xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision e20f824565a4c0c1e3aeef1bcb7e42c07553b2dd)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle.  These classes are reference counted, managed by the SCEVHandle
18 // class.  We only create one SCEV of a particular shape, so pointer-comparisons
19 // for equality are legal.
20 //
21 // One important aspect of the SCEV objects is that they are never cyclic, even
22 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
24 // recurrence) then we represent it directly as a recurrence node, otherwise we
25 // represent it as a SCEVUnknown node.
26 //
27 // In addition to being able to represent expressions of various types, we also
28 // have folders that are used to build the *canonical* representation for a
29 // particular expression.  These folders are capable of using a variety of
30 // rewrite rules to simplify the expressions.
31 //
32 // Once the folders are defined, we can implement the more interesting
33 // higher-level code, such as the code that recognizes PHI nodes of various
34 // types, computes the execution count of a loop, etc.
35 //
36 // TODO: We should use these routines and value representations to implement
37 // dependence analysis!
38 //
39 //===----------------------------------------------------------------------===//
40 //
41 // There are several good references for the techniques used in this analysis.
42 //
43 //  Chains of recurrences -- a method to expedite the evaluation
44 //  of closed-form functions
45 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46 //
47 //  On computational properties of chains of recurrences
48 //  Eugene V. Zima
49 //
50 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51 //  Robert A. van Engelen
52 //
53 //  Efficient Symbolic Analysis for Optimizing Compilers
54 //  Robert A. van Engelen
55 //
56 //  Using the chains of recurrences algebra for data dependence testing and
57 //  induction variable substitution
58 //  MS Thesis, Johnie Birch
59 //
60 //===----------------------------------------------------------------------===//
61 
62 #define DEBUG_TYPE "scalar-evolution"
63 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
64 #include "llvm/Constants.h"
65 #include "llvm/DerivedTypes.h"
66 #include "llvm/GlobalVariable.h"
67 #include "llvm/Instructions.h"
68 #include "llvm/Analysis/ConstantFolding.h"
69 #include "llvm/Analysis/Dominators.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Assembly/Writer.h"
72 #include "llvm/Target/TargetData.h"
73 #include "llvm/Transforms/Scalar.h"
74 #include "llvm/Support/CFG.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Compiler.h"
77 #include "llvm/Support/ConstantRange.h"
78 #include "llvm/Support/GetElementPtrTypeIterator.h"
79 #include "llvm/Support/InstIterator.h"
80 #include "llvm/Support/ManagedStatic.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/ADT/Statistic.h"
84 #include "llvm/ADT/STLExtras.h"
85 #include <ostream>
86 #include <algorithm>
87 #include <cmath>
88 using namespace llvm;
89 
90 STATISTIC(NumArrayLenItCounts,
91           "Number of trip counts computed with array length");
92 STATISTIC(NumTripCountsComputed,
93           "Number of loops with predictable loop counts");
94 STATISTIC(NumTripCountsNotComputed,
95           "Number of loops without predictable loop counts");
96 STATISTIC(NumBruteForceTripCountsComputed,
97           "Number of loops with trip counts computed by force");
98 
99 static cl::opt<unsigned>
100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                         cl::desc("Maximum number of iterations SCEV will "
102                                  "symbolically execute a constant derived loop"),
103                         cl::init(100));
104 
105 static RegisterPass<ScalarEvolution>
106 R("scalar-evolution", "Scalar Evolution Analysis", false, true);
107 char ScalarEvolution::ID = 0;
108 
109 //===----------------------------------------------------------------------===//
110 //                           SCEV class definitions
111 //===----------------------------------------------------------------------===//
112 
113 //===----------------------------------------------------------------------===//
114 // Implementation of the SCEV class.
