1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/Dominators.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/ValueTracking.h" 72 #include "llvm/Assembly/Writer.h" 73 #include "llvm/Target/TargetData.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/ConstantRange.h" 77 #include "llvm/Support/GetElementPtrTypeIterator.h" 78 #include "llvm/Support/InstIterator.h" 79 #include "llvm/Support/ManagedStatic.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/ADT/Statistic.h" 83 #include "llvm/ADT/STLExtras.h" 84 #include <algorithm> 85 using namespace llvm; 86 87 STATISTIC(NumArrayLenItCounts, 88 "Number of trip counts computed with array length"); 89 STATISTIC(NumTripCountsComputed, 90 "Number of loops with predictable loop counts"); 91 STATISTIC(NumTripCountsNotComputed, 92 "Number of loops without predictable loop counts"); 93 STATISTIC(NumBruteForceTripCountsComputed, 94 "Number of loops with trip counts computed by force"); 95 96 static cl::opt<unsigned> 97 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 98 cl::desc("Maximum number of iterations SCEV will " 99 "symbolically execute a constant derived loop"), 100 cl::init(100)); 101 102 static RegisterPass<ScalarEvolution> 103 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 104 char ScalarEvolution::ID = 0; 105 106 //===----------------------------------------------------------------------===// 107 // SCEV class definitions 108 //===----------------------------------------------------------------------===// 109 110 //===----------------------------------------------------------------------===// 111 // Implementation of the SCEV class. 112 // 113 SCEV::~SCEV() {} 114 void SCEV::dump() const { 115 print(errs()); 116 errs() << '\n'; 117 } 118 119 void SCEV::print(std::ostream &o) const { 120 raw_os_ostream OS(o); 121 print(OS); 122 } 123 124 bool SCEV::isZero() const { 125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 126 return SC->getValue()->isZero(); 127 return false; 128 } 129 130 bool SCEV::isOne() const { 131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 132 return SC->getValue()->isOne(); 133 return false; 134 } 135 136 SCEVCouldNotCompute::SCEVCouldNotCompute(const ScalarEvolution* p) : 137 SCEV(scCouldNotCompute, p) {} 138 SCEVCouldNotCompute::~SCEVCouldNotCompute() {} 139 140 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 141 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 142 return false; 143 } 144 145 const Type *SCEVCouldNotCompute::getType() const { 146 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 147 return 0; 148 } 149 150 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 151 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 152 return false; 153 } 154 155 SCEVHandle SCEVCouldNotCompute:: 156 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 157 const SCEVHandle &Conc, 158 ScalarEvolution &SE) const { 159 return this; 160 } 161 162 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 163 OS << "***COULDNOTCOMPUTE***"; 164 } 165 166 bool SCEVCouldNotCompute::classof(const SCEV *S) { 167 return S->getSCEVType() == scCouldNotCompute; 168 } 169 170 171 // SCEVConstants - Only allow the creation of one SCEVConstant for any 172 // particular value. Don't use a SCEVHandle here, or else the object will 173 // never be deleted! 174 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 175 176 177 SCEVConstant::~SCEVConstant() { 178 SCEVConstants->erase(V); 179 } 180 181 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 182 SCEVConstant *&R = (*SCEVConstants)[V]; 183 if (R == 0) R = new SCEVConstant(V, this); 184 return R; 185 } 186 187 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 188 return getConstant(ConstantInt::get(Val)); 189 } 190 191 SCEVHandle 192 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 193 return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned)); 194 } 195 196 const Type *SCEVConstant::getType() const { return V->getType(); } 197 198 void SCEVConstant::print(raw_ostream &OS) const { 199 WriteAsOperand(OS, V, false); 200 } 201 202 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy, 203 const SCEVHandle &op, const Type *ty, 204 const ScalarEvolution* p) 205 : SCEV(SCEVTy, p), Op(op), Ty(ty) {} 206 207 SCEVCastExpr::~SCEVCastExpr() {} 208 209 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 210 return Op->dominates(BB, DT); 211 } 212 213 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 214 // particular input. Don't use a SCEVHandle here, or else the object will 215 // never be deleted! 216 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 217 SCEVTruncateExpr*> > SCEVTruncates; 218 219 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty, 220 const ScalarEvolution* p) 221 : SCEVCastExpr(scTruncate, op, ty, p) { 222 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 223 (Ty->isInteger() || isa<PointerType>(Ty)) && 224 "Cannot truncate non-integer value!"); 225 } 226 227 SCEVTruncateExpr::~SCEVTruncateExpr() { 228 SCEVTruncates->erase(std::make_pair(Op, Ty)); 229 } 230 231 void SCEVTruncateExpr::print(raw_ostream &OS) const { 232 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 233 } 234 235 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 236 // particular input. Don't use a SCEVHandle here, or else the object will never 237 // be deleted! 238 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 239 SCEVZeroExtendExpr*> > SCEVZeroExtends; 240 241 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty, 242 const ScalarEvolution* p) 243 : SCEVCastExpr(scZeroExtend, op, ty, p) { 244 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 245 (Ty->isInteger() || isa<PointerType>(Ty)) && 246 "Cannot zero extend non-integer value!"); 247 } 248 249 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 250 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 251 } 252 253 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 254 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 255 } 256 257 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 258 // particular input. Don't use a SCEVHandle here, or else the object will never 259 // be deleted! 260 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 261 SCEVSignExtendExpr*> > SCEVSignExtends; 262 263 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty, 264 const ScalarEvolution* p) 265 : SCEVCastExpr(scSignExtend, op, ty, p) { 266 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 267 (Ty->isInteger() || isa<PointerType>(Ty)) && 268 "Cannot sign extend non-integer value!"); 269 } 270 271 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 272 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 273 } 274 275 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 276 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 277 } 278 279 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 280 // particular input. Don't use a SCEVHandle here, or else the object will never 281 // be deleted! 282 static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >, 283 SCEVCommutativeExpr*> > SCEVCommExprs; 284 285 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 286 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 287 SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps)); 288 } 289 290 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 291 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 292 const char *OpStr = getOperationStr(); 293 OS << "(" << *Operands[0]; 294 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 295 OS << OpStr << *Operands[i]; 296 OS << ")"; 297 } 298 299 SCEVHandle SCEVCommutativeExpr:: 300 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 301 const SCEVHandle &Conc, 302 ScalarEvolution &SE) const { 303 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 304 SCEVHandle H = 305 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 306 if (H != getOperand(i)) { 307 SmallVector<SCEVHandle, 8> NewOps; 308 NewOps.reserve(getNumOperands()); 309 for (unsigned j = 0; j != i; ++j) 310 NewOps.push_back(getOperand(j)); 311 NewOps.push_back(H); 312 for (++i; i != e; ++i) 313 NewOps.push_back(getOperand(i)-> 314 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 315 316 if (isa<SCEVAddExpr>(this)) 317 return SE.getAddExpr(NewOps); 318 else if (isa<SCEVMulExpr>(this)) 319 return SE.getMulExpr(NewOps); 320 else if (isa<SCEVSMaxExpr>(this)) 321 return SE.getSMaxExpr(NewOps); 322 else if (isa<SCEVUMaxExpr>(this)) 323 return SE.getUMaxExpr(NewOps); 324 else 325 assert(0 && "Unknown commutative expr!"); 326 } 327 } 328 return this; 329 } 330 331 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 332 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 333 if (!getOperand(i)->dominates(BB, DT)) 334 return false; 335 } 336 return true; 337 } 338 339 340 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 341 // input. Don't use a SCEVHandle here, or else the object will never be 342 // deleted! 343 static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>, 344 SCEVUDivExpr*> > SCEVUDivs; 345 346 SCEVUDivExpr::~SCEVUDivExpr() { 347 SCEVUDivs->erase(std::make_pair(LHS, RHS)); 348 } 349 350 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 351 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 352 } 353 354 void SCEVUDivExpr::print(raw_ostream &OS) const { 355 OS << "(" << *LHS << " /u " << *RHS << ")"; 356 } 357 358 const Type *SCEVUDivExpr::getType() const { 359 // In most cases the types of LHS and RHS will be the same, but in some 360 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 361 // depend on the type for correctness, but handling types carefully can 362 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 363 // a pointer type than the RHS, so use the RHS' type here. 364 return RHS->getType(); 365 } 366 367 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 368 // particular input. Don't use a SCEVHandle here, or else the object will never 369 // be deleted! 370 static ManagedStatic<std::map<std::pair<const Loop *, 371 std::vector<const SCEV*> >, 372 SCEVAddRecExpr*> > SCEVAddRecExprs; 373 374 SCEVAddRecExpr::~SCEVAddRecExpr() { 375 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 376 SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps)); 377 } 378 379 SCEVHandle SCEVAddRecExpr:: 380 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 381 const SCEVHandle &Conc, 382 ScalarEvolution &SE) const { 383 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 384 SCEVHandle H = 385 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 386 if (H != getOperand(i)) { 387 SmallVector<SCEVHandle, 8> NewOps; 388 NewOps.reserve(getNumOperands()); 389 for (unsigned j = 0; j != i; ++j) 390 NewOps.push_back(getOperand(j)); 391 NewOps.push_back(H); 392 for (++i; i != e; ++i) 393 NewOps.push_back(getOperand(i)-> 394 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 395 396 return SE.getAddRecExpr(NewOps, L); 397 } 398 } 399 return this; 400 } 401 402 403 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 404 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 405 // contain L and if the start is invariant. 406 // Add recurrences are never invariant in the function-body (null loop). 407 return QueryLoop && 408 !QueryLoop->contains(L->getHeader()) && 409 getOperand(0)->isLoopInvariant(QueryLoop); 410 } 411 412 413 void SCEVAddRecExpr::print(raw_ostream &OS) const { 414 OS << "{" << *Operands[0]; 415 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 416 OS << ",+," << *Operands[i]; 417 OS << "}<" << L->getHeader()->getName() + ">"; 418 } 419 420 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 421 // value. Don't use a SCEVHandle here, or else the object will never be 422 // deleted! 423 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 424 425 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 426 427 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 428 // All non-instruction values are loop invariant. All instructions are loop 429 // invariant if they are not contained in the specified loop. 430 // Instructions are never considered invariant in the function body 431 // (null loop) because they are defined within the "loop". 432 if (Instruction *I = dyn_cast<Instruction>(V)) 433 return L && !L->contains(I->getParent()); 434 return true; 435 } 436 437 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 438 if (Instruction *I = dyn_cast<Instruction>(getValue())) 439 return DT->dominates(I->getParent(), BB); 440 return true; 441 } 442 443 const Type *SCEVUnknown::getType() const { 444 return V->getType(); 445 } 446 447 void SCEVUnknown::print(raw_ostream &OS) const { 448 WriteAsOperand(OS, V, false); 449 } 450 451 //===----------------------------------------------------------------------===// 452 // SCEV Utilities 453 //===----------------------------------------------------------------------===// 454 455 namespace { 456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 457 /// than the complexity of the RHS. This comparator is used to canonicalize 458 /// expressions. 459 class VISIBILITY_HIDDEN SCEVComplexityCompare { 460 LoopInfo *LI; 461 public: 462 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 463 464 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 465 // Primarily, sort the SCEVs by their getSCEVType(). 466 if (LHS->getSCEVType() != RHS->getSCEVType()) 467 return LHS->getSCEVType() < RHS->getSCEVType(); 468 469 // Aside from the getSCEVType() ordering, the particular ordering 470 // isn't very important except that it's beneficial to be consistent, 471 // so that (a + b) and (b + a) don't end up as different expressions. 472 473 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 474 // not as complete as it could be. 475 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 476 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 477 478 // Order pointer values after integer values. This helps SCEVExpander 479 // form GEPs. 480 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType())) 481 return false; 482 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType())) 483 return true; 484 485 // Compare getValueID values. 486 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 487 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 488 489 // Sort arguments by their position. 490 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 491 const Argument *RA = cast<Argument>(RU->getValue()); 492 return LA->getArgNo() < RA->getArgNo(); 493 } 494 495 // For instructions, compare their loop depth, and their opcode. 496 // This is pretty loose. 497 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 498 Instruction *RV = cast<Instruction>(RU->getValue()); 499 500 // Compare loop depths. 501 if (LI->getLoopDepth(LV->getParent()) != 502 LI->getLoopDepth(RV->getParent())) 503 return LI->getLoopDepth(LV->getParent()) < 504 LI->getLoopDepth(RV->getParent()); 505 506 // Compare opcodes. 507 if (LV->getOpcode() != RV->getOpcode()) 508 return LV->getOpcode() < RV->getOpcode(); 509 510 // Compare the number of operands. 511 if (LV->getNumOperands() != RV->getNumOperands()) 512 return LV->getNumOperands() < RV->getNumOperands(); 513 } 514 515 return false; 516 } 517 518 // Compare constant values. 519 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 520 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 521 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 522 } 523 524 // Compare addrec loop depths. 525 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 526 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 527 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 528 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 529 } 530 531 // Lexicographically compare n-ary expressions. 532 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 533 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 534 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 535 if (i >= RC->getNumOperands()) 536 return false; 537 if (operator()(LC->getOperand(i), RC->getOperand(i))) 538 return true; 539 if (operator()(RC->getOperand(i), LC->getOperand(i))) 540 return false; 541 } 542 return LC->getNumOperands() < RC->getNumOperands(); 543 } 544 545 // Lexicographically compare udiv expressions. 546 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 547 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 548 if (operator()(LC->getLHS(), RC->getLHS())) 549 return true; 550 if (operator()(RC->getLHS(), LC->getLHS())) 551 return false; 552 if (operator()(LC->getRHS(), RC->getRHS())) 553 return true; 554 if (operator()(RC->getRHS(), LC->getRHS())) 555 return false; 556 return false; 557 } 558 559 // Compare cast expressions by operand. 560 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 561 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 562 return operator()(LC->getOperand(), RC->getOperand()); 563 } 564 565 assert(0 && "Unknown SCEV kind!"); 566 return false; 567 } 568 }; 569 } 570 571 /// GroupByComplexity - Given a list of SCEV objects, order them by their 572 /// complexity, and group objects of the same complexity together by value. 573 /// When this routine is finished, we know that any duplicates in the vector are 574 /// consecutive and that complexity is monotonically increasing. 575 /// 576 /// Note that we go take special precautions to ensure that we get determinstic 577 /// results from this routine. In other words, we don't want the results of 578 /// this to depend on where the addresses of various SCEV objects happened to 579 /// land in memory. 580 /// 581 static void GroupByComplexity(SmallVectorImpl<SCEVHandle> &Ops, 582 LoopInfo *LI) { 583 if (Ops.size() < 2) return; // Noop 584 if (Ops.size() == 2) { 585 // This is the common case, which also happens to be trivially simple. 586 // Special case it. 587 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 588 std::swap(Ops[0], Ops[1]); 589 return; 590 } 591 592 // Do the rough sort by complexity. 593 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 594 595 // Now that we are sorted by complexity, group elements of the same 596 // complexity. Note that this is, at worst, N^2, but the vector is likely to 597 // be extremely short in practice. Note that we take this approach because we 598 // do not want to depend on the addresses of the objects we are grouping. 599 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 600 const SCEV *S = Ops[i]; 601 unsigned Complexity = S->getSCEVType(); 602 603 // If there are any objects of the same complexity and same value as this 604 // one, group them. 605 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 606 if (Ops[j] == S) { // Found a duplicate. 607 // Move it to immediately after i'th element. 608 std::swap(Ops[i+1], Ops[j]); 609 ++i; // no need to rescan it. 610 if (i == e-2) return; // Done! 611 } 612 } 613 } 614 } 615 616 617 618 //===----------------------------------------------------------------------===// 619 // Simple SCEV method implementations 620 //===----------------------------------------------------------------------===// 621 622 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 623 /// Assume, K > 0. 624 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, 625 ScalarEvolution &SE, 626 const Type* ResultTy) { 627 // Handle the simplest case efficiently. 628 if (K == 1) 629 return SE.getTruncateOrZeroExtend(It, ResultTy); 630 631 // We are using the following formula for BC(It, K): 632 // 633 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 634 // 635 // Suppose, W is the bitwidth of the return value. We must be prepared for 636 // overflow. Hence, we must assure that the result of our computation is 637 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 638 // safe in modular arithmetic. 639 // 640 // However, this code doesn't use exactly that formula; the formula it uses 641 // is something like the following, where T is the number of factors of 2 in 642 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 643 // exponentiation: 644 // 645 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 646 // 647 // This formula is trivially equivalent to the previous formula. However, 648 // this formula can be implemented much more efficiently. The trick is that 649 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 650 // arithmetic. To do exact division in modular arithmetic, all we have 651 // to do is multiply by the inverse. Therefore, this step can be done at 652 // width W. 653 // 654 // The next issue is how to safely do the division by 2^T. The way this 655 // is done is by doing the multiplication step at a width of at least W + T 656 // bits. This way, the bottom W+T bits of the product are accurate. Then, 657 // when we perform the division by 2^T (which is equivalent to a right shift 658 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 659 // truncated out after the division by 2^T. 660 // 661 // In comparison to just directly using the first formula, this technique 662 // is much more efficient; using the first formula requires W * K bits, 663 // but this formula less than W + K bits. Also, the first formula requires 664 // a division step, whereas this formula only requires multiplies and shifts. 