xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision ec7029c286c6a8e49db52c752d87c9ff0a465996)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/APInt.h"
63 #include "llvm/ADT/ArrayRef.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/DepthFirstIterator.h"
66 #include "llvm/ADT/EquivalenceClasses.h"
67 #include "llvm/ADT/FoldingSet.h"
68 #include "llvm/ADT/None.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/ScopeExit.h"
72 #include "llvm/ADT/Sequence.h"
73 #include "llvm/ADT/SetVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallSet.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/Statistic.h"
78 #include "llvm/ADT/StringRef.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/ConstantFolding.h"
81 #include "llvm/Analysis/InstructionSimplify.h"
82 #include "llvm/Analysis/LoopInfo.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/CallSite.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/Pass.h"
115 #include "llvm/Support/Casting.h"
116 #include "llvm/Support/CommandLine.h"
117 #include "llvm/Support/Compiler.h"
118 #include "llvm/Support/Debug.h"
119 #include "llvm/Support/ErrorHandling.h"
120 #include "llvm/Support/KnownBits.h"
121 #include "llvm/Support/SaveAndRestore.h"
122 #include "llvm/Support/raw_ostream.h"
123 #include <algorithm>
124 #include <cassert>
125 #include <climits>
126 #include <cstddef>
127 #include <cstdint>
128 #include <cstdlib>
129 #include <map>
130 #include <memory>
131 #include <tuple>
132 #include <utility>
133 #include <vector>
134 
135 using namespace llvm;
136 
137 #define DEBUG_TYPE "scalar-evolution"
138 
139 STATISTIC(NumArrayLenItCounts,
140           "Number of trip counts computed with array length");
141 STATISTIC(NumTripCountsComputed,
142           "Number of loops with predictable loop counts");
143 STATISTIC(NumTripCountsNotComputed,
144           "Number of loops without predictable loop counts");
145 STATISTIC(NumBruteForceTripCountsComputed,
146           "Number of loops with trip counts computed by force");
147 
148 static cl::opt<unsigned>
149 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
150                         cl::desc("Maximum number of iterations SCEV will "
151                                  "symbolically execute a constant "
152                                  "derived loop"),
153                         cl::init(100));
154 
155 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
156 static cl::opt<bool> VerifySCEV(
157     "verify-scev", cl::Hidden,
158     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
159 static cl::opt<bool>
160     VerifySCEVMap("verify-scev-maps", cl::Hidden,
161                   cl::desc("Verify no dangling value in ScalarEvolution's "
162                            "ExprValueMap (slow)"));
163 
164 static cl::opt<unsigned> MulOpsInlineThreshold(
165     "scev-mulops-inline-threshold", cl::Hidden,
166     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
167     cl::init(32));
168 
169 static cl::opt<unsigned> AddOpsInlineThreshold(
170     "scev-addops-inline-threshold", cl::Hidden,
171     cl::desc("Threshold for inlining addition operands into a SCEV"),
172     cl::init(500));
173 
174 static cl::opt<unsigned> MaxSCEVCompareDepth(
175     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
176     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
177     cl::init(32));
178 
179 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
180     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
181     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
182     cl::init(2));
183 
184 static cl::opt<unsigned> MaxValueCompareDepth(
185     "scalar-evolution-max-value-compare-depth", cl::Hidden,
186     cl::desc("Maximum depth of recursive value complexity comparisons"),
187     cl::init(2));
188 
189 static cl::opt<unsigned>
190     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
191                   cl::desc("Maximum depth of recursive arithmetics"),
192                   cl::init(32));
193 
194 static cl::opt<unsigned> MaxConstantEvolvingDepth(
195     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
196     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
197 
198 static cl::opt<unsigned>
199     MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden,
200                 cl::desc("Maximum depth of recursive SExt/ZExt"),
201                 cl::init(8));
202 
203 static cl::opt<unsigned>
204     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
205                   cl::desc("Max coefficients in AddRec during evolving"),
206                   cl::init(16));
207 
208 //===----------------------------------------------------------------------===//
209 //                           SCEV class definitions
210 //===----------------------------------------------------------------------===//
211 
212 //===----------------------------------------------------------------------===//
213 // Implementation of the SCEV class.
214 //
215 
216 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
217 LLVM_DUMP_METHOD void SCEV::dump() const {
218   print(dbgs());
219   dbgs() << '\n';
220 }
221 #endif
222 
223 void SCEV::print(raw_ostream &OS) const {
224   switch (static_cast<SCEVTypes>(getSCEVType())) {
225   case scConstant:
226     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
227     return;
228   case scTruncate: {
229     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
230     const SCEV *Op = Trunc->getOperand();
231     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
232        << *Trunc->getType() << ")";
233     return;
234   }
235   case scZeroExtend: {
236     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
237     const SCEV *Op = ZExt->getOperand();
238     OS << "(zext " << *Op->getType() << " " << *Op << " to "
239        << *ZExt->getType() << ")";
240     return;
241   }
242   case scSignExtend: {
243     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
244     const SCEV *Op = SExt->getOperand();
245     OS << "(sext " << *Op->getType() << " " << *Op << " to "
246        << *SExt->getType() << ")";
247     return;
248   }
249   case scAddRecExpr: {
250     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
251     OS << "{" << *AR->getOperand(0);
252     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
253       OS << ",+," << *AR->getOperand(i);
254     OS << "}<";
255     if (AR->hasNoUnsignedWrap())
256       OS << "nuw><";
257     if (AR->hasNoSignedWrap())
258       OS << "nsw><";
259     if (AR->hasNoSelfWrap() &&
260         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
261       OS << "nw><";
262     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
263     OS << ">";
264     return;
265   }
266   case scAddExpr:
267   case scMulExpr:
268   case scUMaxExpr:
269   case scSMaxExpr: {
270     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
271     const char *OpStr = nullptr;
272     switch (NAry->getSCEVType()) {
273     case scAddExpr: OpStr = " + "; break;
274     case scMulExpr: OpStr = " * "; break;
275     case scUMaxExpr: OpStr = " umax "; break;
276     case scSMaxExpr: OpStr = " smax "; break;
277     }
278     OS << "(";
279     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
280          I != E; ++I) {
281       OS << **I;
282       if (std::next(I) != E)
283         OS << OpStr;
284     }
285     OS << ")";
286     switch (NAry->getSCEVType()) {
287     case scAddExpr:
288     case scMulExpr:
289       if (NAry->hasNoUnsignedWrap())
290         OS << "<nuw>";
291       if (NAry->hasNoSignedWrap())
292         OS << "<nsw>";
293     }
294     return;
295   }
296   case scUDivExpr: {
297     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
298     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
299     return;
300   }
301   case scUnknown: {
302     const SCEVUnknown *U = cast<SCEVUnknown>(this);
303     Type *AllocTy;
304     if (U->isSizeOf(AllocTy)) {
305       OS << "sizeof(" << *AllocTy << ")";
306       return;
307     }
308     if (U->isAlignOf(AllocTy)) {
309       OS << "alignof(" << *AllocTy << ")";
310       return;
311     }
312 
313     Type *CTy;
314     Constant *FieldNo;
315     if (U->isOffsetOf(CTy, FieldNo)) {
316       OS << "offsetof(" << *CTy << ", ";
317       FieldNo->printAsOperand(OS, false);
318       OS << ")";
319       return;
320     }
321 
322     // Otherwise just print it normally.
323     U->getValue()->printAsOperand(OS, false);
324     return;
325   }
326   case scCouldNotCompute:
327     OS << "***COULDNOTCOMPUTE***";
328     return;
329   }
330   llvm_unreachable("Unknown SCEV kind!");
331 }
332 
333 Type *SCEV::getType() const {
334   switch (static_cast<SCEVTypes>(getSCEVType())) {
335   case scConstant:
336     return cast<SCEVConstant>(this)->getType();
337   case scTruncate:
338   case scZeroExtend:
339   case scSignExtend:
340     return cast<SCEVCastExpr>(this)->getType();
341   case scAddRecExpr:
342   case scMulExpr:
343   case scUMaxExpr:
344   case scSMaxExpr:
345     return cast<SCEVNAryExpr>(this)->getType();
346   case scAddExpr:
347     return cast<SCEVAddExpr>(this)->getType();
348   case scUDivExpr:
349     return cast<SCEVUDivExpr>(this)->getType();
350   case scUnknown:
351     return cast<SCEVUnknown>(this)->getType();
352   case scCouldNotCompute:
353     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
354   }
355   llvm_unreachable("Unknown SCEV kind!");
356 }
357 
358 bool SCEV::isZero() const {
359   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
360     return SC->getValue()->isZero();
361   return false;
362 }
363 
364 bool SCEV::isOne() const {
365   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
366     return SC->getValue()->isOne();
367   return false;
368 }
369 
370 bool SCEV::isAllOnesValue() const {
371   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
372     return SC->getValue()->isMinusOne();
373   return false;
374 }
375 
376 bool SCEV::isNonConstantNegative() const {
377   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
378   if (!Mul) return false;
379 
380   // If there is a constant factor, it will be first.
381   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
382   if (!SC) return false;
383 
384   // Return true if the value is negative, this matches things like (-42 * V).
385   return SC->getAPInt().isNegative();
386 }
387 
388 SCEVCouldNotCompute::SCEVCouldNotCompute() :
389   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
390 
391 bool SCEVCouldNotCompute::classof(const SCEV *S) {
392   return S->getSCEVType() == scCouldNotCompute;
393 }
394 
395 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
396   FoldingSetNodeID ID;
397   ID.AddInteger(scConstant);
398   ID.AddPointer(V);
399   void *IP = nullptr;
400   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
401   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
402   UniqueSCEVs.InsertNode(S, IP);
403   return S;
404 }
405 
406 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
407   return getConstant(ConstantInt::get(getContext(), Val));
408 }
409 
410 const SCEV *
411 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
412   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
413   return getConstant(ConstantInt::get(ITy, V, isSigned));
414 }
415 
416 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
417                            unsigned SCEVTy, const SCEV *op, Type *ty)
418   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
419 
420 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
421                                    const SCEV *op, Type *ty)
422   : SCEVCastExpr(ID, scTruncate, op, ty) {
423   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
424          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
425          "Cannot truncate non-integer value!");
426 }
427 
428 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
429                                        const SCEV *op, Type *ty)
430   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
431   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
432          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
433          "Cannot zero extend non-integer value!");
434 }
435 
436 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
437                                        const SCEV *op, Type *ty)
438   : SCEVCastExpr(ID, scSignExtend, op, ty) {
439   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
440          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
441          "Cannot sign extend non-integer value!");
442 }
443 
444 void SCEVUnknown::deleted() {
445   // Clear this SCEVUnknown from various maps.
446   SE->forgetMemoizedResults(this);
447 
448   // Remove this SCEVUnknown from the uniquing map.
449   SE->UniqueSCEVs.RemoveNode(this);
450 
451   // Release the value.
452   setValPtr(nullptr);
453 }
454 
455 void SCEVUnknown::allUsesReplacedWith(Value *New) {
456   // Remove this SCEVUnknown from the uniquing map.
457   SE->UniqueSCEVs.RemoveNode(this);
458 
459   // Update this SCEVUnknown to point to the new value. This is needed
460   // because there may still be outstanding SCEVs which still point to
461   // this SCEVUnknown.
462   setValPtr(New);
463 }
464 
465 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
466   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
467     if (VCE->getOpcode() == Instruction::PtrToInt)
468       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
469         if (CE->getOpcode() == Instruction::GetElementPtr &&
470             CE->getOperand(0)->isNullValue() &&
471             CE->getNumOperands() == 2)
472           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
473             if (CI->isOne()) {
474               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
475                                  ->getElementType();
476               return true;
477             }
478 
479   return false;
480 }
481 
482 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
483   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
484     if (VCE->getOpcode() == Instruction::PtrToInt)
485       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
486         if (CE->getOpcode() == Instruction::GetElementPtr &&
487             CE->getOperand(0)->isNullValue()) {
488           Type *Ty =
489             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
490           if (StructType *STy = dyn_cast<StructType>(Ty))
491             if (!STy->isPacked() &&
492                 CE->getNumOperands() == 3 &&
493                 CE->getOperand(1)->isNullValue()) {
494               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
495                 if (CI->isOne() &&
496                     STy->getNumElements() == 2 &&
497                     STy->getElementType(0)->isIntegerTy(1)) {
498                   AllocTy = STy->getElementType(1);
499                   return true;
500                 }
501             }
502         }
503 
504   return false;
505 }
506 
507 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
508   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
509     if (VCE->getOpcode() == Instruction::PtrToInt)
510       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
511         if (CE->getOpcode() == Instruction::GetElementPtr &&
512             CE->getNumOperands() == 3 &&
513             CE->getOperand(0)->isNullValue() &&
514             CE->getOperand(1)->isNullValue()) {
515           Type *Ty =
516             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
517           // Ignore vector types here so that ScalarEvolutionExpander doesn't
518           // emit getelementptrs that index into vectors.
519           if (Ty->isStructTy() || Ty->isArrayTy()) {
520             CTy = Ty;
521             FieldNo = CE->getOperand(2);
522             return true;
523           }
524         }
525 
526   return false;
527 }
528 
529 //===----------------------------------------------------------------------===//
530 //                               SCEV Utilities
531 //===----------------------------------------------------------------------===//
532 
533 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
534 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
535 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
536 /// have been previously deemed to be "equally complex" by this routine.  It is
537 /// intended to avoid exponential time complexity in cases like:
538 ///
539 ///   %a = f(%x, %y)
540 ///   %b = f(%a, %a)
541 ///   %c = f(%b, %b)
542 ///
543 ///   %d = f(%x, %y)
544 ///   %e = f(%d, %d)
545 ///   %f = f(%e, %e)
546 ///
547 ///   CompareValueComplexity(%f, %c)
548 ///
549 /// Since we do not continue running this routine on expression trees once we
550 /// have seen unequal values, there is no need to track them in the cache.
551 static int
552 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
553                        const LoopInfo *const LI, Value *LV, Value *RV,
554                        unsigned Depth) {
555   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
556     return 0;
557 
558   // Order pointer values after integer values. This helps SCEVExpander form
559   // GEPs.
560   bool LIsPointer = LV->getType()->isPointerTy(),
561        RIsPointer = RV->getType()->isPointerTy();
562   if (LIsPointer != RIsPointer)
563     return (int)LIsPointer - (int)RIsPointer;
564 
565   // Compare getValueID values.
566   unsigned LID = LV->getValueID(), RID = RV->getValueID();
567   if (LID != RID)
568     return (int)LID - (int)RID;
569 
570   // Sort arguments by their position.
571   if (const auto *LA = dyn_cast<Argument>(LV)) {
572     const auto *RA = cast<Argument>(RV);
573     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
574     return (int)LArgNo - (int)RArgNo;
575   }
576 
577   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
578     const auto *RGV = cast<GlobalValue>(RV);
579 
580     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
581       auto LT = GV->getLinkage();
582       return !(GlobalValue::isPrivateLinkage(LT) ||
583                GlobalValue::isInternalLinkage(LT));
584     };
585 
586     // Use the names to distinguish the two values, but only if the
587     // names are semantically important.
588     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
589       return LGV->getName().compare(RGV->getName());
590   }
591 
592   // For instructions, compare their loop depth, and their operand count.  This
593   // is pretty loose.
594   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
595     const auto *RInst = cast<Instruction>(RV);
596 
597     // Compare loop depths.
598     const BasicBlock *LParent = LInst->getParent(),
599                      *RParent = RInst->getParent();
600     if (LParent != RParent) {
601       unsigned LDepth = LI->getLoopDepth(LParent),
602                RDepth = LI->getLoopDepth(RParent);
603       if (LDepth != RDepth)
604         return (int)LDepth - (int)RDepth;
605     }
606 
607     // Compare the number of operands.
608     unsigned LNumOps = LInst->getNumOperands(),
609              RNumOps = RInst->getNumOperands();
610     if (LNumOps != RNumOps)
611       return (int)LNumOps - (int)RNumOps;
612 
613     for (unsigned Idx : seq(0u, LNumOps)) {
614       int Result =
615           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
616                                  RInst->getOperand(Idx), Depth + 1);
617       if (Result != 0)
618         return Result;
619     }
620   }
621 
622   EqCacheValue.unionSets(LV, RV);
623   return 0;
624 }
625 
626 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
627 // than RHS, respectively. A three-way result allows recursive comparisons to be
628 // more efficient.
629 static int CompareSCEVComplexity(
630     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
631     EquivalenceClasses<const Value *> &EqCacheValue,
632     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
633     DominatorTree &DT, unsigned Depth = 0) {
634   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
635   if (LHS == RHS)
636     return 0;
637 
638   // Primarily, sort the SCEVs by their getSCEVType().
639   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
640   if (LType != RType)
641     return (int)LType - (int)RType;
642 
643   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
644     return 0;
645   // Aside from the getSCEVType() ordering, the particular ordering
646   // isn't very important except that it's beneficial to be consistent,
647   // so that (a + b) and (b + a) don't end up as different expressions.
648   switch (static_cast<SCEVTypes>(LType)) {
649   case scUnknown: {
650     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
651     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
652 
653     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
654                                    RU->getValue(), Depth + 1);
655     if (X == 0)
656       EqCacheSCEV.unionSets(LHS, RHS);
657     return X;
658   }
659 
660   case scConstant: {
661     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
662     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
663 
664     // Compare constant values.
665     const APInt &LA = LC->getAPInt();
666     const APInt &RA = RC->getAPInt();
667     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
668     if (LBitWidth != RBitWidth)
669       return (int)LBitWidth - (int)RBitWidth;
670     return LA.ult(RA) ? -1 : 1;
671   }
672 
673   case scAddRecExpr: {
674     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
675     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
676 
677     // There is always a dominance between two recs that are used by one SCEV,
678     // so we can safely sort recs by loop header dominance. We require such
679     // order in getAddExpr.
680     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
681     if (LLoop != RLoop) {
682       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
683       assert(LHead != RHead && "Two loops share the same header?");
684       if (DT.dominates(LHead, RHead))
685         return 1;
686       else
687         assert(DT.dominates(RHead, LHead) &&
688                "No dominance between recurrences used by one SCEV?");
689       return -1;
690     }
691 
692     // Addrec complexity grows with operand count.
693     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
694     if (LNumOps != RNumOps)
695       return (int)LNumOps - (int)RNumOps;
696 
697     // Compare NoWrap flags.
698     if (LA->getNoWrapFlags() != RA->getNoWrapFlags())
699       return (int)LA->getNoWrapFlags() - (int)RA->getNoWrapFlags();
700 
701     // Lexicographically compare.
702     for (unsigned i = 0; i != LNumOps; ++i) {
703       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
704                                     LA->getOperand(i), RA->getOperand(i), DT,
705                                     Depth + 1);
706       if (X != 0)
707         return X;
708     }
709     EqCacheSCEV.unionSets(LHS, RHS);
710     return 0;
711   }
712 
713   case scAddExpr:
714   case scMulExpr:
715   case scSMaxExpr:
716   case scUMaxExpr: {
717     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
718     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
719 
720     // Lexicographically compare n-ary expressions.
721     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
722     if (LNumOps != RNumOps)
723       return (int)LNumOps - (int)RNumOps;
724 
725     // Compare NoWrap flags.
726     if (LC->getNoWrapFlags() != RC->getNoWrapFlags())
727       return (int)LC->getNoWrapFlags() - (int)RC->getNoWrapFlags();
728 
729     for (unsigned i = 0; i != LNumOps; ++i) {
730       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
731                                     LC->getOperand(i), RC->getOperand(i), DT,
732                                     Depth + 1);
733       if (X != 0)
734         return X;
735     }
736     EqCacheSCEV.unionSets(LHS, RHS);
737     return 0;
738   }
739 
740   case scUDivExpr: {
741     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
742     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
743 
744     // Lexicographically compare udiv expressions.
745     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
746                                   RC->getLHS(), DT, Depth + 1);
747     if (X != 0)
748       return X;
749     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
750                               RC->getRHS(), DT, Depth + 1);
751     if (X == 0)
752       EqCacheSCEV.unionSets(LHS, RHS);
753     return X;
754   }
755 
756   case scTruncate:
757   case scZeroExtend:
758   case scSignExtend: {
759     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
760     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
761 
762     // Compare cast expressions by operand.
763     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
764                                   LC->getOperand(), RC->getOperand(), DT,
765                                   Depth + 1);
766     if (X == 0)
767       EqCacheSCEV.unionSets(LHS, RHS);
768     return X;
769   }
770 
771   case scCouldNotCompute:
772     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
773   }
774   llvm_unreachable("Unknown SCEV kind!");
775 }
776 
777 /// Given a list of SCEV objects, order them by their complexity, and group
778 /// objects of the same complexity together by value.  When this routine is
779 /// finished, we know that any duplicates in the vector are consecutive and that
780 /// complexity is monotonically increasing.
781 ///
782 /// Note that we go take special precautions to ensure that we get deterministic
783 /// results from this routine.  In other words, we don't want the results of
784 /// this to depend on where the addresses of various SCEV objects happened to
785 /// land in memory.
786 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
787                               LoopInfo *LI, DominatorTree &DT) {
788   if (Ops.size() < 2) return;  // Noop
789 
790   EquivalenceClasses<const SCEV *> EqCacheSCEV;
791   EquivalenceClasses<const Value *> EqCacheValue;
792   if (Ops.size() == 2) {
793     // This is the common case, which also happens to be trivially simple.
794     // Special case it.
795     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
796     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
797       std::swap(LHS, RHS);
798     return;
799   }
800 
801   // Do the rough sort by complexity.
802   std::stable_sort(Ops.begin(), Ops.end(),
803                    [&](const SCEV *LHS, const SCEV *RHS) {
804                      return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
805                                                   LHS, RHS, DT) < 0;
806                    });
807 
808   // Now that we are sorted by complexity, group elements of the same
809   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
810   // be extremely short in practice.  Note that we take this approach because we
811   // do not want to depend on the addresses of the objects we are grouping.
812   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
813     const SCEV *S = Ops[i];
814     unsigned Complexity = S->getSCEVType();
815 
816     // If there are any objects of the same complexity and same value as this
817     // one, group them.
818     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
819       if (Ops[j] == S) { // Found a duplicate.
820         // Move it to immediately after i'th element.
821         std::swap(Ops[i+1], Ops[j]);
822         ++i;   // no need to rescan it.
823         if (i == e-2) return;  // Done!
824       }
825     }
826   }
827 }
828 
829 // Returns the size of the SCEV S.
830 static inline int sizeOfSCEV(const SCEV *S) {
831   struct FindSCEVSize {
832     int Size = 0;
833 
834     FindSCEVSize() = default;
835 
836     bool follow(const SCEV *S) {
837       ++Size;
838       // Keep looking at all operands of S.
839       return true;
840     }
841 
842     bool isDone() const {
843       return false;
844     }
845   };
846 
847   FindSCEVSize F;
848   SCEVTraversal<FindSCEVSize> ST(F);
849   ST.visitAll(S);
850   return F.Size;
851 }
852 
853 namespace {
854 
855 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
856 public:
857   // Computes the Quotient and Remainder of the division of Numerator by
858   // Denominator.
859   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
860                      const SCEV *Denominator, const SCEV **Quotient,
861                      const SCEV **Remainder) {
862     assert(Numerator && Denominator && "Uninitialized SCEV");
863 
864     SCEVDivision D(SE, Numerator, Denominator);
865 
866     // Check for the trivial case here to avoid having to check for it in the
867     // rest of the code.
868     if (Numerator == Denominator) {
869       *Quotient = D.One;
870       *Remainder = D.Zero;
871       return;
872     }
873 
874     if (Numerator->isZero()) {
875       *Quotient = D.Zero;
876       *Remainder = D.Zero;
877       return;
878     }
879 
880     // A simple case when N/1. The quotient is N.
881     if (Denominator->isOne()) {
882       *Quotient = Numerator;
883       *Remainder = D.Zero;
884       return;
885     }
886 
887     // Split the Denominator when it is a product.
888     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
889       const SCEV *Q, *R;
890       *Quotient = Numerator;
891       for (const SCEV *Op : T->operands()) {
892         divide(SE, *Quotient, Op, &Q, &R);
893         *Quotient = Q;
894 
895         // Bail out when the Numerator is not divisible by one of the terms of
896         // the Denominator.
897         if (!R->isZero()) {
898           *Quotient = D.Zero;
899           *Remainder = Numerator;
900           return;
901         }
902       }
903       *Remainder = D.Zero;
904       return;
905     }
906 
907     D.visit(Numerator);
908     *Quotient = D.Quotient;
909     *Remainder = D.Remainder;
910   }
911 
912   // Except in the trivial case described above, we do not know how to divide
913   // Expr by Denominator for the following functions with empty implementation.
914   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
915   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
916   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
917   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
918   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
919   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
920   void visitUnknown(const SCEVUnknown *Numerator) {}
921   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
922 
923   void visitConstant(const SCEVConstant *Numerator) {
924     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
925       APInt NumeratorVal = Numerator->getAPInt();
926       APInt DenominatorVal = D->getAPInt();
927       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
928       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
929 
930       if (NumeratorBW > DenominatorBW)
931         DenominatorVal = DenominatorVal.sext(NumeratorBW);
932       else if (NumeratorBW < DenominatorBW)
933         NumeratorVal = NumeratorVal.sext(DenominatorBW);
934 
935       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
936       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
937       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
938       Quotient = SE.getConstant(QuotientVal);
939       Remainder = SE.getConstant(RemainderVal);
940       return;
941     }
942   }
943 
944   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
945     const SCEV *StartQ, *StartR, *StepQ, *StepR;
946     if (!Numerator->isAffine())
947       return cannotDivide(Numerator);
948     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
949     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
950     // Bail out if the types do not match.
951     Type *Ty = Denominator->getType();
952     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
953         Ty != StepQ->getType() || Ty != StepR->getType())
954       return cannotDivide(Numerator);
955     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
956                                 Numerator->getNoWrapFlags());
957     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
958                                  Numerator->getNoWrapFlags());
959   }
960 
961   void visitAddExpr(const SCEVAddExpr *Numerator) {
962     SmallVector<const SCEV *, 2> Qs, Rs;
963     Type *Ty = Denominator->getType();
964 
965     for (const SCEV *Op : Numerator->operands()) {
966       const SCEV *Q, *R;
967       divide(SE, Op, Denominator, &Q, &R);
968 
969       // Bail out if types do not match.
970       if (Ty != Q->getType() || Ty != R->getType())
971         return cannotDivide(Numerator);
972 
973       Qs.push_back(Q);
974       Rs.push_back(R);
975     }
976 
977     if (Qs.size() == 1) {
978       Quotient = Qs[0];
979       Remainder = Rs[0];
980       return;
981     }
982 
983     Quotient = SE.getAddExpr(Qs);
984     Remainder = SE.getAddExpr(Rs);
985   }
986 
987   void visitMulExpr(const SCEVMulExpr *Numerator) {
988     SmallVector<const SCEV *, 2> Qs;
989     Type *Ty = Denominator->getType();
990 
991     bool FoundDenominatorTerm = false;
992     for (const SCEV *Op : Numerator->operands()) {
993       // Bail out if types do not match.
994       if (Ty != Op->getType())
995         return cannotDivide(Numerator);
996 
997       if (FoundDenominatorTerm) {
998         Qs.push_back(Op);
999         continue;
1000       }
1001 
1002       // Check whether Denominator divides one of the product operands.
1003       const SCEV *Q, *R;
1004       divide(SE, Op, Denominator, &Q, &R);
1005       if (!R->isZero()) {
1006         Qs.push_back(Op);
1007         continue;
1008       }
1009 
1010       // Bail out if types do not match.
1011       if (Ty != Q->getType())
1012         return cannotDivide(Numerator);
1013 
1014       FoundDenominatorTerm = true;
1015       Qs.push_back(Q);
1016     }
1017 
1018     if (FoundDenominatorTerm) {
1019       Remainder = Zero;
1020       if (Qs.size() == 1)
1021         Quotient = Qs[0];
1022       else
1023         Quotient = SE.getMulExpr(Qs);
1024       return;
1025     }
1026 
1027     if (!isa<SCEVUnknown>(Denominator))
1028       return cannotDivide(Numerator);
1029 
1030     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1031     ValueToValueMap RewriteMap;
1032     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1033         cast<SCEVConstant>(Zero)->getValue();
1034     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1035 
1036     if (Remainder->isZero()) {
1037       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1038       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1039           cast<SCEVConstant>(One)->getValue();
1040       Quotient =
1041           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1042       return;
1043     }
1044 
1045     // Quotient is (Numerator - Remainder) divided by Denominator.
1046     const SCEV *Q, *R;
1047     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1048     // This SCEV does not seem to simplify: fail the division here.
1049     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1050       return cannotDivide(Numerator);
1051     divide(SE, Diff, Denominator, &Q, &R);
1052     if (R != Zero)
1053       return cannotDivide(Numerator);
1054     Quotient = Q;
1055   }
1056 
1057 private:
1058   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1059                const SCEV *Denominator)
1060       : SE(S), Denominator(Denominator) {
1061     Zero = SE.getZero(Denominator->getType());
1062     One = SE.getOne(Denominator->getType());
1063 
1064     // We generally do not know how to divide Expr by Denominator. We
1065     // initialize the division to a "cannot divide" state to simplify the rest
1066     // of the code.
1067     cannotDivide(Numerator);
1068   }
1069 
1070   // Convenience function for giving up on the division. We set the quotient to
1071   // be equal to zero and the remainder to be equal to the numerator.
1072   void cannotDivide(const SCEV *Numerator) {
1073     Quotient = Zero;
1074     Remainder = Numerator;
1075   }
1076 
1077   ScalarEvolution &SE;
1078   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1079 };
1080 
1081 } // end anonymous namespace
1082 
1083 //===----------------------------------------------------------------------===//
1084 //                      Simple SCEV method implementations
1085 //===----------------------------------------------------------------------===//
1086 
1087 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
1088 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1089                                        ScalarEvolution &SE,
1090                                        Type *ResultTy) {
1091   // Handle the simplest case efficiently.
1092   if (K == 1)
1093     return SE.getTruncateOrZeroExtend(It, ResultTy);
1094 
1095   // We are using the following formula for BC(It, K):
1096   //
1097   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1098   //
1099   // Suppose, W is the bitwidth of the return value.  We must be prepared for
1100   // overflow.  Hence, we must assure that the result of our computation is
1101   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
1102   // safe in modular arithmetic.
1103   //
1104   // However, this code doesn't use exactly that formula; the formula it uses
1105   // is something like the following, where T is the number of factors of 2 in
1106   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1107   // exponentiation:
1108   //
1109   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1110   //
1111   // This formula is trivially equivalent to the previous formula.  However,
1112   // this formula can be implemented much more efficiently.  The trick is that
1113   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1114   // arithmetic.  To do exact division in modular arithmetic, all we have
1115   // to do is multiply by the inverse.  Therefore, this step can be done at
1116   // width W.
1117   //
1118   // The next issue is how to safely do the division by 2^T.  The way this
1119   // is done is by doing the multiplication step at a width of at least W + T
1120   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1121   // when we perform the division by 2^T (which is equivalent to a right shift
1122   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1123   // truncated out after the division by 2^T.
1124   //
1125   // In comparison to just directly using the first formula, this technique
1126   // is much more efficient; using the first formula requires W * K bits,
1127   // but this formula less than W + K bits. Also, the first formula requires
1128   // a division step, whereas this formula only requires multiplies and shifts.
1129   //
1130   // It doesn't matter whether the subtraction step is done in the calculation
1131   // width or the input iteration count's width; if the subtraction overflows,
1132   // the result must be zero anyway.  We prefer here to do it in the width of
1133   // the induction variable because it helps a lot for certain cases; CodeGen
1134   // isn't smart enough to ignore the overflow, which leads to much less
1135   // efficient code if the width of the subtraction is wider than the native
1136   // register width.
1137   //
1138   // (It's possible to not widen at all by pulling out factors of 2 before
1139   // the multiplication; for example, K=2 can be calculated as
1140   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1141   // extra arithmetic, so it's not an obvious win, and it gets
1142   // much more complicated for K > 3.)
1143 
1144   // Protection from insane SCEVs; this bound is conservative,
1145   // but it probably doesn't matter.
1146   if (K > 1000)
1147     return SE.getCouldNotCompute();
1148 
1149   unsigned W = SE.getTypeSizeInBits(ResultTy);
1150 
1151   // Calculate K! / 2^T and T; we divide out the factors of two before
1152   // multiplying for calculating K! / 2^T to avoid overflow.
1153   // Other overflow doesn't matter because we only care about the bottom
1154   // W bits of the result.
1155   APInt OddFactorial(W, 1);
1156   unsigned T = 1;
1157   for (unsigned i = 3; i <= K; ++i) {
1158     APInt Mult(W, i);
1159     unsigned TwoFactors = Mult.countTrailingZeros();
1160     T += TwoFactors;
1161     Mult.lshrInPlace(TwoFactors);
1162     OddFactorial *= Mult;
1163   }
1164 
1165   // We need at least W + T bits for the multiplication step
1166   unsigned CalculationBits = W + T;
1167 
1168   // Calculate 2^T, at width T+W.
1169   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1170 
1171   // Calculate the multiplicative inverse of K! / 2^T;
1172   // this multiplication factor will perform the exact division by
1173   // K! / 2^T.
1174   APInt Mod = APInt::getSignedMinValue(W+1);
1175   APInt MultiplyFactor = OddFactorial.zext(W+1);
1176   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1177   MultiplyFactor = MultiplyFactor.trunc(W);
1178 
1179   // Calculate the product, at width T+W
1180   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1181                                                       CalculationBits);
1182   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1183   for (unsigned i = 1; i != K; ++i) {
1184     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1185     Dividend = SE.getMulExpr(Dividend,
1186                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1187   }
1188 
1189   // Divide by 2^T
1190   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1191 
1192   // Truncate the result, and divide by K! / 2^T.
1193 
1194   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1195                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1196 }
1197 
1198 /// Return the value of this chain of recurrences at the specified iteration
1199 /// number.  We can evaluate this recurrence by multiplying each element in the
1200 /// chain by the binomial coefficient corresponding to it.  In other words, we
1201 /// can evaluate {A,+,B,+,C,+,D} as:
1202 ///
1203 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1204 ///
1205 /// where BC(It, k) stands for binomial coefficient.
1206 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1207                                                 ScalarEvolution &SE) const {
1208   const SCEV *Result = getStart();
1209   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1210     // The computation is correct in the face of overflow provided that the
1211     // multiplication is performed _after_ the evaluation of the binomial
1212     // coefficient.
1213     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1214     if (isa<SCEVCouldNotCompute>(Coeff))
1215       return Coeff;
1216 
1217     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1218   }
1219   return Result;
1220 }
1221 
1222 //===----------------------------------------------------------------------===//
1223 //                    SCEV Expression folder implementations
1224 //===----------------------------------------------------------------------===//
1225 
1226 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1227                                              Type *Ty) {
1228   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1229          "This is not a truncating conversion!");
1230   assert(isSCEVable(Ty) &&
1231          "This is not a conversion to a SCEVable type!");
1232   Ty = getEffectiveSCEVType(Ty);
1233 
1234   FoldingSetNodeID ID;
1235   ID.AddInteger(scTruncate);
1236   ID.AddPointer(Op);
1237   ID.AddPointer(Ty);
1238   void *IP = nullptr;
1239   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1240 
1241   // Fold if the operand is constant.
1242   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1243     return getConstant(
1244       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1245 
1246   // trunc(trunc(x)) --> trunc(x)
1247   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1248     return getTruncateExpr(ST->getOperand(), Ty);
1249 
1250   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1251   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1252     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1253 
1254   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1255   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1256     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1257 
1258   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1259   // eliminate all the truncates, or we replace other casts with truncates.
1260   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1261     SmallVector<const SCEV *, 4> Operands;
1262     bool hasTrunc = false;
1263     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1264       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1265       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1266         hasTrunc = isa<SCEVTruncateExpr>(S);
1267       Operands.push_back(S);
1268     }
1269     if (!hasTrunc)
1270       return getAddExpr(Operands);
1271     // In spite we checked in the beginning that ID is not in the cache,
1272     // it is possible that during recursion and different modification
1273     // ID came to cache, so if we found it, just return it.
1274     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1275       return S;
1276   }
1277 
1278   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1279   // eliminate all the truncates, or we replace other casts with truncates.
1280   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1281     SmallVector<const SCEV *, 4> Operands;
1282     bool hasTrunc = false;
1283     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1284       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1285       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1286         hasTrunc = isa<SCEVTruncateExpr>(S);
1287       Operands.push_back(S);
1288     }
1289     if (!hasTrunc)
1290       return getMulExpr(Operands);
1291     // In spite we checked in the beginning that ID is not in the cache,
1292     // it is possible that during recursion and different modification
1293     // ID came to cache, so if we found it, just return it.
1294     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1295       return S;
1296   }
1297 
1298   // If the input value is a chrec scev, truncate the chrec's operands.
1299   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1300     SmallVector<const SCEV *, 4> Operands;
1301     for (const SCEV *Op : AddRec->operands())
1302       Operands.push_back(getTruncateExpr(Op, Ty));
1303     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1304   }
1305 
1306   // The cast wasn't folded; create an explicit cast node. We can reuse
1307   // the existing insert position since if we get here, we won't have
1308   // made any changes which would invalidate it.
1309   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1310                                                  Op, Ty);
1311   UniqueSCEVs.InsertNode(S, IP);
1312   addToLoopUseLists(S);
1313   return S;
1314 }
1315 
1316 // Get the limit of a recurrence such that incrementing by Step cannot cause
1317 // signed overflow as long as the value of the recurrence within the
1318 // loop does not exceed this limit before incrementing.
1319 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1320                                                  ICmpInst::Predicate *Pred,
1321                                                  ScalarEvolution *SE) {
1322   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1323   if (SE->isKnownPositive(Step)) {
1324     *Pred = ICmpInst::ICMP_SLT;
1325     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1326                            SE->getSignedRangeMax(Step));
1327   }
1328   if (SE->isKnownNegative(Step)) {
1329     *Pred = ICmpInst::ICMP_SGT;
1330     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1331                            SE->getSignedRangeMin(Step));
1332   }
1333   return nullptr;
1334 }
1335 
1336 // Get the limit of a recurrence such that incrementing by Step cannot cause
1337 // unsigned overflow as long as the value of the recurrence within the loop does
1338 // not exceed this limit before incrementing.
1339 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1340                                                    ICmpInst::Predicate *Pred,
1341                                                    ScalarEvolution *SE) {
1342   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1343   *Pred = ICmpInst::ICMP_ULT;
1344 
1345   return SE->getConstant(APInt::getMinValue(BitWidth) -
1346                          SE->getUnsignedRangeMax(Step));
1347 }
1348 
1349 namespace {
1350 
1351 struct ExtendOpTraitsBase {
1352   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1353                                                           unsigned);
1354 };
1355 
1356 // Used to make code generic over signed and unsigned overflow.
1357 template <typename ExtendOp> struct ExtendOpTraits {
1358   // Members present:
1359   //
1360   // static const SCEV::NoWrapFlags WrapType;
1361   //
1362   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1363   //
1364   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1365   //                                           ICmpInst::Predicate *Pred,
1366   //                                           ScalarEvolution *SE);
1367 };
1368 
1369 template <>
1370 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1371   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1372 
1373   static const GetExtendExprTy GetExtendExpr;
1374 
1375   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1376                                              ICmpInst::Predicate *Pred,
1377                                              ScalarEvolution *SE) {
1378     return getSignedOverflowLimitForStep(Step, Pred, SE);
1379   }
1380 };
1381 
1382 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1383     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1384 
1385 template <>
1386 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1387   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1388 
1389   static const GetExtendExprTy GetExtendExpr;
1390 
1391   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1392                                              ICmpInst::Predicate *Pred,
1393                                              ScalarEvolution *SE) {
1394     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1395   }
1396 };
1397 
1398 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1399     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1400 
1401 } // end anonymous namespace
1402 
1403 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1404 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1405 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1406 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1407 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1408 // expression "Step + sext/zext(PreIncAR)" is congruent with
1409 // "sext/zext(PostIncAR)"
1410 template <typename ExtendOpTy>
1411 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1412                                         ScalarEvolution *SE, unsigned Depth) {
1413   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1414   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1415 
1416   const Loop *L = AR->getLoop();
1417   const SCEV *Start = AR->getStart();
1418   const SCEV *Step = AR->getStepRecurrence(*SE);
1419 
1420   // Check for a simple looking step prior to loop entry.
1421   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1422   if (!SA)
1423     return nullptr;
1424 
1425   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1426   // subtraction is expensive. For this purpose, perform a quick and dirty
1427   // difference, by checking for Step in the operand list.
1428   SmallVector<const SCEV *, 4> DiffOps;
1429   for (const SCEV *Op : SA->operands())
1430     if (Op != Step)
1431       DiffOps.push_back(Op);
1432 
1433   if (DiffOps.size() == SA->getNumOperands())
1434     return nullptr;
1435 
1436   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1437   // `Step`:
1438 
1439   // 1. NSW/NUW flags on the step increment.
1440   auto PreStartFlags =
1441     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1442   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1443   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1444       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1445 
1446   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1447   // "S+X does not sign/unsign-overflow".
1448   //
1449 
1450   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1451   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1452       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1453     return PreStart;
1454 
1455   // 2. Direct overflow check on the step operation's expression.
1456   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1457   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1458   const SCEV *OperandExtendedStart =
1459       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1460                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1461   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1462     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1463       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1464       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1465       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1466       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1467     }
1468     return PreStart;
1469   }
1470 
1471   // 3. Loop precondition.
1472   ICmpInst::Predicate Pred;
1473   const SCEV *OverflowLimit =
1474       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1475 
1476   if (OverflowLimit &&
1477       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1478     return PreStart;
1479 
1480   return nullptr;
1481 }
1482 
1483 // Get the normalized zero or sign extended expression for this AddRec's Start.
1484 template <typename ExtendOpTy>
1485 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1486                                         ScalarEvolution *SE,
1487                                         unsigned Depth) {
1488   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1489 
1490   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1491   if (!PreStart)
1492     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1493 
1494   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1495                                              Depth),
1496                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1497 }
1498 
1499 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1500 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1501 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1502 //
1503 // Formally:
1504 //
1505 //     {S,+,X} == {S-T,+,X} + T
1506 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1507 //
1508 // If ({S-T,+,X} + T) does not overflow  ... (1)
1509 //
1510 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1511 //
1512 // If {S-T,+,X} does not overflow  ... (2)
1513 //
1514 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1515 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1516 //
1517 // If (S-T)+T does not overflow  ... (3)
1518 //
1519 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1520 //      == {Ext(S),+,Ext(X)} == LHS
1521 //
1522 // Thus, if (1), (2) and (3) are true for some T, then
1523 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1524 //
1525 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1526 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1527 // to check for (1) and (2).
1528 //
1529 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1530 // is `Delta` (defined below).
1531 template <typename ExtendOpTy>
1532 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1533                                                 const SCEV *Step,
1534                                                 const Loop *L) {
1535   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1536 
1537   // We restrict `Start` to a constant to prevent SCEV from spending too much
1538   // time here.  It is correct (but more expensive) to continue with a
1539   // non-constant `Start` and do a general SCEV subtraction to compute
1540   // `PreStart` below.
1541   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1542   if (!StartC)
1543     return false;
1544 
1545   APInt StartAI = StartC->getAPInt();
1546 
1547   for (unsigned Delta : {-2, -1, 1, 2}) {
1548     const SCEV *PreStart = getConstant(StartAI - Delta);
1549 
1550     FoldingSetNodeID ID;
1551     ID.AddInteger(scAddRecExpr);
1552     ID.AddPointer(PreStart);
1553     ID.AddPointer(Step);
1554     ID.AddPointer(L);
1555     void *IP = nullptr;
1556     const auto *PreAR =
1557       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1558 
1559     // Give up if we don't already have the add recurrence we need because
1560     // actually constructing an add recurrence is relatively expensive.
1561     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1562       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1563       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1564       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1565           DeltaS, &Pred, this);
1566       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1567         return true;
1568     }
1569   }
1570 
1571   return false;
1572 }
1573 
1574 const SCEV *
1575 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1576   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1577          "This is not an extending conversion!");
1578   assert(isSCEVable(Ty) &&
1579          "This is not a conversion to a SCEVable type!");
1580   Ty = getEffectiveSCEVType(Ty);
1581 
1582   // Fold if the operand is constant.
1583   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1584     return getConstant(
1585       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1586 
1587   // zext(zext(x)) --> zext(x)
1588   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1589     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1590 
1591   // Before doing any expensive analysis, check to see if we've already
1592   // computed a SCEV for this Op and Ty.
1593   FoldingSetNodeID ID;
1594   ID.AddInteger(scZeroExtend);
1595   ID.AddPointer(Op);
1596   ID.AddPointer(Ty);
1597   void *IP = nullptr;
1598   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1599   if (Depth > MaxExtDepth) {
1600     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1601                                                      Op, Ty);
1602     UniqueSCEVs.InsertNode(S, IP);
1603     addToLoopUseLists(S);
1604     return S;
1605   }
1606 
1607   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1608   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1609     // It's possible the bits taken off by the truncate were all zero bits. If
1610     // so, we should be able to simplify this further.
