SCEVUnknown 2357 return 0; 2358 } 2359 2360 /// createSCEV - We know that there is no SCEV for the specified value. 2361 /// Analyze the expression. 2362 /// 2363 SCEVHandle ScalarEvolution::createSCEV(Value *V) { 2364 if (!isSCEVable(V->getType())) 2365 return getUnknown(V); 2366 2367 unsigned Opcode = Instruction::UserOp1; 2368 if (Instruction *I = dyn_cast<Instruction>(V)) 2369 Opcode = I->getOpcode(); 2370 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 2371 Opcode = CE->getOpcode(); 2372 else 2373 return getUnknown(V); 2374 2375 User *U = cast<User>(V); 2376 switch (Opcode) { 2377 case Instruction::Add: 2378 return getAddExpr(getSCEV(U->getOperand(0)), 2379 getSCEV(U->getOperand(1))); 2380 case Instruction::Mul: 2381 return getMulExpr(getSCEV(U->getOperand(0)), 2382 getSCEV(U->getOperand(1))); 2383 case Instruction::UDiv: 2384 return getUDivExpr(getSCEV(U->getOperand(0)), 2385 getSCEV(U->getOperand(1))); 2386 case Instruction::Sub: 2387 return getMinusSCEV(getSCEV(U->getOperand(0)), 2388 getSCEV(U->getOperand(1))); 2389 case Instruction::And: 2390 // For an expression like x&255 that merely masks off the high bits, 2391 // use zext(trunc(x)) as the SCEV expression. 2392 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2393 if (CI->isNullValue()) 2394 return getSCEV(U->getOperand(1)); 2395 if (CI->isAllOnesValue()) 2396 return getSCEV(U->getOperand(0)); 2397 const APInt &A = CI->getValue(); 2398 2399 // Instcombine's ShrinkDemandedConstant may strip bits out of 2400 // constants, obscuring what would otherwise be a low-bits mask. 2401 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 2402 // knew about to reconstruct a low-bits mask value. 2403 unsigned LZ = A.countLeadingZeros(); 2404 unsigned BitWidth = A.getBitWidth(); 2405 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 2406 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2407 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 2408 2409 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 2410 2411 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 2412 return 2413 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 2414 IntegerType::get(BitWidth - LZ)), 2415 U->getType()); 2416 } 2417 break; 2418 2419 case Instruction::Or: 2420 // If the RHS of the Or is a constant, we may have something like: 2421 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 2422 // optimizations will transparently handle this case. 2423 // 2424 // In order for this transformation to be safe, the LHS must be of the 2425 // form X*(2^n) and the Or constant must be less than 2^n. 2426 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2427 SCEVHandle LHS = getSCEV(U->getOperand(0)); 2428 const APInt &CIVal = CI->getValue(); 2429 if (GetMinTrailingZeros(LHS, *this) >= 2430 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 2431 return getAddExpr(LHS, getSCEV(U->getOperand(1))); 2432 } 2433 break; 2434 case Instruction::Xor: 2435 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2436 // If the RHS of the xor is a signbit, then this is just an add. 2437 // Instcombine turns add of signbit into xor as a strength reduction step. 2438 if (CI->getValue().isSignBit()) 2439 return getAddExpr(getSCEV(U->getOperand(0)), 2440 getSCEV(U->getOperand(1))); 2441 2442 // If the RHS of xor is -1, then this is a not operation. 2443 if (CI->isAllOnesValue()) 2444 return getNotSCEV(getSCEV(U->getOperand(0))); 2445 2446 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 2447 // This is a variant of the check for xor with -1, and it handles 2448 // the case where instcombine has trimmed non-demanded bits out 2449 // of an xor with -1. 2450 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 2451 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 2452 if (BO->getOpcode() == Instruction::And && 2453 LCI->getValue() == CI->getValue()) 2454 if (const SCEVZeroExtendExpr *Z = 2455 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 2456 const Type *UTy = U->getType(); 2457 SCEVHandle Z0 = Z->getOperand(); 2458 const Type *Z0Ty = Z0->getType(); 2459 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 2460 2461 // If C is a low-bits mask, the zero extend is zerving to 2462 // mask off the high bits. Complement the operand and 2463 // re-apply the zext. 2464 if (APIntOps::isMask(Z0TySize, CI->getValue())) 2465 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 2466 2467 // If C is a single bit, it may be in the sign-bit position 2468 // before the zero-extend. In this case, represent the xor 2469 // using an add, which is equivalent, and re-apply the zext. 2470 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 2471 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 2472 Trunc.isSignBit()) 2473 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 2474 UTy); 2475 } 2476 } 2477 break; 2478 2479 case Instruction::Shl: 2480 // Turn shift left of a constant amount into a multiply. 2481 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2482 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2483 Constant *X = ConstantInt::get( 2484 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2485 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2486 } 2487 break; 2488 2489 case Instruction::LShr: 2490 // Turn logical shift right of a constant into a unsigned divide. 2491 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2492 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2493 Constant *X = ConstantInt::get( 2494 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2495 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2496 } 2497 break; 2498 2499 case Instruction::AShr: 2500 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 2501 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 2502 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 2503 if (L->getOpcode() == Instruction::Shl && 2504 L->getOperand(1) == U->getOperand(1)) { 2505 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2506 uint64_t Amt = BitWidth - CI->getZExtValue(); 2507 if (Amt == BitWidth) 2508 return getSCEV(L->getOperand(0)); // shift by zero --> noop 2509 if (Amt > BitWidth) 2510 return getIntegerSCEV(0, U->getType()); // value is undefined 2511 return 2512 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 2513 IntegerType::get(Amt)), 2514 U->getType()); 2515 } 2516 break; 2517 2518 case Instruction::Trunc: 2519 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 2520 2521 case Instruction::ZExt: 2522 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2523 2524 case Instruction::SExt: 2525 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2526 2527 case Instruction::BitCast: 2528 // BitCasts are no-op casts so we just eliminate the cast. 2529 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 2530 return getSCEV(U->getOperand(0)); 2531 break; 2532 2533 case Instruction::IntToPtr: 2534 if (!TD) break; // Without TD we can't analyze pointers. 2535 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2536 TD->getIntPtrType()); 2537 2538 case Instruction::PtrToInt: 2539 if (!TD) break; // Without TD we can't analyze pointers. 2540 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2541 U->getType()); 2542 2543 case Instruction::GetElementPtr: 2544 if (!TD) break; // Without TD we can't analyze pointers. 2545 return createNodeForGEP(U); 2546 2547 case Instruction::PHI: 2548 return createNodeForPHI(cast<PHINode>(U)); 2549 2550 case Instruction::Select: 2551 // This could be a smax or umax that was lowered earlier. 2552 // Try to recover it. 2553 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 2554 Value *LHS = ICI->getOperand(0); 2555 Value *RHS = ICI->getOperand(1); 2556 switch (ICI->getPredicate()) { 2557 case ICmpInst::ICMP_SLT: 2558 case ICmpInst::ICMP_SLE: 2559 std::swap(LHS, RHS); 2560 // fall through 2561 case ICmpInst::ICMP_SGT: 2562 case ICmpInst::ICMP_SGE: 2563 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2564 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2565 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2566 // ~smax(~x, ~y) == smin(x, y). 