665 // 666 // It doesn't matter whether the subtraction step is done in the calculation 667 // width or the input iteration count's width; if the subtraction overflows, 668 // the result must be zero anyway. We prefer here to do it in the width of 669 // the induction variable because it helps a lot for certain cases; CodeGen 670 // isn't smart enough to ignore the overflow, which leads to much less 671 // efficient code if the width of the subtraction is wider than the native 672 // register width. 673 // 674 // (It's possible to not widen at all by pulling out factors of 2 before 675 // the multiplication; for example, K=2 can be calculated as 676 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 677 // extra arithmetic, so it's not an obvious win, and it gets 678 // much more complicated for K > 3.) 679 680 // Protection from insane SCEVs; this bound is conservative, 681 // but it probably doesn't matter. 682 if (K > 1000) 683 return SE.getCouldNotCompute(); 684 685 unsigned W = SE.getTypeSizeInBits(ResultTy); 686 687 // Calculate K! / 2^T and T; we divide out the factors of two before 688 // multiplying for calculating K! / 2^T to avoid overflow. 689 // Other overflow doesn't matter because we only care about the bottom 690 // W bits of the result. 691 APInt OddFactorial(W, 1); 692 unsigned T = 1; 693 for (unsigned i = 3; i <= K; ++i) { 694 APInt Mult(W, i); 695 unsigned TwoFactors = Mult.countTrailingZeros(); 696 T += TwoFactors; 697 Mult = Mult.lshr(TwoFactors); 698 OddFactorial *= Mult; 699 } 700 701 // We need at least W + T bits for the multiplication step 702 unsigned CalculationBits = W + T; 703 704 // Calcuate 2^T, at width T+W. 705 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 706 707 // Calculate the multiplicative inverse of K! / 2^T; 708 // this multiplication factor will perform the exact division by 709 // K! / 2^T. 710 APInt Mod = APInt::getSignedMinValue(W+1); 711 APInt MultiplyFactor = OddFactorial.zext(W+1); 712 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 713 MultiplyFactor = MultiplyFactor.trunc(W); 714 715 // Calculate the product, at width T+W 716 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 717 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 718 for (unsigned i = 1; i != K; ++i) { 719 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 720 Dividend = SE.getMulExpr(Dividend, 721 SE.getTruncateOrZeroExtend(S, CalculationTy)); 722 } 723 724 // Divide by 2^T 725 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 726 727 // Truncate the result, and divide by K! / 2^T. 728 729 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 730 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 731 } 732 733 /// evaluateAtIteration - Return the value of this chain of recurrences at 734 /// the specified iteration number. We can evaluate this recurrence by 735 /// multiplying each element in the chain by the binomial coefficient 736 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 737 /// 738 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 739 /// 740 /// where BC(It, k) stands for binomial coefficient. 741 /// 742 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 743 ScalarEvolution &SE) const { 744 SCEVHandle Result = getStart(); 745 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 746 // The computation is correct in the face of overflow provided that the 747 // multiplication is performed _after_ the evaluation of the binomial 748 // coefficient. 749 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType()); 750 if (isa<SCEVCouldNotCompute>(Coeff)) 751 return Coeff; 752 753 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 754 } 755 return Result; 756 } 757 758 //===----------------------------------------------------------------------===// 759 // SCEV Expression folder implementations 760 //===----------------------------------------------------------------------===// 761 762 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, 763 const Type *Ty) { 764 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 765 "This is not a truncating conversion!"); 766 assert(isSCEVable(Ty) && 767 "This is not a conversion to a SCEVable type!"); 768 Ty = getEffectiveSCEVType(Ty); 769 770 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 771 return getUnknown( 772 ConstantExpr::getTrunc(SC->getValue(), Ty)); 773 774 // trunc(trunc(x)) --> trunc(x) 775 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 776 return getTruncateExpr(ST->getOperand(), Ty); 777 778 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 779 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 780 return getTruncateOrSignExtend(SS->getOperand(), Ty); 781 782 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 783 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 784 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 785 786 // If the input value is a chrec scev, truncate the chrec's operands. 787 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 788 SmallVector<SCEVHandle, 4> Operands; 789 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 790 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 791 return getAddRecExpr(Operands, AddRec->getLoop()); 792 } 793 794 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 795 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty, this); 796 return Result; 797 } 798 799 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, 800 const Type *Ty) { 801 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 802 "This is not an extending conversion!"); 803 assert(isSCEVable(Ty) && 804 "This is not a conversion to a SCEVable type!"); 805 Ty = getEffectiveSCEVType(Ty); 806 807 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 808 const Type *IntTy = getEffectiveSCEVType(Ty); 809 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 810 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 811 return getUnknown(C); 812 } 813 814 // zext(zext(x)) --> zext(x) 815 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 816 return getZeroExtendExpr(SZ->getOperand(), Ty); 817 818 // If the input value is a chrec scev, and we can prove that the value 819 // did not overflow the old, smaller, value, we can zero extend all of the 820 // operands (often constants). This allows analysis of something like 821 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 822 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 823 if (AR->isAffine()) { 824 // Check whether the backedge-taken count is SCEVCouldNotCompute. 825 // Note that this serves two purposes: It filters out loops that are 826 // simply not analyzable, and it covers the case where this code is 827 // being called from within backedge-taken count analysis, such that 828 // attempting to ask for the backedge-taken count would likely result 829 // in infinite recursion. In the later case, the analysis code will 830 // cope with a conservative value, and it will take care to purge 831 // that value once it has finished. 832 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 833 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 834 // Manually compute the final value for AR, checking for 835 // overflow. 836 SCEVHandle Start = AR->getStart(); 837 SCEVHandle Step = AR->getStepRecurrence(*this); 838 839 // Check whether the backedge-taken count can be losslessly casted to 840 // the addrec's type. The count is always unsigned. 841 SCEVHandle CastedMaxBECount = 842 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 843 SCEVHandle RecastedMaxBECount = 844 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 845 if (MaxBECount == RecastedMaxBECount) { 846 const Type *WideTy = 847 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 848 // Check whether Start+Step*MaxBECount has no unsigned overflow. 849 SCEVHandle ZMul = 850 getMulExpr(CastedMaxBECount, 851 getTruncateOrZeroExtend(Step, Start->getType())); 852 SCEVHandle Add = getAddExpr(Start, ZMul); 853 SCEVHandle OperandExtendedAdd = 854 getAddExpr(getZeroExtendExpr(Start, WideTy), 855 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 856 getZeroExtendExpr(Step, WideTy))); 857 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 858 // Return the expression with the addrec on the outside. 859 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 860 getZeroExtendExpr(Step, Ty), 861 AR->getLoop()); 862 863 // Similar to above, only this time treat the step value as signed. 864 // This covers loops that count down. 865 SCEVHandle SMul = 866 getMulExpr(CastedMaxBECount, 867 getTruncateOrSignExtend(Step, Start->getType())); 868 Add = getAddExpr(Start, SMul); 869 OperandExtendedAdd = 870 getAddExpr(getZeroExtendExpr(Start, WideTy), 871 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 872 getSignExtendExpr(Step, WideTy))); 873 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 874 // Return the expression with the addrec on the outside. 875 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 876 getSignExtendExpr(Step, Ty), 877 AR->getLoop()); 878 } 879 } 880 } 881 882 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 883 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty, this); 884 return Result; 885 } 886 887 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, 888 const Type *Ty) { 889 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 890 "This is not an extending conversion!"); 891 assert(isSCEVable(Ty) && 892 "This is not a conversion to a SCEVable type!"); 893 Ty = getEffectiveSCEVType(Ty); 894 895 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 896 const Type *IntTy = getEffectiveSCEVType(Ty); 897 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 898 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 899 return getUnknown(C); 900 } 901 902 // sext(sext(x)) --> sext(x) 903 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 904 return getSignExtendExpr(SS->getOperand(), Ty); 905 906 // If the input value is a chrec scev, and we can prove that the value 907 // did not overflow the old, smaller, value, we can sign extend all of the 908 // operands (often constants). This allows analysis of something like 909 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 910 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 911 if (AR->isAffine()) { 912 // Check whether the backedge-taken count is SCEVCouldNotCompute. 913 // Note that this serves two purposes: It filters out loops that are 914 // simply not analyzable, and it covers the case where this code is 915 // being called from within backedge-taken count analysis, such that 916 // attempting to ask for the backedge-taken count would likely result 917 // in infinite recursion. In the later case, the analysis code will 918 // cope with a conservative value, and it will take care to purge 919 // that value once it has finished. 920 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 921 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 922 // Manually compute the final value for AR, checking for 923 // overflow. 924 SCEVHandle Start = AR->getStart(); 925 SCEVHandle Step = AR->getStepRecurrence(*this); 926 927 // Check whether the backedge-taken count can be losslessly casted to 928 // the addrec's type. The count is always unsigned. 929 SCEVHandle CastedMaxBECount = 930 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 931 SCEVHandle RecastedMaxBECount = 932 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 933 if (MaxBECount == RecastedMaxBECount) { 934 const Type *WideTy = 935 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 936 // Check whether Start+Step*MaxBECount has no signed overflow. 937 SCEVHandle SMul = 938 getMulExpr(CastedMaxBECount, 939 getTruncateOrSignExtend(Step, Start->getType())); 940 SCEVHandle Add = getAddExpr(Start, SMul); 941 SCEVHandle OperandExtendedAdd = 942 getAddExpr(getSignExtendExpr(Start, WideTy), 943 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 944 getSignExtendExpr(Step, WideTy))); 945 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 946 // Return the expression with the addrec on the outside. 947 return getAddRecExpr(getSignExtendExpr(Start, Ty), 948 getSignExtendExpr(Step, Ty), 949 AR->getLoop()); 950 } 951 } 952 } 953 954 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 955 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty, this); 956 return Result; 957 } 958 959 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 960 /// unspecified bits out to the given type. 961 /// 962 SCEVHandle ScalarEvolution::getAnyExtendExpr(const SCEVHandle &Op, 963 const Type *Ty) { 964 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 965 "This is not an extending conversion!"); 966 assert(isSCEVable(Ty) && 967 "This is not a conversion to a SCEVable type!"); 968 Ty = getEffectiveSCEVType(Ty); 969 970 // Sign-extend negative constants. 971 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 972 if (SC->getValue()->getValue().isNegative()) 973 return getSignExtendExpr(Op, Ty); 974 975 // Peel off a truncate cast. 976 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 977 SCEVHandle NewOp = T->getOperand(); 978 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 979 return getAnyExtendExpr(NewOp, Ty); 980 return getTruncateOrNoop(NewOp, Ty); 981 } 982 983 // Next try a zext cast. If the cast is folded, use it. 984 SCEVHandle ZExt = getZeroExtendExpr(Op, Ty); 985 if (!isa<SCEVZeroExtendExpr>(ZExt)) 986 return ZExt; 987 988 // Next try a sext cast. If the cast is folded, use it. 989 SCEVHandle SExt = getSignExtendExpr(Op, Ty); 990 if (!isa<SCEVSignExtendExpr>(SExt)) 991 return SExt; 992 993 // If the expression is obviously signed, use the sext cast value. 994 if (isa<SCEVSMaxExpr>(Op)) 995 return SExt; 996 997 // Absent any other information, use the zext cast value. 998 return ZExt; 999 } 1000 1001 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1002 /// a list of operands to be added under the given scale, update the given 1003 /// map. This is a helper function for getAddRecExpr. As an example of 1004 /// what it does, given a sequence of operands that would form an add 1005 /// expression like this: 1006 /// 1007 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1008 /// 1009 /// where A and B are constants, update the map with these values: 1010 /// 1011 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1012 /// 1013 /// and add 13 + A*B*29 to AccumulatedConstant. 1014 /// This will allow getAddRecExpr to produce this: 1015 /// 1016 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1017 /// 1018 /// This form often exposes folding opportunities that are hidden in 1019 /// the original operand list. 1020 /// 1021 /// Return true iff it appears that any interesting folding opportunities 1022 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1023 /// the common case where no interesting opportunities are present, and 1024 /// is also used as a check to avoid infinite recursion. 1025 /// 1026 static bool 1027 CollectAddOperandsWithScales(DenseMap<SCEVHandle, APInt> &M, 1028 SmallVector<SCEVHandle, 8> &NewOps, 1029 APInt &AccumulatedConstant, 1030 const SmallVectorImpl<SCEVHandle> &Ops, 1031 const APInt &Scale, 1032 ScalarEvolution &SE) { 1033 bool Interesting = false; 1034 1035 // Iterate over the add operands. 1036 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1037 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1038 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1039 APInt NewScale = 1040 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1041 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1042 // A multiplication of a constant with another add; recurse. 1043 Interesting |= 1044 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1045 cast<SCEVAddExpr>(Mul->getOperand(1)) 1046 ->getOperands(), 1047 NewScale, SE); 1048 } else { 1049 // A multiplication of a constant with some other value. Update 1050 // the map. 1051 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1052 SCEVHandle Key = SE.getMulExpr(MulOps); 1053 std::pair<DenseMap<SCEVHandle, APInt>::iterator, bool> Pair = 1054 M.insert(std::make_pair(Key, APInt())); 1055 if (Pair.second) { 1056 Pair.first->second = NewScale; 1057 NewOps.push_back(Pair.first->first); 1058 } else { 1059 Pair.first->second += NewScale; 1060 // The map already had an entry for this value, which may indicate 1061 // a folding opportunity. 1062 Interesting = true; 1063 } 1064 } 1065 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1066 // Pull a buried constant out to the outside. 1067 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero()) 1068 Interesting = true; 1069 AccumulatedConstant += Scale * C->getValue()->getValue(); 1070 } else { 1071 // An ordinary operand. Update the map. 1072 std::pair<DenseMap<SCEVHandle, APInt>::iterator, bool> Pair = 1073 M.insert(std::make_pair(Ops[i], APInt())); 1074 if (Pair.second) { 1075 Pair.first->second = Scale; 1076 NewOps.push_back(Pair.first->first); 1077 } else { 1078 Pair.first->second += Scale; 1079 // The map already had an entry for this value, which may indicate 1080 // a folding opportunity. 1081 Interesting = true; 1082 } 1083 } 1084 } 1085 1086 return Interesting; 1087 } 1088 1089 namespace { 1090 struct APIntCompare { 1091 bool operator()(const APInt &LHS, const APInt &RHS) const { 1092 return LHS.ult(RHS); 1093 } 1094 }; 1095 } 1096 1097 /// getAddExpr - Get a canonical add expression, or something simpler if 1098 /// possible. 1099 SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1100 assert(!Ops.empty() && "Cannot get empty add!"); 1101 if (Ops.size() == 1) return Ops[0]; 1102 #ifndef NDEBUG 1103 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1104 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1105 getEffectiveSCEVType(Ops[0]->getType()) && 1106 "SCEVAddExpr operand types don't match!"); 1107 #endif 1108 1109 // Sort by complexity, this groups all similar expression types together. 1110 GroupByComplexity(Ops, LI); 1111 1112 // If there are any constants, fold them together. 1113 unsigned Idx = 0; 1114 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1115 ++Idx; 1116 assert(Idx < Ops.size()); 1117 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1118 // We found two constants, fold them together! 1119 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1120 RHSC->getValue()->getValue()); 1121 if (Ops.size() == 2) return Ops[0]; 1122 Ops.erase(Ops.begin()+1); // Erase the folded element 1123 LHSC = cast<SCEVConstant>(Ops[0]); 1124 } 1125 1126 // If we are left with a constant zero being added, strip it off. 1127 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1128 Ops.erase(Ops.begin()); 1129 --Idx; 1130 } 1131 } 1132 1133 if (Ops.size() == 1) return Ops[0]; 1134 1135 // Okay, check to see if the same value occurs in the operand list twice. If 1136 // so, merge them together into an multiply expression. Since we sorted the 1137 // list, these values are required to be adjacent. 1138 const Type *Ty = Ops[0]->getType(); 1139 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1140 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1141 // Found a match, merge the two values into a multiply, and add any 1142 // remaining values to the result. 1143 SCEVHandle Two = getIntegerSCEV(2, Ty); 1144 SCEVHandle Mul = getMulExpr(Ops[i], Two); 1145 if (Ops.size() == 2) 1146 return Mul; 1147 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1148 Ops.push_back(Mul); 1149 return getAddExpr(Ops); 1150 } 1151 1152 // Check for truncates. If all the operands are truncated from the same 1153 // type, see if factoring out the truncate would permit the result to be 1154 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1155 // if the contents of the resulting outer trunc fold to something simple. 1156 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1157 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1158 const Type *DstType = Trunc->getType(); 1159 const Type *SrcType = Trunc->getOperand()->getType(); 1160 SmallVector<SCEVHandle, 8> LargeOps; 1161 bool Ok = true; 1162 // Check all the operands to see if they can be represented in the 1163 // source type of the truncate. 