1611     const SCEV *X = ST->getOperand();
1612     ConstantRange CR = getUnsignedRange(X);
1613     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1614     unsigned NewBits = getTypeSizeInBits(Ty);
1615     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1616             CR.zextOrTrunc(NewBits)))
1617       return getTruncateOrZeroExtend(X, Ty);
1618   }
1619 
1620   // If the input value is a chrec scev, and we can prove that the value
1621   // did not overflow the old, smaller, value, we can zero extend all of the
1622   // operands (often constants).  This allows analysis of something like
1623   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1624   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1625     if (AR->isAffine()) {
1626       const SCEV *Start = AR->getStart();
1627       const SCEV *Step = AR->getStepRecurrence(*this);
1628       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1629       const Loop *L = AR->getLoop();
1630 
1631       if (!AR->hasNoUnsignedWrap()) {
1632         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1633         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1634       }
1635 
1636       // If we have special knowledge that this addrec won't overflow,
1637       // we don't need to do any further analysis.
1638       if (AR->hasNoUnsignedWrap())
1639         return getAddRecExpr(
1640             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1641             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1642 
1643       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1644       // Note that this serves two purposes: It filters out loops that are
1645       // simply not analyzable, and it covers the case where this code is
1646       // being called from within backedge-taken count analysis, such that
1647       // attempting to ask for the backedge-taken count would likely result
1648       // in infinite recursion. In the later case, the analysis code will
1649       // cope with a conservative value, and it will take care to purge
1650       // that value once it has finished.
1651       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1652       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1653         // Manually compute the final value for AR, checking for
1654         // overflow.
1655 
1656         // Check whether the backedge-taken count can be losslessly casted to
1657         // the addrec's type. The count is always unsigned.
1658         const SCEV *CastedMaxBECount =
1659           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1660         const SCEV *RecastedMaxBECount =
1661           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1662         if (MaxBECount == RecastedMaxBECount) {
1663           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1664           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1665           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1666                                         SCEV::FlagAnyWrap, Depth + 1);
1667           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1668                                                           SCEV::FlagAnyWrap,
1669                                                           Depth + 1),
1670                                                WideTy, Depth + 1);
1671           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1672           const SCEV *WideMaxBECount =
1673             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1674           const SCEV *OperandExtendedAdd =
1675             getAddExpr(WideStart,
1676                        getMulExpr(WideMaxBECount,
1677                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1678                                   SCEV::FlagAnyWrap, Depth + 1),
1679                        SCEV::FlagAnyWrap, Depth + 1);
1680           if (ZAdd == OperandExtendedAdd) {
1681             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1682             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1683             // Return the expression with the addrec on the outside.
1684             return getAddRecExpr(
1685                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1686                                                          Depth + 1),
1687                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1688                 AR->getNoWrapFlags());
1689           }
1690           // Similar to above, only this time treat the step value as signed.
1691           // This covers loops that count down.
1692           OperandExtendedAdd =
1693             getAddExpr(WideStart,
1694                        getMulExpr(WideMaxBECount,
1695                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1696                                   SCEV::FlagAnyWrap, Depth + 1),
1697                        SCEV::FlagAnyWrap, Depth + 1);
1698           if (ZAdd == OperandExtendedAdd) {
1699             // Cache knowledge of AR NW, which is propagated to this AddRec.
1700             // Negative step causes unsigned wrap, but it still can't self-wrap.
1701             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1702             // Return the expression with the addrec on the outside.
1703             return getAddRecExpr(
1704                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1705                                                          Depth + 1),
1706                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1707                 AR->getNoWrapFlags());
1708           }
1709         }
1710       }
1711 
1712       // Normally, in the cases we can prove no-overflow via a
1713       // backedge guarding condition, we can also compute a backedge
1714       // taken count for the loop.  The exceptions are assumptions and
1715       // guards present in the loop -- SCEV is not great at exploiting
1716       // these to compute max backedge taken counts, but can still use
1717       // these to prove lack of overflow.  Use this fact to avoid
1718       // doing extra work that may not pay off.
1719       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1720           !AC.assumptions().empty()) {
1721         // If the backedge is guarded by a comparison with the pre-inc
1722         // value the addrec is safe. Also, if the entry is guarded by
1723         // a comparison with the start value and the backedge is
1724         // guarded by a comparison with the post-inc value, the addrec
1725         // is safe.
1726         if (isKnownPositive(Step)) {
1727           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1728                                       getUnsignedRangeMax(Step));
1729           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1730               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1731                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1732                                            AR->getPostIncExpr(*this), N))) {
1733             // Cache knowledge of AR NUW, which is propagated to this
1734             // AddRec.
1735             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1736             // Return the expression with the addrec on the outside.
1737             return getAddRecExpr(
1738                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1739                                                          Depth + 1),
1740                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1741                 AR->getNoWrapFlags());
1742           }
1743         } else if (isKnownNegative(Step)) {
1744           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1745                                       getSignedRangeMin(Step));
1746           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1747               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1748                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1749                                            AR->getPostIncExpr(*this), N))) {
1750             // Cache knowledge of AR NW, which is propagated to this
1751             // AddRec.  Negative step causes unsigned wrap, but it
1752             // still can't self-wrap.
1753             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1754             // Return the expression with the addrec on the outside.
1755             return getAddRecExpr(
1756                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1757                                                          Depth + 1),
1758                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1759                 AR->getNoWrapFlags());
1760           }
1761         }
1762       }
1763 
1764       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1765         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1766         return getAddRecExpr(
1767             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1768             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1769       }
1770     }
1771 
1772   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1773     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1774     if (SA->hasNoUnsignedWrap()) {
1775       // If the addition does not unsign overflow then we can, by definition,
1776       // commute the zero extension with the addition operation.
1777       SmallVector<const SCEV *, 4> Ops;
1778       for (const auto *Op : SA->operands())
1779         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1780       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1781     }
1782   }
1783 
1784   // The cast wasn't folded; create an explicit cast node.
1785   // Recompute the insert position, as it may have been invalidated.
1786   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1787   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1788                                                    Op, Ty);
1789   UniqueSCEVs.InsertNode(S, IP);
1790   addToLoopUseLists(S);
1791   return S;
1792 }
1793 
1794 const SCEV *
1795 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1796   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1797          "This is not an extending conversion!");
1798   assert(isSCEVable(Ty) &&
1799          "This is not a conversion to a SCEVable type!");
1800   Ty = getEffectiveSCEVType(Ty);
1801 
1802   // Fold if the operand is constant.
1803   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1804     return getConstant(
1805       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1806 
1807   // sext(sext(x)) --> sext(x)
1808   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1809     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1810 
1811   // sext(zext(x)) --> zext(x)
1812   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1813     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1814 
1815   // Before doing any expensive analysis, check to see if we've already
1816   // computed a SCEV for this Op and Ty.
1817   FoldingSetNodeID ID;
1818   ID.AddInteger(scSignExtend);
1819   ID.AddPointer(Op);
1820   ID.AddPointer(Ty);
1821   void *IP = nullptr;
1822   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1823   // Limit recursion depth.
1824   if (Depth > MaxExtDepth) {
1825     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1826                                                      Op, Ty);
1827     UniqueSCEVs.InsertNode(S, IP);
1828     addToLoopUseLists(S);
1829     return S;
1830   }
1831 
1832   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1833   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1834     // It's possible the bits taken off by the truncate were all sign bits. If
1835     // so, we should be able to simplify this further.
1836     const SCEV *X = ST->getOperand();
1837     ConstantRange CR = getSignedRange(X);
1838     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1839     unsigned NewBits = getTypeSizeInBits(Ty);
1840     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1841             CR.sextOrTrunc(NewBits)))
1842       return getTruncateOrSignExtend(X, Ty);
1843   }
1844 
1845   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1846   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1847     if (SA->getNumOperands() == 2) {
1848       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1849       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1850       if (SMul && SC1) {
1851         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1852           const APInt &C1 = SC1->getAPInt();
1853           const APInt &C2 = SC2->getAPInt();
1854           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1855               C2.ugt(C1) && C2.isPowerOf2())
1856             return getAddExpr(getSignExtendExpr(SC1, Ty, Depth + 1),
1857                               getSignExtendExpr(SMul, Ty, Depth + 1),
1858                               SCEV::FlagAnyWrap, Depth + 1);
1859         }
1860       }
1861     }
1862 
1863     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1864     if (SA->hasNoSignedWrap()) {
1865       // If the addition does not sign overflow then we can, by definition,
1866       // commute the sign extension with the addition operation.
1867       SmallVector<const SCEV *, 4> Ops;
1868       for (const auto *Op : SA->operands())
1869         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1870       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1871     }
1872   }
1873   // If the input value is a chrec scev, and we can prove that the value
1874   // did not overflow the old, smaller, value, we can sign extend all of the
1875   // operands (often constants).  This allows analysis of something like
1876   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1877   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1878     if (AR->isAffine()) {
1879       const SCEV *Start = AR->getStart();
1880       const SCEV *Step = AR->getStepRecurrence(*this);
1881       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1882       const Loop *L = AR->getLoop();
1883 
1884       if (!AR->hasNoSignedWrap()) {
1885         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1886         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1887       }
1888 
1889       // If we have special knowledge that this addrec won't overflow,
1890       // we don't need to do any further analysis.
1891       if (AR->hasNoSignedWrap())
1892         return getAddRecExpr(
1893             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1894             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1895 
1896       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1897       // Note that this serves two purposes: It filters out loops that are
1898       // simply not analyzable, and it covers the case where this code is
1899       // being called from within backedge-taken count analysis, such that
1900       // attempting to ask for the backedge-taken count would likely result
1901       // in infinite recursion. In the later case, the analysis code will
1902       // cope with a conservative value, and it will take care to purge
1903       // that value once it has finished.
1904       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1905       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1906         // Manually compute the final value for AR, checking for
1907         // overflow.
1908 
1909         // Check whether the backedge-taken count can be losslessly casted to
1910         // the addrec's type. The count is always unsigned.
1911         const SCEV *CastedMaxBECount =
1912           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1913         const SCEV *RecastedMaxBECount =
1914           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1915         if (MaxBECount == RecastedMaxBECount) {
1916           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1917           // Check whether Start+Step*MaxBECount has no signed overflow.
1918           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1919                                         SCEV::FlagAnyWrap, Depth + 1);
1920           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1921                                                           SCEV::FlagAnyWrap,
1922                                                           Depth + 1),
1923                                                WideTy, Depth + 1);
1924           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1925           const SCEV *WideMaxBECount =
1926             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1927           const SCEV *OperandExtendedAdd =
1928             getAddExpr(WideStart,
1929                        getMulExpr(WideMaxBECount,
1930                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1931                                   SCEV::FlagAnyWrap, Depth + 1),
1932                        SCEV::FlagAnyWrap, Depth + 1);
1933           if (SAdd == OperandExtendedAdd) {
1934             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1935             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1936             // Return the expression with the addrec on the outside.
1937             return getAddRecExpr(
1938                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1939                                                          Depth + 1),
1940                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1941                 AR->getNoWrapFlags());
1942           }
1943           // Similar to above, only this time treat the step value as unsigned.
1944           // This covers loops that count up with an unsigned step.
1945           OperandExtendedAdd =
1946             getAddExpr(WideStart,
1947                        getMulExpr(WideMaxBECount,
1948                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1949                                   SCEV::FlagAnyWrap, Depth + 1),
1950                        SCEV::FlagAnyWrap, Depth + 1);
1951           if (SAdd == OperandExtendedAdd) {
1952             // If AR wraps around then
1953             //
1954             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1955             // => SAdd != OperandExtendedAdd
1956             //
1957             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1958             // (SAdd == OperandExtendedAdd => AR is NW)
1959 
1960             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1961 
1962             // Return the expression with the addrec on the outside.
1963             return getAddRecExpr(
1964                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1965                                                          Depth + 1),
1966                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1967                 AR->getNoWrapFlags());
1968           }
1969         }
1970       }
1971 
1972       // Normally, in the cases we can prove no-overflow via a
1973       // backedge guarding condition, we can also compute a backedge
1974       // taken count for the loop.  The exceptions are assumptions and
1975       // guards present in the loop -- SCEV is not great at exploiting
1976       // these to compute max backedge taken counts, but can still use
1977       // these to prove lack of overflow.  Use this fact to avoid
1978       // doing extra work that may not pay off.
1979 
1980       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1981           !AC.assumptions().empty()) {
1982         // If the backedge is guarded by a comparison with the pre-inc
1983         // value the addrec is safe. Also, if the entry is guarded by
1984         // a comparison with the start value and the backedge is
1985         // guarded by a comparison with the post-inc value, the addrec
1986         // is safe.
1987         ICmpInst::Predicate Pred;
1988         const SCEV *OverflowLimit =
1989             getSignedOverflowLimitForStep(Step, &Pred, this);
1990         if (OverflowLimit &&
1991             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1992              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1993               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1994                                           OverflowLimit)))) {
1995           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1996           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1997           return getAddRecExpr(
1998               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1999               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2000         }
2001       }
2002 
2003       // If Start and Step are constants, check if we can apply this
2004       // transformation:
2005       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
2006       auto *SC1 = dyn_cast<SCEVConstant>(Start);
2007       auto *SC2 = dyn_cast<SCEVConstant>(Step);
2008       if (SC1 && SC2) {
2009         const APInt &C1 = SC1->getAPInt();
2010         const APInt &C2 = SC2->getAPInt();
2011         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
2012             C2.isPowerOf2()) {
2013           Start = getSignExtendExpr(Start, Ty, Depth + 1);
2014           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
2015                                             AR->getNoWrapFlags());
2016           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty, Depth + 1),
2017                             SCEV::FlagAnyWrap, Depth + 1);
2018         }
2019       }
2020 
2021       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2022         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2023         return getAddRecExpr(
2024             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2025             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2026       }
2027     }
2028 
2029   // If the input value is provably positive and we could not simplify
2030   // away the sext build a zext instead.
2031   if (isKnownNonNegative(Op))
2032     return getZeroExtendExpr(Op, Ty, Depth + 1);
2033 
2034   // The cast wasn't folded; create an explicit cast node.
2035   // Recompute the insert position, as it may have been invalidated.
2036   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2037   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2038                                                    Op, Ty);
2039   UniqueSCEVs.InsertNode(S, IP);
2040   addToLoopUseLists(S);
2041   return S;
2042 }
2043 
2044 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2045 /// unspecified bits out to the given type.
2046 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2047                                               Type *Ty) {
2048   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2049          "This is not an extending conversion!");
2050   assert(isSCEVable(Ty) &&
2051          "This is not a conversion to a SCEVable type!");
2052   Ty = getEffectiveSCEVType(Ty);
2053 
2054   // Sign-extend negative constants.
2055   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2056     if (SC->getAPInt().isNegative())
2057       return getSignExtendExpr(Op, Ty);
2058 
2059   // Peel off a truncate cast.
2060   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2061     const SCEV *NewOp = T->getOperand();
2062     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2063       return getAnyExtendExpr(NewOp, Ty);
2064     return getTruncateOrNoop(NewOp, Ty);
2065   }
2066 
2067   // Next try a zext cast. If the cast is folded, use it.
2068   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2069   if (!isa<SCEVZeroExtendExpr>(ZExt))
2070     return ZExt;
2071 
2072   // Next try a sext cast. If the cast is folded, use it.
2073   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2074   if (!isa<SCEVSignExtendExpr>(SExt))
2075     return SExt;
2076 
2077   // Force the cast to be folded into the operands of an addrec.
2078   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2079     SmallVector<const SCEV *, 4> Ops;
2080     for (const SCEV *Op : AR->operands())
2081       Ops.push_back(getAnyExtendExpr(Op, Ty));
2082     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2083   }
2084 
2085   // If the expression is obviously signed, use the sext cast value.
2086   if (isa<SCEVSMaxExpr>(Op))
2087     return SExt;
2088 
2089   // Absent any other information, use the zext cast value.
2090   return ZExt;
2091 }
2092 
2093 /// Process the given Ops list, which is a list of operands to be added under
2094 /// the given scale, update the given map. This is a helper function for
2095 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2096 /// that would form an add expression like this:
2097 ///
2098 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2099 ///
2100 /// where A and B are constants, update the map with these values:
2101 ///
2102 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2103 ///
2104 /// and add 13 + A*B*29 to AccumulatedConstant.
2105 /// This will allow getAddRecExpr to produce this:
2106 ///
2107 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2108 ///
2109 /// This form often exposes folding opportunities that are hidden in
2110 /// the original operand list.
2111 ///
2112 /// Return true iff it appears that any interesting folding opportunities
2113 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2114 /// the common case where no interesting opportunities are present, and
2115 /// is also used as a check to avoid infinite recursion.
2116 static bool
2117 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2118                              SmallVectorImpl<const SCEV *> &NewOps,
2119                              APInt &AccumulatedConstant,
2120                              const SCEV *const *Ops, size_t NumOperands,
2121                              const APInt &Scale,
2122                              ScalarEvolution &SE) {
2123   bool Interesting = false;
2124 
2125   // Iterate over the add operands. They are sorted, with constants first.
2126   unsigned i = 0;
2127   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2128     ++i;
2129     // Pull a buried constant out to the outside.
2130     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2131       Interesting = true;
2132     AccumulatedConstant += Scale * C->getAPInt();
2133   }
2134 
2135   // Next comes everything else. We're especially interested in multiplies
2136   // here, but they're in the middle, so just visit the rest with one loop.
2137   for (; i != NumOperands; ++i) {
2138     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2139     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2140       APInt NewScale =
2141           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2142       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2143         // A multiplication of a constant with another add; recurse.
2144         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2145         Interesting |=
2146           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2147                                        Add->op_begin(), Add->getNumOperands(),
2148                                        NewScale, SE);
2149       } else {
2150         // A multiplication of a constant with some other value. Update
2151         // the map.
2152         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2153         const SCEV *Key = SE.getMulExpr(MulOps);
2154         auto Pair = M.insert({Key, NewScale});
2155         if (Pair.second) {
2156           NewOps.push_back(Pair.first->first);
2157         } else {
2158           Pair.first->second += NewScale;
2159           // The map already had an entry for this value, which may indicate
2160           // a folding opportunity.
2161           Interesting = true;
2162         }
2163       }
2164     } else {
2165       // An ordinary operand. Update the map.
2166       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2167           M.insert({Ops[i], Scale});
2168       if (Pair.second) {
2169         NewOps.push_back(Pair.first->first);
2170       } else {
2171         Pair.first->second += Scale;
2172         // The map already had an entry for this value, which may indicate
2173         // a folding opportunity.
2174         Interesting = true;
2175       }
2176     }
2177   }
2178 
2179   return Interesting;
2180 }
2181 
2182 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2183 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2184 // can't-overflow flags for the operation if possible.
2185 static SCEV::NoWrapFlags
2186 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2187                       const SmallVectorImpl<const SCEV *> &Ops,
2188                       SCEV::NoWrapFlags Flags) {
2189   using namespace std::placeholders;
2190 
2191   using OBO = OverflowingBinaryOperator;
2192 
2193   bool CanAnalyze =
2194       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2195   (void)CanAnalyze;
2196   assert(CanAnalyze && "don't call from other places!");
2197 
2198   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2199   SCEV::NoWrapFlags SignOrUnsignWrap =
2200       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2201 
2202   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2203   auto IsKnownNonNegative = [&](const SCEV *S) {
2204     return SE->isKnownNonNegative(S);
2205   };
2206 
2207   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2208     Flags =
2209         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2210 
2211   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2212 
2213   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
2214       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
2215 
2216     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2217     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2218 
2219     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2220     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2221       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2222           Instruction::Add, C, OBO::NoSignedWrap);
2223       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2224         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2225     }
2226     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2227       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2228           Instruction::Add, C, OBO::NoUnsignedWrap);
2229       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2230         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2231     }
2232   }
2233 
2234   return Flags;
2235 }
2236 
2237 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2238   if (!isLoopInvariant(S, L))
2239     return false;
2240   // If a value depends on a SCEVUnknown which is defined after the loop, we
2241   // conservatively assume that we cannot calculate it at the loop's entry.
2242   struct FindDominatedSCEVUnknown {
2243     bool Found = false;
2244     const Loop *L;
2245     DominatorTree &DT;
2246     LoopInfo &LI;
2247 
2248     FindDominatedSCEVUnknown(const Loop *L, DominatorTree &DT, LoopInfo &LI)
2249         : L(L), DT(DT), LI(LI) {}
2250 
2251     bool checkSCEVUnknown(const SCEVUnknown *SU) {
2252       if (auto *I = dyn_cast<Instruction>(SU->getValue())) {
2253         if (DT.dominates(L->getHeader(), I->getParent()))
2254           Found = true;
2255         else
2256           assert(DT.dominates(I->getParent(), L->getHeader()) &&
2257                  "No dominance relationship between SCEV and loop?");
2258       }
2259       return false;
2260     }
2261 
2262     bool follow(const SCEV *S) {
2263       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
2264       case scConstant:
2265         return false;
2266       case scAddRecExpr:
2267       case scTruncate:
2268       case scZeroExtend:
2269       case scSignExtend:
2270       case scAddExpr:
2271       case scMulExpr:
2272       case scUMaxExpr:
2273       case scSMaxExpr:
2274       case scUDivExpr:
2275         return true;
2276       case scUnknown:
2277         return checkSCEVUnknown(cast<SCEVUnknown>(S));
2278       case scCouldNotCompute:
2279         llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2280       }
2281       return false;
2282     }
2283 
2284     bool isDone() { return Found; }
2285   };
2286 
2287   FindDominatedSCEVUnknown FSU(L, DT, LI);
2288   SCEVTraversal<FindDominatedSCEVUnknown> ST(FSU);
2289   ST.visitAll(S);
2290   return !FSU.Found;
2291 }
2292 
2293 /// Get a canonical add expression, or something simpler if possible.
2294 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2295                                         SCEV::NoWrapFlags Flags,
2296                                         unsigned Depth) {
2297   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2298          "only nuw or nsw allowed");
2299   assert(!Ops.empty() && "Cannot get empty add!");
2300   if (Ops.size() == 1) return Ops[0];
2301 #ifndef NDEBUG
2302   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2303   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2304     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2305            "SCEVAddExpr operand types don't match!");
2306 #endif
2307 
2308   // Sort by complexity, this groups all similar expression types together.
2309   GroupByComplexity(Ops, &LI, DT);
2310 
2311   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2312 
2313   // If there are any constants, fold them together.
2314   unsigned Idx = 0;
2315   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2316     ++Idx;
2317     assert(Idx < Ops.size());
2318     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2319       // We found two constants, fold them together!
2320       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2321       if (Ops.size() == 2) return Ops[0];
2322       Ops.erase(Ops.begin()+1);  // Erase the folded element
2323       LHSC = cast<SCEVConstant>(Ops[0]);
2324     }
2325 
2326     // If we are left with a constant zero being added, strip it off.
2327     if (LHSC->getValue()->isZero()) {
2328       Ops.erase(Ops.begin());
2329       --Idx;
2330     }
2331 
2332     if (Ops.size() == 1) return Ops[0];
2333   }
2334 
2335   // Limit recursion calls depth.
2336   if (Depth > MaxArithDepth)
2337     return getOrCreateAddExpr(Ops, Flags);
2338 
2339   // Okay, check to see if the same value occurs in the operand list more than
2340   // once.  If so, merge them together into an multiply expression.  Since we
2341   // sorted the list, these values are required to be adjacent.
2342   Type *Ty = Ops[0]->getType();
2343   bool FoundMatch = false;
2344   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2345     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2346       // Scan ahead to count how many equal operands there are.
2347       unsigned Count = 2;
2348       while (i+Count != e && Ops[i+Count] == Ops[i])
2349         ++Count;
2350       // Merge the values into a multiply.
2351       const SCEV *Scale = getConstant(Ty, Count);
2352       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2353       if (Ops.size() == Count)
2354         return Mul;
2355       Ops[i] = Mul;
2356       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2357       --i; e -= Count - 1;
2358       FoundMatch = true;
2359     }
2360   if (FoundMatch)
2361     return getAddExpr(Ops, Flags, Depth + 1);
2362 
2363   // Check for truncates. If all the operands are truncated from the same
2364   // type, see if factoring out the truncate would permit the result to be
2365   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2366   // if the contents of the resulting outer trunc fold to something simple.
2367   auto FindTruncSrcType = [&]() -> Type * {
2368     // We're ultimately looking to fold an addrec of truncs and muls of only
2369     // constants and truncs, so if we find any other types of SCEV
2370     // as operands of the addrec then we bail and return nullptr here.
2371     // Otherwise, we return the type of the operand of a trunc that we find.
2372     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2373       return T->getOperand()->getType();
2374     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2375       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2376       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2377         return T->getOperand()->getType();
2378     }
2379     return nullptr;
2380   };
2381   if (auto *SrcType = FindTruncSrcType()) {
2382     SmallVector<const SCEV *, 8> LargeOps;
2383     bool Ok = true;
2384     // Check all the operands to see if they can be represented in the
2385     // source type of the truncate.
2386     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2387       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2388         if (T->getOperand()->getType() != SrcType) {
2389           Ok = false;
2390           break;
2391         }
2392         LargeOps.push_back(T->getOperand());
2393       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2394         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2395       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2396         SmallVector<const SCEV *, 8> LargeMulOps;
2397         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2398           if (const SCEVTruncateExpr *T =
2399                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2400             if (T->getOperand()->getType() != SrcType) {
2401               Ok = false;
2402               break;
2403             }
2404             LargeMulOps.push_back(T->getOperand());
2405           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2406             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2407           } else {
2408             Ok = false;
2409             break;
2410           }
2411         }
2412         if (Ok)
2413           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2414       } else {
2415         Ok = false;
2416         break;
2417       }
2418     }
2419     if (Ok) {
2420       // Evaluate the expression in the larger type.
2421       const SCEV *Fold = getAddExpr(LargeOps, Flags, Depth + 1);
2422       // If it folds to something simple, use it. Otherwise, don't.
2423       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2424         return getTruncateExpr(Fold, Ty);
2425     }
2426   }
2427 
2428   // Skip past any other cast SCEVs.
2429   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2430     ++Idx;
2431 
2432   // If there are add operands they would be next.
2433   if (Idx < Ops.size()) {
2434     bool DeletedAdd = false;
2435     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2436       if (Ops.size() > AddOpsInlineThreshold ||
2437           Add->getNumOperands() > AddOpsInlineThreshold)
2438         break;
2439       // If we have an add, expand the add operands onto the end of the operands
2440       // list.
2441       Ops.erase(Ops.begin()+Idx);
2442       Ops.append(Add->op_begin(), Add->op_end());
2443       DeletedAdd = true;
2444     }
2445 
2446     // If we deleted at least one add, we added operands to the end of the list,
2447     // and they are not necessarily sorted.  Recurse to resort and resimplify
2448     // any operands we just acquired.
2449     if (DeletedAdd)
2450       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2451   }
2452 
2453   // Skip over the add expression until we get to a multiply.
2454   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2455     ++Idx;
2456 
2457   // Check to see if there are any folding opportunities present with
2458   // operands multiplied by constant values.
2459   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2460     uint64_t BitWidth = getTypeSizeInBits(Ty);
2461     DenseMap<const SCEV *, APInt> M;
2462     SmallVector<const SCEV *, 8> NewOps;
2463     APInt AccumulatedConstant(BitWidth, 0);
2464     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2465                                      Ops.data(), Ops.size(),
2466                                      APInt(BitWidth, 1), *this)) {
2467       struct APIntCompare {
2468         bool operator()(const APInt &LHS, const APInt &RHS) const {
2469           return LHS.ult(RHS);
2470         }
2471       };
2472 
2473       // Some interesting folding opportunity is present, so its worthwhile to
2474       // re-generate the operands list. Group the operands by constant scale,
2475       // to avoid multiplying by the same constant scale multiple times.
2476       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2477       for (const SCEV *NewOp : NewOps)
2478         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2479       // Re-generate the operands list.
2480       Ops.clear();
2481       if (AccumulatedConstant != 0)
2482         Ops.push_back(getConstant(AccumulatedConstant));
2483       for (auto &MulOp : MulOpLists)
2484         if (MulOp.first != 0)
2485           Ops.push_back(getMulExpr(
2486               getConstant(MulOp.first),
2487               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2488               SCEV::FlagAnyWrap, Depth + 1));
2489       if (Ops.empty())
2490         return getZero(Ty);
2491       if (Ops.size() == 1)
2492         return Ops[0];
2493       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2494     }
2495   }
2496 
2497   // If we are adding something to a multiply expression, make sure the
2498   // something is not already an operand of the multiply.  If so, merge it into
2499   // the multiply.
2500   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2501     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2502     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2503       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2504       if (isa<SCEVConstant>(MulOpSCEV))
2505         continue;
2506       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2507         if (MulOpSCEV == Ops[AddOp]) {
2508           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2509           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2510           if (Mul->getNumOperands() != 2) {
2511             // If the multiply has more than two operands, we must get the
2512             // Y*Z term.
2513             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2514                                                 Mul->op_begin()+MulOp);
2515             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2516             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2517           }
2518           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2519           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2520           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2521                                             SCEV::FlagAnyWrap, Depth + 1);
2522           if (Ops.size() == 2) return OuterMul;
2523           if (AddOp < Idx) {
2524             Ops.erase(Ops.begin()+AddOp);
2525             Ops.erase(Ops.begin()+Idx-1);
2526           } else {
2527             Ops.erase(Ops.begin()+Idx);
2528             Ops.erase(Ops.begin()+AddOp-1);
2529           }
2530           Ops.push_back(OuterMul);
2531           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2532         }
2533 
2534       // Check this multiply against other multiplies being added together.
2535       for (unsigned OtherMulIdx = Idx+1;
2536            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2537            ++OtherMulIdx) {
2538         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2539         // If MulOp occurs in OtherMul, we can fold the two multiplies
2540         // together.
2541         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2542              OMulOp != e; ++OMulOp)
2543           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2544             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2545             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2546             if (Mul->getNumOperands() != 2) {
2547               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2548                                                   Mul->op_begin()+MulOp);
2549               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2550               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2551             }
2552             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2553             if (OtherMul->getNumOperands() != 2) {
2554               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2555                                                   OtherMul->op_begin()+OMulOp);
2556               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2557               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2558             }
2559             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2560             const SCEV *InnerMulSum =
2561                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2562             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2563                                               SCEV::FlagAnyWrap, Depth + 1);
2564             if (Ops.size() == 2) return OuterMul;
2565             Ops.erase(Ops.begin()+Idx);
2566             Ops.erase(Ops.begin()+OtherMulIdx-1);
2567             Ops.push_back(OuterMul);
2568             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2569           }
2570       }
2571     }
2572   }
2573 
2574   // If there are any add recurrences in the operands list, see if any other
2575   // added values are loop invariant.  If so, we can fold them into the
2576   // recurrence.
2577   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2578     ++Idx;
2579 
2580   // Scan over all recurrences, trying to fold loop invariants into them.
2581   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2582     // Scan all of the other operands to this add and add them to the vector if
2583     // they are loop invariant w.r.t. the recurrence.
2584     SmallVector<const SCEV *, 8> LIOps;
2585     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2586     const Loop *AddRecLoop = AddRec->getLoop();
2587     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2588       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2589         LIOps.push_back(Ops[i]);
2590         Ops.erase(Ops.begin()+i);
2591         --i; --e;
2592       }
2593 
2594     // If we found some loop invariants, fold them into the recurrence.
2595     if (!LIOps.empty()) {
2596       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2597       LIOps.push_back(AddRec->getStart());
2598 
2599       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2600                                              AddRec->op_end());
2601       // This follows from the fact that the no-wrap flags on the outer add
2602       // expression are applicable on the 0th iteration, when the add recurrence
2603       // will be equal to its start value.
2604       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2605 
2606       // Build the new addrec. Propagate the NUW and NSW flags if both the
2607       // outer add and the inner addrec are guaranteed to have no overflow.
2608       // Always propagate NW.
2609       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2610       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2611 
2612       // If all of the other operands were loop invariant, we are done.
2613       if (Ops.size() == 1) return NewRec;
2614 
2615       // Otherwise, add the folded AddRec by the non-invariant parts.
2616       for (unsigned i = 0;; ++i)
2617         if (Ops[i] == AddRec) {
2618           Ops[i] = NewRec;
2619           break;
2620         }
2621       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2622     }
2623 
2624     // Okay, if there weren't any loop invariants to be folded, check to see if
2625     // there are multiple AddRec's with the same loop induction variable being
2626     // added together.  If so, we can fold them.
2627     for (unsigned OtherIdx = Idx+1;
2628          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2629          ++OtherIdx) {
2630       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2631       // so that the 1st found AddRecExpr is dominated by all others.
2632       assert(DT.dominates(
2633            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2634            AddRec->getLoop()->getHeader()) &&
2635         "AddRecExprs are not sorted in reverse dominance order?");
2636       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2637         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2638         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2639                                                AddRec->op_end());
2640         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2641              ++OtherIdx) {
2642           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2643           if (OtherAddRec->getLoop() == AddRecLoop) {
2644             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2645                  i != e; ++i) {
2646               if (i >= AddRecOps.size()) {
2647                 AddRecOps.append(OtherAddRec->op_begin()+i,
2648                                  OtherAddRec->op_end());
2649                 break;
2650               }
2651               SmallVector<const SCEV *, 2> TwoOps = {
2652                   AddRecOps[i], OtherAddRec->getOperand(i)};
2653               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2654             }
2655             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2656           }
2657         }
2658         // Step size has changed, so we cannot guarantee no self-wraparound.
2659         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2660         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2661       }
2662     }
2663 
2664     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2665     // next one.
2666   }
2667 
2668   // Okay, it looks like we really DO need an add expr.  Check to see if we
2669   // already have one, otherwise create a new one.
2670   return getOrCreateAddExpr(Ops, Flags);
2671 }
2672 
2673 const SCEV *
2674 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2675                                     SCEV::NoWrapFlags Flags) {
2676   FoldingSetNodeID ID;
2677   ID.AddInteger(scAddExpr);
2678   for (const SCEV *Op : Ops)
2679     ID.AddPointer(Op);
2680   void *IP = nullptr;
2681   SCEVAddExpr *S =
2682       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2683   if (!S) {
2684     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2685     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2686     S = new (SCEVAllocator)
2687         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2688     UniqueSCEVs.InsertNode(S, IP);
2689     addToLoopUseLists(S);
2690   }
2691   S->setNoWrapFlags(Flags);
2692   return S;
2693 }
2694 
2695 const SCEV *
2696 ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2697                                     SCEV::NoWrapFlags Flags) {
2698   FoldingSetNodeID ID;
2699   ID.AddInteger(scMulExpr);
2700   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2701     ID.AddPointer(Ops[i]);
2702   void *IP = nullptr;
2703   SCEVMulExpr *S =
2704     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2705   if (!S) {
2706     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2707     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2708     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2709                                         O, Ops.size());
2710     UniqueSCEVs.InsertNode(S, IP);
2711     addToLoopUseLists(S);
2712   }
2713   S->setNoWrapFlags(Flags);
2714   return S;
2715 }
2716 
2717 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2718   uint64_t k = i*j;
2719   if (j > 1 && k / j != i) Overflow = true;
2720   return k;
2721 }
2722 
2723 /// Compute the result of "n choose k", the binomial coefficient.  If an
2724 /// intermediate computation overflows, Overflow will be set and the return will
2725 /// be garbage. Overflow is not cleared on absence of overflow.
2726 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2727   // We use the multiplicative formula:
2728   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2729   // At each iteration, we take the n-th term of the numeral and divide by the
2730   // (k-n)th term of the denominator.  This division will always produce an
2731   // integral result, and helps reduce the chance of overflow in the
2732   // intermediate computations. However, we can still overflow even when the
2733   // final result would fit.
2734 
2735   if (n == 0 || n == k) return 1;
2736   if (k > n) return 0;
2737 
2738   if (k > n/2)
2739     k = n-k;
2740 
2741   uint64_t r = 1;
2742   for (uint64_t i = 1; i <= k; ++i) {
2743     r = umul_ov(r, n-(i-1), Overflow);
2744     r /= i;
2745   }
2746   return r;
2747 }
2748 
2749 /// Determine if any of the operands in this SCEV are a constant or if
2750 /// any of the add or multiply expressions in this SCEV contain a constant.
2751 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2752   struct FindConstantInAddMulChain {
2753     bool FoundConstant = false;
2754 
2755     bool follow(const SCEV *S) {
2756       FoundConstant |= isa<SCEVConstant>(S);
2757       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2758     }
2759 
2760     bool isDone() const {
2761       return FoundConstant;
2762     }
2763   };
2764 
2765   FindConstantInAddMulChain F;
2766   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2767   ST.visitAll(StartExpr);
2768   return F.FoundConstant;
2769 }
2770 
2771 /// Get a canonical multiply expression, or something simpler if possible.
2772 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2773                                         SCEV::NoWrapFlags Flags,
2774                                         unsigned Depth) {
2775   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2776          "only nuw or nsw allowed");
2777   assert(!Ops.empty() && "Cannot get empty mul!");
2778   if (Ops.size() == 1) return Ops[0];
2779 #ifndef NDEBUG
2780   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2781   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2782     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2783            "SCEVMulExpr operand types don't match!");
2784 #endif
2785 
2786   // Sort by complexity, this groups all similar expression types together.
2787   GroupByComplexity(Ops, &LI, DT);
2788 
2789   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2790 
2791   // Limit recursion calls depth.
2792   if (Depth > MaxArithDepth)
2793     return getOrCreateMulExpr(Ops, Flags);
2794 
2795   // If there are any constants, fold them together.
2796   unsigned Idx = 0;
2797   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2798 
2799     // C1*(C2+V) -> C1*C2 + C1*V
2800     if (Ops.size() == 2)
2801         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2802           // If any of Add's ops are Adds or Muls with a constant,
2803           // apply this transformation as well.
2804           if (Add->getNumOperands() == 2)
2805             // TODO: There are some cases where this transformation is not
2806             // profitable, for example:
2807             // Add = (C0 + X) * Y + Z.
2808             // Maybe the scope of this transformation should be narrowed down.
2809             if (containsConstantInAddMulChain(Add))
2810               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2811                                            SCEV::FlagAnyWrap, Depth + 1),
2812                                 getMulExpr(LHSC, Add->getOperand(1),
2813                                            SCEV::FlagAnyWrap, Depth + 1),
2814                                 SCEV::FlagAnyWrap, Depth + 1);
2815 
2816     ++Idx;
2817     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2818       // We found two constants, fold them together!
2819       ConstantInt *Fold =
2820           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2821       Ops[0] = getConstant(Fold);
2822       Ops.erase(Ops.begin()+1);  // Erase the folded element
2823       if (Ops.size() == 1) return Ops[0];
2824       LHSC = cast<SCEVConstant>(Ops[0]);
2825     }
2826 
2827     // If we are left with a constant one being multiplied, strip it off.
2828     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2829       Ops.erase(Ops.begin());
2830       --Idx;
2831     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2832       // If we have a multiply of zero, it will always be zero.
2833       return Ops[0];
2834     } else if (Ops[0]->isAllOnesValue()) {
2835       // If we have a mul by -1 of an add, try distributing the -1 among the
2836       // add operands.
2837       if (Ops.size() == 2) {
2838         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2839           SmallVector<const SCEV *, 4> NewOps;
2840           bool AnyFolded = false;
2841           for (const SCEV *AddOp : Add->operands()) {
2842             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2843                                          Depth + 1);
2844             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2845             NewOps.push_back(Mul);
2846           }
2847           if (AnyFolded)
2848             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2849         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2850           // Negation preserves a recurrence's no self-wrap property.
2851           SmallVector<const SCEV *, 4> Operands;
2852           for (const SCEV *AddRecOp : AddRec->operands())
2853             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2854                                           Depth + 1));
2855 
2856           return getAddRecExpr(Operands, AddRec->getLoop(),
2857                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2858         }
2859       }
2860     }
2861 
2862     if (Ops.size() == 1)
2863       return Ops[0];
2864   }
2865 
2866   // Skip over the add expression until we get to a multiply.
2867   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2868     ++Idx;
2869 
2870   // If there are mul operands inline them all into this expression.
2871   if (Idx < Ops.size()) {
2872     bool DeletedMul = false;
2873     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2874       if (Ops.size() > MulOpsInlineThreshold)
2875         break;
2876       // If we have an mul, expand the mul operands onto the end of the
2877       // operands list.
2878       Ops.erase(Ops.begin()+Idx);
2879       Ops.append(Mul->op_begin(), Mul->op_end());
2880       DeletedMul = true;
2881     }
2882 
2883     // If we deleted at least one mul, we added operands to the end of the
2884     // list, and they are not necessarily sorted.  Recurse to resort and
2885     // resimplify any operands we just acquired.
2886     if (DeletedMul)
2887       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2888   }
2889 
2890   // If there are any add recurrences in the operands list, see if any other
2891   // added values are loop invariant.  If so, we can fold them into the
2892   // recurrence.
2893   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2894     ++Idx;
2895 
2896   // Scan over all recurrences, trying to fold loop invariants into them.
2897   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2898     // Scan all of the other operands to this mul and add them to the vector
2899     // if they are loop invariant w.r.t. the recurrence.
2900     SmallVector<const SCEV *, 8> LIOps;
2901     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2902     const Loop *AddRecLoop = AddRec->getLoop();
2903     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2904       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2905         LIOps.push_back(Ops[i]);
2906         Ops.erase(Ops.begin()+i);
2907         --i; --e;
2908       }
2909 
2910     // If we found some loop invariants, fold them into the recurrence.
2911     if (!LIOps.empty()) {
2912       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2913       SmallVector<const SCEV *, 4> NewOps;
2914       NewOps.reserve(AddRec->getNumOperands());
2915       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2916       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2917         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2918                                     SCEV::FlagAnyWrap, Depth + 1));
2919 
2920       // Build the new addrec. Propagate the NUW and NSW flags if both the
2921       // outer mul and the inner addrec are guaranteed to have no overflow.
2922       //
2923       // No self-wrap cannot be guaranteed after changing the step size, but
2924       // will be inferred if either NUW or NSW is true.
2925       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2926       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2927 
2928       // If all of the other operands were loop invariant, we are done.
2929       if (Ops.size() == 1) return NewRec;
2930 
2931       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2932       for (unsigned i = 0;; ++i)
2933         if (Ops[i] == AddRec) {
2934           Ops[i] = NewRec;
2935           break;
2936         }
2937       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2938     }
2939 
2940     // Okay, if there weren't any loop invariants to be folded, check to see
2941     // if there are multiple AddRec's with the same loop induction variable
2942     // being multiplied together.  If so, we can fold them.
2943 
2944     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2945     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2946     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2947     //   ]]],+,...up to x=2n}.
2948     // Note that the arguments to choose() are always integers with values
2949     // known at compile time, never SCEV objects.
2950     //
2951     // The implementation avoids pointless extra computations when the two
2952     // addrec's are of different length (mathematically, it's equivalent to
2953     // an infinite stream of zeros on the right).
2954     bool OpsModified = false;
2955     for (unsigned OtherIdx = Idx+1;
2956          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2957          ++OtherIdx) {
2958       const SCEVAddRecExpr *OtherAddRec =
2959         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2960       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2961         continue;
2962 
2963       // Limit max number of arguments to avoid creation of unreasonably big
2964       // SCEVAddRecs with very complex operands.
2965       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
2966           MaxAddRecSize)
2967         continue;
2968 
2969       bool Overflow = false;
2970       Type *Ty = AddRec->getType();
2971       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2972       SmallVector<const SCEV*, 7> AddRecOps;
2973       for (int x = 0, xe = AddRec->getNumOperands() +
2974              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2975         const SCEV *Term = getZero(Ty);
2976         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2977           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2978           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2979                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2980                z < ze && !Overflow; ++z) {
2981             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2982             uint64_t Coeff;
2983             if (LargerThan64Bits)
2984               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2985             else
2986               Coeff = Coeff1*Coeff2;
2987             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2988             const SCEV *Term1 = AddRec->getOperand(y-z);
2989             const SCEV *Term2 = OtherAddRec->getOperand(z);
2990             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1, Term2,
2991                                                SCEV::FlagAnyWrap, Depth + 1),
2992                               SCEV::FlagAnyWrap, Depth + 1);
2993           }
2994         }
2995         AddRecOps.push_back(Term);
2996       }
2997       if (!Overflow) {
2998         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2999                                               SCEV::FlagAnyWrap);
3000         if (Ops.size() == 2) return NewAddRec;
3001         Ops[Idx] = NewAddRec;
3002         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3003         OpsModified = true;
3004         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3005         if (!AddRec)
3006           break;
3007       }
3008     }
3009     if (OpsModified)
3010       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3011 
3012     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3013     // next one.
3014   }
3015 
3016   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3017   // already have one, otherwise create a new one.