115 //
116 SCEV::~SCEV() {}
117 void SCEV::dump() const {
118   print(errs());
119   errs() << '\n';
120 }
121 
122 void SCEV::print(std::ostream &o) const {
123   raw_os_ostream OS(o);
124   print(OS);
125 }
126 
127 bool SCEV::isZero() const {
128   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
129     return SC->getValue()->isZero();
130   return false;
131 }
132 
133 
134 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
135 
136 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
137   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
138   return false;
139 }
140 
141 const Type *SCEVCouldNotCompute::getType() const {
142   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
143   return 0;
144 }
145 
146 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
147   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
148   return false;
149 }
150 
151 SCEVHandle SCEVCouldNotCompute::
152 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
153                                   const SCEVHandle &Conc,
154                                   ScalarEvolution &SE) const {
155   return this;
156 }
157 
158 void SCEVCouldNotCompute::print(raw_ostream &OS) const {
159   OS << "***COULDNOTCOMPUTE***";
160 }
161 
162 bool SCEVCouldNotCompute::classof(const SCEV *S) {
163   return S->getSCEVType() == scCouldNotCompute;
164 }
165 
166 
167 // SCEVConstants - Only allow the creation of one SCEVConstant for any
168 // particular value.  Don't use a SCEVHandle here, or else the object will
169 // never be deleted!
170 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
171 
172 
173 SCEVConstant::~SCEVConstant() {
174   SCEVConstants->erase(V);
175 }
176 
177 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
178   SCEVConstant *&R = (*SCEVConstants)[V];
179   if (R == 0) R = new SCEVConstant(V);
180   return R;
181 }
182 
183 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
184   return getConstant(ConstantInt::get(Val));
185 }
186 
187 const Type *SCEVConstant::getType() const { return V->getType(); }
188 
189 void SCEVConstant::print(raw_ostream &OS) const {
190   WriteAsOperand(OS, V, false);
191 }
192 
193 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
194 // particular input.  Don't use a SCEVHandle here, or else the object will
195 // never be deleted!
196 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
197                      SCEVTruncateExpr*> > SCEVTruncates;
198 
199 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
200   : SCEV(scTruncate), Op(op), Ty(ty) {
201   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
202          (Ty->isInteger() || isa<PointerType>(Ty)) &&
203          "Cannot truncate non-integer value!");
204   assert((!Op->getType()->isInteger() || !Ty->isInteger() ||
205           Op->getType()->getPrimitiveSizeInBits() >
206             Ty->getPrimitiveSizeInBits()) &&
207          "This is not a truncating conversion!");
208 }
209 
210 SCEVTruncateExpr::~SCEVTruncateExpr() {
211   SCEVTruncates->erase(std::make_pair(Op, Ty));
212 }
213 
214 bool SCEVTruncateExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
215   return Op->dominates(BB, DT);
216 }
217 
218 void SCEVTruncateExpr::print(raw_ostream &OS) const {
219   OS << "(truncate " << *Op << " to " << *Ty << ")";
220 }
221 
222 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
223 // particular input.  Don't use a SCEVHandle here, or else the object will never
224 // be deleted!
225 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
226                      SCEVZeroExtendExpr*> > SCEVZeroExtends;
227 
228 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
229   : SCEV(scZeroExtend), Op(op), Ty(ty) {
230   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
231          (Ty->isInteger() || isa<PointerType>(Ty)) &&
232          "Cannot zero extend non-integer value!");
233 }
234 
235 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236   SCEVZeroExtends->erase(std::make_pair(Op, Ty));
237 }
238 
239 bool SCEVZeroExtendExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
240   return Op->dominates(BB, DT);
241 }
242 
243 void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
244   OS << "(zeroextend " << *Op << " to " << *Ty << ")";
245 }
246 
247 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
248 // particular input.  Don't use a SCEVHandle here, or else the object will never
249 // be deleted!
250 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
251                      SCEVSignExtendExpr*> > SCEVSignExtends;
252 
253 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
254   : SCEV(scSignExtend), Op(op), Ty(ty) {
255   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
256          (Ty->isInteger() || isa<PointerType>(Ty)) &&
257          "Cannot sign extend non-integer value!");
258   assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
259          && "This is not an extending conversion!");
260 }
261 
262 SCEVSignExtendExpr::~SCEVSignExtendExpr() {
263   SCEVSignExtends->erase(std::make_pair(Op, Ty));
264 }
265 
266 bool SCEVSignExtendExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
267   return Op->dominates(BB, DT);
268 }
269 
270 void SCEVSignExtendExpr::print(raw_ostream &OS) const {
271   OS << "(signextend " << *Op << " to " << *Ty << ")";
272 }
273 
274 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
275 // particular input.  Don't use a SCEVHandle here, or else the object will never
276 // be deleted!
