1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/LoopInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Assembly/Writer.h" 75 #include "llvm/Target/TargetData.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/GetElementPtrTypeIterator.h" 81 #include "llvm/Support/InstIterator.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/ADT/Statistic.h" 85 #include "llvm/ADT/STLExtras.h" 86 #include "llvm/ADT/SmallPtrSet.h" 87 #include <algorithm> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant " 103 "derived loop"), 104 cl::init(100)); 105 106 INITIALIZE_PASS(ScalarEvolution, "scalar-evolution", 107 "Scalar Evolution Analysis", false, true); 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 118 SCEV::~SCEV() {} 119 120 void SCEV::dump() const { 121 print(dbgs()); 122 dbgs() << '\n'; 123 } 124 125 bool SCEV::isZero() const { 126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 127 return SC->getValue()->isZero(); 128 return false; 129 } 130 131 bool SCEV::isOne() const { 132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 133 return SC->getValue()->isOne(); 134 return false; 135 } 136 137 bool SCEV::isAllOnesValue() const { 138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 139 return SC->getValue()->isAllOnesValue(); 140 return false; 141 } 142 143 SCEVCouldNotCompute::SCEVCouldNotCompute() : 144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 145 146 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 148 return false; 149 } 150 151 const Type *SCEVCouldNotCompute::getType() const { 152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 153 return 0; 154 } 155 156 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 158 return false; 159 } 160 161 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const { 162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 163 return false; 164 } 165 166 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 167 OS << "***COULDNOTCOMPUTE***"; 168 } 169 170 bool SCEVCouldNotCompute::classof(const SCEV *S) { 171 return S->getSCEVType() == scCouldNotCompute; 172 } 173 174 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 175 FoldingSetNodeID ID; 176 ID.AddInteger(scConstant); 177 ID.AddPointer(V); 178 void *IP = 0; 179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 181 UniqueSCEVs.InsertNode(S, IP); 182 return S; 183 } 184 185 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 186 return getConstant(ConstantInt::get(getContext(), Val)); 187 } 188 189 const SCEV * 190 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 192 return getConstant(ConstantInt::get(ITy, V, isSigned)); 193 } 194 195 const Type *SCEVConstant::getType() const { return V->getType(); } 196 197 void SCEVConstant::print(raw_ostream &OS) const { 198 WriteAsOperand(OS, V, false); 199 } 200 201 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 202 unsigned SCEVTy, const SCEV *op, const Type *ty) 203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 204 205 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 206 return Op->dominates(BB, DT); 207 } 208 209 bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 210 return Op->properlyDominates(BB, DT); 211 } 212 213 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 214 const SCEV *op, const Type *ty) 215 : SCEVCastExpr(ID, scTruncate, op, ty) { 216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 217 (Ty->isIntegerTy() || Ty->isPointerTy()) && 218 "Cannot truncate non-integer value!"); 219 } 220 221 void SCEVTruncateExpr::print(raw_ostream &OS) const { 222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 223 } 224 225 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 226 const SCEV *op, const Type *ty) 227 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 229 (Ty->isIntegerTy() || Ty->isPointerTy()) && 230 "Cannot zero extend non-integer value!"); 231 } 232 233 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 235 } 236 237 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 238 const SCEV *op, const Type *ty) 239 : SCEVCastExpr(ID, scSignExtend, op, ty) { 240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 241 (Ty->isIntegerTy() || Ty->isPointerTy()) && 242 "Cannot sign extend non-integer value!"); 243 } 244 245 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 247 } 248 249 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 250 const char *OpStr = getOperationStr(); 251 OS << "("; 252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) { 253 OS << **I; 254 if (llvm::next(I) != E) 255 OS << OpStr; 256 } 257 OS << ")"; 258 } 259 260 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 262 if (!getOperand(i)->dominates(BB, DT)) 263 return false; 264 } 265 return true; 266 } 267 268 bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 270 if (!getOperand(i)->properlyDominates(BB, DT)) 271 return false; 272 } 273 return true; 274 } 275 276 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 278 } 279 280 bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT); 282 } 283 284 void SCEVUDivExpr::print(raw_ostream &OS) const { 285 OS << "(" << *LHS << " /u " << *RHS << ")"; 286 } 287 288 const Type *SCEVUDivExpr::getType() const { 289 // In most cases the types of LHS and RHS will be the same, but in some 290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 291 // depend on the type for correctness, but handling types carefully can 292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 293 // a pointer type than the RHS, so use the RHS' type here. 294 return RHS->getType(); 295 } 296 297 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 298 // Add recurrences are never invariant in the function-body (null loop). 299 if (!QueryLoop) 300 return false; 301 302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. 303 if (QueryLoop->contains(L)) 304 return false; 305 306 // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop. 307 if (L->contains(QueryLoop)) 308 return true; 309 310 // This recurrence is variant w.r.t. QueryLoop if any of its operands 311 // are variant. 312 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 313 if (!getOperand(i)->isLoopInvariant(QueryLoop)) 314 return false; 315 316 // Otherwise it's loop-invariant. 317 return true; 318 } 319 320 bool 321 SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 322 return DT->dominates(L->getHeader(), BB) && 323 SCEVNAryExpr::dominates(BB, DT); 324 } 325 326 bool 327 SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 328 // This uses a "dominates" query instead of "properly dominates" query because 329 // the instruction which produces the addrec's value is a PHI, and a PHI 330 // effectively properly dominates its entire containing block. 331 return DT->dominates(L->getHeader(), BB) && 332 SCEVNAryExpr::properlyDominates(BB, DT); 333 } 334 335 void SCEVAddRecExpr::print(raw_ostream &OS) const { 336 OS << "{" << *Operands[0]; 337 for (unsigned i = 1, e = NumOperands; i != e; ++i) 338 OS << ",+," << *Operands[i]; 339 OS << "}<"; 340 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 341 OS << ">"; 342 } 343 344 void SCEVUnknown::deleted() { 345 // Clear this SCEVUnknown from ValuesAtScopes. 346 SE->ValuesAtScopes.erase(this); 347 348 // Remove this SCEVUnknown from the uniquing map. 349 SE->UniqueSCEVs.RemoveNode(this); 350 351 // Release the value. 352 setValPtr(0); 353 } 354 355 void SCEVUnknown::allUsesReplacedWith(Value *New) { 356 // Clear this SCEVUnknown from ValuesAtScopes. 357 SE->ValuesAtScopes.erase(this); 358 359 // Remove this SCEVUnknown from the uniquing map. 360 SE->UniqueSCEVs.RemoveNode(this); 361 362 // Update this SCEVUnknown to point to the new value. This is needed 363 // because there may still be outstanding SCEVs which still point to 364 // this SCEVUnknown. 365 setValPtr(New); 366 } 367 368 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 369 // All non-instruction values are loop invariant. All instructions are loop 370 // invariant if they are not contained in the specified loop. 371 // Instructions are never considered invariant in the function body 372 // (null loop) because they are defined within the "loop". 373 if (Instruction *I = dyn_cast<Instruction>(getValue())) 374 return L && !L->contains(I); 375 return true; 376 } 377 378 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 379 if (Instruction *I = dyn_cast<Instruction>(getValue())) 380 return DT->dominates(I->getParent(), BB); 381 return true; 382 } 383 384 bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 385 if (Instruction *I = dyn_cast<Instruction>(getValue())) 386 return DT->properlyDominates(I->getParent(), BB); 387 return true; 388 } 389 390 const Type *SCEVUnknown::getType() const { 391 return getValue()->getType(); 392 } 393 394 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { 395 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 396 if (VCE->getOpcode() == Instruction::PtrToInt) 397 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 398 if (CE->getOpcode() == Instruction::GetElementPtr && 399 CE->getOperand(0)->isNullValue() && 400 CE->getNumOperands() == 2) 401 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 402 if (CI->isOne()) { 403 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 404 ->getElementType(); 405 return true; 406 } 407 408 return false; 409 } 410 411 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { 412 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 413 if (VCE->getOpcode() == Instruction::PtrToInt) 414 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 415 if (CE->getOpcode() == Instruction::GetElementPtr && 416 CE->getOperand(0)->isNullValue()) { 417 const Type *Ty = 418 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 419 if (const StructType *STy = dyn_cast<StructType>(Ty)) 420 if (!STy->isPacked() && 421 CE->getNumOperands() == 3 && 422 CE->getOperand(1)->isNullValue()) { 423 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 424 if (CI->isOne() && 425 STy->getNumElements() == 2 && 426 STy->getElementType(0)->isIntegerTy(1)) { 427 AllocTy = STy->getElementType(1); 428 return true; 429 } 430 } 431 } 432 433 return false; 434 } 435 436 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const { 437 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 438 if (VCE->getOpcode() == Instruction::PtrToInt) 439 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 440 if (CE->getOpcode() == Instruction::GetElementPtr && 441 CE->getNumOperands() == 3 && 442 CE->getOperand(0)->isNullValue() && 443 CE->getOperand(1)->isNullValue()) { 444 const Type *Ty = 445 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 446 // Ignore vector types here so that ScalarEvolutionExpander doesn't 447 // emit getelementptrs that index into vectors. 448 if (Ty->isStructTy() || Ty->isArrayTy()) { 449 CTy = Ty; 450 FieldNo = CE->getOperand(2); 451 return true; 452 } 453 } 454 455 return false; 456 } 457 458 void SCEVUnknown::print(raw_ostream &OS) const { 459 const Type *AllocTy; 460 if (isSizeOf(AllocTy)) { 461 OS << "sizeof(" << *AllocTy << ")"; 462 return; 463 } 464 if (isAlignOf(AllocTy)) { 465 OS << "alignof(" << *AllocTy << ")"; 466 return; 467 } 468 469 const Type *CTy; 470 Constant *FieldNo; 471 if (isOffsetOf(CTy, FieldNo)) { 472 OS << "offsetof(" << *CTy << ", "; 473 WriteAsOperand(OS, FieldNo, false); 474 OS << ")"; 475 return; 476 } 477 478 // Otherwise just print it normally. 479 WriteAsOperand(OS, getValue(), false); 480 } 481 482 //===----------------------------------------------------------------------===// 483 // SCEV Utilities 484 //===----------------------------------------------------------------------===// 485 486 namespace { 487 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 488 /// than the complexity of the RHS. This comparator is used to canonicalize 489 /// expressions. 490 class SCEVComplexityCompare { 491 const LoopInfo *const LI; 492 public: 493 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 494 495 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 496 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 497 if (LHS == RHS) 498 return false; 499 500 // Primarily, sort the SCEVs by their getSCEVType(). 501 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 502 if (LType != RType) 503 return LType < RType; 504 505 // Aside from the getSCEVType() ordering, the particular ordering 506 // isn't very important except that it's beneficial to be consistent, 507 // so that (a + b) and (b + a) don't end up as different expressions. 508 509 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 510 // not as complete as it could be. 511 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 512 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 513 const Value *LV = LU->getValue(), *RV = RU->getValue(); 514 515 // Order pointer values after integer values. This helps SCEVExpander 516 // form GEPs. 517 bool LIsPointer = LV->getType()->isPointerTy(), 518 RIsPointer = RV->getType()->isPointerTy(); 519 if (LIsPointer != RIsPointer) 520 return RIsPointer; 521 522 // Compare getValueID values. 523 unsigned LID = LV->getValueID(), 524 RID = RV->getValueID(); 525 if (LID != RID) 526 return LID < RID; 527 528 // Sort arguments by their position. 529 if (const Argument *LA = dyn_cast<Argument>(LV)) { 530 const Argument *RA = cast<Argument>(RV); 531 return LA->getArgNo() < RA->getArgNo(); 532 } 533 534 // For instructions, compare their loop depth, and their opcode. 535 // This is pretty loose. 536 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 537 const Instruction *RInst = cast<Instruction>(RV); 538 539 // Compare loop depths. 540 const BasicBlock *LParent = LInst->getParent(), 541 *RParent = RInst->getParent(); 542 if (LParent != RParent) { 543 unsigned LDepth = LI->getLoopDepth(LParent), 544 RDepth = LI->getLoopDepth(RParent); 545 if (LDepth != RDepth) 546 return LDepth < RDepth; 547 } 548 549 // Compare the number of operands. 550 unsigned LNumOps = LInst->getNumOperands(), 551 RNumOps = RInst->getNumOperands(); 552 if (LNumOps != RNumOps) 553 return LNumOps < RNumOps; 554 } 555 556 return false; 557 } 558 559 // Compare constant values. 560 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 561 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 562 const ConstantInt *LCC = LC->getValue(); 563 const ConstantInt *RCC = RC->getValue(); 564 unsigned LBitWidth = LCC->getBitWidth(), RBitWidth = RCC->getBitWidth(); 565 if (LBitWidth != RBitWidth) 566 return LBitWidth < RBitWidth; 567 return LCC->getValue().ult(RCC->getValue()); 568 } 569 570 // Compare addrec loop depths. 571 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 572 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 573 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 574 if (LLoop != RLoop) { 575 unsigned LDepth = LLoop->getLoopDepth(), 576 RDepth = RLoop->getLoopDepth(); 577 if (LDepth != RDepth) 578 return LDepth < RDepth; 579 } 580 } 581 582 // Lexicographically compare n-ary expressions. 583 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 584 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 585 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 586 for (unsigned i = 0; i != LNumOps; ++i) { 587 if (i >= RNumOps) 588 return false; 589 const SCEV *LOp = LC->getOperand(i), *ROp = RC->getOperand(i); 590 if (operator()(LOp, ROp)) 591 return true; 592 if (operator()(ROp, LOp)) 593 return false; 594 } 595 return LNumOps < RNumOps; 596 } 597 598 // Lexicographically compare udiv expressions. 599 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 601 const SCEV *LL = LC->getLHS(), *LR = LC->getRHS(), 602 *RL = RC->getLHS(), *RR = RC->getRHS(); 603 if (operator()(LL, RL)) 604 return true; 605 if (operator()(RL, LL)) 606 return false; 607 if (operator()(LR, RR)) 608 return true; 609 if (operator()(RR, LR)) 610 return false; 611 return false; 612 } 613 614 // Compare cast expressions by operand. 615 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 616 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 617 return operator()(LC->getOperand(), RC->getOperand()); 618 } 619 620 llvm_unreachable("Unknown SCEV kind!"); 621 return false; 622 } 623 }; 624 } 625 626 /// GroupByComplexity - Given a list of SCEV objects, order them by their 627 /// complexity, and group objects of the same complexity together by value. 628 /// When this routine is finished, we know that any duplicates in the vector are 629 /// consecutive and that complexity is monotonically increasing. 630 /// 631 /// Note that we go take special precautions to ensure that we get deterministic 632 /// results from this routine. In other words, we don't want the results of 633 /// this to depend on where the addresses of various SCEV objects happened to 634 /// land in memory. 635 /// 636 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 637 LoopInfo *LI) { 638 if (Ops.size() < 2) return; // Noop 639 if (Ops.size() == 2) { 640 // This is the common case, which also happens to be trivially simple. 641 // Special case it. 642 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 643 std::swap(Ops[0], Ops[1]); 644 return; 645 } 646 647 // Do the rough sort by complexity. 648 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 649 650 // Now that we are sorted by complexity, group elements of the same 651 // complexity. Note that this is, at worst, N^2, but the vector is likely to 652 // be extremely short in practice. Note that we take this approach because we 653 // do not want to depend on the addresses of the objects we are grouping. 654 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 655 const SCEV *S = Ops[i]; 656 unsigned Complexity = S->getSCEVType(); 657 658 // If there are any objects of the same complexity and same value as this 659 // one, group them. 660 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 661 if (Ops[j] == S) { // Found a duplicate. 662 // Move it to immediately after i'th element. 663 std::swap(Ops[i+1], Ops[j]); 664 ++i; // no need to rescan it. 665 if (i == e-2) return; // Done! 666 } 667 } 668 } 669 } 670 671 672 673 //===----------------------------------------------------------------------===// 674 // Simple SCEV method implementations 675 //===----------------------------------------------------------------------===// 676 677 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 678 /// Assume, K > 0. 679 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 680 ScalarEvolution &SE, 681 const Type* ResultTy) { 682 // Handle the simplest case efficiently. 683 if (K == 1) 684 return SE.getTruncateOrZeroExtend(It, ResultTy); 685 686 // We are using the following formula for BC(It, K): 687 // 688 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 689 // 690 // Suppose, W is the bitwidth of the return value. We must be prepared for 691 // overflow. Hence, we must assure that the result of our computation is 692 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 693 // safe in modular arithmetic. 694 // 695 // However, this code doesn't use exactly that formula; the formula it uses 696 // is something like the following, where T is the number of factors of 2 in 697 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 698 // exponentiation: 699 // 700 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 701 // 702 // This formula is trivially equivalent to the previous formula. However, 703 // this formula can be implemented much more efficiently. The trick is that 704 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 705 // arithmetic. To do exact division in modular arithmetic, all we have 706 // to do is multiply by the inverse. Therefore, this step can be done at 707 // width W. 708 // 709 // The next issue is how to safely do the division by 2^T. The way this 710 // is done is by doing the multiplication step at a width of at least W + T 711 // bits. This way, the bottom W+T bits of the product are accurate. Then, 712 // when we perform the division by 2^T (which is equivalent to a right shift 713 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 714 // truncated out after the division by 2^T. 715 // 716 // In comparison to just directly using the first formula, this technique 717 // is much more efficient; using the first formula requires W * K bits, 718 // but this formula less than W + K bits. Also, the first formula requires 719 // a division step, whereas this formula only requires multiplies and shifts. 720 // 721 // It doesn't matter whether the subtraction step is done in the calculation 722 // width or the input iteration count's width; if the subtraction overflows, 723 // the result must be zero anyway. We prefer here to do it in the width of 724 // the induction variable because it helps a lot for certain cases; CodeGen 725 // isn't smart enough to ignore the overflow, which leads to much less 726 // efficient code if the width of the subtraction is wider than the native 727 // register width. 728 // 729 // (It's possible to not widen at all by pulling out factors of 2 before 730 // the multiplication; for example, K=2 can be calculated as 731 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 732 // extra arithmetic, so it's not an obvious win, and it gets 733 // much more complicated for K > 3.) 734 735 // Protection from insane SCEVs; this bound is conservative, 736 // but it probably doesn't matter. 737 if (K > 1000) 738 return SE.getCouldNotCompute(); 739 740 unsigned W = SE.getTypeSizeInBits(ResultTy); 741 742 // Calculate K! / 2^T and T; we divide out the factors of two before 743 // multiplying for calculating K! / 2^T to avoid overflow. 744 // Other overflow doesn't matter because we only care about the bottom 745 // W bits of the result. 746 APInt OddFactorial(W, 1); 747 unsigned T = 1; 748 for (unsigned i = 3; i <= K; ++i) { 749 APInt Mult(W, i); 750 unsigned TwoFactors = Mult.countTrailingZeros(); 751 T += TwoFactors; 752 Mult = Mult.lshr(TwoFactors); 753 OddFactorial *= Mult; 754 } 755 756 // We need at least W + T bits for the multiplication step 757 unsigned CalculationBits = W + T; 758 759 // Calculate 2^T, at width T+W. 760 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 761 762 // Calculate the multiplicative inverse of K! / 2^T; 763 // this multiplication factor will perform the exact division by 764 // K! / 2^T. 765 APInt Mod = APInt::getSignedMinValue(W+1); 766 APInt MultiplyFactor = OddFactorial.zext(W+1); 767 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 768 MultiplyFactor = MultiplyFactor.trunc(W); 769 770 // Calculate the product, at width T+W 771 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 772 CalculationBits); 773 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 774 for (unsigned i = 1; i != K; ++i) { 775 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 776 Dividend = SE.getMulExpr(Dividend, 777 SE.getTruncateOrZeroExtend(S, CalculationTy)); 778 } 779 780 // Divide by 2^T 781 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 782 783 // Truncate the result, and divide by K! / 2^T. 784 785 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 786 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 787 } 788 789 /// evaluateAtIteration - Return the value of this chain of recurrences at 790 /// the specified iteration number. We can evaluate this recurrence by 791 /// multiplying each element in the chain by the binomial coefficient 792 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 793 /// 794 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 795 /// 796 /// where BC(It, k) stands for binomial coefficient. 797 /// 798 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 799 ScalarEvolution &SE) const { 800 const SCEV *Result = getStart(); 801 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 802 // The computation is correct in the face of overflow provided that the 803 // multiplication is performed _after_ the evaluation of the binomial 804 // coefficient. 805 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 806 if (isa<SCEVCouldNotCompute>(Coeff)) 807 return Coeff; 808 809 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 810 } 811 return Result; 812 } 813 814 //===----------------------------------------------------------------------===// 815 // SCEV Expression folder implementations 816 //===----------------------------------------------------------------------===// 817 818 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 819 const Type *Ty) { 820 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 821 "This is not a truncating conversion!"); 822 assert(isSCEVable(Ty) && 823 "This is not a conversion to a SCEVable type!"); 824 Ty = getEffectiveSCEVType(Ty); 825 826 FoldingSetNodeID ID; 827 ID.AddInteger(scTruncate); 828 ID.AddPointer(Op); 829 ID.AddPointer(Ty); 830 void *IP = 0; 831 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 832 833 // Fold if the operand is constant. 834 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 835 return getConstant( 836 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 837 getEffectiveSCEVType(Ty)))); 838 839 // trunc(trunc(x)) --> trunc(x) 840 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 841 return getTruncateExpr(ST->getOperand(), Ty); 842 843 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 844 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 845 return getTruncateOrSignExtend(SS->getOperand(), Ty); 846 847 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 848 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 849 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 850 851 // If the input value is a chrec scev, truncate the chrec's operands. 852 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 853 SmallVector<const SCEV *, 4> Operands; 854 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 855 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 856 return getAddRecExpr(Operands, AddRec->getLoop()); 857 } 858 859 // As a special case, fold trunc(undef) to undef. We don't want to 860 // know too much about SCEVUnknowns, but this special case is handy 861 // and harmless. 862 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 863 if (isa<UndefValue>(U->getValue())) 864 return getSCEV(UndefValue::get(Ty)); 865 866 // The cast wasn't folded; create an explicit cast node. We can reuse 867 // the existing insert position since if we get here, we won't have 868 // made any changes which would invalidate it. 869 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 870 Op, Ty); 871 UniqueSCEVs.InsertNode(S, IP); 872 return S; 873 } 874 875 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 876 const Type *Ty) { 877 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 878 "This is not an extending conversion!"); 879 assert(isSCEVable(Ty) && 880 "This is not a conversion to a SCEVable type!"); 881 Ty = getEffectiveSCEVType(Ty); 882 883 // Fold if the operand is constant. 