3018   return getOrCreateMulExpr(Ops, Flags);
3019 }
3020 
3021 /// Represents an unsigned remainder expression based on unsigned division.
3022 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3023                                          const SCEV *RHS) {
3024   assert(getEffectiveSCEVType(LHS->getType()) ==
3025          getEffectiveSCEVType(RHS->getType()) &&
3026          "SCEVURemExpr operand types don't match!");
3027 
3028   // Short-circuit easy cases
3029   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3030     // If constant is one, the result is trivial
3031     if (RHSC->getValue()->isOne())
3032       return getZero(LHS->getType()); // X urem 1 --> 0
3033 
3034     // If constant is a power of two, fold into a zext(trunc(LHS)).
3035     if (RHSC->getAPInt().isPowerOf2()) {
3036       Type *FullTy = LHS->getType();
3037       Type *TruncTy =
3038           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3039       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3040     }
3041   }
3042 
3043   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3044   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3045   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3046   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3047 }
3048 
3049 /// Get a canonical unsigned division expression, or something simpler if
3050 /// possible.
3051 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3052                                          const SCEV *RHS) {
3053   assert(getEffectiveSCEVType(LHS->getType()) ==
3054          getEffectiveSCEVType(RHS->getType()) &&
3055          "SCEVUDivExpr operand types don't match!");
3056 
3057   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3058     if (RHSC->getValue()->isOne())
3059       return LHS;                               // X udiv 1 --> x
3060     // If the denominator is zero, the result of the udiv is undefined. Don't
3061     // try to analyze it, because the resolution chosen here may differ from
3062     // the resolution chosen in other parts of the compiler.
3063     if (!RHSC->getValue()->isZero()) {
3064       // Determine if the division can be folded into the operands of
3065       // its operands.
3066       // TODO: Generalize this to non-constants by using known-bits information.
3067       Type *Ty = LHS->getType();
3068       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3069       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3070       // For non-power-of-two values, effectively round the value up to the
3071       // nearest power of two.
3072       if (!RHSC->getAPInt().isPowerOf2())
3073         ++MaxShiftAmt;
3074       IntegerType *ExtTy =
3075         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3076       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3077         if (const SCEVConstant *Step =
3078             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3079           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3080           const APInt &StepInt = Step->getAPInt();
3081           const APInt &DivInt = RHSC->getAPInt();
3082           if (!StepInt.urem(DivInt) &&
3083               getZeroExtendExpr(AR, ExtTy) ==
3084               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3085                             getZeroExtendExpr(Step, ExtTy),
3086                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3087             SmallVector<const SCEV *, 4> Operands;
3088             for (const SCEV *Op : AR->operands())
3089               Operands.push_back(getUDivExpr(Op, RHS));
3090             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3091           }
3092           /// Get a canonical UDivExpr for a recurrence.
3093           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3094           // We can currently only fold X%N if X is constant.
3095           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3096           if (StartC && !DivInt.urem(StepInt) &&
3097               getZeroExtendExpr(AR, ExtTy) ==
3098               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3099                             getZeroExtendExpr(Step, ExtTy),
3100                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3101             const APInt &StartInt = StartC->getAPInt();
3102             const APInt &StartRem = StartInt.urem(StepInt);
3103             if (StartRem != 0)
3104               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3105                                   AR->getLoop(), SCEV::FlagNW);
3106           }
3107         }
3108       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3109       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3110         SmallVector<const SCEV *, 4> Operands;
3111         for (const SCEV *Op : M->operands())
3112           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3113         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3114           // Find an operand that's safely divisible.
3115           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3116             const SCEV *Op = M->getOperand(i);
3117             const SCEV *Div = getUDivExpr(Op, RHSC);
3118             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3119               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3120                                                       M->op_end());
3121               Operands[i] = Div;
3122               return getMulExpr(Operands);
3123             }
3124           }
3125       }
3126       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3127       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3128         SmallVector<const SCEV *, 4> Operands;
3129         for (const SCEV *Op : A->operands())
3130           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3131         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3132           Operands.clear();
3133           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3134             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3135             if (isa<SCEVUDivExpr>(Op) ||
3136                 getMulExpr(Op, RHS) != A->getOperand(i))
3137               break;
3138             Operands.push_back(Op);
3139           }
3140           if (Operands.size() == A->getNumOperands())
3141             return getAddExpr(Operands);
3142         }
3143       }
3144 
3145       // Fold if both operands are constant.
3146       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3147         Constant *LHSCV = LHSC->getValue();
3148         Constant *RHSCV = RHSC->getValue();
3149         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3150                                                                    RHSCV)));
3151       }
3152     }
3153   }
3154 
3155   FoldingSetNodeID ID;
3156   ID.AddInteger(scUDivExpr);
3157   ID.AddPointer(LHS);
3158   ID.AddPointer(RHS);
3159   void *IP = nullptr;
3160   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3161   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3162                                              LHS, RHS);
3163   UniqueSCEVs.InsertNode(S, IP);
3164   addToLoopUseLists(S);
3165   return S;
3166 }
3167 
3168 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3169   APInt A = C1->getAPInt().abs();
3170   APInt B = C2->getAPInt().abs();
3171   uint32_t ABW = A.getBitWidth();
3172   uint32_t BBW = B.getBitWidth();
3173 
3174   if (ABW > BBW)
3175     B = B.zext(ABW);
3176   else if (ABW < BBW)
3177     A = A.zext(BBW);
3178 
3179   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3180 }
3181 
3182 /// Get a canonical unsigned division expression, or something simpler if
3183 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3184 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3185 /// it's not exact because the udiv may be clearing bits.
3186 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3187                                               const SCEV *RHS) {
3188   // TODO: we could try to find factors in all sorts of things, but for now we
3189   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3190   // end of this file for inspiration.
3191 
3192   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3193   if (!Mul || !Mul->hasNoUnsignedWrap())
3194     return getUDivExpr(LHS, RHS);
3195 
3196   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3197     // If the mulexpr multiplies by a constant, then that constant must be the
3198     // first element of the mulexpr.
3199     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3200       if (LHSCst == RHSCst) {
3201         SmallVector<const SCEV *, 2> Operands;
3202         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3203         return getMulExpr(Operands);
3204       }
3205 
3206       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3207       // that there's a factor provided by one of the other terms. We need to
3208       // check.
3209       APInt Factor = gcd(LHSCst, RHSCst);
3210       if (!Factor.isIntN(1)) {
3211         LHSCst =
3212             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3213         RHSCst =
3214             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3215         SmallVector<const SCEV *, 2> Operands;
3216         Operands.push_back(LHSCst);
3217         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3218         LHS = getMulExpr(Operands);
3219         RHS = RHSCst;
3220         Mul = dyn_cast<SCEVMulExpr>(LHS);
3221         if (!Mul)
3222           return getUDivExactExpr(LHS, RHS);
3223       }
3224     }
3225   }
3226 
3227   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3228     if (Mul->getOperand(i) == RHS) {
3229       SmallVector<const SCEV *, 2> Operands;
3230       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3231       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3232       return getMulExpr(Operands);
3233     }
3234   }
3235 
3236   return getUDivExpr(LHS, RHS);
3237 }
3238 
3239 /// Get an add recurrence expression for the specified loop.  Simplify the
3240 /// expression as much as possible.
3241 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3242                                            const Loop *L,
3243                                            SCEV::NoWrapFlags Flags) {
3244   SmallVector<const SCEV *, 4> Operands;
3245   Operands.push_back(Start);
3246   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3247     if (StepChrec->getLoop() == L) {
3248       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3249       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3250     }
3251 
3252   Operands.push_back(Step);
3253   return getAddRecExpr(Operands, L, Flags);
3254 }
3255 
3256 /// Get an add recurrence expression for the specified loop.  Simplify the
3257 /// expression as much as possible.
3258 const SCEV *
3259 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3260                                const Loop *L, SCEV::NoWrapFlags Flags) {
3261   if (Operands.size() == 1) return Operands[0];
3262 #ifndef NDEBUG
3263   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3264   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3265     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3266            "SCEVAddRecExpr operand types don't match!");
3267   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3268     assert(isLoopInvariant(Operands[i], L) &&
3269            "SCEVAddRecExpr operand is not loop-invariant!");
3270 #endif
3271 
3272   if (Operands.back()->isZero()) {
3273     Operands.pop_back();
3274     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3275   }
3276 
3277   // It's tempting to want to call getMaxBackedgeTakenCount count here and
3278   // use that information to infer NUW and NSW flags. However, computing a
3279   // BE count requires calling getAddRecExpr, so we may not yet have a
3280   // meaningful BE count at this point (and if we don't, we'd be stuck
3281   // with a SCEVCouldNotCompute as the cached BE count).
3282 
3283   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3284 
3285   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3286   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3287     const Loop *NestedLoop = NestedAR->getLoop();
3288     if (L->contains(NestedLoop)
3289             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3290             : (!NestedLoop->contains(L) &&
3291                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3292       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3293                                                   NestedAR->op_end());
3294       Operands[0] = NestedAR->getStart();
3295       // AddRecs require their operands be loop-invariant with respect to their
3296       // loops. Don't perform this transformation if it would break this
3297       // requirement.
3298       bool AllInvariant = all_of(
3299           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3300 
3301       if (AllInvariant) {
3302         // Create a recurrence for the outer loop with the same step size.
3303         //
3304         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3305         // inner recurrence has the same property.
3306         SCEV::NoWrapFlags OuterFlags =
3307           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3308 
3309         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3310         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3311           return isLoopInvariant(Op, NestedLoop);
3312         });
3313 
3314         if (AllInvariant) {
3315           // Ok, both add recurrences are valid after the transformation.
3316           //
3317           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3318           // the outer recurrence has the same property.
3319           SCEV::NoWrapFlags InnerFlags =
3320             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3321           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3322         }
3323       }
3324       // Reset Operands to its original state.
3325       Operands[0] = NestedAR;
3326     }
3327   }
3328 
3329   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3330   // already have one, otherwise create a new one.
3331   FoldingSetNodeID ID;
3332   ID.AddInteger(scAddRecExpr);
3333   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3334     ID.AddPointer(Operands[i]);
3335   ID.AddPointer(L);
3336   void *IP = nullptr;
3337   SCEVAddRecExpr *S =
3338     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3339   if (!S) {
3340     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
3341     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
3342     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
3343                                            O, Operands.size(), L);
3344     UniqueSCEVs.InsertNode(S, IP);
3345     addToLoopUseLists(S);
3346   }
3347   S->setNoWrapFlags(Flags);
3348   return S;
3349 }
3350 
3351 const SCEV *
3352 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3353                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3354   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3355   // getSCEV(Base)->getType() has the same address space as Base->getType()
3356   // because SCEV::getType() preserves the address space.
3357   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3358   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3359   // instruction to its SCEV, because the Instruction may be guarded by control
3360   // flow and the no-overflow bits may not be valid for the expression in any
3361   // context. This can be fixed similarly to how these flags are handled for
3362   // adds.
3363   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3364                                              : SCEV::FlagAnyWrap;
3365 
3366   const SCEV *TotalOffset = getZero(IntPtrTy);
3367   // The array size is unimportant. The first thing we do on CurTy is getting
3368   // its element type.
3369   Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3370   for (const SCEV *IndexExpr : IndexExprs) {
3371     // Compute the (potentially symbolic) offset in bytes for this index.
3372     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3373       // For a struct, add the member offset.
3374       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3375       unsigned FieldNo = Index->getZExtValue();
3376       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3377 
3378       // Add the field offset to the running total offset.
3379       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3380 
3381       // Update CurTy to the type of the field at Index.
3382       CurTy = STy->getTypeAtIndex(Index);
3383     } else {
3384       // Update CurTy to its element type.
3385       CurTy = cast<SequentialType>(CurTy)->getElementType();
3386       // For an array, add the element offset, explicitly scaled.
3387       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3388       // Getelementptr indices are signed.
3389       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3390 
3391       // Multiply the index by the element size to compute the element offset.
3392       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3393 
3394       // Add the element offset to the running total offset.
3395       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3396     }
3397   }
3398 
3399   // Add the total offset from all the GEP indices to the base.
3400   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3401 }
3402 
3403 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3404                                          const SCEV *RHS) {
3405   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3406   return getSMaxExpr(Ops);
3407 }
3408 
3409 const SCEV *
3410 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3411   assert(!Ops.empty() && "Cannot get empty smax!");
3412   if (Ops.size() == 1) return Ops[0];
3413 #ifndef NDEBUG
3414   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3415   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3416     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3417            "SCEVSMaxExpr operand types don't match!");
3418 #endif
3419 
3420   // Sort by complexity, this groups all similar expression types together.
3421   GroupByComplexity(Ops, &LI, DT);
3422 
3423   // If there are any constants, fold them together.
3424   unsigned Idx = 0;
3425   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3426     ++Idx;
3427     assert(Idx < Ops.size());
3428     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3429       // We found two constants, fold them together!
3430       ConstantInt *Fold = ConstantInt::get(
3431           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3432       Ops[0] = getConstant(Fold);
3433       Ops.erase(Ops.begin()+1);  // Erase the folded element
3434       if (Ops.size() == 1) return Ops[0];
3435       LHSC = cast<SCEVConstant>(Ops[0]);
3436     }
3437 
3438     // If we are left with a constant minimum-int, strip it off.
3439     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3440       Ops.erase(Ops.begin());
3441       --Idx;
3442     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3443       // If we have an smax with a constant maximum-int, it will always be
3444       // maximum-int.
3445       return Ops[0];
3446     }
3447 
3448     if (Ops.size() == 1) return Ops[0];
3449   }
3450 
3451   // Find the first SMax
3452   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3453     ++Idx;
3454 
3455   // Check to see if one of the operands is an SMax. If so, expand its operands
3456   // onto our operand list, and recurse to simplify.
3457   if (Idx < Ops.size()) {
3458     bool DeletedSMax = false;
3459     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3460       Ops.erase(Ops.begin()+Idx);
3461       Ops.append(SMax->op_begin(), SMax->op_end());
3462       DeletedSMax = true;
3463     }
3464 
3465     if (DeletedSMax)
3466       return getSMaxExpr(Ops);
3467   }
3468 
3469   // Okay, check to see if the same value occurs in the operand list twice.  If
3470   // so, delete one.  Since we sorted the list, these values are required to
3471   // be adjacent.
3472   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3473     //  X smax Y smax Y  -->  X smax Y
3474     //  X smax Y         -->  X, if X is always greater than Y
3475     if (Ops[i] == Ops[i+1] ||
3476         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3477       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3478       --i; --e;
3479     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3480       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3481       --i; --e;
3482     }
3483 
3484   if (Ops.size() == 1) return Ops[0];
3485 
3486   assert(!Ops.empty() && "Reduced smax down to nothing!");
3487 
3488   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3489   // already have one, otherwise create a new one.
3490   FoldingSetNodeID ID;
3491   ID.AddInteger(scSMaxExpr);
3492   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3493     ID.AddPointer(Ops[i]);
3494   void *IP = nullptr;
3495   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3496   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3497   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3498   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3499                                              O, Ops.size());
3500   UniqueSCEVs.InsertNode(S, IP);
3501   addToLoopUseLists(S);
3502   return S;
3503 }
3504 
3505 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3506                                          const SCEV *RHS) {
3507   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3508   return getUMaxExpr(Ops);
3509 }
3510 
3511 const SCEV *
3512 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3513   assert(!Ops.empty() && "Cannot get empty umax!");
3514   if (Ops.size() == 1) return Ops[0];
3515 #ifndef NDEBUG
3516   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3517   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3518     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3519            "SCEVUMaxExpr operand types don't match!");
3520 #endif
3521 
3522   // Sort by complexity, this groups all similar expression types together.
3523   GroupByComplexity(Ops, &LI, DT);
3524 
3525   // If there are any constants, fold them together.
3526   unsigned Idx = 0;
3527   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3528     ++Idx;
3529     assert(Idx < Ops.size());
3530     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3531       // We found two constants, fold them together!
3532       ConstantInt *Fold = ConstantInt::get(
3533           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3534       Ops[0] = getConstant(Fold);
3535       Ops.erase(Ops.begin()+1);  // Erase the folded element
3536       if (Ops.size() == 1) return Ops[0];
3537       LHSC = cast<SCEVConstant>(Ops[0]);
3538     }
3539 
3540     // If we are left with a constant minimum-int, strip it off.
3541     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3542       Ops.erase(Ops.begin());
3543       --Idx;
3544     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3545       // If we have an umax with a constant maximum-int, it will always be
3546       // maximum-int.
3547       return Ops[0];
3548     }
3549 
3550     if (Ops.size() == 1) return Ops[0];
3551   }
3552 
3553   // Find the first UMax
3554   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3555     ++Idx;
3556 
3557   // Check to see if one of the operands is a UMax. If so, expand its operands
3558   // onto our operand list, and recurse to simplify.
3559   if (Idx < Ops.size()) {
3560     bool DeletedUMax = false;
3561     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3562       Ops.erase(Ops.begin()+Idx);
3563       Ops.append(UMax->op_begin(), UMax->op_end());
3564       DeletedUMax = true;
3565     }
3566 
3567     if (DeletedUMax)
3568       return getUMaxExpr(Ops);
3569   }
3570 
3571   // Okay, check to see if the same value occurs in the operand list twice.  If
3572   // so, delete one.  Since we sorted the list, these values are required to
3573   // be adjacent.
3574   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3575     //  X umax Y umax Y  -->  X umax Y
3576     //  X umax Y         -->  X, if X is always greater than Y
3577     if (Ops[i] == Ops[i+1] ||
3578         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3579       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3580       --i; --e;
3581     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3582       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3583       --i; --e;
3584     }
3585 
3586   if (Ops.size() == 1) return Ops[0];
3587 
3588   assert(!Ops.empty() && "Reduced umax down to nothing!");
3589 
3590   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3591   // already have one, otherwise create a new one.
3592   FoldingSetNodeID ID;
3593   ID.AddInteger(scUMaxExpr);
3594   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3595     ID.AddPointer(Ops[i]);
3596   void *IP = nullptr;
3597   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3598   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3599   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3600   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3601                                              O, Ops.size());
3602   UniqueSCEVs.InsertNode(S, IP);
3603   addToLoopUseLists(S);
3604   return S;
3605 }
3606 
3607 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3608                                          const SCEV *RHS) {
3609   // ~smax(~x, ~y) == smin(x, y).
3610   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3611 }
3612 
3613 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3614                                          const SCEV *RHS) {
3615   // ~umax(~x, ~y) == umin(x, y)
3616   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3617 }
3618 
3619 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3620   // We can bypass creating a target-independent
3621   // constant expression and then folding it back into a ConstantInt.
3622   // This is just a compile-time optimization.
3623   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3624 }
3625 
3626 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3627                                              StructType *STy,
3628                                              unsigned FieldNo) {
3629   // We can bypass creating a target-independent
3630   // constant expression and then folding it back into a ConstantInt.
3631   // This is just a compile-time optimization.
3632   return getConstant(
3633       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3634 }
3635 
3636 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3637   // Don't attempt to do anything other than create a SCEVUnknown object
3638   // here.  createSCEV only calls getUnknown after checking for all other
3639   // interesting possibilities, and any other code that calls getUnknown
3640   // is doing so in order to hide a value from SCEV canonicalization.
3641 
3642   FoldingSetNodeID ID;
3643   ID.AddInteger(scUnknown);
3644   ID.AddPointer(V);
3645   void *IP = nullptr;
3646   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3647     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3648            "Stale SCEVUnknown in uniquing map!");
3649     return S;
3650   }
3651   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3652                                             FirstUnknown);
3653   FirstUnknown = cast<SCEVUnknown>(S);
3654   UniqueSCEVs.InsertNode(S, IP);
3655   return S;
3656 }
3657 
3658 //===----------------------------------------------------------------------===//
3659 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3660 //
3661 
3662 /// Test if values of the given type are analyzable within the SCEV
3663 /// framework. This primarily includes integer types, and it can optionally
3664 /// include pointer types if the ScalarEvolution class has access to
3665 /// target-specific information.
3666 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3667   // Integers and pointers are always SCEVable.
3668   return Ty->isIntegerTy() || Ty->isPointerTy();
3669 }
3670 
3671 /// Return the size in bits of the specified type, for which isSCEVable must
3672 /// return true.
3673 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3674   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3675   return getDataLayout().getTypeSizeInBits(Ty);
3676 }
3677 
3678 /// Return a type with the same bitwidth as the given type and which represents
3679 /// how SCEV will treat the given type, for which isSCEVable must return
3680 /// true. For pointer types, this is the pointer-sized integer type.
3681 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3682   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3683 
3684   if (Ty->isIntegerTy())
3685     return Ty;
3686 
3687   // The only other support type is pointer.
3688   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3689   return getDataLayout().getIntPtrType(Ty);
3690 }
3691 
3692 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3693   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3694 }
3695 
3696 const SCEV *ScalarEvolution::getCouldNotCompute() {
3697   return CouldNotCompute.get();
3698 }
3699 
3700 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3701   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3702     auto *SU = dyn_cast<SCEVUnknown>(S);
3703     return SU && SU->getValue() == nullptr;
3704   });
3705 
3706   return !ContainsNulls;
3707 }
3708 
3709 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3710   HasRecMapType::iterator I = HasRecMap.find(S);
3711   if (I != HasRecMap.end())
3712     return I->second;
3713 
3714   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3715   HasRecMap.insert({S, FoundAddRec});
3716   return FoundAddRec;
3717 }
3718 
3719 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3720 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3721 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3722 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3723   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3724   if (!Add)
3725     return {S, nullptr};
3726 
3727   if (Add->getNumOperands() != 2)
3728     return {S, nullptr};
3729 
3730   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3731   if (!ConstOp)
3732     return {S, nullptr};
3733 
3734   return {Add->getOperand(1), ConstOp->getValue()};
3735 }
3736 
3737 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3738 /// by the value and offset from any ValueOffsetPair in the set.
3739 SetVector<ScalarEvolution::ValueOffsetPair> *
3740 ScalarEvolution::getSCEVValues(const SCEV *S) {
3741   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3742   if (SI == ExprValueMap.end())
3743     return nullptr;
3744 #ifndef NDEBUG
3745   if (VerifySCEVMap) {
3746     // Check there is no dangling Value in the set returned.
3747     for (const auto &VE : SI->second)
3748       assert(ValueExprMap.count(VE.first));
3749   }
3750 #endif
3751   return &SI->second;
3752 }
3753 
3754 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3755 /// cannot be used separately. eraseValueFromMap should be used to remove
3756 /// V from ValueExprMap and ExprValueMap at the same time.
3757 void ScalarEvolution::eraseValueFromMap(Value *V) {
3758   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3759   if (I != ValueExprMap.end()) {
3760     const SCEV *S = I->second;
3761     // Remove {V, 0} from the set of ExprValueMap[S]
3762     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3763       SV->remove({V, nullptr});
3764 
3765     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3766     const SCEV *Stripped;
3767     ConstantInt *Offset;
3768     std::tie(Stripped, Offset) = splitAddExpr(S);
3769     if (Offset != nullptr) {
3770       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3771         SV->remove({V, Offset});
3772     }
3773     ValueExprMap.erase(V);
3774   }
3775 }
3776 
3777 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3778 /// TODO: In reality it is better to check the poison recursevely
3779 /// but this is better than nothing.
3780 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3781   if (auto *I = dyn_cast<Instruction>(V)) {
3782     if (isa<OverflowingBinaryOperator>(I)) {
3783       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3784         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3785           return true;
3786         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3787           return true;
3788       }
3789     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3790       return true;
3791   }
3792   return false;
3793 }
3794 
3795 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3796 /// create a new one.
3797 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3798   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3799 
3800   const SCEV *S = getExistingSCEV(V);
3801   if (S == nullptr) {
3802     S = createSCEV(V);
3803     // During PHI resolution, it is possible to create two SCEVs for the same
3804     // V, so it is needed to double check whether V->S is inserted into
3805     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3806     std::pair<ValueExprMapType::iterator, bool> Pair =
3807         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3808     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3809       ExprValueMap[S].insert({V, nullptr});
3810 
3811       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3812       // ExprValueMap.
3813       const SCEV *Stripped = S;
3814       ConstantInt *Offset = nullptr;
3815       std::tie(Stripped, Offset) = splitAddExpr(S);
3816       // If stripped is SCEVUnknown, don't bother to save
3817       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3818       // increase the complexity of the expansion code.
3819       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3820       // because it may generate add/sub instead of GEP in SCEV expansion.
3821       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3822           !isa<GetElementPtrInst>(V))
3823         ExprValueMap[Stripped].insert({V, Offset});
3824     }
3825   }
3826   return S;
3827 }
3828 
3829 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3830   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3831 
3832   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3833   if (I != ValueExprMap.end()) {
3834     const SCEV *S = I->second;
3835     if (checkValidity(S))
3836       return S;
3837     eraseValueFromMap(V);
3838     forgetMemoizedResults(S);
3839   }
3840   return nullptr;
3841 }
3842 
3843 /// Return a SCEV corresponding to -V = -1*V
3844 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3845                                              SCEV::NoWrapFlags Flags) {
3846   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3847     return getConstant(
3848                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3849 
3850   Type *Ty = V->getType();
3851   Ty = getEffectiveSCEVType(Ty);
3852   return getMulExpr(
3853       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3854 }
3855 
3856 /// Return a SCEV corresponding to ~V = -1-V
3857 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3858   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3859     return getConstant(
3860                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3861 
3862   Type *Ty = V->getType();
3863   Ty = getEffectiveSCEVType(Ty);
3864   const SCEV *AllOnes =
3865                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3866   return getMinusSCEV(AllOnes, V);
3867 }
3868 
3869 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3870                                           SCEV::NoWrapFlags Flags,
3871                                           unsigned Depth) {
3872   // Fast path: X - X --> 0.
3873   if (LHS == RHS)
3874     return getZero(LHS->getType());
3875 
3876   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3877   // makes it so that we cannot make much use of NUW.
3878   auto AddFlags = SCEV::FlagAnyWrap;
3879   const bool RHSIsNotMinSigned =
3880       !getSignedRangeMin(RHS).isMinSignedValue();
3881   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3882     // Let M be the minimum representable signed value. Then (-1)*RHS
3883     // signed-wraps if and only if RHS is M. That can happen even for
3884     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3885     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3886     // (-1)*RHS, we need to prove that RHS != M.
3887     //
3888     // If LHS is non-negative and we know that LHS - RHS does not
3889     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3890     // either by proving that RHS > M or that LHS >= 0.
3891     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3892       AddFlags = SCEV::FlagNSW;
3893     }
3894   }
3895 
3896   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3897   // RHS is NSW and LHS >= 0.
3898   //
3899   // The difficulty here is that the NSW flag may have been proven
3900   // relative to a loop that is to be found in a recurrence in LHS and
3901   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3902   // larger scope than intended.
3903   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3904 
3905   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
3906 }
3907 
3908 const SCEV *
3909 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3910   Type *SrcTy = V->getType();
3911   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3912          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3913          "Cannot truncate or zero extend with non-integer arguments!");
3914   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3915     return V;  // No conversion
3916   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3917     return getTruncateExpr(V, Ty);
3918   return getZeroExtendExpr(V, Ty);
3919 }
3920 
3921 const SCEV *
3922 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3923                                          Type *Ty) {
3924   Type *SrcTy = V->getType();
3925   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3926          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3927          "Cannot truncate or zero extend with non-integer arguments!");
3928   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3929     return V;  // No conversion
3930   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3931     return getTruncateExpr(V, Ty);
3932   return getSignExtendExpr(V, Ty);
3933 }
3934 
3935 const SCEV *
3936 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3937   Type *SrcTy = V->getType();
3938   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3939          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3940          "Cannot noop or zero extend with non-integer arguments!");
3941   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3942          "getNoopOrZeroExtend cannot truncate!");
3943   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3944     return V;  // No conversion
3945   return getZeroExtendExpr(V, Ty);
3946 }
3947 
3948 const SCEV *
3949 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3950   Type *SrcTy = V->getType();
3951   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3952          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3953          "Cannot noop or sign extend with non-integer arguments!");
3954   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3955          "getNoopOrSignExtend cannot truncate!");
3956   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3957     return V;  // No conversion
3958   return getSignExtendExpr(V, Ty);
3959 }
3960 
3961 const SCEV *
3962 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3963   Type *SrcTy = V->getType();
3964   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3965          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3966          "Cannot noop or any extend with non-integer arguments!");
3967   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3968          "getNoopOrAnyExtend cannot truncate!");
3969   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3970     return V;  // No conversion
3971   return getAnyExtendExpr(V, Ty);
3972 }
3973 
3974 const SCEV *
3975 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3976   Type *SrcTy = V->getType();
3977   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3978          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3979          "Cannot truncate or noop with non-integer arguments!");
3980   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3981          "getTruncateOrNoop cannot extend!");
3982   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3983     return V;  // No conversion
3984   return getTruncateExpr(V, Ty);
3985 }
3986 
3987 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3988                                                         const SCEV *RHS) {
3989   const SCEV *PromotedLHS = LHS;
3990   const SCEV *PromotedRHS = RHS;
3991 
3992   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3993     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3994   else
3995     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3996 
3997   return getUMaxExpr(PromotedLHS, PromotedRHS);
3998 }
3999 
4000 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4001                                                         const SCEV *RHS) {
4002   const SCEV *PromotedLHS = LHS;
4003   const SCEV *PromotedRHS = RHS;
4004 
4005   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4006     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4007   else
4008     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4009 
4010   return getUMinExpr(PromotedLHS, PromotedRHS);
4011 }
4012 
4013 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4014   // A pointer operand may evaluate to a nonpointer expression, such as null.
4015   if (!V->getType()->isPointerTy())
4016     return V;
4017 
4018   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4019     return getPointerBase(Cast->getOperand());
4020   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4021     const SCEV *PtrOp = nullptr;
4022     for (const SCEV *NAryOp : NAry->operands()) {
4023       if (NAryOp->getType()->isPointerTy()) {
4024         // Cannot find the base of an expression with multiple pointer operands.
4025         if (PtrOp)
4026           return V;
4027         PtrOp = NAryOp;
4028       }
4029     }
4030     if (!PtrOp)
4031       return V;
4032     return getPointerBase(PtrOp);
4033   }
4034   return V;
4035 }
4036 
4037 /// Push users of the given Instruction onto the given Worklist.
4038 static void
4039 PushDefUseChildren(Instruction *I,
4040                    SmallVectorImpl<Instruction *> &Worklist) {
4041   // Push the def-use children onto the Worklist stack.
4042   for (User *U : I->users())
4043     Worklist.push_back(cast<Instruction>(U));
4044 }
4045 
4046 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4047   SmallVector<Instruction *, 16> Worklist;
4048   PushDefUseChildren(PN, Worklist);
4049 
4050   SmallPtrSet<Instruction *, 8> Visited;
4051   Visited.insert(PN);
4052   while (!Worklist.empty()) {
4053     Instruction *I = Worklist.pop_back_val();
4054     if (!Visited.insert(I).second)
4055       continue;
4056 
4057     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4058     if (It != ValueExprMap.end()) {
4059       const SCEV *Old = It->second;
4060 
4061       // Short-circuit the def-use traversal if the symbolic name
4062       // ceases to appear in expressions.
4063       if (Old != SymName && !hasOperand(Old, SymName))
4064         continue;
4065 
4066       // SCEVUnknown for a PHI either means that it has an unrecognized
4067       // structure, it's a PHI that's in the progress of being computed
4068       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4069       // additional loop trip count information isn't going to change anything.
4070       // In the second case, createNodeForPHI will perform the necessary
4071       // updates on its own when it gets to that point. In the third, we do
4072       // want to forget the SCEVUnknown.
4073       if (!isa<PHINode>(I) ||
4074           !isa<SCEVUnknown>(Old) ||
4075           (I != PN && Old == SymName)) {
4076         eraseValueFromMap(It->first);
4077         forgetMemoizedResults(Old);
4078       }
4079     }
4080 
4081     PushDefUseChildren(I, Worklist);
4082   }
4083 }
4084 
4085 namespace {
4086 
4087 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4088 public:
4089   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4090                              ScalarEvolution &SE) {
4091     SCEVInitRewriter Rewriter(L, SE);
4092     const SCEV *Result = Rewriter.visit(S);
4093     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4094   }
4095 
4096   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4097     if (!SE.isLoopInvariant(Expr, L))
4098       Valid = false;
4099     return Expr;
4100   }
4101 
4102   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4103     // Only allow AddRecExprs for this loop.
4104     if (Expr->getLoop() == L)
4105       return Expr->getStart();
4106     Valid = false;
4107     return Expr;
4108   }
4109 
4110   bool isValid() { return Valid; }
4111 
4112 private:
4113   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4114       : SCEVRewriteVisitor(SE), L(L) {}
4115 
4116   const Loop *L;
4117   bool Valid = true;
4118 };
4119 
4120 /// This class evaluates the compare condition by matching it against the
4121 /// condition of loop latch. If there is a match we assume a true value
4122 /// for the condition while building SCEV nodes.
4123 class SCEVBackedgeConditionFolder
4124     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4125 public:
4126   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4127                              ScalarEvolution &SE) {
4128     bool IsPosBECond = false;
4129     Value *BECond = nullptr;
4130     if (BasicBlock *Latch = L->getLoopLatch()) {
4131       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4132       if (BI && BI->isConditional()) {
4133         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4134                "Both outgoing branches should not target same header!");
4135         BECond = BI->getCondition();
4136         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4137       } else {
4138         return S;
4139       }
4140     }
4141     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4142     return Rewriter.visit(S);
4143   }
4144 
4145   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4146     const SCEV *Result = Expr;
4147     bool InvariantF = SE.isLoopInvariant(Expr, L);
4148 
4149     if (!InvariantF) {
4150       Instruction *I = cast<Instruction>(Expr->getValue());
4151       switch (I->getOpcode()) {
4152       case Instruction::Select: {
4153         SelectInst *SI = cast<SelectInst>(I);
4154         Optional<const SCEV *> Res =
4155             compareWithBackedgeCondition(SI->getCondition());
4156         if (Res.hasValue()) {
4157           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4158           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4159         }
4160         break;
4161       }
4162       default: {
4163         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4164         if (Res.hasValue())
4165           Result = Res.getValue();
4166         break;
4167       }
4168       }
4169     }
4170     return Result;
4171   }
4172 
4173 private:
4174   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4175                                        bool IsPosBECond, ScalarEvolution &SE)
4176       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4177         IsPositiveBECond(IsPosBECond) {}
4178 
4179   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4180 
4181   const Loop *L;
4182   /// Loop back condition.
4183   Value *BackedgeCond = nullptr;
4184   /// Set to true if loop back is on positive branch condition.
4185   bool IsPositiveBECond;
4186 };
4187 
4188 Optional<const SCEV *>
4189 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4190 
4191   // If value matches the backedge condition for loop latch,
4192   // then return a constant evolution node based on loopback
4193   // branch taken.
4194   if (BackedgeCond == IC)
4195     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4196                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4197   return None;
4198 }
4199 
4200 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4201 public:
4202   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4203                              ScalarEvolution &SE) {
4204     SCEVShiftRewriter Rewriter(L, SE);
4205     const SCEV *Result = Rewriter.visit(S);
4206     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4207   }
4208 
4209   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4210     // Only allow AddRecExprs for this loop.
4211     if (!SE.isLoopInvariant(Expr, L))
4212       Valid = false;
4213     return Expr;
4214   }
4215 
4216   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4217     if (Expr->getLoop() == L && Expr->isAffine())
4218       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4219     Valid = false;
4220     return Expr;
4221   }
4222 
4223   bool isValid() { return Valid; }
4224 
4225 private:
4226   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4227       : SCEVRewriteVisitor(SE), L(L) {}
4228 
4229   const Loop *L;
4230   bool Valid = true;
4231 };
4232 
4233 } // end anonymous namespace
4234 
4235 SCEV::NoWrapFlags
4236 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4237   if (!AR->isAffine())
4238     return SCEV::FlagAnyWrap;
4239 
4240   using OBO = OverflowingBinaryOperator;
4241 
4242   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4243 
4244   if (!AR->hasNoSignedWrap()) {
4245     ConstantRange AddRecRange = getSignedRange(AR);
4246     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4247 
4248     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4249         Instruction::Add, IncRange, OBO::NoSignedWrap);
4250     if (NSWRegion.contains(AddRecRange))
4251       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4252   }
4253 
4254   if (!AR->hasNoUnsignedWrap()) {
4255     ConstantRange AddRecRange = getUnsignedRange(AR);
4256     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4257 
4258     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4259         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4260     if (NUWRegion.contains(AddRecRange))
4261       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4262   }
4263 
4264   return Result;
4265 }
4266 
4267 namespace {
4268 
4269 /// Represents an abstract binary operation.  This may exist as a
4270 /// normal instruction or constant expression, or may have been
4271 /// derived from an expression tree.
4272 struct BinaryOp {
4273   unsigned Opcode;
4274   Value *LHS;
4275   Value *RHS;
4276   bool IsNSW = false;
4277   bool IsNUW = false;
4278 
4279   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4280   /// constant expression.
4281   Operator *Op = nullptr;
4282 
4283   explicit BinaryOp(Operator *Op)
4284       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4285         Op(Op) {
4286     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4287       IsNSW = OBO->hasNoSignedWrap();
4288       IsNUW = OBO->hasNoUnsignedWrap();
4289     }
4290   }
4291 
4292   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4293                     bool IsNUW = false)
4294       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4295 };
4296 
4297 } // end anonymous namespace
4298 
4299 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4300 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4301   auto *Op = dyn_cast<Operator>(V);
4302   if (!Op)
4303     return None;
4304 
4305   // Implementation detail: all the cleverness here should happen without
4306   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4307   // SCEV expressions when possible, and we should not break that.
4308 
4309   switch (Op->getOpcode()) {
4310   case Instruction::Add:
4311   case Instruction::Sub:
4312   case Instruction::Mul:
4313   case Instruction::UDiv:
4314   case Instruction::URem:
4315   case Instruction::And:
4316   case Instruction::Or:
4317   case Instruction::AShr:
4318   case Instruction::Shl:
4319     return BinaryOp(Op);
4320 
4321   case Instruction::Xor:
4322     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4323       // If the RHS of the xor is a signmask, then this is just an add.
4324       // Instcombine turns add of signmask into xor as a strength reduction step.
4325       if (RHSC->getValue().isSignMask())
4326         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4327     return BinaryOp(Op);
4328 
4329   case Instruction::LShr:
4330     // Turn logical shift right of a constant into a unsigned divide.
4331     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4332       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4333 
4334       // If the shift count is not less than the bitwidth, the result of
4335       // the shift is undefined. Don't try to analyze it, because the
4336       // resolution chosen here may differ from the resolution chosen in
4337       // other parts of the compiler.
4338       if (SA->getValue().ult(BitWidth)) {
4339         Constant *X =
4340             ConstantInt::get(SA->getContext(),
4341                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4342         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4343       }
4344     }
4345     return BinaryOp(Op);
4346 
4347   case Instruction::ExtractValue: {
4348     auto *EVI = cast<ExtractValueInst>(Op);
4349     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4350       break;
4351 
4352     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
4353     if (!CI)
4354       break;
4355 
4356     if (auto *F = CI->getCalledFunction())
4357       switch (F->getIntrinsicID()) {
4358       case Intrinsic::sadd_with_overflow:
4359       case Intrinsic::uadd_with_overflow:
4360         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4361           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4362                           CI->getArgOperand(1));
4363 
4364         // Now that we know that all uses of the arithmetic-result component of
4365         // CI are guarded by the overflow check, we can go ahead and pretend
4366         // that the arithmetic is non-overflowing.
4367         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
4368           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4369                           CI->getArgOperand(1), /* IsNSW = */ true,
4370                           /* IsNUW = */ false);
4371         else
4372           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4373                           CI->getArgOperand(1), /* IsNSW = */ false,
4374                           /* IsNUW*/ true);
4375       case Intrinsic::ssub_with_overflow:
4376       case Intrinsic::usub_with_overflow:
4377         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4378           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4379                           CI->getArgOperand(1));
4380 
4381         // The same reasoning as sadd/uadd above.
4382         if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow)
4383           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4384                           CI->getArgOperand(1), /* IsNSW = */ true,
4385                           /* IsNUW = */ false);
4386         else
4387           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4388                           CI->getArgOperand(1), /* IsNSW = */ false,
4389                           /* IsNUW = */ true);
4390       case Intrinsic::smul_with_overflow:
4391       case Intrinsic::umul_with_overflow:
4392         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
4393                         CI->getArgOperand(1));
4394       default:
4395         break;
4396       }
4397     break;
4398   }
4399 
4400   default:
4401     break;
4402   }
4403 
4404   return None;
4405 }
4406 
4407 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4408 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4409 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4410 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4411 /// follows one of the following patterns:
4412 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4413 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4414 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4415 /// we return the type of the truncation operation, and indicate whether the
4416 /// truncated type should be treated as signed/unsigned by setting
4417 /// \p Signed to true/false, respectively.
4418 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4419                                bool &Signed, ScalarEvolution &SE) {
4420   // The case where Op == SymbolicPHI (that is, with no type conversions on
4421   // the way) is handled by the regular add recurrence creating logic and
4422   // would have already been triggered in createAddRecForPHI. Reaching it here
4423   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4424   // because one of the other operands of the SCEVAddExpr updating this PHI is
4425   // not invariant).
4426   //
4427   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4428   // this case predicates that allow us to prove that Op == SymbolicPHI will
4429   // be added.
4430   if (Op == SymbolicPHI)
4431     return nullptr;
4432 
4433   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4434   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4435   if (SourceBits != NewBits)
4436     return nullptr;
4437 
4438   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4439   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4440   if (!SExt && !ZExt)
4441     return nullptr;
4442   const SCEVTruncateExpr *Trunc =
4443       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4444            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4445   if (!Trunc)
4446     return nullptr;
4447   const SCEV *X = Trunc->getOperand();
4448   if (X != SymbolicPHI)
4449     return nullptr;
4450   Signed = SExt != nullptr;
4451   return Trunc->getType();
4452 }
4453 
4454 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4455   if (!PN->getType()->isIntegerTy())
4456     return nullptr;
4457   const Loop *L = LI.getLoopFor(PN->getParent());
4458   if (!L || L->getHeader() != PN->getParent())
4459     return nullptr;
4460   return L;
4461 }
4462 
4463 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4464 // computation that updates the phi follows the following pattern:
4465 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4466 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4467 // If so, try to see if it can be rewritten as an AddRecExpr under some
4468 // Predicates. If successful, return them as a pair. Also cache the results
4469 // of the analysis.
4470 //
4471 // Example usage scenario:
4472 //    Say the Rewriter is called for the following SCEV:
4473 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4474 //    where:
4475 //         %X = phi i64 (%Start, %BEValue)
4476 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4477 //    and call this function with %SymbolicPHI = %X.
4478 //
4479 //    The analysis will find that the value coming around the backedge has
4480 //    the following SCEV:
4481 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4482 //    Upon concluding that this matches the desired pattern, the function
4483 //    will return the pair {NewAddRec, SmallPredsVec} where:
4484 //         NewAddRec = {%Start,+,%Step}
4485 //         SmallPredsVec = {P1, P2, P3} as follows:
4486 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4487 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4488 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4489 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4490 //    under the predicates {P1,P2,P3}.
4491 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4492 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4493 //
4494 // TODO's:
4495 //
4496 // 1) Extend the Induction descriptor to also support inductions that involve
4497 //    casts: When needed (namely, when we are called in the context of the
4498 //    vectorizer induction analysis), a Set of cast instructions will be
4499 //    populated by this method, and provided back to isInductionPHI. This is
4500 //    needed to allow the vectorizer to properly record them to be ignored by
4501 //    the cost model and to avoid vectorizing them (otherwise these casts,
4502 //    which are redundant under the runtime overflow checks, will be
4503 //    vectorized, which can be costly).
4504 //
4505 // 2) Support additional induction/PHISCEV patterns: We also want to support
4506 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4507 //    after the induction update operation (the induction increment):
4508 //
4509 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4510 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4511 //
4512 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4513 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4514 //
4515 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4516 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4517 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4518   SmallVector<const SCEVPredicate *, 3> Predicates;
4519 
4520   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4521   // return an AddRec expression under some predicate.
4522 
4523   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4524   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4525   assert(L && "Expecting an integer loop header phi");
4526 
4527   // The loop may have multiple entrances or multiple exits; we can analyze
4528   // this phi as an addrec if it has a unique entry value and a unique
4529   // backedge value.
4530   Value *BEValueV = nullptr, *StartValueV = nullptr;
4531   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4532     Value *V = PN->getIncomingValue(i);
4533     if (L->contains(PN->getIncomingBlock(i))) {
4534       if (!BEValueV) {
4535         BEValueV = V;
4536       } else if (BEValueV != V) {
4537         BEValueV = nullptr;
4538         break;
4539       }
4540     } else if (!StartValueV) {
4541       StartValueV = V;
4542     } else if (StartValueV != V) {
4543       StartValueV = nullptr;
4544       break;
4545     }
4546   }
4547   if (!BEValueV || !StartValueV)
4548     return None;
4549 
4550   const SCEV *BEValue = getSCEV(BEValueV);
4551 
4552   // If the value coming around the backedge is an add with the symbolic
4553   // value we just inserted, possibly with casts that we can ignore under
4554   // an appropriate runtime guard, then we found a simple induction variable!
