1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Assembly/Writer.h" 71 #include "llvm/Transforms/Scalar.h" 72 #include "llvm/Support/CFG.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/ConstantRange.h" 76 #include "llvm/Support/InstIterator.h" 77 #include "llvm/Support/ManagedStatic.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/Streams.h" 80 #include "llvm/ADT/Statistic.h" 81 #include <ostream> 82 #include <algorithm> 83 #include <cmath> 84 using namespace llvm; 85 86 STATISTIC(NumArrayLenItCounts, 87 "Number of trip counts computed with array length"); 88 STATISTIC(NumTripCountsComputed, 89 "Number of loops with predictable loop counts"); 90 STATISTIC(NumTripCountsNotComputed, 91 "Number of loops without predictable loop counts"); 92 STATISTIC(NumBruteForceTripCountsComputed, 93 "Number of loops with trip counts computed by force"); 94 95 static cl::opt<unsigned> 96 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 97 cl::desc("Maximum number of iterations SCEV will " 98 "symbolically execute a constant derived loop"), 99 cl::init(100)); 100 101 static RegisterPass<ScalarEvolution> 102 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 103 char ScalarEvolution::ID = 0; 104 105 //===----------------------------------------------------------------------===// 106 // SCEV class definitions 107 //===----------------------------------------------------------------------===// 108 109 //===----------------------------------------------------------------------===// 110 // Implementation of the SCEV class. 111 // 112 SCEV::~SCEV() {} 113 void SCEV::dump() const { 114 print(cerr); 115 cerr << '\n'; 116 } 117 118 uint32_t SCEV::getBitWidth() const { 119 if (const IntegerType* ITy = dyn_cast<IntegerType>(getType())) 120 return ITy->getBitWidth(); 121 return 0; 122 } 123 124 bool SCEV::isZero() const { 125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 126 return SC->getValue()->isZero(); 127 return false; 128 } 129 130 131 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 132 133 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 134 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 135 return false; 136 } 137 138 const Type *SCEVCouldNotCompute::getType() const { 139 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 140 return 0; 141 } 142 143 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 144 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 145 return false; 146 } 147 148 SCEVHandle SCEVCouldNotCompute:: 149 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 150 const SCEVHandle &Conc, 151 ScalarEvolution &SE) const { 152 return this; 153 } 154 155 void SCEVCouldNotCompute::print(std::ostream &OS) const { 156 OS << "***COULDNOTCOMPUTE***"; 157 } 158 159 bool SCEVCouldNotCompute::classof(const SCEV *S) { 160 return S->getSCEVType() == scCouldNotCompute; 161 } 162 163 164 // SCEVConstants - Only allow the creation of one SCEVConstant for any 165 // particular value. Don't use a SCEVHandle here, or else the object will 166 // never be deleted! 167 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 168 169 170 SCEVConstant::~SCEVConstant() { 171 SCEVConstants->erase(V); 172 } 173 174 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 175 SCEVConstant *&R = (*SCEVConstants)[V]; 176 if (R == 0) R = new SCEVConstant(V); 177 return R; 178 } 179 180 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 181 return getConstant(ConstantInt::get(Val)); 182 } 183 184 const Type *SCEVConstant::getType() const { return V->getType(); } 185 186 void SCEVConstant::print(std::ostream &OS) const { 187 WriteAsOperand(OS, V, false); 188 } 189 190 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 191 // particular input. Don't use a SCEVHandle here, or else the object will 192 // never be deleted! 193 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 194 SCEVTruncateExpr*> > SCEVTruncates; 195 196 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 197 : SCEV(scTruncate), Op(op), Ty(ty) { 198 assert(Op->getType()->isInteger() && Ty->isInteger() && 199 "Cannot truncate non-integer value!"); 200 assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits() 201 && "This is not a truncating conversion!"); 202 } 203 204 SCEVTruncateExpr::~SCEVTruncateExpr() { 205 SCEVTruncates->erase(std::make_pair(Op, Ty)); 206 } 207 208 void SCEVTruncateExpr::print(std::ostream &OS) const { 209 OS << "(truncate " << *Op << " to " << *Ty << ")"; 210 } 211 212 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 213 // particular input. Don't use a SCEVHandle here, or else the object will never 214 // be deleted! 215 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 216 SCEVZeroExtendExpr*> > SCEVZeroExtends; 217 218 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 219 : SCEV(scZeroExtend), Op(op), Ty(ty) { 220 assert(Op->getType()->isInteger() && Ty->isInteger() && 221 "Cannot zero extend non-integer value!"); 222 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 223 && "This is not an extending conversion!"); 224 } 225 226 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 227 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 228 } 229 230 void SCEVZeroExtendExpr::print(std::ostream &OS) const { 231 OS << "(zeroextend " << *Op << " to " << *Ty << ")"; 232 } 233 234 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 235 // particular input. Don't use a SCEVHandle here, or else the object will never 236 // be deleted! 237 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 238 SCEVSignExtendExpr*> > SCEVSignExtends; 239 240 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 241 : SCEV(scSignExtend), Op(op), Ty(ty) { 242 assert(Op->getType()->isInteger() && Ty->isInteger() && 243 "Cannot sign extend non-integer value!"); 244 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 245 && "This is not an extending conversion!"); 246 } 247 248 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 249 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 250 } 251 252 void SCEVSignExtendExpr::print(std::ostream &OS) const { 253 OS << "(signextend " << *Op << " to " << *Ty << ")"; 254 } 255 256 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 257 // particular input. Don't use a SCEVHandle here, or else the object will never 258 // be deleted! 259 static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >, 260 SCEVCommutativeExpr*> > SCEVCommExprs; 261 262 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 263 SCEVCommExprs->erase(std::make_pair(getSCEVType(), 264 std::vector<SCEV*>(Operands.begin(), 265 Operands.end()))); 266 } 267 268 void SCEVCommutativeExpr::print(std::ostream &OS) const { 269 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 270 const char *OpStr = getOperationStr(); 271 OS << "(" << *Operands[0]; 272 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 273 OS << OpStr << *Operands[i]; 274 OS << ")"; 275 } 276 277 SCEVHandle SCEVCommutativeExpr:: 278 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 279 const SCEVHandle &Conc, 280 ScalarEvolution &SE) const { 281 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 282 SCEVHandle H = 283 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 284 if (H != getOperand(i)) { 285 std::vector<SCEVHandle> NewOps; 286 NewOps.reserve(getNumOperands()); 287 for (unsigned j = 0; j != i; ++j) 288 NewOps.push_back(getOperand(j)); 289 NewOps.push_back(H); 290 for (++i; i != e; ++i) 291 NewOps.push_back(getOperand(i)-> 292 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 293 294 if (isa<SCEVAddExpr>(this)) 295 return SE.getAddExpr(NewOps); 296 else if (isa<SCEVMulExpr>(this)) 297 return SE.getMulExpr(NewOps); 298 else if (isa<SCEVSMaxExpr>(this)) 299 return SE.getSMaxExpr(NewOps); 300 else if (isa<SCEVUMaxExpr>(this)) 301 return SE.getUMaxExpr(NewOps); 302 else 303 assert(0 && "Unknown commutative expr!"); 304 } 305 } 306 return this; 307 } 308 309 310 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 311 // input. Don't use a SCEVHandle here, or else the object will never be 312 // deleted! 313 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 314 SCEVUDivExpr*> > SCEVUDivs; 315 316 SCEVUDivExpr::~SCEVUDivExpr() { 317 SCEVUDivs->erase(std::make_pair(LHS, RHS)); 318 } 319 320 void SCEVUDivExpr::print(std::ostream &OS) const { 321 OS << "(" << *LHS << " /u " << *RHS << ")"; 322 } 323 324 const Type *SCEVUDivExpr::getType() const { 325 return LHS->getType(); 326 } 327 328 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 329 // particular input. Don't use a SCEVHandle here, or else the object will never 330 // be deleted! 331 static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >, 332 SCEVAddRecExpr*> > SCEVAddRecExprs; 333 334 SCEVAddRecExpr::~SCEVAddRecExpr() { 335 SCEVAddRecExprs->erase(std::make_pair(L, 336 std::vector<SCEV*>(Operands.begin(), 337 Operands.end()))); 338 } 339 340 SCEVHandle SCEVAddRecExpr:: 341 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 342 const SCEVHandle &Conc, 343 ScalarEvolution &SE) const { 344 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 345 SCEVHandle H = 346 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 347 if (H != getOperand(i)) { 348 std::vector<SCEVHandle> NewOps; 349 NewOps.reserve(getNumOperands()); 350 for (unsigned j = 0; j != i; ++j) 351 NewOps.push_back(getOperand(j)); 352 NewOps.push_back(H); 353 for (++i; i != e; ++i) 354 NewOps.push_back(getOperand(i)-> 355 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 356 357 return SE.getAddRecExpr(NewOps, L); 358 } 359 } 360 return this; 361 } 362 363 364 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 365 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 366 // contain L and if the start is invariant. 367 return !QueryLoop->contains(L->getHeader()) && 368 getOperand(0)->isLoopInvariant(QueryLoop); 369 } 370 371 372 void SCEVAddRecExpr::print(std::ostream &OS) const { 373 OS << "{" << *Operands[0]; 374 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 375 OS << ",+," << *Operands[i]; 376 OS << "}<" << L->getHeader()->getName() + ">"; 377 } 378 379 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 380 // value. Don't use a SCEVHandle here, or else the object will never be 381 // deleted! 382 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 383 384 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 385 386 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 387 // All non-instruction values are loop invariant. All instructions are loop 388 // invariant if they are not contained in the specified loop. 389 if (Instruction *I = dyn_cast<Instruction>(V)) 390 return !L->contains(I->getParent()); 391 return true; 392 } 393 394 const Type *SCEVUnknown::getType() const { 395 return V->getType(); 396 } 397 398 void SCEVUnknown::print(std::ostream &OS) const { 399 WriteAsOperand(OS, V, false); 400 } 401 402 //===----------------------------------------------------------------------===// 403 // SCEV Utilities 404 //===----------------------------------------------------------------------===// 405 406 namespace { 407 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 408 /// than the complexity of the RHS. This comparator is used to canonicalize 409 /// expressions. 410 struct VISIBILITY_HIDDEN SCEVComplexityCompare { 411 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 412 return LHS->getSCEVType() < RHS->getSCEVType(); 413 } 414 }; 415 } 416 417 /// GroupByComplexity - Given a list of SCEV objects, order them by their 418 /// complexity, and group objects of the same complexity together by value. 419 /// When this routine is finished, we know that any duplicates in the vector are 420 /// consecutive and that complexity is monotonically increasing. 421 /// 422 /// Note that we go take special precautions to ensure that we get determinstic 423 /// results from this routine. In other words, we don't want the results of 424 /// this to depend on where the addresses of various SCEV objects happened to 425 /// land in memory. 426 /// 427 static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { 428 if (Ops.size() < 2) return; // Noop 429 if (Ops.size() == 2) { 430 // This is the common case, which also happens to be trivially simple. 431 // Special case it. 432 if (SCEVComplexityCompare()(Ops[1], Ops[0])) 433 std::swap(Ops[0], Ops[1]); 434 return; 435 } 436 437 // Do the rough sort by complexity. 438 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); 439 440 // Now that we are sorted by complexity, group elements of the same 441 // complexity. Note that this is, at worst, N^2, but the vector is likely to 442 // be extremely short in practice. Note that we take this approach because we 443 // do not want to depend on the addresses of the objects we are grouping. 444 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 445 SCEV *S = Ops[i]; 446 unsigned Complexity = S->getSCEVType(); 447 448 // If there are any objects of the same complexity and same value as this 449 // one, group them. 450 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 451 if (Ops[j] == S) { // Found a duplicate. 452 // Move it to immediately after i'th element. 453 std::swap(Ops[i+1], Ops[j]); 454 ++i; // no need to rescan it. 455 if (i == e-2) return; // Done! 456 } 457 } 458 } 459 } 460 461 462 463 //===----------------------------------------------------------------------===// 464 // Simple SCEV method implementations 465 //===----------------------------------------------------------------------===// 466 467 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 468 /// specified signed integer value and return a SCEV for the constant. 469 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 470 Constant *C; 471 if (Val == 0) 472 C = Constant::getNullValue(Ty); 473 else if (Ty->isFloatingPoint()) 474 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 475 APFloat::IEEEdouble, Val)); 476 else 477 C = ConstantInt::get(Ty, Val); 478 return getUnknown(C); 479 } 480 481 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 482 /// 483 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 484 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 485 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 486 487 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(V->getType()))); 488 } 489 490 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 491 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { 492 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 493 return getUnknown(ConstantExpr::getNot(VC->getValue())); 494 495 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(V->getType())); 496 return getMinusSCEV(AllOnes, V); 497 } 498 499 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 500 /// 501 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 502 const SCEVHandle &RHS) { 503 // X - Y --> X + -Y 504 return getAddExpr(LHS, getNegativeSCEV(RHS)); 505 } 506 507 508 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 509 // Assume, K > 0. 