1164 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1165 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1166 if (T->getOperand()->getType() != SrcType) { 1167 Ok = false; 1168 break; 1169 } 1170 LargeOps.push_back(T->getOperand()); 1171 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1172 // This could be either sign or zero extension, but sign extension 1173 // is much more likely to be foldable here. 1174 LargeOps.push_back(getSignExtendExpr(C, SrcType)); 1175 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1176 SmallVector<SCEVHandle, 8> LargeMulOps; 1177 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1178 if (const SCEVTruncateExpr *T = 1179 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1180 if (T->getOperand()->getType() != SrcType) { 1181 Ok = false; 1182 break; 1183 } 1184 LargeMulOps.push_back(T->getOperand()); 1185 } else if (const SCEVConstant *C = 1186 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1187 // This could be either sign or zero extension, but sign extension 1188 // is much more likely to be foldable here. 1189 LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); 1190 } else { 1191 Ok = false; 1192 break; 1193 } 1194 } 1195 if (Ok) 1196 LargeOps.push_back(getMulExpr(LargeMulOps)); 1197 } else { 1198 Ok = false; 1199 break; 1200 } 1201 } 1202 if (Ok) { 1203 // Evaluate the expression in the larger type. 1204 SCEVHandle Fold = getAddExpr(LargeOps); 1205 // If it folds to something simple, use it. Otherwise, don't. 1206 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1207 return getTruncateExpr(Fold, DstType); 1208 } 1209 } 1210 1211 // Skip past any other cast SCEVs. 1212 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1213 ++Idx; 1214 1215 // If there are add operands they would be next. 1216 if (Idx < Ops.size()) { 1217 bool DeletedAdd = false; 1218 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1219 // If we have an add, expand the add operands onto the end of the operands 1220 // list. 1221 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 1222 Ops.erase(Ops.begin()+Idx); 1223 DeletedAdd = true; 1224 } 1225 1226 // If we deleted at least one add, we added operands to the end of the list, 1227 // and they are not necessarily sorted. Recurse to resort and resimplify 1228 // any operands we just aquired. 1229 if (DeletedAdd) 1230 return getAddExpr(Ops); 1231 } 1232 1233 // Skip over the add expression until we get to a multiply. 1234 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1235 ++Idx; 1236 1237 // Check to see if there are any folding opportunities present with 1238 // operands multiplied by constant values. 1239 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1240 uint64_t BitWidth = getTypeSizeInBits(Ty); 1241 DenseMap<SCEVHandle, APInt> M; 1242 SmallVector<SCEVHandle, 8> NewOps; 1243 APInt AccumulatedConstant(BitWidth, 0); 1244 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1245 Ops, APInt(BitWidth, 1), *this)) { 1246 // Some interesting folding opportunity is present, so its worthwhile to 1247 // re-generate the operands list. Group the operands by constant scale, 1248 // to avoid multiplying by the same constant scale multiple times. 1249 std::map<APInt, SmallVector<SCEVHandle, 4>, APIntCompare> MulOpLists; 1250 for (SmallVector<SCEVHandle, 8>::iterator I = NewOps.begin(), 1251 E = NewOps.end(); I != E; ++I) 1252 MulOpLists[M.find(*I)->second].push_back(*I); 1253 // Re-generate the operands list. 1254 Ops.clear(); 1255 if (AccumulatedConstant != 0) 1256 Ops.push_back(getConstant(AccumulatedConstant)); 1257 for (std::map<APInt, SmallVector<SCEVHandle, 4>, APIntCompare>::iterator I = 1258 MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1259 if (I->first != 0) 1260 Ops.push_back(getMulExpr(getConstant(I->first), getAddExpr(I->second))); 1261 if (Ops.empty()) 1262 return getIntegerSCEV(0, Ty); 1263 if (Ops.size() == 1) 1264 return Ops[0]; 1265 return getAddExpr(Ops); 1266 } 1267 } 1268 1269 // If we are adding something to a multiply expression, make sure the 1270 // something is not already an operand of the multiply. If so, merge it into 1271 // the multiply. 1272 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1273 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1274 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1275 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1276 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1277 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1278 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1279 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 1280 if (Mul->getNumOperands() != 2) { 1281 // If the multiply has more than two operands, we must get the 1282 // Y*Z term. 1283 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1284 MulOps.erase(MulOps.begin()+MulOp); 1285 InnerMul = getMulExpr(MulOps); 1286 } 1287 SCEVHandle One = getIntegerSCEV(1, Ty); 1288 SCEVHandle AddOne = getAddExpr(InnerMul, One); 1289 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1290 if (Ops.size() == 2) return OuterMul; 1291 if (AddOp < Idx) { 1292 Ops.erase(Ops.begin()+AddOp); 1293 Ops.erase(Ops.begin()+Idx-1); 1294 } else { 1295 Ops.erase(Ops.begin()+Idx); 1296 Ops.erase(Ops.begin()+AddOp-1); 1297 } 1298 Ops.push_back(OuterMul); 1299 return getAddExpr(Ops); 1300 } 1301 1302 // Check this multiply against other multiplies being added together. 1303 for (unsigned OtherMulIdx = Idx+1; 1304 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1305 ++OtherMulIdx) { 1306 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1307 // If MulOp occurs in OtherMul, we can fold the two multiplies 1308 // together. 1309 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1310 OMulOp != e; ++OMulOp) 1311 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1312 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1313 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 1314 if (Mul->getNumOperands() != 2) { 1315 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1316 MulOps.erase(MulOps.begin()+MulOp); 1317 InnerMul1 = getMulExpr(MulOps); 1318 } 1319 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1320 if (OtherMul->getNumOperands() != 2) { 1321 SmallVector<SCEVHandle, 4> MulOps(OtherMul->op_begin(), 1322 OtherMul->op_end()); 1323 MulOps.erase(MulOps.begin()+OMulOp); 1324 InnerMul2 = getMulExpr(MulOps); 1325 } 1326 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1327 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1328 if (Ops.size() == 2) return OuterMul; 1329 Ops.erase(Ops.begin()+Idx); 1330 Ops.erase(Ops.begin()+OtherMulIdx-1); 1331 Ops.push_back(OuterMul); 1332 return getAddExpr(Ops); 1333 } 1334 } 1335 } 1336 } 1337 1338 // If there are any add recurrences in the operands list, see if any other 1339 // added values are loop invariant. If so, we can fold them into the 1340 // recurrence. 1341 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1342 ++Idx; 1343 1344 // Scan over all recurrences, trying to fold loop invariants into them. 1345 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1346 // Scan all of the other operands to this add and add them to the vector if 1347 // they are loop invariant w.r.t. the recurrence. 1348 SmallVector<SCEVHandle, 8> LIOps; 1349 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1350 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1351 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1352 LIOps.push_back(Ops[i]); 1353 Ops.erase(Ops.begin()+i); 1354 --i; --e; 1355 } 1356 1357 // If we found some loop invariants, fold them into the recurrence. 1358 if (!LIOps.empty()) { 1359 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1360 LIOps.push_back(AddRec->getStart()); 1361 1362 SmallVector<SCEVHandle, 4> AddRecOps(AddRec->op_begin(), 1363 AddRec->op_end()); 1364 AddRecOps[0] = getAddExpr(LIOps); 1365 1366 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1367 // If all of the other operands were loop invariant, we are done. 1368 if (Ops.size() == 1) return NewRec; 1369 1370 // Otherwise, add the folded AddRec by the non-liv parts. 1371 for (unsigned i = 0;; ++i) 1372 if (Ops[i] == AddRec) { 1373 Ops[i] = NewRec; 1374 break; 1375 } 1376 return getAddExpr(Ops); 1377 } 1378 1379 // Okay, if there weren't any loop invariants to be folded, check to see if 1380 // there are multiple AddRec's with the same loop induction variable being 1381 // added together. If so, we can fold them. 1382 for (unsigned OtherIdx = Idx+1; 1383 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1384 if (OtherIdx != Idx) { 1385 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1386 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1387 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1388 SmallVector<SCEVHandle, 4> NewOps(AddRec->op_begin(), AddRec->op_end()); 1389 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1390 if (i >= NewOps.size()) { 1391 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1392 OtherAddRec->op_end()); 1393 break; 1394 } 1395 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1396 } 1397 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1398 1399 if (Ops.size() == 2) return NewAddRec; 1400 1401 Ops.erase(Ops.begin()+Idx); 1402 Ops.erase(Ops.begin()+OtherIdx-1); 1403 Ops.push_back(NewAddRec); 1404 return getAddExpr(Ops); 1405 } 1406 } 1407 1408 // Otherwise couldn't fold anything into this recurrence. Move onto the 1409 // next one. 1410 } 1411 1412 // Okay, it looks like we really DO need an add expr. Check to see if we 1413 // already have one, otherwise create a new one. 1414 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1415 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 1416 SCEVOps)]; 1417 if (Result == 0) Result = new SCEVAddExpr(Ops, this); 1418 return Result; 1419 } 1420 1421 1422 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1423 /// possible. 1424 SCEVHandle ScalarEvolution::getMulExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1425 assert(!Ops.empty() && "Cannot get empty mul!"); 1426 #ifndef NDEBUG 1427 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1428 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1429 getEffectiveSCEVType(Ops[0]->getType()) && 1430 "SCEVMulExpr operand types don't match!"); 1431 #endif 1432 1433 // Sort by complexity, this groups all similar expression types together. 1434 GroupByComplexity(Ops, LI); 1435 1436 // If there are any constants, fold them together. 1437 unsigned Idx = 0; 1438 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1439 1440 // C1*(C2+V) -> C1*C2 + C1*V 1441 if (Ops.size() == 2) 1442 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1443 if (Add->getNumOperands() == 2 && 1444 isa<SCEVConstant>(Add->getOperand(0))) 1445 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1446 getMulExpr(LHSC, Add->getOperand(1))); 1447 1448 1449 ++Idx; 1450 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1451 // We found two constants, fold them together! 1452 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 1453 RHSC->getValue()->getValue()); 1454 Ops[0] = getConstant(Fold); 1455 Ops.erase(Ops.begin()+1); // Erase the folded element 1456 if (Ops.size() == 1) return Ops[0]; 1457 LHSC = cast<SCEVConstant>(Ops[0]); 1458 } 1459 1460 // If we are left with a constant one being multiplied, strip it off. 1461 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1462 Ops.erase(Ops.begin()); 1463 --Idx; 1464 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1465 // If we have a multiply of zero, it will always be zero. 1466 return Ops[0]; 1467 } 1468 } 1469 1470 // Skip over the add expression until we get to a multiply. 1471 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1472 ++Idx; 1473 1474 if (Ops.size() == 1) 1475 return Ops[0]; 1476 1477 // If there are mul operands inline them all into this expression. 1478 if (Idx < Ops.size()) { 1479 bool DeletedMul = false; 1480 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1481 // If we have an mul, expand the mul operands onto the end of the operands 1482 // list. 1483 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1484 Ops.erase(Ops.begin()+Idx); 1485 DeletedMul = true; 1486 } 1487 1488 // If we deleted at least one mul, we added operands to the end of the list, 1489 // and they are not necessarily sorted. Recurse to resort and resimplify 1490 // any operands we just aquired. 1491 if (DeletedMul) 1492 return getMulExpr(Ops); 1493 } 1494 1495 // If there are any add recurrences in the operands list, see if any other 1496 // added values are loop invariant. If so, we can fold them into the 1497 // recurrence. 1498 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1499 ++Idx; 1500 1501 // Scan over all recurrences, trying to fold loop invariants into them. 1502 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1503 // Scan all of the other operands to this mul and add them to the vector if 1504 // they are loop invariant w.r.t. the recurrence. 1505 SmallVector<SCEVHandle, 8> LIOps; 1506 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1507 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1508 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1509 LIOps.push_back(Ops[i]); 1510 Ops.erase(Ops.begin()+i); 1511 --i; --e; 1512 } 1513 1514 // If we found some loop invariants, fold them into the recurrence. 1515 if (!LIOps.empty()) { 1516 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1517 SmallVector<SCEVHandle, 4> NewOps; 1518 NewOps.reserve(AddRec->getNumOperands()); 1519 if (LIOps.size() == 1) { 1520 const SCEV *Scale = LIOps[0]; 1521 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1522 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1523 } else { 1524 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1525 SmallVector<SCEVHandle, 4> MulOps(LIOps.begin(), LIOps.end()); 1526 MulOps.push_back(AddRec->getOperand(i)); 1527 NewOps.push_back(getMulExpr(MulOps)); 1528 } 1529 } 1530 1531 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1532 1533 // If all of the other operands were loop invariant, we are done. 1534 if (Ops.size() == 1) return NewRec; 1535 1536 // Otherwise, multiply the folded AddRec by the non-liv parts. 1537 for (unsigned i = 0;; ++i) 1538 if (Ops[i] == AddRec) { 1539 Ops[i] = NewRec; 1540 break; 1541 } 1542 return getMulExpr(Ops); 1543 } 1544 1545 // Okay, if there weren't any loop invariants to be folded, check to see if 1546 // there are multiple AddRec's with the same loop induction variable being 1547 // multiplied together. If so, we can fold them. 1548 for (unsigned OtherIdx = Idx+1; 1549 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1550 if (OtherIdx != Idx) { 1551 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1552 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1553 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1554 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1555 SCEVHandle NewStart = getMulExpr(F->getStart(), 1556 G->getStart()); 1557 SCEVHandle B = F->getStepRecurrence(*this); 1558 SCEVHandle D = G->getStepRecurrence(*this); 1559 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1560 getMulExpr(G, B), 1561 getMulExpr(B, D)); 1562 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1563 F->getLoop()); 1564 if (Ops.size() == 2) return NewAddRec; 1565 1566 Ops.erase(Ops.begin()+Idx); 1567 Ops.erase(Ops.begin()+OtherIdx-1); 1568 Ops.push_back(NewAddRec); 1569 return getMulExpr(Ops); 1570 } 1571 } 1572 1573 // Otherwise couldn't fold anything into this recurrence. Move onto the 1574 // next one. 1575 } 1576 1577 // Okay, it looks like we really DO need an mul expr. Check to see if we 1578 // already have one, otherwise create a new one. 1579 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1580 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1581 SCEVOps)]; 1582 if (Result == 0) 1583 Result = new SCEVMulExpr(Ops, this); 1584 return Result; 1585 } 1586 1587 /// getUDivExpr - Get a canonical multiply expression, or something simpler if 1588 /// possible. 1589 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, 1590 const SCEVHandle &RHS) { 1591 assert(getEffectiveSCEVType(LHS->getType()) == 1592 getEffectiveSCEVType(RHS->getType()) && 1593 "SCEVUDivExpr operand types don't match!"); 1594 1595 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1596 if (RHSC->getValue()->equalsInt(1)) 1597 return LHS; // X udiv 1 --> x 1598 if (RHSC->isZero()) 1599 return getIntegerSCEV(0, LHS->getType()); // value is undefined 1600 1601 // Determine if the division can be folded into the operands of 1602 // its operands. 1603 // TODO: Generalize this to non-constants by using known-bits information. 1604 const Type *Ty = LHS->getType(); 1605 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1606 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1607 // For non-power-of-two values, effectively round the value up to the 1608 // nearest power of two. 1609 if (!RHSC->getValue()->getValue().isPowerOf2()) 1610 ++MaxShiftAmt; 1611 const IntegerType *ExtTy = 1612 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt); 1613 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1614 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1615 if (const SCEVConstant *Step = 1616 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1617 if (!Step->getValue()->getValue() 1618 .urem(RHSC->getValue()->getValue()) && 1619 getZeroExtendExpr(AR, ExtTy) == 1620 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1621 getZeroExtendExpr(Step, ExtTy), 1622 AR->getLoop())) { 1623 SmallVector<SCEVHandle, 4> Operands; 1624 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1625 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1626 return getAddRecExpr(Operands, AR->getLoop()); 1627 } 1628 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1629 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1630 SmallVector<SCEVHandle, 4> Operands; 1631 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1632 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1633 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1634 // Find an operand that's safely divisible. 1635 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1636 SCEVHandle Op = M->getOperand(i); 1637 SCEVHandle Div = getUDivExpr(Op, RHSC); 1638 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1639 const SmallVectorImpl<SCEVHandle> &MOperands = M->getOperands(); 1640 Operands = SmallVector<SCEVHandle, 4>(MOperands.begin(), 1641 MOperands.end()); 1642 Operands[i] = Div; 1643 return getMulExpr(Operands); 1644 } 1645 } 1646 } 1647 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1648 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1649 SmallVector<SCEVHandle, 4> Operands; 1650 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1651 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1652 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1653 Operands.clear(); 1654 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1655 SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS); 1656 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) 1657 break; 1658 Operands.push_back(Op); 1659 } 1660 if (Operands.size() == A->getNumOperands()) 1661 return getAddExpr(Operands); 1662 } 1663 } 1664 1665 // Fold if both operands are constant. 1666 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1667 Constant *LHSCV = LHSC->getValue(); 1668 Constant *RHSCV = RHSC->getValue(); 1669 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1670 } 1671 } 1672 1673 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; 1674 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS, this); 1675 return Result; 1676 } 1677 1678 1679 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1680 /// Simplify the expression as much as possible. 1681 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1682 const SCEVHandle &Step, const Loop *L) { 1683 SmallVector<SCEVHandle, 4> Operands; 1684 Operands.push_back(Start); 1685 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1686 if (StepChrec->getLoop() == L) { 1687 Operands.insert(Operands.end(), StepChrec->op_begin(), 1688 StepChrec->op_end()); 1689 return getAddRecExpr(Operands, L); 1690 } 1691 1692 Operands.push_back(Step); 1693 return getAddRecExpr(Operands, L); 1694 } 1695 1696 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1697 /// Simplify the expression as much as possible. 