2567 return getNotSCEV(getSMaxExpr( 2568 getNotSCEV(getSCEV(LHS)), 2569 getNotSCEV(getSCEV(RHS)))); 2570 break; 2571 case ICmpInst::ICMP_ULT: 2572 case ICmpInst::ICMP_ULE: 2573 std::swap(LHS, RHS); 2574 // fall through 2575 case ICmpInst::ICMP_UGT: 2576 case ICmpInst::ICMP_UGE: 2577 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2578 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2579 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2580 // ~umax(~x, ~y) == umin(x, y) 2581 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)), 2582 getNotSCEV(getSCEV(RHS)))); 2583 break; 2584 default: 2585 break; 2586 } 2587 } 2588 2589 default: // We cannot analyze this expression. 2590 break; 2591 } 2592 2593 return getUnknown(V); 2594 } 2595 2596 2597 2598 //===----------------------------------------------------------------------===// 2599 // Iteration Count Computation Code 2600 // 2601 2602 /// getBackedgeTakenCount - If the specified loop has a predictable 2603 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 2604 /// object. The backedge-taken count is the number of times the loop header 2605 /// will be branched to from within the loop. This is one less than the 2606 /// trip count of the loop, since it doesn't count the first iteration, 2607 /// when the header is branched to from outside the loop. 2608 /// 2609 /// Note that it is not valid to call this method on a loop without a 2610 /// loop-invariant backedge-taken count (see 2611 /// hasLoopInvariantBackedgeTakenCount). 2612 /// 2613 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 2614 return getBackedgeTakenInfo(L).Exact; 2615 } 2616 2617 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 2618 /// return the least SCEV value that is known never to be less than the 2619 /// actual backedge taken count. 2620 SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 2621 return getBackedgeTakenInfo(L).Max; 2622 } 2623 2624 const ScalarEvolution::BackedgeTakenInfo & 2625 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 2626 // Initially insert a CouldNotCompute for this loop. If the insertion 2627 // succeeds, procede to actually compute a backedge-taken count and 2628 // update the value. The temporary CouldNotCompute value tells SCEV 2629 // code elsewhere that it shouldn't attempt to request a new 2630 // backedge-taken count, which could result in infinite recursion. 2631 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = 2632 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 2633 if (Pair.second) { 2634 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); 2635 if (ItCount.Exact != CouldNotCompute) { 2636 assert(ItCount.Exact->isLoopInvariant(L) && 2637 ItCount.Max->isLoopInvariant(L) && 2638 "Computed trip count isn't loop invariant for loop!"); 2639 ++NumTripCountsComputed; 2640 2641 // Update the value in the map. 2642 Pair.first->second = ItCount; 2643 } else if (isa<PHINode>(L->getHeader()->begin())) { 2644 // Only count loops that have phi nodes as not being computable. 2645 ++NumTripCountsNotComputed; 2646 } 2647 2648 // Now that we know more about the trip count for this loop, forget any 2649 // existing SCEV values for PHI nodes in this loop since they are only 2650 // conservative estimates made without the benefit 2651 // of trip count information. 2652 if (ItCount.hasAnyInfo()) 2653 forgetLoopPHIs(L); 2654 } 2655 return Pair.first->second; 2656 } 2657 2658 /// forgetLoopBackedgeTakenCount - This method should be called by the 2659 /// client when it has changed a loop in a way that may effect 2660 /// ScalarEvolution's ability to compute a trip count, or if the loop 2661 /// is deleted. 2662 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 2663 BackedgeTakenCounts.erase(L); 2664 forgetLoopPHIs(L); 2665 } 2666 2667 /// forgetLoopPHIs - Delete the memoized SCEVs associated with the 2668 /// PHI nodes in the given loop. This is used when the trip count of 2669 /// the loop may have changed. 2670 void ScalarEvolution::forgetLoopPHIs(const Loop *L) { 2671 BasicBlock *Header = L->getHeader(); 2672 2673 // Push all Loop-header PHIs onto the Worklist stack, except those 2674 // that are presently represented via a SCEVUnknown. SCEVUnknown for 2675 // a PHI either means that it has an unrecognized structure, or it's 2676 // a PHI that's in the progress of being computed by createNodeForPHI. 2677 // In the former case, additional loop trip count information isn't 2678 // going to change anything. In the later case, createNodeForPHI will 2679 // perform the necessary updates on its own when it gets to that point. 2680 SmallVector<Instruction *, 16> Worklist; 2681 for (BasicBlock::iterator I = Header->begin(); 2682 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2683 std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I); 2684 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second)) 2685 Worklist.push_back(PN); 2686 } 2687 2688 while (!Worklist.empty()) { 2689 Instruction *I = Worklist.pop_back_val(); 2690 if (Scalars.erase(I)) 2691 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2692 UI != UE; ++UI) 2693 Worklist.push_back(cast<Instruction>(UI)); 2694 } 2695 } 2696 2697 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 2698 /// of the specified loop will execute. 2699 ScalarEvolution::BackedgeTakenInfo 2700 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 2701 // If the loop has a non-one exit block count, we can't analyze it. 2702 BasicBlock *ExitBlock = L->getExitBlock(); 2703 if (!ExitBlock) 2704 return CouldNotCompute; 2705 2706 // Okay, there is one exit block. Try to find the condition that causes the 2707 // loop to be exited. 2708 BasicBlock *ExitingBlock = L->getExitingBlock(); 2709 if (!ExitingBlock) 2710 return CouldNotCompute; // More than one block exiting! 2711 2712 // Okay, we've computed the exiting block. See what condition causes us to 2713 // exit. 2714 // 2715 // FIXME: we should be able to handle switch instructions (with a single exit) 2716 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2717 if (ExitBr == 0) return CouldNotCompute; 2718 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 2719 2720 // At this point, we know we have a conditional branch that determines whether 2721 // the loop is exited. However, we don't know if the branch is executed each 2722 // time through the loop. If not, then the execution count of the branch will 2723 // not be equal to the trip count of the loop. 2724 // 2725 // Currently we check for this by checking to see if the Exit branch goes to 2726 // the loop header. If so, we know it will always execute the same number of 2727 // times as the loop. We also handle the case where the exit block *is* the 2728 // loop header. This is common for un-rotated loops. More extensive analysis 2729 // could be done to handle more cases here. 2730 if (ExitBr->getSuccessor(0) != L->getHeader() && 2731 ExitBr->getSuccessor(1) != L->getHeader() && 2732 ExitBr->getParent() != L->getHeader()) 2733 return CouldNotCompute; 2734 2735 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 2736 2737 // If it's not an integer or pointer comparison then compute it the hard way. 2738 if (ExitCond == 0) 2739 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(), 2740 ExitBr->getSuccessor(0) == ExitBlock); 2741 2742 // If the condition was exit on true, convert the condition to exit on false 2743 ICmpInst::Predicate Cond; 2744 if (ExitBr->getSuccessor(1) == ExitBlock) 2745 Cond = ExitCond->getPredicate(); 2746 else 2747 Cond = ExitCond->getInversePredicate(); 2748 2749 // Handle common loops like: for (X = "string"; *X; ++X) 2750 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 2751 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 2752 SCEVHandle ItCnt = 2753 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 2754 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 2755 } 2756 2757 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 2758 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 2759 2760 // Try to evaluate any dependencies out of the loop. 2761 LHS = getSCEVAtScope(LHS, L); 2762 RHS = getSCEVAtScope(RHS, L); 2763 2764 // At this point, we would like to compute how many iterations of the 2765 // loop the predicate will return true for these inputs. 