510 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, 511 ScalarEvolution &SE, 512 const IntegerType* ResultTy) { 513 // Handle the simplest case efficiently. 514 if (K == 1) 515 return SE.getTruncateOrZeroExtend(It, ResultTy); 516 517 // We are using the following formula for BC(It, K): 518 // 519 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 520 // 521 // Suppose, W is the bitwidth of the return value. We must be prepared for 522 // overflow. Hence, we must assure that the result of our computation is 523 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 524 // safe in modular arithmetic. 525 // 526 // However, this code doesn't use exactly that formula; the formula it uses 527 // is something like the following, where T is the number of factors of 2 in 528 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 529 // exponentiation: 530 // 531 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 532 // 533 // This formula is trivially equivalent to the previous formula. However, 534 // this formula can be implemented much more efficiently. The trick is that 535 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 536 // arithmetic. To do exact division in modular arithmetic, all we have 537 // to do is multiply by the inverse. Therefore, this step can be done at 538 // width W. 539 // 540 // The next issue is how to safely do the division by 2^T. The way this 541 // is done is by doing the multiplication step at a width of at least W + T 542 // bits. This way, the bottom W+T bits of the product are accurate. Then, 543 // when we perform the division by 2^T (which is equivalent to a right shift 544 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 545 // truncated out after the division by 2^T. 546 // 547 // In comparison to just directly using the first formula, this technique 548 // is much more efficient; using the first formula requires W * K bits, 549 // but this formula less than W + K bits. Also, the first formula requires 550 // a division step, whereas this formula only requires multiplies and shifts. 551 // 552 // It doesn't matter whether the subtraction step is done in the calculation 553 // width or the input iteration count's width; if the subtraction overflows, 554 // the result must be zero anyway. We prefer here to do it in the width of 555 // the induction variable because it helps a lot for certain cases; CodeGen 556 // isn't smart enough to ignore the overflow, which leads to much less 557 // efficient code if the width of the subtraction is wider than the native 558 // register width. 559 // 560 // (It's possible to not widen at all by pulling out factors of 2 before 561 // the multiplication; for example, K=2 can be calculated as 562 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 563 // extra arithmetic, so it's not an obvious win, and it gets 564 // much more complicated for K > 3.) 565 566 // Protection from insane SCEVs; this bound is conservative, 567 // but it probably doesn't matter. 568 if (K > 1000) 569 return new SCEVCouldNotCompute(); 570 571 unsigned W = ResultTy->getBitWidth(); 572 573 // Calculate K! / 2^T and T; we divide out the factors of two before 574 // multiplying for calculating K! / 2^T to avoid overflow. 575 // Other overflow doesn't matter because we only care about the bottom 576 // W bits of the result. 577 APInt OddFactorial(W, 1); 578 unsigned T = 1; 579 for (unsigned i = 3; i <= K; ++i) { 580 APInt Mult(W, i); 581 unsigned TwoFactors = Mult.countTrailingZeros(); 582 T += TwoFactors; 583 Mult = Mult.lshr(TwoFactors); 584 OddFactorial *= Mult; 585 } 586 587 // We need at least W + T bits for the multiplication step 588 unsigned CalculationBits = W + T; 589 590 // Calcuate 2^T, at width T+W. 591 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 592 593 // Calculate the multiplicative inverse of K! / 2^T; 594 // this multiplication factor will perform the exact division by 595 // K! / 2^T. 596 APInt Mod = APInt::getSignedMinValue(W+1); 597 APInt MultiplyFactor = OddFactorial.zext(W+1); 598 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 599 MultiplyFactor = MultiplyFactor.trunc(W); 600 601 // Calculate the product, at width T+W 602 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 603 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 604 for (unsigned i = 1; i != K; ++i) { 605 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 606 Dividend = SE.getMulExpr(Dividend, 607 SE.getTruncateOrZeroExtend(S, CalculationTy)); 608 } 609 610 // Divide by 2^T 611 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 612 613 // Truncate the result, and divide by K! / 2^T. 614 615 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 616 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 617 } 618 619 /// evaluateAtIteration - Return the value of this chain of recurrences at 620 /// the specified iteration number. We can evaluate this recurrence by 621 /// multiplying each element in the chain by the binomial coefficient 622 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 623 /// 624 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 625 /// 626 /// where BC(It, k) stands for binomial coefficient. 627 /// 628 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 629 ScalarEvolution &SE) const { 630 SCEVHandle Result = getStart(); 631 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 632 // The computation is correct in the face of overflow provided that the 633 // multiplication is performed _after_ the evaluation of the binomial 634 // coefficient. 635 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, 636 cast<IntegerType>(getType())); 637 if (isa<SCEVCouldNotCompute>(Coeff)) 638 return Coeff; 639 640 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 641 } 642 return Result; 643 } 644 645 //===----------------------------------------------------------------------===// 646 // SCEV Expression folder implementations 647 //===----------------------------------------------------------------------===// 648 649 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) { 650 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 651 return getUnknown( 652 ConstantExpr::getTrunc(SC->getValue(), Ty)); 653 654 // If the input value is a chrec scev made out of constants, truncate 655 // all of the constants. 656 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 657 std::vector<SCEVHandle> Operands; 658 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 659 // FIXME: This should allow truncation of other expression types! 660 if (isa<SCEVConstant>(AddRec->getOperand(i))) 661 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 662 else 663 break; 664 if (Operands.size() == AddRec->getNumOperands()) 665 return getAddRecExpr(Operands, AddRec->getLoop()); 666 } 667 668 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 669 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 670 return Result; 671 } 672 673 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) { 674 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 675 return getUnknown( 676 ConstantExpr::getZExt(SC->getValue(), Ty)); 677 678 // FIXME: If the input value is a chrec scev, and we can prove that the value 679 // did not overflow the old, smaller, value, we can zero extend all of the 680 // operands (often constants). This would allow analysis of something like 681 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 682 683 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 684 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 685 return Result; 686 } 687 688 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) { 689 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 690 return getUnknown( 691 ConstantExpr::getSExt(SC->getValue(), Ty)); 692 693 // FIXME: If the input value is a chrec scev, and we can prove that the value 694 // did not overflow the old, smaller, value, we can sign extend all of the 695 // operands (often constants). This would allow analysis of something like 696 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 697 698 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 699 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 700 return Result; 701 } 702 703 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion 704 /// of the input value to the specified type. If the type must be 705 /// extended, it is zero extended. 706 SCEVHandle ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, 707 const Type *Ty) { 708 const Type *SrcTy = V->getType(); 709 assert(SrcTy->isInteger() && Ty->isInteger() && 710 "Cannot truncate or zero extend with non-integer arguments!"); 711 if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) 712 return V; // No conversion 713 if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()) 714 return getTruncateExpr(V, Ty); 715 return getZeroExtendExpr(V, Ty); 716 } 717 718 // get - Get a canonical add expression, or something simpler if possible. 719 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) { 720 assert(!Ops.empty() && "Cannot get empty add!"); 721 if (Ops.size() == 1) return Ops[0]; 722 723 // Sort by complexity, this groups all similar expression types together. 724 GroupByComplexity(Ops); 725 726 // If there are any constants, fold them together. 727 unsigned Idx = 0; 728 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 729 ++Idx; 730 assert(Idx < Ops.size()); 731 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 732 // We found two constants, fold them together! 733 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 734 RHSC->getValue()->getValue()); 735 Ops[0] = getConstant(Fold); 736 Ops.erase(Ops.begin()+1); // Erase the folded element 737 if (Ops.size() == 1) return Ops[0]; 738 LHSC = cast<SCEVConstant>(Ops[0]); 739 } 740 741 // If we are left with a constant zero being added, strip it off. 742 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 743 Ops.erase(Ops.begin()); 744 --Idx; 745 } 746 } 747 748 if (Ops.size() == 1) return Ops[0]; 749 750 // Okay, check to see if the same value occurs in the operand list twice. If 751 // so, merge them together into an multiply expression. Since we sorted the 752 // list, these values are required to be adjacent. 753 const Type *Ty = Ops[0]->getType(); 754 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 755 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 756 // Found a match, merge the two values into a multiply, and add any 757 // remaining values to the result. 758 SCEVHandle Two = getIntegerSCEV(2, Ty); 759 SCEVHandle Mul = getMulExpr(Ops[i], Two); 760 if (Ops.size() == 2) 761 return Mul; 762 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 763 Ops.push_back(Mul); 764 return getAddExpr(Ops); 765 } 766 767 // Now we know the first non-constant operand. Skip past any cast SCEVs. 768 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 769 ++Idx; 770 771 // If there are add operands they would be next. 772 if (Idx < Ops.size()) { 773 bool DeletedAdd = false; 774 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 775 // If we have an add, expand the add operands onto the end of the operands 776 // list. 777 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 778 Ops.erase(Ops.begin()+Idx); 779 DeletedAdd = true; 780 } 781 782 // If we deleted at least one add, we added operands to the end of the list, 783 // and they are not necessarily sorted. Recurse to resort and resimplify 784 // any operands we just aquired. 785 if (DeletedAdd) 786 return getAddExpr(Ops); 787 } 788 789 // Skip over the add expression until we get to a multiply. 790 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 791 ++Idx; 792 793 // If we are adding something to a multiply expression, make sure the 794 // something is not already an operand of the multiply. If so, merge it into 795 // the multiply. 796 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 797 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 798 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 799 SCEV *MulOpSCEV = Mul->getOperand(MulOp); 800 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 801 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { 802 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 803 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 804 if (Mul->getNumOperands() != 2) { 805 // If the multiply has more than two operands, we must get the 806 // Y*Z term. 807 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 808 MulOps.erase(MulOps.begin()+MulOp); 809 InnerMul = getMulExpr(MulOps); 810 } 811 SCEVHandle One = getIntegerSCEV(1, Ty); 812 SCEVHandle AddOne = getAddExpr(InnerMul, One); 813 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 814 if (Ops.size() == 2) return OuterMul; 815 if (AddOp < Idx) { 816 Ops.erase(Ops.begin()+AddOp); 817 Ops.erase(Ops.begin()+Idx-1); 818 } else { 819 Ops.erase(Ops.begin()+Idx); 820 Ops.erase(Ops.begin()+AddOp-1); 821 } 822 Ops.push_back(OuterMul); 823 return getAddExpr(Ops); 824 } 825 826 // Check this multiply against other multiplies being added together. 827 for (unsigned OtherMulIdx = Idx+1; 828 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 829 ++OtherMulIdx) { 830 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 831 // If MulOp occurs in OtherMul, we can fold the two multiplies 832 // together. 833 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 834 OMulOp != e; ++OMulOp) 835 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 836 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 837 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 838 if (Mul->getNumOperands() != 2) { 839 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 840 MulOps.erase(MulOps.begin()+MulOp); 841 InnerMul1 = getMulExpr(MulOps); 842 } 843 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 844 if (OtherMul->getNumOperands() != 2) { 845 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), 846 OtherMul->op_end()); 847 MulOps.erase(MulOps.begin()+OMulOp); 848 InnerMul2 = getMulExpr(MulOps); 849 } 850 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 851 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 852 if (Ops.size() == 2) return OuterMul; 853 Ops.erase(Ops.begin()+Idx); 854 Ops.erase(Ops.begin()+OtherMulIdx-1); 855 Ops.push_back(OuterMul); 856 return getAddExpr(Ops); 857 } 858 } 859 } 860 } 861 862 // If there are any add recurrences in the operands list, see if any other 863 // added values are loop invariant. If so, we can fold them into the 864 // recurrence. 