1698 SCEVHandle ScalarEvolution::getAddRecExpr(SmallVectorImpl<SCEVHandle> &Operands, 1699 const Loop *L) { 1700 if (Operands.size() == 1) return Operands[0]; 1701 #ifndef NDEBUG 1702 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1703 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1704 getEffectiveSCEVType(Operands[0]->getType()) && 1705 "SCEVAddRecExpr operand types don't match!"); 1706 #endif 1707 1708 if (Operands.back()->isZero()) { 1709 Operands.pop_back(); 1710 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1711 } 1712 1713 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1714 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1715 const Loop* NestedLoop = NestedAR->getLoop(); 1716 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1717 SmallVector<SCEVHandle, 4> NestedOperands(NestedAR->op_begin(), 1718 NestedAR->op_end()); 1719 SCEVHandle NestedARHandle(NestedAR); 1720 Operands[0] = NestedAR->getStart(); 1721 NestedOperands[0] = getAddRecExpr(Operands, L); 1722 return getAddRecExpr(NestedOperands, NestedLoop); 1723 } 1724 } 1725 1726 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 1727 SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)]; 1728 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L, this); 1729 return Result; 1730 } 1731 1732 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, 1733 const SCEVHandle &RHS) { 1734 SmallVector<SCEVHandle, 2> Ops; 1735 Ops.push_back(LHS); 1736 Ops.push_back(RHS); 1737 return getSMaxExpr(Ops); 1738 } 1739 1740 SCEVHandle 1741 ScalarEvolution::getSMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1742 assert(!Ops.empty() && "Cannot get empty smax!"); 1743 if (Ops.size() == 1) return Ops[0]; 1744 #ifndef NDEBUG 1745 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1746 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1747 getEffectiveSCEVType(Ops[0]->getType()) && 1748 "SCEVSMaxExpr operand types don't match!"); 1749 #endif 1750 1751 // Sort by complexity, this groups all similar expression types together. 1752 GroupByComplexity(Ops, LI); 1753 1754 // If there are any constants, fold them together. 1755 unsigned Idx = 0; 1756 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1757 ++Idx; 1758 assert(Idx < Ops.size()); 1759 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1760 // We found two constants, fold them together! 1761 ConstantInt *Fold = ConstantInt::get( 1762 APIntOps::smax(LHSC->getValue()->getValue(), 1763 RHSC->getValue()->getValue())); 1764 Ops[0] = getConstant(Fold); 1765 Ops.erase(Ops.begin()+1); // Erase the folded element 1766 if (Ops.size() == 1) return Ops[0]; 1767 LHSC = cast<SCEVConstant>(Ops[0]); 1768 } 1769 1770 // If we are left with a constant -inf, strip it off. 1771 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1772 Ops.erase(Ops.begin()); 1773 --Idx; 1774 } 1775 } 1776 1777 if (Ops.size() == 1) return Ops[0]; 1778 1779 // Find the first SMax 1780 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1781 ++Idx; 1782 1783 // Check to see if one of the operands is an SMax. If so, expand its operands 1784 // onto our operand list, and recurse to simplify. 1785 if (Idx < Ops.size()) { 1786 bool DeletedSMax = false; 1787 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1788 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1789 Ops.erase(Ops.begin()+Idx); 1790 DeletedSMax = true; 1791 } 1792 1793 if (DeletedSMax) 1794 return getSMaxExpr(Ops); 1795 } 1796 1797 // Okay, check to see if the same value occurs in the operand list twice. If 1798 // so, delete one. Since we sorted the list, these values are required to 1799 // be adjacent. 1800 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1801 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1802 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1803 --i; --e; 1804 } 1805 1806 if (Ops.size() == 1) return Ops[0]; 1807 1808 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1809 1810 // Okay, it looks like we really DO need an smax expr. Check to see if we 1811 // already have one, otherwise create a new one. 1812 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1813 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, 1814 SCEVOps)]; 1815 if (Result == 0) Result = new SCEVSMaxExpr(Ops, this); 1816 return Result; 1817 } 1818 1819 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, 1820 const SCEVHandle &RHS) { 1821 SmallVector<SCEVHandle, 2> Ops; 1822 Ops.push_back(LHS); 1823 Ops.push_back(RHS); 1824 return getUMaxExpr(Ops); 1825 } 1826 1827 SCEVHandle 1828 ScalarEvolution::getUMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1829 assert(!Ops.empty() && "Cannot get empty umax!"); 1830 if (Ops.size() == 1) return Ops[0]; 1831 #ifndef NDEBUG 1832 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1833 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1834 getEffectiveSCEVType(Ops[0]->getType()) && 1835 "SCEVUMaxExpr operand types don't match!"); 1836 #endif 1837 1838 // Sort by complexity, this groups all similar expression types together. 1839 GroupByComplexity(Ops, LI); 1840 1841 // If there are any constants, fold them together. 1842 unsigned Idx = 0; 1843 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1844 ++Idx; 1845 assert(Idx < Ops.size()); 1846 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1847 // We found two constants, fold them together! 1848 ConstantInt *Fold = ConstantInt::get( 1849 APIntOps::umax(LHSC->getValue()->getValue(), 1850 RHSC->getValue()->getValue())); 1851 Ops[0] = getConstant(Fold); 1852 Ops.erase(Ops.begin()+1); // Erase the folded element 1853 if (Ops.size() == 1) return Ops[0]; 1854 LHSC = cast<SCEVConstant>(Ops[0]); 1855 } 1856 1857 // If we are left with a constant zero, strip it off. 1858 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1859 Ops.erase(Ops.begin()); 1860 --Idx; 1861 } 1862 } 1863 1864 if (Ops.size() == 1) return Ops[0]; 1865 1866 // Find the first UMax 1867 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1868 ++Idx; 1869 1870 // Check to see if one of the operands is a UMax. If so, expand its operands 1871 // onto our operand list, and recurse to simplify. 1872 if (Idx < Ops.size()) { 1873 bool DeletedUMax = false; 1874 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1875 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1876 Ops.erase(Ops.begin()+Idx); 1877 DeletedUMax = true; 1878 } 1879 1880 if (DeletedUMax) 1881 return getUMaxExpr(Ops); 1882 } 1883 1884 // Okay, check to see if the same value occurs in the operand list twice. If 1885 // so, delete one. Since we sorted the list, these values are required to 1886 // be adjacent. 1887 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1888 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1889 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1890 --i; --e; 1891 } 1892 1893 if (Ops.size() == 1) return Ops[0]; 1894 1895 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1896 1897 // Okay, it looks like we really DO need a umax expr. Check to see if we 1898 // already have one, otherwise create a new one. 1899 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1900 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, 1901 SCEVOps)]; 1902 if (Result == 0) Result = new SCEVUMaxExpr(Ops, this); 1903 return Result; 1904 } 1905 1906 SCEVHandle ScalarEvolution::getSMinExpr(const SCEVHandle &LHS, 1907 const SCEVHandle &RHS) { 1908 // ~smax(~x, ~y) == smin(x, y). 1909 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 1910 } 1911 1912 SCEVHandle ScalarEvolution::getUMinExpr(const SCEVHandle &LHS, 1913 const SCEVHandle &RHS) { 1914 // ~umax(~x, ~y) == umin(x, y) 1915 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 1916 } 1917 1918 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1919 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1920 return getConstant(CI); 1921 if (isa<ConstantPointerNull>(V)) 1922 return getIntegerSCEV(0, V->getType()); 1923 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1924 if (Result == 0) Result = new SCEVUnknown(V, this); 1925 return Result; 1926 } 1927 1928 //===----------------------------------------------------------------------===// 1929 // Basic SCEV Analysis and PHI Idiom Recognition Code 1930 // 1931 1932 /// isSCEVable - Test if values of the given type are analyzable within 1933 /// the SCEV framework. This primarily includes integer types, and it 1934 /// can optionally include pointer types if the ScalarEvolution class 1935 /// has access to target-specific information. 1936 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 1937 // Integers are always SCEVable. 1938 if (Ty->isInteger()) 1939 return true; 1940 1941 // Pointers are SCEVable if TargetData information is available 1942 // to provide pointer size information. 1943 if (isa<PointerType>(Ty)) 1944 return TD != NULL; 1945 1946 // Otherwise it's not SCEVable. 1947 return false; 1948 } 1949 1950 /// getTypeSizeInBits - Return the size in bits of the specified type, 1951 /// for which isSCEVable must return true. 1952 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 1953 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1954 1955 // If we have a TargetData, use it! 1956 if (TD) 1957 return TD->getTypeSizeInBits(Ty); 1958 1959 // Otherwise, we support only integer types. 1960 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!"); 1961 return Ty->getPrimitiveSizeInBits(); 1962 } 1963 1964 /// getEffectiveSCEVType - Return a type with the same bitwidth as 1965 /// the given type and which represents how SCEV will treat the given 1966 /// type, for which isSCEVable must return true. For pointer types, 1967 /// this is the pointer-sized integer type. 1968 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 1969 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1970 1971 if (Ty->isInteger()) 1972 return Ty; 1973 1974 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); 1975 return TD->getIntPtrType(); 1976 } 1977 1978 SCEVHandle ScalarEvolution::getCouldNotCompute() { 1979 return CouldNotCompute; 1980 } 1981 1982 /// hasSCEV - Return true if the SCEV for this value has already been 1983 /// computed. 1984 bool ScalarEvolution::hasSCEV(Value *V) const { 1985 return Scalars.count(V); 1986 } 1987 1988 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1989 /// expression and create a new one. 1990 SCEVHandle ScalarEvolution::getSCEV(Value *V) { 1991 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 1992 1993 std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V); 1994 if (I != Scalars.end()) return I->second; 1995 SCEVHandle S = createSCEV(V); 1996 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 1997 return S; 1998 } 1999 2000 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 2001 /// specified signed integer value and return a SCEV for the constant. 2002 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 2003 Ty = getEffectiveSCEVType(Ty); 2004 Constant *C; 2005 if (Val == 0) 2006 C = Constant::getNullValue(Ty); 2007 else if (Ty->isFloatingPoint()) 2008 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 2009 APFloat::IEEEdouble, Val)); 2010 else 2011 C = ConstantInt::get(Ty, Val); 2012 return getUnknown(C); 2013 } 2014 2015 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2016 /// 2017 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 2018 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2019 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 2020 2021 const Type *Ty = V->getType(); 2022 Ty = getEffectiveSCEVType(Ty); 2023 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty))); 2024 } 2025 2026 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2027 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { 2028 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2029 return getUnknown(ConstantExpr::getNot(VC->getValue())); 2030 2031 const Type *Ty = V->getType(); 2032 Ty = getEffectiveSCEVType(Ty); 2033 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); 2034 return getMinusSCEV(AllOnes, V); 2035 } 2036 2037 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2038 /// 2039 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 2040 const SCEVHandle &RHS) { 2041 // X - Y --> X + -Y 2042 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2043 } 2044 2045 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2046 /// input value to the specified type. If the type must be extended, it is zero 2047 /// extended. 2048 SCEVHandle 2049 ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, 2050 const Type *Ty) { 2051 const Type *SrcTy = V->getType(); 2052 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2053 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2054 "Cannot truncate or zero extend with non-integer arguments!"); 2055 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2056 return V; // No conversion 2057 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2058 return getTruncateExpr(V, Ty); 2059 return getZeroExtendExpr(V, Ty); 2060 } 2061 2062 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2063 /// input value to the specified type. If the type must be extended, it is sign 2064 /// extended. 2065 SCEVHandle 2066 ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V, 2067 const Type *Ty) { 2068 const Type *SrcTy = V->getType(); 2069 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2070 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2071 "Cannot truncate or zero extend with non-integer arguments!"); 2072 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2073 return V; // No conversion 2074 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2075 return getTruncateExpr(V, Ty); 2076 return getSignExtendExpr(V, Ty); 2077 } 2078 2079 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2080 /// input value to the specified type. If the type must be extended, it is zero 2081 /// extended. The conversion must not be narrowing. 2082 SCEVHandle 2083 ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) { 2084 const Type *SrcTy = V->getType(); 2085 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2086 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2087 "Cannot noop or zero extend with non-integer arguments!"); 2088 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2089 "getNoopOrZeroExtend cannot truncate!"); 2090 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2091 return V; // No conversion 2092 return getZeroExtendExpr(V, Ty); 2093 } 2094 2095 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2096 /// input value to the specified type. If the type must be extended, it is sign 2097 /// extended. The conversion must not be narrowing. 2098 SCEVHandle 2099 ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) { 2100 const Type *SrcTy = V->getType(); 2101 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2102 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2103 "Cannot noop or sign extend with non-integer arguments!"); 2104 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2105 "getNoopOrSignExtend cannot truncate!"); 2106 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2107 return V; // No conversion 2108 return getSignExtendExpr(V, Ty); 2109 } 2110 2111 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2112 /// the input value to the specified type. If the type must be extended, 2113 /// it is extended with unspecified bits. The conversion must not be 2114 /// narrowing. 2115 SCEVHandle 2116 ScalarEvolution::getNoopOrAnyExtend(const SCEVHandle &V, const Type *Ty) { 2117 const Type *SrcTy = V->getType(); 2118 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2119 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2120 "Cannot noop or any extend with non-integer arguments!"); 2121 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2122 "getNoopOrAnyExtend cannot truncate!"); 2123 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2124 return V; // No conversion 2125 return getAnyExtendExpr(V, Ty); 2126 } 2127 2128 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2129 /// input value to the specified type. The conversion must not be widening. 2130 SCEVHandle 2131 ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) { 2132 const Type *SrcTy = V->getType(); 2133 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2134 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2135 "Cannot truncate or noop with non-integer arguments!"); 2136 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2137 "getTruncateOrNoop cannot extend!"); 2138 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2139 return V; // No conversion 2140 return getTruncateExpr(V, Ty); 2141 } 2142 2143 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2144 /// the types using zero-extension, and then perform a umax operation 2145 /// with them. 2146 SCEVHandle ScalarEvolution::getUMaxFromMismatchedTypes(const SCEVHandle &LHS, 2147 const SCEVHandle &RHS) { 2148 SCEVHandle PromotedLHS = LHS; 2149 SCEVHandle PromotedRHS = RHS; 2150 2151 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2152 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2153 else 2154 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2155 2156 return getUMaxExpr(PromotedLHS, PromotedRHS); 2157 } 2158 2159 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2160 /// the types using zero-extension, and then perform a umin operation 2161 /// with them. 2162 SCEVHandle ScalarEvolution::getUMinFromMismatchedTypes(const SCEVHandle &LHS, 2163 const SCEVHandle &RHS) { 2164 SCEVHandle PromotedLHS = LHS; 2165 SCEVHandle PromotedRHS = RHS; 2166 2167 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2168 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2169 else 2170 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2171 2172 return getUMinExpr(PromotedLHS, PromotedRHS); 2173 } 2174 2175 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 2176 /// the specified instruction and replaces any references to the symbolic value 2177 /// SymName with the specified value. This is used during PHI resolution. 2178 void ScalarEvolution:: 2179 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 2180 const SCEVHandle &NewVal) { 2181 std::map<SCEVCallbackVH, SCEVHandle>::iterator SI = 2182 Scalars.find(SCEVCallbackVH(I, this)); 2183 if (SI == Scalars.end()) return; 2184 2185 SCEVHandle NV = 2186 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this); 2187 if (NV == SI->second) return; // No change. 2188 2189 SI->second = NV; // Update the scalars map! 2190 2191 // Any instruction values that use this instruction might also need to be 2192 // updated! 2193 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 2194 UI != E; ++UI) 2195 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 2196 } 2197 2198 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2199 /// a loop header, making it a potential recurrence, or it doesn't. 2200 /// 2201 SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { 2202 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 2203 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2204 if (L->getHeader() == PN->getParent()) { 2205 // If it lives in the loop header, it has two incoming values, one 2206 // from outside the loop, and one from inside. 2207 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 2208 unsigned BackEdge = IncomingEdge^1; 2209 2210 // While we are analyzing this PHI node, handle its value symbolically. 2211 SCEVHandle SymbolicName = getUnknown(PN); 2212 assert(Scalars.find(PN) == Scalars.end() && 2213 "PHI node already processed?"); 2214 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2215 2216 // Using this symbolic name for the PHI, analyze the value coming around 2217 // the back-edge. 2218 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 2219 2220 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2221 // has a special value for the first iteration of the loop. 2222 2223 // If the value coming around the backedge is an add with the symbolic 2224 // value we just inserted, then we found a simple induction variable! 2225 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2226 // If there is a single occurrence of the symbolic value, replace it 2227 // with a recurrence. 2228 unsigned FoundIndex = Add->getNumOperands(); 2229 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2230 if (Add->getOperand(i) == SymbolicName) 2231 if (FoundIndex == e) { 2232 FoundIndex = i; 2233 break; 2234 } 2235 2236 if (FoundIndex != Add->getNumOperands()) { 2237 // Create an add with everything but the specified operand. 2238 SmallVector<SCEVHandle, 8> Ops; 2239 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2240 if (i != FoundIndex) 2241 Ops.push_back(Add->getOperand(i)); 2242 SCEVHandle Accum = getAddExpr(Ops); 2243 2244 // This is not a valid addrec if the step amount is varying each 2245 // loop iteration, but is not itself an addrec in this loop. 2246 if (Accum->isLoopInvariant(L) || 2247 (isa<SCEVAddRecExpr>(Accum) && 2248 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2249 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2250 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L); 2251 2252 // Okay, for the entire analysis of this edge we assumed the PHI 2253 // to be symbolic. We now need to go back and update all of the 2254 // entries for the scalars that use the PHI (except for the PHI 2255 // itself) to use the new analyzed value instead of the "symbolic" 2256 // value. 