4555   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4556   if (!Add)
4557     return None;
4558 
4559   // If there is a single occurrence of the symbolic value, possibly
4560   // casted, replace it with a recurrence.
4561   unsigned FoundIndex = Add->getNumOperands();
4562   Type *TruncTy = nullptr;
4563   bool Signed;
4564   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4565     if ((TruncTy =
4566              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4567       if (FoundIndex == e) {
4568         FoundIndex = i;
4569         break;
4570       }
4571 
4572   if (FoundIndex == Add->getNumOperands())
4573     return None;
4574 
4575   // Create an add with everything but the specified operand.
4576   SmallVector<const SCEV *, 8> Ops;
4577   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4578     if (i != FoundIndex)
4579       Ops.push_back(Add->getOperand(i));
4580   const SCEV *Accum = getAddExpr(Ops);
4581 
4582   // The runtime checks will not be valid if the step amount is
4583   // varying inside the loop.
4584   if (!isLoopInvariant(Accum, L))
4585     return None;
4586 
4587   // *** Part2: Create the predicates
4588 
4589   // Analysis was successful: we have a phi-with-cast pattern for which we
4590   // can return an AddRec expression under the following predicates:
4591   //
4592   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4593   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4594   // P2: An Equal predicate that guarantees that
4595   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4596   // P3: An Equal predicate that guarantees that
4597   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4598   //
4599   // As we next prove, the above predicates guarantee that:
4600   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4601   //
4602   //
4603   // More formally, we want to prove that:
4604   //     Expr(i+1) = Start + (i+1) * Accum
4605   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4606   //
4607   // Given that:
4608   // 1) Expr(0) = Start
4609   // 2) Expr(1) = Start + Accum
4610   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4611   // 3) Induction hypothesis (step i):
4612   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4613   //
4614   // Proof:
4615   //  Expr(i+1) =
4616   //   = Start + (i+1)*Accum
4617   //   = (Start + i*Accum) + Accum
4618   //   = Expr(i) + Accum
4619   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4620   //                                                             :: from step i
4621   //
4622   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4623   //
4624   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4625   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4626   //     + Accum                                                     :: from P3
4627   //
4628   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4629   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4630   //
4631   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4632   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4633   //
4634   // By induction, the same applies to all iterations 1<=i<n:
4635   //
4636 
4637   // Create a truncated addrec for which we will add a no overflow check (P1).
4638   const SCEV *StartVal = getSCEV(StartValueV);
4639   const SCEV *PHISCEV =
4640       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4641                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4642 
4643   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4644   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4645   // will be constant.
4646   //
4647   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4648   // add P1.
4649   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4650     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4651         Signed ? SCEVWrapPredicate::IncrementNSSW
4652                : SCEVWrapPredicate::IncrementNUSW;
4653     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4654     Predicates.push_back(AddRecPred);
4655   }
4656 
4657   // Create the Equal Predicates P2,P3:
4658 
4659   // It is possible that the predicates P2 and/or P3 are computable at
4660   // compile time due to StartVal and/or Accum being constants.
4661   // If either one is, then we can check that now and escape if either P2
4662   // or P3 is false.
4663 
4664   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4665   // for each of StartVal and Accum
4666   auto getExtendedExpr = [&](const SCEV *Expr,
4667                              bool CreateSignExtend) -> const SCEV * {
4668     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4669     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4670     const SCEV *ExtendedExpr =
4671         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4672                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4673     return ExtendedExpr;
4674   };
4675 
4676   // Given:
4677   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4678   //               = getExtendedExpr(Expr)
4679   // Determine whether the predicate P: Expr == ExtendedExpr
4680   // is known to be false at compile time
4681   auto PredIsKnownFalse = [&](const SCEV *Expr,
4682                               const SCEV *ExtendedExpr) -> bool {
4683     return Expr != ExtendedExpr &&
4684            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4685   };
4686 
4687   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4688   if (PredIsKnownFalse(StartVal, StartExtended)) {
4689     DEBUG(dbgs() << "P2 is compile-time false\n";);
4690     return None;
4691   }
4692 
4693   // The Step is always Signed (because the overflow checks are either
4694   // NSSW or NUSW)
4695   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4696   if (PredIsKnownFalse(Accum, AccumExtended)) {
4697     DEBUG(dbgs() << "P3 is compile-time false\n";);
4698     return None;
4699   }
4700 
4701   auto AppendPredicate = [&](const SCEV *Expr,
4702                              const SCEV *ExtendedExpr) -> void {
4703     if (Expr != ExtendedExpr &&
4704         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4705       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4706       DEBUG (dbgs() << "Added Predicate: " << *Pred);
4707       Predicates.push_back(Pred);
4708     }
4709   };
4710 
4711   AppendPredicate(StartVal, StartExtended);
4712   AppendPredicate(Accum, AccumExtended);
4713 
4714   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4715   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4716   // into NewAR if it will also add the runtime overflow checks specified in
4717   // Predicates.
4718   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4719 
4720   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4721       std::make_pair(NewAR, Predicates);
4722   // Remember the result of the analysis for this SCEV at this locayyytion.
4723   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4724   return PredRewrite;
4725 }
4726 
4727 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4728 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4729   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4730   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4731   if (!L)
4732     return None;
4733 
4734   // Check to see if we already analyzed this PHI.
4735   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4736   if (I != PredicatedSCEVRewrites.end()) {
4737     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4738         I->second;
4739     // Analysis was done before and failed to create an AddRec:
4740     if (Rewrite.first == SymbolicPHI)
4741       return None;
4742     // Analysis was done before and succeeded to create an AddRec under
4743     // a predicate:
4744     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4745     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4746     return Rewrite;
4747   }
4748 
4749   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4750     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4751 
4752   // Record in the cache that the analysis failed
4753   if (!Rewrite) {
4754     SmallVector<const SCEVPredicate *, 3> Predicates;
4755     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4756     return None;
4757   }
4758 
4759   return Rewrite;
4760 }
4761 
4762 // FIXME: This utility is currently required because the Rewriter currently
4763 // does not rewrite this expression:
4764 // {0, +, (sext ix (trunc iy to ix) to iy)}
4765 // into {0, +, %step},
4766 // even when the following Equal predicate exists:
4767 // "%step == (sext ix (trunc iy to ix) to iy)".
4768 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4769     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4770   if (AR1 == AR2)
4771     return true;
4772 
4773   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4774     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4775         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4776       return false;
4777     return true;
4778   };
4779 
4780   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4781       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4782     return false;
4783   return true;
4784 }
4785 
4786 /// A helper function for createAddRecFromPHI to handle simple cases.
4787 ///
4788 /// This function tries to find an AddRec expression for the simplest (yet most
4789 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4790 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4791 /// technique for finding the AddRec expression.
4792 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4793                                                       Value *BEValueV,
4794                                                       Value *StartValueV) {
4795   const Loop *L = LI.getLoopFor(PN->getParent());
4796   assert(L && L->getHeader() == PN->getParent());
4797   assert(BEValueV && StartValueV);
4798 
4799   auto BO = MatchBinaryOp(BEValueV, DT);
4800   if (!BO)
4801     return nullptr;
4802 
4803   if (BO->Opcode != Instruction::Add)
4804     return nullptr;
4805 
4806   const SCEV *Accum = nullptr;
4807   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4808     Accum = getSCEV(BO->RHS);
4809   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4810     Accum = getSCEV(BO->LHS);
4811 
4812   if (!Accum)
4813     return nullptr;
4814 
4815   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4816   if (BO->IsNUW)
4817     Flags = setFlags(Flags, SCEV::FlagNUW);
4818   if (BO->IsNSW)
4819     Flags = setFlags(Flags, SCEV::FlagNSW);
4820 
4821   const SCEV *StartVal = getSCEV(StartValueV);
4822   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4823 
4824   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4825 
4826   // We can add Flags to the post-inc expression only if we
4827   // know that it is *undefined behavior* for BEValueV to
4828   // overflow.
4829   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4830     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4831       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4832 
4833   return PHISCEV;
4834 }
4835 
4836 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
4837   const Loop *L = LI.getLoopFor(PN->getParent());
4838   if (!L || L->getHeader() != PN->getParent())
4839     return nullptr;
4840 
4841   // The loop may have multiple entrances or multiple exits; we can analyze
4842   // this phi as an addrec if it has a unique entry value and a unique
4843   // backedge value.
4844   Value *BEValueV = nullptr, *StartValueV = nullptr;
4845   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4846     Value *V = PN->getIncomingValue(i);
4847     if (L->contains(PN->getIncomingBlock(i))) {
4848       if (!BEValueV) {
4849         BEValueV = V;
4850       } else if (BEValueV != V) {
4851         BEValueV = nullptr;
4852         break;
4853       }
4854     } else if (!StartValueV) {
4855       StartValueV = V;
4856     } else if (StartValueV != V) {
4857       StartValueV = nullptr;
4858       break;
4859     }
4860   }
4861   if (!BEValueV || !StartValueV)
4862     return nullptr;
4863 
4864   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
4865          "PHI node already processed?");
4866 
4867   // First, try to find AddRec expression without creating a fictituos symbolic
4868   // value for PN.
4869   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
4870     return S;
4871 
4872   // Handle PHI node value symbolically.
4873   const SCEV *SymbolicName = getUnknown(PN);
4874   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
4875 
4876   // Using this symbolic name for the PHI, analyze the value coming around
4877   // the back-edge.
4878   const SCEV *BEValue = getSCEV(BEValueV);
4879 
4880   // NOTE: If BEValue is loop invariant, we know that the PHI node just
4881   // has a special value for the first iteration of the loop.
4882 
4883   // If the value coming around the backedge is an add with the symbolic
4884   // value we just inserted, then we found a simple induction variable!
4885   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
4886     // If there is a single occurrence of the symbolic value, replace it
4887     // with a recurrence.
4888     unsigned FoundIndex = Add->getNumOperands();
4889     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4890       if (Add->getOperand(i) == SymbolicName)
4891         if (FoundIndex == e) {
4892           FoundIndex = i;
4893           break;
4894         }
4895 
4896     if (FoundIndex != Add->getNumOperands()) {
4897       // Create an add with everything but the specified operand.
4898       SmallVector<const SCEV *, 8> Ops;
4899       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4900         if (i != FoundIndex)
4901           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
4902                                                              L, *this));
4903       const SCEV *Accum = getAddExpr(Ops);
4904 
4905       // This is not a valid addrec if the step amount is varying each
4906       // loop iteration, but is not itself an addrec in this loop.
4907       if (isLoopInvariant(Accum, L) ||
4908           (isa<SCEVAddRecExpr>(Accum) &&
4909            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4910         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4911 
4912         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4913           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4914             if (BO->IsNUW)
4915               Flags = setFlags(Flags, SCEV::FlagNUW);
4916             if (BO->IsNSW)
4917               Flags = setFlags(Flags, SCEV::FlagNSW);
4918           }
4919         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4920           // If the increment is an inbounds GEP, then we know the address
4921           // space cannot be wrapped around. We cannot make any guarantee
4922           // about signed or unsigned overflow because pointers are
4923           // unsigned but we may have a negative index from the base
4924           // pointer. We can guarantee that no unsigned wrap occurs if the
4925           // indices form a positive value.
4926           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4927             Flags = setFlags(Flags, SCEV::FlagNW);
4928 
4929             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4930             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4931               Flags = setFlags(Flags, SCEV::FlagNUW);
4932           }
4933 
4934           // We cannot transfer nuw and nsw flags from subtraction
4935           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4936           // for instance.
4937         }
4938 
4939         const SCEV *StartVal = getSCEV(StartValueV);
4940         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4941 
4942         // Okay, for the entire analysis of this edge we assumed the PHI
4943         // to be symbolic.  We now need to go back and purge all of the
4944         // entries for the scalars that use the symbolic expression.
4945         forgetSymbolicName(PN, SymbolicName);
4946         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4947 
4948         // We can add Flags to the post-inc expression only if we
4949         // know that it is *undefined behavior* for BEValueV to
4950         // overflow.
4951         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4952           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4953             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4954 
4955         return PHISCEV;
4956       }
4957     }
4958   } else {
4959     // Otherwise, this could be a loop like this:
4960     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4961     // In this case, j = {1,+,1}  and BEValue is j.
4962     // Because the other in-value of i (0) fits the evolution of BEValue
4963     // i really is an addrec evolution.
4964     //
4965     // We can generalize this saying that i is the shifted value of BEValue
4966     // by one iteration:
4967     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4968     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4969     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4970     if (Shifted != getCouldNotCompute() &&
4971         Start != getCouldNotCompute()) {
4972       const SCEV *StartVal = getSCEV(StartValueV);
4973       if (Start == StartVal) {
4974         // Okay, for the entire analysis of this edge we assumed the PHI
4975         // to be symbolic.  We now need to go back and purge all of the
4976         // entries for the scalars that use the symbolic expression.
4977         forgetSymbolicName(PN, SymbolicName);
4978         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4979         return Shifted;
4980       }
4981     }
4982   }
4983 
4984   // Remove the temporary PHI node SCEV that has been inserted while intending
4985   // to create an AddRecExpr for this PHI node. We can not keep this temporary
4986   // as it will prevent later (possibly simpler) SCEV expressions to be added
4987   // to the ValueExprMap.
4988   eraseValueFromMap(PN);
4989 
4990   return nullptr;
4991 }
4992 
4993 // Checks if the SCEV S is available at BB.  S is considered available at BB
4994 // if S can be materialized at BB without introducing a fault.
4995 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4996                                BasicBlock *BB) {
4997   struct CheckAvailable {
4998     bool TraversalDone = false;
4999     bool Available = true;
5000 
5001     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5002     BasicBlock *BB = nullptr;
5003     DominatorTree &DT;
5004 
5005     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5006       : L(L), BB(BB), DT(DT) {}
5007 
5008     bool setUnavailable() {
5009       TraversalDone = true;
5010       Available = false;
5011       return false;
5012     }
5013 
5014     bool follow(const SCEV *S) {
5015       switch (S->getSCEVType()) {
5016       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5017       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5018         // These expressions are available if their operand(s) is/are.
5019         return true;
5020 
5021       case scAddRecExpr: {
5022         // We allow add recurrences that are on the loop BB is in, or some
5023         // outer loop.  This guarantees availability because the value of the
5024         // add recurrence at BB is simply the "current" value of the induction
5025         // variable.  We can relax this in the future; for instance an add
5026         // recurrence on a sibling dominating loop is also available at BB.
5027         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5028         if (L && (ARLoop == L || ARLoop->contains(L)))
5029           return true;
5030 
5031         return setUnavailable();
5032       }
5033 
5034       case scUnknown: {
5035         // For SCEVUnknown, we check for simple dominance.
5036         const auto *SU = cast<SCEVUnknown>(S);
5037         Value *V = SU->getValue();
5038 
5039         if (isa<Argument>(V))
5040           return false;
5041 
5042         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5043           return false;
5044 
5045         return setUnavailable();
5046       }
5047 
5048       case scUDivExpr:
5049       case scCouldNotCompute:
5050         // We do not try to smart about these at all.
5051         return setUnavailable();
5052       }
5053       llvm_unreachable("switch should be fully covered!");
5054     }
5055 
5056     bool isDone() { return TraversalDone; }
5057   };
5058 
5059   CheckAvailable CA(L, BB, DT);
5060   SCEVTraversal<CheckAvailable> ST(CA);
5061 
5062   ST.visitAll(S);
5063   return CA.Available;
5064 }
5065 
5066 // Try to match a control flow sequence that branches out at BI and merges back
5067 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5068 // match.
5069 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5070                           Value *&C, Value *&LHS, Value *&RHS) {
5071   C = BI->getCondition();
5072 
5073   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5074   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5075 
5076   if (!LeftEdge.isSingleEdge())
5077     return false;
5078 
5079   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5080 
5081   Use &LeftUse = Merge->getOperandUse(0);
5082   Use &RightUse = Merge->getOperandUse(1);
5083 
5084   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5085     LHS = LeftUse;
5086     RHS = RightUse;
5087     return true;
5088   }
5089 
5090   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5091     LHS = RightUse;
5092     RHS = LeftUse;
5093     return true;
5094   }
5095 
5096   return false;
5097 }
5098 
5099 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5100   auto IsReachable =
5101       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5102   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5103     const Loop *L = LI.getLoopFor(PN->getParent());
5104 
5105     // We don't want to break LCSSA, even in a SCEV expression tree.
5106     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5107       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5108         return nullptr;
5109 
5110     // Try to match
5111     //
5112     //  br %cond, label %left, label %right
5113     // left:
5114     //  br label %merge
5115     // right:
5116     //  br label %merge
5117     // merge:
5118     //  V = phi [ %x, %left ], [ %y, %right ]
5119     //
5120     // as "select %cond, %x, %y"
5121 
5122     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5123     assert(IDom && "At least the entry block should dominate PN");
5124 
5125     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5126     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5127 
5128     if (BI && BI->isConditional() &&
5129         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5130         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5131         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5132       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5133   }
5134 
5135   return nullptr;
5136 }
5137 
5138 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5139   if (const SCEV *S = createAddRecFromPHI(PN))
5140     return S;
5141 
5142   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5143     return S;
5144 
5145   // If the PHI has a single incoming value, follow that value, unless the
5146   // PHI's incoming blocks are in a different loop, in which case doing so
5147   // risks breaking LCSSA form. Instcombine would normally zap these, but
5148   // it doesn't have DominatorTree information, so it may miss cases.
5149   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5150     if (LI.replacementPreservesLCSSAForm(PN, V))
5151       return getSCEV(V);
5152 
5153   // If it's not a loop phi, we can't handle it yet.
5154   return getUnknown(PN);
5155 }
5156 
5157 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5158                                                       Value *Cond,
5159                                                       Value *TrueVal,
5160                                                       Value *FalseVal) {
5161   // Handle "constant" branch or select. This can occur for instance when a
5162   // loop pass transforms an inner loop and moves on to process the outer loop.
5163   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5164     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5165 
5166   // Try to match some simple smax or umax patterns.
5167   auto *ICI = dyn_cast<ICmpInst>(Cond);
5168   if (!ICI)
5169     return getUnknown(I);
5170 
5171   Value *LHS = ICI->getOperand(0);
5172   Value *RHS = ICI->getOperand(1);
5173 
5174   switch (ICI->getPredicate()) {
5175   case ICmpInst::ICMP_SLT:
5176   case ICmpInst::ICMP_SLE:
5177     std::swap(LHS, RHS);
5178     LLVM_FALLTHROUGH;
5179   case ICmpInst::ICMP_SGT:
5180   case ICmpInst::ICMP_SGE:
5181     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5182     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5183     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5184       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5185       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5186       const SCEV *LA = getSCEV(TrueVal);
5187       const SCEV *RA = getSCEV(FalseVal);
5188       const SCEV *LDiff = getMinusSCEV(LA, LS);
5189       const SCEV *RDiff = getMinusSCEV(RA, RS);
5190       if (LDiff == RDiff)
5191         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5192       LDiff = getMinusSCEV(LA, RS);
5193       RDiff = getMinusSCEV(RA, LS);
5194       if (LDiff == RDiff)
5195         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5196     }
5197     break;
5198   case ICmpInst::ICMP_ULT:
5199   case ICmpInst::ICMP_ULE:
5200     std::swap(LHS, RHS);
5201     LLVM_FALLTHROUGH;
5202   case ICmpInst::ICMP_UGT:
5203   case ICmpInst::ICMP_UGE:
5204     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5205     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5206     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5207       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5208       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5209       const SCEV *LA = getSCEV(TrueVal);
5210       const SCEV *RA = getSCEV(FalseVal);
5211       const SCEV *LDiff = getMinusSCEV(LA, LS);
5212       const SCEV *RDiff = getMinusSCEV(RA, RS);
5213       if (LDiff == RDiff)
5214         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5215       LDiff = getMinusSCEV(LA, RS);
5216       RDiff = getMinusSCEV(RA, LS);
5217       if (LDiff == RDiff)
5218         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5219     }
5220     break;
5221   case ICmpInst::ICMP_NE:
5222     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5223     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5224         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5225       const SCEV *One = getOne(I->getType());
5226       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5227       const SCEV *LA = getSCEV(TrueVal);
5228       const SCEV *RA = getSCEV(FalseVal);
5229       const SCEV *LDiff = getMinusSCEV(LA, LS);
5230       const SCEV *RDiff = getMinusSCEV(RA, One);
5231       if (LDiff == RDiff)
5232         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5233     }
5234     break;
5235   case ICmpInst::ICMP_EQ:
5236     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5237     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5238         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5239       const SCEV *One = getOne(I->getType());
5240       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5241       const SCEV *LA = getSCEV(TrueVal);
5242       const SCEV *RA = getSCEV(FalseVal);
5243       const SCEV *LDiff = getMinusSCEV(LA, One);
5244       const SCEV *RDiff = getMinusSCEV(RA, LS);
5245       if (LDiff == RDiff)
5246         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5247     }
5248     break;
5249   default:
5250     break;
5251   }
5252 
5253   return getUnknown(I);
5254 }
5255 
5256 /// Expand GEP instructions into add and multiply operations. This allows them
5257 /// to be analyzed by regular SCEV code.
5258 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5259   // Don't attempt to analyze GEPs over unsized objects.
5260   if (!GEP->getSourceElementType()->isSized())
5261     return getUnknown(GEP);
5262 
5263   SmallVector<const SCEV *, 4> IndexExprs;
5264   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5265     IndexExprs.push_back(getSCEV(*Index));
5266   return getGEPExpr(GEP, IndexExprs);
5267 }
5268 
5269 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5270   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5271     return C->getAPInt().countTrailingZeros();
5272 
5273   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5274     return std::min(GetMinTrailingZeros(T->getOperand()),
5275                     (uint32_t)getTypeSizeInBits(T->getType()));
5276 
5277   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5278     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5279     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5280                ? getTypeSizeInBits(E->getType())
5281                : OpRes;
5282   }
5283 
5284   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5285     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5286     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5287                ? getTypeSizeInBits(E->getType())
5288                : OpRes;
5289   }
5290 
5291   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5292     // The result is the min of all operands results.
5293     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5294     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5295       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5296     return MinOpRes;
5297   }
5298 
5299   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5300     // The result is the sum of all operands results.
5301     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5302     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5303     for (unsigned i = 1, e = M->getNumOperands();
5304          SumOpRes != BitWidth && i != e; ++i)
5305       SumOpRes =
5306           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5307     return SumOpRes;
5308   }
5309 
5310   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5311     // The result is the min of all operands results.
5312     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5313     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5314       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5315     return MinOpRes;
5316   }
5317 
5318   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5319     // The result is the min of all operands results.
5320     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5321     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5322       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5323     return MinOpRes;
5324   }
5325 
5326   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5327     // The result is the min of all operands results.
5328     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5329     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5330       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5331     return MinOpRes;
5332   }
5333 
5334   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5335     // For a SCEVUnknown, ask ValueTracking.
5336     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5337     return Known.countMinTrailingZeros();
5338   }
5339 
5340   // SCEVUDivExpr
5341   return 0;
5342 }
5343 
5344 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5345   auto I = MinTrailingZerosCache.find(S);
5346   if (I != MinTrailingZerosCache.end())
5347     return I->second;
5348 
5349   uint32_t Result = GetMinTrailingZerosImpl(S);
5350   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5351   assert(InsertPair.second && "Should insert a new key");
5352   return InsertPair.first->second;
5353 }
5354 
5355 /// Helper method to assign a range to V from metadata present in the IR.
5356 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5357   if (Instruction *I = dyn_cast<Instruction>(V))
5358     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5359       return getConstantRangeFromMetadata(*MD);
5360 
5361   return None;
5362 }
5363 
5364 /// Determine the range for a particular SCEV.  If SignHint is
5365 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5366 /// with a "cleaner" unsigned (resp. signed) representation.
5367 const ConstantRange &
5368 ScalarEvolution::getRangeRef(const SCEV *S,
5369                              ScalarEvolution::RangeSignHint SignHint) {
5370   DenseMap<const SCEV *, ConstantRange> &Cache =
5371       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5372                                                        : SignedRanges;
5373 
5374   // See if we've computed this range already.
5375   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5376   if (I != Cache.end())
5377     return I->second;
5378 
5379   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5380     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5381 
5382   unsigned BitWidth = getTypeSizeInBits(S->getType());
5383   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5384 
5385   // If the value has known zeros, the maximum value will have those known zeros
5386   // as well.
5387   uint32_t TZ = GetMinTrailingZeros(S);
5388   if (TZ != 0) {
5389     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5390       ConservativeResult =
5391           ConstantRange(APInt::getMinValue(BitWidth),
5392                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5393     else
5394       ConservativeResult = ConstantRange(
5395           APInt::getSignedMinValue(BitWidth),
5396           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5397   }
5398 
5399   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5400     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5401     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5402       X = X.add(getRangeRef(Add->getOperand(i), SignHint));
5403     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
5404   }
5405 
5406   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5407     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5408     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5409       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5410     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
5411   }
5412 
5413   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5414     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5415     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5416       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5417     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
5418   }
5419 
5420   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5421     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5422     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5423       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5424     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
5425   }
5426 
5427   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5428     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5429     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5430     return setRange(UDiv, SignHint,
5431                     ConservativeResult.intersectWith(X.udiv(Y)));
5432   }
5433 
5434   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5435     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5436     return setRange(ZExt, SignHint,
5437                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
5438   }
5439 
5440   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5441     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5442     return setRange(SExt, SignHint,
5443                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
5444   }
5445 
5446   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5447     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5448     return setRange(Trunc, SignHint,
5449                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
5450   }
5451 
5452   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5453     // If there's no unsigned wrap, the value will never be less than its
5454     // initial value.
5455     if (AddRec->hasNoUnsignedWrap())
5456       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
5457         if (!C->getValue()->isZero())
5458           ConservativeResult = ConservativeResult.intersectWith(
5459               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
5460 
5461     // If there's no signed wrap, and all the operands have the same sign or
5462     // zero, the value won't ever change sign.
5463     if (AddRec->hasNoSignedWrap()) {
5464       bool AllNonNeg = true;
5465       bool AllNonPos = true;
5466       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5467         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
5468         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
5469       }
5470       if (AllNonNeg)
5471         ConservativeResult = ConservativeResult.intersectWith(
5472           ConstantRange(APInt(BitWidth, 0),
5473                         APInt::getSignedMinValue(BitWidth)));
5474       else if (AllNonPos)
5475         ConservativeResult = ConservativeResult.intersectWith(
5476           ConstantRange(APInt::getSignedMinValue(BitWidth),
5477                         APInt(BitWidth, 1)));
5478     }
5479 
5480     // TODO: non-affine addrec
5481     if (AddRec->isAffine()) {
5482       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
5483       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5484           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5485         auto RangeFromAffine = getRangeForAffineAR(
5486             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5487             BitWidth);
5488         if (!RangeFromAffine.isFullSet())
5489           ConservativeResult =
5490               ConservativeResult.intersectWith(RangeFromAffine);
5491 
5492         auto RangeFromFactoring = getRangeViaFactoring(
5493             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5494             BitWidth);
5495         if (!RangeFromFactoring.isFullSet())
5496           ConservativeResult =
5497               ConservativeResult.intersectWith(RangeFromFactoring);
5498       }
5499     }
5500 
5501     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5502   }
5503 
5504   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5505     // Check if the IR explicitly contains !range metadata.
5506     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5507     if (MDRange.hasValue())
5508       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
5509 
5510     // Split here to avoid paying the compile-time cost of calling both
5511     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5512     // if needed.
5513     const DataLayout &DL = getDataLayout();
5514     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5515       // For a SCEVUnknown, ask ValueTracking.
5516       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5517       if (Known.One != ~Known.Zero + 1)
5518         ConservativeResult =
5519             ConservativeResult.intersectWith(ConstantRange(Known.One,
5520                                                            ~Known.Zero + 1));
5521     } else {
5522       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5523              "generalize as needed!");
5524       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5525       if (NS > 1)
5526         ConservativeResult = ConservativeResult.intersectWith(
5527             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5528                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
5529     }
5530 
5531     return setRange(U, SignHint, std::move(ConservativeResult));
5532   }
5533 
5534   return setRange(S, SignHint, std::move(ConservativeResult));
5535 }
5536 
5537 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5538 // values that the expression can take. Initially, the expression has a value
5539 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5540 // argument defines if we treat Step as signed or unsigned.
5541 static ConstantRange getRangeForAffineARHelper(APInt Step,
5542                                                const ConstantRange &StartRange,
5543                                                const APInt &MaxBECount,
5544                                                unsigned BitWidth, bool Signed) {
5545   // If either Step or MaxBECount is 0, then the expression won't change, and we
5546   // just need to return the initial range.
5547   if (Step == 0 || MaxBECount == 0)
5548     return StartRange;
5549 
5550   // If we don't know anything about the initial value (i.e. StartRange is
5551   // FullRange), then we don't know anything about the final range either.
5552   // Return FullRange.
5553   if (StartRange.isFullSet())
5554     return ConstantRange(BitWidth, /* isFullSet = */ true);
5555 
5556   // If Step is signed and negative, then we use its absolute value, but we also
5557   // note that we're moving in the opposite direction.
5558   bool Descending = Signed && Step.isNegative();
5559 
5560   if (Signed)
5561     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5562     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5563     // This equations hold true due to the well-defined wrap-around behavior of
5564     // APInt.
5565     Step = Step.abs();
5566 
5567   // Check if Offset is more than full span of BitWidth. If it is, the
5568   // expression is guaranteed to overflow.
5569   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5570     return ConstantRange(BitWidth, /* isFullSet = */ true);
5571 
5572   // Offset is by how much the expression can change. Checks above guarantee no
5573   // overflow here.
5574   APInt Offset = Step * MaxBECount;
5575 
5576   // Minimum value of the final range will match the minimal value of StartRange
5577   // if the expression is increasing and will be decreased by Offset otherwise.
5578   // Maximum value of the final range will match the maximal value of StartRange
5579   // if the expression is decreasing and will be increased by Offset otherwise.
5580   APInt StartLower = StartRange.getLower();
5581   APInt StartUpper = StartRange.getUpper() - 1;
5582   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5583                                    : (StartUpper + std::move(Offset));
5584 
5585   // It's possible that the new minimum/maximum value will fall into the initial
5586   // range (due to wrap around). This means that the expression can take any
5587   // value in this bitwidth, and we have to return full range.
5588   if (StartRange.contains(MovedBoundary))
5589     return ConstantRange(BitWidth, /* isFullSet = */ true);
5590 
5591   APInt NewLower =
5592       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5593   APInt NewUpper =
5594       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5595   NewUpper += 1;
5596 
5597   // If we end up with full range, return a proper full range.
5598   if (NewLower == NewUpper)
5599     return ConstantRange(BitWidth, /* isFullSet = */ true);
5600 
5601   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5602   return ConstantRange(std::move(NewLower), std::move(NewUpper));
5603 }
5604 
5605 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5606                                                    const SCEV *Step,
5607                                                    const SCEV *MaxBECount,
5608                                                    unsigned BitWidth) {
5609   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5610          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5611          "Precondition!");
5612 
5613   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5614   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5615 
5616   // First, consider step signed.
5617   ConstantRange StartSRange = getSignedRange(Start);
5618   ConstantRange StepSRange = getSignedRange(Step);
5619 
5620   // If Step can be both positive and negative, we need to find ranges for the
5621   // maximum absolute step values in both directions and union them.
5622   ConstantRange SR =
5623       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5624                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5625   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5626                                               StartSRange, MaxBECountValue,
5627                                               BitWidth, /* Signed = */ true));
5628 
5629   // Next, consider step unsigned.
5630   ConstantRange UR = getRangeForAffineARHelper(
5631       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5632       MaxBECountValue, BitWidth, /* Signed = */ false);
5633 
5634   // Finally, intersect signed and unsigned ranges.
5635   return SR.intersectWith(UR);
5636 }
5637 
5638 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5639                                                     const SCEV *Step,
5640                                                     const SCEV *MaxBECount,
5641                                                     unsigned BitWidth) {
5642   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5643   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5644 
5645   struct SelectPattern {
5646     Value *Condition = nullptr;
5647     APInt TrueValue;
5648     APInt FalseValue;
5649 
5650     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5651                            const SCEV *S) {
5652       Optional<unsigned> CastOp;
5653       APInt Offset(BitWidth, 0);
5654 
5655       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5656              "Should be!");
5657 
5658       // Peel off a constant offset:
5659       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5660         // In the future we could consider being smarter here and handle
5661         // {Start+Step,+,Step} too.
5662         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5663           return;
5664 
5665         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5666         S = SA->getOperand(1);
5667       }
5668 
5669       // Peel off a cast operation
5670       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5671         CastOp = SCast->getSCEVType();
5672         S = SCast->getOperand();
5673       }
5674 
5675       using namespace llvm::PatternMatch;
5676 
5677       auto *SU = dyn_cast<SCEVUnknown>(S);
5678       const APInt *TrueVal, *FalseVal;
5679       if (!SU ||
5680           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5681                                           m_APInt(FalseVal)))) {
5682         Condition = nullptr;
5683         return;
5684       }
5685 
5686       TrueValue = *TrueVal;
5687       FalseValue = *FalseVal;
5688 
5689       // Re-apply the cast we peeled off earlier
5690       if (CastOp.hasValue())
5691         switch (*CastOp) {
5692         default:
5693           llvm_unreachable("Unknown SCEV cast type!");
5694 
5695         case scTruncate:
5696           TrueValue = TrueValue.trunc(BitWidth);
5697           FalseValue = FalseValue.trunc(BitWidth);
5698           break;
5699         case scZeroExtend:
5700           TrueValue = TrueValue.zext(BitWidth);
5701           FalseValue = FalseValue.zext(BitWidth);
5702           break;
5703         case scSignExtend:
5704           TrueValue = TrueValue.sext(BitWidth);
5705           FalseValue = FalseValue.sext(BitWidth);
5706           break;
5707         }
5708 
5709       // Re-apply the constant offset we peeled off earlier
5710       TrueValue += Offset;
5711       FalseValue += Offset;
5712     }
5713 
5714     bool isRecognized() { return Condition != nullptr; }
5715   };
5716 
5717   SelectPattern StartPattern(*this, BitWidth, Start);
5718   if (!StartPattern.isRecognized())
5719     return ConstantRange(BitWidth, /* isFullSet = */ true);
5720 
5721   SelectPattern StepPattern(*this, BitWidth, Step);
5722   if (!StepPattern.isRecognized())
5723     return ConstantRange(BitWidth, /* isFullSet = */ true);
5724 
5725   if (StartPattern.Condition != StepPattern.Condition) {
5726     // We don't handle this case today; but we could, by considering four
5727     // possibilities below instead of two. I'm not sure if there are cases where
5728     // that will help over what getRange already does, though.
5729     return ConstantRange(BitWidth, /* isFullSet = */ true);
5730   }
5731 
5732   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5733   // construct arbitrary general SCEV expressions here.  This function is called
5734   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5735   // say) can end up caching a suboptimal value.
5736 
5737   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5738   // C2352 and C2512 (otherwise it isn't needed).
5739 
5740   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5741   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5742   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5743   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5744 
5745   ConstantRange TrueRange =
5746       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5747   ConstantRange FalseRange =
5748       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5749 
5750   return TrueRange.unionWith(FalseRange);
5751 }
5752 
5753 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5754   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5755   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5756 
5757   // Return early if there are no flags to propagate to the SCEV.
5758   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5759   if (BinOp->hasNoUnsignedWrap())
5760     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5761   if (BinOp->hasNoSignedWrap())
5762     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5763   if (Flags == SCEV::FlagAnyWrap)
5764     return SCEV::FlagAnyWrap;
5765 
5766   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5767 }
5768 
5769 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5770   // Here we check that I is in the header of the innermost loop containing I,
5771   // since we only deal with instructions in the loop header. The actual loop we
5772   // need to check later will come from an add recurrence, but getting that
5773   // requires computing the SCEV of the operands, which can be expensive. This
5774   // check we can do cheaply to rule out some cases early.
5775   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5776   if (InnermostContainingLoop == nullptr ||
5777       InnermostContainingLoop->getHeader() != I->getParent())
5778     return false;
5779 
5780   // Only proceed if we can prove that I does not yield poison.
5781   if (!programUndefinedIfFullPoison(I))
5782     return false;
5783 
5784   // At this point we know that if I is executed, then it does not wrap
5785   // according to at least one of NSW or NUW. If I is not executed, then we do
5786   // not know if the calculation that I represents would wrap. Multiple
5787   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5788   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5789   // derived from other instructions that map to the same SCEV. We cannot make
5790   // that guarantee for cases where I is not executed. So we need to find the
5791   // loop that I is considered in relation to and prove that I is executed for
5792   // every iteration of that loop. That implies that the value that I
5793   // calculates does not wrap anywhere in the loop, so then we can apply the
5794   // flags to the SCEV.
5795   //
5796   // We check isLoopInvariant to disambiguate in case we are adding recurrences
5797   // from different loops, so that we know which loop to prove that I is
5798   // executed in.
5799   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5800     // I could be an extractvalue from a call to an overflow intrinsic.
5801     // TODO: We can do better here in some cases.
5802     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5803       return false;
5804     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
5805     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
5806       bool AllOtherOpsLoopInvariant = true;
5807       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
5808            ++OtherOpIndex) {
5809         if (OtherOpIndex != OpIndex) {
5810           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
5811           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
5812             AllOtherOpsLoopInvariant = false;
5813             break;
5814           }
5815         }
5816       }
5817       if (AllOtherOpsLoopInvariant &&
5818           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
5819         return true;
5820     }
5821   }
5822   return false;
5823 }
5824 
5825 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
5826   // If we know that \c I can never be poison period, then that's enough.
5827   if (isSCEVExprNeverPoison(I))
5828     return true;
5829 
5830   // For an add recurrence specifically, we assume that infinite loops without
5831   // side effects are undefined behavior, and then reason as follows:
5832   //
5833   // If the add recurrence is poison in any iteration, it is poison on all
5834   // future iterations (since incrementing poison yields poison). If the result
5835   // of the add recurrence is fed into the loop latch condition and the loop
5836   // does not contain any throws or exiting blocks other than the latch, we now
5837   // have the ability to "choose" whether the backedge is taken or not (by
5838   // choosing a sufficiently evil value for the poison feeding into the branch)
5839   // for every iteration including and after the one in which \p I first became
5840   // poison.  There are two possibilities (let's call the iteration in which \p
5841   // I first became poison as K):
5842   //
5843   //  1. In the set of iterations including and after K, the loop body executes
5844   //     no side effects.  In this case executing the backege an infinte number
5845   //     of times will yield undefined behavior.
5846   //
5847   //  2. In the set of iterations including and after K, the loop body executes
5848   //     at least one side effect.  In this case, that specific instance of side
5849   //     effect is control dependent on poison, which also yields undefined
5850   //     behavior.
5851 
5852   auto *ExitingBB = L->getExitingBlock();
5853   auto *LatchBB = L->getLoopLatch();
5854   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
5855     return false;
5856 
5857   SmallPtrSet<const Instruction *, 16> Pushed;
5858   SmallVector<const Instruction *, 8> PoisonStack;
5859 
5860   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
5861   // things that are known to be fully poison under that assumption go on the
5862   // PoisonStack.
5863   Pushed.insert(I);
5864   PoisonStack.push_back(I);
5865 
5866   bool LatchControlDependentOnPoison = false;
5867   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
5868     const Instruction *Poison = PoisonStack.pop_back_val();
5869 
5870     for (auto *PoisonUser : Poison->users()) {
5871       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
5872         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
5873           PoisonStack.push_back(cast<Instruction>(PoisonUser));
5874       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
5875         assert(BI->isConditional() && "Only possibility!");
5876         if (BI->getParent() == LatchBB) {
5877           LatchControlDependentOnPoison = true;
5878           break;
5879         }
5880       }
5881     }
5882   }
5883 
5884   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
5885 }
5886 
5887 ScalarEvolution::LoopProperties
5888 ScalarEvolution::getLoopProperties(const Loop *L) {
5889   using LoopProperties = ScalarEvolution::LoopProperties;
5890 
5891   auto Itr = LoopPropertiesCache.find(L);
5892   if (Itr == LoopPropertiesCache.end()) {
5893     auto HasSideEffects = [](Instruction *I) {
5894       if (auto *SI = dyn_cast<StoreInst>(I))
5895         return !SI->isSimple();
5896 
5897       return I->mayHaveSideEffects();
5898     };
5899 
5900     LoopProperties LP = {/* HasNoAbnormalExits */ true,
5901                          /*HasNoSideEffects*/ true};
5902 
5903     for (auto *BB : L->getBlocks())
5904       for (auto &I : *BB) {
5905         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5906           LP.HasNoAbnormalExits = false;
5907         if (HasSideEffects(&I))
5908           LP.HasNoSideEffects = false;
5909         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
5910           break; // We're already as pessimistic as we can get.
5911       }
5912 
5913     auto InsertPair = LoopPropertiesCache.insert({L, LP});
5914     assert(InsertPair.second && "We just checked!");
5915     Itr = InsertPair.first;
5916   }
5917 
5918   return Itr->second;
5919 }
5920 
5921 const SCEV *ScalarEvolution::createSCEV(Value *V) {
5922   if (!isSCEVable(V->getType()))
5923     return getUnknown(V);
5924 
5925   if (Instruction *I = dyn_cast<Instruction>(V)) {
5926     // Don't attempt to analyze instructions in blocks that aren't
5927     // reachable. Such instructions don't matter, and they aren't required
5928     // to obey basic rules for definitions dominating uses which this
5929     // analysis depends on.
5930     if (!DT.isReachableFromEntry(I->getParent()))
5931       return getUnknown(V);
5932   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
5933     return getConstant(CI);
5934   else if (isa<ConstantPointerNull>(V))
5935     return getZero(V->getType());
5936   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
5937     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
5938   else if (!isa<ConstantExpr>(V))
5939     return getUnknown(V);
5940 
5941   Operator *U = cast<Operator>(V);
5942   if (auto BO = MatchBinaryOp(U, DT)) {
5943     switch (BO->Opcode) {
5944     case Instruction::Add: {
5945       // The simple thing to do would be to just call getSCEV on both operands
5946       // and call getAddExpr with the result. However if we're looking at a
5947       // bunch of things all added together, this can be quite inefficient,
5948       // because it leads to N-1 getAddExpr calls for N ultimate operands.
5949       // Instead, gather up all the operands and make a single getAddExpr call.
5950       // LLVM IR canonical form means we need only traverse the left operands.
5951       SmallVector<const SCEV *, 4> AddOps;
5952       do {
5953         if (BO->Op) {
5954           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5955             AddOps.push_back(OpSCEV);
5956             break;
5957           }
5958 
5959           // If a NUW or NSW flag can be applied to the SCEV for this
5960           // addition, then compute the SCEV for this addition by itself
5961           // with a separate call to getAddExpr. We need to do that
5962           // instead of pushing the operands of the addition onto AddOps,
5963           // since the flags are only known to apply to this particular
5964           // addition - they may not apply to other additions that can be
5965           // formed with operands from AddOps.
5966           const SCEV *RHS = getSCEV(BO->RHS);
5967           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5968           if (Flags != SCEV::FlagAnyWrap) {
5969             const SCEV *LHS = getSCEV(BO->LHS);
5970             if (BO->Opcode == Instruction::Sub)
5971               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
5972             else
5973               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
5974             break;
5975           }
5976         }
5977 
5978         if (BO->Opcode == Instruction::Sub)
5979           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
5980         else
5981           AddOps.push_back(getSCEV(BO->RHS));
5982 
5983         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5984         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
5985                        NewBO->Opcode != Instruction::Sub)) {
5986           AddOps.push_back(getSCEV(BO->LHS));
5987           break;
5988         }
5989         BO = NewBO;
5990       } while (true);
5991 
5992       return getAddExpr(AddOps);
5993     }
5994 
5995     case Instruction::Mul: {
5996       SmallVector<const SCEV *, 4> MulOps;
5997       do {
5998         if (BO->Op) {
5999           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6000             MulOps.push_back(OpSCEV);
6001             break;
6002           }
6003 
6004           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6005           if (Flags != SCEV::FlagAnyWrap) {
6006             MulOps.push_back(
6007                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6008             break;
6009           }
6010         }
6011 
6012         MulOps.push_back(getSCEV(BO->RHS));
6013         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6014         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6015           MulOps.push_back(getSCEV(BO->LHS));
6016           break;
6017         }
6018         BO = NewBO;
6019       } while (true);
6020 
6021       return getMulExpr(MulOps);
6022     }
6023     case Instruction::UDiv:
6024       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6025     case Instruction::URem:
6026       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6027     case Instruction::Sub: {
6028       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6029       if (BO->Op)
6030         Flags = getNoWrapFlagsFromUB(BO->Op);
6031       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6032     }
6033     case Instruction::And:
6034       // For an expression like x&255 that merely masks off the high bits,
6035       // use zext(trunc(x)) as the SCEV expression.