865 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 866 ++Idx; 867 868 // Scan over all recurrences, trying to fold loop invariants into them. 869 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 870 // Scan all of the other operands to this add and add them to the vector if 871 // they are loop invariant w.r.t. the recurrence. 872 std::vector<SCEVHandle> LIOps; 873 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 874 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 875 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 876 LIOps.push_back(Ops[i]); 877 Ops.erase(Ops.begin()+i); 878 --i; --e; 879 } 880 881 // If we found some loop invariants, fold them into the recurrence. 882 if (!LIOps.empty()) { 883 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 884 LIOps.push_back(AddRec->getStart()); 885 886 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); 887 AddRecOps[0] = getAddExpr(LIOps); 888 889 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 890 // If all of the other operands were loop invariant, we are done. 891 if (Ops.size() == 1) return NewRec; 892 893 // Otherwise, add the folded AddRec by the non-liv parts. 894 for (unsigned i = 0;; ++i) 895 if (Ops[i] == AddRec) { 896 Ops[i] = NewRec; 897 break; 898 } 899 return getAddExpr(Ops); 900 } 901 902 // Okay, if there weren't any loop invariants to be folded, check to see if 903 // there are multiple AddRec's with the same loop induction variable being 904 // added together. If so, we can fold them. 905 for (unsigned OtherIdx = Idx+1; 906 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 907 if (OtherIdx != Idx) { 908 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 909 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 910 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 911 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); 912 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 913 if (i >= NewOps.size()) { 914 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 915 OtherAddRec->op_end()); 916 break; 917 } 918 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 919 } 920 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 921 922 if (Ops.size() == 2) return NewAddRec; 923 924 Ops.erase(Ops.begin()+Idx); 925 Ops.erase(Ops.begin()+OtherIdx-1); 926 Ops.push_back(NewAddRec); 927 return getAddExpr(Ops); 928 } 929 } 930 931 // Otherwise couldn't fold anything into this recurrence. Move onto the 932 // next one. 933 } 934 935 // Okay, it looks like we really DO need an add expr. Check to see if we 936 // already have one, otherwise create a new one. 937 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 938 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 939 SCEVOps)]; 940 if (Result == 0) Result = new SCEVAddExpr(Ops); 941 return Result; 942 } 943 944 945 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) { 946 assert(!Ops.empty() && "Cannot get empty mul!"); 947 948 // Sort by complexity, this groups all similar expression types together. 949 GroupByComplexity(Ops); 950 951 // If there are any constants, fold them together. 952 unsigned Idx = 0; 953 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 954 955 // C1*(C2+V) -> C1*C2 + C1*V 956 if (Ops.size() == 2) 957 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 958 if (Add->getNumOperands() == 2 && 959 isa<SCEVConstant>(Add->getOperand(0))) 960 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 961 getMulExpr(LHSC, Add->getOperand(1))); 962 963 964 ++Idx; 965 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 966 // We found two constants, fold them together! 967 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 968 RHSC->getValue()->getValue()); 969 Ops[0] = getConstant(Fold); 970 Ops.erase(Ops.begin()+1); // Erase the folded element 971 if (Ops.size() == 1) return Ops[0]; 972 LHSC = cast<SCEVConstant>(Ops[0]); 973 } 974 975 // If we are left with a constant one being multiplied, strip it off. 976 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 977 Ops.erase(Ops.begin()); 978 --Idx; 979 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 980 // If we have a multiply of zero, it will always be zero. 981 return Ops[0]; 982 } 983 } 984 985 // Skip over the add expression until we get to a multiply. 986 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 987 ++Idx; 988 989 if (Ops.size() == 1) 990 return Ops[0]; 991 992 // If there are mul operands inline them all into this expression. 993 if (Idx < Ops.size()) { 994 bool DeletedMul = false; 995 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 996 // If we have an mul, expand the mul operands onto the end of the operands 997 // list. 998 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 999 Ops.erase(Ops.begin()+Idx); 1000 DeletedMul = true; 1001 } 1002 1003 // If we deleted at least one mul, we added operands to the end of the list, 1004 // and they are not necessarily sorted. Recurse to resort and resimplify 1005 // any operands we just aquired. 1006 if (DeletedMul) 1007 return getMulExpr(Ops); 1008 } 1009 1010 // If there are any add recurrences in the operands list, see if any other 1011 // added values are loop invariant. If so, we can fold them into the 1012 // recurrence. 1013 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1014 ++Idx; 1015 1016 // Scan over all recurrences, trying to fold loop invariants into them. 1017 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1018 // Scan all of the other operands to this mul and add them to the vector if 1019 // they are loop invariant w.r.t. the recurrence. 1020 std::vector<SCEVHandle> LIOps; 1021 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1022 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1023 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1024 LIOps.push_back(Ops[i]); 1025 Ops.erase(Ops.begin()+i); 1026 --i; --e; 1027 } 1028 1029 // If we found some loop invariants, fold them into the recurrence. 1030 if (!LIOps.empty()) { 1031 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1032 std::vector<SCEVHandle> NewOps; 1033 NewOps.reserve(AddRec->getNumOperands()); 1034 if (LIOps.size() == 1) { 1035 SCEV *Scale = LIOps[0]; 1036 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1037 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1038 } else { 1039 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1040 std::vector<SCEVHandle> MulOps(LIOps); 1041 MulOps.push_back(AddRec->getOperand(i)); 1042 NewOps.push_back(getMulExpr(MulOps)); 1043 } 1044 } 1045 1046 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1047 1048 // If all of the other operands were loop invariant, we are done. 1049 if (Ops.size() == 1) return NewRec; 1050 1051 // Otherwise, multiply the folded AddRec by the non-liv parts. 1052 for (unsigned i = 0;; ++i) 1053 if (Ops[i] == AddRec) { 1054 Ops[i] = NewRec; 1055 break; 1056 } 1057 return getMulExpr(Ops); 1058 } 1059 1060 // Okay, if there weren't any loop invariants to be folded, check to see if 1061 // there are multiple AddRec's with the same loop induction variable being 1062 // multiplied together. If so, we can fold them. 1063 for (unsigned OtherIdx = Idx+1; 1064 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1065 if (OtherIdx != Idx) { 1066 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1067 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1068 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1069 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1070 SCEVHandle NewStart = getMulExpr(F->getStart(), 1071 G->getStart()); 1072 SCEVHandle B = F->getStepRecurrence(*this); 1073 SCEVHandle D = G->getStepRecurrence(*this); 1074 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1075 getMulExpr(G, B), 1076 getMulExpr(B, D)); 1077 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1078 F->getLoop()); 1079 if (Ops.size() == 2) return NewAddRec; 1080 1081 Ops.erase(Ops.begin()+Idx); 1082 Ops.erase(Ops.begin()+OtherIdx-1); 1083 Ops.push_back(NewAddRec); 1084 return getMulExpr(Ops); 1085 } 1086 } 1087 1088 // Otherwise couldn't fold anything into this recurrence. Move onto the 1089 // next one. 1090 } 1091 1092 // Okay, it looks like we really DO need an mul expr. Check to see if we 1093 // already have one, otherwise create a new one. 1094 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1095 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1096 SCEVOps)]; 1097 if (Result == 0) 1098 Result = new SCEVMulExpr(Ops); 1099 return Result; 1100 } 1101 1102 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { 1103 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1104 if (RHSC->getValue()->equalsInt(1)) 1105 return LHS; // X udiv 1 --> x 1106 1107 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1108 Constant *LHSCV = LHSC->getValue(); 1109 Constant *RHSCV = RHSC->getValue(); 1110 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1111 } 1112 } 1113 1114 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. 1115 1116 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; 1117 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); 1118 return Result; 1119 } 1120 1121 1122 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1123 /// specified loop. Simplify the expression as much as possible. 1124 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1125 const SCEVHandle &Step, const Loop *L) { 1126 std::vector<SCEVHandle> Operands; 1127 Operands.push_back(Start); 1128 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1129 if (StepChrec->getLoop() == L) { 1130 Operands.insert(Operands.end(), StepChrec->op_begin(), 1131 StepChrec->op_end()); 1132 return getAddRecExpr(Operands, L); 1133 } 1134 1135 Operands.push_back(Step); 1136 return getAddRecExpr(Operands, L); 1137 } 1138 1139 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1140 /// specified loop. Simplify the expression as much as possible. 1141 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands, 1142 const Loop *L) { 1143 if (Operands.size() == 1) return Operands[0]; 1144 1145 if (Operands.back()->isZero()) { 1146 Operands.pop_back(); 1147 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1148 } 1149 1150 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1151 if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1152 const Loop* NestedLoop = NestedAR->getLoop(); 1153 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1154 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(), 1155 NestedAR->op_end()); 1156 SCEVHandle NestedARHandle(NestedAR); 1157 Operands[0] = NestedAR->getStart(); 1158 NestedOperands[0] = getAddRecExpr(Operands, L); 1159 return getAddRecExpr(NestedOperands, NestedLoop); 1160 } 1161 } 1162 1163 SCEVAddRecExpr *&Result = 1164 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), 1165 Operands.end()))]; 1166 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1167 return Result; 1168 } 1169 1170 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, 1171 const SCEVHandle &RHS) { 1172 std::vector<SCEVHandle> Ops; 1173 Ops.push_back(LHS); 1174 Ops.push_back(RHS); 1175 return getSMaxExpr(Ops); 1176 } 1177 1178 SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) { 1179 assert(!Ops.empty() && "Cannot get empty smax!"); 1180 if (Ops.size() == 1) return Ops[0]; 1181 1182 // Sort by complexity, this groups all similar expression types together. 1183 GroupByComplexity(Ops); 1184 1185 // If there are any constants, fold them together. 1186 unsigned Idx = 0; 1187 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1188 ++Idx; 1189 assert(Idx < Ops.size()); 1190 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1191 // We found two constants, fold them together! 1192 ConstantInt *Fold = ConstantInt::get( 1193 APIntOps::smax(LHSC->getValue()->getValue(), 1194 RHSC->getValue()->getValue())); 1195 Ops[0] = getConstant(Fold); 1196 Ops.erase(Ops.begin()+1); // Erase the folded element 1197 if (Ops.size() == 1) return Ops[0]; 1198 LHSC = cast<SCEVConstant>(Ops[0]); 1199 } 1200 1201 // If we are left with a constant -inf, strip it off. 1202 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1203 Ops.erase(Ops.begin()); 1204 --Idx; 1205 } 1206 } 1207 1208 if (Ops.size() == 1) return Ops[0]; 1209 1210 // Find the first SMax 1211 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1212 ++Idx; 1213 1214 // Check to see if one of the operands is an SMax. If so, expand its operands 1215 // onto our operand list, and recurse to simplify. 1216 if (Idx < Ops.size()) { 1217 bool DeletedSMax = false; 1218 while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1219 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1220 Ops.erase(Ops.begin()+Idx); 1221 DeletedSMax = true; 1222 } 1223 1224 if (DeletedSMax) 1225 return getSMaxExpr(Ops); 1226 } 1227 1228 // Okay, check to see if the same value occurs in the operand list twice. If 1229 // so, delete one. Since we sorted the list, these values are required to 1230 // be adjacent. 1231 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1232 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1233 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1234 --i; --e; 1235 } 1236 1237 if (Ops.size() == 1) return Ops[0]; 1238 1239 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1240 1241 // Okay, it looks like we really DO need an smax expr. Check to see if we 1242 // already have one, otherwise create a new one. 1243 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1244 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, 1245 SCEVOps)]; 1246 if (Result == 0) Result = new SCEVSMaxExpr(Ops); 1247 return Result; 1248 } 1249 1250 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, 1251 const SCEVHandle &RHS) { 1252 std::vector<SCEVHandle> Ops; 1253 Ops.push_back(LHS); 1254 Ops.push_back(RHS); 1255 return getUMaxExpr(Ops); 1256 } 1257 1258 SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) { 1259 assert(!Ops.empty() && "Cannot get empty umax!"); 1260 if (Ops.size() == 1) return Ops[0]; 1261 1262 // Sort by complexity, this groups all similar expression types together. 