2766 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 2767 // If there is a loop-invariant, force it into the RHS. 2768 std::swap(LHS, RHS); 2769 Cond = ICmpInst::getSwappedPredicate(Cond); 2770 } 2771 2772 // If we have a comparison of a chrec against a constant, try to use value 2773 // ranges to answer this query. 2774 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 2775 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 2776 if (AddRec->getLoop() == L) { 2777 // Form the constant range. 2778 ConstantRange CompRange( 2779 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 2780 2781 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this); 2782 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 2783 } 2784 2785 switch (Cond) { 2786 case ICmpInst::ICMP_NE: { // while (X != Y) 2787 // Convert to: while (X-Y != 0) 2788 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); 2789 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2790 break; 2791 } 2792 case ICmpInst::ICMP_EQ: { 2793 // Convert to: while (X-Y == 0) // while (X == Y) 2794 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 2795 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2796 break; 2797 } 2798 case ICmpInst::ICMP_SLT: { 2799 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 2800 if (BTI.hasAnyInfo()) return BTI; 2801 break; 2802 } 2803 case ICmpInst::ICMP_SGT: { 2804 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 2805 getNotSCEV(RHS), L, true); 2806 if (BTI.hasAnyInfo()) return BTI; 2807 break; 2808 } 2809 case ICmpInst::ICMP_ULT: { 2810 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 2811 if (BTI.hasAnyInfo()) return BTI; 2812 break; 2813 } 2814 case ICmpInst::ICMP_UGT: { 2815 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 2816 getNotSCEV(RHS), L, false); 2817 if (BTI.hasAnyInfo()) return BTI; 2818 break; 2819 } 2820 default: 2821 #if 0 2822 errs() << "ComputeBackedgeTakenCount "; 2823 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 2824 errs() << "[unsigned] "; 2825 errs() << *LHS << " " 2826 << Instruction::getOpcodeName(Instruction::ICmp) 2827 << " " << *RHS << "\n"; 2828 #endif 2829 break; 2830 } 2831 return 2832 ComputeBackedgeTakenCountExhaustively(L, ExitCond, 2833 ExitBr->getSuccessor(0) == ExitBlock); 2834 } 2835 2836 static ConstantInt * 2837 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 2838 ScalarEvolution &SE) { 2839 SCEVHandle InVal = SE.getConstant(C); 2840 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 2841 assert(isa<SCEVConstant>(Val) && 2842 "Evaluation of SCEV at constant didn't fold correctly?"); 2843 return cast<SCEVConstant>(Val)->getValue(); 2844 } 2845 2846 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 2847 /// and a GEP expression (missing the pointer index) indexing into it, return 2848 /// the addressed element of the initializer or null if the index expression is 2849 /// invalid. 2850 static Constant * 2851 GetAddressedElementFromGlobal(GlobalVariable *GV, 2852 const std::vector<ConstantInt*> &Indices) { 2853 Constant *Init = GV->getInitializer(); 2854 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 2855 uint64_t Idx = Indices[i]->getZExtValue(); 2856 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2857 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 2858 Init = cast<Constant>(CS->getOperand(Idx)); 2859 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2860 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 2861 Init = cast<Constant>(CA->getOperand(Idx)); 2862 } else if (isa<ConstantAggregateZero>(Init)) { 2863 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2864 assert(Idx < STy->getNumElements() && "Bad struct index!"); 2865 Init = Constant::getNullValue(STy->getElementType(Idx)); 2866 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 2867 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 2868 Init = Constant::getNullValue(ATy->getElementType()); 2869 } else { 2870 assert(0 && "Unknown constant aggregate type!"); 2871 } 2872 return 0; 2873 } else { 2874 return 0; // Unknown initializer type 2875 } 2876 } 2877 return Init; 2878 } 2879 2880 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 2881 /// 'icmp op load X, cst', try to see if we can compute the backedge 2882 /// execution count. 2883 SCEVHandle ScalarEvolution:: 2884 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, 2885 const Loop *L, 2886 ICmpInst::Predicate predicate) { 2887 if (LI->isVolatile()) return CouldNotCompute; 2888 2889 // Check to see if the loaded pointer is a getelementptr of a global. 2890 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 2891 if (!GEP) return CouldNotCompute; 2892 2893 // Make sure that it is really a constant global we are gepping, with an 2894 // initializer, and make sure the first IDX is really 0. 2895 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 2896 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 2897 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 2898 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 2899 return CouldNotCompute; 2900 2901 // Okay, we allow one non-constant index into the GEP instruction. 2902 Value *VarIdx = 0; 2903 std::vector<ConstantInt*> Indexes; 2904 unsigned VarIdxNum = 0; 2905 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 2906 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 2907 Indexes.push_back(CI); 2908 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 2909 if (VarIdx) return CouldNotCompute; // Multiple non-constant idx's. 2910 VarIdx = GEP->getOperand(i); 2911 VarIdxNum = i-2; 2912 Indexes.push_back(0); 2913 } 2914 2915 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 2916 // Check to see if X is a loop variant variable value now. 2917 SCEVHandle Idx = getSCEV(VarIdx); 2918 Idx = getSCEVAtScope(Idx, L); 2919 2920 // We can only recognize very limited forms of loop index expressions, in 2921 // particular, only affine AddRec's like {C1,+,C2}. 2922 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 2923 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 2924 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 2925 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 2926 return CouldNotCompute; 2927 2928 unsigned MaxSteps = MaxBruteForceIterations; 2929 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 2930 ConstantInt *ItCst = 2931 ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum); 2932 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 2933 2934 // Form the GEP offset. 2935 Indexes[VarIdxNum] = Val; 2936 2937 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 2938 if (Result == 0) break; // Cannot compute! 2939 2940 // Evaluate the condition for this iteration. 2941 Result = ConstantExpr::getICmp(predicate, Result, RHS); 2942 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 2943 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 2944 #if 0 2945 errs() << "\n***\n*** Computed loop count " << *ItCst 2946 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 2947 << "***\n"; 2948 #endif 2949 ++NumArrayLenItCounts; 2950 return getConstant(ItCst); // Found terminating iteration! 2951 } 2952 } 2953 return CouldNotCompute; 2954 } 2955 2956 2957 /// CanConstantFold - Return true if we can constant fold an instruction of the 2958 /// specified type, assuming that all operands were constants. 2959 static bool CanConstantFold(const Instruction *I) { 2960 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 2961 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 2962 return true; 2963 2964 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2965 if (const Function *F = CI->getCalledFunction()) 2966 return canConstantFoldCallTo(F); 2967 return false; 2968 } 2969 2970 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 2971 /// in the loop that V is derived from. We allow arbitrary operations along the 2972 /// way, but the operands of an operation must either be constants or a value 2973 /// derived from a constant PHI. If this expression does not fit with these 2974 /// constraints, return null. 2975 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 2976 // If this is not an instruction, or if this is an instruction outside of the 2977 // loop, it can't be derived from a loop PHI. 2978 Instruction *I = dyn_cast<Instruction>(V); 2979 if (I == 0 || !L->contains(I->getParent())) return 0; 2980 2981 if (PHINode *PN = dyn_cast<PHINode>(I)) { 2982 if (L->getHeader() == I->getParent()) 2983 return PN; 2984 else 2985 // We don't currently keep track of the control flow needed to evaluate 2986 // PHIs, so we cannot handle PHIs inside of loops. 