6036       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6037         if (CI->isZero())
6038           return getSCEV(BO->RHS);
6039         if (CI->isMinusOne())
6040           return getSCEV(BO->LHS);
6041         const APInt &A = CI->getValue();
6042 
6043         // Instcombine's ShrinkDemandedConstant may strip bits out of
6044         // constants, obscuring what would otherwise be a low-bits mask.
6045         // Use computeKnownBits to compute what ShrinkDemandedConstant
6046         // knew about to reconstruct a low-bits mask value.
6047         unsigned LZ = A.countLeadingZeros();
6048         unsigned TZ = A.countTrailingZeros();
6049         unsigned BitWidth = A.getBitWidth();
6050         KnownBits Known(BitWidth);
6051         computeKnownBits(BO->LHS, Known, getDataLayout(),
6052                          0, &AC, nullptr, &DT);
6053 
6054         APInt EffectiveMask =
6055             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6056         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6057           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6058           const SCEV *LHS = getSCEV(BO->LHS);
6059           const SCEV *ShiftedLHS = nullptr;
6060           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6061             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6062               // For an expression like (x * 8) & 8, simplify the multiply.
6063               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6064               unsigned GCD = std::min(MulZeros, TZ);
6065               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6066               SmallVector<const SCEV*, 4> MulOps;
6067               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6068               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6069               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6070               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6071             }
6072           }
6073           if (!ShiftedLHS)
6074             ShiftedLHS = getUDivExpr(LHS, MulCount);
6075           return getMulExpr(
6076               getZeroExtendExpr(
6077                   getTruncateExpr(ShiftedLHS,
6078                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6079                   BO->LHS->getType()),
6080               MulCount);
6081         }
6082       }
6083       break;
6084 
6085     case Instruction::Or:
6086       // If the RHS of the Or is a constant, we may have something like:
6087       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6088       // optimizations will transparently handle this case.
6089       //
6090       // In order for this transformation to be safe, the LHS must be of the
6091       // form X*(2^n) and the Or constant must be less than 2^n.
6092       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6093         const SCEV *LHS = getSCEV(BO->LHS);
6094         const APInt &CIVal = CI->getValue();
6095         if (GetMinTrailingZeros(LHS) >=
6096             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6097           // Build a plain add SCEV.
6098           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
6099           // If the LHS of the add was an addrec and it has no-wrap flags,
6100           // transfer the no-wrap flags, since an or won't introduce a wrap.
6101           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
6102             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
6103             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
6104                 OldAR->getNoWrapFlags());
6105           }
6106           return S;
6107         }
6108       }
6109       break;
6110 
6111     case Instruction::Xor:
6112       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6113         // If the RHS of xor is -1, then this is a not operation.
6114         if (CI->isMinusOne())
6115           return getNotSCEV(getSCEV(BO->LHS));
6116 
6117         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6118         // This is a variant of the check for xor with -1, and it handles
6119         // the case where instcombine has trimmed non-demanded bits out
6120         // of an xor with -1.
6121         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6122           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6123             if (LBO->getOpcode() == Instruction::And &&
6124                 LCI->getValue() == CI->getValue())
6125               if (const SCEVZeroExtendExpr *Z =
6126                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6127                 Type *UTy = BO->LHS->getType();
6128                 const SCEV *Z0 = Z->getOperand();
6129                 Type *Z0Ty = Z0->getType();
6130                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6131 
6132                 // If C is a low-bits mask, the zero extend is serving to
6133                 // mask off the high bits. Complement the operand and
6134                 // re-apply the zext.
6135                 if (CI->getValue().isMask(Z0TySize))
6136                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6137 
6138                 // If C is a single bit, it may be in the sign-bit position
6139                 // before the zero-extend. In this case, represent the xor
6140                 // using an add, which is equivalent, and re-apply the zext.
6141                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6142                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6143                     Trunc.isSignMask())
6144                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6145                                            UTy);
6146               }
6147       }
6148       break;
6149 
6150   case Instruction::Shl:
6151     // Turn shift left of a constant amount into a multiply.
6152     if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6153       uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6154 
6155       // If the shift count is not less than the bitwidth, the result of
6156       // the shift is undefined. Don't try to analyze it, because the
6157       // resolution chosen here may differ from the resolution chosen in
6158       // other parts of the compiler.
6159       if (SA->getValue().uge(BitWidth))
6160         break;
6161 
6162       // It is currently not resolved how to interpret NSW for left
6163       // shift by BitWidth - 1, so we avoid applying flags in that
6164       // case. Remove this check (or this comment) once the situation
6165       // is resolved. See
6166       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6167       // and http://reviews.llvm.org/D8890 .
6168       auto Flags = SCEV::FlagAnyWrap;
6169       if (BO->Op && SA->getValue().ult(BitWidth - 1))
6170         Flags = getNoWrapFlagsFromUB(BO->Op);
6171 
6172       Constant *X = ConstantInt::get(getContext(),
6173         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6174       return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6175     }
6176     break;
6177 
6178     case Instruction::AShr: {
6179       // AShr X, C, where C is a constant.
6180       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6181       if (!CI)
6182         break;
6183 
6184       Type *OuterTy = BO->LHS->getType();
6185       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6186       // If the shift count is not less than the bitwidth, the result of
6187       // the shift is undefined. Don't try to analyze it, because the
6188       // resolution chosen here may differ from the resolution chosen in
6189       // other parts of the compiler.
6190       if (CI->getValue().uge(BitWidth))
6191         break;
6192 
6193       if (CI->isZero())
6194         return getSCEV(BO->LHS); // shift by zero --> noop
6195 
6196       uint64_t AShrAmt = CI->getZExtValue();
6197       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6198 
6199       Operator *L = dyn_cast<Operator>(BO->LHS);
6200       if (L && L->getOpcode() == Instruction::Shl) {
6201         // X = Shl A, n
6202         // Y = AShr X, m
6203         // Both n and m are constant.
6204 
6205         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6206         if (L->getOperand(1) == BO->RHS)
6207           // For a two-shift sext-inreg, i.e. n = m,
6208           // use sext(trunc(x)) as the SCEV expression.
6209           return getSignExtendExpr(
6210               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6211 
6212         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6213         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6214           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6215           if (ShlAmt > AShrAmt) {
6216             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6217             // expression. We already checked that ShlAmt < BitWidth, so
6218             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6219             // ShlAmt - AShrAmt < Amt.
6220             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6221                                             ShlAmt - AShrAmt);
6222             return getSignExtendExpr(
6223                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6224                 getConstant(Mul)), OuterTy);
6225           }
6226         }
6227       }
6228       break;
6229     }
6230     }
6231   }
6232 
6233   switch (U->getOpcode()) {
6234   case Instruction::Trunc:
6235     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6236 
6237   case Instruction::ZExt:
6238     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6239 
6240   case Instruction::SExt:
6241     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6242       // The NSW flag of a subtract does not always survive the conversion to
6243       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6244       // more likely to preserve NSW and allow later AddRec optimisations.
6245       //
6246       // NOTE: This is effectively duplicating this logic from getSignExtend:
6247       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6248       // but by that point the NSW information has potentially been lost.
6249       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6250         Type *Ty = U->getType();
6251         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6252         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6253         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6254       }
6255     }
6256     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6257 
6258   case Instruction::BitCast:
6259     // BitCasts are no-op casts so we just eliminate the cast.
6260     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6261       return getSCEV(U->getOperand(0));
6262     break;
6263 
6264   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6265   // lead to pointer expressions which cannot safely be expanded to GEPs,
6266   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6267   // simplifying integer expressions.
6268 
6269   case Instruction::GetElementPtr:
6270     return createNodeForGEP(cast<GEPOperator>(U));
6271 
6272   case Instruction::PHI:
6273     return createNodeForPHI(cast<PHINode>(U));
6274 
6275   case Instruction::Select:
6276     // U can also be a select constant expr, which let fall through.  Since
6277     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6278     // constant expressions cannot have instructions as operands, we'd have
6279     // returned getUnknown for a select constant expressions anyway.
6280     if (isa<Instruction>(U))
6281       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6282                                       U->getOperand(1), U->getOperand(2));
6283     break;
6284 
6285   case Instruction::Call:
6286   case Instruction::Invoke:
6287     if (Value *RV = CallSite(U).getReturnedArgOperand())
6288       return getSCEV(RV);
6289     break;
6290   }
6291 
6292   return getUnknown(V);
6293 }
6294 
6295 //===----------------------------------------------------------------------===//
6296 //                   Iteration Count Computation Code
6297 //
6298 
6299 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6300   if (!ExitCount)
6301     return 0;
6302 
6303   ConstantInt *ExitConst = ExitCount->getValue();
6304 
6305   // Guard against huge trip counts.
6306   if (ExitConst->getValue().getActiveBits() > 32)
6307     return 0;
6308 
6309   // In case of integer overflow, this returns 0, which is correct.
6310   return ((unsigned)ExitConst->getZExtValue()) + 1;
6311 }
6312 
6313 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6314   if (BasicBlock *ExitingBB = L->getExitingBlock())
6315     return getSmallConstantTripCount(L, ExitingBB);
6316 
6317   // No trip count information for multiple exits.
6318   return 0;
6319 }
6320 
6321 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6322                                                     BasicBlock *ExitingBlock) {
6323   assert(ExitingBlock && "Must pass a non-null exiting block!");
6324   assert(L->isLoopExiting(ExitingBlock) &&
6325          "Exiting block must actually branch out of the loop!");
6326   const SCEVConstant *ExitCount =
6327       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6328   return getConstantTripCount(ExitCount);
6329 }
6330 
6331 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6332   const auto *MaxExitCount =
6333       dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
6334   return getConstantTripCount(MaxExitCount);
6335 }
6336 
6337 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6338   if (BasicBlock *ExitingBB = L->getExitingBlock())
6339     return getSmallConstantTripMultiple(L, ExitingBB);
6340 
6341   // No trip multiple information for multiple exits.
6342   return 0;
6343 }
6344 
6345 /// Returns the largest constant divisor of the trip count of this loop as a
6346 /// normal unsigned value, if possible. This means that the actual trip count is
6347 /// always a multiple of the returned value (don't forget the trip count could
6348 /// very well be zero as well!).
6349 ///
6350 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6351 /// multiple of a constant (which is also the case if the trip count is simply
6352 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6353 /// if the trip count is very large (>= 2^32).
6354 ///
6355 /// As explained in the comments for getSmallConstantTripCount, this assumes
6356 /// that control exits the loop via ExitingBlock.
6357 unsigned
6358 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6359                                               BasicBlock *ExitingBlock) {
6360   assert(ExitingBlock && "Must pass a non-null exiting block!");
6361   assert(L->isLoopExiting(ExitingBlock) &&
6362          "Exiting block must actually branch out of the loop!");
6363   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6364   if (ExitCount == getCouldNotCompute())
6365     return 1;
6366 
6367   // Get the trip count from the BE count by adding 1.
6368   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6369 
6370   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6371   if (!TC)
6372     // Attempt to factor more general cases. Returns the greatest power of
6373     // two divisor. If overflow happens, the trip count expression is still
6374     // divisible by the greatest power of 2 divisor returned.
6375     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6376 
6377   ConstantInt *Result = TC->getValue();
6378 
6379   // Guard against huge trip counts (this requires checking
6380   // for zero to handle the case where the trip count == -1 and the
6381   // addition wraps).
6382   if (!Result || Result->getValue().getActiveBits() > 32 ||
6383       Result->getValue().getActiveBits() == 0)
6384     return 1;
6385 
6386   return (unsigned)Result->getZExtValue();
6387 }
6388 
6389 /// Get the expression for the number of loop iterations for which this loop is
6390 /// guaranteed not to exit via ExitingBlock. Otherwise return
6391 /// SCEVCouldNotCompute.
6392 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6393                                           BasicBlock *ExitingBlock) {
6394   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6395 }
6396 
6397 const SCEV *
6398 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6399                                                  SCEVUnionPredicate &Preds) {
6400   return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
6401 }
6402 
6403 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
6404   return getBackedgeTakenInfo(L).getExact(this);
6405 }
6406 
6407 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
6408 /// known never to be less than the actual backedge taken count.
6409 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
6410   return getBackedgeTakenInfo(L).getMax(this);
6411 }
6412 
6413 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6414   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6415 }
6416 
6417 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6418 static void
6419 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6420   BasicBlock *Header = L->getHeader();
6421 
6422   // Push all Loop-header PHIs onto the Worklist stack.
6423   for (PHINode &PN : Header->phis())
6424     Worklist.push_back(&PN);
6425 }
6426 
6427 const ScalarEvolution::BackedgeTakenInfo &
6428 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6429   auto &BTI = getBackedgeTakenInfo(L);
6430   if (BTI.hasFullInfo())
6431     return BTI;
6432 
6433   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6434 
6435   if (!Pair.second)
6436     return Pair.first->second;
6437 
6438   BackedgeTakenInfo Result =
6439       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6440 
6441   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6442 }
6443 
6444 const ScalarEvolution::BackedgeTakenInfo &
6445 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6446   // Initially insert an invalid entry for this loop. If the insertion
6447   // succeeds, proceed to actually compute a backedge-taken count and
6448   // update the value. The temporary CouldNotCompute value tells SCEV
6449   // code elsewhere that it shouldn't attempt to request a new
6450   // backedge-taken count, which could result in infinite recursion.
6451   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6452       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6453   if (!Pair.second)
6454     return Pair.first->second;
6455 
6456   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6457   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6458   // must be cleared in this scope.
6459   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6460 
6461   if (Result.getExact(this) != getCouldNotCompute()) {
6462     assert(isLoopInvariant(Result.getExact(this), L) &&
6463            isLoopInvariant(Result.getMax(this), L) &&
6464            "Computed backedge-taken count isn't loop invariant for loop!");
6465     ++NumTripCountsComputed;
6466   }
6467   else if (Result.getMax(this) == getCouldNotCompute() &&
6468            isa<PHINode>(L->getHeader()->begin())) {
6469     // Only count loops that have phi nodes as not being computable.
6470     ++NumTripCountsNotComputed;
6471   }
6472 
6473   // Now that we know more about the trip count for this loop, forget any
6474   // existing SCEV values for PHI nodes in this loop since they are only
6475   // conservative estimates made without the benefit of trip count
6476   // information. This is similar to the code in forgetLoop, except that
6477   // it handles SCEVUnknown PHI nodes specially.
6478   if (Result.hasAnyInfo()) {
6479     SmallVector<Instruction *, 16> Worklist;
6480     PushLoopPHIs(L, Worklist);
6481 
6482     SmallPtrSet<Instruction *, 8> Discovered;
6483     while (!Worklist.empty()) {
6484       Instruction *I = Worklist.pop_back_val();
6485 
6486       ValueExprMapType::iterator It =
6487         ValueExprMap.find_as(static_cast<Value *>(I));
6488       if (It != ValueExprMap.end()) {
6489         const SCEV *Old = It->second;
6490 
6491         // SCEVUnknown for a PHI either means that it has an unrecognized
6492         // structure, or it's a PHI that's in the progress of being computed
6493         // by createNodeForPHI.  In the former case, additional loop trip
6494         // count information isn't going to change anything. In the later
6495         // case, createNodeForPHI will perform the necessary updates on its
6496         // own when it gets to that point.
6497         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6498           eraseValueFromMap(It->first);
6499           forgetMemoizedResults(Old);
6500         }
6501         if (PHINode *PN = dyn_cast<PHINode>(I))
6502           ConstantEvolutionLoopExitValue.erase(PN);
6503       }
6504 
6505       // Since we don't need to invalidate anything for correctness and we're
6506       // only invalidating to make SCEV's results more precise, we get to stop
6507       // early to avoid invalidating too much.  This is especially important in
6508       // cases like:
6509       //
6510       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6511       // loop0:
6512       //   %pn0 = phi
6513       //   ...
6514       // loop1:
6515       //   %pn1 = phi
6516       //   ...
6517       //
6518       // where both loop0 and loop1's backedge taken count uses the SCEV
6519       // expression for %v.  If we don't have the early stop below then in cases
6520       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6521       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6522       // count for loop1, effectively nullifying SCEV's trip count cache.
6523       for (auto *U : I->users())
6524         if (auto *I = dyn_cast<Instruction>(U)) {
6525           auto *LoopForUser = LI.getLoopFor(I->getParent());
6526           if (LoopForUser && L->contains(LoopForUser) &&
6527               Discovered.insert(I).second)
6528             Worklist.push_back(I);
6529         }
6530     }
6531   }
6532 
6533   // Re-lookup the insert position, since the call to
6534   // computeBackedgeTakenCount above could result in a
6535   // recusive call to getBackedgeTakenInfo (on a different
6536   // loop), which would invalidate the iterator computed
6537   // earlier.
6538   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6539 }
6540 
6541 void ScalarEvolution::forgetLoop(const Loop *L) {
6542   // Drop any stored trip count value.
6543   auto RemoveLoopFromBackedgeMap =
6544       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6545         auto BTCPos = Map.find(L);
6546         if (BTCPos != Map.end()) {
6547           BTCPos->second.clear();
6548           Map.erase(BTCPos);
6549         }
6550       };
6551 
6552   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6553   SmallVector<Instruction *, 32> Worklist;
6554   SmallPtrSet<Instruction *, 16> Visited;
6555 
6556   // Iterate over all the loops and sub-loops to drop SCEV information.
6557   while (!LoopWorklist.empty()) {
6558     auto *CurrL = LoopWorklist.pop_back_val();
6559 
6560     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6561     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6562 
6563     // Drop information about predicated SCEV rewrites for this loop.
6564     for (auto I = PredicatedSCEVRewrites.begin();
6565          I != PredicatedSCEVRewrites.end();) {
6566       std::pair<const SCEV *, const Loop *> Entry = I->first;
6567       if (Entry.second == CurrL)
6568         PredicatedSCEVRewrites.erase(I++);
6569       else
6570         ++I;
6571     }
6572 
6573     auto LoopUsersItr = LoopUsers.find(CurrL);
6574     if (LoopUsersItr != LoopUsers.end()) {
6575       for (auto *S : LoopUsersItr->second)
6576         forgetMemoizedResults(S);
6577       LoopUsers.erase(LoopUsersItr);
6578     }
6579 
6580     // Drop information about expressions based on loop-header PHIs.
6581     PushLoopPHIs(CurrL, Worklist);
6582 
6583     while (!Worklist.empty()) {
6584       Instruction *I = Worklist.pop_back_val();
6585       if (!Visited.insert(I).second)
6586         continue;
6587 
6588       ValueExprMapType::iterator It =
6589           ValueExprMap.find_as(static_cast<Value *>(I));
6590       if (It != ValueExprMap.end()) {
6591         eraseValueFromMap(It->first);
6592         forgetMemoizedResults(It->second);
6593         if (PHINode *PN = dyn_cast<PHINode>(I))
6594           ConstantEvolutionLoopExitValue.erase(PN);
6595       }
6596 
6597       PushDefUseChildren(I, Worklist);
6598     }
6599 
6600     LoopPropertiesCache.erase(CurrL);
6601     // Forget all contained loops too, to avoid dangling entries in the
6602     // ValuesAtScopes map.
6603     LoopWorklist.append(CurrL->begin(), CurrL->end());
6604   }
6605 }
6606 
6607 void ScalarEvolution::forgetValue(Value *V) {
6608   Instruction *I = dyn_cast<Instruction>(V);
6609   if (!I) return;
6610 
6611   // Drop information about expressions based on loop-header PHIs.
6612   SmallVector<Instruction *, 16> Worklist;
6613   Worklist.push_back(I);
6614 
6615   SmallPtrSet<Instruction *, 8> Visited;
6616   while (!Worklist.empty()) {
6617     I = Worklist.pop_back_val();
6618     if (!Visited.insert(I).second)
6619       continue;
6620 
6621     ValueExprMapType::iterator It =
6622       ValueExprMap.find_as(static_cast<Value *>(I));
6623     if (It != ValueExprMap.end()) {
6624       eraseValueFromMap(It->first);
6625       forgetMemoizedResults(It->second);
6626       if (PHINode *PN = dyn_cast<PHINode>(I))
6627         ConstantEvolutionLoopExitValue.erase(PN);
6628     }
6629 
6630     PushDefUseChildren(I, Worklist);
6631   }
6632 }
6633 
6634 /// Get the exact loop backedge taken count considering all loop exits. A
6635 /// computable result can only be returned for loops with a single exit.
6636 /// Returning the minimum taken count among all exits is incorrect because one
6637 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that
6638 /// the limit of each loop test is never skipped. This is a valid assumption as
6639 /// long as the loop exits via that test. For precise results, it is the
6640 /// caller's responsibility to specify the relevant loop exit using
6641 /// getExact(ExitingBlock, SE).
6642 const SCEV *
6643 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE,
6644                                              SCEVUnionPredicate *Preds) const {
6645   // If any exits were not computable, the loop is not computable.
6646   if (!isComplete() || ExitNotTaken.empty())
6647     return SE->getCouldNotCompute();
6648 
6649   const SCEV *BECount = nullptr;
6650   for (auto &ENT : ExitNotTaken) {
6651     assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
6652 
6653     if (!BECount)
6654       BECount = ENT.ExactNotTaken;
6655     else if (BECount != ENT.ExactNotTaken)
6656       return SE->getCouldNotCompute();
6657     if (Preds && !ENT.hasAlwaysTruePredicate())
6658       Preds->add(ENT.Predicate.get());
6659 
6660     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6661            "Predicate should be always true!");
6662   }
6663 
6664   assert(BECount && "Invalid not taken count for loop exit");
6665   return BECount;
6666 }
6667 
6668 /// Get the exact not taken count for this loop exit.
6669 const SCEV *
6670 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6671                                              ScalarEvolution *SE) const {
6672   for (auto &ENT : ExitNotTaken)
6673     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6674       return ENT.ExactNotTaken;
6675 
6676   return SE->getCouldNotCompute();
6677 }
6678 
6679 /// getMax - Get the max backedge taken count for the loop.
6680 const SCEV *
6681 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6682   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6683     return !ENT.hasAlwaysTruePredicate();
6684   };
6685 
6686   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6687     return SE->getCouldNotCompute();
6688 
6689   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6690          "No point in having a non-constant max backedge taken count!");
6691   return getMax();
6692 }
6693 
6694 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6695   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6696     return !ENT.hasAlwaysTruePredicate();
6697   };
6698   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6699 }
6700 
6701 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6702                                                     ScalarEvolution *SE) const {
6703   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6704       SE->hasOperand(getMax(), S))
6705     return true;
6706 
6707   for (auto &ENT : ExitNotTaken)
6708     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6709         SE->hasOperand(ENT.ExactNotTaken, S))
6710       return true;
6711 
6712   return false;
6713 }
6714 
6715 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6716     : ExactNotTaken(E), MaxNotTaken(E) {
6717   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6718           isa<SCEVConstant>(MaxNotTaken)) &&
6719          "No point in having a non-constant max backedge taken count!");
6720 }
6721 
6722 ScalarEvolution::ExitLimit::ExitLimit(
6723     const SCEV *E, const SCEV *M, bool MaxOrZero,
6724     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6725     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6726   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6727           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6728          "Exact is not allowed to be less precise than Max");
6729   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6730           isa<SCEVConstant>(MaxNotTaken)) &&
6731          "No point in having a non-constant max backedge taken count!");
6732   for (auto *PredSet : PredSetList)
6733     for (auto *P : *PredSet)
6734       addPredicate(P);
6735 }
6736 
6737 ScalarEvolution::ExitLimit::ExitLimit(
6738     const SCEV *E, const SCEV *M, bool MaxOrZero,
6739     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6740     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6741   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6742           isa<SCEVConstant>(MaxNotTaken)) &&
6743          "No point in having a non-constant max backedge taken count!");
6744 }
6745 
6746 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6747                                       bool MaxOrZero)
6748     : ExitLimit(E, M, MaxOrZero, None) {
6749   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6750           isa<SCEVConstant>(MaxNotTaken)) &&
6751          "No point in having a non-constant max backedge taken count!");
6752 }
6753 
6754 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6755 /// computable exit into a persistent ExitNotTakenInfo array.
6756 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6757     SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6758         &&ExitCounts,
6759     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6760     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6761   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6762 
6763   ExitNotTaken.reserve(ExitCounts.size());
6764   std::transform(
6765       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6766       [&](const EdgeExitInfo &EEI) {
6767         BasicBlock *ExitBB = EEI.first;
6768         const ExitLimit &EL = EEI.second;
6769         if (EL.Predicates.empty())
6770           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
6771 
6772         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
6773         for (auto *Pred : EL.Predicates)
6774           Predicate->add(Pred);
6775 
6776         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
6777       });
6778   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
6779          "No point in having a non-constant max backedge taken count!");
6780 }
6781 
6782 /// Invalidate this result and free the ExitNotTakenInfo array.
6783 void ScalarEvolution::BackedgeTakenInfo::clear() {
6784   ExitNotTaken.clear();
6785 }
6786 
6787 /// Compute the number of times the backedge of the specified loop will execute.
6788 ScalarEvolution::BackedgeTakenInfo
6789 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
6790                                            bool AllowPredicates) {
6791   SmallVector<BasicBlock *, 8> ExitingBlocks;
6792   L->getExitingBlocks(ExitingBlocks);
6793 
6794   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6795 
6796   SmallVector<EdgeExitInfo, 4> ExitCounts;
6797   bool CouldComputeBECount = true;
6798   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
6799   const SCEV *MustExitMaxBECount = nullptr;
6800   const SCEV *MayExitMaxBECount = nullptr;
6801   bool MustExitMaxOrZero = false;
6802 
6803   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
6804   // and compute maxBECount.
6805   // Do a union of all the predicates here.
6806   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
6807     BasicBlock *ExitBB = ExitingBlocks[i];
6808     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
6809 
6810     assert((AllowPredicates || EL.Predicates.empty()) &&
6811            "Predicated exit limit when predicates are not allowed!");
6812 
6813     // 1. For each exit that can be computed, add an entry to ExitCounts.
6814     // CouldComputeBECount is true only if all exits can be computed.
6815     if (EL.ExactNotTaken == getCouldNotCompute())
6816       // We couldn't compute an exact value for this exit, so
6817       // we won't be able to compute an exact value for the loop.
6818       CouldComputeBECount = false;
6819     else
6820       ExitCounts.emplace_back(ExitBB, EL);
6821 
6822     // 2. Derive the loop's MaxBECount from each exit's max number of
6823     // non-exiting iterations. Partition the loop exits into two kinds:
6824     // LoopMustExits and LoopMayExits.
6825     //
6826     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
6827     // is a LoopMayExit.  If any computable LoopMustExit is found, then
6828     // MaxBECount is the minimum EL.MaxNotTaken of computable
6829     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
6830     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
6831     // computable EL.MaxNotTaken.
6832     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
6833         DT.dominates(ExitBB, Latch)) {
6834       if (!MustExitMaxBECount) {
6835         MustExitMaxBECount = EL.MaxNotTaken;
6836         MustExitMaxOrZero = EL.MaxOrZero;
6837       } else {
6838         MustExitMaxBECount =
6839             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
6840       }
6841     } else if (MayExitMaxBECount != getCouldNotCompute()) {
6842       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
6843         MayExitMaxBECount = EL.MaxNotTaken;
6844       else {
6845         MayExitMaxBECount =
6846             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
6847       }
6848     }
6849   }
6850   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
6851     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
6852   // The loop backedge will be taken the maximum or zero times if there's
6853   // a single exit that must be taken the maximum or zero times.
6854   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
6855   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
6856                            MaxBECount, MaxOrZero);
6857 }
6858 
6859 ScalarEvolution::ExitLimit
6860 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
6861                                       bool AllowPredicates) {
6862   // Okay, we've chosen an exiting block.  See what condition causes us to exit
6863   // at this block and remember the exit block and whether all other targets
6864   // lead to the loop header.
6865   bool MustExecuteLoopHeader = true;
6866   BasicBlock *Exit = nullptr;
6867   for (auto *SBB : successors(ExitingBlock))
6868     if (!L->contains(SBB)) {
6869       if (Exit) // Multiple exit successors.
6870         return getCouldNotCompute();
6871       Exit = SBB;
6872     } else if (SBB != L->getHeader()) {
6873       MustExecuteLoopHeader = false;
6874     }
6875 
6876   // At this point, we know we have a conditional branch that determines whether
6877   // the loop is exited.  However, we don't know if the branch is executed each
6878   // time through the loop.  If not, then the execution count of the branch will
6879   // not be equal to the trip count of the loop.
6880   //
6881   // Currently we check for this by checking to see if the Exit branch goes to
6882   // the loop header.  If so, we know it will always execute the same number of
6883   // times as the loop.  We also handle the case where the exit block *is* the
6884   // loop header.  This is common for un-rotated loops.
6885   //
6886   // If both of those tests fail, walk up the unique predecessor chain to the
6887   // header, stopping if there is an edge that doesn't exit the loop. If the
6888   // header is reached, the execution count of the branch will be equal to the
6889   // trip count of the loop.
6890   //
6891   //  More extensive analysis could be done to handle more cases here.
6892   //
6893   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
6894     // The simple checks failed, try climbing the unique predecessor chain
6895     // up to the header.
6896     bool Ok = false;
6897     for (BasicBlock *BB = ExitingBlock; BB; ) {
6898       BasicBlock *Pred = BB->getUniquePredecessor();
6899       if (!Pred)
6900         return getCouldNotCompute();
6901       TerminatorInst *PredTerm = Pred->getTerminator();
6902       for (const BasicBlock *PredSucc : PredTerm->successors()) {
6903         if (PredSucc == BB)
6904           continue;
6905         // If the predecessor has a successor that isn't BB and isn't
6906         // outside the loop, assume the worst.
6907         if (L->contains(PredSucc))
6908           return getCouldNotCompute();
6909       }
6910       if (Pred == L->getHeader()) {
6911         Ok = true;
6912         break;
6913       }
6914       BB = Pred;
6915     }
6916     if (!Ok)
6917       return getCouldNotCompute();
6918   }
6919 
6920   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
6921   TerminatorInst *Term = ExitingBlock->getTerminator();
6922   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
6923     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
6924     // Proceed to the next level to examine the exit condition expression.
6925     return computeExitLimitFromCond(
6926         L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
6927         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
6928   }
6929 
6930   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
6931     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
6932                                                 /*ControlsExit=*/IsOnlyExit);
6933 
6934   return getCouldNotCompute();
6935 }
6936 
6937 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
6938     const Loop *L, Value *ExitCond, BasicBlock *TBB, BasicBlock *FBB,
6939     bool ControlsExit, bool AllowPredicates) {
6940   ScalarEvolution::ExitLimitCacheTy Cache(L, TBB, FBB, AllowPredicates);
6941   return computeExitLimitFromCondCached(Cache, L, ExitCond, TBB, FBB,
6942                                         ControlsExit, AllowPredicates);
6943 }
6944 
6945 Optional<ScalarEvolution::ExitLimit>
6946 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
6947                                       BasicBlock *TBB, BasicBlock *FBB,
6948                                       bool ControlsExit, bool AllowPredicates) {
6949   (void)this->L;
6950   (void)this->TBB;
6951   (void)this->FBB;
6952   (void)this->AllowPredicates;
6953 
6954   assert(this->L == L && this->TBB == TBB && this->FBB == FBB &&
6955          this->AllowPredicates == AllowPredicates &&
6956          "Variance in assumed invariant key components!");
6957   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
6958   if (Itr == TripCountMap.end())
6959     return None;
6960   return Itr->second;
6961 }
6962 
6963 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
6964                                              BasicBlock *TBB, BasicBlock *FBB,
6965                                              bool ControlsExit,
6966                                              bool AllowPredicates,
6967                                              const ExitLimit &EL) {
6968   assert(this->L == L && this->TBB == TBB && this->FBB == FBB &&
6969          this->AllowPredicates == AllowPredicates &&
6970          "Variance in assumed invariant key components!");
6971 
6972   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
6973   assert(InsertResult.second && "Expected successful insertion!");
6974   (void)InsertResult;
6975 }
6976 
6977 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
6978     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB,
6979     BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) {
6980 
6981   if (auto MaybeEL =
6982           Cache.find(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates))
6983     return *MaybeEL;
6984 
6985   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, TBB, FBB,
6986                                               ControlsExit, AllowPredicates);
6987   Cache.insert(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates, EL);
6988   return EL;
6989 }
6990 
6991 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
6992     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB,
6993     BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) {
6994   // Check if the controlling expression for this loop is an And or Or.
6995   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
6996     if (BO->getOpcode() == Instruction::And) {
6997       // Recurse on the operands of the and.
6998       bool EitherMayExit = L->contains(TBB);
6999       ExitLimit EL0 = computeExitLimitFromCondCached(
7000           Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit,
7001           AllowPredicates);
7002       ExitLimit EL1 = computeExitLimitFromCondCached(
7003           Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit,
7004           AllowPredicates);
7005       const SCEV *BECount = getCouldNotCompute();
7006       const SCEV *MaxBECount = getCouldNotCompute();
7007       if (EitherMayExit) {
7008         // Both conditions must be true for the loop to continue executing.
7009         // Choose the less conservative count.
7010         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7011             EL1.ExactNotTaken == getCouldNotCompute())
7012           BECount = getCouldNotCompute();
7013         else
7014           BECount =
7015               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7016         if (EL0.MaxNotTaken == getCouldNotCompute())
7017           MaxBECount = EL1.MaxNotTaken;
7018         else if (EL1.MaxNotTaken == getCouldNotCompute())
7019           MaxBECount = EL0.MaxNotTaken;
7020         else
7021           MaxBECount =
7022               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7023       } else {
7024         // Both conditions must be true at the same time for the loop to exit.
7025         // For now, be conservative.
7026         assert(L->contains(FBB) && "Loop block has no successor in loop!");
7027         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7028           MaxBECount = EL0.MaxNotTaken;
7029         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7030           BECount = EL0.ExactNotTaken;
7031       }
7032 
7033       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7034       // to be more aggressive when computing BECount than when computing
7035       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7036       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7037       // to not.
7038       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7039           !isa<SCEVCouldNotCompute>(BECount))
7040         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7041 
7042       return ExitLimit(BECount, MaxBECount, false,
7043                        {&EL0.Predicates, &EL1.Predicates});
7044     }
7045     if (BO->getOpcode() == Instruction::Or) {
7046       // Recurse on the operands of the or.
7047       bool EitherMayExit = L->contains(FBB);
7048       ExitLimit EL0 = computeExitLimitFromCondCached(
7049           Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit,
7050           AllowPredicates);
7051       ExitLimit EL1 = computeExitLimitFromCondCached(
7052           Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit,
7053           AllowPredicates);
7054       const SCEV *BECount = getCouldNotCompute();
7055       const SCEV *MaxBECount = getCouldNotCompute();
7056       if (EitherMayExit) {
7057         // Both conditions must be false for the loop to continue executing.
7058         // Choose the less conservative count.
7059         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7060             EL1.ExactNotTaken == getCouldNotCompute())
7061           BECount = getCouldNotCompute();
7062         else
7063           BECount =
7064               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7065         if (EL0.MaxNotTaken == getCouldNotCompute())
7066           MaxBECount = EL1.MaxNotTaken;
7067         else if (EL1.MaxNotTaken == getCouldNotCompute())
7068           MaxBECount = EL0.MaxNotTaken;
7069         else
7070           MaxBECount =
7071               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7072       } else {
7073         // Both conditions must be false at the same time for the loop to exit.
7074         // For now, be conservative.
7075         assert(L->contains(TBB) && "Loop block has no successor in loop!");
7076         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7077           MaxBECount = EL0.MaxNotTaken;
7078         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7079           BECount = EL0.ExactNotTaken;
7080       }
7081 
7082       return ExitLimit(BECount, MaxBECount, false,
7083                        {&EL0.Predicates, &EL1.Predicates});
7084     }
7085   }
7086 
7087   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7088   // Proceed to the next level to examine the icmp.
7089   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7090     ExitLimit EL =
7091         computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
7092     if (EL.hasFullInfo() || !AllowPredicates)
7093       return EL;
7094 
7095     // Try again, but use SCEV predicates this time.
7096     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
7097                                     /*AllowPredicates=*/true);
7098   }
7099 
7100   // Check for a constant condition. These are normally stripped out by
7101   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7102   // preserve the CFG and is temporarily leaving constant conditions
7103   // in place.
7104   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7105     if (L->contains(FBB) == !CI->getZExtValue())
7106       // The backedge is always taken.
7107       return getCouldNotCompute();
7108     else
7109       // The backedge is never taken.
7110       return getZero(CI->getType());
7111   }
7112 
7113   // If it's not an integer or pointer comparison then compute it the hard way.
7114   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
7115 }
7116 
7117 ScalarEvolution::ExitLimit
7118 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7119                                           ICmpInst *ExitCond,
7120                                           BasicBlock *TBB,
7121                                           BasicBlock *FBB,
7122                                           bool ControlsExit,
7123                                           bool AllowPredicates) {
7124   // If the condition was exit on true, convert the condition to exit on false
7125   ICmpInst::Predicate Pred;
7126   if (!L->contains(FBB))
7127     Pred = ExitCond->getPredicate();
7128   else
7129     Pred = ExitCond->getInversePredicate();
7130   const ICmpInst::Predicate OriginalPred = Pred;
7131 
7132   // Handle common loops like: for (X = "string"; *X; ++X)
7133   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7134     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7135       ExitLimit ItCnt =
7136         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7137       if (ItCnt.hasAnyInfo())
7138         return ItCnt;
7139     }
7140 
7141   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7142   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7143 
7144   // Try to evaluate any dependencies out of the loop.
7145   LHS = getSCEVAtScope(LHS, L);
7146   RHS = getSCEVAtScope(RHS, L);
7147 
7148   // At this point, we would like to compute how many iterations of the
7149   // loop the predicate will return true for these inputs.
7150   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7151     // If there is a loop-invariant, force it into the RHS.
7152     std::swap(LHS, RHS);
7153     Pred = ICmpInst::getSwappedPredicate(Pred);
7154   }
7155 
7156   // Simplify the operands before analyzing them.
7157   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7158 
7159   // If we have a comparison of a chrec against a constant, try to use value
7160   // ranges to answer this query.
7161   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7162     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7163       if (AddRec->getLoop() == L) {
7164         // Form the constant range.
7165         ConstantRange CompRange =
7166             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7167 
7168         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7169         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7170       }
7171 
7172   switch (Pred) {
7173   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7174     // Convert to: while (X-Y != 0)
7175     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7176                                 AllowPredicates);
7177     if (EL.hasAnyInfo()) return EL;
7178     break;
7179   }
7180   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7181     // Convert to: while (X-Y == 0)
7182     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7183     if (EL.hasAnyInfo()) return EL;
7184     break;
7185   }
7186   case ICmpInst::ICMP_SLT:
7187   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7188     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7189     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7190                                     AllowPredicates);
7191     if (EL.hasAnyInfo()) return EL;
7192     break;
7193   }
7194   case ICmpInst::ICMP_SGT:
7195   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7196     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7197     ExitLimit EL =
7198         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7199                             AllowPredicates);
7200     if (EL.hasAnyInfo()) return EL;
7201     break;
7202   }
7203   default:
7204     break;
7205   }
7206 
7207   auto *ExhaustiveCount =
7208       computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
7209 
7210   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7211     return ExhaustiveCount;
7212 
7213   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7214                                       ExitCond->getOperand(1), L, OriginalPred);
7215 }
7216 
7217 ScalarEvolution::ExitLimit
7218 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7219                                                       SwitchInst *Switch,
7220                                                       BasicBlock *ExitingBlock,
7221                                                       bool ControlsExit) {
7222   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7223 
7224   // Give up if the exit is the default dest of a switch.
7225   if (Switch->getDefaultDest() == ExitingBlock)
7226     return getCouldNotCompute();
7227 
7228   assert(L->contains(Switch->getDefaultDest()) &&
7229          "Default case must not exit the loop!");
7230   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7231   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7232 
7233   // while (X != Y) --> while (X-Y != 0)
7234   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7235   if (EL.hasAnyInfo())
7236     return EL;
7237 
7238   return getCouldNotCompute();
7239 }
7240 
7241 static ConstantInt *
7242 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7243                                 ScalarEvolution &SE) {
7244   const SCEV *InVal = SE.getConstant(C);
7245   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7246   assert(isa<SCEVConstant>(Val) &&
7247          "Evaluation of SCEV at constant didn't fold correctly?");
7248   return cast<SCEVConstant>(Val)->getValue();
7249 }
7250 
7251 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7252 /// compute the backedge execution count.
7253 ScalarEvolution::ExitLimit
7254 ScalarEvolution::computeLoadConstantCompareExitLimit(
7255   LoadInst *LI,
7256   Constant *RHS,
7257   const Loop *L,
7258   ICmpInst::Predicate predicate) {
7259   if (LI->isVolatile()) return getCouldNotCompute();
7260 
7261   // Check to see if the loaded pointer is a getelementptr of a global.
7262   // TODO: Use SCEV instead of manually grubbing with GEPs.
7263   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7264   if (!GEP) return getCouldNotCompute();
7265 
7266   // Make sure that it is really a constant global we are gepping, with an
7267   // initializer, and make sure the first IDX is really 0.
7268   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7269   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7270       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7271       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7272     return getCouldNotCompute();
7273 
7274   // Okay, we allow one non-constant index into the GEP instruction.
7275   Value *VarIdx = nullptr;
7276   std::vector<Constant*> Indexes;
7277   unsigned VarIdxNum = 0;
7278   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7279     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7280       Indexes.push_back(CI);
7281     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7282       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7283       VarIdx = GEP->getOperand(i);
7284       VarIdxNum = i-2;
7285       Indexes.push_back(nullptr);
7286     }
7287 
7288   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7289   if (!VarIdx)
7290     return getCouldNotCompute();
7291 
7292   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7293   // Check to see if X is a loop variant variable value now.
7294   const SCEV *Idx = getSCEV(VarIdx);
7295   Idx = getSCEVAtScope(Idx, L);
7296 
7297   // We can only recognize very limited forms of loop index expressions, in
7298   // particular, only affine AddRec's like {C1,+,C2}.
7299   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7300   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7301       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7302       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7303     return getCouldNotCompute();
7304 
7305   unsigned MaxSteps = MaxBruteForceIterations;
7306   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7307     ConstantInt *ItCst = ConstantInt::get(
7308                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7309     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7310 
7311     // Form the GEP offset.
7312     Indexes[VarIdxNum] = Val;
7313 
7314     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7315                                                          Indexes);
7316     if (!Result) break;  // Cannot compute!
7317 
7318     // Evaluate the condition for this iteration.
7319     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7320     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7321     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7322       ++NumArrayLenItCounts;
7323       return getConstant(ItCst);   // Found terminating iteration!
7324     }
7325   }
7326   return getCouldNotCompute();
7327 }
7328 
7329 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7330     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7331   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7332   if (!RHS)
7333     return getCouldNotCompute();
7334 
7335   const BasicBlock *Latch = L->getLoopLatch();
7336   if (!Latch)
7337     return getCouldNotCompute();
7338 
7339   const BasicBlock *Predecessor = L->getLoopPredecessor();
7340   if (!Predecessor)
7341     return getCouldNotCompute();
7342 
7343   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7344   // Return LHS in OutLHS and shift_opt in OutOpCode.
7345   auto MatchPositiveShift =
7346       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7347 
7348     using namespace PatternMatch;
7349 
7350     ConstantInt *ShiftAmt;
7351     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7352       OutOpCode = Instruction::LShr;
7353     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7354       OutOpCode = Instruction::AShr;
7355     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7356       OutOpCode = Instruction::Shl;
7357     else
7358       return false;
7359 
7360     return ShiftAmt->getValue().isStrictlyPositive();
7361   };
7362 
7363   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7364   //
7365   // loop:
7366   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7367   //   %iv.shifted = lshr i32 %iv, <positive constant>
7368   //
7369   // Return true on a successful match.  Return the corresponding PHI node (%iv
7370   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7371   auto MatchShiftRecurrence =
7372       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7373     Optional<Instruction::BinaryOps> PostShiftOpCode;
7374 
7375     {
7376       Instruction::BinaryOps OpC;
7377       Value *V;
7378 
7379       // If we encounter a shift instruction, "peel off" the shift operation,
7380       // and remember that we did so.  Later when we inspect %iv's backedge
7381       // value, we will make sure that the backedge value uses the same
7382       // operation.
7383       //
7384       // Note: the peeled shift operation does not have to be the same
7385       // instruction as the one feeding into the PHI's backedge value.  We only
7386       // really care about it being the same *kind* of shift instruction --
7387       // that's all that is required for our later inferences to hold.