884 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 885 return getConstant( 886 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 887 getEffectiveSCEVType(Ty)))); 888 889 // zext(zext(x)) --> zext(x) 890 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 891 return getZeroExtendExpr(SZ->getOperand(), Ty); 892 893 // Before doing any expensive analysis, check to see if we've already 894 // computed a SCEV for this Op and Ty. 895 FoldingSetNodeID ID; 896 ID.AddInteger(scZeroExtend); 897 ID.AddPointer(Op); 898 ID.AddPointer(Ty); 899 void *IP = 0; 900 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 901 902 // If the input value is a chrec scev, and we can prove that the value 903 // did not overflow the old, smaller, value, we can zero extend all of the 904 // operands (often constants). This allows analysis of something like 905 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 906 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 907 if (AR->isAffine()) { 908 const SCEV *Start = AR->getStart(); 909 const SCEV *Step = AR->getStepRecurrence(*this); 910 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 911 const Loop *L = AR->getLoop(); 912 913 // If we have special knowledge that this addrec won't overflow, 914 // we don't need to do any further analysis. 915 if (AR->hasNoUnsignedWrap()) 916 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 917 getZeroExtendExpr(Step, Ty), 918 L); 919 920 // Check whether the backedge-taken count is SCEVCouldNotCompute. 921 // Note that this serves two purposes: It filters out loops that are 922 // simply not analyzable, and it covers the case where this code is 923 // being called from within backedge-taken count analysis, such that 924 // attempting to ask for the backedge-taken count would likely result 925 // in infinite recursion. In the later case, the analysis code will 926 // cope with a conservative value, and it will take care to purge 927 // that value once it has finished. 928 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 929 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 930 // Manually compute the final value for AR, checking for 931 // overflow. 932 933 // Check whether the backedge-taken count can be losslessly casted to 934 // the addrec's type. The count is always unsigned. 935 const SCEV *CastedMaxBECount = 936 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 937 const SCEV *RecastedMaxBECount = 938 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 939 if (MaxBECount == RecastedMaxBECount) { 940 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 941 // Check whether Start+Step*MaxBECount has no unsigned overflow. 942 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 943 const SCEV *Add = getAddExpr(Start, ZMul); 944 const SCEV *OperandExtendedAdd = 945 getAddExpr(getZeroExtendExpr(Start, WideTy), 946 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 947 getZeroExtendExpr(Step, WideTy))); 948 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 949 // Return the expression with the addrec on the outside. 950 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 951 getZeroExtendExpr(Step, Ty), 952 L); 953 954 // Similar to above, only this time treat the step value as signed. 955 // This covers loops that count down. 956 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 957 Add = getAddExpr(Start, SMul); 958 OperandExtendedAdd = 959 getAddExpr(getZeroExtendExpr(Start, WideTy), 960 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 961 getSignExtendExpr(Step, WideTy))); 962 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 963 // Return the expression with the addrec on the outside. 964 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 965 getSignExtendExpr(Step, Ty), 966 L); 967 } 968 969 // If the backedge is guarded by a comparison with the pre-inc value 970 // the addrec is safe. Also, if the entry is guarded by a comparison 971 // with the start value and the backedge is guarded by a comparison 972 // with the post-inc value, the addrec is safe. 973 if (isKnownPositive(Step)) { 974 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 975 getUnsignedRange(Step).getUnsignedMax()); 976 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 977 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 978 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 979 AR->getPostIncExpr(*this), N))) 980 // Return the expression with the addrec on the outside. 981 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 982 getZeroExtendExpr(Step, Ty), 983 L); 984 } else if (isKnownNegative(Step)) { 985 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 986 getSignedRange(Step).getSignedMin()); 987 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 988 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 989 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 990 AR->getPostIncExpr(*this), N))) 991 // Return the expression with the addrec on the outside. 992 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 993 getSignExtendExpr(Step, Ty), 994 L); 995 } 996 } 997 } 998 999 // The cast wasn't folded; create an explicit cast node. 1000 // Recompute the insert position, as it may have been invalidated. 1001 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1002 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1003 Op, Ty); 1004 UniqueSCEVs.InsertNode(S, IP); 1005 return S; 1006 } 1007 1008 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1009 const Type *Ty) { 1010 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1011 "This is not an extending conversion!"); 1012 assert(isSCEVable(Ty) && 1013 "This is not a conversion to a SCEVable type!"); 1014 Ty = getEffectiveSCEVType(Ty); 1015 1016 // Fold if the operand is constant. 1017 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1018 return getConstant( 1019 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 1020 getEffectiveSCEVType(Ty)))); 1021 1022 // sext(sext(x)) --> sext(x) 1023 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1024 return getSignExtendExpr(SS->getOperand(), Ty); 1025 1026 // Before doing any expensive analysis, check to see if we've already 1027 // computed a SCEV for this Op and Ty. 1028 FoldingSetNodeID ID; 1029 ID.AddInteger(scSignExtend); 1030 ID.AddPointer(Op); 1031 ID.AddPointer(Ty); 1032 void *IP = 0; 1033 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1034 1035 // If the input value is a chrec scev, and we can prove that the value 1036 // did not overflow the old, smaller, value, we can sign extend all of the 1037 // operands (often constants). This allows analysis of something like 1038 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1039 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1040 if (AR->isAffine()) { 1041 const SCEV *Start = AR->getStart(); 1042 const SCEV *Step = AR->getStepRecurrence(*this); 1043 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1044 const Loop *L = AR->getLoop(); 1045 1046 // If we have special knowledge that this addrec won't overflow, 1047 // we don't need to do any further analysis. 1048 if (AR->hasNoSignedWrap()) 1049 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1050 getSignExtendExpr(Step, Ty), 1051 L); 1052 1053 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1054 // Note that this serves two purposes: It filters out loops that are 1055 // simply not analyzable, and it covers the case where this code is 1056 // being called from within backedge-taken count analysis, such that 1057 // attempting to ask for the backedge-taken count would likely result 1058 // in infinite recursion. In the later case, the analysis code will 1059 // cope with a conservative value, and it will take care to purge 1060 // that value once it has finished. 1061 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1062 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1063 // Manually compute the final value for AR, checking for 1064 // overflow. 1065 1066 // Check whether the backedge-taken count can be losslessly casted to 1067 // the addrec's type. The count is always unsigned. 1068 const SCEV *CastedMaxBECount = 1069 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1070 const SCEV *RecastedMaxBECount = 1071 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1072 if (MaxBECount == RecastedMaxBECount) { 1073 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1074 // Check whether Start+Step*MaxBECount has no signed overflow. 1075 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1076 const SCEV *Add = getAddExpr(Start, SMul); 1077 const SCEV *OperandExtendedAdd = 1078 getAddExpr(getSignExtendExpr(Start, WideTy), 1079 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1080 getSignExtendExpr(Step, WideTy))); 1081 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1082 // Return the expression with the addrec on the outside. 1083 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1084 getSignExtendExpr(Step, Ty), 1085 L); 1086 1087 // Similar to above, only this time treat the step value as unsigned. 1088 // This covers loops that count up with an unsigned step. 1089 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1090 Add = getAddExpr(Start, UMul); 1091 OperandExtendedAdd = 1092 getAddExpr(getSignExtendExpr(Start, WideTy), 1093 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1094 getZeroExtendExpr(Step, WideTy))); 1095 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1096 // Return the expression with the addrec on the outside. 1097 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1098 getZeroExtendExpr(Step, Ty), 1099 L); 1100 } 1101 1102 // If the backedge is guarded by a comparison with the pre-inc value 1103 // the addrec is safe. Also, if the entry is guarded by a comparison 1104 // with the start value and the backedge is guarded by a comparison 1105 // with the post-inc value, the addrec is safe. 1106 if (isKnownPositive(Step)) { 1107 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1108 getSignedRange(Step).getSignedMax()); 1109 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1110 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1111 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1112 AR->getPostIncExpr(*this), N))) 1113 // Return the expression with the addrec on the outside. 1114 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1115 getSignExtendExpr(Step, Ty), 1116 L); 1117 } else if (isKnownNegative(Step)) { 1118 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1119 getSignedRange(Step).getSignedMin()); 1120 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1121 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1122 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1123 AR->getPostIncExpr(*this), N))) 1124 // Return the expression with the addrec on the outside. 1125 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1126 getSignExtendExpr(Step, Ty), 1127 L); 1128 } 1129 } 1130 } 1131 1132 // The cast wasn't folded; create an explicit cast node. 1133 // Recompute the insert position, as it may have been invalidated. 1134 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1135 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1136 Op, Ty); 1137 UniqueSCEVs.InsertNode(S, IP); 1138 return S; 1139 } 1140 1141 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1142 /// unspecified bits out to the given type. 1143 /// 1144 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1145 const Type *Ty) { 1146 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1147 "This is not an extending conversion!"); 1148 assert(isSCEVable(Ty) && 1149 "This is not a conversion to a SCEVable type!"); 1150 Ty = getEffectiveSCEVType(Ty); 1151 1152 // Sign-extend negative constants. 1153 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1154 if (SC->getValue()->getValue().isNegative()) 1155 return getSignExtendExpr(Op, Ty); 1156 1157 // Peel off a truncate cast. 1158 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1159 const SCEV *NewOp = T->getOperand(); 1160 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1161 return getAnyExtendExpr(NewOp, Ty); 1162 return getTruncateOrNoop(NewOp, Ty); 1163 } 1164 1165 // Next try a zext cast. If the cast is folded, use it. 1166 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1167 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1168 return ZExt; 1169 1170 // Next try a sext cast. If the cast is folded, use it. 1171 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1172 if (!isa<SCEVSignExtendExpr>(SExt)) 1173 return SExt; 1174 1175 // Force the cast to be folded into the operands of an addrec. 1176 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1177 SmallVector<const SCEV *, 4> Ops; 1178 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1179 I != E; ++I) 1180 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1181 return getAddRecExpr(Ops, AR->getLoop()); 1182 } 1183 1184 // As a special case, fold anyext(undef) to undef. We don't want to 1185 // know too much about SCEVUnknowns, but this special case is handy 1186 // and harmless. 1187 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1188 if (isa<UndefValue>(U->getValue())) 1189 return getSCEV(UndefValue::get(Ty)); 1190 1191 // If the expression is obviously signed, use the sext cast value. 1192 if (isa<SCEVSMaxExpr>(Op)) 1193 return SExt; 1194 1195 // Absent any other information, use the zext cast value. 1196 return ZExt; 1197 } 1198 1199 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1200 /// a list of operands to be added under the given scale, update the given 1201 /// map. This is a helper function for getAddRecExpr. As an example of 1202 /// what it does, given a sequence of operands that would form an add 1203 /// expression like this: 1204 /// 1205 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1206 /// 1207 /// where A and B are constants, update the map with these values: 1208 /// 1209 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1210 /// 1211 /// and add 13 + A*B*29 to AccumulatedConstant. 1212 /// This will allow getAddRecExpr to produce this: 1213 /// 1214 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1215 /// 1216 /// This form often exposes folding opportunities that are hidden in 1217 /// the original operand list. 1218 /// 1219 /// Return true iff it appears that any interesting folding opportunities 1220 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1221 /// the common case where no interesting opportunities are present, and 1222 /// is also used as a check to avoid infinite recursion. 1223 /// 1224 static bool 1225 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1226 SmallVector<const SCEV *, 8> &NewOps, 1227 APInt &AccumulatedConstant, 1228 const SCEV *const *Ops, size_t NumOperands, 1229 const APInt &Scale, 1230 ScalarEvolution &SE) { 1231 bool Interesting = false; 1232 1233 // Iterate over the add operands. They are sorted, with constants first. 1234 unsigned i = 0; 1235 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1236 ++i; 1237 // Pull a buried constant out to the outside. 1238 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1239 Interesting = true; 1240 AccumulatedConstant += Scale * C->getValue()->getValue(); 1241 } 1242 1243 // Next comes everything else. We're especially interested in multiplies 1244 // here, but they're in the middle, so just visit the rest with one loop. 1245 for (; i != NumOperands; ++i) { 1246 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1247 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1248 APInt NewScale = 1249 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1250 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1251 // A multiplication of a constant with another add; recurse. 1252 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1253 Interesting |= 1254 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1255 Add->op_begin(), Add->getNumOperands(), 1256 NewScale, SE); 1257 } else { 1258 // A multiplication of a constant with some other value. Update 1259 // the map. 1260 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1261 const SCEV *Key = SE.getMulExpr(MulOps); 1262 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1263 M.insert(std::make_pair(Key, NewScale)); 1264 if (Pair.second) { 1265 NewOps.push_back(Pair.first->first); 1266 } else { 1267 Pair.first->second += NewScale; 1268 // The map already had an entry for this value, which may indicate 1269 // a folding opportunity. 1270 Interesting = true; 1271 } 1272 } 1273 } else { 1274 // An ordinary operand. Update the map. 1275 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1276 M.insert(std::make_pair(Ops[i], Scale)); 1277 if (Pair.second) { 1278 NewOps.push_back(Pair.first->first); 1279 } else { 1280 Pair.first->second += Scale; 1281 // The map already had an entry for this value, which may indicate 1282 // a folding opportunity. 1283 Interesting = true; 1284 } 1285 } 1286 } 1287 1288 return Interesting; 1289 } 1290 1291 namespace { 1292 struct APIntCompare { 1293 bool operator()(const APInt &LHS, const APInt &RHS) const { 1294 return LHS.ult(RHS); 1295 } 1296 }; 1297 } 1298 1299 /// getAddExpr - Get a canonical add expression, or something simpler if 1300 /// possible. 1301 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1302 bool HasNUW, bool HasNSW) { 1303 assert(!Ops.empty() && "Cannot get empty add!"); 1304 if (Ops.size() == 1) return Ops[0]; 1305 #ifndef NDEBUG 1306 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1307 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1308 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1309 "SCEVAddExpr operand types don't match!"); 1310 #endif 1311 1312 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1313 if (!HasNUW && HasNSW) { 1314 bool All = true; 1315 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1316 if (!isKnownNonNegative(Ops[i])) { 1317 All = false; 1318 break; 1319 } 1320 if (All) HasNUW = true; 1321 } 1322 1323 // Sort by complexity, this groups all similar expression types together. 1324 GroupByComplexity(Ops, LI); 1325 1326 // If there are any constants, fold them together. 1327 unsigned Idx = 0; 1328 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1329 ++Idx; 1330 assert(Idx < Ops.size()); 1331 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1332 // We found two constants, fold them together! 1333 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1334 RHSC->getValue()->getValue()); 1335 if (Ops.size() == 2) return Ops[0]; 1336 Ops.erase(Ops.begin()+1); // Erase the folded element 1337 LHSC = cast<SCEVConstant>(Ops[0]); 1338 } 1339 1340 // If we are left with a constant zero being added, strip it off. 1341 if (LHSC->getValue()->isZero()) { 1342 Ops.erase(Ops.begin()); 1343 --Idx; 1344 } 1345 1346 if (Ops.size() == 1) return Ops[0]; 1347 } 1348 1349 // Okay, check to see if the same value occurs in the operand list twice. If 1350 // so, merge them together into an multiply expression. Since we sorted the 1351 // list, these values are required to be adjacent. 1352 const Type *Ty = Ops[0]->getType(); 1353 bool FoundMatch = false; 1354 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1355 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1356 // Found a match, merge the two values into a multiply, and add any 1357 // remaining values to the result. 1358 const SCEV *Two = getConstant(Ty, 2); 1359 const SCEV *Mul = getMulExpr(Two, Ops[i]); 1360 if (Ops.size() == 2) 1361 return Mul; 1362 Ops[i] = Mul; 1363 Ops.erase(Ops.begin()+i+1); 1364 --i; --e; 1365 FoundMatch = true; 1366 } 1367 if (FoundMatch) 1368 return getAddExpr(Ops, HasNUW, HasNSW); 1369 1370 // Check for truncates. If all the operands are truncated from the same 1371 // type, see if factoring out the truncate would permit the result to be 1372 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1373 // if the contents of the resulting outer trunc fold to something simple. 1374 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1375 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1376 const Type *DstType = Trunc->getType(); 1377 const Type *SrcType = Trunc->getOperand()->getType(); 1378 SmallVector<const SCEV *, 8> LargeOps; 1379 bool Ok = true; 1380 // Check all the operands to see if they can be represented in the 1381 // source type of the truncate. 1382 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1383 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1384 if (T->getOperand()->getType() != SrcType) { 1385 Ok = false; 1386 break; 1387 } 1388 LargeOps.push_back(T->getOperand()); 1389 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1390 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1391 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1392 SmallVector<const SCEV *, 8> LargeMulOps; 1393 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1394 if (const SCEVTruncateExpr *T = 1395 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1396 if (T->getOperand()->getType() != SrcType) { 1397 Ok = false; 1398 break; 1399 } 1400 LargeMulOps.push_back(T->getOperand()); 1401 } else if (const SCEVConstant *C = 1402 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1403 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1404 } else { 1405 Ok = false; 1406 break; 1407 } 1408 } 1409 if (Ok) 1410 LargeOps.push_back(getMulExpr(LargeMulOps)); 1411 } else { 1412 Ok = false; 1413 break; 1414 } 1415 } 1416 if (Ok) { 1417 // Evaluate the expression in the larger type. 1418 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW); 1419 // If it folds to something simple, use it. Otherwise, don't. 1420 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1421 return getTruncateExpr(Fold, DstType); 1422 } 1423 } 1424 1425 // Skip past any other cast SCEVs. 1426 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1427 ++Idx; 1428 1429 // If there are add operands they would be next. 1430 if (Idx < Ops.size()) { 1431 bool DeletedAdd = false; 1432 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1433 // If we have an add, expand the add operands onto the end of the operands 1434 // list. 1435 Ops.erase(Ops.begin()+Idx); 1436 Ops.append(Add->op_begin(), Add->op_end()); 1437 DeletedAdd = true; 1438 } 1439 1440 // If we deleted at least one add, we added operands to the end of the list, 1441 // and they are not necessarily sorted. Recurse to resort and resimplify 1442 // any operands we just acquired. 1443 if (DeletedAdd) 1444 return getAddExpr(Ops); 1445 } 1446 1447 // Skip over the add expression until we get to a multiply. 1448 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1449 ++Idx; 1450 1451 // Check to see if there are any folding opportunities present with 1452 // operands multiplied by constant values. 1453 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1454 uint64_t BitWidth = getTypeSizeInBits(Ty); 1455 DenseMap<const SCEV *, APInt> M; 1456 SmallVector<const SCEV *, 8> NewOps; 1457 APInt AccumulatedConstant(BitWidth, 0); 1458 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1459 Ops.data(), Ops.size(), 1460 APInt(BitWidth, 1), *this)) { 1461 // Some interesting folding opportunity is present, so its worthwhile to 1462 // re-generate the operands list. Group the operands by constant scale, 1463 // to avoid multiplying by the same constant scale multiple times. 1464 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1465 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), 1466 E = NewOps.end(); I != E; ++I) 1467 MulOpLists[M.find(*I)->second].push_back(*I); 1468 // Re-generate the operands list. 1469 Ops.clear(); 1470 if (AccumulatedConstant != 0) 1471 Ops.push_back(getConstant(AccumulatedConstant)); 1472 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1473 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1474 if (I->first != 0) 1475 Ops.push_back(getMulExpr(getConstant(I->first), 1476 getAddExpr(I->second))); 1477 if (Ops.empty()) 1478 return getConstant(Ty, 0); 1479 if (Ops.size() == 1) 1480 return Ops[0]; 1481 return getAddExpr(Ops); 1482 } 1483 } 1484 1485 // If we are adding something to a multiply expression, make sure the 1486 // something is not already an operand of the multiply. If so, merge it into 1487 // the multiply. 1488 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1489 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1490 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1491 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1492 if (isa<SCEVConstant>(MulOpSCEV)) 1493 continue; 1494 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1495 if (MulOpSCEV == Ops[AddOp]) { 1496 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1497 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1498 if (Mul->getNumOperands() != 2) { 1499 // If the multiply has more than two operands, we must get the 1500 // Y*Z term. 1501 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1502 MulOps.erase(MulOps.begin()+MulOp); 1503 InnerMul = getMulExpr(MulOps); 1504 } 1505 const SCEV *One = getConstant(Ty, 1); 1506 const SCEV *AddOne = getAddExpr(One, InnerMul); 1507 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1508 if (Ops.size() == 2) return OuterMul; 1509 if (AddOp < Idx) { 1510 Ops.erase(Ops.begin()+AddOp); 1511 Ops.erase(Ops.begin()+Idx-1); 1512 } else { 1513 Ops.erase(Ops.begin()+Idx); 1514 Ops.erase(Ops.begin()+AddOp-1); 1515 } 1516 Ops.push_back(OuterMul); 1517 return getAddExpr(Ops); 1518 } 1519 1520 // Check this multiply against other multiplies being added together. 1521 bool AnyFold = false; 1522 for (unsigned OtherMulIdx = Idx+1; 1523 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1524 ++OtherMulIdx) { 1525 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1526 // If MulOp occurs in OtherMul, we can fold the two multiplies 1527 // together. 1528 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1529 OMulOp != e; ++OMulOp) 1530 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1531 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1532 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1533 if (Mul->getNumOperands() != 2) { 1534 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1535 Mul->op_end()); 1536 MulOps.erase(MulOps.begin()+MulOp); 1537 InnerMul1 = getMulExpr(MulOps); 1538 } 1539 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1540 if (OtherMul->getNumOperands() != 2) { 1541 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1542 OtherMul->op_end()); 1543 MulOps.erase(MulOps.begin()+OMulOp); 1544 InnerMul2 = getMulExpr(MulOps); 1545 } 1546 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1547 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1548 if (Ops.size() == 2) return OuterMul; 1549 Ops[Idx] = OuterMul; 1550 Ops.erase(Ops.begin()+OtherMulIdx); 1551 OtherMulIdx = Idx; 1552 AnyFold = true; 1553 } 1554 } 1555 if (AnyFold) 1556 return getAddExpr(Ops); 1557 } 1558 } 1559 1560 // If there are any add recurrences in the operands list, see if any other 1561 // added values are loop invariant. If so, we can fold them into the 1562 // recurrence. 