2987 return 0; 2988 } 2989 2990 // If we won't be able to constant fold this expression even if the operands 2991 // are constants, return early. 2992 if (!CanConstantFold(I)) return 0; 2993 2994 // Otherwise, we can evaluate this instruction if all of its operands are 2995 // constant or derived from a PHI node themselves. 2996 PHINode *PHI = 0; 2997 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 2998 if (!(isa<Constant>(I->getOperand(Op)) || 2999 isa<GlobalValue>(I->getOperand(Op)))) { 3000 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 3001 if (P == 0) return 0; // Not evolving from PHI 3002 if (PHI == 0) 3003 PHI = P; 3004 else if (PHI != P) 3005 return 0; // Evolving from multiple different PHIs. 3006 } 3007 3008 // This is a expression evolving from a constant PHI! 3009 return PHI; 3010 } 3011 3012 /// EvaluateExpression - Given an expression that passes the 3013 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 3014 /// in the loop has the value PHIVal. If we can't fold this expression for some 3015 /// reason, return null. 3016 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 3017 if (isa<PHINode>(V)) return PHIVal; 3018 if (Constant *C = dyn_cast<Constant>(V)) return C; 3019 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 3020 Instruction *I = cast<Instruction>(V); 3021 3022 std::vector<Constant*> Operands; 3023 Operands.resize(I->getNumOperands()); 3024 3025 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3026 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 3027 if (Operands[i] == 0) return 0; 3028 } 3029 3030 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3031 return ConstantFoldCompareInstOperands(CI->getPredicate(), 3032 &Operands[0], Operands.size()); 3033 else 3034 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3035 &Operands[0], Operands.size()); 3036 } 3037 3038 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 3039 /// in the header of its containing loop, we know the loop executes a 3040 /// constant number of times, and the PHI node is just a recurrence 3041 /// involving constants, fold it. 3042 Constant *ScalarEvolution:: 3043 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){ 3044 std::map<PHINode*, Constant*>::iterator I = 3045 ConstantEvolutionLoopExitValue.find(PN); 3046 if (I != ConstantEvolutionLoopExitValue.end()) 3047 return I->second; 3048 3049 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 3050 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 3051 3052 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 3053 3054 // Since the loop is canonicalized, the PHI node must have two entries. One 3055 // entry must be a constant (coming in from outside of the loop), and the 3056 // second must be derived from the same PHI. 3057 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3058 Constant *StartCST = 3059 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3060 if (StartCST == 0) 3061 return RetVal = 0; // Must be a constant. 3062 3063 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3064 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3065 if (PN2 != PN) 3066 return RetVal = 0; // Not derived from same PHI. 3067 3068 // Execute the loop symbolically to determine the exit value. 3069 if (BEs.getActiveBits() >= 32) 3070 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 3071 3072 unsigned NumIterations = BEs.getZExtValue(); // must be in range 3073 unsigned IterationNum = 0; 3074 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 3075 if (IterationNum == NumIterations) 3076 return RetVal = PHIVal; // Got exit value! 3077 3078 // Compute the value of the PHI node for the next iteration. 3079 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3080 if (NextPHI == PHIVal) 3081 return RetVal = NextPHI; // Stopped evolving! 3082 if (NextPHI == 0) 3083 return 0; // Couldn't evaluate! 3084 PHIVal = NextPHI; 3085 } 3086 } 3087 3088 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a 3089 /// constant number of times (the condition evolves only from constants), 3090 /// try to evaluate a few iterations of the loop until we get the exit 3091 /// condition gets a value of ExitWhen (true or false). If we cannot 3092 /// evaluate the trip count of the loop, return CouldNotCompute. 3093 SCEVHandle ScalarEvolution:: 3094 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 3095 PHINode *PN = getConstantEvolvingPHI(Cond, L); 3096 if (PN == 0) return CouldNotCompute; 3097 3098 // Since the loop is canonicalized, the PHI node must have two entries. One 3099 // entry must be a constant (coming in from outside of the loop), and the 3100 // second must be derived from the same PHI. 3101 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3102 Constant *StartCST = 3103 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3104 if (StartCST == 0) return CouldNotCompute; // Must be a constant. 3105 3106 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3107 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3108 if (PN2 != PN) return CouldNotCompute; // Not derived from same PHI. 3109 3110 // Okay, we find a PHI node that defines the trip count of this loop. Execute 3111 // the loop symbolically to determine when the condition gets a value of 3112 // "ExitWhen". 3113 unsigned IterationNum = 0; 3114 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 3115 for (Constant *PHIVal = StartCST; 3116 IterationNum != MaxIterations; ++IterationNum) { 3117 ConstantInt *CondVal = 3118 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 3119 3120 // Couldn't symbolically evaluate. 3121 if (!CondVal) return CouldNotCompute; 3122 3123 if (CondVal->getValue() == uint64_t(ExitWhen)) { 3124 ConstantEvolutionLoopExitValue[PN] = PHIVal; 3125 ++NumBruteForceTripCountsComputed; 3126 return getConstant(Type::Int32Ty, IterationNum); 3127 } 3128 3129 // Compute the value of the PHI node for the next iteration. 3130 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3131 if (NextPHI == 0 || NextPHI == PHIVal) 3132 return CouldNotCompute; // Couldn't evaluate or not making progress... 3133 PHIVal = NextPHI; 3134 } 3135 3136 // Too many iterations were needed to evaluate. 3137 return CouldNotCompute; 3138 } 3139 3140 /// getSCEVAtScope - Return a SCEV expression handle for the specified value 3141 /// at the specified scope in the program. The L value specifies a loop 3142 /// nest to evaluate the expression at, where null is the top-level or a 3143 /// specified loop is immediately inside of the loop. 3144 /// 3145 /// This method can be used to compute the exit value for a variable defined 3146 /// in a loop by querying what the value will hold in the parent loop. 3147 /// 3148 /// In the case that a relevant loop exit value cannot be computed, the 3149 /// original value V is returned. 3150 SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 3151 // FIXME: this should be turned into a virtual method on SCEV! 3152 3153 if (isa<SCEVConstant>(V)) return V; 3154 3155 // If this instruction is evolved from a constant-evolving PHI, compute the 3156 // exit value from the loop without using SCEVs. 3157 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 3158 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 3159 const Loop *LI = (*this->LI)[I->getParent()]; 3160 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 3161 if (PHINode *PN = dyn_cast<PHINode>(I)) 3162 if (PN->getParent() == LI->getHeader()) { 3163 // Okay, there is no closed form solution for the PHI node. Check 3164 // to see if the loop that contains it has a known backedge-taken 3165 // count. If so, we may be able to force computation of the exit 3166 // value. 3167 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI); 3168 if (const SCEVConstant *BTCC = 3169 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 3170 // Okay, we know how many times the containing loop executes. If 3171 // this is a constant evolving PHI node, get the final value at 3172 // the specified iteration number. 