7388       if (MatchPositiveShift(LHS, V, OpC)) {
7389         PostShiftOpCode = OpC;
7390         LHS = V;
7391       }
7392     }
7393 
7394     PNOut = dyn_cast<PHINode>(LHS);
7395     if (!PNOut || PNOut->getParent() != L->getHeader())
7396       return false;
7397 
7398     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7399     Value *OpLHS;
7400 
7401     return
7402         // The backedge value for the PHI node must be a shift by a positive
7403         // amount
7404         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7405 
7406         // of the PHI node itself
7407         OpLHS == PNOut &&
7408 
7409         // and the kind of shift should be match the kind of shift we peeled
7410         // off, if any.
7411         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7412   };
7413 
7414   PHINode *PN;
7415   Instruction::BinaryOps OpCode;
7416   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7417     return getCouldNotCompute();
7418 
7419   const DataLayout &DL = getDataLayout();
7420 
7421   // The key rationale for this optimization is that for some kinds of shift
7422   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7423   // within a finite number of iterations.  If the condition guarding the
7424   // backedge (in the sense that the backedge is taken if the condition is true)
7425   // is false for the value the shift recurrence stabilizes to, then we know
7426   // that the backedge is taken only a finite number of times.
7427 
7428   ConstantInt *StableValue = nullptr;
7429   switch (OpCode) {
7430   default:
7431     llvm_unreachable("Impossible case!");
7432 
7433   case Instruction::AShr: {
7434     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7435     // bitwidth(K) iterations.
7436     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7437     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7438                                        Predecessor->getTerminator(), &DT);
7439     auto *Ty = cast<IntegerType>(RHS->getType());
7440     if (Known.isNonNegative())
7441       StableValue = ConstantInt::get(Ty, 0);
7442     else if (Known.isNegative())
7443       StableValue = ConstantInt::get(Ty, -1, true);
7444     else
7445       return getCouldNotCompute();
7446 
7447     break;
7448   }
7449   case Instruction::LShr:
7450   case Instruction::Shl:
7451     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7452     // stabilize to 0 in at most bitwidth(K) iterations.
7453     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7454     break;
7455   }
7456 
7457   auto *Result =
7458       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7459   assert(Result->getType()->isIntegerTy(1) &&
7460          "Otherwise cannot be an operand to a branch instruction");
7461 
7462   if (Result->isZeroValue()) {
7463     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7464     const SCEV *UpperBound =
7465         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7466     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7467   }
7468 
7469   return getCouldNotCompute();
7470 }
7471 
7472 /// Return true if we can constant fold an instruction of the specified type,
7473 /// assuming that all operands were constants.
7474 static bool CanConstantFold(const Instruction *I) {
7475   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7476       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7477       isa<LoadInst>(I))
7478     return true;
7479 
7480   if (const CallInst *CI = dyn_cast<CallInst>(I))
7481     if (const Function *F = CI->getCalledFunction())
7482       return canConstantFoldCallTo(CI, F);
7483   return false;
7484 }
7485 
7486 /// Determine whether this instruction can constant evolve within this loop
7487 /// assuming its operands can all constant evolve.
7488 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7489   // An instruction outside of the loop can't be derived from a loop PHI.
7490   if (!L->contains(I)) return false;
7491 
7492   if (isa<PHINode>(I)) {
7493     // We don't currently keep track of the control flow needed to evaluate
7494     // PHIs, so we cannot handle PHIs inside of loops.
7495     return L->getHeader() == I->getParent();
7496   }
7497 
7498   // If we won't be able to constant fold this expression even if the operands
7499   // are constants, bail early.
7500   return CanConstantFold(I);
7501 }
7502 
7503 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7504 /// recursing through each instruction operand until reaching a loop header phi.
7505 static PHINode *
7506 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7507                                DenseMap<Instruction *, PHINode *> &PHIMap,
7508                                unsigned Depth) {
7509   if (Depth > MaxConstantEvolvingDepth)
7510     return nullptr;
7511 
7512   // Otherwise, we can evaluate this instruction if all of its operands are
7513   // constant or derived from a PHI node themselves.
7514   PHINode *PHI = nullptr;
7515   for (Value *Op : UseInst->operands()) {
7516     if (isa<Constant>(Op)) continue;
7517 
7518     Instruction *OpInst = dyn_cast<Instruction>(Op);
7519     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7520 
7521     PHINode *P = dyn_cast<PHINode>(OpInst);
7522     if (!P)
7523       // If this operand is already visited, reuse the prior result.
7524       // We may have P != PHI if this is the deepest point at which the
7525       // inconsistent paths meet.
7526       P = PHIMap.lookup(OpInst);
7527     if (!P) {
7528       // Recurse and memoize the results, whether a phi is found or not.
7529       // This recursive call invalidates pointers into PHIMap.
7530       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7531       PHIMap[OpInst] = P;
7532     }
7533     if (!P)
7534       return nullptr;  // Not evolving from PHI
7535     if (PHI && PHI != P)
7536       return nullptr;  // Evolving from multiple different PHIs.
7537     PHI = P;
7538   }
7539   // This is a expression evolving from a constant PHI!
7540   return PHI;
7541 }
7542 
7543 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7544 /// in the loop that V is derived from.  We allow arbitrary operations along the
7545 /// way, but the operands of an operation must either be constants or a value
7546 /// derived from a constant PHI.  If this expression does not fit with these
7547 /// constraints, return null.
7548 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7549   Instruction *I = dyn_cast<Instruction>(V);
7550   if (!I || !canConstantEvolve(I, L)) return nullptr;
7551 
7552   if (PHINode *PN = dyn_cast<PHINode>(I))
7553     return PN;
7554 
7555   // Record non-constant instructions contained by the loop.
7556   DenseMap<Instruction *, PHINode *> PHIMap;
7557   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7558 }
7559 
7560 /// EvaluateExpression - Given an expression that passes the
7561 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7562 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7563 /// reason, return null.
7564 static Constant *EvaluateExpression(Value *V, const Loop *L,
7565                                     DenseMap<Instruction *, Constant *> &Vals,
7566                                     const DataLayout &DL,
7567                                     const TargetLibraryInfo *TLI) {
7568   // Convenient constant check, but redundant for recursive calls.
7569   if (Constant *C = dyn_cast<Constant>(V)) return C;
7570   Instruction *I = dyn_cast<Instruction>(V);
7571   if (!I) return nullptr;
7572 
7573   if (Constant *C = Vals.lookup(I)) return C;
7574 
7575   // An instruction inside the loop depends on a value outside the loop that we
7576   // weren't given a mapping for, or a value such as a call inside the loop.
7577   if (!canConstantEvolve(I, L)) return nullptr;
7578 
7579   // An unmapped PHI can be due to a branch or another loop inside this loop,
7580   // or due to this not being the initial iteration through a loop where we
7581   // couldn't compute the evolution of this particular PHI last time.
7582   if (isa<PHINode>(I)) return nullptr;
7583 
7584   std::vector<Constant*> Operands(I->getNumOperands());
7585 
7586   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7587     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7588     if (!Operand) {
7589       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7590       if (!Operands[i]) return nullptr;
7591       continue;
7592     }
7593     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7594     Vals[Operand] = C;
7595     if (!C) return nullptr;
7596     Operands[i] = C;
7597   }
7598 
7599   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7600     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7601                                            Operands[1], DL, TLI);
7602   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7603     if (!LI->isVolatile())
7604       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7605   }
7606   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7607 }
7608 
7609 
7610 // If every incoming value to PN except the one for BB is a specific Constant,
7611 // return that, else return nullptr.
7612 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7613   Constant *IncomingVal = nullptr;
7614 
7615   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7616     if (PN->getIncomingBlock(i) == BB)
7617       continue;
7618 
7619     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7620     if (!CurrentVal)
7621       return nullptr;
7622 
7623     if (IncomingVal != CurrentVal) {
7624       if (IncomingVal)
7625         return nullptr;
7626       IncomingVal = CurrentVal;
7627     }
7628   }
7629 
7630   return IncomingVal;
7631 }
7632 
7633 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7634 /// in the header of its containing loop, we know the loop executes a
7635 /// constant number of times, and the PHI node is just a recurrence
7636 /// involving constants, fold it.
7637 Constant *
7638 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7639                                                    const APInt &BEs,
7640                                                    const Loop *L) {
7641   auto I = ConstantEvolutionLoopExitValue.find(PN);
7642   if (I != ConstantEvolutionLoopExitValue.end())
7643     return I->second;
7644 
7645   if (BEs.ugt(MaxBruteForceIterations))
7646     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7647 
7648   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7649 
7650   DenseMap<Instruction *, Constant *> CurrentIterVals;
7651   BasicBlock *Header = L->getHeader();
7652   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7653 
7654   BasicBlock *Latch = L->getLoopLatch();
7655   if (!Latch)
7656     return nullptr;
7657 
7658   for (PHINode &PHI : Header->phis()) {
7659     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7660       CurrentIterVals[&PHI] = StartCST;
7661   }
7662   if (!CurrentIterVals.count(PN))
7663     return RetVal = nullptr;
7664 
7665   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7666 
7667   // Execute the loop symbolically to determine the exit value.
7668   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7669          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7670 
7671   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7672   unsigned IterationNum = 0;
7673   const DataLayout &DL = getDataLayout();
7674   for (; ; ++IterationNum) {
7675     if (IterationNum == NumIterations)
7676       return RetVal = CurrentIterVals[PN];  // Got exit value!
7677 
7678     // Compute the value of the PHIs for the next iteration.
7679     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7680     DenseMap<Instruction *, Constant *> NextIterVals;
7681     Constant *NextPHI =
7682         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7683     if (!NextPHI)
7684       return nullptr;        // Couldn't evaluate!
7685     NextIterVals[PN] = NextPHI;
7686 
7687     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7688 
7689     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7690     // cease to be able to evaluate one of them or if they stop evolving,
7691     // because that doesn't necessarily prevent us from computing PN.
7692     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7693     for (const auto &I : CurrentIterVals) {
7694       PHINode *PHI = dyn_cast<PHINode>(I.first);
7695       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7696       PHIsToCompute.emplace_back(PHI, I.second);
7697     }
7698     // We use two distinct loops because EvaluateExpression may invalidate any
7699     // iterators into CurrentIterVals.
7700     for (const auto &I : PHIsToCompute) {
7701       PHINode *PHI = I.first;
7702       Constant *&NextPHI = NextIterVals[PHI];
7703       if (!NextPHI) {   // Not already computed.
7704         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7705         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7706       }
7707       if (NextPHI != I.second)
7708         StoppedEvolving = false;
7709     }
7710 
7711     // If all entries in CurrentIterVals == NextIterVals then we can stop
7712     // iterating, the loop can't continue to change.
7713     if (StoppedEvolving)
7714       return RetVal = CurrentIterVals[PN];
7715 
7716     CurrentIterVals.swap(NextIterVals);
7717   }
7718 }
7719 
7720 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7721                                                           Value *Cond,
7722                                                           bool ExitWhen) {
7723   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7724   if (!PN) return getCouldNotCompute();
7725 
7726   // If the loop is canonicalized, the PHI will have exactly two entries.
7727   // That's the only form we support here.
7728   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7729 
7730   DenseMap<Instruction *, Constant *> CurrentIterVals;
7731   BasicBlock *Header = L->getHeader();
7732   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7733 
7734   BasicBlock *Latch = L->getLoopLatch();
7735   assert(Latch && "Should follow from NumIncomingValues == 2!");
7736 
7737   for (PHINode &PHI : Header->phis()) {
7738     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7739       CurrentIterVals[&PHI] = StartCST;
7740   }
7741   if (!CurrentIterVals.count(PN))
7742     return getCouldNotCompute();
7743 
7744   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7745   // the loop symbolically to determine when the condition gets a value of
7746   // "ExitWhen".
7747   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7748   const DataLayout &DL = getDataLayout();
7749   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7750     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7751         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7752 
7753     // Couldn't symbolically evaluate.
7754     if (!CondVal) return getCouldNotCompute();
7755 
7756     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7757       ++NumBruteForceTripCountsComputed;
7758       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7759     }
7760 
7761     // Update all the PHI nodes for the next iteration.
7762     DenseMap<Instruction *, Constant *> NextIterVals;
7763 
7764     // Create a list of which PHIs we need to compute. We want to do this before
7765     // calling EvaluateExpression on them because that may invalidate iterators
7766     // into CurrentIterVals.
7767     SmallVector<PHINode *, 8> PHIsToCompute;
7768     for (const auto &I : CurrentIterVals) {
7769       PHINode *PHI = dyn_cast<PHINode>(I.first);
7770       if (!PHI || PHI->getParent() != Header) continue;
7771       PHIsToCompute.push_back(PHI);
7772     }
7773     for (PHINode *PHI : PHIsToCompute) {
7774       Constant *&NextPHI = NextIterVals[PHI];
7775       if (NextPHI) continue;    // Already computed!
7776 
7777       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7778       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7779     }
7780     CurrentIterVals.swap(NextIterVals);
7781   }
7782 
7783   // Too many iterations were needed to evaluate.
7784   return getCouldNotCompute();
7785 }
7786 
7787 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7788   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7789       ValuesAtScopes[V];
7790   // Check to see if we've folded this expression at this loop before.
7791   for (auto &LS : Values)
7792     if (LS.first == L)
7793       return LS.second ? LS.second : V;
7794 
7795   Values.emplace_back(L, nullptr);
7796 
7797   // Otherwise compute it.
7798   const SCEV *C = computeSCEVAtScope(V, L);
7799   for (auto &LS : reverse(ValuesAtScopes[V]))
7800     if (LS.first == L) {
7801       LS.second = C;
7802       break;
7803     }
7804   return C;
7805 }
7806 
7807 /// This builds up a Constant using the ConstantExpr interface.  That way, we
7808 /// will return Constants for objects which aren't represented by a
7809 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
7810 /// Returns NULL if the SCEV isn't representable as a Constant.
7811 static Constant *BuildConstantFromSCEV(const SCEV *V) {
7812   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
7813     case scCouldNotCompute:
7814     case scAddRecExpr:
7815       break;
7816     case scConstant:
7817       return cast<SCEVConstant>(V)->getValue();
7818     case scUnknown:
7819       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
7820     case scSignExtend: {
7821       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
7822       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
7823         return ConstantExpr::getSExt(CastOp, SS->getType());
7824       break;
7825     }
7826     case scZeroExtend: {
7827       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
7828       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
7829         return ConstantExpr::getZExt(CastOp, SZ->getType());
7830       break;
7831     }
7832     case scTruncate: {
7833       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
7834       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
7835         return ConstantExpr::getTrunc(CastOp, ST->getType());
7836       break;
7837     }
7838     case scAddExpr: {
7839       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
7840       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
7841         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7842           unsigned AS = PTy->getAddressSpace();
7843           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7844           C = ConstantExpr::getBitCast(C, DestPtrTy);
7845         }
7846         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
7847           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
7848           if (!C2) return nullptr;
7849 
7850           // First pointer!
7851           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
7852             unsigned AS = C2->getType()->getPointerAddressSpace();
7853             std::swap(C, C2);
7854             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7855             // The offsets have been converted to bytes.  We can add bytes to an
7856             // i8* by GEP with the byte count in the first index.
7857             C = ConstantExpr::getBitCast(C, DestPtrTy);
7858           }
7859 
7860           // Don't bother trying to sum two pointers. We probably can't
7861           // statically compute a load that results from it anyway.
7862           if (C2->getType()->isPointerTy())
7863             return nullptr;
7864 
7865           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7866             if (PTy->getElementType()->isStructTy())
7867               C2 = ConstantExpr::getIntegerCast(
7868                   C2, Type::getInt32Ty(C->getContext()), true);
7869             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
7870           } else
7871             C = ConstantExpr::getAdd(C, C2);
7872         }
7873         return C;
7874       }
7875       break;
7876     }
7877     case scMulExpr: {
7878       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
7879       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
7880         // Don't bother with pointers at all.
7881         if (C->getType()->isPointerTy()) return nullptr;
7882         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
7883           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
7884           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
7885           C = ConstantExpr::getMul(C, C2);
7886         }
7887         return C;
7888       }
7889       break;
7890     }
7891     case scUDivExpr: {
7892       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
7893       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
7894         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
7895           if (LHS->getType() == RHS->getType())
7896             return ConstantExpr::getUDiv(LHS, RHS);
7897       break;
7898     }
7899     case scSMaxExpr:
7900     case scUMaxExpr:
7901       break; // TODO: smax, umax.
7902   }
7903   return nullptr;
7904 }
7905 
7906 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
7907   if (isa<SCEVConstant>(V)) return V;
7908 
7909   // If this instruction is evolved from a constant-evolving PHI, compute the
7910   // exit value from the loop without using SCEVs.
7911   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
7912     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
7913       const Loop *LI = this->LI[I->getParent()];
7914       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
7915         if (PHINode *PN = dyn_cast<PHINode>(I))
7916           if (PN->getParent() == LI->getHeader()) {
7917             // Okay, there is no closed form solution for the PHI node.  Check
7918             // to see if the loop that contains it has a known backedge-taken
7919             // count.  If so, we may be able to force computation of the exit
7920             // value.
7921             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
7922             if (const SCEVConstant *BTCC =
7923                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
7924 
7925               // This trivial case can show up in some degenerate cases where
7926               // the incoming IR has not yet been fully simplified.
7927               if (BTCC->getValue()->isZero()) {
7928                 Value *InitValue = nullptr;
7929                 bool MultipleInitValues = false;
7930                 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
7931                   if (!LI->contains(PN->getIncomingBlock(i))) {
7932                     if (!InitValue)
7933                       InitValue = PN->getIncomingValue(i);
7934                     else if (InitValue != PN->getIncomingValue(i)) {
7935                       MultipleInitValues = true;
7936                       break;
7937                     }
7938                   }
7939                   if (!MultipleInitValues && InitValue)
7940                     return getSCEV(InitValue);
7941                 }
7942               }
7943               // Okay, we know how many times the containing loop executes.  If
7944               // this is a constant evolving PHI node, get the final value at
7945               // the specified iteration number.
7946               Constant *RV =
7947                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
7948               if (RV) return getSCEV(RV);
7949             }
7950           }
7951 
7952       // Okay, this is an expression that we cannot symbolically evaluate
7953       // into a SCEV.  Check to see if it's possible to symbolically evaluate
7954       // the arguments into constants, and if so, try to constant propagate the
7955       // result.  This is particularly useful for computing loop exit values.
7956       if (CanConstantFold(I)) {
7957         SmallVector<Constant *, 4> Operands;
7958         bool MadeImprovement = false;
7959         for (Value *Op : I->operands()) {
7960           if (Constant *C = dyn_cast<Constant>(Op)) {
7961             Operands.push_back(C);
7962             continue;
7963           }
7964 
7965           // If any of the operands is non-constant and if they are
7966           // non-integer and non-pointer, don't even try to analyze them
7967           // with scev techniques.
7968           if (!isSCEVable(Op->getType()))
7969             return V;
7970 
7971           const SCEV *OrigV = getSCEV(Op);
7972           const SCEV *OpV = getSCEVAtScope(OrigV, L);
7973           MadeImprovement |= OrigV != OpV;
7974 
7975           Constant *C = BuildConstantFromSCEV(OpV);
7976           if (!C) return V;
7977           if (C->getType() != Op->getType())
7978             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
7979                                                               Op->getType(),
7980                                                               false),
7981                                       C, Op->getType());
7982           Operands.push_back(C);
7983         }
7984 
7985         // Check to see if getSCEVAtScope actually made an improvement.
7986         if (MadeImprovement) {
7987           Constant *C = nullptr;
7988           const DataLayout &DL = getDataLayout();
7989           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
7990             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7991                                                 Operands[1], DL, &TLI);
7992           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
7993             if (!LI->isVolatile())
7994               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7995           } else
7996             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
7997           if (!C) return V;
7998           return getSCEV(C);
7999         }
8000       }
8001     }
8002 
8003     // This is some other type of SCEVUnknown, just return it.
8004     return V;
8005   }
8006 
8007   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8008     // Avoid performing the look-up in the common case where the specified
8009     // expression has no loop-variant portions.
8010     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8011       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8012       if (OpAtScope != Comm->getOperand(i)) {
8013         // Okay, at least one of these operands is loop variant but might be
8014         // foldable.  Build a new instance of the folded commutative expression.
8015         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8016                                             Comm->op_begin()+i);
8017         NewOps.push_back(OpAtScope);
8018 
8019         for (++i; i != e; ++i) {
8020           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8021           NewOps.push_back(OpAtScope);
8022         }
8023         if (isa<SCEVAddExpr>(Comm))
8024           return getAddExpr(NewOps);
8025         if (isa<SCEVMulExpr>(Comm))
8026           return getMulExpr(NewOps);
8027         if (isa<SCEVSMaxExpr>(Comm))
8028           return getSMaxExpr(NewOps);
8029         if (isa<SCEVUMaxExpr>(Comm))
8030           return getUMaxExpr(NewOps);
8031         llvm_unreachable("Unknown commutative SCEV type!");
8032       }
8033     }
8034     // If we got here, all operands are loop invariant.
8035     return Comm;
8036   }
8037 
8038   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8039     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8040     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8041     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8042       return Div;   // must be loop invariant
8043     return getUDivExpr(LHS, RHS);
8044   }
8045 
8046   // If this is a loop recurrence for a loop that does not contain L, then we
8047   // are dealing with the final value computed by the loop.
8048   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8049     // First, attempt to evaluate each operand.
8050     // Avoid performing the look-up in the common case where the specified
8051     // expression has no loop-variant portions.
8052     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8053       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8054       if (OpAtScope == AddRec->getOperand(i))
8055         continue;
8056 
8057       // Okay, at least one of these operands is loop variant but might be
8058       // foldable.  Build a new instance of the folded commutative expression.
8059       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8060                                           AddRec->op_begin()+i);
8061       NewOps.push_back(OpAtScope);
8062       for (++i; i != e; ++i)
8063         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8064 
8065       const SCEV *FoldedRec =
8066         getAddRecExpr(NewOps, AddRec->getLoop(),
8067                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8068       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8069       // The addrec may be folded to a nonrecurrence, for example, if the
8070       // induction variable is multiplied by zero after constant folding. Go
8071       // ahead and return the folded value.
8072       if (!AddRec)
8073         return FoldedRec;
8074       break;
8075     }
8076 
8077     // If the scope is outside the addrec's loop, evaluate it by using the
8078     // loop exit value of the addrec.
8079     if (!AddRec->getLoop()->contains(L)) {
8080       // To evaluate this recurrence, we need to know how many times the AddRec
8081       // loop iterates.  Compute this now.
8082       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8083       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8084 
8085       // Then, evaluate the AddRec.
8086       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8087     }
8088 
8089     return AddRec;
8090   }
8091 
8092   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8093     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8094     if (Op == Cast->getOperand())
8095       return Cast;  // must be loop invariant
8096     return getZeroExtendExpr(Op, Cast->getType());
8097   }
8098 
8099   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8100     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8101     if (Op == Cast->getOperand())
8102       return Cast;  // must be loop invariant
8103     return getSignExtendExpr(Op, Cast->getType());
8104   }
8105 
8106   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8107     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8108     if (Op == Cast->getOperand())
8109       return Cast;  // must be loop invariant
8110     return getTruncateExpr(Op, Cast->getType());
8111   }
8112 
8113   llvm_unreachable("Unknown SCEV type!");
8114 }
8115 
8116 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8117   return getSCEVAtScope(getSCEV(V), L);
8118 }
8119 
8120 /// Finds the minimum unsigned root of the following equation:
8121 ///
8122 ///     A * X = B (mod N)
8123 ///
8124 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8125 /// A and B isn't important.
8126 ///
8127 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8128 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8129                                                ScalarEvolution &SE) {
8130   uint32_t BW = A.getBitWidth();
8131   assert(BW == SE.getTypeSizeInBits(B->getType()));
8132   assert(A != 0 && "A must be non-zero.");
8133 
8134   // 1. D = gcd(A, N)
8135   //
8136   // The gcd of A and N may have only one prime factor: 2. The number of
8137   // trailing zeros in A is its multiplicity
8138   uint32_t Mult2 = A.countTrailingZeros();
8139   // D = 2^Mult2
8140 
8141   // 2. Check if B is divisible by D.
8142   //
8143   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8144   // is not less than multiplicity of this prime factor for D.
8145   if (SE.GetMinTrailingZeros(B) < Mult2)
8146     return SE.getCouldNotCompute();
8147 
8148   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8149   // modulo (N / D).
8150   //
8151   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8152   // (N / D) in general. The inverse itself always fits into BW bits, though,
8153   // so we immediately truncate it.
8154   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8155   APInt Mod(BW + 1, 0);
8156   Mod.setBit(BW - Mult2);  // Mod = N / D
8157   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8158 
8159   // 4. Compute the minimum unsigned root of the equation:
8160   // I * (B / D) mod (N / D)
8161   // To simplify the computation, we factor out the divide by D:
8162   // (I * B mod N) / D
8163   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8164   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8165 }
8166 
8167 /// Find the roots of the quadratic equation for the given quadratic chrec
8168 /// {L,+,M,+,N}.  This returns either the two roots (which might be the same) or
8169 /// two SCEVCouldNotCompute objects.
8170 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
8171 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8172   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8173   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8174   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8175   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8176 
8177   // We currently can only solve this if the coefficients are constants.
8178   if (!LC || !MC || !NC)
8179     return None;
8180 
8181   uint32_t BitWidth = LC->getAPInt().getBitWidth();
8182   const APInt &L = LC->getAPInt();
8183   const APInt &M = MC->getAPInt();
8184   const APInt &N = NC->getAPInt();
8185   APInt Two(BitWidth, 2);
8186 
8187   // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
8188 
8189   // The A coefficient is N/2
8190   APInt A = N.sdiv(Two);
8191 
8192   // The B coefficient is M-N/2
8193   APInt B = M;
8194   B -= A; // A is the same as N/2.
8195 
8196   // The C coefficient is L.
8197   const APInt& C = L;
8198 
8199   // Compute the B^2-4ac term.
8200   APInt SqrtTerm = B;
8201   SqrtTerm *= B;
8202   SqrtTerm -= 4 * (A * C);
8203 
8204   if (SqrtTerm.isNegative()) {
8205     // The loop is provably infinite.
8206     return None;
8207   }
8208 
8209   // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
8210   // integer value or else APInt::sqrt() will assert.
8211   APInt SqrtVal = SqrtTerm.sqrt();
8212 
8213   // Compute the two solutions for the quadratic formula.
8214   // The divisions must be performed as signed divisions.
8215   APInt NegB = -std::move(B);
8216   APInt TwoA = std::move(A);
8217   TwoA <<= 1;
8218   if (TwoA.isNullValue())
8219     return None;
8220 
8221   LLVMContext &Context = SE.getContext();
8222 
8223   ConstantInt *Solution1 =
8224     ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
8225   ConstantInt *Solution2 =
8226     ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
8227 
8228   return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
8229                         cast<SCEVConstant>(SE.getConstant(Solution2)));
8230 }
8231 
8232 ScalarEvolution::ExitLimit
8233 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8234                               bool AllowPredicates) {
8235 
8236   // This is only used for loops with a "x != y" exit test. The exit condition
8237   // is now expressed as a single expression, V = x-y. So the exit test is
8238   // effectively V != 0.  We know and take advantage of the fact that this
8239   // expression only being used in a comparison by zero context.
8240 
8241   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8242   // If the value is a constant
8243   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8244     // If the value is already zero, the branch will execute zero times.
8245     if (C->getValue()->isZero()) return C;
8246     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8247   }
8248 
8249   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
8250   if (!AddRec && AllowPredicates)
8251     // Try to make this an AddRec using runtime tests, in the first X
8252     // iterations of this loop, where X is the SCEV expression found by the
8253     // algorithm below.
8254     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8255 
8256   if (!AddRec || AddRec->getLoop() != L)
8257     return getCouldNotCompute();
8258 
8259   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8260   // the quadratic equation to solve it.
8261   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8262     if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
8263       const SCEVConstant *R1 = Roots->first;
8264       const SCEVConstant *R2 = Roots->second;
8265       // Pick the smallest positive root value.
8266       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8267               CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8268         if (!CB->getZExtValue())
8269           std::swap(R1, R2); // R1 is the minimum root now.
8270 
8271         // We can only use this value if the chrec ends up with an exact zero
8272         // value at this index.  When solving for "X*X != 5", for example, we
8273         // should not accept a root of 2.
8274         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
8275         if (Val->isZero())
8276           // We found a quadratic root!
8277           return ExitLimit(R1, R1, false, Predicates);
8278       }
8279     }
8280     return getCouldNotCompute();
8281   }
8282 
8283   // Otherwise we can only handle this if it is affine.
8284   if (!AddRec->isAffine())
8285     return getCouldNotCompute();
8286 
8287   // If this is an affine expression, the execution count of this branch is
8288   // the minimum unsigned root of the following equation:
8289   //
8290   //     Start + Step*N = 0 (mod 2^BW)
8291   //
8292   // equivalent to:
8293   //
8294   //             Step*N = -Start (mod 2^BW)
8295   //
8296   // where BW is the common bit width of Start and Step.
8297 
8298   // Get the initial value for the loop.
8299   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8300   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8301 
8302   // For now we handle only constant steps.
8303   //
8304   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8305   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8306   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8307   // We have not yet seen any such cases.
8308   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8309   if (!StepC || StepC->getValue()->isZero())
8310     return getCouldNotCompute();
8311 
8312   // For positive steps (counting up until unsigned overflow):
8313   //   N = -Start/Step (as unsigned)
8314   // For negative steps (counting down to zero):
8315   //   N = Start/-Step
8316   // First compute the unsigned distance from zero in the direction of Step.
8317   bool CountDown = StepC->getAPInt().isNegative();
8318   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8319 
8320   // Handle unitary steps, which cannot wraparound.
8321   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8322   //   N = Distance (as unsigned)
8323   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8324     APInt MaxBECount = getUnsignedRangeMax(Distance);
8325 
8326     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8327     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8328     // case, and see if we can improve the bound.
8329     //
8330     // Explicitly handling this here is necessary because getUnsignedRange
8331     // isn't context-sensitive; it doesn't know that we only care about the
8332     // range inside the loop.
8333     const SCEV *Zero = getZero(Distance->getType());
8334     const SCEV *One = getOne(Distance->getType());
8335     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8336     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8337       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8338       // as "unsigned_max(Distance + 1) - 1".
8339       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8340       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8341     }
8342     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8343   }
8344 
8345   // If the condition controls loop exit (the loop exits only if the expression
8346   // is true) and the addition is no-wrap we can use unsigned divide to
8347   // compute the backedge count.  In this case, the step may not divide the
8348   // distance, but we don't care because if the condition is "missed" the loop
8349   // will have undefined behavior due to wrapping.
8350   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8351       loopHasNoAbnormalExits(AddRec->getLoop())) {
8352     const SCEV *Exact =
8353         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8354     const SCEV *Max =
8355         Exact == getCouldNotCompute()
8356             ? Exact
8357             : getConstant(getUnsignedRangeMax(Exact));
8358     return ExitLimit(Exact, Max, false, Predicates);
8359   }
8360 
8361   // Solve the general equation.
8362   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8363                                                getNegativeSCEV(Start), *this);
8364   const SCEV *M = E == getCouldNotCompute()
8365                       ? E
8366                       : getConstant(getUnsignedRangeMax(E));
8367   return ExitLimit(E, M, false, Predicates);
8368 }
8369 
8370 ScalarEvolution::ExitLimit
8371 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8372   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8373   // handle them yet except for the trivial case.  This could be expanded in the
8374   // future as needed.
8375 
8376   // If the value is a constant, check to see if it is known to be non-zero
8377   // already.  If so, the backedge will execute zero times.
8378   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8379     if (!C->getValue()->isZero())
8380       return getZero(C->getType());
8381     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8382   }
8383 
8384   // We could implement others, but I really doubt anyone writes loops like
8385   // this, and if they did, they would already be constant folded.
8386   return getCouldNotCompute();
8387 }
8388 
8389 std::pair<BasicBlock *, BasicBlock *>
8390 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8391   // If the block has a unique predecessor, then there is no path from the
8392   // predecessor to the block that does not go through the direct edge
8393   // from the predecessor to the block.
8394   if (BasicBlock *Pred = BB->getSinglePredecessor())
8395     return {Pred, BB};
8396 
8397   // A loop's header is defined to be a block that dominates the loop.
8398   // If the header has a unique predecessor outside the loop, it must be
8399   // a block that has exactly one successor that can reach the loop.
8400   if (Loop *L = LI.getLoopFor(BB))
8401     return {L->getLoopPredecessor(), L->getHeader()};
8402 
8403   return {nullptr, nullptr};
8404 }
8405 
8406 /// SCEV structural equivalence is usually sufficient for testing whether two
8407 /// expressions are equal, however for the purposes of looking for a condition
8408 /// guarding a loop, it can be useful to be a little more general, since a
8409 /// front-end may have replicated the controlling expression.
8410 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8411   // Quick check to see if they are the same SCEV.
8412   if (A == B) return true;
8413 
8414   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8415     // Not all instructions that are "identical" compute the same value.  For
8416     // instance, two distinct alloca instructions allocating the same type are
8417     // identical and do not read memory; but compute distinct values.
8418     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8419   };
8420 
8421   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8422   // two different instructions with the same value. Check for this case.
8423   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8424     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8425       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8426         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8427           if (ComputesEqualValues(AI, BI))
8428             return true;
8429 
8430   // Otherwise assume they may have a different value.
8431   return false;
8432 }
8433 
8434 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8435                                            const SCEV *&LHS, const SCEV *&RHS,
8436                                            unsigned Depth) {
8437   bool Changed = false;
8438 
8439   // If we hit the max recursion limit bail out.
8440   if (Depth >= 3)
8441     return false;
8442 
8443   // Canonicalize a constant to the right side.
8444   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8445     // Check for both operands constant.
8446     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8447       if (ConstantExpr::getICmp(Pred,
8448                                 LHSC->getValue(),
8449                                 RHSC->getValue())->isNullValue())
8450         goto trivially_false;
8451       else
8452         goto trivially_true;
8453     }
8454     // Otherwise swap the operands to put the constant on the right.
8455     std::swap(LHS, RHS);
8456     Pred = ICmpInst::getSwappedPredicate(Pred);
8457     Changed = true;
8458   }
8459 
8460   // If we're comparing an addrec with a value which is loop-invariant in the
8461   // addrec's loop, put the addrec on the left. Also make a dominance check,
8462   // as both operands could be addrecs loop-invariant in each other's loop.
8463   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8464     const Loop *L = AR->getLoop();
8465     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8466       std::swap(LHS, RHS);
8467       Pred = ICmpInst::getSwappedPredicate(Pred);
8468       Changed = true;
8469     }
8470   }
8471 
8472   // If there's a constant operand, canonicalize comparisons with boundary
8473   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8474   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8475     const APInt &RA = RC->getAPInt();
8476 
8477     bool SimplifiedByConstantRange = false;
8478 
8479     if (!ICmpInst::isEquality(Pred)) {
8480       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8481       if (ExactCR.isFullSet())
8482         goto trivially_true;
8483       else if (ExactCR.isEmptySet())
8484         goto trivially_false;
8485 
8486       APInt NewRHS;
8487       CmpInst::Predicate NewPred;
8488       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8489           ICmpInst::isEquality(NewPred)) {
8490         // We were able to convert an inequality to an equality.
8491         Pred = NewPred;
8492         RHS = getConstant(NewRHS);
8493         Changed = SimplifiedByConstantRange = true;
8494       }
8495     }
8496 
8497     if (!SimplifiedByConstantRange) {
8498       switch (Pred) {
8499       default:
8500         break;
8501       case ICmpInst::ICMP_EQ:
8502       case ICmpInst::ICMP_NE:
8503         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8504         if (!RA)
8505           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8506             if (const SCEVMulExpr *ME =
8507                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8508               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8509                   ME->getOperand(0)->isAllOnesValue()) {
8510                 RHS = AE->getOperand(1);
8511                 LHS = ME->getOperand(1);
8512                 Changed = true;
8513               }
8514         break;
8515 
8516 
8517         // The "Should have been caught earlier!" messages refer to the fact
8518         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8519         // should have fired on the corresponding cases, and canonicalized the
8520         // check to trivially_true or trivially_false.
8521 
8522       case ICmpInst::ICMP_UGE:
8523         assert(!RA.isMinValue() && "Should have been caught earlier!");
8524         Pred = ICmpInst::ICMP_UGT;
8525         RHS = getConstant(RA - 1);
8526         Changed = true;
8527         break;
8528       case ICmpInst::ICMP_ULE:
8529         assert(!RA.isMaxValue() && "Should have been caught earlier!");
8530         Pred = ICmpInst::ICMP_ULT;
8531         RHS = getConstant(RA + 1);
8532         Changed = true;
8533         break;
8534       case ICmpInst::ICMP_SGE:
8535         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8536         Pred = ICmpInst::ICMP_SGT;
8537         RHS = getConstant(RA - 1);
8538         Changed = true;
8539         break;
8540       case ICmpInst::ICMP_SLE:
8541         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8542         Pred = ICmpInst::ICMP_SLT;
8543         RHS = getConstant(RA + 1);
8544         Changed = true;
8545         break;
8546       }
8547     }
8548   }
8549 
8550   // Check for obvious equality.
8551   if (HasSameValue(LHS, RHS)) {
8552     if (ICmpInst::isTrueWhenEqual(Pred))
8553       goto trivially_true;
8554     if (ICmpInst::isFalseWhenEqual(Pred))
8555       goto trivially_false;
8556   }
8557 
8558   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8559   // adding or subtracting 1 from one of the operands.
8560   switch (Pred) {
8561   case ICmpInst::ICMP_SLE:
8562     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8563       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8564                        SCEV::FlagNSW);
8565       Pred = ICmpInst::ICMP_SLT;
8566       Changed = true;
8567     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8568       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8569                        SCEV::FlagNSW);
8570       Pred = ICmpInst::ICMP_SLT;
8571       Changed = true;
8572     }
8573     break;
8574   case ICmpInst::ICMP_SGE:
8575     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
8576       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
8577                        SCEV::FlagNSW);
8578       Pred = ICmpInst::ICMP_SGT;
8579       Changed = true;
8580     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
8581       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8582                        SCEV::FlagNSW);
8583       Pred = ICmpInst::ICMP_SGT;
8584       Changed = true;
8585     }
8586     break;
8587   case ICmpInst::ICMP_ULE:
8588     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
8589       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8590                        SCEV::FlagNUW);
8591       Pred = ICmpInst::ICMP_ULT;
8592       Changed = true;
8593     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
8594       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
8595       Pred = ICmpInst::ICMP_ULT;
8596       Changed = true;
8597     }
8598     break;
8599   case ICmpInst::ICMP_UGE:
8600     if (!getUnsignedRangeMin(RHS).isMinValue()) {
8601       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
8602       Pred = ICmpInst::ICMP_UGT;
8603       Changed = true;
8604     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
8605       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8606                        SCEV::FlagNUW);
8607       Pred = ICmpInst::ICMP_UGT;
8608       Changed = true;
8609     }
8610     break;
8611   default:
8612     break;
8613   }
8614 
8615   // TODO: More simplifications are possible here.
8616 
8617   // Recursively simplify until we either hit a recursion limit or nothing
8618   // changes.
8619   if (Changed)
8620     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
8621 
8622   return Changed;
8623 
8624 trivially_true:
8625   // Return 0 == 0.
8626   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8627   Pred = ICmpInst::ICMP_EQ;
8628   return true;
8629 
8630 trivially_false:
8631   // Return 0 != 0.
8632   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8633   Pred = ICmpInst::ICMP_NE;
8634   return true;
8635 }
8636 
8637 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
8638   return getSignedRangeMax(S).isNegative();
8639 }
8640 
8641 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
8642   return getSignedRangeMin(S).isStrictlyPositive();
8643 }
8644 
8645 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
8646   return !getSignedRangeMin(S).isNegative();
8647 }
8648 
8649 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
8650   return !getSignedRangeMax(S).isStrictlyPositive();
8651 }
8652 
8653 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
8654   return isKnownNegative(S) || isKnownPositive(S);
8655 }
8656 
8657 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
8658                                        const SCEV *LHS, const SCEV *RHS) {
8659   // Canonicalize the inputs first.
8660   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8661 
8662   // If LHS or RHS is an addrec, check to see if the condition is true in
8663   // every iteration of the loop.
8664   // If LHS and RHS are both addrec, both conditions must be true in
8665   // every iteration of the loop.
8666   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8667   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8668   bool LeftGuarded = false;
8669   bool RightGuarded = false;
8670   if (LAR) {
8671     const Loop *L = LAR->getLoop();
8672     if (isAvailableAtLoopEntry(RHS, L) &&
8673         isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
8674         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
8675       if (!RAR) return true;
8676       LeftGuarded = true;
8677     }
8678   }
8679   if (RAR) {
8680     const Loop *L = RAR->getLoop();
8681     if (isAvailableAtLoopEntry(LHS, L) &&
8682         isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
8683         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
8684       if (!LAR) return true;
8685       RightGuarded = true;
8686     }
8687   }
8688   if (LeftGuarded && RightGuarded)
8689     return true;
8690 
8691   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
8692     return true;
8693 
8694   // Otherwise see what can be done with known constant ranges.
8695   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
8696 }
8697 
8698 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
8699                                            ICmpInst::Predicate Pred,
8700                                            bool &Increasing) {
8701   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
8702 
8703 #ifndef NDEBUG
8704   // Verify an invariant: inverting the predicate should turn a monotonically
8705   // increasing change to a monotonically decreasing one, and vice versa.
8706   bool IncreasingSwapped;
8707   bool ResultSwapped = isMonotonicPredicateImpl(
8708       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
8709 
8710   assert(Result == ResultSwapped && "should be able to analyze both!");
8711   if (ResultSwapped)
8712     assert(Increasing == !IncreasingSwapped &&
8713            "monotonicity should flip as we flip the predicate");
8714 #endif
8715 
8716   return Result;
8717 }
8718 
8719 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
8720                                                ICmpInst::Predicate Pred,
8721                                                bool &Increasing) {
8722 
8723   // A zero step value for LHS means the induction variable is essentially a
8724   // loop invariant value. We don't really depend on the predicate actually
8725   // flipping from false to true (for increasing predicates, and the other way
8726   // around for decreasing predicates), all we care about is that *if* the
8727   // predicate changes then it only changes from false to true.
8728   //
8729   // A zero step value in itself is not very useful, but there may be places
8730   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
8731   // as general as possible.
8732 
8733   switch (Pred) {
8734   default:
8735     return false; // Conservative answer
8736 
8737   case ICmpInst::ICMP_UGT:
8738   case ICmpInst::ICMP_UGE:
8739   case ICmpInst::ICMP_ULT:
8740   case ICmpInst::ICMP_ULE:
8741     if (!LHS->hasNoUnsignedWrap())
8742       return false;
8743 
8744     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
8745     return true;
8746 
8747   case ICmpInst::ICMP_SGT:
8748   case ICmpInst::ICMP_SGE:
8749   case ICmpInst::ICMP_SLT:
8750   case ICmpInst::ICMP_SLE: {
8751     if (!LHS->hasNoSignedWrap())
8752       return false;
8753 
8754     const SCEV *Step = LHS->getStepRecurrence(*this);
8755 
8756     if (isKnownNonNegative(Step)) {
8757       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
8758       return true;
8759     }
8760 
8761     if (isKnownNonPositive(Step)) {
8762       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
8763       return true;
8764     }
8765 
8766     return false;
8767   }
8768 
8769   }
8770 
8771   llvm_unreachable("switch has default clause!");
8772 }
8773 
8774 bool ScalarEvolution::isLoopInvariantPredicate(
8775     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
8776     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
8777     const SCEV *&InvariantRHS) {
8778 
8779   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
8780   if (!isLoopInvariant(RHS, L)) {
8781     if (!isLoopInvariant(LHS, L))
8782       return false;
8783 
8784     std::swap(LHS, RHS);
8785     Pred = ICmpInst::getSwappedPredicate(Pred);
8786   }
8787 
8788   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8789   if (!ArLHS || ArLHS->getLoop() != L)
8790     return false;
8791 
8792   bool Increasing;
8793   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
8794     return false;
8795 
8796   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
8797   // true as the loop iterates, and the backedge is control dependent on
8798   // "ArLHS `Pred` RHS" == true then we can reason as follows:
8799   //
8800   //   * if the predicate was false in the first iteration then the predicate
8801   //     is never evaluated again, since the loop exits without taking the
8802   //     backedge.
8803   //   * if the predicate was true in the first iteration then it will
8804   //     continue to be true for all future iterations since it is
8805   //     monotonically increasing.
8806   //
8807   // For both the above possibilities, we can replace the loop varying
8808   // predicate with its value on the first iteration of the loop (which is
8809   // loop invariant).
8810   //
8811   // A similar reasoning applies for a monotonically decreasing predicate, by
8812   // replacing true with false and false with true in the above two bullets.
8813 
8814   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
8815 
8816   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
8817     return false;
8818 
8819   InvariantPred = Pred;
8820   InvariantLHS = ArLHS->getStart();
8821   InvariantRHS = RHS;
8822   return true;
8823 }
8824 
8825 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
8826     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8827   if (HasSameValue(LHS, RHS))
8828     return ICmpInst::isTrueWhenEqual(Pred);
8829 
8830   // This code is split out from isKnownPredicate because it is called from
8831   // within isLoopEntryGuardedByCond.