1263 GroupByComplexity(Ops); 1264 1265 // If there are any constants, fold them together. 1266 unsigned Idx = 0; 1267 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1268 ++Idx; 1269 assert(Idx < Ops.size()); 1270 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1271 // We found two constants, fold them together! 1272 ConstantInt *Fold = ConstantInt::get( 1273 APIntOps::umax(LHSC->getValue()->getValue(), 1274 RHSC->getValue()->getValue())); 1275 Ops[0] = getConstant(Fold); 1276 Ops.erase(Ops.begin()+1); // Erase the folded element 1277 if (Ops.size() == 1) return Ops[0]; 1278 LHSC = cast<SCEVConstant>(Ops[0]); 1279 } 1280 1281 // If we are left with a constant zero, strip it off. 1282 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1283 Ops.erase(Ops.begin()); 1284 --Idx; 1285 } 1286 } 1287 1288 if (Ops.size() == 1) return Ops[0]; 1289 1290 // Find the first UMax 1291 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1292 ++Idx; 1293 1294 // Check to see if one of the operands is a UMax. If so, expand its operands 1295 // onto our operand list, and recurse to simplify. 1296 if (Idx < Ops.size()) { 1297 bool DeletedUMax = false; 1298 while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1299 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1300 Ops.erase(Ops.begin()+Idx); 1301 DeletedUMax = true; 1302 } 1303 1304 if (DeletedUMax) 1305 return getUMaxExpr(Ops); 1306 } 1307 1308 // Okay, check to see if the same value occurs in the operand list twice. If 1309 // so, delete one. Since we sorted the list, these values are required to 1310 // be adjacent. 1311 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1312 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1313 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1314 --i; --e; 1315 } 1316 1317 if (Ops.size() == 1) return Ops[0]; 1318 1319 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1320 1321 // Okay, it looks like we really DO need a umax expr. Check to see if we 1322 // already have one, otherwise create a new one. 1323 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1324 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, 1325 SCEVOps)]; 1326 if (Result == 0) Result = new SCEVUMaxExpr(Ops); 1327 return Result; 1328 } 1329 1330 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1331 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1332 return getConstant(CI); 1333 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1334 if (Result == 0) Result = new SCEVUnknown(V); 1335 return Result; 1336 } 1337 1338 1339 //===----------------------------------------------------------------------===// 1340 // ScalarEvolutionsImpl Definition and Implementation 1341 //===----------------------------------------------------------------------===// 1342 // 1343 /// ScalarEvolutionsImpl - This class implements the main driver for the scalar 1344 /// evolution code. 1345 /// 1346 namespace { 1347 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl { 1348 /// SE - A reference to the public ScalarEvolution object. 1349 ScalarEvolution &SE; 1350 1351 /// F - The function we are analyzing. 1352 /// 1353 Function &F; 1354 1355 /// LI - The loop information for the function we are currently analyzing. 1356 /// 1357 LoopInfo &LI; 1358 1359 /// UnknownValue - This SCEV is used to represent unknown trip counts and 1360 /// things. 1361 SCEVHandle UnknownValue; 1362 1363 /// Scalars - This is a cache of the scalars we have analyzed so far. 1364 /// 1365 std::map<Value*, SCEVHandle> Scalars; 1366 1367 /// IterationCounts - Cache the iteration count of the loops for this 1368 /// function as they are computed. 1369 std::map<const Loop*, SCEVHandle> IterationCounts; 1370 1371 /// ConstantEvolutionLoopExitValue - This map contains entries for all of 1372 /// the PHI instructions that we attempt to compute constant evolutions for. 1373 /// This allows us to avoid potentially expensive recomputation of these 1374 /// properties. An instruction maps to null if we are unable to compute its 1375 /// exit value. 1376 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue; 1377 1378 public: 1379 ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li) 1380 : SE(se), F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {} 1381 1382 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1383 /// expression and create a new one. 1384 SCEVHandle getSCEV(Value *V); 1385 1386 /// hasSCEV - Return true if the SCEV for this value has already been 1387 /// computed. 1388 bool hasSCEV(Value *V) const { 1389 return Scalars.count(V); 1390 } 1391 1392 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 1393 /// the specified value. 1394 void setSCEV(Value *V, const SCEVHandle &H) { 1395 bool isNew = Scalars.insert(std::make_pair(V, H)).second; 1396 assert(isNew && "This entry already existed!"); 1397 isNew = false; 1398 } 1399 1400 1401 /// getSCEVAtScope - Compute the value of the specified expression within 1402 /// the indicated loop (which may be null to indicate in no loop). If the 1403 /// expression cannot be evaluated, return UnknownValue itself. 1404 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L); 1405 1406 1407 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 1408 /// a conditional between LHS and RHS. 1409 bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, 1410 SCEV *LHS, SCEV *RHS); 1411 1412 /// hasLoopInvariantIterationCount - Return true if the specified loop has 1413 /// an analyzable loop-invariant iteration count. 1414 bool hasLoopInvariantIterationCount(const Loop *L); 1415 1416 /// getIterationCount - If the specified loop has a predictable iteration 1417 /// count, return it. Note that it is not valid to call this method on a 1418 /// loop without a loop-invariant iteration count. 1419 SCEVHandle getIterationCount(const Loop *L); 1420 1421 /// deleteValueFromRecords - This method should be called by the 1422 /// client before it removes a value from the program, to make sure 1423 /// that no dangling references are left around. 1424 void deleteValueFromRecords(Value *V); 1425 1426 private: 1427 /// createSCEV - We know that there is no SCEV for the specified value. 1428 /// Analyze the expression. 1429 SCEVHandle createSCEV(Value *V); 1430 1431 /// createNodeForPHI - Provide the special handling we need to analyze PHI 1432 /// SCEVs. 1433 SCEVHandle createNodeForPHI(PHINode *PN); 1434 1435 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value 1436 /// for the specified instruction and replaces any references to the 1437 /// symbolic value SymName with the specified value. This is used during 1438 /// PHI resolution. 1439 void ReplaceSymbolicValueWithConcrete(Instruction *I, 1440 const SCEVHandle &SymName, 1441 const SCEVHandle &NewVal); 1442 1443 /// ComputeIterationCount - Compute the number of times the specified loop 1444 /// will iterate. 1445 SCEVHandle ComputeIterationCount(const Loop *L); 1446 1447 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 1448 /// 'icmp op load X, cst', try to see if we can compute the trip count. 1449 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI, 1450 Constant *RHS, 1451 const Loop *L, 1452 ICmpInst::Predicate p); 1453 1454 /// ComputeIterationCountExhaustively - If the trip is known to execute a 1455 /// constant number of times (the condition evolves only from constants), 1456 /// try to evaluate a few iterations of the loop until we get the exit 1457 /// condition gets a value of ExitWhen (true or false). If we cannot 1458 /// evaluate the trip count of the loop, return UnknownValue. 1459 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond, 1460 bool ExitWhen); 1461 1462 /// HowFarToZero - Return the number of times a backedge comparing the 1463 /// specified value to zero will execute. If not computable, return 1464 /// UnknownValue. 1465 SCEVHandle HowFarToZero(SCEV *V, const Loop *L); 1466 1467 /// HowFarToNonZero - Return the number of times a backedge checking the 1468 /// specified value for nonzero will execute. If not computable, return 1469 /// UnknownValue. 1470 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L); 1471 1472 /// HowManyLessThans - Return the number of times a backedge containing the 1473 /// specified less-than comparison will execute. If not computable, return 1474 /// UnknownValue. isSigned specifies whether the less-than is signed. 1475 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, 1476 bool isSigned); 1477 1478 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 1479 /// (which may not be an immediate predecessor) which has exactly one 1480 /// successor from which BB is reachable, or null if no such block is 1481 /// found. 1482 BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB); 1483 1484 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1485 /// in the header of its containing loop, we know the loop executes a 1486 /// constant number of times, and the PHI node is just a recurrence 1487 /// involving constants, fold it. 1488 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, 1489 const Loop *L); 1490 }; 1491 } 1492 1493 //===----------------------------------------------------------------------===// 1494 // Basic SCEV Analysis and PHI Idiom Recognition Code 1495 // 1496 1497 /// deleteValueFromRecords - This method should be called by the 1498 /// client before it removes an instruction from the program, to make sure 1499 /// that no dangling references are left around. 1500 void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) { 1501 SmallVector<Value *, 16> Worklist; 1502 1503 if (Scalars.erase(V)) { 1504 if (PHINode *PN = dyn_cast<PHINode>(V)) 1505 ConstantEvolutionLoopExitValue.erase(PN); 1506 Worklist.push_back(V); 1507 } 1508 1509 while (!Worklist.empty()) { 1510 Value *VV = Worklist.back(); 1511 Worklist.pop_back(); 1512 1513 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end(); 1514 UI != UE; ++UI) { 1515 Instruction *Inst = cast<Instruction>(*UI); 1516 if (Scalars.erase(Inst)) { 1517 if (PHINode *PN = dyn_cast<PHINode>(VV)) 1518 ConstantEvolutionLoopExitValue.erase(PN); 1519 Worklist.push_back(Inst); 1520 } 1521 } 1522 } 1523 } 1524 1525 1526 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1527 /// expression and create a new one. 1528 SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) { 1529 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!"); 1530 1531 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); 1532 if (I != Scalars.end()) return I->second; 1533 SCEVHandle S = createSCEV(V); 1534 Scalars.insert(std::make_pair(V, S)); 1535 return S; 1536 } 1537 1538 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 1539 /// the specified instruction and replaces any references to the symbolic value 1540 /// SymName with the specified value. This is used during PHI resolution. 1541 void ScalarEvolutionsImpl:: 1542 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 1543 const SCEVHandle &NewVal) { 1544 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); 1545 if (SI == Scalars.end()) return; 1546 1547 SCEVHandle NV = 1548 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE); 1549 if (NV == SI->second) return; // No change. 1550 1551 SI->second = NV; // Update the scalars map! 1552 1553 // Any instruction values that use this instruction might also need to be 1554 // updated! 1555 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1556 UI != E; ++UI) 1557 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 1558 } 1559 1560 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 1561 /// a loop header, making it a potential recurrence, or it doesn't. 1562 /// 1563 SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) { 1564 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 1565 if (const Loop *L = LI.getLoopFor(PN->getParent())) 1566 if (L->getHeader() == PN->getParent()) { 1567 // If it lives in the loop header, it has two incoming values, one 1568 // from outside the loop, and one from inside. 1569 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1570 unsigned BackEdge = IncomingEdge^1; 1571 1572 // While we are analyzing this PHI node, handle its value symbolically. 1573 SCEVHandle SymbolicName = SE.getUnknown(PN); 1574 assert(Scalars.find(PN) == Scalars.end() && 1575 "PHI node already processed?"); 1576 Scalars.insert(std::make_pair(PN, SymbolicName)); 1577 1578 // Using this symbolic name for the PHI, analyze the value coming around 1579 // the back-edge. 1580 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 1581 1582 // NOTE: If BEValue is loop invariant, we know that the PHI node just 1583 // has a special value for the first iteration of the loop. 1584 1585 // If the value coming around the backedge is an add with the symbolic 1586 // value we just inserted, then we found a simple induction variable! 1587 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 1588 // If there is a single occurrence of the symbolic value, replace it 1589 // with a recurrence. 1590 unsigned FoundIndex = Add->getNumOperands(); 1591 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1592 if (Add->getOperand(i) == SymbolicName) 1593 if (FoundIndex == e) { 1594 FoundIndex = i; 1595 break; 1596 } 1597 1598 if (FoundIndex != Add->getNumOperands()) { 1599 // Create an add with everything but the specified operand. 1600 std::vector<SCEVHandle> Ops; 1601 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1602 if (i != FoundIndex) 1603 Ops.push_back(Add->getOperand(i)); 1604 SCEVHandle Accum = SE.getAddExpr(Ops); 1605 1606 // This is not a valid addrec if the step amount is varying each 1607 // loop iteration, but is not itself an addrec in this loop. 1608 if (Accum->isLoopInvariant(L) || 1609 (isa<SCEVAddRecExpr>(Accum) && 1610 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 1611 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1612 SCEVHandle PHISCEV = SE.getAddRecExpr(StartVal, Accum, L); 1613 1614 // Okay, for the entire analysis of this edge we assumed the PHI 1615 // to be symbolic. We now need to go back and update all of the 1616 // entries for the scalars that use the PHI (except for the PHI 1617 // itself) to use the new analyzed value instead of the "symbolic" 1618 // value. 