3173 Constant *RV = getConstantEvolutionLoopExitValue(PN, 3174 BTCC->getValue()->getValue(), 3175 LI); 3176 if (RV) return getUnknown(RV); 3177 } 3178 } 3179 3180 // Okay, this is an expression that we cannot symbolically evaluate 3181 // into a SCEV. Check to see if it's possible to symbolically evaluate 3182 // the arguments into constants, and if so, try to constant propagate the 3183 // result. This is particularly useful for computing loop exit values. 3184 if (CanConstantFold(I)) { 3185 // Check to see if we've folded this instruction at this loop before. 3186 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I]; 3187 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair = 3188 Values.insert(std::make_pair(L, static_cast<Constant *>(0))); 3189 if (!Pair.second) 3190 return Pair.first->second ? &*getUnknown(Pair.first->second) : V; 3191 3192 std::vector<Constant*> Operands; 3193 Operands.reserve(I->getNumOperands()); 3194 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3195 Value *Op = I->getOperand(i); 3196 if (Constant *C = dyn_cast<Constant>(Op)) { 3197 Operands.push_back(C); 3198 } else { 3199 // If any of the operands is non-constant and if they are 3200 // non-integer and non-pointer, don't even try to analyze them 3201 // with scev techniques. 3202 if (!isSCEVable(Op->getType())) 3203 return V; 3204 3205 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 3206 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 3207 Constant *C = SC->getValue(); 3208 if (C->getType() != Op->getType()) 3209 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3210 Op->getType(), 3211 false), 3212 C, Op->getType()); 3213 Operands.push_back(C); 3214 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 3215 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 3216 if (C->getType() != Op->getType()) 3217 C = 3218 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3219 Op->getType(), 3220 false), 3221 C, Op->getType()); 3222 Operands.push_back(C); 3223 } else 3224 return V; 3225 } else { 3226 return V; 3227 } 3228 } 3229 } 3230 3231 Constant *C; 3232 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3233 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 3234 &Operands[0], Operands.size()); 3235 else 3236 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3237 &Operands[0], Operands.size()); 3238 Pair.first->second = C; 3239 return getUnknown(C); 3240 } 3241 } 3242 3243 // This is some other type of SCEVUnknown, just return it. 3244 return V; 3245 } 3246 3247 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 3248 // Avoid performing the look-up in the common case where the specified 3249 // expression has no loop-variant portions. 3250 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 3251 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 3252 if (OpAtScope != Comm->getOperand(i)) { 3253 // Okay, at least one of these operands is loop variant but might be 3254 // foldable. Build a new instance of the folded commutative expression. 3255 SmallVector<SCEVHandle, 8> NewOps(Comm->op_begin(), Comm->op_begin()+i); 3256 NewOps.push_back(OpAtScope); 3257 3258 for (++i; i != e; ++i) { 3259 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 3260 NewOps.push_back(OpAtScope); 3261 } 3262 if (isa<SCEVAddExpr>(Comm)) 3263 return getAddExpr(NewOps); 3264 if (isa<SCEVMulExpr>(Comm)) 3265 return getMulExpr(NewOps); 3266 if (isa<SCEVSMaxExpr>(Comm)) 3267 return getSMaxExpr(NewOps); 3268 if (isa<SCEVUMaxExpr>(Comm)) 3269 return getUMaxExpr(NewOps); 3270 assert(0 && "Unknown commutative SCEV type!"); 3271 } 3272 } 3273 // If we got here, all operands are loop invariant. 3274 return Comm; 3275 } 3276 3277 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 3278 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 3279 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 3280 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 3281 return Div; // must be loop invariant 3282 return getUDivExpr(LHS, RHS); 3283 } 3284 3285 // If this is a loop recurrence for a loop that does not contain L, then we 3286 // are dealing with the final value computed by the loop. 3287 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 3288 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 3289 // To evaluate this recurrence, we need to know how many times the AddRec 3290 // loop iterates. Compute this now. 3291 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 3292 if (BackedgeTakenCount == CouldNotCompute) return AddRec; 3293 3294 // Then, evaluate the AddRec. 3295 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 3296 } 3297 return AddRec; 3298 } 3299 3300 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 3301 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3302 if (Op == Cast->getOperand()) 3303 return Cast; // must be loop invariant 3304 return getZeroExtendExpr(Op, Cast->getType()); 3305 } 3306 3307 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 3308 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3309 if (Op == Cast->getOperand()) 3310 return Cast; // must be loop invariant 3311 return getSignExtendExpr(Op, Cast->getType()); 3312 } 3313 3314 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 3315 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3316 if (Op == Cast->getOperand()) 3317 return Cast; // must be loop invariant 3318 return getTruncateExpr(Op, Cast->getType()); 3319 } 3320 3321 assert(0 && "Unknown SCEV type!"); 3322 return 0; 3323 } 3324 3325 /// getSCEVAtScope - This is a convenience function which does 3326 /// getSCEVAtScope(getSCEV(V), L). 3327 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 3328 return getSCEVAtScope(getSCEV(V), L); 3329 } 3330 3331 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 3332 /// following equation: 3333 /// 3334 /// A * X = B (mod N) 3335 /// 3336 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 3337 /// A and B isn't important. 3338 /// 3339 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 3340 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 3341 ScalarEvolution &SE) { 3342 uint32_t BW = A.getBitWidth(); 3343 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 3344 assert(A != 0 && "A must be non-zero."); 3345 3346 // 1. D = gcd(A, N) 3347 // 3348 // The gcd of A and N may have only one prime factor: 2. The number of 3349 // trailing zeros in A is its multiplicity 3350 uint32_t Mult2 = A.countTrailingZeros(); 3351 // D = 2^Mult2 3352 3353 // 2. Check if B is divisible by D. 3354 // 3355 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 3356 // is not less than multiplicity of this prime factor for D. 3357 if (B.countTrailingZeros() < Mult2) 3358 return SE.getCouldNotCompute(); 3359 3360 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 3361 // modulo (N / D). 3362 // 3363 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 3364 // bit width during computations. 3365 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 3366 APInt Mod(BW + 1, 0); 3367 Mod.set(BW - Mult2); // Mod = N / D 3368 APInt I = AD.multiplicativeInverse(Mod); 3369 3370 // 4. Compute the minimum unsigned root of the equation: 3371 // I * (B / D) mod (N / D) 3372 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 3373 3374 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 3375 // bits. 3376 return SE.getConstant(Result.trunc(BW)); 3377 } 3378 3379 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 3380 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 3381 /// might be the same) or two SCEVCouldNotCompute objects. 3382 /// 3383 static std::pair<SCEVHandle,SCEVHandle> 3384 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 3385 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 3386 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 3387 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 3388 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 3389 3390 // We currently can only solve this if the coefficients are constants. 