8832 
8833   auto CheckRanges =
8834       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
8835     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
8836         .contains(RangeLHS);
8837   };
8838 
8839   // The check at the top of the function catches the case where the values are
8840   // known to be equal.
8841   if (Pred == CmpInst::ICMP_EQ)
8842     return false;
8843 
8844   if (Pred == CmpInst::ICMP_NE)
8845     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
8846            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
8847            isKnownNonZero(getMinusSCEV(LHS, RHS));
8848 
8849   if (CmpInst::isSigned(Pred))
8850     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
8851 
8852   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
8853 }
8854 
8855 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
8856                                                     const SCEV *LHS,
8857                                                     const SCEV *RHS) {
8858   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
8859   // Return Y via OutY.
8860   auto MatchBinaryAddToConst =
8861       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
8862              SCEV::NoWrapFlags ExpectedFlags) {
8863     const SCEV *NonConstOp, *ConstOp;
8864     SCEV::NoWrapFlags FlagsPresent;
8865 
8866     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
8867         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
8868       return false;
8869 
8870     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
8871     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
8872   };
8873 
8874   APInt C;
8875 
8876   switch (Pred) {
8877   default:
8878     break;
8879 
8880   case ICmpInst::ICMP_SGE:
8881     std::swap(LHS, RHS);
8882     LLVM_FALLTHROUGH;
8883   case ICmpInst::ICMP_SLE:
8884     // X s<= (X + C)<nsw> if C >= 0
8885     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
8886       return true;
8887 
8888     // (X + C)<nsw> s<= X if C <= 0
8889     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
8890         !C.isStrictlyPositive())
8891       return true;
8892     break;
8893 
8894   case ICmpInst::ICMP_SGT:
8895     std::swap(LHS, RHS);
8896     LLVM_FALLTHROUGH;
8897   case ICmpInst::ICMP_SLT:
8898     // X s< (X + C)<nsw> if C > 0
8899     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
8900         C.isStrictlyPositive())
8901       return true;
8902 
8903     // (X + C)<nsw> s< X if C < 0
8904     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
8905       return true;
8906     break;
8907   }
8908 
8909   return false;
8910 }
8911 
8912 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
8913                                                    const SCEV *LHS,
8914                                                    const SCEV *RHS) {
8915   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
8916     return false;
8917 
8918   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
8919   // the stack can result in exponential time complexity.
8920   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
8921 
8922   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
8923   //
8924   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
8925   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
8926   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
8927   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
8928   // use isKnownPredicate later if needed.
8929   return isKnownNonNegative(RHS) &&
8930          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
8931          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
8932 }
8933 
8934 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
8935                                         ICmpInst::Predicate Pred,
8936                                         const SCEV *LHS, const SCEV *RHS) {
8937   // No need to even try if we know the module has no guards.
8938   if (!HasGuards)
8939     return false;
8940 
8941   return any_of(*BB, [&](Instruction &I) {
8942     using namespace llvm::PatternMatch;
8943 
8944     Value *Condition;
8945     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
8946                          m_Value(Condition))) &&
8947            isImpliedCond(Pred, LHS, RHS, Condition, false);
8948   });
8949 }
8950 
8951 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
8952 /// protected by a conditional between LHS and RHS.  This is used to
8953 /// to eliminate casts.
8954 bool
8955 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
8956                                              ICmpInst::Predicate Pred,
8957                                              const SCEV *LHS, const SCEV *RHS) {
8958   // Interpret a null as meaning no loop, where there is obviously no guard
8959   // (interprocedural conditions notwithstanding).
8960   if (!L) return true;
8961 
8962   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
8963     return true;
8964 
8965   BasicBlock *Latch = L->getLoopLatch();
8966   if (!Latch)
8967     return false;
8968 
8969   BranchInst *LoopContinuePredicate =
8970     dyn_cast<BranchInst>(Latch->getTerminator());
8971   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
8972       isImpliedCond(Pred, LHS, RHS,
8973                     LoopContinuePredicate->getCondition(),
8974                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
8975     return true;
8976 
8977   // We don't want more than one activation of the following loops on the stack
8978   // -- that can lead to O(n!) time complexity.
8979   if (WalkingBEDominatingConds)
8980     return false;
8981 
8982   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
8983 
8984   // See if we can exploit a trip count to prove the predicate.
8985   const auto &BETakenInfo = getBackedgeTakenInfo(L);
8986   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
8987   if (LatchBECount != getCouldNotCompute()) {
8988     // We know that Latch branches back to the loop header exactly
8989     // LatchBECount times.  This means the backdege condition at Latch is
8990     // equivalent to  "{0,+,1} u< LatchBECount".
8991     Type *Ty = LatchBECount->getType();
8992     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
8993     const SCEV *LoopCounter =
8994       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
8995     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
8996                       LatchBECount))
8997       return true;
8998   }
8999 
9000   // Check conditions due to any @llvm.assume intrinsics.
9001   for (auto &AssumeVH : AC.assumptions()) {
9002     if (!AssumeVH)
9003       continue;
9004     auto *CI = cast<CallInst>(AssumeVH);
9005     if (!DT.dominates(CI, Latch->getTerminator()))
9006       continue;
9007 
9008     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9009       return true;
9010   }
9011 
9012   // If the loop is not reachable from the entry block, we risk running into an
9013   // infinite loop as we walk up into the dom tree.  These loops do not matter
9014   // anyway, so we just return a conservative answer when we see them.
9015   if (!DT.isReachableFromEntry(L->getHeader()))
9016     return false;
9017 
9018   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9019     return true;
9020 
9021   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9022        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9023     assert(DTN && "should reach the loop header before reaching the root!");
9024 
9025     BasicBlock *BB = DTN->getBlock();
9026     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9027       return true;
9028 
9029     BasicBlock *PBB = BB->getSinglePredecessor();
9030     if (!PBB)
9031       continue;
9032 
9033     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9034     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9035       continue;
9036 
9037     Value *Condition = ContinuePredicate->getCondition();
9038 
9039     // If we have an edge `E` within the loop body that dominates the only
9040     // latch, the condition guarding `E` also guards the backedge.  This
9041     // reasoning works only for loops with a single latch.
9042 
9043     BasicBlockEdge DominatingEdge(PBB, BB);
9044     if (DominatingEdge.isSingleEdge()) {
9045       // We're constructively (and conservatively) enumerating edges within the
9046       // loop body that dominate the latch.  The dominator tree better agree
9047       // with us on this:
9048       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9049 
9050       if (isImpliedCond(Pred, LHS, RHS, Condition,
9051                         BB != ContinuePredicate->getSuccessor(0)))
9052         return true;
9053     }
9054   }
9055 
9056   return false;
9057 }
9058 
9059 bool
9060 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9061                                           ICmpInst::Predicate Pred,
9062                                           const SCEV *LHS, const SCEV *RHS) {
9063   // Interpret a null as meaning no loop, where there is obviously no guard
9064   // (interprocedural conditions notwithstanding).
9065   if (!L) return false;
9066 
9067   // Both LHS and RHS must be available at loop entry.
9068   assert(isAvailableAtLoopEntry(LHS, L) &&
9069          "LHS is not available at Loop Entry");
9070   assert(isAvailableAtLoopEntry(RHS, L) &&
9071          "RHS is not available at Loop Entry");
9072 
9073   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
9074     return true;
9075 
9076   // Starting at the loop predecessor, climb up the predecessor chain, as long
9077   // as there are predecessors that can be found that have unique successors
9078   // leading to the original header.
9079   for (std::pair<BasicBlock *, BasicBlock *>
9080          Pair(L->getLoopPredecessor(), L->getHeader());
9081        Pair.first;
9082        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9083 
9084     if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
9085       return true;
9086 
9087     BranchInst *LoopEntryPredicate =
9088       dyn_cast<BranchInst>(Pair.first->getTerminator());
9089     if (!LoopEntryPredicate ||
9090         LoopEntryPredicate->isUnconditional())
9091       continue;
9092 
9093     if (isImpliedCond(Pred, LHS, RHS,
9094                       LoopEntryPredicate->getCondition(),
9095                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
9096       return true;
9097   }
9098 
9099   // Check conditions due to any @llvm.assume intrinsics.
9100   for (auto &AssumeVH : AC.assumptions()) {
9101     if (!AssumeVH)
9102       continue;
9103     auto *CI = cast<CallInst>(AssumeVH);
9104     if (!DT.dominates(CI, L->getHeader()))
9105       continue;
9106 
9107     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9108       return true;
9109   }
9110 
9111   return false;
9112 }
9113 
9114 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9115                                     const SCEV *LHS, const SCEV *RHS,
9116                                     Value *FoundCondValue,
9117                                     bool Inverse) {
9118   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9119     return false;
9120 
9121   auto ClearOnExit =
9122       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9123 
9124   // Recursively handle And and Or conditions.
9125   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9126     if (BO->getOpcode() == Instruction::And) {
9127       if (!Inverse)
9128         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9129                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9130     } else if (BO->getOpcode() == Instruction::Or) {
9131       if (Inverse)
9132         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9133                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9134     }
9135   }
9136 
9137   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9138   if (!ICI) return false;
9139 
9140   // Now that we found a conditional branch that dominates the loop or controls
9141   // the loop latch. Check to see if it is the comparison we are looking for.
9142   ICmpInst::Predicate FoundPred;
9143   if (Inverse)
9144     FoundPred = ICI->getInversePredicate();
9145   else
9146     FoundPred = ICI->getPredicate();
9147 
9148   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9149   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9150 
9151   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9152 }
9153 
9154 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9155                                     const SCEV *RHS,
9156                                     ICmpInst::Predicate FoundPred,
9157                                     const SCEV *FoundLHS,
9158                                     const SCEV *FoundRHS) {
9159   // Balance the types.
9160   if (getTypeSizeInBits(LHS->getType()) <
9161       getTypeSizeInBits(FoundLHS->getType())) {
9162     if (CmpInst::isSigned(Pred)) {
9163       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9164       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9165     } else {
9166       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9167       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9168     }
9169   } else if (getTypeSizeInBits(LHS->getType()) >
9170       getTypeSizeInBits(FoundLHS->getType())) {
9171     if (CmpInst::isSigned(FoundPred)) {
9172       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9173       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9174     } else {
9175       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9176       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9177     }
9178   }
9179 
9180   // Canonicalize the query to match the way instcombine will have
9181   // canonicalized the comparison.
9182   if (SimplifyICmpOperands(Pred, LHS, RHS))
9183     if (LHS == RHS)
9184       return CmpInst::isTrueWhenEqual(Pred);
9185   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9186     if (FoundLHS == FoundRHS)
9187       return CmpInst::isFalseWhenEqual(FoundPred);
9188 
9189   // Check to see if we can make the LHS or RHS match.
9190   if (LHS == FoundRHS || RHS == FoundLHS) {
9191     if (isa<SCEVConstant>(RHS)) {
9192       std::swap(FoundLHS, FoundRHS);
9193       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9194     } else {
9195       std::swap(LHS, RHS);
9196       Pred = ICmpInst::getSwappedPredicate(Pred);
9197     }
9198   }
9199 
9200   // Check whether the found predicate is the same as the desired predicate.
9201   if (FoundPred == Pred)
9202     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9203 
9204   // Check whether swapping the found predicate makes it the same as the
9205   // desired predicate.
9206   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9207     if (isa<SCEVConstant>(RHS))
9208       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9209     else
9210       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9211                                    RHS, LHS, FoundLHS, FoundRHS);
9212   }
9213 
9214   // Unsigned comparison is the same as signed comparison when both the operands
9215   // are non-negative.
9216   if (CmpInst::isUnsigned(FoundPred) &&
9217       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9218       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9219     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9220 
9221   // Check if we can make progress by sharpening ranges.
9222   if (FoundPred == ICmpInst::ICMP_NE &&
9223       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9224 
9225     const SCEVConstant *C = nullptr;
9226     const SCEV *V = nullptr;
9227 
9228     if (isa<SCEVConstant>(FoundLHS)) {
9229       C = cast<SCEVConstant>(FoundLHS);
9230       V = FoundRHS;
9231     } else {
9232       C = cast<SCEVConstant>(FoundRHS);
9233       V = FoundLHS;
9234     }
9235 
9236     // The guarding predicate tells us that C != V. If the known range
9237     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9238     // range we consider has to correspond to same signedness as the
9239     // predicate we're interested in folding.
9240 
9241     APInt Min = ICmpInst::isSigned(Pred) ?
9242         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9243 
9244     if (Min == C->getAPInt()) {
9245       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9246       // This is true even if (Min + 1) wraps around -- in case of
9247       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9248 
9249       APInt SharperMin = Min + 1;
9250 
9251       switch (Pred) {
9252         case ICmpInst::ICMP_SGE:
9253         case ICmpInst::ICMP_UGE:
9254           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9255           // RHS, we're done.
9256           if (isImpliedCondOperands(Pred, LHS, RHS, V,
9257                                     getConstant(SharperMin)))
9258             return true;
9259           LLVM_FALLTHROUGH;
9260 
9261         case ICmpInst::ICMP_SGT:
9262         case ICmpInst::ICMP_UGT:
9263           // We know from the range information that (V `Pred` Min ||
9264           // V == Min).  We know from the guarding condition that !(V
9265           // == Min).  This gives us
9266           //
9267           //       V `Pred` Min || V == Min && !(V == Min)
9268           //   =>  V `Pred` Min
9269           //
9270           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9271 
9272           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9273             return true;
9274           LLVM_FALLTHROUGH;
9275 
9276         default:
9277           // No change
9278           break;
9279       }
9280     }
9281   }
9282 
9283   // Check whether the actual condition is beyond sufficient.
9284   if (FoundPred == ICmpInst::ICMP_EQ)
9285     if (ICmpInst::isTrueWhenEqual(Pred))
9286       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9287         return true;
9288   if (Pred == ICmpInst::ICMP_NE)
9289     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9290       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9291         return true;
9292 
9293   // Otherwise assume the worst.
9294   return false;
9295 }
9296 
9297 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9298                                      const SCEV *&L, const SCEV *&R,
9299                                      SCEV::NoWrapFlags &Flags) {
9300   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9301   if (!AE || AE->getNumOperands() != 2)
9302     return false;
9303 
9304   L = AE->getOperand(0);
9305   R = AE->getOperand(1);
9306   Flags = AE->getNoWrapFlags();
9307   return true;
9308 }
9309 
9310 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9311                                                            const SCEV *Less) {
9312   // We avoid subtracting expressions here because this function is usually
9313   // fairly deep in the call stack (i.e. is called many times).
9314 
9315   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9316     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9317     const auto *MAR = cast<SCEVAddRecExpr>(More);
9318 
9319     if (LAR->getLoop() != MAR->getLoop())
9320       return None;
9321 
9322     // We look at affine expressions only; not for correctness but to keep
9323     // getStepRecurrence cheap.
9324     if (!LAR->isAffine() || !MAR->isAffine())
9325       return None;
9326 
9327     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9328       return None;
9329 
9330     Less = LAR->getStart();
9331     More = MAR->getStart();
9332 
9333     // fall through
9334   }
9335 
9336   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9337     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9338     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9339     return M - L;
9340   }
9341 
9342   const SCEV *L, *R;
9343   SCEV::NoWrapFlags Flags;
9344   if (splitBinaryAdd(Less, L, R, Flags))
9345     if (const auto *LC = dyn_cast<SCEVConstant>(L))
9346       if (R == More)
9347         return -(LC->getAPInt());
9348 
9349   if (splitBinaryAdd(More, L, R, Flags))
9350     if (const auto *LC = dyn_cast<SCEVConstant>(L))
9351       if (R == Less)
9352         return LC->getAPInt();
9353 
9354   return None;
9355 }
9356 
9357 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9358     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9359     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9360   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9361     return false;
9362 
9363   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9364   if (!AddRecLHS)
9365     return false;
9366 
9367   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9368   if (!AddRecFoundLHS)
9369     return false;
9370 
9371   // We'd like to let SCEV reason about control dependencies, so we constrain
9372   // both the inequalities to be about add recurrences on the same loop.  This
9373   // way we can use isLoopEntryGuardedByCond later.
9374 
9375   const Loop *L = AddRecFoundLHS->getLoop();
9376   if (L != AddRecLHS->getLoop())
9377     return false;
9378 
9379   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
9380   //
9381   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9382   //                                                                  ... (2)
9383   //
9384   // Informal proof for (2), assuming (1) [*]:
9385   //
9386   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9387   //
9388   // Then
9389   //
9390   //       FoundLHS s< FoundRHS s< INT_MIN - C
9391   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
9392   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9393   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
9394   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9395   // <=>  FoundLHS + C s< FoundRHS + C
9396   //
9397   // [*]: (1) can be proved by ruling out overflow.
9398   //
9399   // [**]: This can be proved by analyzing all the four possibilities:
9400   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9401   //    (A s>= 0, B s>= 0).
9402   //
9403   // Note:
9404   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9405   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
9406   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
9407   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
9408   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9409   // C)".
9410 
9411   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9412   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9413   if (!LDiff || !RDiff || *LDiff != *RDiff)
9414     return false;
9415 
9416   if (LDiff->isMinValue())
9417     return true;
9418 
9419   APInt FoundRHSLimit;
9420 
9421   if (Pred == CmpInst::ICMP_ULT) {
9422     FoundRHSLimit = -(*RDiff);
9423   } else {
9424     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9425     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9426   }
9427 
9428   // Try to prove (1) or (2), as needed.
9429   return isAvailableAtLoopEntry(FoundRHS, L) &&
9430          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9431                                   getConstant(FoundRHSLimit));
9432 }
9433 
9434 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
9435                                             const SCEV *LHS, const SCEV *RHS,
9436                                             const SCEV *FoundLHS,
9437                                             const SCEV *FoundRHS) {
9438   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
9439     return true;
9440 
9441   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
9442     return true;
9443 
9444   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
9445                                      FoundLHS, FoundRHS) ||
9446          // ~x < ~y --> x > y
9447          isImpliedCondOperandsHelper(Pred, LHS, RHS,
9448                                      getNotSCEV(FoundRHS),
9449                                      getNotSCEV(FoundLHS));
9450 }
9451 
9452 /// If Expr computes ~A, return A else return nullptr
9453 static const SCEV *MatchNotExpr(const SCEV *Expr) {
9454   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
9455   if (!Add || Add->getNumOperands() != 2 ||
9456       !Add->getOperand(0)->isAllOnesValue())
9457     return nullptr;
9458 
9459   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
9460   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
9461       !AddRHS->getOperand(0)->isAllOnesValue())
9462     return nullptr;
9463 
9464   return AddRHS->getOperand(1);
9465 }
9466 
9467 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
9468 template<typename MaxExprType>
9469 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
9470                               const SCEV *Candidate) {
9471   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
9472   if (!MaxExpr) return false;
9473 
9474   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
9475 }
9476 
9477 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
9478 template<typename MaxExprType>
9479 static bool IsMinConsistingOf(ScalarEvolution &SE,
9480                               const SCEV *MaybeMinExpr,
9481                               const SCEV *Candidate) {
9482   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
9483   if (!MaybeMaxExpr)
9484     return false;
9485 
9486   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
9487 }
9488 
9489 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
9490                                            ICmpInst::Predicate Pred,
9491                                            const SCEV *LHS, const SCEV *RHS) {
9492   // If both sides are affine addrecs for the same loop, with equal
9493   // steps, and we know the recurrences don't wrap, then we only
9494   // need to check the predicate on the starting values.
9495 
9496   if (!ICmpInst::isRelational(Pred))
9497     return false;
9498 
9499   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
9500   if (!LAR)
9501     return false;
9502   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
9503   if (!RAR)
9504     return false;
9505   if (LAR->getLoop() != RAR->getLoop())
9506     return false;
9507   if (!LAR->isAffine() || !RAR->isAffine())
9508     return false;
9509 
9510   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
9511     return false;
9512 
9513   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
9514                          SCEV::FlagNSW : SCEV::FlagNUW;
9515   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
9516     return false;
9517 
9518   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
9519 }
9520 
9521 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
9522 /// expression?
9523 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
9524                                         ICmpInst::Predicate Pred,
9525                                         const SCEV *LHS, const SCEV *RHS) {
9526   switch (Pred) {
9527   default:
9528     return false;
9529 
9530   case ICmpInst::ICMP_SGE:
9531     std::swap(LHS, RHS);
9532     LLVM_FALLTHROUGH;
9533   case ICmpInst::ICMP_SLE:
9534     return
9535       // min(A, ...) <= A
9536       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
9537       // A <= max(A, ...)
9538       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
9539 
9540   case ICmpInst::ICMP_UGE:
9541     std::swap(LHS, RHS);
9542     LLVM_FALLTHROUGH;
9543   case ICmpInst::ICMP_ULE:
9544     return
9545       // min(A, ...) <= A
9546       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
9547       // A <= max(A, ...)
9548       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
9549   }
9550 
9551   llvm_unreachable("covered switch fell through?!");
9552 }
9553 
9554 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
9555                                              const SCEV *LHS, const SCEV *RHS,
9556                                              const SCEV *FoundLHS,
9557                                              const SCEV *FoundRHS,
9558                                              unsigned Depth) {
9559   assert(getTypeSizeInBits(LHS->getType()) ==
9560              getTypeSizeInBits(RHS->getType()) &&
9561          "LHS and RHS have different sizes?");
9562   assert(getTypeSizeInBits(FoundLHS->getType()) ==
9563              getTypeSizeInBits(FoundRHS->getType()) &&
9564          "FoundLHS and FoundRHS have different sizes?");
9565   // We want to avoid hurting the compile time with analysis of too big trees.
9566   if (Depth > MaxSCEVOperationsImplicationDepth)
9567     return false;
9568   // We only want to work with ICMP_SGT comparison so far.
9569   // TODO: Extend to ICMP_UGT?
9570   if (Pred == ICmpInst::ICMP_SLT) {
9571     Pred = ICmpInst::ICMP_SGT;
9572     std::swap(LHS, RHS);
9573     std::swap(FoundLHS, FoundRHS);
9574   }
9575   if (Pred != ICmpInst::ICMP_SGT)
9576     return false;
9577 
9578   auto GetOpFromSExt = [&](const SCEV *S) {
9579     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
9580       return Ext->getOperand();
9581     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
9582     // the constant in some cases.
9583     return S;
9584   };
9585 
9586   // Acquire values from extensions.
9587   auto *OrigFoundLHS = FoundLHS;
9588   LHS = GetOpFromSExt(LHS);
9589   FoundLHS = GetOpFromSExt(FoundLHS);
9590 
9591   // Is the SGT predicate can be proved trivially or using the found context.
9592   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
9593     return isKnownViaSimpleReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
9594            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
9595                                   FoundRHS, Depth + 1);
9596   };
9597 
9598   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
9599     // We want to avoid creation of any new non-constant SCEV. Since we are
9600     // going to compare the operands to RHS, we should be certain that we don't
9601     // need any size extensions for this. So let's decline all cases when the
9602     // sizes of types of LHS and RHS do not match.
9603     // TODO: Maybe try to get RHS from sext to catch more cases?
9604     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
9605       return false;
9606 
9607     // Should not overflow.
9608     if (!LHSAddExpr->hasNoSignedWrap())
9609       return false;
9610 
9611     auto *LL = LHSAddExpr->getOperand(0);
9612     auto *LR = LHSAddExpr->getOperand(1);
9613     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
9614 
9615     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
9616     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
9617       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
9618     };
9619     // Try to prove the following rule:
9620     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
9621     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
9622     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
9623       return true;
9624   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
9625     Value *LL, *LR;
9626     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
9627 
9628     using namespace llvm::PatternMatch;
9629 
9630     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
9631       // Rules for division.
9632       // We are going to perform some comparisons with Denominator and its
9633       // derivative expressions. In general case, creating a SCEV for it may
9634       // lead to a complex analysis of the entire graph, and in particular it
9635       // can request trip count recalculation for the same loop. This would
9636       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
9637       // this, we only want to create SCEVs that are constants in this section.
9638       // So we bail if Denominator is not a constant.
9639       if (!isa<ConstantInt>(LR))
9640         return false;
9641 
9642       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
9643 
9644       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
9645       // then a SCEV for the numerator already exists and matches with FoundLHS.
9646       auto *Numerator = getExistingSCEV(LL);
9647       if (!Numerator || Numerator->getType() != FoundLHS->getType())
9648         return false;
9649 
9650       // Make sure that the numerator matches with FoundLHS and the denominator
9651       // is positive.
9652       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
9653         return false;
9654 
9655       auto *DTy = Denominator->getType();
9656       auto *FRHSTy = FoundRHS->getType();
9657       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
9658         // One of types is a pointer and another one is not. We cannot extend
9659         // them properly to a wider type, so let us just reject this case.
9660         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
9661         // to avoid this check.
9662         return false;
9663 
9664       // Given that:
9665       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
9666       auto *WTy = getWiderType(DTy, FRHSTy);
9667       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
9668       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
9669 
9670       // Try to prove the following rule:
9671       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
9672       // For example, given that FoundLHS > 2. It means that FoundLHS is at
9673       // least 3. If we divide it by Denominator < 4, we will have at least 1.
9674       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
9675       if (isKnownNonPositive(RHS) &&
9676           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
9677         return true;
9678 
9679       // Try to prove the following rule:
9680       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
9681       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
9682       // If we divide it by Denominator > 2, then:
9683       // 1. If FoundLHS is negative, then the result is 0.
9684       // 2. If FoundLHS is non-negative, then the result is non-negative.
9685       // Anyways, the result is non-negative.
9686       auto *MinusOne = getNegativeSCEV(getOne(WTy));
9687       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
9688       if (isKnownNegative(RHS) &&
9689           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
9690         return true;
9691     }
9692   }
9693 
9694   return false;
9695 }
9696 
9697 bool
9698 ScalarEvolution::isKnownViaSimpleReasoning(ICmpInst::Predicate Pred,
9699                                            const SCEV *LHS, const SCEV *RHS) {
9700   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
9701          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
9702          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
9703          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
9704 }
9705 
9706 bool
9707 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
9708                                              const SCEV *LHS, const SCEV *RHS,
9709                                              const SCEV *FoundLHS,
9710                                              const SCEV *FoundRHS) {
9711   switch (Pred) {
9712   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
9713   case ICmpInst::ICMP_EQ:
9714   case ICmpInst::ICMP_NE:
9715     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
9716       return true;
9717     break;
9718   case ICmpInst::ICMP_SLT:
9719   case ICmpInst::ICMP_SLE:
9720     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
9721         isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
9722       return true;
9723     break;
9724   case ICmpInst::ICMP_SGT:
9725   case ICmpInst::ICMP_SGE:
9726     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
9727         isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
9728       return true;
9729     break;
9730   case ICmpInst::ICMP_ULT:
9731   case ICmpInst::ICMP_ULE:
9732     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
9733         isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
9734       return true;
9735     break;
9736   case ICmpInst::ICMP_UGT:
9737   case ICmpInst::ICMP_UGE:
9738     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
9739         isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
9740       return true;
9741     break;
9742   }
9743 
9744   // Maybe it can be proved via operations?
9745   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
9746     return true;
9747 
9748   return false;
9749 }
9750 
9751 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
9752                                                      const SCEV *LHS,
9753                                                      const SCEV *RHS,
9754                                                      const SCEV *FoundLHS,
9755                                                      const SCEV *FoundRHS) {
9756   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
9757     // The restriction on `FoundRHS` be lifted easily -- it exists only to
9758     // reduce the compile time impact of this optimization.
9759     return false;
9760 
9761   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
9762   if (!Addend)
9763     return false;
9764 
9765   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
9766 
9767   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
9768   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
9769   ConstantRange FoundLHSRange =
9770       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
9771 
9772   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
9773   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
9774 
9775   // We can also compute the range of values for `LHS` that satisfy the
9776   // consequent, "`LHS` `Pred` `RHS`":
9777   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
9778   ConstantRange SatisfyingLHSRange =
9779       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
9780 
9781   // The antecedent implies the consequent if every value of `LHS` that
9782   // satisfies the antecedent also satisfies the consequent.
9783   return SatisfyingLHSRange.contains(LHSRange);
9784 }
9785 
9786 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
9787                                          bool IsSigned, bool NoWrap) {
9788   assert(isKnownPositive(Stride) && "Positive stride expected!");
9789 
9790   if (NoWrap) return false;
9791 
9792   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9793   const SCEV *One = getOne(Stride->getType());
9794 
9795   if (IsSigned) {
9796     APInt MaxRHS = getSignedRangeMax(RHS);
9797     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
9798     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
9799 
9800     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
9801     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
9802   }
9803 
9804   APInt MaxRHS = getUnsignedRangeMax(RHS);
9805   APInt MaxValue = APInt::getMaxValue(BitWidth);
9806   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
9807 
9808   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
9809   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
9810 }
9811 
9812 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
9813                                          bool IsSigned, bool NoWrap) {
9814   if (NoWrap) return false;
9815 
9816   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9817   const SCEV *One = getOne(Stride->getType());
9818 
9819   if (IsSigned) {
9820     APInt MinRHS = getSignedRangeMin(RHS);
9821     APInt MinValue = APInt::getSignedMinValue(BitWidth);
9822     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
9823 
9824     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
9825     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
9826   }
9827 
9828   APInt MinRHS = getUnsignedRangeMin(RHS);
9829   APInt MinValue = APInt::getMinValue(BitWidth);
9830   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
9831 
9832   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
9833   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
9834 }
9835 
9836 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
9837                                             bool Equality) {
9838   const SCEV *One = getOne(Step->getType());
9839   Delta = Equality ? getAddExpr(Delta, Step)
9840                    : getAddExpr(Delta, getMinusSCEV(Step, One));
9841   return getUDivExpr(Delta, Step);
9842 }
9843 
9844 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
9845                                                     const SCEV *Stride,
9846                                                     const SCEV *End,
9847                                                     unsigned BitWidth,
9848                                                     bool IsSigned) {
9849 
9850   assert(!isKnownNonPositive(Stride) &&
9851          "Stride is expected strictly positive!");
9852   // Calculate the maximum backedge count based on the range of values
9853   // permitted by Start, End, and Stride.
9854   const SCEV *MaxBECount;
9855   APInt MinStart =
9856       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
9857 
9858   APInt StrideForMaxBECount =
9859       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
9860 
9861   // We already know that the stride is positive, so we paper over conservatism
9862   // in our range computation by forcing StrideForMaxBECount to be at least one.
9863   // In theory this is unnecessary, but we expect MaxBECount to be a
9864   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
9865   // is nothing to constant fold it to).
9866   APInt One(BitWidth, 1, IsSigned);
9867   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
9868 
9869   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
9870                             : APInt::getMaxValue(BitWidth);
9871   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
9872 
9873   // Although End can be a MAX expression we estimate MaxEnd considering only
9874   // the case End = RHS of the loop termination condition. This is safe because
9875   // in the other case (End - Start) is zero, leading to a zero maximum backedge
9876   // taken count.
9877   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
9878                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
9879 
9880   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
9881                               getConstant(StrideForMaxBECount) /* Step */,
9882                               false /* Equality */);
9883 
9884   return MaxBECount;
9885 }
9886 
9887 ScalarEvolution::ExitLimit
9888 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
9889                                   const Loop *L, bool IsSigned,
9890                                   bool ControlsExit, bool AllowPredicates) {
9891   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9892 
9893   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
9894   bool PredicatedIV = false;
9895 
9896   if (!IV && AllowPredicates) {
9897     // Try to make this an AddRec using runtime tests, in the first X
9898     // iterations of this loop, where X is the SCEV expression found by the
9899     // algorithm below.
9900     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
9901     PredicatedIV = true;
9902   }
9903 
9904   // Avoid weird loops
9905   if (!IV || IV->getLoop() != L || !IV->isAffine())
9906     return getCouldNotCompute();
9907 
9908   bool NoWrap = ControlsExit &&
9909                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
9910 
9911   const SCEV *Stride = IV->getStepRecurrence(*this);
9912 
9913   bool PositiveStride = isKnownPositive(Stride);
9914 
9915   // Avoid negative or zero stride values.
9916   if (!PositiveStride) {
9917     // We can compute the correct backedge taken count for loops with unknown
9918     // strides if we can prove that the loop is not an infinite loop with side
9919     // effects. Here's the loop structure we are trying to handle -
9920     //
9921     // i = start
9922     // do {
9923     //   A[i] = i;
9924     //   i += s;
9925     // } while (i < end);
9926     //
9927     // The backedge taken count for such loops is evaluated as -
9928     // (max(end, start + stride) - start - 1) /u stride
9929     //
9930     // The additional preconditions that we need to check to prove correctness
9931     // of the above formula is as follows -
9932     //
9933     // a) IV is either nuw or nsw depending upon signedness (indicated by the
9934     //    NoWrap flag).
9935     // b) loop is single exit with no side effects.
9936     //
9937     //
9938     // Precondition a) implies that if the stride is negative, this is a single
9939     // trip loop. The backedge taken count formula reduces to zero in this case.
9940     //
9941     // Precondition b) implies that the unknown stride cannot be zero otherwise
9942     // we have UB.
9943     //
9944     // The positive stride case is the same as isKnownPositive(Stride) returning
9945     // true (original behavior of the function).
9946     //
9947     // We want to make sure that the stride is truly unknown as there are edge
9948     // cases where ScalarEvolution propagates no wrap flags to the
9949     // post-increment/decrement IV even though the increment/decrement operation
9950     // itself is wrapping. The computed backedge taken count may be wrong in
9951     // such cases. This is prevented by checking that the stride is not known to
9952     // be either positive or non-positive. For example, no wrap flags are
9953     // propagated to the post-increment IV of this loop with a trip count of 2 -
9954     //
9955     // unsigned char i;
9956     // for(i=127; i<128; i+=129)
9957     //   A[i] = i;
9958     //
9959     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
9960         !loopHasNoSideEffects(L))
9961       return getCouldNotCompute();
9962   } else if (!Stride->isOne() &&
9963              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
9964     // Avoid proven overflow cases: this will ensure that the backedge taken
9965     // count will not generate any unsigned overflow. Relaxed no-overflow
9966     // conditions exploit NoWrapFlags, allowing to optimize in presence of
9967     // undefined behaviors like the case of C language.
9968     return getCouldNotCompute();
9969 
9970   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
9971                                       : ICmpInst::ICMP_ULT;
9972   const SCEV *Start = IV->getStart();
9973   const SCEV *End = RHS;
9974   // When the RHS is not invariant, we do not know the end bound of the loop and
9975   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
9976   // calculate the MaxBECount, given the start, stride and max value for the end
9977   // bound of the loop (RHS), and the fact that IV does not overflow (which is
9978   // checked above).
9979   if (!isLoopInvariant(RHS, L)) {
9980     const SCEV *MaxBECount = computeMaxBECountForLT(
9981         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
9982     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
9983                      false /*MaxOrZero*/, Predicates);
9984   }
9985   // If the backedge is taken at least once, then it will be taken
9986   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
9987   // is the LHS value of the less-than comparison the first time it is evaluated
9988   // and End is the RHS.
9989   const SCEV *BECountIfBackedgeTaken =
9990     computeBECount(getMinusSCEV(End, Start), Stride, false);
9991   // If the loop entry is guarded by the result of the backedge test of the
9992   // first loop iteration, then we know the backedge will be taken at least
9993   // once and so the backedge taken count is as above. If not then we use the
9994   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
9995   // as if the backedge is taken at least once max(End,Start) is End and so the
9996   // result is as above, and if not max(End,Start) is Start so we get a backedge
9997   // count of zero.
9998   const SCEV *BECount;
9999   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10000     BECount = BECountIfBackedgeTaken;
10001   else {
10002     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10003     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10004   }
10005 
10006   const SCEV *MaxBECount;
10007   bool MaxOrZero = false;
10008   if (isa<SCEVConstant>(BECount))
10009     MaxBECount = BECount;
10010   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10011     // If we know exactly how many times the backedge will be taken if it's
10012     // taken at least once, then the backedge count will either be that or
10013     // zero.
10014     MaxBECount = BECountIfBackedgeTaken;
10015     MaxOrZero = true;
10016   } else {
10017     MaxBECount = computeMaxBECountForLT(
10018         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10019   }
10020 
10021   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10022       !isa<SCEVCouldNotCompute>(BECount))
10023     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10024 
10025   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10026 }
10027 
10028 ScalarEvolution::ExitLimit
10029 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10030                                      const Loop *L, bool IsSigned,
10031                                      bool ControlsExit, bool AllowPredicates) {
10032   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10033   // We handle only IV > Invariant
10034   if (!isLoopInvariant(RHS, L))
10035     return getCouldNotCompute();
10036 
10037   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10038   if (!IV && AllowPredicates)
10039     // Try to make this an AddRec using runtime tests, in the first X
10040     // iterations of this loop, where X is the SCEV expression found by the
10041     // algorithm below.
10042     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10043 
10044   // Avoid weird loops
10045   if (!IV || IV->getLoop() != L || !IV->isAffine())
10046     return getCouldNotCompute();
10047 
10048   bool NoWrap = ControlsExit &&
10049                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10050 
10051   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10052 
10053   // Avoid negative or zero stride values
10054   if (!isKnownPositive(Stride))
10055     return getCouldNotCompute();
10056 
10057   // Avoid proven overflow cases: this will ensure that the backedge taken count
10058   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10059   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10060   // behaviors like the case of C language.
10061   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10062     return getCouldNotCompute();
10063 
10064   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10065                                       : ICmpInst::ICMP_UGT;
10066 
10067   const SCEV *Start = IV->getStart();
10068   const SCEV *End = RHS;
10069   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10070     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10071 
10072   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10073 
10074   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10075                             : getUnsignedRangeMax(Start);
10076 
10077   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10078                              : getUnsignedRangeMin(Stride);
10079 
10080   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10081   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10082                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10083 
10084   // Although End can be a MIN expression we estimate MinEnd considering only
10085   // the case End = RHS. This is safe because in the other case (Start - End)
10086   // is zero, leading to a zero maximum backedge taken count.
10087   APInt MinEnd =
10088     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10089              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10090 
10091 
10092   const SCEV *MaxBECount = getCouldNotCompute();
10093   if (isa<SCEVConstant>(BECount))
10094     MaxBECount = BECount;
10095   else
10096     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
10097                                 getConstant(MinStride), false);
10098 
10099   if (isa<SCEVCouldNotCompute>(MaxBECount))
10100     MaxBECount = BECount;
10101 
10102   return ExitLimit(BECount, MaxBECount, false, Predicates);
10103 }
10104 
10105 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10106                                                     ScalarEvolution &SE) const {
10107   if (Range.isFullSet())  // Infinite loop.
10108     return SE.getCouldNotCompute();
10109 
10110   // If the start is a non-zero constant, shift the range to simplify things.
10111   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10112     if (!SC->getValue()->isZero()) {
10113       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10114       Operands[0] = SE.getZero(SC->getType());
10115       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10116                                              getNoWrapFlags(FlagNW));
10117       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10118         return ShiftedAddRec->getNumIterationsInRange(
10119             Range.subtract(SC->getAPInt()), SE);
10120       // This is strange and shouldn't happen.
10121       return SE.getCouldNotCompute();
10122     }
10123 
10124   // The only time we can solve this is when we have all constant indices.
10125   // Otherwise, we cannot determine the overflow conditions.
10126   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10127     return SE.getCouldNotCompute();
10128 
10129   // Okay at this point we know that all elements of the chrec are constants and
10130   // that the start element is zero.
10131 
10132   // First check to see if the range contains zero.  If not, the first
10133   // iteration exits.
10134   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10135   if (!Range.contains(APInt(BitWidth, 0)))
10136     return SE.getZero(getType());
10137 
10138   if (isAffine()) {
10139     // If this is an affine expression then we have this situation:
10140     //   Solve {0,+,A} in Range  ===  Ax in Range
10141 
10142     // We know that zero is in the range.  If A is positive then we know that
10143     // the upper value of the range must be the first possible exit value.
10144     // If A is negative then the lower of the range is the last possible loop
10145     // value.  Also note that we already checked for a full range.
10146     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10147     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10148 
10149     // The exit value should be (End+A)/A.
10150     APInt ExitVal = (End + A).udiv(A);
10151     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10152 
10153     // Evaluate at the exit value.  If we really did fall out of the valid
10154     // range, then we computed our trip count, otherwise wrap around or other
10155     // things must have happened.
10156     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10157     if (Range.contains(Val->getValue()))
10158       return SE.getCouldNotCompute();  // Something strange happened
10159 
10160     // Ensure that the previous value is in the range.  This is a sanity check.
10161     assert(Range.contains(
10162            EvaluateConstantChrecAtConstant(this,
10163            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10164            "Linear scev computation is off in a bad way!");
10165     return SE.getConstant(ExitValue);
10166   } else if (isQuadratic()) {
10167     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
10168     // quadratic equation to solve it.  To do this, we must frame our problem in
10169     // terms of figuring out when zero is crossed, instead of when
10170     // Range.getUpper() is crossed.
10171     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
10172     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
10173     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap);
10174 
10175     // Next, solve the constructed addrec
10176     if (auto Roots =
10177             SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
10178       const SCEVConstant *R1 = Roots->first;
10179       const SCEVConstant *R2 = Roots->second;
10180       // Pick the smallest positive root value.
10181       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
10182               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
10183         if (!CB->getZExtValue())
10184           std::swap(R1, R2); // R1 is the minimum root now.
10185 
10186         // Make sure the root is not off by one.  The returned iteration should
10187         // not be in the range, but the previous one should be.  When solving
10188         // for "X*X < 5", for example, we should not return a root of 2.
10189         ConstantInt *R1Val =
10190             EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
10191         if (Range.contains(R1Val->getValue())) {
10192           // The next iteration must be out of the range...
10193           ConstantInt *NextVal =
10194               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
10195 
10196           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
10197           if (!Range.contains(R1Val->getValue()))
10198             return SE.getConstant(NextVal);
10199           return SE.getCouldNotCompute(); // Something strange happened
10200         }
10201 
10202         // If R1 was not in the range, then it is a good return value.  Make
10203         // sure that R1-1 WAS in the range though, just in case.
10204         ConstantInt *NextVal =
10205             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
10206         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
10207         if (Range.contains(R1Val->getValue()))
10208           return R1;
10209         return SE.getCouldNotCompute(); // Something strange happened
10210       }
10211     }
10212   }
10213 
10214   return SE.getCouldNotCompute();
10215 }
10216 
10217 // Return true when S contains at least an undef value.
10218 static inline bool containsUndefs(const SCEV *S) {
10219   return SCEVExprContains(S, [](const SCEV *S) {
10220     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10221       return isa<UndefValue>(SU->getValue());
10222     else if (const auto *SC = dyn_cast<SCEVConstant>(S))
10223       return isa<UndefValue>(SC->getValue());
10224     return false;
10225   });
10226 }
10227 
10228 namespace {
10229 
10230 // Collect all steps of SCEV expressions.
10231 struct SCEVCollectStrides {
10232   ScalarEvolution &SE;
10233   SmallVectorImpl<const SCEV *> &Strides;
10234 
10235   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10236       : SE(SE), Strides(S) {}
10237 
10238   bool follow(const SCEV *S) {
10239     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10240       Strides.push_back(AR->getStepRecurrence(SE));
10241     return true;
10242   }
10243 
10244   bool isDone() const { return false; }
10245 };
10246 
10247 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10248 struct SCEVCollectTerms {
10249   SmallVectorImpl<const SCEV *> &Terms;
10250 
10251   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10252 
10253   bool follow(const SCEV *S) {
10254     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10255         isa<SCEVSignExtendExpr>(S)) {
10256       if (!containsUndefs(S))
10257         Terms.push_back(S);
10258 
10259       // Stop recursion: once we collected a term, do not walk its operands.
10260       return false;
10261     }
10262 
10263     // Keep looking.
10264     return true;
10265   }
10266 
10267   bool isDone() const { return false; }
10268 };
10269 
10270 // Check if a SCEV contains an AddRecExpr.
10271 struct SCEVHasAddRec {
10272   bool &ContainsAddRec;
10273 
10274   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10275     ContainsAddRec = false;
10276   }
10277 
10278   bool follow(const SCEV *S) {
10279     if (isa<SCEVAddRecExpr>(S)) {
10280       ContainsAddRec = true;
10281 
10282       // Stop recursion: once we collected a term, do not walk its operands.
10283       return false;
10284     }
10285 
10286     // Keep looking.
10287     return true;
10288   }
10289 
10290   bool isDone() const { return false; }
10291 };
10292 
10293 // Find factors that are multiplied with an expression that (possibly as a
10294 // subexpression) contains an AddRecExpr. In the expression:
10295 //
10296 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
10297 //
10298 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10299 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10300 // parameters as they form a product with an induction variable.
10301 //
10302 // This collector expects all array size parameters to be in the same MulExpr.
10303 // It might be necessary to later add support for collecting parameters that are
10304 // spread over different nested MulExpr.