1563 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1564 ++Idx; 1565 1566 // Scan over all recurrences, trying to fold loop invariants into them. 1567 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1568 // Scan all of the other operands to this add and add them to the vector if 1569 // they are loop invariant w.r.t. the recurrence. 1570 SmallVector<const SCEV *, 8> LIOps; 1571 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1572 const Loop *AddRecLoop = AddRec->getLoop(); 1573 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1574 if (Ops[i]->isLoopInvariant(AddRecLoop)) { 1575 LIOps.push_back(Ops[i]); 1576 Ops.erase(Ops.begin()+i); 1577 --i; --e; 1578 } 1579 1580 // If we found some loop invariants, fold them into the recurrence. 1581 if (!LIOps.empty()) { 1582 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1583 LIOps.push_back(AddRec->getStart()); 1584 1585 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1586 AddRec->op_end()); 1587 AddRecOps[0] = getAddExpr(LIOps); 1588 1589 // Build the new addrec. Propagate the NUW and NSW flags if both the 1590 // outer add and the inner addrec are guaranteed to have no overflow. 1591 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, 1592 HasNUW && AddRec->hasNoUnsignedWrap(), 1593 HasNSW && AddRec->hasNoSignedWrap()); 1594 1595 // If all of the other operands were loop invariant, we are done. 1596 if (Ops.size() == 1) return NewRec; 1597 1598 // Otherwise, add the folded AddRec by the non-liv parts. 1599 for (unsigned i = 0;; ++i) 1600 if (Ops[i] == AddRec) { 1601 Ops[i] = NewRec; 1602 break; 1603 } 1604 return getAddExpr(Ops); 1605 } 1606 1607 // Okay, if there weren't any loop invariants to be folded, check to see if 1608 // there are multiple AddRec's with the same loop induction variable being 1609 // added together. If so, we can fold them. 1610 for (unsigned OtherIdx = Idx+1; 1611 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1612 if (OtherIdx != Idx) { 1613 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1614 if (AddRecLoop == OtherAddRec->getLoop()) { 1615 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1616 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), 1617 AddRec->op_end()); 1618 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1619 if (i >= NewOps.size()) { 1620 NewOps.append(OtherAddRec->op_begin()+i, 1621 OtherAddRec->op_end()); 1622 break; 1623 } 1624 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1625 } 1626 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop); 1627 1628 if (Ops.size() == 2) return NewAddRec; 1629 1630 Ops.erase(Ops.begin()+Idx); 1631 Ops.erase(Ops.begin()+OtherIdx-1); 1632 Ops.push_back(NewAddRec); 1633 return getAddExpr(Ops); 1634 } 1635 } 1636 1637 // Otherwise couldn't fold anything into this recurrence. Move onto the 1638 // next one. 1639 } 1640 1641 // Okay, it looks like we really DO need an add expr. Check to see if we 1642 // already have one, otherwise create a new one. 1643 FoldingSetNodeID ID; 1644 ID.AddInteger(scAddExpr); 1645 ID.AddInteger(Ops.size()); 1646 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1647 ID.AddPointer(Ops[i]); 1648 void *IP = 0; 1649 SCEVAddExpr *S = 1650 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1651 if (!S) { 1652 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1653 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1654 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1655 O, Ops.size()); 1656 UniqueSCEVs.InsertNode(S, IP); 1657 } 1658 if (HasNUW) S->setHasNoUnsignedWrap(true); 1659 if (HasNSW) S->setHasNoSignedWrap(true); 1660 return S; 1661 } 1662 1663 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1664 /// possible. 1665 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1666 bool HasNUW, bool HasNSW) { 1667 assert(!Ops.empty() && "Cannot get empty mul!"); 1668 if (Ops.size() == 1) return Ops[0]; 1669 #ifndef NDEBUG 1670 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1671 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1672 getEffectiveSCEVType(Ops[0]->getType()) && 1673 "SCEVMulExpr operand types don't match!"); 1674 #endif 1675 1676 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1677 if (!HasNUW && HasNSW) { 1678 bool All = true; 1679 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1680 if (!isKnownNonNegative(Ops[i])) { 1681 All = false; 1682 break; 1683 } 1684 if (All) HasNUW = true; 1685 } 1686 1687 // Sort by complexity, this groups all similar expression types together. 1688 GroupByComplexity(Ops, LI); 1689 1690 // If there are any constants, fold them together. 1691 unsigned Idx = 0; 1692 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1693 1694 // C1*(C2+V) -> C1*C2 + C1*V 1695 if (Ops.size() == 2) 1696 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1697 if (Add->getNumOperands() == 2 && 1698 isa<SCEVConstant>(Add->getOperand(0))) 1699 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1700 getMulExpr(LHSC, Add->getOperand(1))); 1701 1702 ++Idx; 1703 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1704 // We found two constants, fold them together! 1705 ConstantInt *Fold = ConstantInt::get(getContext(), 1706 LHSC->getValue()->getValue() * 1707 RHSC->getValue()->getValue()); 1708 Ops[0] = getConstant(Fold); 1709 Ops.erase(Ops.begin()+1); // Erase the folded element 1710 if (Ops.size() == 1) return Ops[0]; 1711 LHSC = cast<SCEVConstant>(Ops[0]); 1712 } 1713 1714 // If we are left with a constant one being multiplied, strip it off. 1715 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1716 Ops.erase(Ops.begin()); 1717 --Idx; 1718 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1719 // If we have a multiply of zero, it will always be zero. 1720 return Ops[0]; 1721 } else if (Ops[0]->isAllOnesValue()) { 1722 // If we have a mul by -1 of an add, try distributing the -1 among the 1723 // add operands. 1724 if (Ops.size() == 2) 1725 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1726 SmallVector<const SCEV *, 4> NewOps; 1727 bool AnyFolded = false; 1728 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1729 I != E; ++I) { 1730 const SCEV *Mul = getMulExpr(Ops[0], *I); 1731 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1732 NewOps.push_back(Mul); 1733 } 1734 if (AnyFolded) 1735 return getAddExpr(NewOps); 1736 } 1737 } 1738 1739 if (Ops.size() == 1) 1740 return Ops[0]; 1741 } 1742 1743 // Skip over the add expression until we get to a multiply. 1744 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1745 ++Idx; 1746 1747 // If there are mul operands inline them all into this expression. 1748 if (Idx < Ops.size()) { 1749 bool DeletedMul = false; 1750 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1751 // If we have an mul, expand the mul operands onto the end of the operands 1752 // list. 1753 Ops.erase(Ops.begin()+Idx); 1754 Ops.append(Mul->op_begin(), Mul->op_end()); 1755 DeletedMul = true; 1756 } 1757 1758 // If we deleted at least one mul, we added operands to the end of the list, 1759 // and they are not necessarily sorted. Recurse to resort and resimplify 1760 // any operands we just acquired. 1761 if (DeletedMul) 1762 return getMulExpr(Ops); 1763 } 1764 1765 // If there are any add recurrences in the operands list, see if any other 1766 // added values are loop invariant. If so, we can fold them into the 1767 // recurrence. 1768 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1769 ++Idx; 1770 1771 // Scan over all recurrences, trying to fold loop invariants into them. 1772 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1773 // Scan all of the other operands to this mul and add them to the vector if 1774 // they are loop invariant w.r.t. the recurrence. 1775 SmallVector<const SCEV *, 8> LIOps; 1776 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1777 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1778 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1779 LIOps.push_back(Ops[i]); 1780 Ops.erase(Ops.begin()+i); 1781 --i; --e; 1782 } 1783 1784 // If we found some loop invariants, fold them into the recurrence. 1785 if (!LIOps.empty()) { 1786 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1787 SmallVector<const SCEV *, 4> NewOps; 1788 NewOps.reserve(AddRec->getNumOperands()); 1789 const SCEV *Scale = getMulExpr(LIOps); 1790 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1791 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1792 1793 // Build the new addrec. Propagate the NUW and NSW flags if both the 1794 // outer mul and the inner addrec are guaranteed to have no overflow. 1795 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), 1796 HasNUW && AddRec->hasNoUnsignedWrap(), 1797 HasNSW && AddRec->hasNoSignedWrap()); 1798 1799 // If all of the other operands were loop invariant, we are done. 1800 if (Ops.size() == 1) return NewRec; 1801 1802 // Otherwise, multiply the folded AddRec by the non-liv parts. 1803 for (unsigned i = 0;; ++i) 1804 if (Ops[i] == AddRec) { 1805 Ops[i] = NewRec; 1806 break; 1807 } 1808 return getMulExpr(Ops); 1809 } 1810 1811 // Okay, if there weren't any loop invariants to be folded, check to see if 1812 // there are multiple AddRec's with the same loop induction variable being 1813 // multiplied together. If so, we can fold them. 1814 for (unsigned OtherIdx = Idx+1; 1815 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1816 if (OtherIdx != Idx) { 1817 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1818 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1819 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1820 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1821 const SCEV *NewStart = getMulExpr(F->getStart(), 1822 G->getStart()); 1823 const SCEV *B = F->getStepRecurrence(*this); 1824 const SCEV *D = G->getStepRecurrence(*this); 1825 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1826 getMulExpr(G, B), 1827 getMulExpr(B, D)); 1828 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1829 F->getLoop()); 1830 if (Ops.size() == 2) return NewAddRec; 1831 1832 Ops.erase(Ops.begin()+Idx); 1833 Ops.erase(Ops.begin()+OtherIdx-1); 1834 Ops.push_back(NewAddRec); 1835 return getMulExpr(Ops); 1836 } 1837 } 1838 1839 // Otherwise couldn't fold anything into this recurrence. Move onto the 1840 // next one. 1841 } 1842 1843 // Okay, it looks like we really DO need an mul expr. Check to see if we 1844 // already have one, otherwise create a new one. 1845 FoldingSetNodeID ID; 1846 ID.AddInteger(scMulExpr); 1847 ID.AddInteger(Ops.size()); 1848 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1849 ID.AddPointer(Ops[i]); 1850 void *IP = 0; 1851 SCEVMulExpr *S = 1852 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1853 if (!S) { 1854 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1855 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1856 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 1857 O, Ops.size()); 1858 UniqueSCEVs.InsertNode(S, IP); 1859 } 1860 if (HasNUW) S->setHasNoUnsignedWrap(true); 1861 if (HasNSW) S->setHasNoSignedWrap(true); 1862 return S; 1863 } 1864 1865 /// getUDivExpr - Get a canonical unsigned division expression, or something 1866 /// simpler if possible. 1867 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1868 const SCEV *RHS) { 1869 assert(getEffectiveSCEVType(LHS->getType()) == 1870 getEffectiveSCEVType(RHS->getType()) && 1871 "SCEVUDivExpr operand types don't match!"); 1872 1873 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1874 if (RHSC->getValue()->equalsInt(1)) 1875 return LHS; // X udiv 1 --> x 1876 // If the denominator is zero, the result of the udiv is undefined. Don't 1877 // try to analyze it, because the resolution chosen here may differ from 1878 // the resolution chosen in other parts of the compiler. 1879 if (!RHSC->getValue()->isZero()) { 1880 // Determine if the division can be folded into the operands of 1881 // its operands. 1882 // TODO: Generalize this to non-constants by using known-bits information. 1883 const Type *Ty = LHS->getType(); 1884 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1885 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 1886 // For non-power-of-two values, effectively round the value up to the 1887 // nearest power of two. 1888 if (!RHSC->getValue()->getValue().isPowerOf2()) 1889 ++MaxShiftAmt; 1890 const IntegerType *ExtTy = 1891 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1892 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1893 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1894 if (const SCEVConstant *Step = 1895 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1896 if (!Step->getValue()->getValue() 1897 .urem(RHSC->getValue()->getValue()) && 1898 getZeroExtendExpr(AR, ExtTy) == 1899 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1900 getZeroExtendExpr(Step, ExtTy), 1901 AR->getLoop())) { 1902 SmallVector<const SCEV *, 4> Operands; 1903 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1904 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1905 return getAddRecExpr(Operands, AR->getLoop()); 1906 } 1907 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1908 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1909 SmallVector<const SCEV *, 4> Operands; 1910 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1911 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1912 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1913 // Find an operand that's safely divisible. 1914 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1915 const SCEV *Op = M->getOperand(i); 1916 const SCEV *Div = getUDivExpr(Op, RHSC); 1917 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1918 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 1919 M->op_end()); 1920 Operands[i] = Div; 1921 return getMulExpr(Operands); 1922 } 1923 } 1924 } 1925 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1926 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1927 SmallVector<const SCEV *, 4> Operands; 1928 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1929 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1930 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1931 Operands.clear(); 1932 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1933 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1934 if (isa<SCEVUDivExpr>(Op) || 1935 getMulExpr(Op, RHS) != A->getOperand(i)) 1936 break; 1937 Operands.push_back(Op); 1938 } 1939 if (Operands.size() == A->getNumOperands()) 1940 return getAddExpr(Operands); 1941 } 1942 } 1943 1944 // Fold if both operands are constant. 1945 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1946 Constant *LHSCV = LHSC->getValue(); 1947 Constant *RHSCV = RHSC->getValue(); 1948 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1949 RHSCV))); 1950 } 1951 } 1952 } 1953 1954 FoldingSetNodeID ID; 1955 ID.AddInteger(scUDivExpr); 1956 ID.AddPointer(LHS); 1957 ID.AddPointer(RHS); 1958 void *IP = 0; 1959 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1960 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 1961 LHS, RHS); 1962 UniqueSCEVs.InsertNode(S, IP); 1963 return S; 1964 } 1965 1966 1967 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1968 /// Simplify the expression as much as possible. 1969 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 1970 const SCEV *Step, const Loop *L, 1971 bool HasNUW, bool HasNSW) { 1972 SmallVector<const SCEV *, 4> Operands; 1973 Operands.push_back(Start); 1974 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1975 if (StepChrec->getLoop() == L) { 1976 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 1977 return getAddRecExpr(Operands, L); 1978 } 1979 1980 Operands.push_back(Step); 1981 return getAddRecExpr(Operands, L, HasNUW, HasNSW); 1982 } 1983 1984 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1985 /// Simplify the expression as much as possible. 1986 const SCEV * 1987 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 1988 const Loop *L, 1989 bool HasNUW, bool HasNSW) { 1990 if (Operands.size() == 1) return Operands[0]; 1991 #ifndef NDEBUG 1992 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1993 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1994 getEffectiveSCEVType(Operands[0]->getType()) && 1995 "SCEVAddRecExpr operand types don't match!"); 1996 #endif 1997 1998 if (Operands.back()->isZero()) { 1999 Operands.pop_back(); 2000 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X 2001 } 2002 2003 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2004 // use that information to infer NUW and NSW flags. However, computing a 2005 // BE count requires calling getAddRecExpr, so we may not yet have a 2006 // meaningful BE count at this point (and if we don't, we'd be stuck 2007 // with a SCEVCouldNotCompute as the cached BE count). 2008 2009 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 2010 if (!HasNUW && HasNSW) { 2011 bool All = true; 2012 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2013 if (!isKnownNonNegative(Operands[i])) { 2014 All = false; 2015 break; 2016 } 2017 if (All) HasNUW = true; 2018 } 2019 2020 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2021 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2022 const Loop *NestedLoop = NestedAR->getLoop(); 2023 if (L->contains(NestedLoop) ? 2024 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2025 (!NestedLoop->contains(L) && 2026 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2027 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2028 NestedAR->op_end()); 2029 Operands[0] = NestedAR->getStart(); 2030 // AddRecs require their operands be loop-invariant with respect to their 2031 // loops. Don't perform this transformation if it would break this 2032 // requirement. 2033 bool AllInvariant = true; 2034 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2035 if (!Operands[i]->isLoopInvariant(L)) { 2036 AllInvariant = false; 2037 break; 2038 } 2039 if (AllInvariant) { 2040 NestedOperands[0] = getAddRecExpr(Operands, L); 2041 AllInvariant = true; 2042 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2043 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { 2044 AllInvariant = false; 2045 break; 2046 } 2047 if (AllInvariant) 2048 // Ok, both add recurrences are valid after the transformation. 2049 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW); 2050 } 2051 // Reset Operands to its original state. 2052 Operands[0] = NestedAR; 2053 } 2054 } 2055 2056 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2057 // already have one, otherwise create a new one. 2058 FoldingSetNodeID ID; 2059 ID.AddInteger(scAddRecExpr); 2060 ID.AddInteger(Operands.size()); 2061 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2062 ID.AddPointer(Operands[i]); 2063 ID.AddPointer(L); 2064 void *IP = 0; 2065 SCEVAddRecExpr *S = 2066 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2067 if (!S) { 2068 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2069 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2070 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2071 O, Operands.size(), L); 2072 UniqueSCEVs.InsertNode(S, IP); 2073 } 2074 if (HasNUW) S->setHasNoUnsignedWrap(true); 2075 if (HasNSW) S->setHasNoSignedWrap(true); 2076 return S; 2077 } 2078 2079 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2080 const SCEV *RHS) { 2081 SmallVector<const SCEV *, 2> Ops; 2082 Ops.push_back(LHS); 2083 Ops.push_back(RHS); 2084 return getSMaxExpr(Ops); 2085 } 2086 2087 const SCEV * 2088 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2089 assert(!Ops.empty() && "Cannot get empty smax!"); 2090 if (Ops.size() == 1) return Ops[0]; 2091 #ifndef NDEBUG 2092 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2093 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2094 getEffectiveSCEVType(Ops[0]->getType()) && 2095 "SCEVSMaxExpr operand types don't match!"); 2096 #endif 2097 2098 // Sort by complexity, this groups all similar expression types together. 2099 GroupByComplexity(Ops, LI); 2100 2101 // If there are any constants, fold them together. 2102 unsigned Idx = 0; 2103 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2104 ++Idx; 2105 assert(Idx < Ops.size()); 2106 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2107 // We found two constants, fold them together! 2108 ConstantInt *Fold = ConstantInt::get(getContext(), 2109 APIntOps::smax(LHSC->getValue()->getValue(), 2110 RHSC->getValue()->getValue())); 2111 Ops[0] = getConstant(Fold); 2112 Ops.erase(Ops.begin()+1); // Erase the folded element 2113 if (Ops.size() == 1) return Ops[0]; 2114 LHSC = cast<SCEVConstant>(Ops[0]); 2115 } 2116 2117 // If we are left with a constant minimum-int, strip it off. 2118 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2119 Ops.erase(Ops.begin()); 2120 --Idx; 2121 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2122 // If we have an smax with a constant maximum-int, it will always be 2123 // maximum-int. 2124 return Ops[0]; 2125 } 2126 2127 if (Ops.size() == 1) return Ops[0]; 2128 } 2129 2130 // Find the first SMax 2131 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2132 ++Idx; 2133 2134 // Check to see if one of the operands is an SMax. If so, expand its operands 2135 // onto our operand list, and recurse to simplify. 2136 if (Idx < Ops.size()) { 2137 bool DeletedSMax = false; 2138 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2139 Ops.erase(Ops.begin()+Idx); 2140 Ops.append(SMax->op_begin(), SMax->op_end()); 2141 DeletedSMax = true; 2142 } 2143 2144 if (DeletedSMax) 2145 return getSMaxExpr(Ops); 2146 } 2147 2148 // Okay, check to see if the same value occurs in the operand list twice. If 2149 // so, delete one. Since we sorted the list, these values are required to 2150 // be adjacent. 2151 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2152 // X smax Y smax Y --> X smax Y 2153 // X smax Y --> X, if X is always greater than Y 2154 if (Ops[i] == Ops[i+1] || 2155 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2156 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2157 --i; --e; 2158 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2159 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2160 --i; --e; 2161 } 2162 2163 if (Ops.size() == 1) return Ops[0]; 2164 2165 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2166 2167 // Okay, it looks like we really DO need an smax expr. Check to see if we 2168 // already have one, otherwise create a new one. 2169 FoldingSetNodeID ID; 2170 ID.AddInteger(scSMaxExpr); 2171 ID.AddInteger(Ops.size()); 2172 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2173 ID.AddPointer(Ops[i]); 2174 void *IP = 0; 2175 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2176 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2177 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2178 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2179 O, Ops.size()); 2180 UniqueSCEVs.InsertNode(S, IP); 2181 return S; 2182 } 2183 2184 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2185 const SCEV *RHS) { 2186 SmallVector<const SCEV *, 2> Ops; 2187 Ops.push_back(LHS); 2188 Ops.push_back(RHS); 2189 return getUMaxExpr(Ops); 2190 } 2191 2192 const SCEV * 2193 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2194 assert(!Ops.empty() && "Cannot get empty umax!"); 2195 if (Ops.size() == 1) return Ops[0]; 2196 #ifndef NDEBUG 2197 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2198 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2199 getEffectiveSCEVType(Ops[0]->getType()) && 2200 "SCEVUMaxExpr operand types don't match!"); 2201 #endif 2202 2203 // Sort by complexity, this groups all similar expression types together. 2204 GroupByComplexity(Ops, LI); 2205 2206 // If there are any constants, fold them together. 2207 unsigned Idx = 0; 2208 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2209 ++Idx; 2210 assert(Idx < Ops.size()); 2211 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2212 // We found two constants, fold them together! 2213 ConstantInt *Fold = ConstantInt::get(getContext(), 2214 APIntOps::umax(LHSC->getValue()->getValue(), 2215 RHSC->getValue()->getValue())); 2216 Ops[0] = getConstant(Fold); 2217 Ops.erase(Ops.begin()+1); // Erase the folded element 2218 if (Ops.size() == 1) return Ops[0]; 2219 LHSC = cast<SCEVConstant>(Ops[0]); 2220 } 2221 2222 // If we are left with a constant minimum-int, strip it off. 2223 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2224 Ops.erase(Ops.begin()); 2225 --Idx; 2226 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2227 // If we have an umax with a constant maximum-int, it will always be 2228 // maximum-int. 2229 return Ops[0]; 2230 } 2231 2232 if (Ops.size() == 1) return Ops[0]; 2233 } 2234 2235 // Find the first UMax 2236 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2237 ++Idx; 2238 2239 // Check to see if one of the operands is a UMax. If so, expand its operands 2240 // onto our operand list, and recurse to simplify. 2241 if (Idx < Ops.size()) { 2242 bool DeletedUMax = false; 2243 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2244 Ops.erase(Ops.begin()+Idx); 2245 Ops.append(UMax->op_begin(), UMax->op_end()); 2246 DeletedUMax = true; 2247 } 2248 2249 if (DeletedUMax) 2250 return getUMaxExpr(Ops); 2251 } 2252 2253 // Okay, check to see if the same value occurs in the operand list twice. If 2254 // so, delete one. Since we sorted the list, these values are required to 2255 // be adjacent. 2256 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2257 // X umax Y umax Y --> X umax Y 2258 // X umax Y --> X, if X is always greater than Y 2259 if (Ops[i] == Ops[i+1] || 2260 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2261 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2262 --i; --e; 2263 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2264 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2265 --i; --e; 2266 } 2267 2268 if (Ops.size() == 1) return Ops[0]; 2269 2270 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2271 2272 // Okay, it looks like we really DO need a umax expr. Check to see if we 2273 // already have one, otherwise create a new one. 2274 FoldingSetNodeID ID; 2275 ID.AddInteger(scUMaxExpr); 2276 ID.AddInteger(Ops.size()); 2277 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2278 ID.AddPointer(Ops[i]); 2279 void *IP = 0; 2280 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2281 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2282 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2283 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2284 O, Ops.size()); 2285 UniqueSCEVs.InsertNode(S, IP); 2286 return S; 2287 } 2288 2289 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2290 const SCEV *RHS) { 2291 // ~smax(~x, ~y) == smin(x, y). 2292 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2293 } 2294 2295 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2296 const SCEV *RHS) { 2297 // ~umax(~x, ~y) == umin(x, y) 2298 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2299 } 2300 2301 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) { 2302 // If we have TargetData, we can bypass creating a target-independent 2303 // constant expression and then folding it back into a ConstantInt. 