2257 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 2258 return PHISCEV; 2259 } 2260 } 2261 } else if (const SCEVAddRecExpr *AddRec = 2262 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2263 // Otherwise, this could be a loop like this: 2264 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2265 // In this case, j = {1,+,1} and BEValue is j. 2266 // Because the other in-value of i (0) fits the evolution of BEValue 2267 // i really is an addrec evolution. 2268 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2269 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2270 2271 // If StartVal = j.start - j.stride, we can use StartVal as the 2272 // initial step of the addrec evolution. 2273 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2274 AddRec->getOperand(1))) { 2275 SCEVHandle PHISCEV = 2276 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2277 2278 // Okay, for the entire analysis of this edge we assumed the PHI 2279 // to be symbolic. We now need to go back and update all of the 2280 // entries for the scalars that use the PHI (except for the PHI 2281 // itself) to use the new analyzed value instead of the "symbolic" 2282 // value. 2283 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 2284 return PHISCEV; 2285 } 2286 } 2287 } 2288 2289 return SymbolicName; 2290 } 2291 2292 // If it's not a loop phi, we can't handle it yet. 2293 return getUnknown(PN); 2294 } 2295 2296 /// createNodeForGEP - Expand GEP instructions into add and multiply 2297 /// operations. This allows them to be analyzed by regular SCEV code. 2298 /// 2299 SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) { 2300 2301 const Type *IntPtrTy = TD->getIntPtrType(); 2302 Value *Base = GEP->getOperand(0); 2303 // Don't attempt to analyze GEPs over unsized objects. 2304 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2305 return getUnknown(GEP); 2306 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy); 2307 gep_type_iterator GTI = gep_type_begin(GEP); 2308 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2309 E = GEP->op_end(); 2310 I != E; ++I) { 2311 Value *Index = *I; 2312 // Compute the (potentially symbolic) offset in bytes for this index. 2313 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2314 // For a struct, add the member offset. 2315 const StructLayout &SL = *TD->getStructLayout(STy); 2316 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2317 uint64_t Offset = SL.getElementOffset(FieldNo); 2318 TotalOffset = getAddExpr(TotalOffset, 2319 getIntegerSCEV(Offset, IntPtrTy)); 2320 } else { 2321 // For an array, add the element offset, explicitly scaled. 2322 SCEVHandle LocalOffset = getSCEV(Index); 2323 if (!isa<PointerType>(LocalOffset->getType())) 2324 // Getelementptr indicies are signed. 2325 LocalOffset = getTruncateOrSignExtend(LocalOffset, 2326 IntPtrTy); 2327 LocalOffset = 2328 getMulExpr(LocalOffset, 2329 getIntegerSCEV(TD->getTypeAllocSize(*GTI), 2330 IntPtrTy)); 2331 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2332 } 2333 } 2334 return getAddExpr(getSCEV(Base), TotalOffset); 2335 } 2336 2337 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2338 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2339 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2340 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2341 uint32_t 2342 ScalarEvolution::GetMinTrailingZeros(const SCEVHandle &S) { 2343 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2344 return C->getValue()->getValue().countTrailingZeros(); 2345 2346 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2347 return std::min(GetMinTrailingZeros(T->getOperand()), 2348 (uint32_t)getTypeSizeInBits(T->getType())); 2349 2350 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2351 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2352 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2353 getTypeSizeInBits(E->getType()) : OpRes; 2354 } 2355 2356 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2357 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2358 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2359 getTypeSizeInBits(E->getType()) : OpRes; 2360 } 2361 2362 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2363 // The result is the min of all operands results. 2364 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2365 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2366 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2367 return MinOpRes; 2368 } 2369 2370 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2371 // The result is the sum of all operands results. 2372 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2373 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2374 for (unsigned i = 1, e = M->getNumOperands(); 2375 SumOpRes != BitWidth && i != e; ++i) 2376 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2377 BitWidth); 2378 return SumOpRes; 2379 } 2380 2381 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2382 // The result is the min of all operands results. 2383 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2384 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2385 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2386 return MinOpRes; 2387 } 2388 2389 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2390 // The result is the min of all operands results. 2391 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2392 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2393 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2394 return MinOpRes; 2395 } 2396 2397 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2398 // The result is the min of all operands results. 2399 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2400 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2401 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2402 return MinOpRes; 2403 } 2404 2405 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2406 // For a SCEVUnknown, ask ValueTracking. 2407 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2408 APInt Mask = APInt::getAllOnesValue(BitWidth); 2409 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2410 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2411 return Zeros.countTrailingOnes(); 2412 } 2413 2414 // SCEVUDivExpr 2415 return 0; 2416 } 2417 2418 uint32_t 2419 ScalarEvolution::GetMinLeadingZeros(const SCEVHandle &S) { 2420 // TODO: Handle other SCEV expression types here. 2421 2422 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2423 return C->getValue()->getValue().countLeadingZeros(); 2424 2425 if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) { 2426 // A zero-extension cast adds zero bits. 2427 return GetMinLeadingZeros(C->getOperand()) + 2428 (getTypeSizeInBits(C->getType()) - 2429 getTypeSizeInBits(C->getOperand()->getType())); 2430 } 2431 2432 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2433 // For a SCEVUnknown, ask ValueTracking. 2434 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2435 APInt Mask = APInt::getAllOnesValue(BitWidth); 2436 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2437 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 2438 return Zeros.countLeadingOnes(); 2439 } 2440 2441 return 1; 2442 } 2443 2444 uint32_t 2445 ScalarEvolution::GetMinSignBits(const SCEVHandle &S) { 2446 // TODO: Handle other SCEV expression types here. 2447 2448 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 2449 const APInt &A = C->getValue()->getValue(); 2450 return A.isNegative() ? A.countLeadingOnes() : 2451 A.countLeadingZeros(); 2452 } 2453 2454 if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) { 2455 // A sign-extension cast adds sign bits. 2456 return GetMinSignBits(C->getOperand()) + 2457 (getTypeSizeInBits(C->getType()) - 2458 getTypeSizeInBits(C->getOperand()->getType())); 2459 } 2460 2461 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2462 // For a SCEVUnknown, ask ValueTracking. 2463 return ComputeNumSignBits(U->getValue(), TD); 2464 } 2465 2466 return 1; 2467 } 2468 2469 /// createSCEV - We know that there is no SCEV for the specified value. 2470 /// Analyze the expression. 2471 /// 2472 SCEVHandle ScalarEvolution::createSCEV(Value *V) { 2473 if (!isSCEVable(V->getType())) 2474 return getUnknown(V); 2475 2476 unsigned Opcode = Instruction::UserOp1; 2477 if (Instruction *I = dyn_cast<Instruction>(V)) 2478 Opcode = I->getOpcode(); 2479 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 2480 Opcode = CE->getOpcode(); 2481 else 2482 return getUnknown(V); 2483 2484 User *U = cast<User>(V); 2485 switch (Opcode) { 2486 case Instruction::Add: 2487 return getAddExpr(getSCEV(U->getOperand(0)), 2488 getSCEV(U->getOperand(1))); 2489 case Instruction::Mul: 2490 return getMulExpr(getSCEV(U->getOperand(0)), 2491 getSCEV(U->getOperand(1))); 2492 case Instruction::UDiv: 2493 return getUDivExpr(getSCEV(U->getOperand(0)), 2494 getSCEV(U->getOperand(1))); 2495 case Instruction::Sub: 2496 return getMinusSCEV(getSCEV(U->getOperand(0)), 2497 getSCEV(U->getOperand(1))); 2498 case Instruction::And: 2499 // For an expression like x&255 that merely masks off the high bits, 2500 // use zext(trunc(x)) as the SCEV expression. 2501 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2502 if (CI->isNullValue()) 2503 return getSCEV(U->getOperand(1)); 2504 if (CI->isAllOnesValue()) 2505 return getSCEV(U->getOperand(0)); 2506 const APInt &A = CI->getValue(); 2507 2508 // Instcombine's ShrinkDemandedConstant may strip bits out of 2509 // constants, obscuring what would otherwise be a low-bits mask. 2510 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 2511 // knew about to reconstruct a low-bits mask value. 2512 unsigned LZ = A.countLeadingZeros(); 2513 unsigned BitWidth = A.getBitWidth(); 2514 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 2515 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2516 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 2517 2518 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 2519 2520 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 2521 return 2522 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 2523 IntegerType::get(BitWidth - LZ)), 2524 U->getType()); 2525 } 2526 break; 2527 2528 case Instruction::Or: 2529 // If the RHS of the Or is a constant, we may have something like: 2530 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 2531 // optimizations will transparently handle this case. 2532 // 2533 // In order for this transformation to be safe, the LHS must be of the 2534 // form X*(2^n) and the Or constant must be less than 2^n. 2535 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2536 SCEVHandle LHS = getSCEV(U->getOperand(0)); 2537 const APInt &CIVal = CI->getValue(); 2538 if (GetMinTrailingZeros(LHS) >= 2539 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 2540 return getAddExpr(LHS, getSCEV(U->getOperand(1))); 2541 } 2542 break; 2543 case Instruction::Xor: 2544 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2545 // If the RHS of the xor is a signbit, then this is just an add. 2546 // Instcombine turns add of signbit into xor as a strength reduction step. 2547 if (CI->getValue().isSignBit()) 2548 return getAddExpr(getSCEV(U->getOperand(0)), 2549 getSCEV(U->getOperand(1))); 2550 2551 // If the RHS of xor is -1, then this is a not operation. 2552 if (CI->isAllOnesValue()) 2553 return getNotSCEV(getSCEV(U->getOperand(0))); 2554 2555 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 2556 // This is a variant of the check for xor with -1, and it handles 2557 // the case where instcombine has trimmed non-demanded bits out 2558 // of an xor with -1. 2559 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 2560 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 2561 if (BO->getOpcode() == Instruction::And && 2562 LCI->getValue() == CI->getValue()) 2563 if (const SCEVZeroExtendExpr *Z = 2564 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 2565 const Type *UTy = U->getType(); 2566 SCEVHandle Z0 = Z->getOperand(); 2567 const Type *Z0Ty = Z0->getType(); 2568 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 2569 2570 // If C is a low-bits mask, the zero extend is zerving to 2571 // mask off the high bits. Complement the operand and 2572 // re-apply the zext. 2573 if (APIntOps::isMask(Z0TySize, CI->getValue())) 2574 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 2575 2576 // If C is a single bit, it may be in the sign-bit position 2577 // before the zero-extend. In this case, represent the xor 2578 // using an add, which is equivalent, and re-apply the zext. 2579 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 2580 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 2581 Trunc.isSignBit()) 2582 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 2583 UTy); 2584 } 2585 } 2586 break; 2587 2588 case Instruction::Shl: 2589 // Turn shift left of a constant amount into a multiply. 2590 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2591 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2592 Constant *X = ConstantInt::get( 2593 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2594 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2595 } 2596 break; 2597 2598 case Instruction::LShr: 2599 // Turn logical shift right of a constant into a unsigned divide. 2600 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2601 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2602 Constant *X = ConstantInt::get( 2603 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2604 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2605 } 2606 break; 2607 2608 case Instruction::AShr: 2609 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 2610 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 2611 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 2612 if (L->getOpcode() == Instruction::Shl && 2613 L->getOperand(1) == U->getOperand(1)) { 2614 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2615 uint64_t Amt = BitWidth - CI->getZExtValue(); 2616 if (Amt == BitWidth) 2617 return getSCEV(L->getOperand(0)); // shift by zero --> noop 2618 if (Amt > BitWidth) 2619 return getIntegerSCEV(0, U->getType()); // value is undefined 2620 return 2621 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 2622 IntegerType::get(Amt)), 2623 U->getType()); 2624 } 2625 break; 2626 2627 case Instruction::Trunc: 2628 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 2629 2630 case Instruction::ZExt: 2631 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2632 2633 case Instruction::SExt: 2634 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2635 2636 case Instruction::BitCast: 2637 // BitCasts are no-op casts so we just eliminate the cast. 2638 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 2639 return getSCEV(U->getOperand(0)); 2640 break; 2641 2642 case Instruction::IntToPtr: 2643 if (!TD) break; // Without TD we can't analyze pointers. 2644 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2645 TD->getIntPtrType()); 2646 2647 case Instruction::PtrToInt: 2648 if (!TD) break; // Without TD we can't analyze pointers. 2649 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2650 U->getType()); 2651 2652 case Instruction::GetElementPtr: 2653 if (!TD) break; // Without TD we can't analyze pointers. 2654 return createNodeForGEP(U); 2655 2656 case Instruction::PHI: 2657 return createNodeForPHI(cast<PHINode>(U)); 2658 2659 case Instruction::Select: 2660 // This could be a smax or umax that was lowered earlier. 2661 // Try to recover it. 2662 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 2663 Value *LHS = ICI->getOperand(0); 2664 Value *RHS = ICI->getOperand(1); 2665 switch (ICI->getPredicate()) { 2666 case ICmpInst::ICMP_SLT: 2667 case ICmpInst::ICMP_SLE: 2668 std::swap(LHS, RHS); 2669 // fall through 2670 case ICmpInst::ICMP_SGT: 2671 case ICmpInst::ICMP_SGE: 2672 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2673 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2674 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2675 return getSMinExpr(getSCEV(LHS), getSCEV(RHS)); 2676 break; 2677 case ICmpInst::ICMP_ULT: 2678 case ICmpInst::ICMP_ULE: 2679 std::swap(LHS, RHS); 2680 // fall through 2681 case ICmpInst::ICMP_UGT: 2682 case ICmpInst::ICMP_UGE: 2683 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2684 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2685 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2686 return getUMinExpr(getSCEV(LHS), getSCEV(RHS)); 2687 break; 2688 case ICmpInst::ICMP_NE: 2689 // n != 0 ? n : 1 -> umax(n, 1) 2690 if (LHS == U->getOperand(1) && 2691 isa<ConstantInt>(U->getOperand(2)) && 2692 cast<ConstantInt>(U->getOperand(2))->isOne() && 2693 isa<ConstantInt>(RHS) && 2694 cast<ConstantInt>(RHS)->isZero()) 2695 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2))); 2696 break; 2697 case ICmpInst::ICMP_EQ: 2698 // n == 0 ? 1 : n -> umax(n, 1) 2699 if (LHS == U->getOperand(2) && 2700 isa<ConstantInt>(U->getOperand(1)) && 2701 cast<ConstantInt>(U->getOperand(1))->isOne() && 2702 isa<ConstantInt>(RHS) && 2703 cast<ConstantInt>(RHS)->isZero()) 2704 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1))); 2705 break; 2706 default: 2707 break; 2708 } 2709 } 2710 2711 default: // We cannot analyze this expression. 2712 break; 2713 } 2714 2715 return getUnknown(V); 2716 } 2717 2718 2719 2720 //===----------------------------------------------------------------------===// 2721 // Iteration Count Computation Code 2722 // 2723 2724 /// getBackedgeTakenCount - If the specified loop has a predictable 2725 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 2726 /// object. The backedge-taken count is the number of times the loop header 2727 /// will be branched to from within the loop. This is one less than the 2728 /// trip count of the loop, since it doesn't count the first iteration, 2729 /// when the header is branched to from outside the loop. 2730 /// 2731 /// Note that it is not valid to call this method on a loop without a 2732 /// loop-invariant backedge-taken count (see 2733 /// hasLoopInvariantBackedgeTakenCount). 2734 /// 2735 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 2736 return getBackedgeTakenInfo(L).Exact; 2737 } 2738 2739 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 2740 /// return the least SCEV value that is known never to be less than the 2741 /// actual backedge taken count. 2742 SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 2743 return getBackedgeTakenInfo(L).Max; 2744 } 2745 2746 const ScalarEvolution::BackedgeTakenInfo & 2747 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 2748 // Initially insert a CouldNotCompute for this loop. If the insertion 2749 // succeeds, procede to actually compute a backedge-taken count and 2750 // update the value. The temporary CouldNotCompute value tells SCEV 2751 // code elsewhere that it shouldn't attempt to request a new 2752 // backedge-taken count, which could result in infinite recursion. 2753 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = 2754 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 2755 if (Pair.second) { 2756 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); 2757 if (ItCount.Exact != CouldNotCompute) { 2758 assert(ItCount.Exact->isLoopInvariant(L) && 2759 ItCount.Max->isLoopInvariant(L) && 2760 "Computed trip count isn't loop invariant for loop!"); 2761 ++NumTripCountsComputed; 2762 2763 // Update the value in the map. 2764 Pair.first->second = ItCount; 2765 } else { 2766 if (ItCount.Max != CouldNotCompute) 2767 // Update the value in the map. 2768 Pair.first->second = ItCount; 2769 if (isa<PHINode>(L->getHeader()->begin())) 2770 // Only count loops that have phi nodes as not being computable. 2771 ++NumTripCountsNotComputed; 2772 } 2773 2774 // Now that we know more about the trip count for this loop, forget any 2775 // existing SCEV values for PHI nodes in this loop since they are only 2776 // conservative estimates made without the benefit 2777 // of trip count information. 2778 if (ItCount.hasAnyInfo()) 2779 forgetLoopPHIs(L); 2780 } 2781 return Pair.first->second; 2782 } 2783 2784 /// forgetLoopBackedgeTakenCount - This method should be called by the 2785 /// client when it has changed a loop in a way that may effect 2786 /// ScalarEvolution's ability to compute a trip count, or if the loop 2787 /// is deleted. 2788 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 2789 BackedgeTakenCounts.erase(L); 2790 forgetLoopPHIs(L); 2791 } 2792 2793 /// forgetLoopPHIs - Delete the memoized SCEVs associated with the 2794 /// PHI nodes in the given loop. This is used when the trip count of 2795 /// the loop may have changed. 2796 void ScalarEvolution::forgetLoopPHIs(const Loop *L) { 2797 BasicBlock *Header = L->getHeader(); 2798 2799 // Push all Loop-header PHIs onto the Worklist stack, except those 2800 // that are presently represented via a SCEVUnknown. SCEVUnknown for 2801 // a PHI either means that it has an unrecognized structure, or it's 2802 // a PHI that's in the progress of being computed by createNodeForPHI. 