1619 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1620 return PHISCEV; 1621 } 1622 } 1623 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 1624 // Otherwise, this could be a loop like this: 1625 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 1626 // In this case, j = {1,+,1} and BEValue is j. 1627 // Because the other in-value of i (0) fits the evolution of BEValue 1628 // i really is an addrec evolution. 1629 if (AddRec->getLoop() == L && AddRec->isAffine()) { 1630 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1631 1632 // If StartVal = j.start - j.stride, we can use StartVal as the 1633 // initial step of the addrec evolution. 1634 if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0), 1635 AddRec->getOperand(1))) { 1636 SCEVHandle PHISCEV = 1637 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L); 1638 1639 // Okay, for the entire analysis of this edge we assumed the PHI 1640 // to be symbolic. We now need to go back and update all of the 1641 // entries for the scalars that use the PHI (except for the PHI 1642 // itself) to use the new analyzed value instead of the "symbolic" 1643 // value. 1644 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1645 return PHISCEV; 1646 } 1647 } 1648 } 1649 1650 return SymbolicName; 1651 } 1652 1653 // If it's not a loop phi, we can't handle it yet. 1654 return SE.getUnknown(PN); 1655 } 1656 1657 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 1658 /// guaranteed to end in (at every loop iteration). It is, at the same time, 1659 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 1660 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 1661 static uint32_t GetMinTrailingZeros(SCEVHandle S) { 1662 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 1663 return C->getValue()->getValue().countTrailingZeros(); 1664 1665 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 1666 return std::min(GetMinTrailingZeros(T->getOperand()), T->getBitWidth()); 1667 1668 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 1669 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 1670 return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes; 1671 } 1672 1673 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 1674 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 1675 return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes; 1676 } 1677 1678 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 1679 // The result is the min of all operands results. 1680 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 1681 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1682 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 1683 return MinOpRes; 1684 } 1685 1686 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 1687 // The result is the sum of all operands results. 1688 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 1689 uint32_t BitWidth = M->getBitWidth(); 1690 for (unsigned i = 1, e = M->getNumOperands(); 1691 SumOpRes != BitWidth && i != e; ++i) 1692 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 1693 BitWidth); 1694 return SumOpRes; 1695 } 1696 1697 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 1698 // The result is the min of all operands results. 1699 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 1700 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1701 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 1702 return MinOpRes; 1703 } 1704 1705 if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 1706 // The result is the min of all operands results. 1707 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 1708 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 1709 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 1710 return MinOpRes; 1711 } 1712 1713 if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 1714 // The result is the min of all operands results. 1715 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 1716 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 1717 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 1718 return MinOpRes; 1719 } 1720 1721 // SCEVUDivExpr, SCEVUnknown 1722 return 0; 1723 } 1724 1725 /// createSCEV - We know that there is no SCEV for the specified value. 1726 /// Analyze the expression. 1727 /// 1728 SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) { 1729 if (!isa<IntegerType>(V->getType())) 1730 return SE.getUnknown(V); 1731 1732 unsigned Opcode = Instruction::UserOp1; 1733 if (Instruction *I = dyn_cast<Instruction>(V)) 1734 Opcode = I->getOpcode(); 1735 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 1736 Opcode = CE->getOpcode(); 1737 else 1738 return SE.getUnknown(V); 1739 1740 User *U = cast<User>(V); 1741 switch (Opcode) { 1742 case Instruction::Add: 1743 return SE.getAddExpr(getSCEV(U->getOperand(0)), 1744 getSCEV(U->getOperand(1))); 1745 case Instruction::Mul: 1746 return SE.getMulExpr(getSCEV(U->getOperand(0)), 1747 getSCEV(U->getOperand(1))); 1748 case Instruction::UDiv: 1749 return SE.getUDivExpr(getSCEV(U->getOperand(0)), 1750 getSCEV(U->getOperand(1))); 1751 case Instruction::Sub: 1752 return SE.getMinusSCEV(getSCEV(U->getOperand(0)), 1753 getSCEV(U->getOperand(1))); 1754 case Instruction::Or: 1755 // If the RHS of the Or is a constant, we may have something like: 1756 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 1757 // optimizations will transparently handle this case. 1758 // 1759 // In order for this transformation to be safe, the LHS must be of the 1760 // form X*(2^n) and the Or constant must be less than 2^n. 1761 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1762 SCEVHandle LHS = getSCEV(U->getOperand(0)); 1763 const APInt &CIVal = CI->getValue(); 1764 if (GetMinTrailingZeros(LHS) >= 1765 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 1766 return SE.getAddExpr(LHS, getSCEV(U->getOperand(1))); 1767 } 1768 break; 1769 case Instruction::Xor: 1770 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1771 // If the RHS of the xor is a signbit, then this is just an add. 1772 // Instcombine turns add of signbit into xor as a strength reduction step. 1773 if (CI->getValue().isSignBit()) 1774 return SE.getAddExpr(getSCEV(U->getOperand(0)), 1775 getSCEV(U->getOperand(1))); 1776 1777 // If the RHS of xor is -1, then this is a not operation. 1778 else if (CI->isAllOnesValue()) 1779 return SE.getNotSCEV(getSCEV(U->getOperand(0))); 1780 } 1781 break; 1782 1783 case Instruction::Shl: 1784 // Turn shift left of a constant amount into a multiply. 1785 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 1786 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1787 Constant *X = ConstantInt::get( 1788 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1789 return SE.getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 1790 } 1791 break; 1792 1793 case Instruction::LShr: 1794 // Turn logical shift right of a constant into a unsigned divide. 1795 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 1796 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1797 Constant *X = ConstantInt::get( 1798 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1799 return SE.getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 1800 } 1801 break; 1802 1803 case Instruction::Trunc: 1804 return SE.getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 1805 1806 case Instruction::ZExt: 1807 return SE.getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 1808 1809 case Instruction::SExt: 1810 return SE.getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 1811 1812 case Instruction::BitCast: 1813 // BitCasts are no-op casts so we just eliminate the cast. 1814 if (U->getType()->isInteger() && 1815 U->getOperand(0)->getType()->isInteger()) 1816 return getSCEV(U->getOperand(0)); 1817 break; 1818 1819 case Instruction::PHI: 1820 return createNodeForPHI(cast<PHINode>(U)); 1821 1822 case Instruction::Select: 1823 // This could be a smax or umax that was lowered earlier. 1824 // Try to recover it. 1825 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 1826 Value *LHS = ICI->getOperand(0); 1827 Value *RHS = ICI->getOperand(1); 1828 switch (ICI->getPredicate()) { 1829 case ICmpInst::ICMP_SLT: 1830 case ICmpInst::ICMP_SLE: 1831 std::swap(LHS, RHS); 1832 // fall through 1833 case ICmpInst::ICMP_SGT: 1834 case ICmpInst::ICMP_SGE: 1835 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 1836 return SE.getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 1837 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 1838 // ~smax(~x, ~y) == smin(x, y). 1839 return SE.getNotSCEV(SE.getSMaxExpr( 1840 SE.getNotSCEV(getSCEV(LHS)), 1841 SE.getNotSCEV(getSCEV(RHS)))); 1842 break; 1843 case ICmpInst::ICMP_ULT: 1844 case ICmpInst::ICMP_ULE: 1845 std::swap(LHS, RHS); 1846 // fall through 1847 case ICmpInst::ICMP_UGT: 1848 case ICmpInst::ICMP_UGE: 1849 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 1850 return SE.getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 1851 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 1852 // ~umax(~x, ~y) == umin(x, y) 1853 return SE.getNotSCEV(SE.getUMaxExpr(SE.getNotSCEV(getSCEV(LHS)), 1854 SE.getNotSCEV(getSCEV(RHS)))); 1855 break; 1856 default: 1857 break; 1858 } 1859 } 1860 1861 default: // We cannot analyze this expression. 1862 break; 1863 } 1864 1865 return SE.getUnknown(V); 1866 } 1867 1868 1869 1870 //===----------------------------------------------------------------------===// 1871 // Iteration Count Computation Code 1872 // 1873 1874 /// getIterationCount - If the specified loop has a predictable iteration 1875 /// count, return it. Note that it is not valid to call this method on a 1876 /// loop without a loop-invariant iteration count. 1877 SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) { 1878 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L); 1879 if (I == IterationCounts.end()) { 1880 SCEVHandle ItCount = ComputeIterationCount(L); 1881 I = IterationCounts.insert(std::make_pair(L, ItCount)).first; 1882 if (ItCount != UnknownValue) { 1883 assert(ItCount->isLoopInvariant(L) && 1884 "Computed trip count isn't loop invariant for loop!"); 1885 ++NumTripCountsComputed; 1886 } else if (isa<PHINode>(L->getHeader()->begin())) { 1887 // Only count loops that have phi nodes as not being computable. 1888 ++NumTripCountsNotComputed; 1889 } 1890 } 1891 return I->second; 1892 } 1893 1894 /// ComputeIterationCount - Compute the number of times the specified loop 1895 /// will iterate. 1896 SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) { 1897 // If the loop has a non-one exit block count, we can't analyze it. 1898 SmallVector<BasicBlock*, 8> ExitBlocks; 1899 L->getExitBlocks(ExitBlocks); 1900 if (ExitBlocks.size() != 1) return UnknownValue; 1901 1902 // Okay, there is one exit block. Try to find the condition that causes the 1903 // loop to be exited. 1904 BasicBlock *ExitBlock = ExitBlocks[0]; 1905 1906 BasicBlock *ExitingBlock = 0; 1907 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); 1908 PI != E; ++PI) 1909 if (L->contains(*PI)) { 1910 if (ExitingBlock == 0) 1911 ExitingBlock = *PI; 1912 else 1913 return UnknownValue; // More than one block exiting! 1914 } 1915 assert(ExitingBlock && "No exits from loop, something is broken!"); 1916 1917 // Okay, we've computed the exiting block. See what condition causes us to 1918 // exit. 1919 // 1920 // FIXME: we should be able to handle switch instructions (with a single exit) 1921 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1922 if (ExitBr == 0) return UnknownValue; 1923 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 1924 1925 // At this point, we know we have a conditional branch that determines whether 1926 // the loop is exited. However, we don't know if the branch is executed each 1927 // time through the loop. If not, then the execution count of the branch will 1928 // not be equal to the trip count of the loop. 1929 // 1930 // Currently we check for this by checking to see if the Exit branch goes to 1931 // the loop header. If so, we know it will always execute the same number of 1932 // times as the loop. We also handle the case where the exit block *is* the 1933 // loop header. This is common for un-rotated loops. More extensive analysis 1934 // could be done to handle more cases here. 1935 if (ExitBr->getSuccessor(0) != L->getHeader() && 1936 ExitBr->getSuccessor(1) != L->getHeader() && 1937 ExitBr->getParent() != L->getHeader()) 1938 return UnknownValue; 1939 1940 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 1941 1942 // If it's not an integer comparison then compute it the hard way. 1943 // Note that ICmpInst deals with pointer comparisons too so we must check 1944 // the type of the operand. 1945 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType())) 1946 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(), 1947 ExitBr->getSuccessor(0) == ExitBlock); 1948 1949 // If the condition was exit on true, convert the condition to exit on false 1950 ICmpInst::Predicate Cond; 1951 if (ExitBr->getSuccessor(1) == ExitBlock) 1952 Cond = ExitCond->getPredicate(); 1953 else 1954 Cond = ExitCond->getInversePredicate(); 1955 1956 // Handle common loops like: for (X = "string"; *X; ++X) 1957 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 1958 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 1959 SCEVHandle ItCnt = 1960 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond); 1961 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 1962 } 1963 1964 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 1965 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 1966 1967 // Try to evaluate any dependencies out of the loop. 1968 SCEVHandle Tmp = getSCEVAtScope(LHS, L); 1969 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; 1970 Tmp = getSCEVAtScope(RHS, L); 1971 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; 1972 1973 // At this point, we would like to compute how many iterations of the 1974 // loop the predicate will return true for these inputs. 1975 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 1976 // If there is a loop-invariant, force it into the RHS. 1977 std::swap(LHS, RHS); 1978 Cond = ICmpInst::getSwappedPredicate(Cond); 1979 } 1980 1981 // FIXME: think about handling pointer comparisons! i.e.: 1982 // while (P != P+100) ++P; 1983 1984 // If we have a comparison of a chrec against a constant, try to use value 1985 // ranges to answer this query. 1986 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 1987 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 1988 if (AddRec->getLoop() == L) { 1989 // Form the comparison range using the constant of the correct type so 1990 // that the ConstantRange class knows to do a signed or unsigned 1991 // comparison. 