2304 // This is just a compile-time optimization. 2305 if (TD) 2306 return getConstant(TD->getIntPtrType(getContext()), 2307 TD->getTypeAllocSize(AllocTy)); 2308 2309 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2310 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2311 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2312 C = Folded; 2313 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2314 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2315 } 2316 2317 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) { 2318 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2319 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2320 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2321 C = Folded; 2322 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2323 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2324 } 2325 2326 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy, 2327 unsigned FieldNo) { 2328 // If we have TargetData, we can bypass creating a target-independent 2329 // constant expression and then folding it back into a ConstantInt. 2330 // This is just a compile-time optimization. 2331 if (TD) 2332 return getConstant(TD->getIntPtrType(getContext()), 2333 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2334 2335 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2336 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2337 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2338 C = Folded; 2339 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2340 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2341 } 2342 2343 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy, 2344 Constant *FieldNo) { 2345 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2346 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2347 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2348 C = Folded; 2349 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2350 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2351 } 2352 2353 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2354 // Don't attempt to do anything other than create a SCEVUnknown object 2355 // here. createSCEV only calls getUnknown after checking for all other 2356 // interesting possibilities, and any other code that calls getUnknown 2357 // is doing so in order to hide a value from SCEV canonicalization. 2358 2359 FoldingSetNodeID ID; 2360 ID.AddInteger(scUnknown); 2361 ID.AddPointer(V); 2362 void *IP = 0; 2363 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2364 assert(cast<SCEVUnknown>(S)->getValue() == V && 2365 "Stale SCEVUnknown in uniquing map!"); 2366 return S; 2367 } 2368 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2369 FirstUnknown); 2370 FirstUnknown = cast<SCEVUnknown>(S); 2371 UniqueSCEVs.InsertNode(S, IP); 2372 return S; 2373 } 2374 2375 //===----------------------------------------------------------------------===// 2376 // Basic SCEV Analysis and PHI Idiom Recognition Code 2377 // 2378 2379 /// isSCEVable - Test if values of the given type are analyzable within 2380 /// the SCEV framework. This primarily includes integer types, and it 2381 /// can optionally include pointer types if the ScalarEvolution class 2382 /// has access to target-specific information. 2383 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2384 // Integers and pointers are always SCEVable. 2385 return Ty->isIntegerTy() || Ty->isPointerTy(); 2386 } 2387 2388 /// getTypeSizeInBits - Return the size in bits of the specified type, 2389 /// for which isSCEVable must return true. 2390 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2391 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2392 2393 // If we have a TargetData, use it! 2394 if (TD) 2395 return TD->getTypeSizeInBits(Ty); 2396 2397 // Integer types have fixed sizes. 2398 if (Ty->isIntegerTy()) 2399 return Ty->getPrimitiveSizeInBits(); 2400 2401 // The only other support type is pointer. Without TargetData, conservatively 2402 // assume pointers are 64-bit. 2403 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2404 return 64; 2405 } 2406 2407 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2408 /// the given type and which represents how SCEV will treat the given 2409 /// type, for which isSCEVable must return true. For pointer types, 2410 /// this is the pointer-sized integer type. 2411 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2412 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2413 2414 if (Ty->isIntegerTy()) 2415 return Ty; 2416 2417 // The only other support type is pointer. 2418 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2419 if (TD) return TD->getIntPtrType(getContext()); 2420 2421 // Without TargetData, conservatively assume pointers are 64-bit. 2422 return Type::getInt64Ty(getContext()); 2423 } 2424 2425 const SCEV *ScalarEvolution::getCouldNotCompute() { 2426 return &CouldNotCompute; 2427 } 2428 2429 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2430 /// expression and create a new one. 2431 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2432 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2433 2434 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); 2435 if (I != Scalars.end()) return I->second; 2436 const SCEV *S = createSCEV(V); 2437 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2438 return S; 2439 } 2440 2441 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2442 /// 2443 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2444 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2445 return getConstant( 2446 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2447 2448 const Type *Ty = V->getType(); 2449 Ty = getEffectiveSCEVType(Ty); 2450 return getMulExpr(V, 2451 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2452 } 2453 2454 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2455 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2456 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2457 return getConstant( 2458 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2459 2460 const Type *Ty = V->getType(); 2461 Ty = getEffectiveSCEVType(Ty); 2462 const SCEV *AllOnes = 2463 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2464 return getMinusSCEV(AllOnes, V); 2465 } 2466 2467 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2468 /// 2469 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2470 const SCEV *RHS) { 2471 // Fast path: X - X --> 0. 2472 if (LHS == RHS) 2473 return getConstant(LHS->getType(), 0); 2474 2475 // X - Y --> X + -Y 2476 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2477 } 2478 2479 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2480 /// input value to the specified type. If the type must be extended, it is zero 2481 /// extended. 2482 const SCEV * 2483 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, 2484 const Type *Ty) { 2485 const Type *SrcTy = V->getType(); 2486 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2487 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2488 "Cannot truncate or zero extend with non-integer arguments!"); 2489 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2490 return V; // No conversion 2491 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2492 return getTruncateExpr(V, Ty); 2493 return getZeroExtendExpr(V, Ty); 2494 } 2495 2496 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2497 /// input value to the specified type. If the type must be extended, it is sign 2498 /// extended. 2499 const SCEV * 2500 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2501 const Type *Ty) { 2502 const Type *SrcTy = V->getType(); 2503 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2504 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2505 "Cannot truncate or zero extend with non-integer arguments!"); 2506 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2507 return V; // No conversion 2508 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2509 return getTruncateExpr(V, Ty); 2510 return getSignExtendExpr(V, Ty); 2511 } 2512 2513 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2514 /// input value to the specified type. If the type must be extended, it is zero 2515 /// extended. The conversion must not be narrowing. 2516 const SCEV * 2517 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2518 const Type *SrcTy = V->getType(); 2519 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2520 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2521 "Cannot noop or zero extend with non-integer arguments!"); 2522 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2523 "getNoopOrZeroExtend cannot truncate!"); 2524 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2525 return V; // No conversion 2526 return getZeroExtendExpr(V, Ty); 2527 } 2528 2529 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2530 /// input value to the specified type. If the type must be extended, it is sign 2531 /// extended. The conversion must not be narrowing. 2532 const SCEV * 2533 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2534 const Type *SrcTy = V->getType(); 2535 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2536 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2537 "Cannot noop or sign extend with non-integer arguments!"); 2538 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2539 "getNoopOrSignExtend cannot truncate!"); 2540 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2541 return V; // No conversion 2542 return getSignExtendExpr(V, Ty); 2543 } 2544 2545 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2546 /// the input value to the specified type. If the type must be extended, 2547 /// it is extended with unspecified bits. The conversion must not be 2548 /// narrowing. 2549 const SCEV * 2550 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2551 const Type *SrcTy = V->getType(); 2552 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2553 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2554 "Cannot noop or any extend with non-integer arguments!"); 2555 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2556 "getNoopOrAnyExtend cannot truncate!"); 2557 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2558 return V; // No conversion 2559 return getAnyExtendExpr(V, Ty); 2560 } 2561 2562 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2563 /// input value to the specified type. The conversion must not be widening. 2564 const SCEV * 2565 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2566 const Type *SrcTy = V->getType(); 2567 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2568 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2569 "Cannot truncate or noop with non-integer arguments!"); 2570 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2571 "getTruncateOrNoop cannot extend!"); 2572 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2573 return V; // No conversion 2574 return getTruncateExpr(V, Ty); 2575 } 2576 2577 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2578 /// the types using zero-extension, and then perform a umax operation 2579 /// with them. 2580 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2581 const SCEV *RHS) { 2582 const SCEV *PromotedLHS = LHS; 2583 const SCEV *PromotedRHS = RHS; 2584 2585 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2586 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2587 else 2588 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2589 2590 return getUMaxExpr(PromotedLHS, PromotedRHS); 2591 } 2592 2593 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2594 /// the types using zero-extension, and then perform a umin operation 2595 /// with them. 2596 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2597 const SCEV *RHS) { 2598 const SCEV *PromotedLHS = LHS; 2599 const SCEV *PromotedRHS = RHS; 2600 2601 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2602 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2603 else 2604 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2605 2606 return getUMinExpr(PromotedLHS, PromotedRHS); 2607 } 2608 2609 /// PushDefUseChildren - Push users of the given Instruction 2610 /// onto the given Worklist. 2611 static void 2612 PushDefUseChildren(Instruction *I, 2613 SmallVectorImpl<Instruction *> &Worklist) { 2614 // Push the def-use children onto the Worklist stack. 2615 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2616 UI != UE; ++UI) 2617 Worklist.push_back(cast<Instruction>(*UI)); 2618 } 2619 2620 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2621 /// instructions that depend on the given instruction and removes them from 2622 /// the Scalars map if they reference SymName. This is used during PHI 2623 /// resolution. 2624 void 2625 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2626 SmallVector<Instruction *, 16> Worklist; 2627 PushDefUseChildren(PN, Worklist); 2628 2629 SmallPtrSet<Instruction *, 8> Visited; 2630 Visited.insert(PN); 2631 while (!Worklist.empty()) { 2632 Instruction *I = Worklist.pop_back_val(); 2633 if (!Visited.insert(I)) continue; 2634 2635 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 2636 Scalars.find(static_cast<Value *>(I)); 2637 if (It != Scalars.end()) { 2638 // Short-circuit the def-use traversal if the symbolic name 2639 // ceases to appear in expressions. 2640 if (It->second != SymName && !It->second->hasOperand(SymName)) 2641 continue; 2642 2643 // SCEVUnknown for a PHI either means that it has an unrecognized 2644 // structure, it's a PHI that's in the progress of being computed 2645 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2646 // additional loop trip count information isn't going to change anything. 2647 // In the second case, createNodeForPHI will perform the necessary 2648 // updates on its own when it gets to that point. In the third, we do 2649 // want to forget the SCEVUnknown. 2650 if (!isa<PHINode>(I) || 2651 !isa<SCEVUnknown>(It->second) || 2652 (I != PN && It->second == SymName)) { 2653 ValuesAtScopes.erase(It->second); 2654 Scalars.erase(It); 2655 } 2656 } 2657 2658 PushDefUseChildren(I, Worklist); 2659 } 2660 } 2661 2662 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2663 /// a loop header, making it a potential recurrence, or it doesn't. 2664 /// 2665 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2666 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2667 if (L->getHeader() == PN->getParent()) { 2668 // The loop may have multiple entrances or multiple exits; we can analyze 2669 // this phi as an addrec if it has a unique entry value and a unique 2670 // backedge value. 2671 Value *BEValueV = 0, *StartValueV = 0; 2672 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2673 Value *V = PN->getIncomingValue(i); 2674 if (L->contains(PN->getIncomingBlock(i))) { 2675 if (!BEValueV) { 2676 BEValueV = V; 2677 } else if (BEValueV != V) { 2678 BEValueV = 0; 2679 break; 2680 } 2681 } else if (!StartValueV) { 2682 StartValueV = V; 2683 } else if (StartValueV != V) { 2684 StartValueV = 0; 2685 break; 2686 } 2687 } 2688 if (BEValueV && StartValueV) { 2689 // While we are analyzing this PHI node, handle its value symbolically. 2690 const SCEV *SymbolicName = getUnknown(PN); 2691 assert(Scalars.find(PN) == Scalars.end() && 2692 "PHI node already processed?"); 2693 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2694 2695 // Using this symbolic name for the PHI, analyze the value coming around 2696 // the back-edge. 2697 const SCEV *BEValue = getSCEV(BEValueV); 2698 2699 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2700 // has a special value for the first iteration of the loop. 2701 2702 // If the value coming around the backedge is an add with the symbolic 2703 // value we just inserted, then we found a simple induction variable! 2704 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2705 // If there is a single occurrence of the symbolic value, replace it 2706 // with a recurrence. 2707 unsigned FoundIndex = Add->getNumOperands(); 2708 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2709 if (Add->getOperand(i) == SymbolicName) 2710 if (FoundIndex == e) { 2711 FoundIndex = i; 2712 break; 2713 } 2714 2715 if (FoundIndex != Add->getNumOperands()) { 2716 // Create an add with everything but the specified operand. 2717 SmallVector<const SCEV *, 8> Ops; 2718 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2719 if (i != FoundIndex) 2720 Ops.push_back(Add->getOperand(i)); 2721 const SCEV *Accum = getAddExpr(Ops); 2722 2723 // This is not a valid addrec if the step amount is varying each 2724 // loop iteration, but is not itself an addrec in this loop. 2725 if (Accum->isLoopInvariant(L) || 2726 (isa<SCEVAddRecExpr>(Accum) && 2727 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2728 bool HasNUW = false; 2729 bool HasNSW = false; 2730 2731 // If the increment doesn't overflow, then neither the addrec nor 2732 // the post-increment will overflow. 2733 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2734 if (OBO->hasNoUnsignedWrap()) 2735 HasNUW = true; 2736 if (OBO->hasNoSignedWrap()) 2737 HasNSW = true; 2738 } 2739 2740 const SCEV *StartVal = getSCEV(StartValueV); 2741 const SCEV *PHISCEV = 2742 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW); 2743 2744 // Since the no-wrap flags are on the increment, they apply to the 2745 // post-incremented value as well. 2746 if (Accum->isLoopInvariant(L)) 2747 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2748 Accum, L, HasNUW, HasNSW); 2749 2750 // Okay, for the entire analysis of this edge we assumed the PHI 2751 // to be symbolic. We now need to go back and purge all of the 2752 // entries for the scalars that use the symbolic expression. 2753 ForgetSymbolicName(PN, SymbolicName); 2754 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2755 return PHISCEV; 2756 } 2757 } 2758 } else if (const SCEVAddRecExpr *AddRec = 2759 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2760 // Otherwise, this could be a loop like this: 2761 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2762 // In this case, j = {1,+,1} and BEValue is j. 2763 // Because the other in-value of i (0) fits the evolution of BEValue 2764 // i really is an addrec evolution. 2765 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2766 const SCEV *StartVal = getSCEV(StartValueV); 2767 2768 // If StartVal = j.start - j.stride, we can use StartVal as the 2769 // initial step of the addrec evolution. 2770 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2771 AddRec->getOperand(1))) { 2772 const SCEV *PHISCEV = 2773 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2774 2775 // Okay, for the entire analysis of this edge we assumed the PHI 2776 // to be symbolic. We now need to go back and purge all of the 2777 // entries for the scalars that use the symbolic expression. 2778 ForgetSymbolicName(PN, SymbolicName); 2779 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2780 return PHISCEV; 2781 } 2782 } 2783 } 2784 } 2785 } 2786 2787 // If the PHI has a single incoming value, follow that value, unless the 2788 // PHI's incoming blocks are in a different loop, in which case doing so 2789 // risks breaking LCSSA form. Instcombine would normally zap these, but 2790 // it doesn't have DominatorTree information, so it may miss cases. 2791 if (Value *V = PN->hasConstantValue(DT)) { 2792 bool AllSameLoop = true; 2793 Loop *PNLoop = LI->getLoopFor(PN->getParent()); 2794 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2795 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) { 2796 AllSameLoop = false; 2797 break; 2798 } 2799 if (AllSameLoop) 2800 return getSCEV(V); 2801 } 2802 2803 // If it's not a loop phi, we can't handle it yet. 2804 return getUnknown(PN); 2805 } 2806 2807 /// createNodeForGEP - Expand GEP instructions into add and multiply 2808 /// operations. This allows them to be analyzed by regular SCEV code. 2809 /// 2810 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 2811 2812 // Don't blindly transfer the inbounds flag from the GEP instruction to the 2813 // Add expression, because the Instruction may be guarded by control flow 2814 // and the no-overflow bits may not be valid for the expression in any 2815 // context. 2816 2817 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2818 Value *Base = GEP->getOperand(0); 2819 // Don't attempt to analyze GEPs over unsized objects. 2820 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2821 return getUnknown(GEP); 2822 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2823 gep_type_iterator GTI = gep_type_begin(GEP); 2824 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 2825 E = GEP->op_end(); 2826 I != E; ++I) { 2827 Value *Index = *I; 2828 // Compute the (potentially symbolic) offset in bytes for this index. 2829 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2830 // For a struct, add the member offset. 2831 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2832 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 2833 2834 // Add the field offset to the running total offset. 2835 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2836 } else { 2837 // For an array, add the element offset, explicitly scaled. 2838 const SCEV *ElementSize = getSizeOfExpr(*GTI); 2839 const SCEV *IndexS = getSCEV(Index); 2840 // Getelementptr indices are signed. 2841 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 2842 2843 // Multiply the index by the element size to compute the element offset. 2844 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize); 2845 2846 // Add the element offset to the running total offset. 2847 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2848 } 2849 } 2850 2851 // Get the SCEV for the GEP base. 2852 const SCEV *BaseS = getSCEV(Base); 2853 2854 // Add the total offset from all the GEP indices to the base. 2855 return getAddExpr(BaseS, TotalOffset); 2856 } 2857 2858 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2859 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2860 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2861 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2862 uint32_t 2863 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2864 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2865 return C->getValue()->getValue().countTrailingZeros(); 2866 2867 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2868 return std::min(GetMinTrailingZeros(T->getOperand()), 2869 (uint32_t)getTypeSizeInBits(T->getType())); 2870 2871 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2872 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2873 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2874 getTypeSizeInBits(E->getType()) : OpRes; 2875 } 2876 2877 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2878 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2879 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2880 getTypeSizeInBits(E->getType()) : OpRes; 2881 } 2882 2883 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2884 // The result is the min of all operands results. 2885 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2886 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2887 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2888 return MinOpRes; 2889 } 2890 2891 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2892 // The result is the sum of all operands results. 2893 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2894 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2895 for (unsigned i = 1, e = M->getNumOperands(); 2896 SumOpRes != BitWidth && i != e; ++i) 2897 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2898 BitWidth); 2899 return SumOpRes; 2900 } 2901 2902 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2903 // The result is the min of all operands results. 2904 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2905 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2906 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2907 return MinOpRes; 2908 } 2909 2910 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2911 // The result is the min of all operands results. 2912 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2913 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2914 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2915 return MinOpRes; 2916 } 2917 2918 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2919 // The result is the min of all operands results. 2920 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2921 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2922 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2923 return MinOpRes; 2924 } 2925 2926 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2927 // For a SCEVUnknown, ask ValueTracking. 2928 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2929 APInt Mask = APInt::getAllOnesValue(BitWidth); 2930 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2931 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2932 return Zeros.countTrailingOnes(); 2933 } 2934 2935 // SCEVUDivExpr 2936 return 0; 2937 } 2938 2939 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2940 /// 2941 ConstantRange 2942 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2943 2944 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2945 return ConstantRange(C->getValue()->getValue()); 2946 2947 unsigned BitWidth = getTypeSizeInBits(S->getType()); 2948 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 2949 2950 // If the value has known zeros, the maximum unsigned value will have those 2951 // known zeros as well. 2952 uint32_t TZ = GetMinTrailingZeros(S); 2953 if (TZ != 0) 2954 ConservativeResult = 2955 ConstantRange(APInt::getMinValue(BitWidth), 2956 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 2957 2958 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2959 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 2960 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2961 X = X.add(getUnsignedRange(Add->getOperand(i))); 2962 return ConservativeResult.intersectWith(X); 2963 } 2964 2965 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2966 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 2967 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2968 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 2969 return ConservativeResult.intersectWith(X); 2970 } 2971 2972 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2973 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 2974 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2975 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 2976 return ConservativeResult.intersectWith(X); 2977 } 2978 2979 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2980 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 2981 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2982 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 2983 return ConservativeResult.intersectWith(X); 2984 } 2985 2986 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2987 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 2988 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 2989 return ConservativeResult.intersectWith(X.udiv(Y)); 2990 } 2991 2992 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2993 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 2994 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 2995 } 2996 2997 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2998 ConstantRange X = getUnsignedRange(SExt->getOperand()); 2999 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 3000 } 3001 3002 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3003 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3004 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 3005 } 3006 3007 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3008 // If there's no unsigned wrap, the value will never be less than its 3009 // initial value. 