2803 // In the former case, additional loop trip count information isn't 2804 // going to change anything. In the later case, createNodeForPHI will 2805 // perform the necessary updates on its own when it gets to that point. 2806 SmallVector<Instruction *, 16> Worklist; 2807 for (BasicBlock::iterator I = Header->begin(); 2808 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2809 std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I); 2810 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second)) 2811 Worklist.push_back(PN); 2812 } 2813 2814 while (!Worklist.empty()) { 2815 Instruction *I = Worklist.pop_back_val(); 2816 if (Scalars.erase(I)) 2817 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2818 UI != UE; ++UI) 2819 Worklist.push_back(cast<Instruction>(UI)); 2820 } 2821 } 2822 2823 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 2824 /// of the specified loop will execute. 2825 ScalarEvolution::BackedgeTakenInfo 2826 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 2827 SmallVector<BasicBlock*, 8> ExitingBlocks; 2828 L->getExitingBlocks(ExitingBlocks); 2829 2830 // Examine all exits and pick the most conservative values. 2831 SCEVHandle BECount = CouldNotCompute; 2832 SCEVHandle MaxBECount = CouldNotCompute; 2833 bool CouldNotComputeBECount = false; 2834 bool CouldNotComputeMaxBECount = false; 2835 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 2836 BackedgeTakenInfo NewBTI = 2837 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 2838 2839 if (NewBTI.Exact == CouldNotCompute) { 2840 // We couldn't compute an exact value for this exit, so 2841 // we don't be able to compute an exact value for the loop. 2842 CouldNotComputeBECount = true; 2843 BECount = CouldNotCompute; 2844 } else if (!CouldNotComputeBECount) { 2845 if (BECount == CouldNotCompute) 2846 BECount = NewBTI.Exact; 2847 else { 2848 // TODO: More analysis could be done here. For example, a 2849 // loop with a short-circuiting && operator has an exact count 2850 // of the min of both sides. 2851 CouldNotComputeBECount = true; 2852 BECount = CouldNotCompute; 2853 } 2854 } 2855 if (NewBTI.Max == CouldNotCompute) { 2856 // We couldn't compute an maximum value for this exit, so 2857 // we don't be able to compute an maximum value for the loop. 2858 CouldNotComputeMaxBECount = true; 2859 MaxBECount = CouldNotCompute; 2860 } else if (!CouldNotComputeMaxBECount) { 2861 if (MaxBECount == CouldNotCompute) 2862 MaxBECount = NewBTI.Max; 2863 else 2864 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, NewBTI.Max); 2865 } 2866 } 2867 2868 return BackedgeTakenInfo(BECount, MaxBECount); 2869 } 2870 2871 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 2872 /// of the specified loop will execute if it exits via the specified block. 2873 ScalarEvolution::BackedgeTakenInfo 2874 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 2875 BasicBlock *ExitingBlock) { 2876 2877 // Okay, we've chosen an exiting block. See what condition causes us to 2878 // exit at this block. 2879 // 2880 // FIXME: we should be able to handle switch instructions (with a single exit) 2881 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2882 if (ExitBr == 0) return CouldNotCompute; 2883 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 2884 2885 // At this point, we know we have a conditional branch that determines whether 2886 // the loop is exited. However, we don't know if the branch is executed each 2887 // time through the loop. If not, then the execution count of the branch will 2888 // not be equal to the trip count of the loop. 2889 // 2890 // Currently we check for this by checking to see if the Exit branch goes to 2891 // the loop header. If so, we know it will always execute the same number of 2892 // times as the loop. We also handle the case where the exit block *is* the 2893 // loop header. This is common for un-rotated loops. 2894 // 2895 // If both of those tests fail, walk up the unique predecessor chain to the 2896 // header, stopping if there is an edge that doesn't exit the loop. If the 2897 // header is reached, the execution count of the branch will be equal to the 2898 // trip count of the loop. 2899 // 2900 // More extensive analysis could be done to handle more cases here. 2901 // 2902 if (ExitBr->getSuccessor(0) != L->getHeader() && 2903 ExitBr->getSuccessor(1) != L->getHeader() && 2904 ExitBr->getParent() != L->getHeader()) { 2905 // The simple checks failed, try climbing the unique predecessor chain 2906 // up to the header. 2907 bool Ok = false; 2908 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 2909 BasicBlock *Pred = BB->getUniquePredecessor(); 2910 if (!Pred) 2911 return CouldNotCompute; 2912 TerminatorInst *PredTerm = Pred->getTerminator(); 2913 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 2914 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 2915 if (PredSucc == BB) 2916 continue; 2917 // If the predecessor has a successor that isn't BB and isn't 2918 // outside the loop, assume the worst. 2919 if (L->contains(PredSucc)) 2920 return CouldNotCompute; 2921 } 2922 if (Pred == L->getHeader()) { 2923 Ok = true; 2924 break; 2925 } 2926 BB = Pred; 2927 } 2928 if (!Ok) 2929 return CouldNotCompute; 2930 } 2931 2932 // Procede to the next level to examine the exit condition expression. 2933 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 2934 ExitBr->getSuccessor(0), 2935 ExitBr->getSuccessor(1)); 2936 } 2937 2938 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 2939 /// backedge of the specified loop will execute if its exit condition 2940 /// were a conditional branch of ExitCond, TBB, and FBB. 2941 ScalarEvolution::BackedgeTakenInfo 2942 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 2943 Value *ExitCond, 2944 BasicBlock *TBB, 2945 BasicBlock *FBB) { 2946 // Check if the controlling expression for this loop is an and or or. In 2947 // such cases, an exact backedge-taken count may be infeasible, but a 2948 // maximum count may still be feasible. 2949 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 2950 if (BO->getOpcode() == Instruction::And) { 2951 // Recurse on the operands of the and. 2952 BackedgeTakenInfo BTI0 = 2953 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 2954 BackedgeTakenInfo BTI1 = 2955 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 2956 SCEVHandle BECount = CouldNotCompute; 2957 SCEVHandle MaxBECount = CouldNotCompute; 2958 if (L->contains(TBB)) { 2959 // Both conditions must be true for the loop to continue executing. 2960 // Choose the less conservative count. 2961 if (BTI0.Exact == CouldNotCompute) 2962 BECount = BTI1.Exact; 2963 else if (BTI1.Exact == CouldNotCompute) 2964 BECount = BTI0.Exact; 2965 else 2966 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 2967 if (BTI0.Max == CouldNotCompute) 2968 MaxBECount = BTI1.Max; 2969 else if (BTI1.Max == CouldNotCompute) 2970 MaxBECount = BTI0.Max; 2971 else 2972 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 2973 } else { 2974 // Both conditions must be true for the loop to exit. 2975 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 2976 if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute) 2977 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 2978 if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute) 2979 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 2980 } 2981 2982 return BackedgeTakenInfo(BECount, MaxBECount); 2983 } 2984 if (BO->getOpcode() == Instruction::Or) { 2985 // Recurse on the operands of the or. 2986 BackedgeTakenInfo BTI0 = 2987 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 2988 BackedgeTakenInfo BTI1 = 2989 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 2990 SCEVHandle BECount = CouldNotCompute; 2991 SCEVHandle MaxBECount = CouldNotCompute; 2992 if (L->contains(FBB)) { 2993 // Both conditions must be false for the loop to continue executing. 2994 // Choose the less conservative count. 2995 if (BTI0.Exact == CouldNotCompute) 2996 BECount = BTI1.Exact; 2997 else if (BTI1.Exact == CouldNotCompute) 2998 BECount = BTI0.Exact; 2999 else 3000 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3001 if (BTI0.Max == CouldNotCompute) 3002 MaxBECount = BTI1.Max; 3003 else if (BTI1.Max == CouldNotCompute) 3004 MaxBECount = BTI0.Max; 3005 else 3006 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3007 } else { 3008 // Both conditions must be false for the loop to exit. 3009 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3010 if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute) 3011 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3012 if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute) 3013 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3014 } 3015 3016 return BackedgeTakenInfo(BECount, MaxBECount); 3017 } 3018 } 3019 3020 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3021 // Procede to the next level to examine the icmp. 3022 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3023 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3024 3025 // If it's not an integer or pointer comparison then compute it the hard way. 3026 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3027 } 3028 3029 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3030 /// backedge of the specified loop will execute if its exit condition 3031 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3032 ScalarEvolution::BackedgeTakenInfo 3033 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3034 ICmpInst *ExitCond, 3035 BasicBlock *TBB, 3036 BasicBlock *FBB) { 3037 3038 // If the condition was exit on true, convert the condition to exit on false 3039 ICmpInst::Predicate Cond; 3040 if (!L->contains(FBB)) 3041 Cond = ExitCond->getPredicate(); 3042 else 3043 Cond = ExitCond->getInversePredicate(); 3044 3045 // Handle common loops like: for (X = "string"; *X; ++X) 3046 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3047 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3048 SCEVHandle ItCnt = 3049 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3050 if (!isa<SCEVCouldNotCompute>(ItCnt)) { 3051 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType()); 3052 return BackedgeTakenInfo(ItCnt, 3053 isa<SCEVConstant>(ItCnt) ? ItCnt : 3054 getConstant(APInt::getMaxValue(BitWidth)-1)); 3055 } 3056 } 3057 3058 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 3059 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 3060 3061 // Try to evaluate any dependencies out of the loop. 3062 LHS = getSCEVAtScope(LHS, L); 3063 RHS = getSCEVAtScope(RHS, L); 3064 3065 // At this point, we would like to compute how many iterations of the 3066 // loop the predicate will return true for these inputs. 3067 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3068 // If there is a loop-invariant, force it into the RHS. 3069 std::swap(LHS, RHS); 3070 Cond = ICmpInst::getSwappedPredicate(Cond); 3071 } 3072 3073 // If we have a comparison of a chrec against a constant, try to use value 3074 // ranges to answer this query. 3075 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3076 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3077 if (AddRec->getLoop() == L) { 3078 // Form the constant range. 3079 ConstantRange CompRange( 3080 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3081 3082 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3083 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3084 } 3085 3086 switch (Cond) { 3087 case ICmpInst::ICMP_NE: { // while (X != Y) 3088 // Convert to: while (X-Y != 0) 3089 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3090 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 3091 break; 3092 } 3093 case ICmpInst::ICMP_EQ: { 3094 // Convert to: while (X-Y == 0) // while (X == Y) 3095 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 3096 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 3097 break; 3098 } 3099 case ICmpInst::ICMP_SLT: { 3100 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 3101 if (BTI.hasAnyInfo()) return BTI; 3102 break; 3103 } 3104 case ICmpInst::ICMP_SGT: { 3105 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3106 getNotSCEV(RHS), L, true); 3107 if (BTI.hasAnyInfo()) return BTI; 3108 break; 3109 } 3110 case ICmpInst::ICMP_ULT: { 3111 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 3112 if (BTI.hasAnyInfo()) return BTI; 3113 break; 3114 } 3115 case ICmpInst::ICMP_UGT: { 3116 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3117 getNotSCEV(RHS), L, false); 3118 if (BTI.hasAnyInfo()) return BTI; 3119 break; 3120 } 3121 default: 3122 #if 0 3123 errs() << "ComputeBackedgeTakenCount "; 3124 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 3125 errs() << "[unsigned] "; 3126 errs() << *LHS << " " 3127 << Instruction::getOpcodeName(Instruction::ICmp) 3128 << " " << *RHS << "\n"; 3129 #endif 3130 break; 3131 } 3132 return 3133 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3134 } 3135 3136 static ConstantInt * 3137 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 3138 ScalarEvolution &SE) { 3139 SCEVHandle InVal = SE.getConstant(C); 3140 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 3141 assert(isa<SCEVConstant>(Val) && 3142 "Evaluation of SCEV at constant didn't fold correctly?"); 3143 return cast<SCEVConstant>(Val)->getValue(); 3144 } 3145 3146 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 3147 /// and a GEP expression (missing the pointer index) indexing into it, return 3148 /// the addressed element of the initializer or null if the index expression is 3149 /// invalid. 3150 static Constant * 3151 GetAddressedElementFromGlobal(GlobalVariable *GV, 3152 const std::vector<ConstantInt*> &Indices) { 3153 Constant *Init = GV->getInitializer(); 3154 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 3155 uint64_t Idx = Indices[i]->getZExtValue(); 3156 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 3157 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 3158 Init = cast<Constant>(CS->getOperand(Idx)); 3159 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 3160 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 3161 Init = cast<Constant>(CA->getOperand(Idx)); 3162 } else if (isa<ConstantAggregateZero>(Init)) { 3163 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 3164 assert(Idx < STy->getNumElements() && "Bad struct index!"); 3165 Init = Constant::getNullValue(STy->getElementType(Idx)); 3166 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 3167 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 3168 Init = Constant::getNullValue(ATy->getElementType()); 3169 } else { 3170 assert(0 && "Unknown constant aggregate type!"); 3171 } 3172 return 0; 3173 } else { 3174 return 0; // Unknown initializer type 3175 } 3176 } 3177 return Init; 3178 } 3179 3180 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 3181 /// 'icmp op load X, cst', try to see if we can compute the backedge 3182 /// execution count. 3183 SCEVHandle ScalarEvolution:: 3184 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, 3185 const Loop *L, 3186 ICmpInst::Predicate predicate) { 3187 if (LI->isVolatile()) return CouldNotCompute; 3188 3189 // Check to see if the loaded pointer is a getelementptr of a global. 3190 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 3191 if (!GEP) return CouldNotCompute; 3192 3193 // Make sure that it is really a constant global we are gepping, with an 3194 // initializer, and make sure the first IDX is really 0. 3195 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 3196 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 3197 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 3198 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 3199 return CouldNotCompute; 3200 3201 // Okay, we allow one non-constant index into the GEP instruction. 3202 Value *VarIdx = 0; 3203 std::vector<ConstantInt*> Indexes; 3204 unsigned VarIdxNum = 0; 3205 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 3206 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 3207 Indexes.push_back(CI); 3208 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 3209 if (VarIdx) return CouldNotCompute; // Multiple non-constant idx's. 3210 VarIdx = GEP->getOperand(i); 3211 VarIdxNum = i-2; 3212 Indexes.push_back(0); 3213 } 3214 3215 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 3216 // Check to see if X is a loop variant variable value now. 3217 SCEVHandle Idx = getSCEV(VarIdx); 3218 Idx = getSCEVAtScope(Idx, L); 3219 3220 // We can only recognize very limited forms of loop index expressions, in 3221 // particular, only affine AddRec's like {C1,+,C2}. 3222 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 3223 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 3224 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 3225 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 3226 return CouldNotCompute; 3227 3228 unsigned MaxSteps = MaxBruteForceIterations; 3229 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 3230 ConstantInt *ItCst = 3231 ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum); 3232 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 3233 3234 // Form the GEP offset. 3235 Indexes[VarIdxNum] = Val; 3236 3237 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 3238 if (Result == 0) break; // Cannot compute! 3239 3240 // Evaluate the condition for this iteration. 3241 Result = ConstantExpr::getICmp(predicate, Result, RHS); 3242 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 3243 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 3244 #if 0 3245 errs() << "\n***\n*** Computed loop count " << *ItCst 3246 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 3247 << "***\n"; 3248 #endif 3249 ++NumArrayLenItCounts; 3250 return getConstant(ItCst); // Found terminating iteration! 3251 } 3252 } 3253 return CouldNotCompute; 3254 } 3255 3256 3257 /// CanConstantFold - Return true if we can constant fold an instruction of the 3258 /// specified type, assuming that all operands were constants. 3259 static bool CanConstantFold(const Instruction *I) { 3260 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 3261 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 3262 return true; 3263 3264 if (const CallInst *CI = dyn_cast<CallInst>(I)) 3265 if (const Function *F = CI->getCalledFunction()) 3266 return canConstantFoldCallTo(F); 3267 return false; 3268 } 3269 3270 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 3271 /// in the loop that V is derived from. We allow arbitrary operations along the 3272 /// way, but the operands of an operation must either be constants or a value 3273 /// derived from a constant PHI. If this expression does not fit with these 3274 /// constraints, return null. 3275 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 3276 // If this is not an instruction, or if this is an instruction outside of the 3277 // loop, it can't be derived from a loop PHI. 3278 Instruction *I = dyn_cast<Instruction>(V); 3279 if (I == 0 || !L->contains(I->getParent())) return 0; 3280 3281 if (PHINode *PN = dyn_cast<PHINode>(I)) { 3282 if (L->getHeader() == I->getParent()) 3283 return PN; 3284 else 3285 // We don't currently keep track of the control flow needed to evaluate 3286 // PHIs, so we cannot handle PHIs inside of loops. 3287 return 0; 3288 } 3289 3290 // If we won't be able to constant fold this expression even if the operands 3291 // are constants, return early. 3292 if (!CanConstantFold(I)) return 0; 3293 3294 // Otherwise, we can evaluate this instruction if all of its operands are 3295 // constant or derived from a PHI node themselves. 3296 PHINode *PHI = 0; 3297 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 3298 if (!