10305 struct SCEVCollectAddRecMultiplies {
10306   SmallVectorImpl<const SCEV *> &Terms;
10307   ScalarEvolution &SE;
10308 
10309   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10310       : Terms(T), SE(SE) {}
10311 
10312   bool follow(const SCEV *S) {
10313     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10314       bool HasAddRec = false;
10315       SmallVector<const SCEV *, 0> Operands;
10316       for (auto Op : Mul->operands()) {
10317         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10318         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10319           Operands.push_back(Op);
10320         } else if (Unknown) {
10321           HasAddRec = true;
10322         } else {
10323           bool ContainsAddRec;
10324           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10325           visitAll(Op, ContiansAddRec);
10326           HasAddRec |= ContainsAddRec;
10327         }
10328       }
10329       if (Operands.size() == 0)
10330         return true;
10331 
10332       if (!HasAddRec)
10333         return false;
10334 
10335       Terms.push_back(SE.getMulExpr(Operands));
10336       // Stop recursion: once we collected a term, do not walk its operands.
10337       return false;
10338     }
10339 
10340     // Keep looking.
10341     return true;
10342   }
10343 
10344   bool isDone() const { return false; }
10345 };
10346 
10347 } // end anonymous namespace
10348 
10349 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10350 /// two places:
10351 ///   1) The strides of AddRec expressions.
10352 ///   2) Unknowns that are multiplied with AddRec expressions.
10353 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10354     SmallVectorImpl<const SCEV *> &Terms) {
10355   SmallVector<const SCEV *, 4> Strides;
10356   SCEVCollectStrides StrideCollector(*this, Strides);
10357   visitAll(Expr, StrideCollector);
10358 
10359   DEBUG({
10360       dbgs() << "Strides:\n";
10361       for (const SCEV *S : Strides)
10362         dbgs() << *S << "\n";
10363     });
10364 
10365   for (const SCEV *S : Strides) {
10366     SCEVCollectTerms TermCollector(Terms);
10367     visitAll(S, TermCollector);
10368   }
10369 
10370   DEBUG({
10371       dbgs() << "Terms:\n";
10372       for (const SCEV *T : Terms)
10373         dbgs() << *T << "\n";
10374     });
10375 
10376   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
10377   visitAll(Expr, MulCollector);
10378 }
10379 
10380 static bool findArrayDimensionsRec(ScalarEvolution &SE,
10381                                    SmallVectorImpl<const SCEV *> &Terms,
10382                                    SmallVectorImpl<const SCEV *> &Sizes) {
10383   int Last = Terms.size() - 1;
10384   const SCEV *Step = Terms[Last];
10385 
10386   // End of recursion.
10387   if (Last == 0) {
10388     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
10389       SmallVector<const SCEV *, 2> Qs;
10390       for (const SCEV *Op : M->operands())
10391         if (!isa<SCEVConstant>(Op))
10392           Qs.push_back(Op);
10393 
10394       Step = SE.getMulExpr(Qs);
10395     }
10396 
10397     Sizes.push_back(Step);
10398     return true;
10399   }
10400 
10401   for (const SCEV *&Term : Terms) {
10402     // Normalize the terms before the next call to findArrayDimensionsRec.
10403     const SCEV *Q, *R;
10404     SCEVDivision::divide(SE, Term, Step, &Q, &R);
10405 
10406     // Bail out when GCD does not evenly divide one of the terms.
10407     if (!R->isZero())
10408       return false;
10409 
10410     Term = Q;
10411   }
10412 
10413   // Remove all SCEVConstants.
10414   Terms.erase(
10415       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
10416       Terms.end());
10417 
10418   if (Terms.size() > 0)
10419     if (!findArrayDimensionsRec(SE, Terms, Sizes))
10420       return false;
10421 
10422   Sizes.push_back(Step);
10423   return true;
10424 }
10425 
10426 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
10427 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
10428   for (const SCEV *T : Terms)
10429     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
10430       return true;
10431   return false;
10432 }
10433 
10434 // Return the number of product terms in S.
10435 static inline int numberOfTerms(const SCEV *S) {
10436   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
10437     return Expr->getNumOperands();
10438   return 1;
10439 }
10440 
10441 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
10442   if (isa<SCEVConstant>(T))
10443     return nullptr;
10444 
10445   if (isa<SCEVUnknown>(T))
10446     return T;
10447 
10448   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
10449     SmallVector<const SCEV *, 2> Factors;
10450     for (const SCEV *Op : M->operands())
10451       if (!isa<SCEVConstant>(Op))
10452         Factors.push_back(Op);
10453 
10454     return SE.getMulExpr(Factors);
10455   }
10456 
10457   return T;
10458 }
10459 
10460 /// Return the size of an element read or written by Inst.
10461 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
10462   Type *Ty;
10463   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
10464     Ty = Store->getValueOperand()->getType();
10465   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
10466     Ty = Load->getType();
10467   else
10468     return nullptr;
10469 
10470   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
10471   return getSizeOfExpr(ETy, Ty);
10472 }
10473 
10474 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
10475                                           SmallVectorImpl<const SCEV *> &Sizes,
10476                                           const SCEV *ElementSize) {
10477   if (Terms.size() < 1 || !ElementSize)
10478     return;
10479 
10480   // Early return when Terms do not contain parameters: we do not delinearize
10481   // non parametric SCEVs.
10482   if (!containsParameters(Terms))
10483     return;
10484 
10485   DEBUG({
10486       dbgs() << "Terms:\n";
10487       for (const SCEV *T : Terms)
10488         dbgs() << *T << "\n";
10489     });
10490 
10491   // Remove duplicates.
10492   array_pod_sort(Terms.begin(), Terms.end());
10493   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
10494 
10495   // Put larger terms first.
10496   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
10497     return numberOfTerms(LHS) > numberOfTerms(RHS);
10498   });
10499 
10500   // Try to divide all terms by the element size. If term is not divisible by
10501   // element size, proceed with the original term.
10502   for (const SCEV *&Term : Terms) {
10503     const SCEV *Q, *R;
10504     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
10505     if (!Q->isZero())
10506       Term = Q;
10507   }
10508 
10509   SmallVector<const SCEV *, 4> NewTerms;
10510 
10511   // Remove constant factors.
10512   for (const SCEV *T : Terms)
10513     if (const SCEV *NewT = removeConstantFactors(*this, T))
10514       NewTerms.push_back(NewT);
10515 
10516   DEBUG({
10517       dbgs() << "Terms after sorting:\n";
10518       for (const SCEV *T : NewTerms)
10519         dbgs() << *T << "\n";
10520     });
10521 
10522   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
10523     Sizes.clear();
10524     return;
10525   }
10526 
10527   // The last element to be pushed into Sizes is the size of an element.
10528   Sizes.push_back(ElementSize);
10529 
10530   DEBUG({
10531       dbgs() << "Sizes:\n";
10532       for (const SCEV *S : Sizes)
10533         dbgs() << *S << "\n";
10534     });
10535 }
10536 
10537 void ScalarEvolution::computeAccessFunctions(
10538     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
10539     SmallVectorImpl<const SCEV *> &Sizes) {
10540   // Early exit in case this SCEV is not an affine multivariate function.
10541   if (Sizes.empty())
10542     return;
10543 
10544   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
10545     if (!AR->isAffine())
10546       return;
10547 
10548   const SCEV *Res = Expr;
10549   int Last = Sizes.size() - 1;
10550   for (int i = Last; i >= 0; i--) {
10551     const SCEV *Q, *R;
10552     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
10553 
10554     DEBUG({
10555         dbgs() << "Res: " << *Res << "\n";
10556         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
10557         dbgs() << "Res divided by Sizes[i]:\n";
10558         dbgs() << "Quotient: " << *Q << "\n";
10559         dbgs() << "Remainder: " << *R << "\n";
10560       });
10561 
10562     Res = Q;
10563 
10564     // Do not record the last subscript corresponding to the size of elements in
10565     // the array.
10566     if (i == Last) {
10567 
10568       // Bail out if the remainder is too complex.
10569       if (isa<SCEVAddRecExpr>(R)) {
10570         Subscripts.clear();
10571         Sizes.clear();
10572         return;
10573       }
10574 
10575       continue;
10576     }
10577 
10578     // Record the access function for the current subscript.
10579     Subscripts.push_back(R);
10580   }
10581 
10582   // Also push in last position the remainder of the last division: it will be
10583   // the access function of the innermost dimension.
10584   Subscripts.push_back(Res);
10585 
10586   std::reverse(Subscripts.begin(), Subscripts.end());
10587 
10588   DEBUG({
10589       dbgs() << "Subscripts:\n";
10590       for (const SCEV *S : Subscripts)
10591         dbgs() << *S << "\n";
10592     });
10593 }
10594 
10595 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
10596 /// sizes of an array access. Returns the remainder of the delinearization that
10597 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
10598 /// the multiples of SCEV coefficients: that is a pattern matching of sub
10599 /// expressions in the stride and base of a SCEV corresponding to the
10600 /// computation of a GCD (greatest common divisor) of base and stride.  When
10601 /// SCEV->delinearize fails, it returns the SCEV unchanged.
10602 ///
10603 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
10604 ///
10605 ///  void foo(long n, long m, long o, double A[n][m][o]) {
10606 ///
10607 ///    for (long i = 0; i < n; i++)
10608 ///      for (long j = 0; j < m; j++)
10609 ///        for (long k = 0; k < o; k++)
10610 ///          A[i][j][k] = 1.0;
10611 ///  }
10612 ///
10613 /// the delinearization input is the following AddRec SCEV:
10614 ///
10615 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
10616 ///
10617 /// From this SCEV, we are able to say that the base offset of the access is %A
10618 /// because it appears as an offset that does not divide any of the strides in
10619 /// the loops:
10620 ///
10621 ///  CHECK: Base offset: %A
10622 ///
10623 /// and then SCEV->delinearize determines the size of some of the dimensions of
10624 /// the array as these are the multiples by which the strides are happening:
10625 ///
10626 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
10627 ///
10628 /// Note that the outermost dimension remains of UnknownSize because there are
10629 /// no strides that would help identifying the size of the last dimension: when
10630 /// the array has been statically allocated, one could compute the size of that
10631 /// dimension by dividing the overall size of the array by the size of the known
10632 /// dimensions: %m * %o * 8.
10633 ///
10634 /// Finally delinearize provides the access functions for the array reference
10635 /// that does correspond to A[i][j][k] of the above C testcase:
10636 ///
10637 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
10638 ///
10639 /// The testcases are checking the output of a function pass:
10640 /// DelinearizationPass that walks through all loads and stores of a function
10641 /// asking for the SCEV of the memory access with respect to all enclosing
10642 /// loops, calling SCEV->delinearize on that and printing the results.
10643 void ScalarEvolution::delinearize(const SCEV *Expr,
10644                                  SmallVectorImpl<const SCEV *> &Subscripts,
10645                                  SmallVectorImpl<const SCEV *> &Sizes,
10646                                  const SCEV *ElementSize) {
10647   // First step: collect parametric terms.
10648   SmallVector<const SCEV *, 4> Terms;
10649   collectParametricTerms(Expr, Terms);
10650 
10651   if (Terms.empty())
10652     return;
10653 
10654   // Second step: find subscript sizes.
10655   findArrayDimensions(Terms, Sizes, ElementSize);
10656 
10657   if (Sizes.empty())
10658     return;
10659 
10660   // Third step: compute the access functions for each subscript.
10661   computeAccessFunctions(Expr, Subscripts, Sizes);
10662 
10663   if (Subscripts.empty())
10664     return;
10665 
10666   DEBUG({
10667       dbgs() << "succeeded to delinearize " << *Expr << "\n";
10668       dbgs() << "ArrayDecl[UnknownSize]";
10669       for (const SCEV *S : Sizes)
10670         dbgs() << "[" << *S << "]";
10671 
10672       dbgs() << "\nArrayRef";
10673       for (const SCEV *S : Subscripts)
10674         dbgs() << "[" << *S << "]";
10675       dbgs() << "\n";
10676     });
10677 }
10678 
10679 //===----------------------------------------------------------------------===//
10680 //                   SCEVCallbackVH Class Implementation
10681 //===----------------------------------------------------------------------===//
10682 
10683 void ScalarEvolution::SCEVCallbackVH::deleted() {
10684   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
10685   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
10686     SE->ConstantEvolutionLoopExitValue.erase(PN);
10687   SE->eraseValueFromMap(getValPtr());
10688   // this now dangles!
10689 }
10690 
10691 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
10692   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
10693 
10694   // Forget all the expressions associated with users of the old value,
10695   // so that future queries will recompute the expressions using the new
10696   // value.
10697   Value *Old = getValPtr();
10698   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
10699   SmallPtrSet<User *, 8> Visited;
10700   while (!Worklist.empty()) {
10701     User *U = Worklist.pop_back_val();
10702     // Deleting the Old value will cause this to dangle. Postpone
10703     // that until everything else is done.
10704     if (U == Old)
10705       continue;
10706     if (!Visited.insert(U).second)
10707       continue;
10708     if (PHINode *PN = dyn_cast<PHINode>(U))
10709       SE->ConstantEvolutionLoopExitValue.erase(PN);
10710     SE->eraseValueFromMap(U);
10711     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
10712   }
10713   // Delete the Old value.
10714   if (PHINode *PN = dyn_cast<PHINode>(Old))
10715     SE->ConstantEvolutionLoopExitValue.erase(PN);
10716   SE->eraseValueFromMap(Old);
10717   // this now dangles!
10718 }
10719 
10720 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
10721   : CallbackVH(V), SE(se) {}
10722 
10723 //===----------------------------------------------------------------------===//
10724 //                   ScalarEvolution Class Implementation
10725 //===----------------------------------------------------------------------===//
10726 
10727 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
10728                                  AssumptionCache &AC, DominatorTree &DT,
10729                                  LoopInfo &LI)
10730     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
10731       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
10732       LoopDispositions(64), BlockDispositions(64) {
10733   // To use guards for proving predicates, we need to scan every instruction in
10734   // relevant basic blocks, and not just terminators.  Doing this is a waste of
10735   // time if the IR does not actually contain any calls to
10736   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
10737   //
10738   // This pessimizes the case where a pass that preserves ScalarEvolution wants
10739   // to _add_ guards to the module when there weren't any before, and wants
10740   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
10741   // efficient in lieu of being smart in that rather obscure case.
10742 
10743   auto *GuardDecl = F.getParent()->getFunction(
10744       Intrinsic::getName(Intrinsic::experimental_guard));
10745   HasGuards = GuardDecl && !GuardDecl->use_empty();
10746 }
10747 
10748 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
10749     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
10750       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
10751       ValueExprMap(std::move(Arg.ValueExprMap)),
10752       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
10753       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
10754       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
10755       PredicatedBackedgeTakenCounts(
10756           std::move(Arg.PredicatedBackedgeTakenCounts)),
10757       ConstantEvolutionLoopExitValue(
10758           std::move(Arg.ConstantEvolutionLoopExitValue)),
10759       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
10760       LoopDispositions(std::move(Arg.LoopDispositions)),
10761       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
10762       BlockDispositions(std::move(Arg.BlockDispositions)),
10763       UnsignedRanges(std::move(Arg.UnsignedRanges)),
10764       SignedRanges(std::move(Arg.SignedRanges)),
10765       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
10766       UniquePreds(std::move(Arg.UniquePreds)),
10767       SCEVAllocator(std::move(Arg.SCEVAllocator)),
10768       LoopUsers(std::move(Arg.LoopUsers)),
10769       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
10770       FirstUnknown(Arg.FirstUnknown) {
10771   Arg.FirstUnknown = nullptr;
10772 }
10773 
10774 ScalarEvolution::~ScalarEvolution() {
10775   // Iterate through all the SCEVUnknown instances and call their
10776   // destructors, so that they release their references to their values.
10777   for (SCEVUnknown *U = FirstUnknown; U;) {
10778     SCEVUnknown *Tmp = U;
10779     U = U->Next;
10780     Tmp->~SCEVUnknown();
10781   }
10782   FirstUnknown = nullptr;
10783 
10784   ExprValueMap.clear();
10785   ValueExprMap.clear();
10786   HasRecMap.clear();
10787 
10788   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
10789   // that a loop had multiple computable exits.
10790   for (auto &BTCI : BackedgeTakenCounts)
10791     BTCI.second.clear();
10792   for (auto &BTCI : PredicatedBackedgeTakenCounts)
10793     BTCI.second.clear();
10794 
10795   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
10796   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
10797   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
10798 }
10799 
10800 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
10801   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
10802 }
10803 
10804 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
10805                           const Loop *L) {
10806   // Print all inner loops first
10807   for (Loop *I : *L)
10808     PrintLoopInfo(OS, SE, I);
10809 
10810   OS << "Loop ";
10811   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10812   OS << ": ";
10813 
10814   SmallVector<BasicBlock *, 8> ExitBlocks;
10815   L->getExitBlocks(ExitBlocks);
10816   if (ExitBlocks.size() != 1)
10817     OS << "<multiple exits> ";
10818 
10819   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
10820     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
10821   } else {
10822     OS << "Unpredictable backedge-taken count. ";
10823   }
10824 
10825   OS << "\n"
10826         "Loop ";
10827   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10828   OS << ": ";
10829 
10830   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
10831     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
10832     if (SE->isBackedgeTakenCountMaxOrZero(L))
10833       OS << ", actual taken count either this or zero.";
10834   } else {
10835     OS << "Unpredictable max backedge-taken count. ";
10836   }
10837 
10838   OS << "\n"
10839         "Loop ";
10840   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10841   OS << ": ";
10842 
10843   SCEVUnionPredicate Pred;
10844   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
10845   if (!isa<SCEVCouldNotCompute>(PBT)) {
10846     OS << "Predicated backedge-taken count is " << *PBT << "\n";
10847     OS << " Predicates:\n";
10848     Pred.print(OS, 4);
10849   } else {
10850     OS << "Unpredictable predicated backedge-taken count. ";
10851   }
10852   OS << "\n";
10853 
10854   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
10855     OS << "Loop ";
10856     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10857     OS << ": ";
10858     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
10859   }
10860 }
10861 
10862 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
10863   switch (LD) {
10864   case ScalarEvolution::LoopVariant:
10865     return "Variant";
10866   case ScalarEvolution::LoopInvariant:
10867     return "Invariant";
10868   case ScalarEvolution::LoopComputable:
10869     return "Computable";
10870   }
10871   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
10872 }
10873 
10874 void ScalarEvolution::print(raw_ostream &OS) const {
10875   // ScalarEvolution's implementation of the print method is to print
10876   // out SCEV values of all instructions that are interesting. Doing
10877   // this potentially causes it to create new SCEV objects though,
10878   // which technically conflicts with the const qualifier. This isn't
10879   // observable from outside the class though, so casting away the
10880   // const isn't dangerous.
10881   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
10882 
10883   OS << "Classifying expressions for: ";
10884   F.printAsOperand(OS, /*PrintType=*/false);
10885   OS << "\n";
10886   for (Instruction &I : instructions(F))
10887     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
10888       OS << I << '\n';
10889       OS << "  -->  ";
10890       const SCEV *SV = SE.getSCEV(&I);
10891       SV->print(OS);
10892       if (!isa<SCEVCouldNotCompute>(SV)) {
10893         OS << " U: ";
10894         SE.getUnsignedRange(SV).print(OS);
10895         OS << " S: ";
10896         SE.getSignedRange(SV).print(OS);
10897       }
10898 
10899       const Loop *L = LI.getLoopFor(I.getParent());
10900 
10901       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
10902       if (AtUse != SV) {
10903         OS << "  -->  ";
10904         AtUse->print(OS);
10905         if (!isa<SCEVCouldNotCompute>(AtUse)) {
10906           OS << " U: ";
10907           SE.getUnsignedRange(AtUse).print(OS);
10908           OS << " S: ";
10909           SE.getSignedRange(AtUse).print(OS);
10910         }
10911       }
10912 
10913       if (L) {
10914         OS << "\t\t" "Exits: ";
10915         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
10916         if (!SE.isLoopInvariant(ExitValue, L)) {
10917           OS << "<<Unknown>>";
10918         } else {
10919           OS << *ExitValue;
10920         }
10921 
10922         bool First = true;
10923         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
10924           if (First) {
10925             OS << "\t\t" "LoopDispositions: { ";
10926             First = false;
10927           } else {
10928             OS << ", ";
10929           }
10930 
10931           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10932           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
10933         }
10934 
10935         for (auto *InnerL : depth_first(L)) {
10936           if (InnerL == L)
10937             continue;
10938           if (First) {
10939             OS << "\t\t" "LoopDispositions: { ";
10940             First = false;
10941           } else {
10942             OS << ", ";
10943           }
10944 
10945           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10946           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
10947         }
10948 
10949         OS << " }";
10950       }
10951 
10952       OS << "\n";
10953     }
10954 
10955   OS << "Determining loop execution counts for: ";
10956   F.printAsOperand(OS, /*PrintType=*/false);
10957   OS << "\n";
10958   for (Loop *I : LI)
10959     PrintLoopInfo(OS, &SE, I);
10960 }
10961 
10962 ScalarEvolution::LoopDisposition
10963 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
10964   auto &Values = LoopDispositions[S];
10965   for (auto &V : Values) {
10966     if (V.getPointer() == L)
10967       return V.getInt();
10968   }
10969   Values.emplace_back(L, LoopVariant);
10970   LoopDisposition D = computeLoopDisposition(S, L);
10971   auto &Values2 = LoopDispositions[S];
10972   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
10973     if (V.getPointer() == L) {
10974       V.setInt(D);
10975       break;
10976     }
10977   }
10978   return D;
10979 }
10980 
10981 ScalarEvolution::LoopDisposition
10982 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
10983   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
10984   case scConstant:
10985     return LoopInvariant;
10986   case scTruncate:
10987   case scZeroExtend:
10988   case scSignExtend:
10989     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
10990   case scAddRecExpr: {
10991     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
10992 
10993     // If L is the addrec's loop, it's computable.
10994     if (AR->getLoop() == L)
10995       return LoopComputable;
10996 
10997     // Add recurrences are never invariant in the function-body (null loop).
10998     if (!L)
10999       return LoopVariant;
11000 
11001     // Everything that is not defined at loop entry is variant.
11002     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11003       return LoopVariant;
11004     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11005            " dominate the contained loop's header?");
11006 
11007     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11008     if (AR->getLoop()->contains(L))
11009       return LoopInvariant;
11010 
11011     // This recurrence is variant w.r.t. L if any of its operands
11012     // are variant.
11013     for (auto *Op : AR->operands())
11014       if (!isLoopInvariant(Op, L))
11015         return LoopVariant;
11016 
11017     // Otherwise it's loop-invariant.
11018     return LoopInvariant;
11019   }
11020   case scAddExpr:
11021   case scMulExpr:
11022   case scUMaxExpr:
11023   case scSMaxExpr: {
11024     bool HasVarying = false;
11025     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11026       LoopDisposition D = getLoopDisposition(Op, L);
11027       if (D == LoopVariant)
11028         return LoopVariant;
11029       if (D == LoopComputable)
11030         HasVarying = true;
11031     }
11032     return HasVarying ? LoopComputable : LoopInvariant;
11033   }
11034   case scUDivExpr: {
11035     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11036     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11037     if (LD == LoopVariant)
11038       return LoopVariant;
11039     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11040     if (RD == LoopVariant)
11041       return LoopVariant;
11042     return (LD == LoopInvariant && RD == LoopInvariant) ?
11043            LoopInvariant : LoopComputable;
11044   }
11045   case scUnknown:
11046     // All non-instruction values are loop invariant.  All instructions are loop
11047     // invariant if they are not contained in the specified loop.
11048     // Instructions are never considered invariant in the function body
11049     // (null loop) because they are defined within the "loop".
11050     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11051       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11052     return LoopInvariant;
11053   case scCouldNotCompute:
11054     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11055   }
11056   llvm_unreachable("Unknown SCEV kind!");
11057 }
11058 
11059 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11060   return getLoopDisposition(S, L) == LoopInvariant;
11061 }
11062 
11063 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11064   return getLoopDisposition(S, L) == LoopComputable;
11065 }
11066 
11067 ScalarEvolution::BlockDisposition
11068 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11069   auto &Values = BlockDispositions[S];
11070   for (auto &V : Values) {
11071     if (V.getPointer() == BB)
11072       return V.getInt();
11073   }
11074   Values.emplace_back(BB, DoesNotDominateBlock);
11075   BlockDisposition D = computeBlockDisposition(S, BB);
11076   auto &Values2 = BlockDispositions[S];
11077   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11078     if (V.getPointer() == BB) {
11079       V.setInt(D);
11080       break;
11081     }
11082   }
11083   return D;
11084 }
11085 
11086 ScalarEvolution::BlockDisposition
11087 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11088   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11089   case scConstant:
11090     return ProperlyDominatesBlock;
11091   case scTruncate:
11092   case scZeroExtend:
11093   case scSignExtend:
11094     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11095   case scAddRecExpr: {
11096     // This uses a "dominates" query instead of "properly dominates" query
11097     // to test for proper dominance too, because the instruction which
11098     // produces the addrec's value is a PHI, and a PHI effectively properly
11099     // dominates its entire containing block.
11100     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11101     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11102       return DoesNotDominateBlock;
11103 
11104     // Fall through into SCEVNAryExpr handling.
11105     LLVM_FALLTHROUGH;
11106   }
11107   case scAddExpr:
11108   case scMulExpr:
11109   case scUMaxExpr:
11110   case scSMaxExpr: {
11111     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11112     bool Proper = true;
11113     for (const SCEV *NAryOp : NAry->operands()) {
11114       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11115       if (D == DoesNotDominateBlock)
11116         return DoesNotDominateBlock;
11117       if (D == DominatesBlock)
11118         Proper = false;
11119     }
11120     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11121   }
11122   case scUDivExpr: {
11123     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11124     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11125     BlockDisposition LD = getBlockDisposition(LHS, BB);
11126     if (LD == DoesNotDominateBlock)
11127       return DoesNotDominateBlock;
11128     BlockDisposition RD = getBlockDisposition(RHS, BB);
11129     if (RD == DoesNotDominateBlock)
11130       return DoesNotDominateBlock;
11131     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11132       ProperlyDominatesBlock : DominatesBlock;
11133   }
11134   case scUnknown:
11135     if (Instruction *I =
11136           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11137       if (I->getParent() == BB)
11138         return DominatesBlock;
11139       if (DT.properlyDominates(I->getParent(), BB))
11140         return ProperlyDominatesBlock;
11141       return DoesNotDominateBlock;
11142     }
11143     return ProperlyDominatesBlock;
11144   case scCouldNotCompute:
11145     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11146   }
11147   llvm_unreachable("Unknown SCEV kind!");
11148 }
11149 
11150 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11151   return getBlockDisposition(S, BB) >= DominatesBlock;
11152 }
11153 
11154 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11155   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11156 }
11157 
11158 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11159   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11160 }
11161 
11162 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11163   auto IsS = [&](const SCEV *X) { return S == X; };
11164   auto ContainsS = [&](const SCEV *X) {
11165     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11166   };
11167   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11168 }
11169 
11170 void
11171 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11172   ValuesAtScopes.erase(S);
11173   LoopDispositions.erase(S);
11174   BlockDispositions.erase(S);
11175   UnsignedRanges.erase(S);
11176   SignedRanges.erase(S);
11177   ExprValueMap.erase(S);
11178   HasRecMap.erase(S);
11179   MinTrailingZerosCache.erase(S);
11180 
11181   for (auto I = PredicatedSCEVRewrites.begin();
11182        I != PredicatedSCEVRewrites.end();) {
11183     std::pair<const SCEV *, const Loop *> Entry = I->first;
11184     if (Entry.first == S)
11185       PredicatedSCEVRewrites.erase(I++);
11186     else
11187       ++I;
11188   }
11189 
11190   auto RemoveSCEVFromBackedgeMap =
11191       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11192         for (auto I = Map.begin(), E = Map.end(); I != E;) {
11193           BackedgeTakenInfo &BEInfo = I->second;
11194           if (BEInfo.hasOperand(S, this)) {
11195             BEInfo.clear();
11196             Map.erase(I++);
11197           } else
11198             ++I;
11199         }
11200       };
11201 
11202   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11203   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11204 }
11205 
11206 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11207   struct FindUsedLoops {
11208     SmallPtrSet<const Loop *, 8> LoopsUsed;
11209     bool follow(const SCEV *S) {
11210       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11211         LoopsUsed.insert(AR->getLoop());
11212       return true;
11213     }
11214 
11215     bool isDone() const { return false; }
11216   };
11217 
11218   FindUsedLoops F;
11219   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11220 
11221   for (auto *L : F.LoopsUsed)
11222     LoopUsers[L].push_back(S);
11223 }
11224 
11225 void ScalarEvolution::verify() const {
11226   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11227   ScalarEvolution SE2(F, TLI, AC, DT, LI);
11228 
11229   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11230 
11231   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11232   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11233     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11234 
11235     const SCEV *visitConstant(const SCEVConstant *Constant) {
11236       return SE.getConstant(Constant->getAPInt());
11237     }
11238 
11239     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11240       return SE.getUnknown(Expr->getValue());
11241     }
11242 
11243     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11244       return SE.getCouldNotCompute();
11245     }
11246   };
11247 
11248   SCEVMapper SCM(SE2);
11249 
11250   while (!LoopStack.empty()) {
11251     auto *L = LoopStack.pop_back_val();
11252     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11253 
11254     auto *CurBECount = SCM.visit(
11255         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11256     auto *NewBECount = SE2.getBackedgeTakenCount(L);
11257 
11258     if (CurBECount == SE2.getCouldNotCompute() ||
11259         NewBECount == SE2.getCouldNotCompute()) {
11260       // NB! This situation is legal, but is very suspicious -- whatever pass
11261       // change the loop to make a trip count go from could not compute to
11262       // computable or vice-versa *should have* invalidated SCEV.  However, we
11263       // choose not to assert here (for now) since we don't want false
11264       // positives.
11265       continue;
11266     }
11267 
11268     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11269       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11270       // not propagate undef aggressively).  This means we can (and do) fail
11271       // verification in cases where a transform makes the trip count of a loop
11272       // go from "undef" to "undef+1" (say).  The transform is fine, since in
11273       // both cases the loop iterates "undef" times, but SCEV thinks we
11274       // increased the trip count of the loop by 1 incorrectly.
11275       continue;
11276     }
11277 
11278     if (SE.getTypeSizeInBits(CurBECount->getType()) >
11279         SE.getTypeSizeInBits(NewBECount->getType()))
11280       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11281     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11282              SE.getTypeSizeInBits(NewBECount->getType()))
11283       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11284 
11285     auto *ConstantDelta =
11286         dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount));
11287 
11288     if (ConstantDelta && ConstantDelta->getAPInt() != 0) {
11289       dbgs() << "Trip Count Changed!\n";
11290       dbgs() << "Old: " << *CurBECount << "\n";
11291       dbgs() << "New: " << *NewBECount << "\n";
11292       dbgs() << "Delta: " << *ConstantDelta << "\n";
11293       std::abort();
11294     }
11295   }
11296 }
11297 
11298 bool ScalarEvolution::invalidate(
11299     Function &F, const PreservedAnalyses &PA,
11300     FunctionAnalysisManager::Invalidator &Inv) {
11301   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11302   // of its dependencies is invalidated.
11303   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11304   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11305          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11306          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11307          Inv.invalidate<LoopAnalysis>(F, PA);
11308 }
11309 
11310 AnalysisKey ScalarEvolutionAnalysis::Key;
11311 
11312 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11313                                              FunctionAnalysisManager &AM) {
11314   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11315                          AM.getResult<AssumptionAnalysis>(F),
11316                          AM.getResult<DominatorTreeAnalysis>(F),
11317                          AM.getResult<LoopAnalysis>(F));
11318 }
11319 
11320 PreservedAnalyses
11321 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11322   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11323   return PreservedAnalyses::all();
11324 }
11325 
11326 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11327                       "Scalar Evolution Analysis", false, true)
11328 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11329 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11330 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11331 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11332 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11333                     "Scalar Evolution Analysis", false, true)
11334 
11335 char ScalarEvolutionWrapperPass::ID = 0;
11336 
11337 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11338   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11339 }
11340 
11341 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11342   SE.reset(new ScalarEvolution(
11343       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
11344       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11345       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11346       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11347   return false;
11348 }
11349 
11350 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
11351 
11352 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
11353   SE->print(OS);
11354 }
11355 
11356 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
11357   if (!VerifySCEV)
11358     return;
11359 
11360   SE->verify();
11361 }
11362 
11363 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
11364   AU.setPreservesAll();
11365   AU.addRequiredTransitive<AssumptionCacheTracker>();
11366   AU.addRequiredTransitive<LoopInfoWrapperPass>();
11367   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
11368   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
11369 }
11370 
11371 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
11372                                                         const SCEV *RHS) {
11373   FoldingSetNodeID ID;
11374   assert(LHS->getType() == RHS->getType() &&
11375          "Type mismatch between LHS and RHS");
11376   // Unique this node based on the arguments
11377   ID.AddInteger(SCEVPredicate::P_Equal);
11378   ID.AddPointer(LHS);
11379   ID.AddPointer(RHS);
11380   void *IP = nullptr;
11381   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
11382     return S;
11383   SCEVEqualPredicate *Eq = new (SCEVAllocator)
11384       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
11385   UniquePreds.InsertNode(Eq, IP);
11386   return Eq;
11387 }
11388 
11389 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
11390     const SCEVAddRecExpr *AR,
11391     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
11392   FoldingSetNodeID ID;
11393   // Unique this node based on the arguments
11394   ID.AddInteger(SCEVPredicate::P_Wrap);
11395   ID.AddPointer(AR);
11396   ID.AddInteger(AddedFlags);
11397   void *IP = nullptr;
11398   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
11399     return S;
11400   auto *OF = new (SCEVAllocator)
11401       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
11402   UniquePreds.InsertNode(OF, IP);
11403   return OF;
11404 }
11405 
11406 namespace {
11407 
11408 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
11409 public:
11410 
11411   /// Rewrites \p S in the context of a loop L and the SCEV predication
11412   /// infrastructure.
11413   ///
11414   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
11415   /// equivalences present in \p Pred.
11416   ///
11417   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
11418   /// \p NewPreds such that the result will be an AddRecExpr.
11419   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
11420                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
11421                              SCEVUnionPredicate *Pred) {
11422     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
11423     return Rewriter.visit(S);
11424   }
11425 
11426   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11427     if (Pred) {
11428       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
11429       for (auto *Pred : ExprPreds)
11430         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
11431           if (IPred->getLHS() == Expr)
11432             return IPred->getRHS();
11433     }
11434     return convertToAddRecWithPreds(Expr);
11435   }
11436 
11437   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
11438     const SCEV *Operand = visit(Expr->getOperand());
11439     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
11440     if (AR && AR->getLoop() == L && AR->isAffine()) {
11441       // This couldn't be folded because the operand didn't have the nuw
11442       // flag. Add the nusw flag as an assumption that we could make.
11443       const SCEV *Step = AR->getStepRecurrence(SE);
11444       Type *Ty = Expr->getType();
11445       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
11446         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
11447                                 SE.getSignExtendExpr(Step, Ty), L,
11448                                 AR->getNoWrapFlags());
11449     }
11450     return SE.getZeroExtendExpr(Operand, Expr->getType());
11451   }
11452 
11453   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
11454     const SCEV *Operand = visit(Expr->getOperand());
11455     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
11456     if (AR && AR->getLoop() == L && AR->isAffine()) {
11457       // This couldn't be folded because the operand didn't have the nsw
11458       // flag. Add the nssw flag as an assumption that we could make.
11459       const SCEV *Step = AR->getStepRecurrence(SE);
11460       Type *Ty = Expr->getType();
11461       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
11462         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
11463                                 SE.getSignExtendExpr(Step, Ty), L,
11464                                 AR->getNoWrapFlags());
11465     }
11466     return SE.getSignExtendExpr(Operand, Expr->getType());
11467   }
11468 
11469 private:
11470   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
11471                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
11472                         SCEVUnionPredicate *Pred)
11473       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
11474 
11475   bool addOverflowAssumption(const SCEVPredicate *P) {
11476     if (!NewPreds) {
11477       // Check if we've already made this assumption.
11478       return Pred && Pred->implies(P);
11479     }
11480     NewPreds->insert(P);
11481     return true;
11482   }
11483 
11484   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
11485                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
11486     auto *A = SE.getWrapPredicate(AR, AddedFlags);
11487     return addOverflowAssumption(A);
11488   }
11489 
11490   // If \p Expr represents a PHINode, we try to see if it can be represented
11491   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
11492   // to add this predicate as a runtime overflow check, we return the AddRec.
11493   // If \p Expr does not meet these conditions (is not a PHI node, or we
11494   // couldn't create an AddRec for it, or couldn't add the predicate), we just
11495   // return \p Expr.
11496   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
11497     if (!isa<PHINode>(Expr->getValue()))
11498       return Expr;
11499     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
11500     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
11501     if (!PredicatedRewrite)
11502       return Expr;
11503     for (auto *P : PredicatedRewrite->second){
11504       if (!addOverflowAssumption(P))
11505         return Expr;
11506     }
11507     return PredicatedRewrite->first;
11508   }
11509 
11510   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
11511   SCEVUnionPredicate *Pred;
11512   const Loop *L;
11513 };
11514 
11515 } // end anonymous namespace
11516 
11517 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
11518                                                    SCEVUnionPredicate &Preds) {
11519   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
11520 }
11521 
11522 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
11523     const SCEV *S, const Loop *L,
11524     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
11525   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
11526   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
11527   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
11528 
11529   if (!AddRec)
11530     return nullptr;
11531 
11532   // Since the transformation was successful, we can now transfer the SCEV
11533   // predicates.
11534   for (auto *P : TransformPreds)
11535     Preds.insert(P);
11536 
11537   return AddRec;
11538 }
11539 
11540 /// SCEV predicates
11541 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
11542                              SCEVPredicateKind Kind)
11543     : FastID(ID), Kind(Kind) {}
11544 
11545 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
11546                                        const SCEV *LHS, const SCEV *RHS)
11547     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
11548   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
11549   assert(LHS != RHS && "LHS and RHS are the same SCEV");
11550 }
11551 
11552 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
11553   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
11554 
11555   if (!Op)
11556     return false;
11557 
11558   return Op->LHS == LHS && Op->RHS == RHS;
11559 }
11560 
11561 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
11562 
11563 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
11564 
11565 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
11566   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
11567 }
11568 
11569 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
11570                                      const SCEVAddRecExpr *AR,
11571                                      IncrementWrapFlags Flags)
11572     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
11573 
11574 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
11575 
11576 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
11577   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
11578 
11579   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
11580 }
11581 
11582 bool SCEVWrapPredicate::isAlwaysTrue() const {
11583   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
11584   IncrementWrapFlags IFlags = Flags;
11585 
11586   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
11587     IFlags = clearFlags(IFlags, IncrementNSSW);
11588 
11589   return IFlags == IncrementAnyWrap;
11590 }
11591 
11592 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
11593   OS.indent(Depth) << *getExpr() << " Added Flags: ";
11594   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
11595     OS << "<nusw>";
11596   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
11597     OS << "<nssw>";
11598   OS << "\n";
11599 }
11600 
11601 SCEVWrapPredicate::IncrementWrapFlags
11602 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
11603                                    ScalarEvolution &SE) {
11604   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
11605   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
11606 
11607   // We can safely transfer the NSW flag as NSSW.
11608   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
11609     ImpliedFlags = IncrementNSSW;
11610 
11611   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
11612     // If the increment is positive, the SCEV NUW flag will also imply the
11613     // WrapPredicate NUSW flag.
11614     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
11615       if (Step->getValue()->getValue().isNonNegative())
11616         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
11617   }
11618 
11619   return ImpliedFlags;
11620 }
11621 
11622 /// Union predicates don't get cached so create a dummy set ID for it.
11623 SCEVUnionPredicate::SCEVUnionPredicate()
11624     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
11625 
11626 bool SCEVUnionPredicate::isAlwaysTrue() const {
11627   return all_of(Preds,
11628                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
11629 }
11630 
11631 ArrayRef<const SCEVPredicate *>
11632 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
11633   auto I = SCEVToPreds.find(Expr);
11634   if (I == SCEVToPreds.end())
11635     return ArrayRef<const SCEVPredicate *>();
11636   return I->second;
11637 }
11638 
11639 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
11640   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
11641     return all_of(Set->Preds,
11642                   [this](const SCEVPredicate *I) { return this->implies(I); });
11643 
11644   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
11645   if (ScevPredsIt == SCEVToPreds.end())
11646     return false;
11647   auto &SCEVPreds = ScevPredsIt->second;
11648 
11649   return any_of(SCEVPreds,
11650                 [N](const SCEVPredicate *I) { return I->implies(N); });
11651 }
11652 
11653 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
11654 
11655 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
11656   for (auto Pred : Preds)
11657     Pred->print(OS, Depth);
11658 }
11659 
11660 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
11661   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
11662     for (auto Pred : Set->Preds)
11663       add(Pred);
11664     return;
11665   }
11666 
11667   if (implies(N))
11668     return;
11669 
11670   const SCEV *Key = N->getExpr();
11671   assert(Key && "Only SCEVUnionPredicate doesn't have an "
11672                 " associated expression!");
11673 
11674   SCEVToPreds[Key].push_back(N);
11675   Preds.push_back(N);
11676 }
11677 
11678 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
11679                                                      Loop &L)
11680     : SE(SE), L(L) {}
11681 
11682 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
11683   const SCEV *Expr = SE.getSCEV(V);
11684   RewriteEntry &Entry = RewriteMap[Expr];
11685 
11686   // If we already have an entry and the version matches, return it.
11687   if (Entry.second && Generation == Entry.first)
11688     return Entry.second;
11689 
11690   // We found an entry but it's stale. Rewrite the stale entry
11691   // according to the current predicate.
11692   if (Entry.second)
11693     Expr = Entry.second;
11694 
11695   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
11696   Entry = {Generation, NewSCEV};
11697 
11698   return NewSCEV;
11699 }
11700 
11701 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
11702   if (!BackedgeCount) {
11703     SCEVUnionPredicate BackedgePred;
11704     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
11705     addPredicate(BackedgePred);
11706   }
11707   return BackedgeCount;
11708 }
11709 
11710 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
11711   if (Preds.implies(&Pred))
11712     return;
11713   Preds.add(&Pred);
11714   updateGeneration();
11715 }
11716 
11717 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
11718   return Preds;
11719 }
11720 
11721 void PredicatedScalarEvolution::updateGeneration() {
11722   // If the generation number wrapped recompute everything.
11723   if (++Generation == 0) {
11724     for (auto &II : RewriteMap) {
11725       const SCEV *Rewritten = II.second.second;
11726       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
11727     }
11728   }
11729 }
11730 
11731 void PredicatedScalarEvolution::setNoOverflow(
11732     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
11733   const SCEV *Expr = getSCEV(V);
11734   const auto *AR = cast<SCEVAddRecExpr>(Expr);
11735 
11736   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
11737 
11738   // Clear the statically implied flags.
11739   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
11740   addPredicate(*SE.getWrapPredicate(AR, Flags));
11741 
11742   auto II = FlagsMap.insert({V, Flags});
11743   if (!II.second)
11744     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
11745 }
11746 
11747 bool PredicatedScalarEvolution::hasNoOverflow(
11748     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
11749   const SCEV *Expr = getSCEV(V);
11750   const auto *AR = cast<SCEVAddRecExpr>(Expr);
11751 
11752   Flags = SCEVWrapPredicate::clearFlags(
11753       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
11754 
11755   auto II = FlagsMap.find(V);
11756 
11757   if (II != FlagsMap.end())
11758     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
11759 
11760   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
11761 }
11762 
11763 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
11764   const SCEV *Expr = this->getSCEV(V);
11765   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
11766   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
11767 
11768   if (!New)
11769     return nullptr;
11770 
11771   for (auto *P : NewPreds)
11772     Preds.add(P);
11773 
11774   updateGeneration();
11775   RewriteMap[SE.getSCEV(V)] = {Generation, New};
11776   return New;
11777 }
11778 
11779 PredicatedScalarEvolution::PredicatedScalarEvolution(
11780     const PredicatedScalarEvolution &Init)
11781     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
11782       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
11783   for (const auto &I : Init.FlagsMap)
11784     FlagsMap.insert(I);
11785 }
11786 
11787 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
11788   // For each block.
11789   for (auto *BB : L.getBlocks())
11790     for (auto &I : *BB) {
11791       if (!SE.isSCEVable(I.getType()))
11792         continue;
11793 
11794       auto *Expr = SE.getSCEV(&I);
11795       auto II = RewriteMap.find(Expr);
11796 
11797       if (II == RewriteMap.end())
11798         continue;
11799 
11800       // Don't print things that are not interesting.
11801       if (II->second.second == Expr)
11802         continue;
11803 
11804       OS.indent(Depth) << "[PSE]" << I << ":\n";
11805       OS.indent(Depth + 2) << *Expr << "\n";
11806       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
11807     }
11808 }
11809