3010 if (AddRec->hasNoUnsignedWrap()) 3011 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3012 if (!C->getValue()->isZero()) 3013 ConservativeResult = 3014 ConservativeResult.intersectWith( 3015 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3016 3017 // TODO: non-affine addrec 3018 if (AddRec->isAffine()) { 3019 const Type *Ty = AddRec->getType(); 3020 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3021 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3022 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3023 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3024 3025 const SCEV *Start = AddRec->getStart(); 3026 const SCEV *Step = AddRec->getStepRecurrence(*this); 3027 3028 ConstantRange StartRange = getUnsignedRange(Start); 3029 ConstantRange StepRange = getSignedRange(Step); 3030 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3031 ConstantRange EndRange = 3032 StartRange.add(MaxBECountRange.multiply(StepRange)); 3033 3034 // Check for overflow. This must be done with ConstantRange arithmetic 3035 // because we could be called from within the ScalarEvolution overflow 3036 // checking code. 3037 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3038 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3039 ConstantRange ExtMaxBECountRange = 3040 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3041 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3042 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3043 ExtEndRange) 3044 return ConservativeResult; 3045 3046 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3047 EndRange.getUnsignedMin()); 3048 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3049 EndRange.getUnsignedMax()); 3050 if (Min.isMinValue() && Max.isMaxValue()) 3051 return ConservativeResult; 3052 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3053 } 3054 } 3055 3056 return ConservativeResult; 3057 } 3058 3059 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3060 // For a SCEVUnknown, ask ValueTracking. 3061 APInt Mask = APInt::getAllOnesValue(BitWidth); 3062 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3063 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3064 if (Ones == ~Zeros + 1) 3065 return ConservativeResult; 3066 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 3067 } 3068 3069 return ConservativeResult; 3070 } 3071 3072 /// getSignedRange - Determine the signed range for a particular SCEV. 3073 /// 3074 ConstantRange 3075 ScalarEvolution::getSignedRange(const SCEV *S) { 3076 3077 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3078 return ConstantRange(C->getValue()->getValue()); 3079 3080 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3081 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3082 3083 // If the value has known zeros, the maximum signed value will have those 3084 // known zeros as well. 3085 uint32_t TZ = GetMinTrailingZeros(S); 3086 if (TZ != 0) 3087 ConservativeResult = 3088 ConstantRange(APInt::getSignedMinValue(BitWidth), 3089 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3090 3091 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3092 ConstantRange X = getSignedRange(Add->getOperand(0)); 3093 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3094 X = X.add(getSignedRange(Add->getOperand(i))); 3095 return ConservativeResult.intersectWith(X); 3096 } 3097 3098 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3099 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3100 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3101 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3102 return ConservativeResult.intersectWith(X); 3103 } 3104 3105 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3106 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3107 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3108 X = X.smax(getSignedRange(SMax->getOperand(i))); 3109 return ConservativeResult.intersectWith(X); 3110 } 3111 3112 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3113 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3114 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3115 X = X.umax(getSignedRange(UMax->getOperand(i))); 3116 return ConservativeResult.intersectWith(X); 3117 } 3118 3119 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3120 ConstantRange X = getSignedRange(UDiv->getLHS()); 3121 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3122 return ConservativeResult.intersectWith(X.udiv(Y)); 3123 } 3124 3125 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3126 ConstantRange X = getSignedRange(ZExt->getOperand()); 3127 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 3128 } 3129 3130 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3131 ConstantRange X = getSignedRange(SExt->getOperand()); 3132 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 3133 } 3134 3135 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3136 ConstantRange X = getSignedRange(Trunc->getOperand()); 3137 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 3138 } 3139 3140 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3141 // If there's no signed wrap, and all the operands have the same sign or 3142 // zero, the value won't ever change sign. 3143 if (AddRec->hasNoSignedWrap()) { 3144 bool AllNonNeg = true; 3145 bool AllNonPos = true; 3146 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3147 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3148 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3149 } 3150 if (AllNonNeg) 3151 ConservativeResult = ConservativeResult.intersectWith( 3152 ConstantRange(APInt(BitWidth, 0), 3153 APInt::getSignedMinValue(BitWidth))); 3154 else if (AllNonPos) 3155 ConservativeResult = ConservativeResult.intersectWith( 3156 ConstantRange(APInt::getSignedMinValue(BitWidth), 3157 APInt(BitWidth, 1))); 3158 } 3159 3160 // TODO: non-affine addrec 3161 if (AddRec->isAffine()) { 3162 const Type *Ty = AddRec->getType(); 3163 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3164 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3165 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3166 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3167 3168 const SCEV *Start = AddRec->getStart(); 3169 const SCEV *Step = AddRec->getStepRecurrence(*this); 3170 3171 ConstantRange StartRange = getSignedRange(Start); 3172 ConstantRange StepRange = getSignedRange(Step); 3173 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3174 ConstantRange EndRange = 3175 StartRange.add(MaxBECountRange.multiply(StepRange)); 3176 3177 // Check for overflow. This must be done with ConstantRange arithmetic 3178 // because we could be called from within the ScalarEvolution overflow 3179 // checking code. 3180 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3181 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3182 ConstantRange ExtMaxBECountRange = 3183 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3184 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3185 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3186 ExtEndRange) 3187 return ConservativeResult; 3188 3189 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3190 EndRange.getSignedMin()); 3191 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3192 EndRange.getSignedMax()); 3193 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3194 return ConservativeResult; 3195 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3196 } 3197 } 3198 3199 return ConservativeResult; 3200 } 3201 3202 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3203 // For a SCEVUnknown, ask ValueTracking. 3204 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3205 return ConservativeResult; 3206 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3207 if (NS == 1) 3208 return ConservativeResult; 3209 return ConservativeResult.intersectWith( 3210 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3211 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)); 3212 } 3213 3214 return ConservativeResult; 3215 } 3216 3217 /// createSCEV - We know that there is no SCEV for the specified value. 3218 /// Analyze the expression. 3219 /// 3220 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3221 if (!isSCEVable(V->getType())) 3222 return getUnknown(V); 3223 3224 unsigned Opcode = Instruction::UserOp1; 3225 if (Instruction *I = dyn_cast<Instruction>(V)) { 3226 Opcode = I->getOpcode(); 3227 3228 // Don't attempt to analyze instructions in blocks that aren't 3229 // reachable. Such instructions don't matter, and they aren't required 3230 // to obey basic rules for definitions dominating uses which this 3231 // analysis depends on. 3232 if (!DT->isReachableFromEntry(I->getParent())) 3233 return getUnknown(V); 3234 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3235 Opcode = CE->getOpcode(); 3236 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3237 return getConstant(CI); 3238 else if (isa<ConstantPointerNull>(V)) 3239 return getConstant(V->getType(), 0); 3240 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3241 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3242 else 3243 return getUnknown(V); 3244 3245 Operator *U = cast<Operator>(V); 3246 switch (Opcode) { 3247 case Instruction::Add: { 3248 // The simple thing to do would be to just call getSCEV on both operands 3249 // and call getAddExpr with the result. However if we're looking at a 3250 // bunch of things all added together, this can be quite inefficient, 3251 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3252 // Instead, gather up all the operands and make a single getAddExpr call. 3253 // LLVM IR canonical form means we need only traverse the left operands. 3254 SmallVector<const SCEV *, 4> AddOps; 3255 AddOps.push_back(getSCEV(U->getOperand(1))); 3256 for (Value *Op = U->getOperand(0); 3257 Op->getValueID() == Instruction::Add + Value::InstructionVal; 3258 Op = U->getOperand(0)) { 3259 U = cast<Operator>(Op); 3260 AddOps.push_back(getSCEV(U->getOperand(1))); 3261 } 3262 AddOps.push_back(getSCEV(U->getOperand(0))); 3263 return getAddExpr(AddOps); 3264 } 3265 case Instruction::Mul: { 3266 // See the Add code above. 3267 SmallVector<const SCEV *, 4> MulOps; 3268 MulOps.push_back(getSCEV(U->getOperand(1))); 3269 for (Value *Op = U->getOperand(0); 3270 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3271 Op = U->getOperand(0)) { 3272 U = cast<Operator>(Op); 3273 MulOps.push_back(getSCEV(U->getOperand(1))); 3274 } 3275 MulOps.push_back(getSCEV(U->getOperand(0))); 3276 return getMulExpr(MulOps); 3277 } 3278 case Instruction::UDiv: 3279 return getUDivExpr(getSCEV(U->getOperand(0)), 3280 getSCEV(U->getOperand(1))); 3281 case Instruction::Sub: 3282 return getMinusSCEV(getSCEV(U->getOperand(0)), 3283 getSCEV(U->getOperand(1))); 3284 case Instruction::And: 3285 // For an expression like x&255 that merely masks off the high bits, 3286 // use zext(trunc(x)) as the SCEV expression. 3287 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3288 if (CI->isNullValue()) 3289 return getSCEV(U->getOperand(1)); 3290 if (CI->isAllOnesValue()) 3291 return getSCEV(U->getOperand(0)); 3292 const APInt &A = CI->getValue(); 3293 3294 // Instcombine's ShrinkDemandedConstant may strip bits out of 3295 // constants, obscuring what would otherwise be a low-bits mask. 3296 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3297 // knew about to reconstruct a low-bits mask value. 3298 unsigned LZ = A.countLeadingZeros(); 3299 unsigned BitWidth = A.getBitWidth(); 3300 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3301 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3302 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3303 3304 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3305 3306 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3307 return 3308 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3309 IntegerType::get(getContext(), BitWidth - LZ)), 3310 U->getType()); 3311 } 3312 break; 3313 3314 case Instruction::Or: 3315 // If the RHS of the Or is a constant, we may have something like: 3316 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3317 // optimizations will transparently handle this case. 3318 // 3319 // In order for this transformation to be safe, the LHS must be of the 3320 // form X*(2^n) and the Or constant must be less than 2^n. 3321 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3322 const SCEV *LHS = getSCEV(U->getOperand(0)); 3323 const APInt &CIVal = CI->getValue(); 3324 if (GetMinTrailingZeros(LHS) >= 3325 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3326 // Build a plain add SCEV. 3327 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3328 // If the LHS of the add was an addrec and it has no-wrap flags, 3329 // transfer the no-wrap flags, since an or won't introduce a wrap. 3330 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3331 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3332 if (OldAR->hasNoUnsignedWrap()) 3333 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true); 3334 if (OldAR->hasNoSignedWrap()) 3335 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true); 3336 } 3337 return S; 3338 } 3339 } 3340 break; 3341 case Instruction::Xor: 3342 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3343 // If the RHS of the xor is a signbit, then this is just an add. 3344 // Instcombine turns add of signbit into xor as a strength reduction step. 3345 if (CI->getValue().isSignBit()) 3346 return getAddExpr(getSCEV(U->getOperand(0)), 3347 getSCEV(U->getOperand(1))); 3348 3349 // If the RHS of xor is -1, then this is a not operation. 3350 if (CI->isAllOnesValue()) 3351 return getNotSCEV(getSCEV(U->getOperand(0))); 3352 3353 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3354 // This is a variant of the check for xor with -1, and it handles 3355 // the case where instcombine has trimmed non-demanded bits out 3356 // of an xor with -1. 3357 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3358 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3359 if (BO->getOpcode() == Instruction::And && 3360 LCI->getValue() == CI->getValue()) 3361 if (const SCEVZeroExtendExpr *Z = 3362 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3363 const Type *UTy = U->getType(); 3364 const SCEV *Z0 = Z->getOperand(); 3365 const Type *Z0Ty = Z0->getType(); 3366 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3367 3368 // If C is a low-bits mask, the zero extend is serving to 3369 // mask off the high bits. Complement the operand and 3370 // re-apply the zext. 3371 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3372 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3373 3374 // If C is a single bit, it may be in the sign-bit position 3375 // before the zero-extend. In this case, represent the xor 3376 // using an add, which is equivalent, and re-apply the zext. 3377 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 3378 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3379 Trunc.isSignBit()) 3380 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3381 UTy); 3382 } 3383 } 3384 break; 3385 3386 case Instruction::Shl: 3387 // Turn shift left of a constant amount into a multiply. 3388 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3389 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3390 3391 // If the shift count is not less than the bitwidth, the result of 3392 // the shift is undefined. Don't try to analyze it, because the 3393 // resolution chosen here may differ from the resolution chosen in 3394 // other parts of the compiler. 3395 if (SA->getValue().uge(BitWidth)) 3396 break; 3397 3398 Constant *X = ConstantInt::get(getContext(), 3399 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3400 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3401 } 3402 break; 3403 3404 case Instruction::LShr: 3405 // Turn logical shift right of a constant into a unsigned divide. 3406 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3407 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3408 3409 // If the shift count is not less than the bitwidth, the result of 3410 // the shift is undefined. Don't try to analyze it, because the 3411 // resolution chosen here may differ from the resolution chosen in 3412 // other parts of the compiler. 3413 if (SA->getValue().uge(BitWidth)) 3414 break; 3415 3416 Constant *X = ConstantInt::get(getContext(), 3417 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3418 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3419 } 3420 break; 3421 3422 case Instruction::AShr: 3423 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3424 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3425 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3426 if (L->getOpcode() == Instruction::Shl && 3427 L->getOperand(1) == U->getOperand(1)) { 3428 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3429 3430 // If the shift count is not less than the bitwidth, the result of 3431 // the shift is undefined. Don't try to analyze it, because the 3432 // resolution chosen here may differ from the resolution chosen in 3433 // other parts of the compiler. 3434 if (CI->getValue().uge(BitWidth)) 3435 break; 3436 3437 uint64_t Amt = BitWidth - CI->getZExtValue(); 3438 if (Amt == BitWidth) 3439 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3440 return 3441 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3442 IntegerType::get(getContext(), 3443 Amt)), 3444 U->getType()); 3445 } 3446 break; 3447 3448 case Instruction::Trunc: 3449 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3450 3451 case Instruction::ZExt: 3452 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3453 3454 case Instruction::SExt: 3455 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3456 3457 case Instruction::BitCast: 3458 // BitCasts are no-op casts so we just eliminate the cast. 3459 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3460 return getSCEV(U->getOperand(0)); 3461 break; 3462 3463 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3464 // lead to pointer expressions which cannot safely be expanded to GEPs, 3465 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3466 // simplifying integer expressions. 3467 3468 case Instruction::GetElementPtr: 3469 return createNodeForGEP(cast<GEPOperator>(U)); 3470 3471 case Instruction::PHI: 3472 return createNodeForPHI(cast<PHINode>(U)); 3473 3474 case Instruction::Select: 3475 // This could be a smax or umax that was lowered earlier. 3476 // Try to recover it. 3477 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3478 Value *LHS = ICI->getOperand(0); 3479 Value *RHS = ICI->getOperand(1); 3480 switch (ICI->getPredicate()) { 3481 case ICmpInst::ICMP_SLT: 3482 case ICmpInst::ICMP_SLE: 3483 std::swap(LHS, RHS); 3484 // fall through 3485 case ICmpInst::ICMP_SGT: 3486 case ICmpInst::ICMP_SGE: 3487 // a >s b ? a+x : b+x -> smax(a, b)+x 3488 // a >s b ? b+x : a+x -> smin(a, b)+x 3489 if (LHS->getType() == U->getType()) { 3490 const SCEV *LS = getSCEV(LHS); 3491 const SCEV *RS = getSCEV(RHS); 3492 const SCEV *LA = getSCEV(U->getOperand(1)); 3493 const SCEV *RA = getSCEV(U->getOperand(2)); 3494 const SCEV *LDiff = getMinusSCEV(LA, LS); 3495 const SCEV *RDiff = getMinusSCEV(RA, RS); 3496 if (LDiff == RDiff) 3497 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3498 LDiff = getMinusSCEV(LA, RS); 3499 RDiff = getMinusSCEV(RA, LS); 3500 if (LDiff == RDiff) 3501 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3502 } 3503 break; 3504 case ICmpInst::ICMP_ULT: 3505 case ICmpInst::ICMP_ULE: 3506 std::swap(LHS, RHS); 3507 // fall through 3508 case ICmpInst::ICMP_UGT: 3509 case ICmpInst::ICMP_UGE: 3510 // a >u b ? a+x : b+x -> umax(a, b)+x 3511 // a >u b ? b+x : a+x -> umin(a, b)+x 3512 if (LHS->getType() == U->getType()) { 3513 const SCEV *LS = getSCEV(LHS); 3514 const SCEV *RS = getSCEV(RHS); 3515 const SCEV *LA = getSCEV(U->getOperand(1)); 3516 const SCEV *RA = getSCEV(U->getOperand(2)); 3517 const SCEV *LDiff = getMinusSCEV(LA, LS); 3518 const SCEV *RDiff = getMinusSCEV(RA, RS); 3519 if (LDiff == RDiff) 3520 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3521 LDiff = getMinusSCEV(LA, RS); 3522 RDiff = getMinusSCEV(RA, LS); 3523 if (LDiff == RDiff) 3524 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3525 } 3526 break; 3527 case ICmpInst::ICMP_NE: 3528 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3529 if (LHS->getType() == U->getType() && 3530 isa<ConstantInt>(RHS) && 3531 cast<ConstantInt>(RHS)->isZero()) { 3532 const SCEV *One = getConstant(LHS->getType(), 1); 3533 const SCEV *LS = getSCEV(LHS); 3534 const SCEV *LA = getSCEV(U->getOperand(1)); 3535 const SCEV *RA = getSCEV(U->getOperand(2)); 3536 const SCEV *LDiff = getMinusSCEV(LA, LS); 3537 const SCEV *RDiff = getMinusSCEV(RA, One); 3538 if (LDiff == RDiff) 3539 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3540 } 3541 break; 3542 case ICmpInst::ICMP_EQ: 3543 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3544 if (LHS->getType() == U->getType() && 3545 isa<ConstantInt>(RHS) && 3546 cast<ConstantInt>(RHS)->isZero()) { 3547 const SCEV *One = getConstant(LHS->getType(), 1); 3548 const SCEV *LS = getSCEV(LHS); 3549 const SCEV *LA = getSCEV(U->getOperand(1)); 3550 const SCEV *RA = getSCEV(U->getOperand(2)); 3551 const SCEV *LDiff = getMinusSCEV(LA, One); 3552 const SCEV *RDiff = getMinusSCEV(RA, LS); 3553 if (LDiff == RDiff) 3554 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3555 } 3556 break; 3557 default: 3558 break; 3559 } 3560 } 3561 3562 default: // We cannot analyze this expression. 3563 break; 3564 } 3565 3566 return getUnknown(V); 3567 } 3568 3569 3570 3571 //===----------------------------------------------------------------------===// 3572 // Iteration Count Computation Code 3573 // 3574 3575 /// getBackedgeTakenCount - If the specified loop has a predictable 3576 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3577 /// object. The backedge-taken count is the number of times the loop header 3578 /// will be branched to from within the loop. This is one less than the 3579 /// trip count of the loop, since it doesn't count the first iteration, 3580 /// when the header is branched to from outside the loop. 3581 /// 3582 /// Note that it is not valid to call this method on a loop without a 3583 /// loop-invariant backedge-taken count (see 3584 /// hasLoopInvariantBackedgeTakenCount). 3585 /// 3586 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3587 return getBackedgeTakenInfo(L).Exact; 3588 } 3589 3590 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3591 /// return the least SCEV value that is known never to be less than the 3592 /// actual backedge taken count. 3593 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3594 return getBackedgeTakenInfo(L).Max; 3595 } 3596 3597 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3598 /// onto the given Worklist. 3599 static void 3600 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3601 BasicBlock *Header = L->getHeader(); 3602 3603 // Push all Loop-header PHIs onto the Worklist stack. 3604 for (BasicBlock::iterator I = Header->begin(); 3605 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3606 Worklist.push_back(PN); 3607 } 3608 3609 const ScalarEvolution::BackedgeTakenInfo & 3610 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3611 // Initially insert a CouldNotCompute for this loop. If the insertion 3612 // succeeds, proceed to actually compute a backedge-taken count and 3613 // update the value. The temporary CouldNotCompute value tells SCEV 3614 // code elsewhere that it shouldn't attempt to request a new 3615 // backedge-taken count, which could result in infinite recursion. 3616 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3617 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3618 if (Pair.second) { 3619 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L); 3620 if (BECount.Exact != getCouldNotCompute()) { 3621 assert(BECount.Exact->isLoopInvariant(L) && 3622 BECount.Max->isLoopInvariant(L) && 3623 "Computed backedge-taken count isn't loop invariant for loop!"); 3624 ++NumTripCountsComputed; 3625 3626 // Update the value in the map. 3627 Pair.first->second = BECount; 3628 } else { 3629 if (BECount.Max != getCouldNotCompute()) 3630 // Update the value in the map. 3631 Pair.first->second = BECount; 3632 if (isa<PHINode>(L->getHeader()->begin())) 3633 // Only count loops that have phi nodes as not being computable. 3634 ++NumTripCountsNotComputed; 3635 } 3636 3637 // Now that we know more about the trip count for this loop, forget any 3638 // existing SCEV values for PHI nodes in this loop since they are only 3639 // conservative estimates made without the benefit of trip count 3640 // information. This is similar to the code in forgetLoop, except that 3641 // it handles SCEVUnknown PHI nodes specially. 3642 if (BECount.hasAnyInfo()) { 3643 SmallVector<Instruction *, 16> Worklist; 3644 PushLoopPHIs(L, Worklist); 3645 3646 SmallPtrSet<Instruction *, 8> Visited; 3647 while (!Worklist.empty()) { 3648 Instruction *I = Worklist.pop_back_val(); 3649 if (!Visited.insert(I)) continue; 3650 3651 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3652 Scalars.find(static_cast<Value *>(I)); 3653 if (It != Scalars.end()) { 3654 // SCEVUnknown for a PHI either means that it has an unrecognized 3655 // structure, or it's a PHI that's in the progress of being computed 3656 // by createNodeForPHI. In the former case, additional loop trip 3657 // count information isn't going to change anything. In the later 3658 // case, createNodeForPHI will perform the necessary updates on its 3659 // own when it gets to that point. 3660 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { 3661 ValuesAtScopes.erase(It->second); 3662 Scalars.erase(It); 3663 } 3664 if (PHINode *PN = dyn_cast<PHINode>(I)) 3665 ConstantEvolutionLoopExitValue.erase(PN); 3666 } 3667 3668 PushDefUseChildren(I, Worklist); 3669 } 3670 } 3671 } 3672 return Pair.first->second; 3673 } 3674 3675 /// forgetLoop - This method should be called by the client when it has 3676 /// changed a loop in a way that may effect ScalarEvolution's ability to 3677 /// compute a trip count, or if the loop is deleted. 3678 void ScalarEvolution::forgetLoop(const Loop *L) { 3679 // Drop any stored trip count value. 