3391 if (!LC || !MC || !NC) { 3392 const SCEV *CNC = SE.getCouldNotCompute(); 3393 return std::make_pair(CNC, CNC); 3394 } 3395 3396 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 3397 const APInt &L = LC->getValue()->getValue(); 3398 const APInt &M = MC->getValue()->getValue(); 3399 const APInt &N = NC->getValue()->getValue(); 3400 APInt Two(BitWidth, 2); 3401 APInt Four(BitWidth, 4); 3402 3403 { 3404 using namespace APIntOps; 3405 const APInt& C = L; 3406 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 3407 // The B coefficient is M-N/2 3408 APInt B(M); 3409 B -= sdiv(N,Two); 3410 3411 // The A coefficient is N/2 3412 APInt A(N.sdiv(Two)); 3413 3414 // Compute the B^2-4ac term. 3415 APInt SqrtTerm(B); 3416 SqrtTerm *= B; 3417 SqrtTerm -= Four * (A * C); 3418 3419 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 3420 // integer value or else APInt::sqrt() will assert. 3421 APInt SqrtVal(SqrtTerm.sqrt()); 3422 3423 // Compute the two solutions for the quadratic formula. 3424 // The divisions must be performed as signed divisions. 3425 APInt NegB(-B); 3426 APInt TwoA( A << 1 ); 3427 if (TwoA.isMinValue()) { 3428 const SCEV *CNC = SE.getCouldNotCompute(); 3429 return std::make_pair(CNC, CNC); 3430 } 3431 3432 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 3433 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 3434 3435 return std::make_pair(SE.getConstant(Solution1), 3436 SE.getConstant(Solution2)); 3437 } // end APIntOps namespace 3438 } 3439 3440 /// HowFarToZero - Return the number of times a backedge comparing the specified 3441 /// value to zero will execute. If not computable, return CouldNotCompute. 3442 SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 3443 // If the value is a constant 3444 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3445 // If the value is already zero, the branch will execute zero times. 3446 if (C->getValue()->isZero()) return C; 3447 return CouldNotCompute; // Otherwise it will loop infinitely. 3448 } 3449 3450 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 3451 if (!AddRec || AddRec->getLoop() != L) 3452 return CouldNotCompute; 3453 3454 if (AddRec->isAffine()) { 3455 // If this is an affine expression, the execution count of this branch is 3456 // the minimum unsigned root of the following equation: 3457 // 3458 // Start + Step*N = 0 (mod 2^BW) 3459 // 3460 // equivalent to: 3461 // 3462 // Step*N = -Start (mod 2^BW) 3463 // 3464 // where BW is the common bit width of Start and Step. 3465 3466 // Get the initial value for the loop. 3467 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 3468 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 3469 3470 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 3471 // For now we handle only constant steps. 3472 3473 // First, handle unitary steps. 3474 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 3475 return getNegativeSCEV(Start); // N = -Start (as unsigned) 3476 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 3477 return Start; // N = Start (as unsigned) 3478 3479 // Then, try to solve the above equation provided that Start is constant. 3480 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 3481 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 3482 -StartC->getValue()->getValue(), 3483 *this); 3484 } 3485 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 3486 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 3487 // the quadratic equation to solve it. 3488 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, 3489 *this); 3490 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3491 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3492 if (R1) { 3493 #if 0 3494 errs() << "HFTZ: " << *V << " - sol#1: " << *R1 3495 << " sol#2: " << *R2 << "\n"; 3496 #endif 3497 // Pick the smallest positive root value. 3498 if (ConstantInt *CB = 3499 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3500 R1->getValue(), R2->getValue()))) { 3501 if (CB->getZExtValue() == false) 3502 std::swap(R1, R2); // R1 is the minimum root now. 3503 3504 // We can only use this value if the chrec ends up with an exact zero 3505 // value at this index. When solving for "X*X != 5", for example, we 3506 // should not accept a root of 2. 3507 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this); 3508 if (Val->isZero()) 3509 return R1; // We found a quadratic root! 3510 } 3511 } 3512 } 3513 3514 return CouldNotCompute; 3515 } 3516 3517 /// HowFarToNonZero - Return the number of times a backedge checking the 3518 /// specified value for nonzero will execute. If not computable, return 3519 /// CouldNotCompute 3520 SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 3521 // Loops that look like: while (X == 0) are very strange indeed. We don't 3522 // handle them yet except for the trivial case. This could be expanded in the 3523 // future as needed. 3524 3525 // If the value is a constant, check to see if it is known to be non-zero 3526 // already. If so, the backedge will execute zero times. 3527 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3528 if (!C->getValue()->isNullValue()) 3529 return getIntegerSCEV(0, C->getType()); 3530 return CouldNotCompute; // Otherwise it will loop infinitely. 3531 } 3532 3533 // We could implement others, but I really doubt anyone writes loops like 3534 // this, and if they did, they would already be constant folded. 3535 return CouldNotCompute; 3536 } 3537 3538 /// getLoopPredecessor - If the given loop's header has exactly one unique 3539 /// predecessor outside the loop, return it. Otherwise return null. 3540 /// 3541 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { 3542 BasicBlock *Header = L->getHeader(); 3543 BasicBlock *Pred = 0; 3544 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); 3545 PI != E; ++PI) 3546 if (!L->contains(*PI)) { 3547 if (Pred && Pred != *PI) return 0; // Multiple predecessors. 3548 Pred = *PI; 3549 } 3550 return Pred; 3551 } 3552 3553 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 3554 /// (which may not be an immediate predecessor) which has exactly one 3555 /// successor from which BB is reachable, or null if no such block is 3556 /// found. 3557 /// 3558 BasicBlock * 3559 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 3560 // If the block has a unique predecessor, then there is no path from the 3561 // predecessor to the block that does not go through the direct edge 3562 // from the predecessor to the block. 3563 if (BasicBlock *Pred = BB->getSinglePredecessor()) 3564 return Pred; 3565 3566 // A loop's header is defined to be a block that dominates the loop. 3567 // If the header has a unique predecessor outside the loop, it must be 3568 // a block that has exactly one successor that can reach the loop. 3569 if (Loop *L = LI->getLoopFor(BB)) 3570 return getLoopPredecessor(L); 3571 3572 return 0; 3573 } 3574 3575 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 3576 /// a conditional between LHS and RHS. This is used to help avoid max 3577 /// expressions in loop trip counts. 3578 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, 3579 ICmpInst::Predicate Pred, 3580 const SCEV *LHS, const SCEV *RHS) { 3581 // Interpret a null as meaning no loop, where there is obviously no guard 3582 // (interprocedural conditions notwithstanding). 3583 if (!L) return false; 3584 3585 BasicBlock *Predecessor = getLoopPredecessor(L); 3586 BasicBlock *PredecessorDest = L->getHeader(); 3587 3588 // Starting at the loop predecessor, climb up the predecessor chain, as long 3589 // as there are predecessors that can be found that have unique successors 3590 // leading to the original header. 3591 for (; Predecessor; 3592 PredecessorDest = Predecessor, 3593 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { 3594 3595 BranchInst *LoopEntryPredicate = 3596 dyn_cast<BranchInst>(Predecessor->getTerminator()); 3597 if (!LoopEntryPredicate || 3598 LoopEntryPredicate->isUnconditional()) 3599 continue; 3600 3601 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 3602 if (!ICI) continue; 3603 3604 // Now that we found a conditional branch that dominates the loop, check to 3605 // see if it is the comparison we are looking for. 3606 Value *PreCondLHS = ICI->getOperand(0); 3607 Value *PreCondRHS = ICI->getOperand(1); 3608 ICmpInst::Predicate Cond; 3609 if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest) 3610 Cond = ICI->getPredicate(); 3611 else 3612 Cond = ICI->getInversePredicate(); 3613 3614 if (Cond == Pred) 3615 ; // An exact match. 