1992 ConstantInt *CompVal = RHSC->getValue(); 1993 const Type *RealTy = ExitCond->getOperand(0)->getType(); 1994 CompVal = dyn_cast<ConstantInt>( 1995 ConstantExpr::getBitCast(CompVal, RealTy)); 1996 if (CompVal) { 1997 // Form the constant range. 1998 ConstantRange CompRange( 1999 ICmpInst::makeConstantRange(Cond, CompVal->getValue())); 2000 2001 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE); 2002 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 2003 } 2004 } 2005 2006 switch (Cond) { 2007 case ICmpInst::ICMP_NE: { // while (X != Y) 2008 // Convert to: while (X-Y != 0) 2009 SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L); 2010 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2011 break; 2012 } 2013 case ICmpInst::ICMP_EQ: { 2014 // Convert to: while (X-Y == 0) // while (X == Y) 2015 SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L); 2016 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2017 break; 2018 } 2019 case ICmpInst::ICMP_SLT: { 2020 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true); 2021 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2022 break; 2023 } 2024 case ICmpInst::ICMP_SGT: { 2025 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS), 2026 SE.getNotSCEV(RHS), L, true); 2027 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2028 break; 2029 } 2030 case ICmpInst::ICMP_ULT: { 2031 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false); 2032 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2033 break; 2034 } 2035 case ICmpInst::ICMP_UGT: { 2036 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS), 2037 SE.getNotSCEV(RHS), L, false); 2038 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2039 break; 2040 } 2041 default: 2042 #if 0 2043 cerr << "ComputeIterationCount "; 2044 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 2045 cerr << "[unsigned] "; 2046 cerr << *LHS << " " 2047 << Instruction::getOpcodeName(Instruction::ICmp) 2048 << " " << *RHS << "\n"; 2049 #endif 2050 break; 2051 } 2052 return ComputeIterationCountExhaustively(L, ExitCond, 2053 ExitBr->getSuccessor(0) == ExitBlock); 2054 } 2055 2056 static ConstantInt * 2057 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 2058 ScalarEvolution &SE) { 2059 SCEVHandle InVal = SE.getConstant(C); 2060 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 2061 assert(isa<SCEVConstant>(Val) && 2062 "Evaluation of SCEV at constant didn't fold correctly?"); 2063 return cast<SCEVConstant>(Val)->getValue(); 2064 } 2065 2066 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 2067 /// and a GEP expression (missing the pointer index) indexing into it, return 2068 /// the addressed element of the initializer or null if the index expression is 2069 /// invalid. 2070 static Constant * 2071 GetAddressedElementFromGlobal(GlobalVariable *GV, 2072 const std::vector<ConstantInt*> &Indices) { 2073 Constant *Init = GV->getInitializer(); 2074 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 2075 uint64_t Idx = Indices[i]->getZExtValue(); 2076 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2077 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 2078 Init = cast<Constant>(CS->getOperand(Idx)); 2079 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2080 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 2081 Init = cast<Constant>(CA->getOperand(Idx)); 2082 } else if (isa<ConstantAggregateZero>(Init)) { 2083 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2084 assert(Idx < STy->getNumElements() && "Bad struct index!"); 2085 Init = Constant::getNullValue(STy->getElementType(Idx)); 2086 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 2087 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 2088 Init = Constant::getNullValue(ATy->getElementType()); 2089 } else { 2090 assert(0 && "Unknown constant aggregate type!"); 2091 } 2092 return 0; 2093 } else { 2094 return 0; // Unknown initializer type 2095 } 2096 } 2097 return Init; 2098 } 2099 2100 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 2101 /// 'icmp op load X, cst', try to see if we can compute the trip count. 2102 SCEVHandle ScalarEvolutionsImpl:: 2103 ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS, 2104 const Loop *L, 2105 ICmpInst::Predicate predicate) { 2106 if (LI->isVolatile()) return UnknownValue; 2107 2108 // Check to see if the loaded pointer is a getelementptr of a global. 2109 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 2110 if (!GEP) return UnknownValue; 2111 2112 // Make sure that it is really a constant global we are gepping, with an 2113 // initializer, and make sure the first IDX is really 0. 2114 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 2115 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 2116 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 2117 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 2118 return UnknownValue; 2119 2120 // Okay, we allow one non-constant index into the GEP instruction. 2121 Value *VarIdx = 0; 2122 std::vector<ConstantInt*> Indexes; 2123 unsigned VarIdxNum = 0; 2124 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 2125 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 2126 Indexes.push_back(CI); 2127 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 2128 if (VarIdx) return UnknownValue; // Multiple non-constant idx's. 2129 VarIdx = GEP->getOperand(i); 2130 VarIdxNum = i-2; 2131 Indexes.push_back(0); 2132 } 2133 2134 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 2135 // Check to see if X is a loop variant variable value now. 2136 SCEVHandle Idx = getSCEV(VarIdx); 2137 SCEVHandle Tmp = getSCEVAtScope(Idx, L); 2138 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; 2139 2140 // We can only recognize very limited forms of loop index expressions, in 2141 // particular, only affine AddRec's like {C1,+,C2}. 2142 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 2143 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 2144 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 2145 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 2146 return UnknownValue; 2147 2148 unsigned MaxSteps = MaxBruteForceIterations; 2149 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 2150 ConstantInt *ItCst = 2151 ConstantInt::get(IdxExpr->getType(), IterationNum); 2152 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE); 2153 2154 // Form the GEP offset. 2155 Indexes[VarIdxNum] = Val; 2156 2157 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 2158 if (Result == 0) break; // Cannot compute! 2159 2160 // Evaluate the condition for this iteration. 2161 Result = ConstantExpr::getICmp(predicate, Result, RHS); 2162 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 2163 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 2164 #if 0 2165 cerr << "\n***\n*** Computed loop count " << *ItCst 2166 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 2167 << "***\n"; 2168 #endif 2169 ++NumArrayLenItCounts; 2170 return SE.getConstant(ItCst); // Found terminating iteration! 2171 } 2172 } 2173 return UnknownValue; 2174 } 2175 2176 2177 /// CanConstantFold - Return true if we can constant fold an instruction of the 2178 /// specified type, assuming that all operands were constants. 2179 static bool CanConstantFold(const Instruction *I) { 2180 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 2181 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 2182 return true; 2183 2184 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2185 if (const Function *F = CI->getCalledFunction()) 2186 return canConstantFoldCallTo(F); 2187 return false; 2188 } 2189 2190 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 2191 /// in the loop that V is derived from. We allow arbitrary operations along the 2192 /// way, but the operands of an operation must either be constants or a value 2193 /// derived from a constant PHI. If this expression does not fit with these 2194 /// constraints, return null. 2195 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 2196 // If this is not an instruction, or if this is an instruction outside of the 2197 // loop, it can't be derived from a loop PHI. 2198 Instruction *I = dyn_cast<Instruction>(V); 2199 if (I == 0 || !L->contains(I->getParent())) return 0; 2200 2201 if (PHINode *PN = dyn_cast<PHINode>(I)) { 2202 if (L->getHeader() == I->getParent()) 2203 return PN; 2204 else 2205 // We don't currently keep track of the control flow needed to evaluate 2206 // PHIs, so we cannot handle PHIs inside of loops. 2207 return 0; 2208 } 2209 2210 // If we won't be able to constant fold this expression even if the operands 2211 // are constants, return early. 2212 if (!CanConstantFold(I)) return 0; 2213 2214 // Otherwise, we can evaluate this instruction if all of its operands are 2215 // constant or derived from a PHI node themselves. 2216 PHINode *PHI = 0; 2217 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 2218 if (!(isa<Constant>(I->getOperand(Op)) || 2219 isa<GlobalValue>(I->getOperand(Op)))) { 2220 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 2221 if (P == 0) return 0; // Not evolving from PHI 2222 if (PHI == 0) 2223 PHI = P; 2224 else if (PHI != P) 2225 return 0; // Evolving from multiple different PHIs. 2226 } 2227 2228 // This is a expression evolving from a constant PHI! 2229 return PHI; 2230 } 2231 2232 /// EvaluateExpression - Given an expression that passes the 2233 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 2234 /// in the loop has the value PHIVal. If we can't fold this expression for some 2235 /// reason, return null. 2236 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 2237 if (isa<PHINode>(V)) return PHIVal; 2238 if (Constant *C = dyn_cast<Constant>(V)) return C; 2239 Instruction *I = cast<Instruction>(V); 2240 2241 std::vector<Constant*> Operands; 2242 Operands.resize(I->getNumOperands()); 2243 2244 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2245 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 2246 if (Operands[i] == 0) return 0; 2247 } 2248 2249 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2250 return ConstantFoldCompareInstOperands(CI->getPredicate(), 2251 &Operands[0], Operands.size()); 2252 else 2253 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2254 &Operands[0], Operands.size()); 2255 } 2256 2257 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 2258 /// in the header of its containing loop, we know the loop executes a 2259 /// constant number of times, and the PHI node is just a recurrence 2260 /// involving constants, fold it. 2261 Constant *ScalarEvolutionsImpl:: 2262 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){ 2263 std::map<PHINode*, Constant*>::iterator I = 2264 ConstantEvolutionLoopExitValue.find(PN); 2265 if (I != ConstantEvolutionLoopExitValue.end()) 2266 return I->second; 2267 2268 if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations))) 2269 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 2270 2271 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 2272 2273 // Since the loop is canonicalized, the PHI node must have two entries. One 2274 // entry must be a constant (coming in from outside of the loop), and the 2275 // second must be derived from the same PHI. 2276 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2277 Constant *StartCST = 2278 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2279 if (StartCST == 0) 2280 return RetVal = 0; // Must be a constant. 2281 2282 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2283 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2284 if (PN2 != PN) 2285 return RetVal = 0; // Not derived from same PHI. 2286 2287 // Execute the loop symbolically to determine the exit value. 2288 if (Its.getActiveBits() >= 32) 2289 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 2290 2291 unsigned NumIterations = Its.getZExtValue(); // must be in range 2292 unsigned IterationNum = 0; 2293 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 2294 if (IterationNum == NumIterations) 2295 return RetVal = PHIVal; // Got exit value! 2296 2297 // Compute the value of the PHI node for the next iteration. 2298 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2299 if (NextPHI == PHIVal) 2300 return RetVal = NextPHI; // Stopped evolving! 2301 if (NextPHI == 0) 2302 return 0; // Couldn't evaluate! 2303 PHIVal = NextPHI; 2304 } 2305 } 2306 2307 /// ComputeIterationCountExhaustively - If the trip is known to execute a 2308 /// constant number of times (the condition evolves only from constants), 2309 /// try to evaluate a few iterations of the loop until we get the exit 2310 /// condition gets a value of ExitWhen (true or false). If we cannot 2311 /// evaluate the trip count of the loop, return UnknownValue. 2312 SCEVHandle ScalarEvolutionsImpl:: 2313 ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 2314 PHINode *PN = getConstantEvolvingPHI(Cond, L); 2315 if (PN == 0) return UnknownValue; 2316 2317 // Since the loop is canonicalized, the PHI node must have two entries. One 2318 // entry must be a constant (coming in from outside of the loop), and the 2319 // second must be derived from the same PHI. 2320 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2321 Constant *StartCST = 2322 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2323 if (StartCST == 0) return UnknownValue; // Must be a constant. 2324 2325 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2326 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2327 if (PN2 != PN) return UnknownValue; // Not derived from same PHI. 2328 2329 // Okay, we find a PHI node that defines the trip count of this loop. Execute 2330 // the loop symbolically to determine when the condition gets a value of 2331 // "ExitWhen". 2332 unsigned IterationNum = 0; 2333 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 2334 for (Constant *PHIVal = StartCST; 2335 IterationNum != MaxIterations; ++IterationNum) { 2336 ConstantInt *CondVal = 2337 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 2338 2339 // Couldn't symbolically evaluate. 2340 if (!CondVal) return UnknownValue; 2341 2342 if (CondVal->getValue() == uint64_t(ExitWhen)) { 2343 ConstantEvolutionLoopExitValue[PN] = PHIVal; 2344 ++NumBruteForceTripCountsComputed; 2345 return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum)); 2346 } 2347 2348 // Compute the value of the PHI node for the next iteration. 