(isa<Constant>(I->getOperand(Op)) || 3299 isa<GlobalValue>(I->getOperand(Op)))) { 3300 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 3301 if (P == 0) return 0; // Not evolving from PHI 3302 if (PHI == 0) 3303 PHI = P; 3304 else if (PHI != P) 3305 return 0; // Evolving from multiple different PHIs. 3306 } 3307 3308 // This is a expression evolving from a constant PHI! 3309 return PHI; 3310 } 3311 3312 /// EvaluateExpression - Given an expression that passes the 3313 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 3314 /// in the loop has the value PHIVal. If we can't fold this expression for some 3315 /// reason, return null. 3316 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 3317 if (isa<PHINode>(V)) return PHIVal; 3318 if (Constant *C = dyn_cast<Constant>(V)) return C; 3319 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 3320 Instruction *I = cast<Instruction>(V); 3321 3322 std::vector<Constant*> Operands; 3323 Operands.resize(I->getNumOperands()); 3324 3325 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3326 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 3327 if (Operands[i] == 0) return 0; 3328 } 3329 3330 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3331 return ConstantFoldCompareInstOperands(CI->getPredicate(), 3332 &Operands[0], Operands.size()); 3333 else 3334 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3335 &Operands[0], Operands.size()); 3336 } 3337 3338 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 3339 /// in the header of its containing loop, we know the loop executes a 3340 /// constant number of times, and the PHI node is just a recurrence 3341 /// involving constants, fold it. 3342 Constant *ScalarEvolution:: 3343 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){ 3344 std::map<PHINode*, Constant*>::iterator I = 3345 ConstantEvolutionLoopExitValue.find(PN); 3346 if (I != ConstantEvolutionLoopExitValue.end()) 3347 return I->second; 3348 3349 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 3350 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 3351 3352 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 3353 3354 // Since the loop is canonicalized, the PHI node must have two entries. One 3355 // entry must be a constant (coming in from outside of the loop), and the 3356 // second must be derived from the same PHI. 3357 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3358 Constant *StartCST = 3359 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3360 if (StartCST == 0) 3361 return RetVal = 0; // Must be a constant. 3362 3363 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3364 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3365 if (PN2 != PN) 3366 return RetVal = 0; // Not derived from same PHI. 3367 3368 // Execute the loop symbolically to determine the exit value. 3369 if (BEs.getActiveBits() >= 32) 3370 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 3371 3372 unsigned NumIterations = BEs.getZExtValue(); // must be in range 3373 unsigned IterationNum = 0; 3374 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 3375 if (IterationNum == NumIterations) 3376 return RetVal = PHIVal; // Got exit value! 3377 3378 // Compute the value of the PHI node for the next iteration. 3379 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3380 if (NextPHI == PHIVal) 3381 return RetVal = NextPHI; // Stopped evolving! 3382 if (NextPHI == 0) 3383 return 0; // Couldn't evaluate! 3384 PHIVal = NextPHI; 3385 } 3386 } 3387 3388 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a 3389 /// constant number of times (the condition evolves only from constants), 3390 /// try to evaluate a few iterations of the loop until we get the exit 3391 /// condition gets a value of ExitWhen (true or false). If we cannot 3392 /// evaluate the trip count of the loop, return CouldNotCompute. 3393 SCEVHandle ScalarEvolution:: 3394 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 3395 PHINode *PN = getConstantEvolvingPHI(Cond, L); 3396 if (PN == 0) return CouldNotCompute; 3397 3398 // Since the loop is canonicalized, the PHI node must have two entries. One 3399 // entry must be a constant (coming in from outside of the loop), and the 3400 // second must be derived from the same PHI. 3401 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3402 Constant *StartCST = 3403 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3404 if (StartCST == 0) return CouldNotCompute; // Must be a constant. 3405 3406 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3407 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3408 if (PN2 != PN) return CouldNotCompute; // Not derived from same PHI. 3409 3410 // Okay, we find a PHI node that defines the trip count of this loop. Execute 3411 // the loop symbolically to determine when the condition gets a value of 3412 // "ExitWhen". 3413 unsigned IterationNum = 0; 3414 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 3415 for (Constant *PHIVal = StartCST; 3416 IterationNum != MaxIterations; ++IterationNum) { 3417 ConstantInt *CondVal = 3418 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 3419 3420 // Couldn't symbolically evaluate. 3421 if (!CondVal) return CouldNotCompute; 3422 3423 if (CondVal->getValue() == uint64_t(ExitWhen)) { 3424 ConstantEvolutionLoopExitValue[PN] = PHIVal; 3425 ++NumBruteForceTripCountsComputed; 3426 return getConstant(Type::Int32Ty, IterationNum); 3427 } 3428 3429 // Compute the value of the PHI node for the next iteration. 3430 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3431 if (NextPHI == 0 || NextPHI == PHIVal) 3432 return CouldNotCompute; // Couldn't evaluate or not making progress... 3433 PHIVal = NextPHI; 3434 } 3435 3436 // Too many iterations were needed to evaluate. 3437 return CouldNotCompute; 3438 } 3439 3440 /// getSCEVAtScope - Return a SCEV expression handle for the specified value 3441 /// at the specified scope in the program. The L value specifies a loop 3442 /// nest to evaluate the expression at, where null is the top-level or a 3443 /// specified loop is immediately inside of the loop. 3444 /// 3445 /// This method can be used to compute the exit value for a variable defined 3446 /// in a loop by querying what the value will hold in the parent loop. 3447 /// 3448 /// In the case that a relevant loop exit value cannot be computed, the 3449 /// original value V is returned. 3450 SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 3451 // FIXME: this should be turned into a virtual method on SCEV! 3452 3453 if (isa<SCEVConstant>(V)) return V; 3454 3455 // If this instruction is evolved from a constant-evolving PHI, compute the 3456 // exit value from the loop without using SCEVs. 3457 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 3458 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 3459 const Loop *LI = (*this->LI)[I->getParent()]; 3460 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 3461 if (PHINode *PN = dyn_cast<PHINode>(I)) 3462 if (PN->getParent() == LI->getHeader()) { 3463 // Okay, there is no closed form solution for the PHI node. Check 3464 // to see if the loop that contains it has a known backedge-taken 3465 // count. If so, we may be able to force computation of the exit 3466 // value. 3467 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI); 3468 if (const SCEVConstant *BTCC = 3469 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 3470 // Okay, we know how many times the containing loop executes. If 3471 // this is a constant evolving PHI node, get the final value at 3472 // the specified iteration number. 3473 Constant *RV = getConstantEvolutionLoopExitValue(PN, 3474 BTCC->getValue()->getValue(), 3475 LI); 3476 if (RV) return getUnknown(RV); 3477 } 3478 } 3479 3480 // Okay, this is an expression that we cannot symbolically evaluate 3481 // into a SCEV. Check to see if it's possible to symbolically evaluate 3482 // the arguments into constants, and if so, try to constant propagate the 3483 // result. This is particularly useful for computing loop exit values. 3484 if (CanConstantFold(I)) { 3485 // Check to see if we've folded this instruction at this loop before. 3486 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I]; 3487 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair = 3488 Values.insert(std::make_pair(L, static_cast<Constant *>(0))); 3489 if (!Pair.second) 3490 return Pair.first->second ? &*getUnknown(Pair.first->second) : V; 3491 3492 std::vector<Constant*> Operands; 3493 Operands.reserve(I->getNumOperands()); 3494 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3495 Value *Op = I->getOperand(i); 3496 if (Constant *C = dyn_cast<Constant>(Op)) { 3497 Operands.push_back(C); 3498 } else { 3499 // If any of the operands is non-constant and if they are 3500 // non-integer and non-pointer, don't even try to analyze them 3501 // with scev techniques. 3502 if (!isSCEVable(Op->getType())) 3503 return V; 3504 3505 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 3506 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 3507 Constant *C = SC->getValue(); 3508 if (C->getType() != Op->getType()) 3509 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3510 Op->getType(), 3511 false), 3512 C, Op->getType()); 3513 Operands.push_back(C); 3514 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 3515 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 3516 if (C->getType() != Op->getType()) 3517 C = 3518 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3519 Op->getType(), 3520 false), 3521 C, Op->getType()); 3522 Operands.push_back(C); 3523 } else 3524 return V; 3525 } else { 3526 return V; 3527 } 3528 } 3529 } 3530 3531 Constant *C; 3532 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3533 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 3534 &Operands[0], Operands.size()); 3535 else 3536 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3537 &Operands[0], Operands.size()); 3538 Pair.first->second = C; 3539 return getUnknown(C); 3540 } 3541 } 3542 3543 // This is some other type of SCEVUnknown, just return it. 3544 return V; 3545 } 3546 3547 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 3548 // Avoid performing the look-up in the common case where the specified 3549 // expression has no loop-variant portions. 3550 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 3551 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 3552 if (OpAtScope != Comm->getOperand(i)) { 3553 // Okay, at least one of these operands is loop variant but might be 3554 // foldable. Build a new instance of the folded commutative expression. 3555 SmallVector<SCEVHandle, 8> NewOps(Comm->op_begin(), Comm->op_begin()+i); 3556 NewOps.push_back(OpAtScope); 3557 3558 for (++i; i != e; ++i) { 3559 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 3560 NewOps.push_back(OpAtScope); 3561 } 3562 if (isa<SCEVAddExpr>(Comm)) 3563 return getAddExpr(NewOps); 3564 if (isa<SCEVMulExpr>(Comm)) 3565 return getMulExpr(NewOps); 3566 if (isa<SCEVSMaxExpr>(Comm)) 3567 return getSMaxExpr(NewOps); 3568 if (isa<SCEVUMaxExpr>(Comm)) 3569 return getUMaxExpr(NewOps); 3570 assert(0 && "Unknown commutative SCEV type!"); 3571 } 3572 } 3573 // If we got here, all operands are loop invariant. 3574 return Comm; 3575 } 3576 3577 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 3578 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 3579 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 3580 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 3581 return Div; // must be loop invariant 3582 return getUDivExpr(LHS, RHS); 3583 } 3584 3585 // If this is a loop recurrence for a loop that does not contain L, then we 3586 // are dealing with the final value computed by the loop. 3587 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 3588 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 3589 // To evaluate this recurrence, we need to know how many times the AddRec 3590 // loop iterates. Compute this now. 3591 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 3592 if (BackedgeTakenCount == CouldNotCompute) return AddRec; 3593 3594 // Then, evaluate the AddRec. 3595 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 3596 } 3597 return AddRec; 3598 } 3599 3600 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 3601 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3602 if (Op == Cast->getOperand()) 3603 return Cast; // must be loop invariant 3604 return getZeroExtendExpr(Op, Cast->getType()); 3605 } 3606 3607 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 3608 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3609 if (Op == Cast->getOperand()) 3610 return Cast; // must be loop invariant 3611 return getSignExtendExpr(Op, Cast->getType()); 3612 } 3613 3614 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 3615 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3616 if (Op == Cast->getOperand()) 3617 return Cast; // must be loop invariant 3618 return getTruncateExpr(Op, Cast->getType()); 3619 } 3620 3621 assert(0 && "Unknown SCEV type!"); 3622 return 0; 3623 } 3624 3625 /// getSCEVAtScope - This is a convenience function which does 3626 /// getSCEVAtScope(getSCEV(V), L). 3627 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 3628 return getSCEVAtScope(getSCEV(V), L); 3629 } 3630 3631 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 3632 /// following equation: 3633 /// 3634 /// A * X = B (mod N) 3635 /// 3636 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 3637 /// A and B isn't important. 3638 /// 3639 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 3640 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 3641 ScalarEvolution &SE) { 3642 uint32_t BW = A.getBitWidth(); 3643 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 3644 assert(A != 0 && "A must be non-zero."); 3645 3646 // 1. D = gcd(A, N) 3647 // 3648 // The gcd of A and N may have only one prime factor: 2. The number of 3649 // trailing zeros in A is its multiplicity 3650 uint32_t Mult2 = A.countTrailingZeros(); 3651 // D = 2^Mult2 3652 3653 // 2. Check if B is divisible by D. 3654 // 3655 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 3656 // is not less than multiplicity of this prime factor for D. 3657 if (B.countTrailingZeros() < Mult2) 3658 return SE.getCouldNotCompute(); 3659 3660 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 3661 // modulo (N / D). 3662 // 3663 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 3664 // bit width during computations. 3665 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 3666 APInt Mod(BW + 1, 0); 3667 Mod.set(BW - Mult2); // Mod = N / D 3668 APInt I = AD.multiplicativeInverse(Mod); 3669 3670 // 4. Compute the minimum unsigned root of the equation: 3671 // I * (B / D) mod (N / D) 3672 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 3673 3674 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 3675 // bits. 3676 return SE.getConstant(Result.trunc(BW)); 3677 } 3678 3679 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 3680 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 3681 /// might be the same) or two SCEVCouldNotCompute objects. 3682 /// 3683 static std::pair<SCEVHandle,SCEVHandle> 3684 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 3685 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 3686 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 3687 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 3688 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 3689 3690 // We currently can only solve this if the coefficients are constants. 3691 if (!LC || !MC || !NC) { 3692 const SCEV *CNC = SE.getCouldNotCompute(); 3693 return std::make_pair(CNC, CNC); 3694 } 3695 3696 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 3697 const APInt &L = LC->getValue()->getValue(); 3698 const APInt &M = MC->getValue()->getValue(); 3699 const APInt &N = NC->getValue()->getValue(); 3700 APInt Two(BitWidth, 2); 3701 APInt Four(BitWidth, 4); 3702 3703 { 3704 using namespace APIntOps; 3705 const APInt& C = L; 3706 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 3707 // The B coefficient is M-N/2 3708 APInt B(M); 3709 B -= sdiv(N,Two); 3710 3711 // The A coefficient is N/2 3712 APInt A(N.sdiv(Two)); 3713 3714 // Compute the B^2-4ac term. 3715 APInt SqrtTerm(B); 3716 SqrtTerm *= B; 3717 SqrtTerm -= Four * (A * C); 3718 3719 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 3720 // integer value or else APInt::sqrt() will assert. 3721 APInt SqrtVal(SqrtTerm.sqrt()); 3722 3723 // Compute the two solutions for the quadratic formula. 3724 // The divisions must be performed as signed divisions. 3725 APInt NegB(-B); 3726 APInt TwoA( A << 1 ); 3727 if (TwoA.isMinValue()) { 3728 const SCEV *CNC = SE.getCouldNotCompute(); 3729 return std::make_pair(CNC, CNC); 3730 } 3731 3732 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 3733 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 3734 3735 return std::make_pair(SE.getConstant(Solution1), 3736 SE.getConstant(Solution2)); 3737 } // end APIntOps namespace 3738 } 3739 3740 /// HowFarToZero - Return the number of times a backedge comparing the specified 3741 /// value to zero will execute. If not computable, return CouldNotCompute. 3742 SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 3743 // If the value is a constant 3744 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3745 // If the value is already zero, the branch will execute zero times. 3746 if (C->getValue()->isZero()) return C; 3747 return CouldNotCompute; // Otherwise it will loop infinitely. 3748 } 3749 3750 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 3751 if (!AddRec || AddRec->getLoop() != L) 3752 return CouldNotCompute; 3753 3754 if (AddRec->isAffine()) { 3755 // If this is an affine expression, the execution count of this branch is 3756 // the minimum unsigned root of the following equation: 3757 // 3758 // Start + Step*N = 0 (mod 2^BW) 3759 // 3760 // equivalent to: 3761 // 3762 // Step*N = -Start (mod 2^BW) 3763 // 3764 // where BW is the common bit width of Start and Step. 3765 3766 // Get the initial value for the loop. 3767 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 3768 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 3769 3770 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 3771 // For now we handle only constant steps. 3772 3773 // First, handle unitary steps. 3774 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 3775 return getNegativeSCEV(Start); // N = -Start (as unsigned) 3776 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 3777 return Start; // N = Start (as unsigned) 3778 3779 // Then, try to solve the above equation provided that Start is constant. 3780 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 3781 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 3782 -StartC->getValue()->getValue(), 3783 *this); 3784 } 3785 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 3786 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 3787 // the quadratic equation to solve it. 3788 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, 3789 *this); 3790 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3791 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3792 if (R1) { 3793 #if 0 3794 errs() << "HFTZ: " << *V << " - sol#1: " << *R1 3795 << " sol#2: " << *R2 << "\n"; 3796 #endif 3797 // Pick the smallest positive root value. 3798 if (ConstantInt *CB = 3799 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3800 R1->getValue(), R2->getValue()))) { 3801 if (CB->getZExtValue() == false) 3802 std::swap(R1, R2); // R1 is the minimum root now. 3803 3804 // We can only use this value if the chrec ends up with an exact zero 3805 // value at this index. When solving for "X*X != 5", for example, we 3806 // should not accept a root of 2. 3807 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this); 3808 if (Val->isZero()) 3809 return R1; // We found a quadratic root! 3810 } 3811 } 3812 } 3813 3814 return CouldNotCompute; 3815 } 3816 3817 /// HowFarToNonZero - Return the number of times a backedge checking the 3818 /// specified value for nonzero will execute. If not computable, return 3819 /// CouldNotCompute 3820 SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 3821 // Loops that look like: while (X == 0) are very strange indeed. We don't 3822 // handle them yet except for the trivial case. This could be expanded in the 3823 // future as needed. 3824 3825 // If the value is a constant, check to see if it is known to be non-zero 3826 // already. If so, the backedge will execute zero times. 3827 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3828 if (!C->getValue()->isNullValue()) 3829 return getIntegerSCEV(0, C->getType()); 3830 return CouldNotCompute; // Otherwise it will loop infinitely. 3831 } 3832 3833 // We could implement others, but I really doubt anyone writes loops like 3834 // this, and if they did, they would already be constant folded. 3835 return CouldNotCompute; 3836 } 3837 3838 /// getLoopPredecessor - If the given loop's header has exactly one unique 3839 /// predecessor outside the loop, return it. Otherwise return null. 3840 /// 3841 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { 3842 BasicBlock *Header = L->getHeader(); 3843 BasicBlock *Pred = 0; 3844 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); 3845 PI != E; ++PI) 3846 if (!L->contains(*PI)) { 3847 if (Pred && Pred != *PI) return 0; // Multiple predecessors. 3848 Pred = *PI; 3849 } 3850 return Pred; 3851 } 3852 3853 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 3854 /// (which may not be an immediate predecessor) which has exactly one 3855 /// successor from which BB is reachable, or null if no such block is 3856 /// found. 3857 /// 3858 BasicBlock * 3859 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 3860 // If the block has a unique predecessor, then there is no path from the 3861 // predecessor to the block that does not go through the direct edge 3862 // from the predecessor to the block. 