3616 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) 3617 ; // The actual condition is beyond sufficient. 3618 else 3619 // Check a few special cases. 3620 switch (Cond) { 3621 case ICmpInst::ICMP_UGT: 3622 if (Pred == ICmpInst::ICMP_ULT) { 3623 std::swap(PreCondLHS, PreCondRHS); 3624 Cond = ICmpInst::ICMP_ULT; 3625 break; 3626 } 3627 continue; 3628 case ICmpInst::ICMP_SGT: 3629 if (Pred == ICmpInst::ICMP_SLT) { 3630 std::swap(PreCondLHS, PreCondRHS); 3631 Cond = ICmpInst::ICMP_SLT; 3632 break; 3633 } 3634 continue; 3635 case ICmpInst::ICMP_NE: 3636 // Expressions like (x >u 0) are often canonicalized to (x != 0), 3637 // so check for this case by checking if the NE is comparing against 3638 // a minimum or maximum constant. 3639 if (!ICmpInst::isTrueWhenEqual(Pred)) 3640 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { 3641 const APInt &A = CI->getValue(); 3642 switch (Pred) { 3643 case ICmpInst::ICMP_SLT: 3644 if (A.isMaxSignedValue()) break; 3645 continue; 3646 case ICmpInst::ICMP_SGT: 3647 if (A.isMinSignedValue()) break; 3648 continue; 3649 case ICmpInst::ICMP_ULT: 3650 if (A.isMaxValue()) break; 3651 continue; 3652 case ICmpInst::ICMP_UGT: 3653 if (A.isMinValue()) break; 3654 continue; 3655 default: 3656 continue; 3657 } 3658 Cond = ICmpInst::ICMP_NE; 3659 // NE is symmetric but the original comparison may not be. Swap 3660 // the operands if necessary so that they match below. 3661 if (isa<SCEVConstant>(LHS)) 3662 std::swap(PreCondLHS, PreCondRHS); 3663 break; 3664 } 3665 continue; 3666 default: 3667 // We weren't able to reconcile the condition. 3668 continue; 3669 } 3670 3671 if (!PreCondLHS->getType()->isInteger()) continue; 3672 3673 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); 3674 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); 3675 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) || 3676 (LHS == getNotSCEV(PreCondRHSSCEV) && 3677 RHS == getNotSCEV(PreCondLHSSCEV))) 3678 return true; 3679 } 3680 3681 return false; 3682 } 3683 3684 /// HowManyLessThans - Return the number of times a backedge containing the 3685 /// specified less-than comparison will execute. If not computable, return 3686 /// CouldNotCompute. 3687 ScalarEvolution::BackedgeTakenInfo ScalarEvolution:: 3688 HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 3689 const Loop *L, bool isSigned) { 3690 // Only handle: "ADDREC < LoopInvariant". 3691 if (!RHS->isLoopInvariant(L)) return CouldNotCompute; 3692 3693 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 3694 if (!AddRec || AddRec->getLoop() != L) 3695 return CouldNotCompute; 3696 3697 if (AddRec->isAffine()) { 3698 // FORNOW: We only support unit strides. 3699 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 3700 SCEVHandle Step = AddRec->getStepRecurrence(*this); 3701 SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType()); 3702 3703 // TODO: handle non-constant strides. 3704 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); 3705 if (!CStep || CStep->isZero()) 3706 return CouldNotCompute; 3707 if (CStep->isOne()) { 3708 // With unit stride, the iteration never steps past the limit value. 3709 } else if (CStep->getValue()->getValue().isStrictlyPositive()) { 3710 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { 3711 // Test whether a positive iteration iteration can step past the limit 3712 // value and past the maximum value for its type in a single step. 3713 if (isSigned) { 3714 APInt Max = APInt::getSignedMaxValue(BitWidth); 3715 if ((Max - CStep->getValue()->getValue()) 3716 .slt(CLimit->getValue()->getValue())) 3717 return CouldNotCompute; 3718 } else { 3719 APInt Max = APInt::getMaxValue(BitWidth); 3720 if ((Max - CStep->getValue()->getValue()) 3721 .ult(CLimit->getValue()->getValue())) 3722 return CouldNotCompute; 3723 } 3724 } else 3725 // TODO: handle non-constant limit values below. 3726 return CouldNotCompute; 3727 } else 3728 // TODO: handle negative strides below. 3729 return CouldNotCompute; 3730 3731 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 3732 // m. So, we count the number of iterations in which {n,+,s} < m is true. 3733 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 3734 // treat m-n as signed nor unsigned due to overflow possibility. 3735 3736 // First, we get the value of the LHS in the first iteration: n 3737 SCEVHandle Start = AddRec->getOperand(0); 3738 3739 // Determine the minimum constant start value. 3740 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start : 3741 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) : 3742 APInt::getMinValue(BitWidth)); 3743 3744 // If we know that the condition is true in order to enter the loop, 3745 // then we know that it will run exactly (m-n)/s times. Otherwise, we 3746 // only know that it will execute (max(m,n)-n)/s times. In both cases, 3747 // the division must round up. 3748 SCEVHandle End = RHS; 3749 if (!isLoopGuardedByCond(L, 3750 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 3751 getMinusSCEV(Start, Step), RHS)) 3752 End = isSigned ? getSMaxExpr(RHS, Start) 3753 : getUMaxExpr(RHS, Start); 3754 3755 // Determine the maximum constant end value. 3756 SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End : 3757 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) : 3758 APInt::getMaxValue(BitWidth)); 3759 3760 // Finally, we subtract these two values and divide, rounding up, to get 3761 // the number of times the backedge is executed. 3762 SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start), 3763 getAddExpr(Step, NegOne)), 3764 Step); 3765 3766 // The maximum backedge count is similar, except using the minimum start 3767 // value and the maximum end value. 3768 SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd, 3769 MinStart), 3770 getAddExpr(Step, NegOne)), 3771 Step); 3772 3773 return BackedgeTakenInfo(BECount, MaxBECount); 3774 } 3775 3776 return CouldNotCompute; 3777 } 3778 3779 /// getNumIterationsInRange - Return the number of iterations of this loop that 3780 /// produce values in the specified constant range. Another way of looking at 3781 /// this is that it returns the first iteration number where the value is not in 3782 /// the condition, thus computing the exit count. If the iteration count can't 3783 /// be computed, an instance of SCEVCouldNotCompute is returned. 3784 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 3785 ScalarEvolution &SE) const { 3786 if (Range.isFullSet()) // Infinite loop. 3787 return SE.getCouldNotCompute(); 3788 3789 // If the start is a non-zero constant, shift the range to simplify things. 3790 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 3791 if (!SC->getValue()->isZero()) { 3792 SmallVector<SCEVHandle, 4> Operands(op_begin(), op_end()); 3793 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 3794 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 3795 if (const SCEVAddRecExpr *ShiftedAddRec = 3796 dyn_cast<SCEVAddRecExpr>(Shifted)) 3797 return ShiftedAddRec->getNumIterationsInRange( 3798 Range.subtract(SC->getValue()->getValue()), SE); 3799 // This is strange and shouldn't happen. 3800 return SE.getCouldNotCompute(); 3801 } 3802 3803 // The only time we can solve this is when we have all constant indices. 3804 // Otherwise, we cannot determine the overflow conditions. 3805 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 3806 if (!isa<SCEVConstant>(getOperand(i))) 3807 return SE.getCouldNotCompute(); 3808 3809 3810 // Okay at this point we know that all elements of the chrec are constants and 3811 // that the start element is zero. 3812 3813 // First check to see if the range contains zero. If not, the first 3814 // iteration exits. 3815 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 3816 if (!Range.contains(APInt(BitWidth, 0))) 3817 return SE.getIntegerSCEV(0, getType()); 3818 3819 if (isAffine()) { 3820 // If this is an affine expression then we have this situation: 3821 // Solve {0,+,A} in Range === Ax in Range 3822 3823 // We know that zero is in the range. If A is positive then we know that 3824 // the upper value of the range must be the first possible exit value. 3825 // If A is negative then the lower of the range is the last possible loop 3826 // value. Also note that we already checked for a full range. 