2349 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2350 if (NextPHI == 0 || NextPHI == PHIVal) 2351 return UnknownValue; // Couldn't evaluate or not making progress... 2352 PHIVal = NextPHI; 2353 } 2354 2355 // Too many iterations were needed to evaluate. 2356 return UnknownValue; 2357 } 2358 2359 /// getSCEVAtScope - Compute the value of the specified expression within the 2360 /// indicated loop (which may be null to indicate in no loop). If the 2361 /// expression cannot be evaluated, return UnknownValue. 2362 SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) { 2363 // FIXME: this should be turned into a virtual method on SCEV! 2364 2365 if (isa<SCEVConstant>(V)) return V; 2366 2367 // If this instruction is evolved from a constant-evolving PHI, compute the 2368 // exit value from the loop without using SCEVs. 2369 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 2370 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 2371 const Loop *LI = this->LI[I->getParent()]; 2372 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 2373 if (PHINode *PN = dyn_cast<PHINode>(I)) 2374 if (PN->getParent() == LI->getHeader()) { 2375 // Okay, there is no closed form solution for the PHI node. Check 2376 // to see if the loop that contains it has a known iteration count. 2377 // If so, we may be able to force computation of the exit value. 2378 SCEVHandle IterationCount = getIterationCount(LI); 2379 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) { 2380 // Okay, we know how many times the containing loop executes. If 2381 // this is a constant evolving PHI node, get the final value at 2382 // the specified iteration number. 2383 Constant *RV = getConstantEvolutionLoopExitValue(PN, 2384 ICC->getValue()->getValue(), 2385 LI); 2386 if (RV) return SE.getUnknown(RV); 2387 } 2388 } 2389 2390 // Okay, this is an expression that we cannot symbolically evaluate 2391 // into a SCEV. Check to see if it's possible to symbolically evaluate 2392 // the arguments into constants, and if so, try to constant propagate the 2393 // result. This is particularly useful for computing loop exit values. 2394 if (CanConstantFold(I)) { 2395 std::vector<Constant*> Operands; 2396 Operands.reserve(I->getNumOperands()); 2397 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2398 Value *Op = I->getOperand(i); 2399 if (Constant *C = dyn_cast<Constant>(Op)) { 2400 Operands.push_back(C); 2401 } else { 2402 // If any of the operands is non-constant and if they are 2403 // non-integer, don't even try to analyze them with scev techniques. 2404 if (!isa<IntegerType>(Op->getType())) 2405 return V; 2406 2407 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 2408 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 2409 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(), 2410 Op->getType(), 2411 false)); 2412 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 2413 if (Constant *C = dyn_cast<Constant>(SU->getValue())) 2414 Operands.push_back(ConstantExpr::getIntegerCast(C, 2415 Op->getType(), 2416 false)); 2417 else 2418 return V; 2419 } else { 2420 return V; 2421 } 2422 } 2423 } 2424 2425 Constant *C; 2426 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2427 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 2428 &Operands[0], Operands.size()); 2429 else 2430 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2431 &Operands[0], Operands.size()); 2432 return SE.getUnknown(C); 2433 } 2434 } 2435 2436 // This is some other type of SCEVUnknown, just return it. 2437 return V; 2438 } 2439 2440 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 2441 // Avoid performing the look-up in the common case where the specified 2442 // expression has no loop-variant portions. 2443 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 2444 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2445 if (OpAtScope != Comm->getOperand(i)) { 2446 if (OpAtScope == UnknownValue) return UnknownValue; 2447 // Okay, at least one of these operands is loop variant but might be 2448 // foldable. Build a new instance of the folded commutative expression. 2449 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); 2450 NewOps.push_back(OpAtScope); 2451 2452 for (++i; i != e; ++i) { 2453 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2454 if (OpAtScope == UnknownValue) return UnknownValue; 2455 NewOps.push_back(OpAtScope); 2456 } 2457 if (isa<SCEVAddExpr>(Comm)) 2458 return SE.getAddExpr(NewOps); 2459 if (isa<SCEVMulExpr>(Comm)) 2460 return SE.getMulExpr(NewOps); 2461 if (isa<SCEVSMaxExpr>(Comm)) 2462 return SE.getSMaxExpr(NewOps); 2463 if (isa<SCEVUMaxExpr>(Comm)) 2464 return SE.getUMaxExpr(NewOps); 2465 assert(0 && "Unknown commutative SCEV type!"); 2466 } 2467 } 2468 // If we got here, all operands are loop invariant. 2469 return Comm; 2470 } 2471 2472 if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 2473 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 2474 if (LHS == UnknownValue) return LHS; 2475 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 2476 if (RHS == UnknownValue) return RHS; 2477 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 2478 return Div; // must be loop invariant 2479 return SE.getUDivExpr(LHS, RHS); 2480 } 2481 2482 // If this is a loop recurrence for a loop that does not contain L, then we 2483 // are dealing with the final value computed by the loop. 2484 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 2485 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 2486 // To evaluate this recurrence, we need to know how many times the AddRec 2487 // loop iterates. Compute this now. 2488 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop()); 2489 if (IterationCount == UnknownValue) return UnknownValue; 2490 2491 // Then, evaluate the AddRec. 2492 return AddRec->evaluateAtIteration(IterationCount, SE); 2493 } 2494 return UnknownValue; 2495 } 2496 2497 //assert(0 && "Unknown SCEV type!"); 2498 return UnknownValue; 2499 } 2500 2501 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 2502 /// following equation: 2503 /// 2504 /// A * X = B (mod N) 2505 /// 2506 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 2507 /// A and B isn't important. 2508 /// 2509 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 2510 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 2511 ScalarEvolution &SE) { 2512 uint32_t BW = A.getBitWidth(); 2513 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 2514 assert(A != 0 && "A must be non-zero."); 2515 2516 // 1. D = gcd(A, N) 2517 // 2518 // The gcd of A and N may have only one prime factor: 2. The number of 2519 // trailing zeros in A is its multiplicity 2520 uint32_t Mult2 = A.countTrailingZeros(); 2521 // D = 2^Mult2 2522 2523 // 2. Check if B is divisible by D. 2524 // 2525 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 2526 // is not less than multiplicity of this prime factor for D. 2527 if (B.countTrailingZeros() < Mult2) 2528 return new SCEVCouldNotCompute(); 2529 2530 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 2531 // modulo (N / D). 2532 // 2533 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 2534 // bit width during computations. 2535 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 2536 APInt Mod(BW + 1, 0); 2537 Mod.set(BW - Mult2); // Mod = N / D 2538 APInt I = AD.multiplicativeInverse(Mod); 2539 2540 // 4. Compute the minimum unsigned root of the equation: 2541 // I * (B / D) mod (N / D) 2542 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 2543 2544 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 2545 // bits. 2546 return SE.getConstant(Result.trunc(BW)); 2547 } 2548 2549 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 2550 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 2551 /// might be the same) or two SCEVCouldNotCompute objects. 2552 /// 2553 static std::pair<SCEVHandle,SCEVHandle> 2554 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 2555 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 2556 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 2557 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 2558 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 2559 2560 // We currently can only solve this if the coefficients are constants. 2561 if (!LC || !MC || !NC) { 2562 SCEV *CNC = new SCEVCouldNotCompute(); 2563 return std::make_pair(CNC, CNC); 2564 } 2565 2566 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 2567 const APInt &L = LC->getValue()->getValue(); 2568 const APInt &M = MC->getValue()->getValue(); 2569 const APInt &N = NC->getValue()->getValue(); 2570 APInt Two(BitWidth, 2); 2571 APInt Four(BitWidth, 4); 2572 2573 { 2574 using namespace APIntOps; 2575 const APInt& C = L; 2576 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 2577 // The B coefficient is M-N/2 2578 APInt B(M); 2579 B -= sdiv(N,Two); 2580 2581 // The A coefficient is N/2 2582 APInt A(N.sdiv(Two)); 2583 2584 // Compute the B^2-4ac term. 2585 APInt SqrtTerm(B); 2586 SqrtTerm *= B; 2587 SqrtTerm -= Four * (A * C); 2588 2589 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 2590 // integer value or else APInt::sqrt() will assert. 2591 APInt SqrtVal(SqrtTerm.sqrt()); 2592 2593 // Compute the two solutions for the quadratic formula. 2594 // The divisions must be performed as signed divisions. 2595 APInt NegB(-B); 2596 APInt TwoA( A << 1 ); 2597 if (TwoA.isMinValue()) { 2598 SCEV *CNC = new SCEVCouldNotCompute(); 2599 return std::make_pair(CNC, CNC); 2600 } 2601 2602 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 2603 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 2604 2605 return std::make_pair(SE.getConstant(Solution1), 2606 SE.getConstant(Solution2)); 2607 } // end APIntOps namespace 2608 } 2609 2610 /// HowFarToZero - Return the number of times a backedge comparing the specified 2611 /// value to zero will execute. If not computable, return UnknownValue 2612 SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) { 2613 // If the value is a constant 2614 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2615 // If the value is already zero, the branch will execute zero times. 2616 if (C->getValue()->isZero()) return C; 2617 return UnknownValue; // Otherwise it will loop infinitely. 2618 } 2619 2620 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 2621 if (!AddRec || AddRec->getLoop() != L) 2622 return UnknownValue; 2623 2624 if (AddRec->isAffine()) { 2625 // If this is an affine expression, the execution count of this branch is 2626 // the minimum unsigned root of the following equation: 2627 // 2628 // Start + Step*N = 0 (mod 2^BW) 2629 // 2630 // equivalent to: 2631 // 2632 // Step*N = -Start (mod 2^BW) 2633 // 2634 // where BW is the common bit width of Start and Step. 2635 2636 // Get the initial value for the loop. 2637 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 2638 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; 2639 2640 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 2641 2642 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 2643 // For now we handle only constant steps. 2644 2645 // First, handle unitary steps. 2646 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 2647 return SE.getNegativeSCEV(Start); // N = -Start (as unsigned) 2648 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 2649 return Start; // N = Start (as unsigned) 2650 2651 // Then, try to solve the above equation provided that Start is constant. 2652 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 2653 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 2654 -StartC->getValue()->getValue(),SE); 2655 } 2656 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 2657 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 2658 // the quadratic equation to solve it. 2659 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE); 2660 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2661 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2662 if (R1) { 2663 #if 0 2664 cerr << "HFTZ: " << *V << " - sol#1: " << *R1 2665 << " sol#2: " << *R2 << "\n"; 2666 #endif 2667 // Pick the smallest positive root value. 2668 if (ConstantInt *CB = 2669 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2670 R1->getValue(), R2->getValue()))) { 2671 if (CB->getZExtValue() == false) 2672 std::swap(R1, R2); // R1 is the minimum root now. 2673 2674 // We can only use this value if the chrec ends up with an exact zero 2675 // value at this index. When solving for "X*X != 5", for example, we 2676 // should not accept a root of 2. 2677 SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE); 2678 if (Val->isZero()) 2679 return R1; // We found a quadratic root! 2680 } 2681 } 2682 } 2683 2684 return UnknownValue; 2685 } 2686 2687 /// HowFarToNonZero - Return the number of times a backedge checking the 2688 /// specified value for nonzero will execute. If not computable, return 2689 /// UnknownValue 2690 SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) { 2691 // Loops that look like: while (X == 0) are very strange indeed. We don't 2692 // handle them yet except for the trivial case. This could be expanded in the 2693 // future as needed. 2694 2695 // If the value is a constant, check to see if it is known to be non-zero 2696 // already. If so, the backedge will execute zero times. 2697 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2698 if (!C->getValue()->isNullValue()) 2699 return SE.getIntegerSCEV(0, C->getType()); 2700 return UnknownValue; // Otherwise it will loop infinitely. 2701 } 2702 2703 // We could implement others, but I really doubt anyone writes loops like 2704 // this, and if they did, they would already be constant folded. 2705 return UnknownValue; 2706 } 2707 2708 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 2709 /// (which may not be an immediate predecessor) which has exactly one 2710 /// successor from which BB is reachable, or null if no such block is 2711 /// found. 2712 /// 2713 BasicBlock * 2714 ScalarEvolutionsImpl::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 2715 // If the block has a unique predecessor, the predecessor must have 2716 // no other successors from which BB is reachable. 2717 if (BasicBlock *Pred = BB->getSinglePredecessor()) 2718 return Pred; 2719 2720 // A loop's header is defined to be a block that dominates the loop. 2721 // If the loop has a preheader, it must be a block that has exactly 2722 // one successor that can reach BB. This is slightly more strict 2723 // than necessary, but works if critical edges are split. 