3680 BackedgeTakenCounts.erase(L); 3681 3682 // Drop information about expressions based on loop-header PHIs. 3683 SmallVector<Instruction *, 16> Worklist; 3684 PushLoopPHIs(L, Worklist); 3685 3686 SmallPtrSet<Instruction *, 8> Visited; 3687 while (!Worklist.empty()) { 3688 Instruction *I = Worklist.pop_back_val(); 3689 if (!Visited.insert(I)) continue; 3690 3691 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3692 Scalars.find(static_cast<Value *>(I)); 3693 if (It != Scalars.end()) { 3694 ValuesAtScopes.erase(It->second); 3695 Scalars.erase(It); 3696 if (PHINode *PN = dyn_cast<PHINode>(I)) 3697 ConstantEvolutionLoopExitValue.erase(PN); 3698 } 3699 3700 PushDefUseChildren(I, Worklist); 3701 } 3702 } 3703 3704 /// forgetValue - This method should be called by the client when it has 3705 /// changed a value in a way that may effect its value, or which may 3706 /// disconnect it from a def-use chain linking it to a loop. 3707 void ScalarEvolution::forgetValue(Value *V) { 3708 Instruction *I = dyn_cast<Instruction>(V); 3709 if (!I) return; 3710 3711 // Drop information about expressions based on loop-header PHIs. 3712 SmallVector<Instruction *, 16> Worklist; 3713 Worklist.push_back(I); 3714 3715 SmallPtrSet<Instruction *, 8> Visited; 3716 while (!Worklist.empty()) { 3717 I = Worklist.pop_back_val(); 3718 if (!Visited.insert(I)) continue; 3719 3720 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3721 Scalars.find(static_cast<Value *>(I)); 3722 if (It != Scalars.end()) { 3723 ValuesAtScopes.erase(It->second); 3724 Scalars.erase(It); 3725 if (PHINode *PN = dyn_cast<PHINode>(I)) 3726 ConstantEvolutionLoopExitValue.erase(PN); 3727 } 3728 3729 PushDefUseChildren(I, Worklist); 3730 } 3731 } 3732 3733 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3734 /// of the specified loop will execute. 3735 ScalarEvolution::BackedgeTakenInfo 3736 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3737 SmallVector<BasicBlock *, 8> ExitingBlocks; 3738 L->getExitingBlocks(ExitingBlocks); 3739 3740 // Examine all exits and pick the most conservative values. 3741 const SCEV *BECount = getCouldNotCompute(); 3742 const SCEV *MaxBECount = getCouldNotCompute(); 3743 bool CouldNotComputeBECount = false; 3744 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3745 BackedgeTakenInfo NewBTI = 3746 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3747 3748 if (NewBTI.Exact == getCouldNotCompute()) { 3749 // We couldn't compute an exact value for this exit, so 3750 // we won't be able to compute an exact value for the loop. 3751 CouldNotComputeBECount = true; 3752 BECount = getCouldNotCompute(); 3753 } else if (!CouldNotComputeBECount) { 3754 if (BECount == getCouldNotCompute()) 3755 BECount = NewBTI.Exact; 3756 else 3757 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3758 } 3759 if (MaxBECount == getCouldNotCompute()) 3760 MaxBECount = NewBTI.Max; 3761 else if (NewBTI.Max != getCouldNotCompute()) 3762 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3763 } 3764 3765 return BackedgeTakenInfo(BECount, MaxBECount); 3766 } 3767 3768 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3769 /// of the specified loop will execute if it exits via the specified block. 3770 ScalarEvolution::BackedgeTakenInfo 3771 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3772 BasicBlock *ExitingBlock) { 3773 3774 // Okay, we've chosen an exiting block. See what condition causes us to 3775 // exit at this block. 3776 // 3777 // FIXME: we should be able to handle switch instructions (with a single exit) 3778 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3779 if (ExitBr == 0) return getCouldNotCompute(); 3780 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3781 3782 // At this point, we know we have a conditional branch that determines whether 3783 // the loop is exited. However, we don't know if the branch is executed each 3784 // time through the loop. If not, then the execution count of the branch will 3785 // not be equal to the trip count of the loop. 3786 // 3787 // Currently we check for this by checking to see if the Exit branch goes to 3788 // the loop header. If so, we know it will always execute the same number of 3789 // times as the loop. We also handle the case where the exit block *is* the 3790 // loop header. This is common for un-rotated loops. 3791 // 3792 // If both of those tests fail, walk up the unique predecessor chain to the 3793 // header, stopping if there is an edge that doesn't exit the loop. If the 3794 // header is reached, the execution count of the branch will be equal to the 3795 // trip count of the loop. 3796 // 3797 // More extensive analysis could be done to handle more cases here. 3798 // 3799 if (ExitBr->getSuccessor(0) != L->getHeader() && 3800 ExitBr->getSuccessor(1) != L->getHeader() && 3801 ExitBr->getParent() != L->getHeader()) { 3802 // The simple checks failed, try climbing the unique predecessor chain 3803 // up to the header. 3804 bool Ok = false; 3805 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3806 BasicBlock *Pred = BB->getUniquePredecessor(); 3807 if (!Pred) 3808 return getCouldNotCompute(); 3809 TerminatorInst *PredTerm = Pred->getTerminator(); 3810 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3811 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3812 if (PredSucc == BB) 3813 continue; 3814 // If the predecessor has a successor that isn't BB and isn't 3815 // outside the loop, assume the worst. 3816 if (L->contains(PredSucc)) 3817 return getCouldNotCompute(); 3818 } 3819 if (Pred == L->getHeader()) { 3820 Ok = true; 3821 break; 3822 } 3823 BB = Pred; 3824 } 3825 if (!Ok) 3826 return getCouldNotCompute(); 3827 } 3828 3829 // Proceed to the next level to examine the exit condition expression. 3830 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3831 ExitBr->getSuccessor(0), 3832 ExitBr->getSuccessor(1)); 3833 } 3834 3835 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3836 /// backedge of the specified loop will execute if its exit condition 3837 /// were a conditional branch of ExitCond, TBB, and FBB. 3838 ScalarEvolution::BackedgeTakenInfo 3839 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3840 Value *ExitCond, 3841 BasicBlock *TBB, 3842 BasicBlock *FBB) { 3843 // Check if the controlling expression for this loop is an And or Or. 3844 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3845 if (BO->getOpcode() == Instruction::And) { 3846 // Recurse on the operands of the and. 3847 BackedgeTakenInfo BTI0 = 3848 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3849 BackedgeTakenInfo BTI1 = 3850 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3851 const SCEV *BECount = getCouldNotCompute(); 3852 const SCEV *MaxBECount = getCouldNotCompute(); 3853 if (L->contains(TBB)) { 3854 // Both conditions must be true for the loop to continue executing. 3855 // Choose the less conservative count. 3856 if (BTI0.Exact == getCouldNotCompute() || 3857 BTI1.Exact == getCouldNotCompute()) 3858 BECount = getCouldNotCompute(); 3859 else 3860 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3861 if (BTI0.Max == getCouldNotCompute()) 3862 MaxBECount = BTI1.Max; 3863 else if (BTI1.Max == getCouldNotCompute()) 3864 MaxBECount = BTI0.Max; 3865 else 3866 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3867 } else { 3868 // Both conditions must be true at the same time for the loop to exit. 3869 // For now, be conservative. 3870 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3871 if (BTI0.Max == BTI1.Max) 3872 MaxBECount = BTI0.Max; 3873 if (BTI0.Exact == BTI1.Exact) 3874 BECount = BTI0.Exact; 3875 } 3876 3877 return BackedgeTakenInfo(BECount, MaxBECount); 3878 } 3879 if (BO->getOpcode() == Instruction::Or) { 3880 // Recurse on the operands of the or. 3881 BackedgeTakenInfo BTI0 = 3882 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3883 BackedgeTakenInfo BTI1 = 3884 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3885 const SCEV *BECount = getCouldNotCompute(); 3886 const SCEV *MaxBECount = getCouldNotCompute(); 3887 if (L->contains(FBB)) { 3888 // Both conditions must be false for the loop to continue executing. 3889 // Choose the less conservative count. 3890 if (BTI0.Exact == getCouldNotCompute() || 3891 BTI1.Exact == getCouldNotCompute()) 3892 BECount = getCouldNotCompute(); 3893 else 3894 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3895 if (BTI0.Max == getCouldNotCompute()) 3896 MaxBECount = BTI1.Max; 3897 else if (BTI1.Max == getCouldNotCompute()) 3898 MaxBECount = BTI0.Max; 3899 else 3900 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3901 } else { 3902 // Both conditions must be false at the same time for the loop to exit. 3903 // For now, be conservative. 3904 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3905 if (BTI0.Max == BTI1.Max) 3906 MaxBECount = BTI0.Max; 3907 if (BTI0.Exact == BTI1.Exact) 3908 BECount = BTI0.Exact; 3909 } 3910 3911 return BackedgeTakenInfo(BECount, MaxBECount); 3912 } 3913 } 3914 3915 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3916 // Proceed to the next level to examine the icmp. 3917 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3918 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3919 3920 // Check for a constant condition. These are normally stripped out by 3921 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 3922 // preserve the CFG and is temporarily leaving constant conditions 3923 // in place. 3924 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 3925 if (L->contains(FBB) == !CI->getZExtValue()) 3926 // The backedge is always taken. 3927 return getCouldNotCompute(); 3928 else 3929 // The backedge is never taken. 3930 return getConstant(CI->getType(), 0); 3931 } 3932 3933 // If it's not an integer or pointer comparison then compute it the hard way. 3934 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3935 } 3936 3937 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3938 /// backedge of the specified loop will execute if its exit condition 3939 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3940 ScalarEvolution::BackedgeTakenInfo 3941 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3942 ICmpInst *ExitCond, 3943 BasicBlock *TBB, 3944 BasicBlock *FBB) { 3945 3946 // If the condition was exit on true, convert the condition to exit on false 3947 ICmpInst::Predicate Cond; 3948 if (!L->contains(FBB)) 3949 Cond = ExitCond->getPredicate(); 3950 else 3951 Cond = ExitCond->getInversePredicate(); 3952 3953 // Handle common loops like: for (X = "string"; *X; ++X) 3954 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3955 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3956 BackedgeTakenInfo ItCnt = 3957 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3958 if (ItCnt.hasAnyInfo()) 3959 return ItCnt; 3960 } 3961 3962 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 3963 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 3964 3965 // Try to evaluate any dependencies out of the loop. 3966 LHS = getSCEVAtScope(LHS, L); 3967 RHS = getSCEVAtScope(RHS, L); 3968 3969 // At this point, we would like to compute how many iterations of the 3970 // loop the predicate will return true for these inputs. 3971 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3972 // If there is a loop-invariant, force it into the RHS. 3973 std::swap(LHS, RHS); 3974 Cond = ICmpInst::getSwappedPredicate(Cond); 3975 } 3976 3977 // Simplify the operands before analyzing them. 3978 (void)SimplifyICmpOperands(Cond, LHS, RHS); 3979 3980 // If we have a comparison of a chrec against a constant, try to use value 3981 // ranges to answer this query. 3982 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3983 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3984 if (AddRec->getLoop() == L) { 3985 // Form the constant range. 3986 ConstantRange CompRange( 3987 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3988 3989 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3990 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3991 } 3992 3993 switch (Cond) { 3994 case ICmpInst::ICMP_NE: { // while (X != Y) 3995 // Convert to: while (X-Y != 0) 3996 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3997 if (BTI.hasAnyInfo()) return BTI; 3998 break; 3999 } 4000 case ICmpInst::ICMP_EQ: { // while (X == Y) 4001 // Convert to: while (X-Y == 0) 4002 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4003 if (BTI.hasAnyInfo()) return BTI; 4004 break; 4005 } 4006 case ICmpInst::ICMP_SLT: { 4007 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 4008 if (BTI.hasAnyInfo()) return BTI; 4009 break; 4010 } 4011 case ICmpInst::ICMP_SGT: { 4012 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4013 getNotSCEV(RHS), L, true); 4014 if (BTI.hasAnyInfo()) return BTI; 4015 break; 4016 } 4017 case ICmpInst::ICMP_ULT: { 4018 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 4019 if (BTI.hasAnyInfo()) return BTI; 4020 break; 4021 } 4022 case ICmpInst::ICMP_UGT: { 4023 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4024 getNotSCEV(RHS), L, false); 4025 if (BTI.hasAnyInfo()) return BTI; 4026 break; 4027 } 4028 default: 4029 #if 0 4030 dbgs() << "ComputeBackedgeTakenCount "; 4031 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4032 dbgs() << "[unsigned] "; 4033 dbgs() << *LHS << " " 4034 << Instruction::getOpcodeName(Instruction::ICmp) 4035 << " " << *RHS << "\n"; 4036 #endif 4037 break; 4038 } 4039 return 4040 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 4041 } 4042 4043 static ConstantInt * 4044 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4045 ScalarEvolution &SE) { 4046 const SCEV *InVal = SE.getConstant(C); 4047 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4048 assert(isa<SCEVConstant>(Val) && 4049 "Evaluation of SCEV at constant didn't fold correctly?"); 4050 return cast<SCEVConstant>(Val)->getValue(); 4051 } 4052 4053 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 4054 /// and a GEP expression (missing the pointer index) indexing into it, return 4055 /// the addressed element of the initializer or null if the index expression is 4056 /// invalid. 4057 static Constant * 4058 GetAddressedElementFromGlobal(GlobalVariable *GV, 4059 const std::vector<ConstantInt*> &Indices) { 4060 Constant *Init = GV->getInitializer(); 4061 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 4062 uint64_t Idx = Indices[i]->getZExtValue(); 4063 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 4064 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 4065 Init = cast<Constant>(CS->getOperand(Idx)); 4066 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4067 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4068 Init = cast<Constant>(CA->getOperand(Idx)); 4069 } else if (isa<ConstantAggregateZero>(Init)) { 4070 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 4071 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4072 Init = Constant::getNullValue(STy->getElementType(Idx)); 4073 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4074 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4075 Init = Constant::getNullValue(ATy->getElementType()); 4076 } else { 4077 llvm_unreachable("Unknown constant aggregate type!"); 4078 } 4079 return 0; 4080 } else { 4081 return 0; // Unknown initializer type 4082 } 4083 } 4084 return Init; 4085 } 4086 4087 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 4088 /// 'icmp op load X, cst', try to see if we can compute the backedge 4089 /// execution count. 4090 ScalarEvolution::BackedgeTakenInfo 4091 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 4092 LoadInst *LI, 4093 Constant *RHS, 4094 const Loop *L, 4095 ICmpInst::Predicate predicate) { 4096 if (LI->isVolatile()) return getCouldNotCompute(); 4097 4098 // Check to see if the loaded pointer is a getelementptr of a global. 4099 // TODO: Use SCEV instead of manually grubbing with GEPs. 4100 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4101 if (!GEP) return getCouldNotCompute(); 4102 4103 // Make sure that it is really a constant global we are gepping, with an 4104 // initializer, and make sure the first IDX is really 0. 4105 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4106 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4107 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4108 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4109 return getCouldNotCompute(); 4110 4111 // Okay, we allow one non-constant index into the GEP instruction. 4112 Value *VarIdx = 0; 4113 std::vector<ConstantInt*> Indexes; 4114 unsigned VarIdxNum = 0; 4115 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4116 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4117 Indexes.push_back(CI); 4118 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4119 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4120 VarIdx = GEP->getOperand(i); 4121 VarIdxNum = i-2; 4122 Indexes.push_back(0); 4123 } 4124 4125 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4126 // Check to see if X is a loop variant variable value now. 4127 const SCEV *Idx = getSCEV(VarIdx); 4128 Idx = getSCEVAtScope(Idx, L); 4129 4130 // We can only recognize very limited forms of loop index expressions, in 4131 // particular, only affine AddRec's like {C1,+,C2}. 4132 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4133 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 4134 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4135 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4136 return getCouldNotCompute(); 4137 4138 unsigned MaxSteps = MaxBruteForceIterations; 4139 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4140 ConstantInt *ItCst = ConstantInt::get( 4141 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4142 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4143 4144 // Form the GEP offset. 4145 Indexes[VarIdxNum] = Val; 4146 4147 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4148 if (Result == 0) break; // Cannot compute! 4149 4150 // Evaluate the condition for this iteration. 4151 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4152 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4153 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4154 #if 0 4155 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4156 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4157 << "***\n"; 4158 #endif 4159 ++NumArrayLenItCounts; 4160 return getConstant(ItCst); // Found terminating iteration! 4161 } 4162 } 4163 return getCouldNotCompute(); 4164 } 4165 4166 4167 /// CanConstantFold - Return true if we can constant fold an instruction of the 4168 /// specified type, assuming that all operands were constants. 4169 static bool CanConstantFold(const Instruction *I) { 4170 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4171 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4172 return true; 4173 4174 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4175 if (const Function *F = CI->getCalledFunction()) 4176 return canConstantFoldCallTo(F); 4177 return false; 4178 } 4179 4180 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4181 /// in the loop that V is derived from. We allow arbitrary operations along the 4182 /// way, but the operands of an operation must either be constants or a value 4183 /// derived from a constant PHI. If this expression does not fit with these 4184 /// constraints, return null. 4185 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4186 // If this is not an instruction, or if this is an instruction outside of the 4187 // loop, it can't be derived from a loop PHI. 4188 Instruction *I = dyn_cast<Instruction>(V); 4189 if (I == 0 || !L->contains(I)) return 0; 4190 4191 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4192 if (L->getHeader() == I->getParent()) 4193 return PN; 4194 else 4195 // We don't currently keep track of the control flow needed to evaluate 4196 // PHIs, so we cannot handle PHIs inside of loops. 4197 return 0; 4198 } 4199 4200 // If we won't be able to constant fold this expression even if the operands 4201 // are constants, return early. 4202 if (!CanConstantFold(I)) return 0; 4203 4204 // Otherwise, we can evaluate this instruction if all of its operands are 4205 // constant or derived from a PHI node themselves. 4206 PHINode *PHI = 0; 4207 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4208 if (!isa<Constant>(I->getOperand(Op))) { 4209 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4210 if (P == 0) return 0; // Not evolving from PHI 4211 if (PHI == 0) 4212 PHI = P; 4213 else if (PHI != P) 4214 return 0; // Evolving from multiple different PHIs. 4215 } 4216 4217 // This is a expression evolving from a constant PHI! 4218 return PHI; 4219 } 4220 4221 /// EvaluateExpression - Given an expression that passes the 4222 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4223 /// in the loop has the value PHIVal. If we can't fold this expression for some 4224 /// reason, return null. 4225 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4226 const TargetData *TD) { 4227 if (isa<PHINode>(V)) return PHIVal; 4228 if (Constant *C = dyn_cast<Constant>(V)) return C; 4229 Instruction *I = cast<Instruction>(V); 4230 4231 std::vector<Constant*> Operands(I->getNumOperands()); 4232 4233 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4234 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4235 if (Operands[i] == 0) return 0; 4236 } 4237 4238 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4239 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4240 Operands[1], TD); 4241 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4242 &Operands[0], Operands.size(), TD); 4243 } 4244 4245 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4246 /// in the header of its containing loop, we know the loop executes a 4247 /// constant number of times, and the PHI node is just a recurrence 4248 /// involving constants, fold it. 4249 Constant * 4250 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4251 const APInt &BEs, 4252 const Loop *L) { 4253 std::map<PHINode*, Constant*>::iterator I = 4254 ConstantEvolutionLoopExitValue.find(PN); 4255 if (I != ConstantEvolutionLoopExitValue.end()) 4256 return I->second; 4257 4258 if (BEs.ugt(MaxBruteForceIterations)) 4259 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4260 4261 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4262 4263 // Since the loop is canonicalized, the PHI node must have two entries. One 4264 // entry must be a constant (coming in from outside of the loop), and the 4265 // second must be derived from the same PHI. 4266 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4267 Constant *StartCST = 4268 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4269 if (StartCST == 0) 4270 return RetVal = 0; // Must be a constant. 4271 4272 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4273 if (getConstantEvolvingPHI(BEValue, L) != PN && 4274 !isa<Constant>(BEValue)) 4275 return RetVal = 0; // Not derived from same PHI. 4276 4277 // Execute the loop symbolically to determine the exit value. 4278 if (BEs.getActiveBits() >= 32) 4279 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4280 4281 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4282 unsigned IterationNum = 0; 4283 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4284 if (IterationNum == NumIterations) 4285 return RetVal = PHIVal; // Got exit value! 4286 4287 // Compute the value of the PHI node for the next iteration. 4288 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4289 if (NextPHI == PHIVal) 4290 return RetVal = NextPHI; // Stopped evolving! 4291 if (NextPHI == 0) 4292 return 0; // Couldn't evaluate! 4293 PHIVal = NextPHI; 4294 } 4295 } 4296 4297 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 4298 /// constant number of times (the condition evolves only from constants), 4299 /// try to evaluate a few iterations of the loop until we get the exit 4300 /// condition gets a value of ExitWhen (true or false). If we cannot 4301 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4302 const SCEV * 4303 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 4304 Value *Cond, 4305 bool ExitWhen) { 4306 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4307 if (PN == 0) return getCouldNotCompute(); 4308 4309 // If the loop is canonicalized, the PHI will have exactly two entries. 4310 // That's the only form we support here. 4311 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4312 4313 // One entry must be a constant (coming in from outside of the loop), and the 4314 // second must be derived from the same PHI. 4315 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4316 Constant *StartCST = 4317 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4318 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4319 4320 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4321 if (getConstantEvolvingPHI(BEValue, L) != PN && 4322 !isa<Constant>(BEValue)) 4323 return getCouldNotCompute(); // Not derived from same PHI. 4324 4325 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4326 // the loop symbolically to determine when the condition gets a value of 4327 // "ExitWhen". 4328 unsigned IterationNum = 0; 4329 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4330 for (Constant *PHIVal = StartCST; 4331 IterationNum != MaxIterations; ++IterationNum) { 4332 ConstantInt *CondVal = 4333 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4334 4335 // Couldn't symbolically evaluate. 4336 if (!CondVal) return getCouldNotCompute(); 4337 4338 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4339 ++NumBruteForceTripCountsComputed; 4340 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4341 } 4342 4343 // Compute the value of the PHI node for the next iteration. 4344 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4345 if (NextPHI == 0 || NextPHI == PHIVal) 4346 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4347 PHIVal = NextPHI; 4348 } 4349 4350 // Too many iterations were needed to evaluate. 4351 return getCouldNotCompute(); 4352 } 4353 4354 /// getSCEVAtScope - Return a SCEV expression for the specified value 4355 /// at the specified scope in the program. The L value specifies a loop 4356 /// nest to evaluate the expression at, where null is the top-level or a 4357 /// specified loop is immediately inside of the loop. 4358 /// 4359 /// This method can be used to compute the exit value for a variable defined 4360 /// in a loop by querying what the value will hold in the parent loop. 4361 /// 4362 /// In the case that a relevant loop exit value cannot be computed, the 4363 /// original value V is returned. 4364 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4365 // Check to see if we've folded this expression at this loop before. 