3863 if (BasicBlock *Pred = BB->getSinglePredecessor()) 3864 return Pred; 3865 3866 // A loop's header is defined to be a block that dominates the loop. 3867 // If the header has a unique predecessor outside the loop, it must be 3868 // a block that has exactly one successor that can reach the loop. 3869 if (Loop *L = LI->getLoopFor(BB)) 3870 return getLoopPredecessor(L); 3871 3872 return 0; 3873 } 3874 3875 /// HasSameValue - SCEV structural equivalence is usually sufficient for 3876 /// testing whether two expressions are equal, however for the purposes of 3877 /// looking for a condition guarding a loop, it can be useful to be a little 3878 /// more general, since a front-end may have replicated the controlling 3879 /// expression. 3880 /// 3881 static bool HasSameValue(const SCEVHandle &A, const SCEVHandle &B) { 3882 // Quick check to see if they are the same SCEV. 3883 if (A == B) return true; 3884 3885 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 3886 // two different instructions with the same value. Check for this case. 3887 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 3888 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 3889 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 3890 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 3891 if (AI->isIdenticalTo(BI)) 3892 return true; 3893 3894 // Otherwise assume they may have a different value. 3895 return false; 3896 } 3897 3898 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 3899 /// a conditional between LHS and RHS. This is used to help avoid max 3900 /// expressions in loop trip counts. 3901 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, 3902 ICmpInst::Predicate Pred, 3903 const SCEV *LHS, const SCEV *RHS) { 3904 // Interpret a null as meaning no loop, where there is obviously no guard 3905 // (interprocedural conditions notwithstanding). 3906 if (!L) return false; 3907 3908 BasicBlock *Predecessor = getLoopPredecessor(L); 3909 BasicBlock *PredecessorDest = L->getHeader(); 3910 3911 // Starting at the loop predecessor, climb up the predecessor chain, as long 3912 // as there are predecessors that can be found that have unique successors 3913 // leading to the original header. 3914 for (; Predecessor; 3915 PredecessorDest = Predecessor, 3916 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { 3917 3918 BranchInst *LoopEntryPredicate = 3919 dyn_cast<BranchInst>(Predecessor->getTerminator()); 3920 if (!LoopEntryPredicate || 3921 LoopEntryPredicate->isUnconditional()) 3922 continue; 3923 3924 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 3925 if (!ICI) continue; 3926 3927 // Now that we found a conditional branch that dominates the loop, check to 3928 // see if it is the comparison we are looking for. 3929 Value *PreCondLHS = ICI->getOperand(0); 3930 Value *PreCondRHS = ICI->getOperand(1); 3931 ICmpInst::Predicate Cond; 3932 if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest) 3933 Cond = ICI->getPredicate(); 3934 else 3935 Cond = ICI->getInversePredicate(); 3936 3937 if (Cond == Pred) 3938 ; // An exact match. 3939 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) 3940 ; // The actual condition is beyond sufficient. 3941 else 3942 // Check a few special cases. 3943 switch (Cond) { 3944 case ICmpInst::ICMP_UGT: 3945 if (Pred == ICmpInst::ICMP_ULT) { 3946 std::swap(PreCondLHS, PreCondRHS); 3947 Cond = ICmpInst::ICMP_ULT; 3948 break; 3949 } 3950 continue; 3951 case ICmpInst::ICMP_SGT: 3952 if (Pred == ICmpInst::ICMP_SLT) { 3953 std::swap(PreCondLHS, PreCondRHS); 3954 Cond = ICmpInst::ICMP_SLT; 3955 break; 3956 } 3957 continue; 3958 case ICmpInst::ICMP_NE: 3959 // Expressions like (x >u 0) are often canonicalized to (x != 0), 3960 // so check for this case by checking if the NE is comparing against 3961 // a minimum or maximum constant. 3962 if (!ICmpInst::isTrueWhenEqual(Pred)) 3963 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { 3964 const APInt &A = CI->getValue(); 3965 switch (Pred) { 3966 case ICmpInst::ICMP_SLT: 3967 if (A.isMaxSignedValue()) break; 3968 continue; 3969 case ICmpInst::ICMP_SGT: 3970 if (A.isMinSignedValue()) break; 3971 continue; 3972 case ICmpInst::ICMP_ULT: 3973 if (A.isMaxValue()) break; 3974 continue; 3975 case ICmpInst::ICMP_UGT: 3976 if (A.isMinValue()) break; 3977 continue; 3978 default: 3979 continue; 3980 } 3981 Cond = ICmpInst::ICMP_NE; 3982 // NE is symmetric but the original comparison may not be. Swap 3983 // the operands if necessary so that they match below. 3984 if (isa<SCEVConstant>(LHS)) 3985 std::swap(PreCondLHS, PreCondRHS); 3986 break; 3987 } 3988 continue; 3989 default: 3990 // We weren't able to reconcile the condition. 3991 continue; 3992 } 3993 3994 if (!PreCondLHS->getType()->isInteger()) continue; 3995 3996 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); 3997 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); 3998 if ((HasSameValue(LHS, PreCondLHSSCEV) && 3999 HasSameValue(RHS, PreCondRHSSCEV)) || 4000 (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) && 4001 HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV)))) 4002 return true; 4003 } 4004 4005 return false; 4006 } 4007 4008 /// getBECount - Subtract the end and start values and divide by the step, 4009 /// rounding up, to get the number of times the backedge is executed. Return 4010 /// CouldNotCompute if an intermediate computation overflows. 4011 SCEVHandle ScalarEvolution::getBECount(const SCEVHandle &Start, 4012 const SCEVHandle &End, 4013 const SCEVHandle &Step) { 4014 const Type *Ty = Start->getType(); 4015 SCEVHandle NegOne = getIntegerSCEV(-1, Ty); 4016 SCEVHandle Diff = getMinusSCEV(End, Start); 4017 SCEVHandle RoundUp = getAddExpr(Step, NegOne); 4018 4019 // Add an adjustment to the difference between End and Start so that 4020 // the division will effectively round up. 4021 SCEVHandle Add = getAddExpr(Diff, RoundUp); 4022 4023 // Check Add for unsigned overflow. 4024 // TODO: More sophisticated things could be done here. 4025 const Type *WideTy = IntegerType::get(getTypeSizeInBits(Ty) + 1); 4026 SCEVHandle OperandExtendedAdd = 4027 getAddExpr(getZeroExtendExpr(Diff, WideTy), 4028 getZeroExtendExpr(RoundUp, WideTy)); 4029 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 4030 return CouldNotCompute; 4031 4032 return getUDivExpr(Add, Step); 4033 } 4034 4035 /// HowManyLessThans - Return the number of times a backedge containing the 4036 /// specified less-than comparison will execute. If not computable, return 4037 /// CouldNotCompute. 4038 ScalarEvolution::BackedgeTakenInfo ScalarEvolution:: 4039 HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 4040 const Loop *L, bool isSigned) { 4041 // Only handle: "ADDREC < LoopInvariant". 4042 if (!RHS->isLoopInvariant(L)) return CouldNotCompute; 4043 4044 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 4045 if (!AddRec || AddRec->getLoop() != L) 4046 return CouldNotCompute; 4047 4048 if (AddRec->isAffine()) { 4049 // FORNOW: We only support unit strides. 4050 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 4051 SCEVHandle Step = AddRec->getStepRecurrence(*this); 4052 4053 // TODO: handle non-constant strides. 4054 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); 4055 if (!CStep || CStep->isZero()) 4056 return CouldNotCompute; 4057 if (CStep->isOne()) { 4058 // With unit stride, the iteration never steps past the limit value. 4059 } else if (CStep->getValue()->getValue().isStrictlyPositive()) { 4060 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { 4061 // Test whether a positive iteration iteration can step past the limit 4062 // value and past the maximum value for its type in a single step. 4063 if (isSigned) { 4064 APInt Max = APInt::getSignedMaxValue(BitWidth); 4065 if ((Max - CStep->getValue()->getValue()) 4066 .slt(CLimit->getValue()->getValue())) 4067 return CouldNotCompute; 4068 } else { 4069 APInt Max = APInt::getMaxValue(BitWidth); 4070 if ((Max - CStep->getValue()->getValue()) 4071 .ult(CLimit->getValue()->getValue())) 4072 return CouldNotCompute; 4073 } 4074 } else 4075 // TODO: handle non-constant limit values below. 4076 return CouldNotCompute; 4077 } else 4078 // TODO: handle negative strides below. 4079 return CouldNotCompute; 4080 4081 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 4082 // m. So, we count the number of iterations in which {n,+,s} < m is true. 4083 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 4084 // treat m-n as signed nor unsigned due to overflow possibility. 4085 4086 // First, we get the value of the LHS in the first iteration: n 4087 SCEVHandle Start = AddRec->getOperand(0); 4088 4089 // Determine the minimum constant start value. 4090 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start : 4091 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) : 4092 APInt::getMinValue(BitWidth)); 4093 4094 // If we know that the condition is true in order to enter the loop, 4095 // then we know that it will run exactly (m-n)/s times. Otherwise, we 4096 // only know that it will execute (max(m,n)-n)/s times. In both cases, 4097 // the division must round up. 4098 SCEVHandle End = RHS; 4099 if (!isLoopGuardedByCond(L, 4100 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 4101 getMinusSCEV(Start, Step), RHS)) 4102 End = isSigned ? getSMaxExpr(RHS, Start) 4103 : getUMaxExpr(RHS, Start); 4104 4105 // Determine the maximum constant end value. 4106 SCEVHandle MaxEnd = 4107 isa<SCEVConstant>(End) ? End : 4108 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) 4109 .ashr(GetMinSignBits(End) - 1) : 4110 APInt::getMaxValue(BitWidth) 4111 .lshr(GetMinLeadingZeros(End))); 4112 4113 // Finally, we subtract these two values and divide, rounding up, to get 4114 // the number of times the backedge is executed. 4115 SCEVHandle BECount = getBECount(Start, End, Step); 4116 4117 // The maximum backedge count is similar, except using the minimum start 4118 // value and the maximum end value. 4119 SCEVHandle MaxBECount = getBECount(MinStart, MaxEnd, Step);; 4120 4121 return BackedgeTakenInfo(BECount, MaxBECount); 4122 } 4123 4124 return CouldNotCompute; 4125 } 4126 4127 /// getNumIterationsInRange - Return the number of iterations of this loop that 4128 /// produce values in the specified constant range. Another way of looking at 4129 /// this is that it returns the first iteration number where the value is not in 4130 /// the condition, thus computing the exit count. If the iteration count can't 4131 /// be computed, an instance of SCEVCouldNotCompute is returned. 4132 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 4133 ScalarEvolution &SE) const { 4134 if (Range.isFullSet()) // Infinite loop. 4135 return SE.getCouldNotCompute(); 4136 4137 // If the start is a non-zero constant, shift the range to simplify things. 4138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 4139 if (!SC->getValue()->isZero()) { 4140 SmallVector<SCEVHandle, 4> Operands(op_begin(), op_end()); 4141 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 4142 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 4143 if (const SCEVAddRecExpr *ShiftedAddRec = 4144 dyn_cast<SCEVAddRecExpr>(Shifted)) 4145 return ShiftedAddRec->getNumIterationsInRange( 4146 Range.subtract(SC->getValue()->getValue()), SE); 4147 // This is strange and shouldn't happen. 4148 return SE.getCouldNotCompute(); 4149 } 4150 4151 // The only time we can solve this is when we have all constant indices. 4152 // Otherwise, we cannot determine the overflow conditions. 4153 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 4154 if (!isa<SCEVConstant>(getOperand(i))) 4155 return SE.getCouldNotCompute(); 4156 4157 4158 // Okay at this point we know that all elements of the chrec are constants and 4159 // that the start element is zero. 4160 4161 // First check to see if the range contains zero. If not, the first 4162 // iteration exits. 4163 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 4164 if (!Range.contains(APInt(BitWidth, 0))) 4165 return SE.getIntegerSCEV(0, getType()); 4166 4167 if (isAffine()) { 4168 // If this is an affine expression then we have this situation: 4169 // Solve {0,+,A} in Range === Ax in Range 4170 4171 // We know that zero is in the range. If A is positive then we know that 4172 // the upper value of the range must be the first possible exit value. 4173 // If A is negative then the lower of the range is the last possible loop 4174 // value. Also note that we already checked for a full range. 4175 APInt One(BitWidth,1); 4176 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 4177 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 4178 4179 // The exit value should be (End+A)/A. 4180 APInt ExitVal = (End + A).udiv(A); 4181 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 4182 4183 // Evaluate at the exit value. If we really did fall out of the valid 4184 // range, then we computed our trip count, otherwise wrap around or other 4185 // things must have happened. 4186 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 4187 if (Range.contains(Val->getValue())) 4188 return SE.getCouldNotCompute(); // Something strange happened 4189 4190 // Ensure that the previous value is in the range. This is a sanity check. 4191 assert(Range.contains( 4192 EvaluateConstantChrecAtConstant(this, 4193 ConstantInt::get(ExitVal - One), SE)->getValue()) && 4194 "Linear scev computation is off in a bad way!"); 4195 return SE.getConstant(ExitValue); 4196 } else if (isQuadratic()) { 4197 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 4198 // quadratic equation to solve it. To do this, we must frame our problem in 4199 // terms of figuring out when zero is crossed, instead of when 4200 // Range.getUpper() is crossed. 4201 SmallVector<SCEVHandle, 4> NewOps(op_begin(), op_end()); 4202 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 4203 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 4204 4205 // Next, solve the constructed addrec 4206 std::pair<SCEVHandle,SCEVHandle> Roots = 4207 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 4208 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4209 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4210 if (R1) { 4211 // Pick the smallest positive root value. 4212 if (ConstantInt *CB = 4213 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4214 R1->getValue(), R2->getValue()))) { 4215 if (CB->getZExtValue() == false) 4216 std::swap(R1, R2); // R1 is the minimum root now. 4217 4218 // Make sure the root is not off by one. The returned iteration should 4219 // not be in the range, but the previous one should be. When solving 4220 // for "X*X < 5", for example, we should not return a root of 2. 4221 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 4222 R1->getValue(), 4223 SE); 4224 if (Range.contains(R1Val->getValue())) { 4225 // The next iteration must be out of the range... 4226 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 4227 4228 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 4229 if (!Range.contains(R1Val->getValue())) 4230 return SE.getConstant(NextVal); 4231 return SE.getCouldNotCompute(); // Something strange happened 4232 } 4233 4234 // If R1 was not in the range, then it is a good return value. Make 4235 // sure that R1-1 WAS in the range though, just in case. 4236 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 4237 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 4238 if (Range.contains(R1Val->getValue())) 4239 return R1; 4240 return SE.getCouldNotCompute(); // Something strange happened 4241 } 4242 } 4243 } 4244 4245 return SE.getCouldNotCompute(); 4246 } 4247 4248 4249 4250 //===----------------------------------------------------------------------===// 4251 // SCEVCallbackVH Class Implementation 4252 //===----------------------------------------------------------------------===// 4253 4254 void ScalarEvolution::SCEVCallbackVH::deleted() { 4255 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 4256 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 4257 SE->ConstantEvolutionLoopExitValue.erase(PN); 4258 if (Instruction *I = dyn_cast<Instruction>(getValPtr())) 4259 SE->ValuesAtScopes.erase(I); 4260 SE->Scalars.erase(getValPtr()); 4261 // this now dangles! 4262 } 4263 4264 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 4265 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 4266 4267 // Forget all the expressions associated with users of the old value, 4268 // so that future queries will recompute the expressions using the new 4269 // value. 4270 SmallVector<User *, 16> Worklist; 4271 Value *Old = getValPtr(); 4272 bool DeleteOld = false; 4273 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 4274 UI != UE; ++UI) 4275 Worklist.push_back(*UI); 4276 while (!Worklist.empty()) { 4277 User *U = Worklist.pop_back_val(); 4278 // Deleting the Old value will cause this to dangle. Postpone 4279 // that until everything else is done. 4280 if (U == Old) { 4281 DeleteOld = true; 4282 continue; 4283 } 4284 if (PHINode *PN = dyn_cast<PHINode>(U)) 4285 SE->ConstantEvolutionLoopExitValue.erase(PN); 4286 if (Instruction *I = dyn_cast<Instruction>(U)) 4287 SE->ValuesAtScopes.erase(I); 4288 if (SE->Scalars.erase(U)) 4289 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 4290 UI != UE; ++UI) 4291 Worklist.push_back(*UI); 4292 } 4293 if (DeleteOld) { 4294 if (PHINode *PN = dyn_cast<PHINode>(Old)) 4295 SE->ConstantEvolutionLoopExitValue.erase(PN); 4296 if (Instruction *I = dyn_cast<Instruction>(Old)) 4297 SE->ValuesAtScopes.erase(I); 4298 SE->Scalars.erase(Old); 4299 // this now dangles! 4300 } 4301 // this may dangle! 4302 } 4303 4304 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 4305 : CallbackVH(V), SE(se) {} 4306 4307 //===----------------------------------------------------------------------===// 4308 // ScalarEvolution Class Implementation 4309 //===----------------------------------------------------------------------===// 4310 4311 ScalarEvolution::ScalarEvolution() 4312 : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute(0)) { 4313 } 4314 4315 bool ScalarEvolution::runOnFunction(Function &F) { 4316 this->F = &F; 4317 LI = &getAnalysis<LoopInfo>(); 4318 TD = getAnalysisIfAvailable<TargetData>(); 4319 return false; 4320 } 4321 4322 void ScalarEvolution::releaseMemory() { 4323 Scalars.clear(); 4324 BackedgeTakenCounts.clear(); 4325 ConstantEvolutionLoopExitValue.clear(); 4326 ValuesAtScopes.clear(); 4327 } 4328 4329 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 4330 AU.setPreservesAll(); 4331 AU.addRequiredTransitive<LoopInfo>(); 4332 } 4333 4334 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 4335 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 4336 } 4337 4338 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 4339 const Loop *L) { 4340 // Print all inner loops first 4341 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4342 PrintLoopInfo(OS, SE, *I); 4343 4344 OS << "Loop " << L->getHeader()->getName() << ": "; 4345 4346 SmallVector<BasicBlock*, 8> ExitBlocks; 4347 L->getExitBlocks(ExitBlocks); 4348 if (ExitBlocks.size() != 1) 4349 OS << "<multiple exits> "; 4350 4351 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 4352 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 4353 } else { 4354 OS << "Unpredictable backedge-taken count. "; 4355 } 4356 4357 OS << "\n"; 4358 } 4359 4360 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { 4361 // ScalarEvolution's implementaiton of the print method is to print 4362 // out SCEV values of all instructions that are interesting. Doing 4363 // this potentially causes it to create new SCEV objects though, 4364 // which technically conflicts with the const qualifier. This isn't 4365 // observable from outside the class though (the hasSCEV function 4366 // notwithstanding), so casting away the const isn't dangerous. 4367 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); 4368 4369 OS << "Classifying expressions for: " << F->getName() << "\n"; 4370 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 4371 if (isSCEVable(I->getType())) { 4372 OS << *I; 4373 OS << " --> "; 4374 SCEVHandle SV = SE.getSCEV(&*I); 4375 SV->print(OS); 4376 4377 const Loop *L = LI->getLoopFor((*I).getParent()); 4378 4379 SCEVHandle AtUse = SE.getSCEVAtScope(SV, L); 4380 if (AtUse != SV) { 4381 OS << " --> "; 4382 AtUse->print(OS); 4383 } 4384 4385 if (L) { 4386 OS << "\t\t" "Exits: "; 4387 SCEVHandle ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 4388 if (!ExitValue->isLoopInvariant(L)) { 4389 OS << "<<Unknown>>"; 4390 } else { 4391 OS << *ExitValue; 4392 } 4393 } 4394 4395 OS << "\n"; 4396 } 4397 4398 OS << "Determining loop execution counts for: " << F->getName() << "\n"; 4399 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 4400 PrintLoopInfo(OS, &SE, *I); 4401 } 4402 4403 void ScalarEvolution::print(std::ostream &o, const Module *M) const { 4404 raw_os_ostream OS(o); 4405 print(OS, M); 4406 } 4407