2724 if (Loop *L = LI.getLoopFor(BB)) 2725 return L->getLoopPreheader(); 2726 2727 return 0; 2728 } 2729 2730 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 2731 /// a conditional between LHS and RHS. 2732 bool ScalarEvolutionsImpl::isLoopGuardedByCond(const Loop *L, 2733 ICmpInst::Predicate Pred, 2734 SCEV *LHS, SCEV *RHS) { 2735 BasicBlock *Preheader = L->getLoopPreheader(); 2736 BasicBlock *PreheaderDest = L->getHeader(); 2737 2738 // Starting at the preheader, climb up the predecessor chain, as long as 2739 // there are predecessors that can be found that have unique successors 2740 // leading to the original header. 2741 for (; Preheader; 2742 PreheaderDest = Preheader, 2743 Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) { 2744 2745 BranchInst *LoopEntryPredicate = 2746 dyn_cast<BranchInst>(Preheader->getTerminator()); 2747 if (!LoopEntryPredicate || 2748 LoopEntryPredicate->isUnconditional()) 2749 continue; 2750 2751 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 2752 if (!ICI) continue; 2753 2754 // Now that we found a conditional branch that dominates the loop, check to 2755 // see if it is the comparison we are looking for. 2756 Value *PreCondLHS = ICI->getOperand(0); 2757 Value *PreCondRHS = ICI->getOperand(1); 2758 ICmpInst::Predicate Cond; 2759 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) 2760 Cond = ICI->getPredicate(); 2761 else 2762 Cond = ICI->getInversePredicate(); 2763 2764 if (Cond == Pred) 2765 ; // An exact match. 2766 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) 2767 ; // The actual condition is beyond sufficient. 2768 else 2769 // Check a few special cases. 2770 switch (Cond) { 2771 case ICmpInst::ICMP_UGT: 2772 if (Pred == ICmpInst::ICMP_ULT) { 2773 std::swap(PreCondLHS, PreCondRHS); 2774 Cond = ICmpInst::ICMP_ULT; 2775 break; 2776 } 2777 continue; 2778 case ICmpInst::ICMP_SGT: 2779 if (Pred == ICmpInst::ICMP_SLT) { 2780 std::swap(PreCondLHS, PreCondRHS); 2781 Cond = ICmpInst::ICMP_SLT; 2782 break; 2783 } 2784 continue; 2785 case ICmpInst::ICMP_NE: 2786 // Expressions like (x >u 0) are often canonicalized to (x != 0), 2787 // so check for this case by checking if the NE is comparing against 2788 // a minimum or maximum constant. 2789 if (!ICmpInst::isTrueWhenEqual(Pred)) 2790 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { 2791 const APInt &A = CI->getValue(); 2792 switch (Pred) { 2793 case ICmpInst::ICMP_SLT: 2794 if (A.isMaxSignedValue()) break; 2795 continue; 2796 case ICmpInst::ICMP_SGT: 2797 if (A.isMinSignedValue()) break; 2798 continue; 2799 case ICmpInst::ICMP_ULT: 2800 if (A.isMaxValue()) break; 2801 continue; 2802 case ICmpInst::ICMP_UGT: 2803 if (A.isMinValue()) break; 2804 continue; 2805 default: 2806 continue; 2807 } 2808 Cond = ICmpInst::ICMP_NE; 2809 // NE is symmetric but the original comparison may not be. Swap 2810 // the operands if necessary so that they match below. 2811 if (isa<SCEVConstant>(LHS)) 2812 std::swap(PreCondLHS, PreCondRHS); 2813 break; 2814 } 2815 continue; 2816 default: 2817 // We weren't able to reconcile the condition. 2818 continue; 2819 } 2820 2821 if (!PreCondLHS->getType()->isInteger()) continue; 2822 2823 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); 2824 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); 2825 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) || 2826 (LHS == SE.getNotSCEV(PreCondRHSSCEV) && 2827 RHS == SE.getNotSCEV(PreCondLHSSCEV))) 2828 return true; 2829 } 2830 2831 return false; 2832 } 2833 2834 /// HowManyLessThans - Return the number of times a backedge containing the 2835 /// specified less-than comparison will execute. If not computable, return 2836 /// UnknownValue. 2837 SCEVHandle ScalarEvolutionsImpl:: 2838 HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) { 2839 // Only handle: "ADDREC < LoopInvariant". 2840 if (!RHS->isLoopInvariant(L)) return UnknownValue; 2841 2842 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 2843 if (!AddRec || AddRec->getLoop() != L) 2844 return UnknownValue; 2845 2846 if (AddRec->isAffine()) { 2847 // FORNOW: We only support unit strides. 2848 SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType()); 2849 if (AddRec->getOperand(1) != One) 2850 return UnknownValue; 2851 2852 // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant 2853 // m. So, we count the number of iterations in which {n,+,1} < m is true. 2854 // Note that we cannot simply return max(m-n,0) because it's not safe to 2855 // treat m-n as signed nor unsigned due to overflow possibility. 2856 2857 // First, we get the value of the LHS in the first iteration: n 2858 SCEVHandle Start = AddRec->getOperand(0); 2859 2860 if (isLoopGuardedByCond(L, 2861 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2862 SE.getMinusSCEV(AddRec->getOperand(0), One), RHS)) { 2863 // Since we know that the condition is true in order to enter the loop, 2864 // we know that it will run exactly m-n times. 2865 return SE.getMinusSCEV(RHS, Start); 2866 } else { 2867 // Then, we get the value of the LHS in the first iteration in which the 2868 // above condition doesn't hold. This equals to max(m,n). 2869 SCEVHandle End = isSigned ? SE.getSMaxExpr(RHS, Start) 2870 : SE.getUMaxExpr(RHS, Start); 2871 2872 // Finally, we subtract these two values to get the number of times the 2873 // backedge is executed: max(m,n)-n. 2874 return SE.getMinusSCEV(End, Start); 2875 } 2876 } 2877 2878 return UnknownValue; 2879 } 2880 2881 /// getNumIterationsInRange - Return the number of iterations of this loop that 2882 /// produce values in the specified constant range. Another way of looking at 2883 /// this is that it returns the first iteration number where the value is not in 2884 /// the condition, thus computing the exit count. If the iteration count can't 2885 /// be computed, an instance of SCEVCouldNotCompute is returned. 2886 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 2887 ScalarEvolution &SE) const { 2888 if (Range.isFullSet()) // Infinite loop. 2889 return new SCEVCouldNotCompute(); 2890 2891 // If the start is a non-zero constant, shift the range to simplify things. 2892 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 2893 if (!SC->getValue()->isZero()) { 2894 std::vector<SCEVHandle> Operands(op_begin(), op_end()); 2895 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 2896 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 2897 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 2898 return ShiftedAddRec->getNumIterationsInRange( 2899 Range.subtract(SC->getValue()->getValue()), SE); 2900 // This is strange and shouldn't happen. 2901 return new SCEVCouldNotCompute(); 2902 } 2903 2904 // The only time we can solve this is when we have all constant indices. 2905 // Otherwise, we cannot determine the overflow conditions. 2906 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 2907 if (!isa<SCEVConstant>(getOperand(i))) 2908 return new SCEVCouldNotCompute(); 2909 2910 2911 // Okay at this point we know that all elements of the chrec are constants and 2912 // that the start element is zero. 2913 2914 // First check to see if the range contains zero. If not, the first 2915 // iteration exits. 2916 if (!Range.contains(APInt(getBitWidth(),0))) 2917 return SE.getConstant(ConstantInt::get(getType(),0)); 2918 2919 if (isAffine()) { 2920 // If this is an affine expression then we have this situation: 2921 // Solve {0,+,A} in Range === Ax in Range 2922 2923 // We know that zero is in the range. If A is positive then we know that 2924 // the upper value of the range must be the first possible exit value. 2925 // If A is negative then the lower of the range is the last possible loop 2926 // value. Also note that we already checked for a full range. 2927 APInt One(getBitWidth(),1); 2928 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 2929 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 2930 2931 // The exit value should be (End+A)/A. 2932 APInt ExitVal = (End + A).udiv(A); 2933 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 2934 2935 // Evaluate at the exit value. If we really did fall out of the valid 2936 // range, then we computed our trip count, otherwise wrap around or other 2937 // things must have happened. 2938 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 2939 if (Range.contains(Val->getValue())) 2940 return new SCEVCouldNotCompute(); // Something strange happened 2941 2942 // Ensure that the previous value is in the range. This is a sanity check. 2943 assert(Range.contains( 2944 EvaluateConstantChrecAtConstant(this, 2945 ConstantInt::get(ExitVal - One), SE)->getValue()) && 2946 "Linear scev computation is off in a bad way!"); 2947 return SE.getConstant(ExitValue); 2948 } else if (isQuadratic()) { 2949 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 2950 // quadratic equation to solve it. To do this, we must frame our problem in 2951 // terms of figuring out when zero is crossed, instead of when 2952 // Range.getUpper() is crossed. 2953 std::vector<SCEVHandle> NewOps(op_begin(), op_end()); 2954 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 2955 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 2956 2957 // Next, solve the constructed addrec 2958 std::pair<SCEVHandle,SCEVHandle> Roots = 2959 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 2960 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2961 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2962 if (R1) { 2963 // Pick the smallest positive root value. 2964 if (ConstantInt *CB = 2965 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2966 R1->getValue(), R2->getValue()))) { 2967 if (CB->getZExtValue() == false) 2968 std::swap(R1, R2); // R1 is the minimum root now. 2969 2970 // Make sure the root is not off by one. The returned iteration should 2971 // not be in the range, but the previous one should be. When solving 2972 // for "X*X < 5", for example, we should not return a root of 2. 2973 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 2974 R1->getValue(), 2975 SE); 2976 if (Range.contains(R1Val->getValue())) { 2977 // The next iteration must be out of the range... 2978 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 2979 2980 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 2981 if (!Range.contains(R1Val->getValue())) 2982 return SE.getConstant(NextVal); 2983 return new SCEVCouldNotCompute(); // Something strange happened 2984 } 2985 2986 // If R1 was not in the range, then it is a good return value. Make 2987 // sure that R1-1 WAS in the range though, just in case. 2988 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 2989 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 2990 if (Range.contains(R1Val->getValue())) 2991 return R1; 2992 return new SCEVCouldNotCompute(); // Something strange happened 2993 } 2994 } 2995 } 2996 2997 return new SCEVCouldNotCompute(); 2998 } 2999 3000 3001 3002 //===----------------------------------------------------------------------===// 3003 // ScalarEvolution Class Implementation 3004 //===----------------------------------------------------------------------===// 3005 3006 bool ScalarEvolution::runOnFunction(Function &F) { 3007 Impl = new ScalarEvolutionsImpl(*this, F, getAnalysis<LoopInfo>()); 3008 return false; 3009 } 3010 3011 void ScalarEvolution::releaseMemory() { 3012 delete (ScalarEvolutionsImpl*)Impl; 3013 Impl = 0; 3014 } 3015 3016 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 3017 AU.setPreservesAll(); 3018 AU.addRequiredTransitive<LoopInfo>(); 3019 } 3020 3021 SCEVHandle ScalarEvolution::getSCEV(Value *V) const { 3022 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V); 3023 } 3024 3025 /// hasSCEV - Return true if the SCEV for this value has already been 3026 /// computed. 3027 bool ScalarEvolution::hasSCEV(Value *V) const { 3028 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V); 3029 } 3030 3031 3032 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 3033 /// the specified value. 3034 void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) { 3035 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H); 3036 } 3037 3038 3039 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, 3040 ICmpInst::Predicate Pred, 3041 SCEV *LHS, SCEV *RHS) { 3042 return ((ScalarEvolutionsImpl*)Impl)->isLoopGuardedByCond(L, Pred, 3043 LHS, RHS); 3044 } 3045 3046 SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const { 3047 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L); 3048 } 3049 3050 bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const { 3051 return !isa<SCEVCouldNotCompute>(getIterationCount(L)); 3052 } 3053 3054 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const { 3055 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L); 3056 } 3057 3058 void ScalarEvolution::deleteValueFromRecords(Value *V) const { 3059 return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V); 3060 } 3061 3062 static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, 3063 const Loop *L) { 3064 // Print all inner loops first 3065 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3066 PrintLoopInfo(OS, SE, *I); 3067 3068 OS << "Loop " << L->getHeader()->getName() << ": "; 3069 3070 SmallVector<BasicBlock*, 8> ExitBlocks; 3071 L->getExitBlocks(ExitBlocks); 3072 if (ExitBlocks.size() != 1) 3073 OS << "<multiple exits> "; 3074 3075 if (SE->hasLoopInvariantIterationCount(L)) { 3076 OS << *SE->getIterationCount(L) << " iterations! "; 3077 } else { 3078 OS << "Unpredictable iteration count. "; 3079 } 3080 3081 OS << "\n"; 3082 } 3083 3084 void ScalarEvolution::print(std::ostream &OS, const Module* ) const { 3085 Function &F = ((ScalarEvolutionsImpl*)Impl)->F; 3086 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI; 3087 3088 OS << "Classifying expressions for: " << F.getName() << "\n"; 3089 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 3090 if (I->getType()->isInteger()) { 3091 OS << *I; 3092 OS << " --> "; 3093 SCEVHandle SV = getSCEV(&*I); 3094 SV->print(OS); 3095 OS << "\t\t"; 3096 3097 if (const Loop *L = LI.getLoopFor((*I).getParent())) { 3098 OS << "Exits: "; 3099 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop()); 3100 if (isa<SCEVCouldNotCompute>(ExitValue)) { 3101 OS << "<<Unknown>>"; 3102 } else { 3103 OS << *ExitValue; 3104 } 3105 } 3106 3107 3108 OS << "\n"; 3109 } 3110 3111 OS << "Determining loop execution counts for: " << F.getName() << "\n"; 3112 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 3113 PrintLoopInfo(OS, this, *I); 3114 } 3115