4366 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4367 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4368 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4369 if (!Pair.second) 4370 return Pair.first->second ? Pair.first->second : V; 4371 4372 // Otherwise compute it. 4373 const SCEV *C = computeSCEVAtScope(V, L); 4374 ValuesAtScopes[V][L] = C; 4375 return C; 4376 } 4377 4378 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4379 if (isa<SCEVConstant>(V)) return V; 4380 4381 // If this instruction is evolved from a constant-evolving PHI, compute the 4382 // exit value from the loop without using SCEVs. 4383 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4384 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4385 const Loop *LI = (*this->LI)[I->getParent()]; 4386 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4387 if (PHINode *PN = dyn_cast<PHINode>(I)) 4388 if (PN->getParent() == LI->getHeader()) { 4389 // Okay, there is no closed form solution for the PHI node. Check 4390 // to see if the loop that contains it has a known backedge-taken 4391 // count. If so, we may be able to force computation of the exit 4392 // value. 4393 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4394 if (const SCEVConstant *BTCC = 4395 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4396 // Okay, we know how many times the containing loop executes. If 4397 // this is a constant evolving PHI node, get the final value at 4398 // the specified iteration number. 4399 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4400 BTCC->getValue()->getValue(), 4401 LI); 4402 if (RV) return getSCEV(RV); 4403 } 4404 } 4405 4406 // Okay, this is an expression that we cannot symbolically evaluate 4407 // into a SCEV. Check to see if it's possible to symbolically evaluate 4408 // the arguments into constants, and if so, try to constant propagate the 4409 // result. This is particularly useful for computing loop exit values. 4410 if (CanConstantFold(I)) { 4411 SmallVector<Constant *, 4> Operands; 4412 bool MadeImprovement = false; 4413 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4414 Value *Op = I->getOperand(i); 4415 if (Constant *C = dyn_cast<Constant>(Op)) { 4416 Operands.push_back(C); 4417 continue; 4418 } 4419 4420 // If any of the operands is non-constant and if they are 4421 // non-integer and non-pointer, don't even try to analyze them 4422 // with scev techniques. 4423 if (!isSCEVable(Op->getType())) 4424 return V; 4425 4426 const SCEV *OrigV = getSCEV(Op); 4427 const SCEV *OpV = getSCEVAtScope(OrigV, L); 4428 MadeImprovement |= OrigV != OpV; 4429 4430 Constant *C = 0; 4431 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 4432 C = SC->getValue(); 4433 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) 4434 C = dyn_cast<Constant>(SU->getValue()); 4435 if (!C) return V; 4436 if (C->getType() != Op->getType()) 4437 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4438 Op->getType(), 4439 false), 4440 C, Op->getType()); 4441 Operands.push_back(C); 4442 } 4443 4444 // Check to see if getSCEVAtScope actually made an improvement. 4445 if (MadeImprovement) { 4446 Constant *C = 0; 4447 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4448 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4449 Operands[0], Operands[1], TD); 4450 else 4451 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4452 &Operands[0], Operands.size(), TD); 4453 if (!C) return V; 4454 return getSCEV(C); 4455 } 4456 } 4457 } 4458 4459 // This is some other type of SCEVUnknown, just return it. 4460 return V; 4461 } 4462 4463 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4464 // Avoid performing the look-up in the common case where the specified 4465 // expression has no loop-variant portions. 4466 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4467 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4468 if (OpAtScope != Comm->getOperand(i)) { 4469 // Okay, at least one of these operands is loop variant but might be 4470 // foldable. Build a new instance of the folded commutative expression. 4471 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4472 Comm->op_begin()+i); 4473 NewOps.push_back(OpAtScope); 4474 4475 for (++i; i != e; ++i) { 4476 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4477 NewOps.push_back(OpAtScope); 4478 } 4479 if (isa<SCEVAddExpr>(Comm)) 4480 return getAddExpr(NewOps); 4481 if (isa<SCEVMulExpr>(Comm)) 4482 return getMulExpr(NewOps); 4483 if (isa<SCEVSMaxExpr>(Comm)) 4484 return getSMaxExpr(NewOps); 4485 if (isa<SCEVUMaxExpr>(Comm)) 4486 return getUMaxExpr(NewOps); 4487 llvm_unreachable("Unknown commutative SCEV type!"); 4488 } 4489 } 4490 // If we got here, all operands are loop invariant. 4491 return Comm; 4492 } 4493 4494 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4495 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4496 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4497 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4498 return Div; // must be loop invariant 4499 return getUDivExpr(LHS, RHS); 4500 } 4501 4502 // If this is a loop recurrence for a loop that does not contain L, then we 4503 // are dealing with the final value computed by the loop. 4504 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4505 // First, attempt to evaluate each operand. 4506 // Avoid performing the look-up in the common case where the specified 4507 // expression has no loop-variant portions. 4508 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4509 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 4510 if (OpAtScope == AddRec->getOperand(i)) 4511 continue; 4512 4513 // Okay, at least one of these operands is loop variant but might be 4514 // foldable. Build a new instance of the folded commutative expression. 4515 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 4516 AddRec->op_begin()+i); 4517 NewOps.push_back(OpAtScope); 4518 for (++i; i != e; ++i) 4519 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 4520 4521 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop())); 4522 break; 4523 } 4524 4525 // If the scope is outside the addrec's loop, evaluate it by using the 4526 // loop exit value of the addrec. 4527 if (!AddRec->getLoop()->contains(L)) { 4528 // To evaluate this recurrence, we need to know how many times the AddRec 4529 // loop iterates. Compute this now. 4530 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4531 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4532 4533 // Then, evaluate the AddRec. 4534 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4535 } 4536 4537 return AddRec; 4538 } 4539 4540 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4541 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4542 if (Op == Cast->getOperand()) 4543 return Cast; // must be loop invariant 4544 return getZeroExtendExpr(Op, Cast->getType()); 4545 } 4546 4547 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4548 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4549 if (Op == Cast->getOperand()) 4550 return Cast; // must be loop invariant 4551 return getSignExtendExpr(Op, Cast->getType()); 4552 } 4553 4554 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4555 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4556 if (Op == Cast->getOperand()) 4557 return Cast; // must be loop invariant 4558 return getTruncateExpr(Op, Cast->getType()); 4559 } 4560 4561 llvm_unreachable("Unknown SCEV type!"); 4562 return 0; 4563 } 4564 4565 /// getSCEVAtScope - This is a convenience function which does 4566 /// getSCEVAtScope(getSCEV(V), L). 4567 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4568 return getSCEVAtScope(getSCEV(V), L); 4569 } 4570 4571 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4572 /// following equation: 4573 /// 4574 /// A * X = B (mod N) 4575 /// 4576 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4577 /// A and B isn't important. 4578 /// 4579 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4580 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4581 ScalarEvolution &SE) { 4582 uint32_t BW = A.getBitWidth(); 4583 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4584 assert(A != 0 && "A must be non-zero."); 4585 4586 // 1. D = gcd(A, N) 4587 // 4588 // The gcd of A and N may have only one prime factor: 2. The number of 4589 // trailing zeros in A is its multiplicity 4590 uint32_t Mult2 = A.countTrailingZeros(); 4591 // D = 2^Mult2 4592 4593 // 2. Check if B is divisible by D. 4594 // 4595 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4596 // is not less than multiplicity of this prime factor for D. 4597 if (B.countTrailingZeros() < Mult2) 4598 return SE.getCouldNotCompute(); 4599 4600 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4601 // modulo (N / D). 4602 // 4603 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4604 // bit width during computations. 4605 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4606 APInt Mod(BW + 1, 0); 4607 Mod.set(BW - Mult2); // Mod = N / D 4608 APInt I = AD.multiplicativeInverse(Mod); 4609 4610 // 4. Compute the minimum unsigned root of the equation: 4611 // I * (B / D) mod (N / D) 4612 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4613 4614 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4615 // bits. 4616 return SE.getConstant(Result.trunc(BW)); 4617 } 4618 4619 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4620 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4621 /// might be the same) or two SCEVCouldNotCompute objects. 4622 /// 4623 static std::pair<const SCEV *,const SCEV *> 4624 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4625 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4626 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4627 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4628 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4629 4630 // We currently can only solve this if the coefficients are constants. 4631 if (!LC || !MC || !NC) { 4632 const SCEV *CNC = SE.getCouldNotCompute(); 4633 return std::make_pair(CNC, CNC); 4634 } 4635 4636 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4637 const APInt &L = LC->getValue()->getValue(); 4638 const APInt &M = MC->getValue()->getValue(); 4639 const APInt &N = NC->getValue()->getValue(); 4640 APInt Two(BitWidth, 2); 4641 APInt Four(BitWidth, 4); 4642 4643 { 4644 using namespace APIntOps; 4645 const APInt& C = L; 4646 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4647 // The B coefficient is M-N/2 4648 APInt B(M); 4649 B -= sdiv(N,Two); 4650 4651 // The A coefficient is N/2 4652 APInt A(N.sdiv(Two)); 4653 4654 // Compute the B^2-4ac term. 4655 APInt SqrtTerm(B); 4656 SqrtTerm *= B; 4657 SqrtTerm -= Four * (A * C); 4658 4659 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4660 // integer value or else APInt::sqrt() will assert. 4661 APInt SqrtVal(SqrtTerm.sqrt()); 4662 4663 // Compute the two solutions for the quadratic formula. 4664 // The divisions must be performed as signed divisions. 4665 APInt NegB(-B); 4666 APInt TwoA( A << 1 ); 4667 if (TwoA.isMinValue()) { 4668 const SCEV *CNC = SE.getCouldNotCompute(); 4669 return std::make_pair(CNC, CNC); 4670 } 4671 4672 LLVMContext &Context = SE.getContext(); 4673 4674 ConstantInt *Solution1 = 4675 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4676 ConstantInt *Solution2 = 4677 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4678 4679 return std::make_pair(SE.getConstant(Solution1), 4680 SE.getConstant(Solution2)); 4681 } // end APIntOps namespace 4682 } 4683 4684 /// HowFarToZero - Return the number of times a backedge comparing the specified 4685 /// value to zero will execute. If not computable, return CouldNotCompute. 4686 ScalarEvolution::BackedgeTakenInfo 4687 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4688 // If the value is a constant 4689 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4690 // If the value is already zero, the branch will execute zero times. 4691 if (C->getValue()->isZero()) return C; 4692 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4693 } 4694 4695 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4696 if (!AddRec || AddRec->getLoop() != L) 4697 return getCouldNotCompute(); 4698 4699 if (AddRec->isAffine()) { 4700 // If this is an affine expression, the execution count of this branch is 4701 // the minimum unsigned root of the following equation: 4702 // 4703 // Start + Step*N = 0 (mod 2^BW) 4704 // 4705 // equivalent to: 4706 // 4707 // Step*N = -Start (mod 2^BW) 4708 // 4709 // where BW is the common bit width of Start and Step. 4710 4711 // Get the initial value for the loop. 4712 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 4713 L->getParentLoop()); 4714 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 4715 L->getParentLoop()); 4716 4717 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 4718 // For now we handle only constant steps. 4719 4720 // First, handle unitary steps. 4721 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4722 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4723 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4724 return Start; // N = Start (as unsigned) 4725 4726 // Then, try to solve the above equation provided that Start is constant. 4727 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4728 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4729 -StartC->getValue()->getValue(), 4730 *this); 4731 } 4732 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 4733 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4734 // the quadratic equation to solve it. 4735 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, 4736 *this); 4737 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4738 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4739 if (R1) { 4740 #if 0 4741 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 4742 << " sol#2: " << *R2 << "\n"; 4743 #endif 4744 // Pick the smallest positive root value. 4745 if (ConstantInt *CB = 4746 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4747 R1->getValue(), R2->getValue()))) { 4748 if (CB->getZExtValue() == false) 4749 std::swap(R1, R2); // R1 is the minimum root now. 4750 4751 // We can only use this value if the chrec ends up with an exact zero 4752 // value at this index. When solving for "X*X != 5", for example, we 4753 // should not accept a root of 2. 4754 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4755 if (Val->isZero()) 4756 return R1; // We found a quadratic root! 4757 } 4758 } 4759 } 4760 4761 return getCouldNotCompute(); 4762 } 4763 4764 /// HowFarToNonZero - Return the number of times a backedge checking the 4765 /// specified value for nonzero will execute. If not computable, return 4766 /// CouldNotCompute 4767 ScalarEvolution::BackedgeTakenInfo 4768 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4769 // Loops that look like: while (X == 0) are very strange indeed. We don't 4770 // handle them yet except for the trivial case. This could be expanded in the 4771 // future as needed. 4772 4773 // If the value is a constant, check to see if it is known to be non-zero 4774 // already. If so, the backedge will execute zero times. 4775 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4776 if (!C->getValue()->isNullValue()) 4777 return getConstant(C->getType(), 0); 4778 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4779 } 4780 4781 // We could implement others, but I really doubt anyone writes loops like 4782 // this, and if they did, they would already be constant folded. 4783 return getCouldNotCompute(); 4784 } 4785 4786 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4787 /// (which may not be an immediate predecessor) which has exactly one 4788 /// successor from which BB is reachable, or null if no such block is 4789 /// found. 4790 /// 4791 std::pair<BasicBlock *, BasicBlock *> 4792 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4793 // If the block has a unique predecessor, then there is no path from the 4794 // predecessor to the block that does not go through the direct edge 4795 // from the predecessor to the block. 4796 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4797 return std::make_pair(Pred, BB); 4798 4799 // A loop's header is defined to be a block that dominates the loop. 4800 // If the header has a unique predecessor outside the loop, it must be 4801 // a block that has exactly one successor that can reach the loop. 4802 if (Loop *L = LI->getLoopFor(BB)) 4803 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 4804 4805 return std::pair<BasicBlock *, BasicBlock *>(); 4806 } 4807 4808 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4809 /// testing whether two expressions are equal, however for the purposes of 4810 /// looking for a condition guarding a loop, it can be useful to be a little 4811 /// more general, since a front-end may have replicated the controlling 4812 /// expression. 4813 /// 4814 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4815 // Quick check to see if they are the same SCEV. 4816 if (A == B) return true; 4817 4818 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4819 // two different instructions with the same value. Check for this case. 4820 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4821 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4822 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4823 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4824 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 4825 return true; 4826 4827 // Otherwise assume they may have a different value. 4828 return false; 4829 } 4830 4831 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 4832 /// predicate Pred. Return true iff any changes were made. 4833 /// 4834 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 4835 const SCEV *&LHS, const SCEV *&RHS) { 4836 bool Changed = false; 4837 4838 // Canonicalize a constant to the right side. 4839 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 4840 // Check for both operands constant. 4841 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 4842 if (ConstantExpr::getICmp(Pred, 4843 LHSC->getValue(), 4844 RHSC->getValue())->isNullValue()) 4845 goto trivially_false; 4846 else 4847 goto trivially_true; 4848 } 4849 // Otherwise swap the operands to put the constant on the right. 4850 std::swap(LHS, RHS); 4851 Pred = ICmpInst::getSwappedPredicate(Pred); 4852 Changed = true; 4853 } 4854 4855 // If we're comparing an addrec with a value which is loop-invariant in the 4856 // addrec's loop, put the addrec on the left. Also make a dominance check, 4857 // as both operands could be addrecs loop-invariant in each other's loop. 4858 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 4859 const Loop *L = AR->getLoop(); 4860 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) { 4861 std::swap(LHS, RHS); 4862 Pred = ICmpInst::getSwappedPredicate(Pred); 4863 Changed = true; 4864 } 4865 } 4866 4867 // If there's a constant operand, canonicalize comparisons with boundary 4868 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 4869 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 4870 const APInt &RA = RC->getValue()->getValue(); 4871 switch (Pred) { 4872 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4873 case ICmpInst::ICMP_EQ: 4874 case ICmpInst::ICMP_NE: 4875 break; 4876 case ICmpInst::ICMP_UGE: 4877 if ((RA - 1).isMinValue()) { 4878 Pred = ICmpInst::ICMP_NE; 4879 RHS = getConstant(RA - 1); 4880 Changed = true; 4881 break; 4882 } 4883 if (RA.isMaxValue()) { 4884 Pred = ICmpInst::ICMP_EQ; 4885 Changed = true; 4886 break; 4887 } 4888 if (RA.isMinValue()) goto trivially_true; 4889 4890 Pred = ICmpInst::ICMP_UGT; 4891 RHS = getConstant(RA - 1); 4892 Changed = true; 4893 break; 4894 case ICmpInst::ICMP_ULE: 4895 if ((RA + 1).isMaxValue()) { 4896 Pred = ICmpInst::ICMP_NE; 4897 RHS = getConstant(RA + 1); 4898 Changed = true; 4899 break; 4900 } 4901 if (RA.isMinValue()) { 4902 Pred = ICmpInst::ICMP_EQ; 4903 Changed = true; 4904 break; 4905 } 4906 if (RA.isMaxValue()) goto trivially_true; 4907 4908 Pred = ICmpInst::ICMP_ULT; 4909 RHS = getConstant(RA + 1); 4910 Changed = true; 4911 break; 4912 case ICmpInst::ICMP_SGE: 4913 if ((RA - 1).isMinSignedValue()) { 4914 Pred = ICmpInst::ICMP_NE; 4915 RHS = getConstant(RA - 1); 4916 Changed = true; 4917 break; 4918 } 4919 if (RA.isMaxSignedValue()) { 4920 Pred = ICmpInst::ICMP_EQ; 4921 Changed = true; 4922 break; 4923 } 4924 if (RA.isMinSignedValue()) goto trivially_true; 4925 4926 Pred = ICmpInst::ICMP_SGT; 4927 RHS = getConstant(RA - 1); 4928 Changed = true; 4929 break; 4930 case ICmpInst::ICMP_SLE: 4931 if ((RA + 1).isMaxSignedValue()) { 4932 Pred = ICmpInst::ICMP_NE; 4933 RHS = getConstant(RA + 1); 4934 Changed = true; 4935 break; 4936 } 4937 if (RA.isMinSignedValue()) { 4938 Pred = ICmpInst::ICMP_EQ; 4939 Changed = true; 4940 break; 4941 } 4942 if (RA.isMaxSignedValue()) goto trivially_true; 4943 4944 Pred = ICmpInst::ICMP_SLT; 4945 RHS = getConstant(RA + 1); 4946 Changed = true; 4947 break; 4948 case ICmpInst::ICMP_UGT: 4949 if (RA.isMinValue()) { 4950 Pred = ICmpInst::ICMP_NE; 4951 Changed = true; 4952 break; 4953 } 4954 if ((RA + 1).isMaxValue()) { 4955 Pred = ICmpInst::ICMP_EQ; 4956 RHS = getConstant(RA + 1); 4957 Changed = true; 4958 break; 4959 } 4960 if (RA.isMaxValue()) goto trivially_false; 4961 break; 4962 case ICmpInst::ICMP_ULT: 4963 if (RA.isMaxValue()) { 4964 Pred = ICmpInst::ICMP_NE; 4965 Changed = true; 4966 break; 4967 } 4968 if ((RA - 1).isMinValue()) { 4969 Pred = ICmpInst::ICMP_EQ; 4970 RHS = getConstant(RA - 1); 4971 Changed = true; 4972 break; 4973 } 4974 if (RA.isMinValue()) goto trivially_false; 4975 break; 4976 case ICmpInst::ICMP_SGT: 4977 if (RA.isMinSignedValue()) { 4978 Pred = ICmpInst::ICMP_NE; 4979 Changed = true; 4980 break; 4981 } 4982 if ((RA + 1).isMaxSignedValue()) { 4983 Pred = ICmpInst::ICMP_EQ; 4984 RHS = getConstant(RA + 1); 4985 Changed = true; 4986 break; 4987 } 4988 if (RA.isMaxSignedValue()) goto trivially_false; 4989 break; 4990 case ICmpInst::ICMP_SLT: 4991 if (RA.isMaxSignedValue()) { 4992 Pred = ICmpInst::ICMP_NE; 4993 Changed = true; 4994 break; 4995 } 4996 if ((RA - 1).isMinSignedValue()) { 4997 Pred = ICmpInst::ICMP_EQ; 4998 RHS = getConstant(RA - 1); 4999 Changed = true; 5000 break; 5001 } 5002 if (RA.isMinSignedValue()) goto trivially_false; 5003 break; 5004 } 5005 } 5006 5007 // Check for obvious equality. 5008 if (HasSameValue(LHS, RHS)) { 5009 if (ICmpInst::isTrueWhenEqual(Pred)) 5010 goto trivially_true; 5011 if (ICmpInst::isFalseWhenEqual(Pred)) 5012 goto trivially_false; 5013 } 5014 5015 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5016 // adding or subtracting 1 from one of the operands. 5017 switch (Pred) { 5018 case ICmpInst::ICMP_SLE: 5019 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5020 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5021 /*HasNUW=*/false, /*HasNSW=*/true); 5022 Pred = ICmpInst::ICMP_SLT; 5023 Changed = true; 5024 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5025 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5026 /*HasNUW=*/false, /*HasNSW=*/true); 5027 Pred = ICmpInst::ICMP_SLT; 5028 Changed = true; 5029 } 5030 break; 5031 case ICmpInst::ICMP_SGE: 5032 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5033 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5034 /*HasNUW=*/false, /*HasNSW=*/true); 5035 Pred = ICmpInst::ICMP_SGT; 5036 Changed = true; 5037 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5038 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5039 /*HasNUW=*/false, /*HasNSW=*/true); 5040 Pred = ICmpInst::ICMP_SGT; 5041 Changed = true; 5042 } 5043 break; 5044 case ICmpInst::ICMP_ULE: 5045 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5046 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5047 /*HasNUW=*/true, /*HasNSW=*/false); 5048 Pred = ICmpInst::ICMP_ULT; 5049 Changed = true; 5050 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5051 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5052 /*HasNUW=*/true, /*HasNSW=*/false); 5053 Pred = ICmpInst::ICMP_ULT; 5054 Changed = true; 5055 } 5056 break; 5057 case ICmpInst::ICMP_UGE: 5058 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5059 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5060 /*HasNUW=*/true, /*HasNSW=*/false); 5061 Pred = ICmpInst::ICMP_UGT; 5062 Changed = true; 5063 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5064 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5065 /*HasNUW=*/true, /*HasNSW=*/false); 5066 Pred = ICmpInst::ICMP_UGT; 5067 Changed = true; 5068 } 5069 break; 5070 default: 5071 break; 5072 } 5073 5074 // TODO: More simplifications are possible here. 5075 5076 return Changed; 5077 5078 trivially_true: 5079 // Return 0 == 0. 5080 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5081 Pred = ICmpInst::ICMP_EQ; 5082 return true; 5083 5084 trivially_false: 5085 // Return 0 != 0. 5086 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5087 Pred = ICmpInst::ICMP_NE; 5088 return true; 5089 } 5090 5091 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5092 return getSignedRange(S).getSignedMax().isNegative(); 5093 } 5094 5095 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5096 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5097 } 5098 5099 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5100 return !getSignedRange(S).getSignedMin().isNegative(); 5101 } 5102 5103 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5104 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5105 } 5106 5107 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5108 return isKnownNegative(S) || isKnownPositive(S); 5109 } 5110 5111 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5112 const SCEV *LHS, const SCEV *RHS) { 5113 // Canonicalize the inputs first. 5114 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5115 5116 // If LHS or RHS is an addrec, check to see if the condition is true in 5117 // every iteration of the loop. 5118 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5119 if (isLoopEntryGuardedByCond( 5120 AR->getLoop(), Pred, AR->getStart(), RHS) && 5121 isLoopBackedgeGuardedByCond( 5122 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5123 return true; 5124 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5125 if (isLoopEntryGuardedByCond( 5126 AR->getLoop(), Pred, LHS, AR->getStart()) && 5127 isLoopBackedgeGuardedByCond( 5128 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5129 return true; 5130 5131 // Otherwise see what can be done with known constant ranges. 5132 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5133 } 5134 5135 bool 5136 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5137 const SCEV *LHS, const SCEV *RHS) { 5138 if (HasSameValue(LHS, RHS)) 5139 return ICmpInst::isTrueWhenEqual(Pred); 5140 5141 // This code is split out from isKnownPredicate because it is called from 5142 // within isLoopEntryGuardedByCond. 