3827 APInt One(BitWidth,1); 3828 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 3829 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 3830 3831 // The exit value should be (End+A)/A. 3832 APInt ExitVal = (End + A).udiv(A); 3833 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 3834 3835 // Evaluate at the exit value. If we really did fall out of the valid 3836 // range, then we computed our trip count, otherwise wrap around or other 3837 // things must have happened. 3838 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 3839 if (Range.contains(Val->getValue())) 3840 return SE.getCouldNotCompute(); // Something strange happened 3841 3842 // Ensure that the previous value is in the range. This is a sanity check. 3843 assert(Range.contains( 3844 EvaluateConstantChrecAtConstant(this, 3845 ConstantInt::get(ExitVal - One), SE)->getValue()) && 3846 "Linear scev computation is off in a bad way!"); 3847 return SE.getConstant(ExitValue); 3848 } else if (isQuadratic()) { 3849 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 3850 // quadratic equation to solve it. To do this, we must frame our problem in 3851 // terms of figuring out when zero is crossed, instead of when 3852 // Range.getUpper() is crossed. 3853 SmallVector<SCEVHandle, 4> NewOps(op_begin(), op_end()); 3854 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 3855 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 3856 3857 // Next, solve the constructed addrec 3858 std::pair<SCEVHandle,SCEVHandle> Roots = 3859 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 3860 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3861 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3862 if (R1) { 3863 // Pick the smallest positive root value. 3864 if (ConstantInt *CB = 3865 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3866 R1->getValue(), R2->getValue()))) { 3867 if (CB->getZExtValue() == false) 3868 std::swap(R1, R2); // R1 is the minimum root now. 3869 3870 // Make sure the root is not off by one. The returned iteration should 3871 // not be in the range, but the previous one should be. When solving 3872 // for "X*X < 5", for example, we should not return a root of 2. 3873 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 3874 R1->getValue(), 3875 SE); 3876 if (Range.contains(R1Val->getValue())) { 3877 // The next iteration must be out of the range... 3878 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 3879 3880 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3881 if (!Range.contains(R1Val->getValue())) 3882 return SE.getConstant(NextVal); 3883 return SE.getCouldNotCompute(); // Something strange happened 3884 } 3885 3886 // If R1 was not in the range, then it is a good return value. Make 3887 // sure that R1-1 WAS in the range though, just in case. 3888 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 3889 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3890 if (Range.contains(R1Val->getValue())) 3891 return R1; 3892 return SE.getCouldNotCompute(); // Something strange happened 3893 } 3894 } 3895 } 3896 3897 return SE.getCouldNotCompute(); 3898 } 3899 3900 3901 3902 //===----------------------------------------------------------------------===// 3903 // SCEVCallbackVH Class Implementation 3904 //===----------------------------------------------------------------------===// 3905 3906 void ScalarEvolution::SCEVCallbackVH::deleted() { 3907 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 3908 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 3909 SE->ConstantEvolutionLoopExitValue.erase(PN); 3910 if (Instruction *I = dyn_cast<Instruction>(getValPtr())) 3911 SE->ValuesAtScopes.erase(I); 3912 SE->Scalars.erase(getValPtr()); 3913 // this now dangles! 3914 } 3915 3916 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 3917 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 3918 3919 // Forget all the expressions associated with users of the old value, 3920 // so that future queries will recompute the expressions using the new 3921 // value. 3922 SmallVector<User *, 16> Worklist; 3923 Value *Old = getValPtr(); 3924 bool DeleteOld = false; 3925 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 3926 UI != UE; ++UI) 3927 Worklist.push_back(*UI); 3928 while (!Worklist.empty()) { 3929 User *U = Worklist.pop_back_val(); 3930 // Deleting the Old value will cause this to dangle. Postpone 3931 // that until everything else is done. 3932 if (U == Old) { 3933 DeleteOld = true; 3934 continue; 3935 } 3936 if (PHINode *PN = dyn_cast<PHINode>(U)) 3937 SE->ConstantEvolutionLoopExitValue.erase(PN); 3938 if (Instruction *I = dyn_cast<Instruction>(U)) 3939 SE->ValuesAtScopes.erase(I); 3940 if (SE->Scalars.erase(U)) 3941 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 3942 UI != UE; ++UI) 3943 Worklist.push_back(*UI); 3944 } 3945 if (DeleteOld) { 3946 if (PHINode *PN = dyn_cast<PHINode>(Old)) 3947 SE->ConstantEvolutionLoopExitValue.erase(PN); 3948 if (Instruction *I = dyn_cast<Instruction>(Old)) 3949 SE->ValuesAtScopes.erase(I); 3950 SE->Scalars.erase(Old); 3951 // this now dangles! 3952 } 3953 // this may dangle! 3954 } 3955 3956 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 3957 : CallbackVH(V), SE(se) {} 3958 3959 //===----------------------------------------------------------------------===// 3960 // ScalarEvolution Class Implementation 3961 //===----------------------------------------------------------------------===// 3962 3963 ScalarEvolution::ScalarEvolution() 3964 : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute()) { 3965 } 3966 3967 bool ScalarEvolution::runOnFunction(Function &F) { 3968 this->F = &F; 3969 LI = &getAnalysis<LoopInfo>(); 3970 TD = getAnalysisIfAvailable<TargetData>(); 3971 return false; 3972 } 3973 3974 void ScalarEvolution::releaseMemory() { 3975 Scalars.clear(); 3976 BackedgeTakenCounts.clear(); 3977 ConstantEvolutionLoopExitValue.clear(); 3978 ValuesAtScopes.clear(); 3979 } 3980 3981 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 3982 AU.setPreservesAll(); 3983 AU.addRequiredTransitive<LoopInfo>(); 3984 } 3985 3986 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 3987 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 3988 } 3989 3990 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 3991 const Loop *L) { 3992 // Print all inner loops first 3993 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3994 PrintLoopInfo(OS, SE, *I); 3995 3996 OS << "Loop " << L->getHeader()->getName() << ": "; 3997 3998 SmallVector<BasicBlock*, 8> ExitBlocks; 3999 L->getExitBlocks(ExitBlocks); 4000 if (ExitBlocks.size() != 1) 4001 OS << "<multiple exits> "; 4002 4003 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 4004 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 4005 } else { 4006 OS << "Unpredictable backedge-taken count. "; 4007 } 4008 4009 OS << "\n"; 4010 } 4011 4012 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { 4013 // ScalarEvolution's implementaiton of the print method is to print 4014 // out SCEV values of all instructions that are interesting. Doing 4015 // this potentially causes it to create new SCEV objects though, 4016 // which technically conflicts with the const qualifier. This isn't 4017 // observable from outside the class though (the hasSCEV function 4018 // notwithstanding), so casting away the const isn't dangerous. 4019 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); 4020 4021 OS << "Classifying expressions for: " << F->getName() << "\n"; 4022 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 4023 if (isSCEVable(I->getType())) { 4024 OS << *I; 4025 OS << " --> "; 4026 SCEVHandle SV = SE.getSCEV(&*I); 4027 SV->print(OS); 4028 OS << "\t\t"; 4029 4030 if (const Loop *L = LI->getLoopFor((*I).getParent())) { 4031 OS << "Exits: "; 4032 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop()); 4033 if (!ExitValue->isLoopInvariant(L)) { 4034 OS << "<<Unknown>>"; 4035 } else { 4036 OS << *ExitValue; 4037 } 4038 } 4039 4040 OS << "\n"; 4041 } 4042 4043 OS << "Determining loop execution counts for: " << F->getName() << "\n"; 4044 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 4045 PrintLoopInfo(OS, &SE, *I); 4046 } 4047 4048 void ScalarEvolution::print(std::ostream &o, const Module *M) const { 4049 raw_os_ostream OS(o); 4050 print(OS, M); 4051 } 4052