5143 switch (Pred) { 5144 default: 5145 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5146 break; 5147 case ICmpInst::ICMP_SGT: 5148 Pred = ICmpInst::ICMP_SLT; 5149 std::swap(LHS, RHS); 5150 case ICmpInst::ICMP_SLT: { 5151 ConstantRange LHSRange = getSignedRange(LHS); 5152 ConstantRange RHSRange = getSignedRange(RHS); 5153 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5154 return true; 5155 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5156 return false; 5157 break; 5158 } 5159 case ICmpInst::ICMP_SGE: 5160 Pred = ICmpInst::ICMP_SLE; 5161 std::swap(LHS, RHS); 5162 case ICmpInst::ICMP_SLE: { 5163 ConstantRange LHSRange = getSignedRange(LHS); 5164 ConstantRange RHSRange = getSignedRange(RHS); 5165 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5166 return true; 5167 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5168 return false; 5169 break; 5170 } 5171 case ICmpInst::ICMP_UGT: 5172 Pred = ICmpInst::ICMP_ULT; 5173 std::swap(LHS, RHS); 5174 case ICmpInst::ICMP_ULT: { 5175 ConstantRange LHSRange = getUnsignedRange(LHS); 5176 ConstantRange RHSRange = getUnsignedRange(RHS); 5177 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5178 return true; 5179 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5180 return false; 5181 break; 5182 } 5183 case ICmpInst::ICMP_UGE: 5184 Pred = ICmpInst::ICMP_ULE; 5185 std::swap(LHS, RHS); 5186 case ICmpInst::ICMP_ULE: { 5187 ConstantRange LHSRange = getUnsignedRange(LHS); 5188 ConstantRange RHSRange = getUnsignedRange(RHS); 5189 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5190 return true; 5191 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5192 return false; 5193 break; 5194 } 5195 case ICmpInst::ICMP_NE: { 5196 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5197 return true; 5198 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5199 return true; 5200 5201 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5202 if (isKnownNonZero(Diff)) 5203 return true; 5204 break; 5205 } 5206 case ICmpInst::ICMP_EQ: 5207 // The check at the top of the function catches the case where 5208 // the values are known to be equal. 5209 break; 5210 } 5211 return false; 5212 } 5213 5214 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5215 /// protected by a conditional between LHS and RHS. This is used to 5216 /// to eliminate casts. 5217 bool 5218 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5219 ICmpInst::Predicate Pred, 5220 const SCEV *LHS, const SCEV *RHS) { 5221 // Interpret a null as meaning no loop, where there is obviously no guard 5222 // (interprocedural conditions notwithstanding). 5223 if (!L) return true; 5224 5225 BasicBlock *Latch = L->getLoopLatch(); 5226 if (!Latch) 5227 return false; 5228 5229 BranchInst *LoopContinuePredicate = 5230 dyn_cast<BranchInst>(Latch->getTerminator()); 5231 if (!LoopContinuePredicate || 5232 LoopContinuePredicate->isUnconditional()) 5233 return false; 5234 5235 return isImpliedCond(Pred, LHS, RHS, 5236 LoopContinuePredicate->getCondition(), 5237 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5238 } 5239 5240 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5241 /// by a conditional between LHS and RHS. This is used to help avoid max 5242 /// expressions in loop trip counts, and to eliminate casts. 5243 bool 5244 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5245 ICmpInst::Predicate Pred, 5246 const SCEV *LHS, const SCEV *RHS) { 5247 // Interpret a null as meaning no loop, where there is obviously no guard 5248 // (interprocedural conditions notwithstanding). 5249 if (!L) return false; 5250 5251 // Starting at the loop predecessor, climb up the predecessor chain, as long 5252 // as there are predecessors that can be found that have unique successors 5253 // leading to the original header. 5254 for (std::pair<BasicBlock *, BasicBlock *> 5255 Pair(L->getLoopPredecessor(), L->getHeader()); 5256 Pair.first; 5257 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5258 5259 BranchInst *LoopEntryPredicate = 5260 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5261 if (!LoopEntryPredicate || 5262 LoopEntryPredicate->isUnconditional()) 5263 continue; 5264 5265 if (isImpliedCond(Pred, LHS, RHS, 5266 LoopEntryPredicate->getCondition(), 5267 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5268 return true; 5269 } 5270 5271 return false; 5272 } 5273 5274 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5275 /// and RHS is true whenever the given Cond value evaluates to true. 5276 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 5277 const SCEV *LHS, const SCEV *RHS, 5278 Value *FoundCondValue, 5279 bool Inverse) { 5280 // Recursively handle And and Or conditions. 5281 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 5282 if (BO->getOpcode() == Instruction::And) { 5283 if (!Inverse) 5284 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5285 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5286 } else if (BO->getOpcode() == Instruction::Or) { 5287 if (Inverse) 5288 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5289 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5290 } 5291 } 5292 5293 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 5294 if (!ICI) return false; 5295 5296 // Bail if the ICmp's operands' types are wider than the needed type 5297 // before attempting to call getSCEV on them. This avoids infinite 5298 // recursion, since the analysis of widening casts can require loop 5299 // exit condition information for overflow checking, which would 5300 // lead back here. 5301 if (getTypeSizeInBits(LHS->getType()) < 5302 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5303 return false; 5304 5305 // Now that we found a conditional branch that dominates the loop, check to 5306 // see if it is the comparison we are looking for. 5307 ICmpInst::Predicate FoundPred; 5308 if (Inverse) 5309 FoundPred = ICI->getInversePredicate(); 5310 else 5311 FoundPred = ICI->getPredicate(); 5312 5313 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5314 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5315 5316 // Balance the types. The case where FoundLHS' type is wider than 5317 // LHS' type is checked for above. 5318 if (getTypeSizeInBits(LHS->getType()) > 5319 getTypeSizeInBits(FoundLHS->getType())) { 5320 if (CmpInst::isSigned(Pred)) { 5321 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5322 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5323 } else { 5324 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5325 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5326 } 5327 } 5328 5329 // Canonicalize the query to match the way instcombine will have 5330 // canonicalized the comparison. 5331 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5332 if (LHS == RHS) 5333 return CmpInst::isTrueWhenEqual(Pred); 5334 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5335 if (FoundLHS == FoundRHS) 5336 return CmpInst::isFalseWhenEqual(Pred); 5337 5338 // Check to see if we can make the LHS or RHS match. 5339 if (LHS == FoundRHS || RHS == FoundLHS) { 5340 if (isa<SCEVConstant>(RHS)) { 5341 std::swap(FoundLHS, FoundRHS); 5342 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5343 } else { 5344 std::swap(LHS, RHS); 5345 Pred = ICmpInst::getSwappedPredicate(Pred); 5346 } 5347 } 5348 5349 // Check whether the found predicate is the same as the desired predicate. 5350 if (FoundPred == Pred) 5351 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5352 5353 // Check whether swapping the found predicate makes it the same as the 5354 // desired predicate. 5355 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5356 if (isa<SCEVConstant>(RHS)) 5357 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5358 else 5359 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5360 RHS, LHS, FoundLHS, FoundRHS); 5361 } 5362 5363 // Check whether the actual condition is beyond sufficient. 5364 if (FoundPred == ICmpInst::ICMP_EQ) 5365 if (ICmpInst::isTrueWhenEqual(Pred)) 5366 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5367 return true; 5368 if (Pred == ICmpInst::ICMP_NE) 5369 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5370 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5371 return true; 5372 5373 // Otherwise assume the worst. 5374 return false; 5375 } 5376 5377 /// isImpliedCondOperands - Test whether the condition described by Pred, 5378 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5379 /// and FoundRHS is true. 5380 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5381 const SCEV *LHS, const SCEV *RHS, 5382 const SCEV *FoundLHS, 5383 const SCEV *FoundRHS) { 5384 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5385 FoundLHS, FoundRHS) || 5386 // ~x < ~y --> x > y 5387 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5388 getNotSCEV(FoundRHS), 5389 getNotSCEV(FoundLHS)); 5390 } 5391 5392 /// isImpliedCondOperandsHelper - Test whether the condition described by 5393 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5394 /// FoundLHS, and FoundRHS is true. 5395 bool 5396 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5397 const SCEV *LHS, const SCEV *RHS, 5398 const SCEV *FoundLHS, 5399 const SCEV *FoundRHS) { 5400 switch (Pred) { 5401 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5402 case ICmpInst::ICMP_EQ: 5403 case ICmpInst::ICMP_NE: 5404 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5405 return true; 5406 break; 5407 case ICmpInst::ICMP_SLT: 5408 case ICmpInst::ICMP_SLE: 5409 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5410 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5411 return true; 5412 break; 5413 case ICmpInst::ICMP_SGT: 5414 case ICmpInst::ICMP_SGE: 5415 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5416 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5417 return true; 5418 break; 5419 case ICmpInst::ICMP_ULT: 5420 case ICmpInst::ICMP_ULE: 5421 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5422 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5423 return true; 5424 break; 5425 case ICmpInst::ICMP_UGT: 5426 case ICmpInst::ICMP_UGE: 5427 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5428 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5429 return true; 5430 break; 5431 } 5432 5433 return false; 5434 } 5435 5436 /// getBECount - Subtract the end and start values and divide by the step, 5437 /// rounding up, to get the number of times the backedge is executed. Return 5438 /// CouldNotCompute if an intermediate computation overflows. 5439 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5440 const SCEV *End, 5441 const SCEV *Step, 5442 bool NoWrap) { 5443 assert(!isKnownNegative(Step) && 5444 "This code doesn't handle negative strides yet!"); 5445 5446 const Type *Ty = Start->getType(); 5447 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5448 const SCEV *Diff = getMinusSCEV(End, Start); 5449 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5450 5451 // Add an adjustment to the difference between End and Start so that 5452 // the division will effectively round up. 5453 const SCEV *Add = getAddExpr(Diff, RoundUp); 5454 5455 if (!NoWrap) { 5456 // Check Add for unsigned overflow. 5457 // TODO: More sophisticated things could be done here. 5458 const Type *WideTy = IntegerType::get(getContext(), 5459 getTypeSizeInBits(Ty) + 1); 5460 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5461 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5462 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5463 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5464 return getCouldNotCompute(); 5465 } 5466 5467 return getUDivExpr(Add, Step); 5468 } 5469 5470 /// HowManyLessThans - Return the number of times a backedge containing the 5471 /// specified less-than comparison will execute. If not computable, return 5472 /// CouldNotCompute. 5473 ScalarEvolution::BackedgeTakenInfo 5474 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5475 const Loop *L, bool isSigned) { 5476 // Only handle: "ADDREC < LoopInvariant". 5477 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); 5478 5479 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5480 if (!AddRec || AddRec->getLoop() != L) 5481 return getCouldNotCompute(); 5482 5483 // Check to see if we have a flag which makes analysis easy. 5484 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() : 5485 AddRec->hasNoUnsignedWrap(); 5486 5487 if (AddRec->isAffine()) { 5488 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5489 const SCEV *Step = AddRec->getStepRecurrence(*this); 5490 5491 if (Step->isZero()) 5492 return getCouldNotCompute(); 5493 if (Step->isOne()) { 5494 // With unit stride, the iteration never steps past the limit value. 5495 } else if (isKnownPositive(Step)) { 5496 // Test whether a positive iteration can step past the limit 5497 // value and past the maximum value for its type in a single step. 5498 // Note that it's not sufficient to check NoWrap here, because even 5499 // though the value after a wrap is undefined, it's not undefined 5500 // behavior, so if wrap does occur, the loop could either terminate or 5501 // loop infinitely, but in either case, the loop is guaranteed to 5502 // iterate at least until the iteration where the wrapping occurs. 5503 const SCEV *One = getConstant(Step->getType(), 1); 5504 if (isSigned) { 5505 APInt Max = APInt::getSignedMaxValue(BitWidth); 5506 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5507 .slt(getSignedRange(RHS).getSignedMax())) 5508 return getCouldNotCompute(); 5509 } else { 5510 APInt Max = APInt::getMaxValue(BitWidth); 5511 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5512 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5513 return getCouldNotCompute(); 5514 } 5515 } else 5516 // TODO: Handle negative strides here and below. 5517 return getCouldNotCompute(); 5518 5519 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5520 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5521 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5522 // treat m-n as signed nor unsigned due to overflow possibility. 5523 5524 // First, we get the value of the LHS in the first iteration: n 5525 const SCEV *Start = AddRec->getOperand(0); 5526 5527 // Determine the minimum constant start value. 5528 const SCEV *MinStart = getConstant(isSigned ? 5529 getSignedRange(Start).getSignedMin() : 5530 getUnsignedRange(Start).getUnsignedMin()); 5531 5532 // If we know that the condition is true in order to enter the loop, 5533 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5534 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5535 // the division must round up. 5536 const SCEV *End = RHS; 5537 if (!isLoopEntryGuardedByCond(L, 5538 isSigned ? ICmpInst::ICMP_SLT : 5539 ICmpInst::ICMP_ULT, 5540 getMinusSCEV(Start, Step), RHS)) 5541 End = isSigned ? getSMaxExpr(RHS, Start) 5542 : getUMaxExpr(RHS, Start); 5543 5544 // Determine the maximum constant end value. 5545 const SCEV *MaxEnd = getConstant(isSigned ? 5546 getSignedRange(End).getSignedMax() : 5547 getUnsignedRange(End).getUnsignedMax()); 5548 5549 // If MaxEnd is within a step of the maximum integer value in its type, 5550 // adjust it down to the minimum value which would produce the same effect. 5551 // This allows the subsequent ceiling division of (N+(step-1))/step to 5552 // compute the correct value. 5553 const SCEV *StepMinusOne = getMinusSCEV(Step, 5554 getConstant(Step->getType(), 1)); 5555 MaxEnd = isSigned ? 5556 getSMinExpr(MaxEnd, 5557 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5558 StepMinusOne)) : 5559 getUMinExpr(MaxEnd, 5560 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5561 StepMinusOne)); 5562 5563 // Finally, we subtract these two values and divide, rounding up, to get 5564 // the number of times the backedge is executed. 5565 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5566 5567 // The maximum backedge count is similar, except using the minimum start 5568 // value and the maximum end value. 5569 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap); 5570 5571 return BackedgeTakenInfo(BECount, MaxBECount); 5572 } 5573 5574 return getCouldNotCompute(); 5575 } 5576 5577 /// getNumIterationsInRange - Return the number of iterations of this loop that 5578 /// produce values in the specified constant range. Another way of looking at 5579 /// this is that it returns the first iteration number where the value is not in 5580 /// the condition, thus computing the exit count. If the iteration count can't 5581 /// be computed, an instance of SCEVCouldNotCompute is returned. 5582 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5583 ScalarEvolution &SE) const { 5584 if (Range.isFullSet()) // Infinite loop. 5585 return SE.getCouldNotCompute(); 5586 5587 // If the start is a non-zero constant, shift the range to simplify things. 5588 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5589 if (!SC->getValue()->isZero()) { 5590 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5591 Operands[0] = SE.getConstant(SC->getType(), 0); 5592 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 5593 if (const SCEVAddRecExpr *ShiftedAddRec = 5594 dyn_cast<SCEVAddRecExpr>(Shifted)) 5595 return ShiftedAddRec->getNumIterationsInRange( 5596 Range.subtract(SC->getValue()->getValue()), SE); 5597 // This is strange and shouldn't happen. 5598 return SE.getCouldNotCompute(); 5599 } 5600 5601 // The only time we can solve this is when we have all constant indices. 5602 // Otherwise, we cannot determine the overflow conditions. 5603 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 5604 if (!isa<SCEVConstant>(getOperand(i))) 5605 return SE.getCouldNotCompute(); 5606 5607 5608 // Okay at this point we know that all elements of the chrec are constants and 5609 // that the start element is zero. 5610 5611 // First check to see if the range contains zero. If not, the first 5612 // iteration exits. 5613 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 5614 if (!Range.contains(APInt(BitWidth, 0))) 5615 return SE.getConstant(getType(), 0); 5616 5617 if (isAffine()) { 5618 // If this is an affine expression then we have this situation: 5619 // Solve {0,+,A} in Range === Ax in Range 5620 5621 // We know that zero is in the range. If A is positive then we know that 5622 // the upper value of the range must be the first possible exit value. 5623 // If A is negative then the lower of the range is the last possible loop 5624 // value. Also note that we already checked for a full range. 5625 APInt One(BitWidth,1); 5626 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 5627 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 5628 5629 // The exit value should be (End+A)/A. 5630 APInt ExitVal = (End + A).udiv(A); 5631 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 5632 5633 // Evaluate at the exit value. If we really did fall out of the valid 5634 // range, then we computed our trip count, otherwise wrap around or other 5635 // things must have happened. 5636 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 5637 if (Range.contains(Val->getValue())) 5638 return SE.getCouldNotCompute(); // Something strange happened 5639 5640 // Ensure that the previous value is in the range. This is a sanity check. 5641 assert(Range.contains( 5642 EvaluateConstantChrecAtConstant(this, 5643 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 5644 "Linear scev computation is off in a bad way!"); 5645 return SE.getConstant(ExitValue); 5646 } else if (isQuadratic()) { 5647 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 5648 // quadratic equation to solve it. To do this, we must frame our problem in 5649 // terms of figuring out when zero is crossed, instead of when 5650 // Range.getUpper() is crossed. 5651 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 5652 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 5653 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 5654 5655 // Next, solve the constructed addrec 5656 std::pair<const SCEV *,const SCEV *> Roots = 5657 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 5658 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5659 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5660 if (R1) { 5661 // Pick the smallest positive root value. 5662 if (ConstantInt *CB = 5663 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 5664 R1->getValue(), R2->getValue()))) { 5665 if (CB->getZExtValue() == false) 5666 std::swap(R1, R2); // R1 is the minimum root now. 5667 5668 // Make sure the root is not off by one. The returned iteration should 5669 // not be in the range, but the previous one should be. When solving 5670 // for "X*X < 5", for example, we should not return a root of 2. 5671 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5672 R1->getValue(), 5673 SE); 5674 if (Range.contains(R1Val->getValue())) { 5675 // The next iteration must be out of the range... 5676 ConstantInt *NextVal = 5677 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5678 5679 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5680 if (!Range.contains(R1Val->getValue())) 5681 return SE.getConstant(NextVal); 5682 return SE.getCouldNotCompute(); // Something strange happened 5683 } 5684 5685 // If R1 was not in the range, then it is a good return value. Make 5686 // sure that R1-1 WAS in the range though, just in case. 5687 ConstantInt *NextVal = 5688 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5689 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5690 if (Range.contains(R1Val->getValue())) 5691 return R1; 5692 return SE.getCouldNotCompute(); // Something strange happened 5693 } 5694 } 5695 } 5696 5697 return SE.getCouldNotCompute(); 5698 } 5699 5700 5701 5702 //===----------------------------------------------------------------------===// 5703 // SCEVCallbackVH Class Implementation 5704 //===----------------------------------------------------------------------===// 5705 5706 void ScalarEvolution::SCEVCallbackVH::deleted() { 5707 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5708 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5709 SE->ConstantEvolutionLoopExitValue.erase(PN); 5710 SE->Scalars.erase(getValPtr()); 5711 // this now dangles! 5712 } 5713 5714 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 5715 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5716 5717 // Forget all the expressions associated with users of the old value, 5718 // so that future queries will recompute the expressions using the new 5719 // value. 5720 Value *Old = getValPtr(); 5721 SmallVector<User *, 16> Worklist; 5722 SmallPtrSet<User *, 8> Visited; 5723 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5724 UI != UE; ++UI) 5725 Worklist.push_back(*UI); 5726 while (!Worklist.empty()) { 5727 User *U = Worklist.pop_back_val(); 5728 // Deleting the Old value will cause this to dangle. Postpone 5729 // that until everything else is done. 5730 if (U == Old) 5731 continue; 5732 if (!Visited.insert(U)) 5733 continue; 5734 if (PHINode *PN = dyn_cast<PHINode>(U)) 5735 SE->ConstantEvolutionLoopExitValue.erase(PN); 5736 SE->Scalars.erase(U); 5737 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5738 UI != UE; ++UI) 5739 Worklist.push_back(*UI); 5740 } 5741 // Delete the Old value. 5742 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5743 SE->ConstantEvolutionLoopExitValue.erase(PN); 5744 SE->Scalars.erase(Old); 5745 // this now dangles! 5746 } 5747 5748 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5749 : CallbackVH(V), SE(se) {} 5750 5751 //===----------------------------------------------------------------------===// 5752 // ScalarEvolution Class Implementation 5753 //===----------------------------------------------------------------------===// 5754 5755 ScalarEvolution::ScalarEvolution() 5756 : FunctionPass(ID), FirstUnknown(0) { 5757 } 5758 5759 bool ScalarEvolution::runOnFunction(Function &F) { 5760 this->F = &F; 5761 LI = &getAnalysis<LoopInfo>(); 5762 TD = getAnalysisIfAvailable<TargetData>(); 5763 DT = &getAnalysis<DominatorTree>(); 5764 return false; 5765 } 5766 5767 void ScalarEvolution::releaseMemory() { 5768 // Iterate through all the SCEVUnknown instances and call their 5769 // destructors, so that they release their references to their values. 5770 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 5771 U->~SCEVUnknown(); 5772 FirstUnknown = 0; 5773 5774 Scalars.clear(); 5775 BackedgeTakenCounts.clear(); 5776 ConstantEvolutionLoopExitValue.clear(); 5777 ValuesAtScopes.clear(); 5778 UniqueSCEVs.clear(); 5779 SCEVAllocator.Reset(); 5780 } 5781 5782 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5783 AU.setPreservesAll(); 5784 AU.addRequiredTransitive<LoopInfo>(); 5785 AU.addRequiredTransitive<DominatorTree>(); 5786 } 5787 5788 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5789 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5790 } 5791 5792 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5793 const Loop *L) { 5794 // Print all inner loops first 5795 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5796 PrintLoopInfo(OS, SE, *I); 5797 5798 OS << "Loop "; 5799 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5800 OS << ": "; 5801 5802 SmallVector<BasicBlock *, 8> ExitBlocks; 5803 L->getExitBlocks(ExitBlocks); 5804 if (ExitBlocks.size() != 1) 5805 OS << "<multiple exits> "; 5806 5807 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5808 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5809 } else { 5810 OS << "Unpredictable backedge-taken count. "; 5811 } 5812 5813 OS << "\n" 5814 "Loop "; 5815 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5816 OS << ": "; 5817 5818 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5819 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5820 } else { 5821 OS << "Unpredictable max backedge-taken count. "; 5822 } 5823 5824 OS << "\n"; 5825 } 5826 5827 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 5828 // ScalarEvolution's implementation of the print method is to print 5829 // out SCEV values of all instructions that are interesting. Doing 5830 // this potentially causes it to create new SCEV objects though, 5831 // which technically conflicts with the const qualifier. This isn't 5832 // observable from outside the class though, so casting away the 5833 // const isn't dangerous. 5834 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 5835 5836 OS << "Classifying expressions for: "; 5837 WriteAsOperand(OS, F, /*PrintType=*/false); 5838 OS << "\n"; 5839 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 5840 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 5841 OS << *I << '\n'; 5842 OS << " --> "; 5843 const SCEV *SV = SE.getSCEV(&*I); 5844 SV->print(OS); 5845 5846 const Loop *L = LI->getLoopFor((*I).getParent()); 5847 5848 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 5849 if (AtUse != SV) { 5850 OS << " --> "; 5851 AtUse->print(OS); 5852 } 5853 5854 if (L) { 5855 OS << "\t\t" "Exits: "; 5856 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 5857 if (!ExitValue->isLoopInvariant(L)) { 5858 OS << "<<Unknown>>"; 5859 } else { 5860 OS << *ExitValue; 5861 } 5862 } 5863 5864 OS << "\n"; 5865 } 5866 5867 OS << "Determining loop execution counts for: "; 5868 WriteAsOperand(OS, F, /*PrintType=*/false); 5869 OS << "\n"; 5870 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 5871 PrintLoopInfo(OS, &SE, *I); 5872 } 5873 5874