277 static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
278                      SCEVCommutativeExpr*> > SCEVCommExprs;
279 
280 SCEVCommutativeExpr::~SCEVCommutativeExpr() {
281   SCEVCommExprs->erase(std::make_pair(getSCEVType(),
282                                       std::vector<SCEV*>(Operands.begin(),
283                                                          Operands.end())));
284 }
285 
286 void SCEVCommutativeExpr::print(raw_ostream &OS) const {
287   assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
288   const char *OpStr = getOperationStr();
289   OS << "(" << *Operands[0];
290   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
291     OS << OpStr << *Operands[i];
292   OS << ")";
293 }
294 
295 SCEVHandle SCEVCommutativeExpr::
296 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
297                                   const SCEVHandle &Conc,
298                                   ScalarEvolution &SE) const {
299   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
300     SCEVHandle H =
301       getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
302     if (H != getOperand(i)) {
303       std::vector<SCEVHandle> NewOps;
304       NewOps.reserve(getNumOperands());
305       for (unsigned j = 0; j != i; ++j)
306         NewOps.push_back(getOperand(j));
307       NewOps.push_back(H);
308       for (++i; i != e; ++i)
309         NewOps.push_back(getOperand(i)->
310                          replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
311 
312       if (isa<SCEVAddExpr>(this))
313         return SE.getAddExpr(NewOps);
314       else if (isa<SCEVMulExpr>(this))
315         return SE.getMulExpr(NewOps);
316       else if (isa<SCEVSMaxExpr>(this))
317         return SE.getSMaxExpr(NewOps);
318       else if (isa<SCEVUMaxExpr>(this))
319         return SE.getUMaxExpr(NewOps);
320       else
321         assert(0 && "Unknown commutative expr!");
322     }
323   }
324   return this;
325 }
326 
327 bool SCEVCommutativeExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
328   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
329     if (!getOperand(i)->dominates(BB, DT))
330       return false;
331   }
332   return true;
333 }
334 
335 
336 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
337 // input.  Don't use a SCEVHandle here, or else the object will never be
338 // deleted!
339 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
340                      SCEVUDivExpr*> > SCEVUDivs;
341 
342 SCEVUDivExpr::~SCEVUDivExpr() {
343   SCEVUDivs->erase(std::make_pair(LHS, RHS));
344 }
345 
346 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
347   return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
348 }
349 
350 void SCEVUDivExpr::print(raw_ostream &OS) const {
351   OS << "(" << *LHS << " /u " << *RHS << ")";
352 }
353 
354 const Type *SCEVUDivExpr::getType() const {
355   return LHS->getType();
356 }
357 
358 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
359 // particular input.  Don't use a SCEVHandle here, or else the object will never
360 // be deleted!
361 static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
362                      SCEVAddRecExpr*> > SCEVAddRecExprs;
363 
364 SCEVAddRecExpr::~SCEVAddRecExpr() {
365   SCEVAddRecExprs->erase(std::make_pair(L,
366                                         std::vector<SCEV*>(Operands.begin(),
367                                                            Operands.end())));
368 }
369 
370 bool SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
371   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
372     if (!getOperand(i)->dominates(BB, DT))
373       return false;
374   }
375   return true;
376 }
377 
378 
379 SCEVHandle SCEVAddRecExpr::
380 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
381                                   const SCEVHandle &Conc,
382                                   ScalarEvolution &SE) const {
383   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
384     SCEVHandle H =
385       getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
386     if (H != getOperand(i)) {
387       std::vector<SCEVHandle> NewOps;
388       NewOps.reserve(getNumOperands());
389       for (unsigned j = 0; j != i; ++j)
390         NewOps.push_back(getOperand(j));
391       NewOps.push_back(H);
392       for (++i; i != e; ++i)
393         NewOps.push_back(getOperand(i)->
394                          replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
395 
396       return SE.getAddRecExpr(NewOps, L);
397     }
398   }
399   return this;
400 }
401 
402 
403 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
404   // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
405   // contain L and if the start is invariant.
406   return !QueryLoop->contains(L->getHeader()) &&
407          getOperand(0)->isLoopInvariant(QueryLoop);
408 }
409 
410 
411 void SCEVAddRecExpr::print(raw_ostream &OS) const {
412   OS << "{" << *Operands[0];
413   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
414     OS << ",+," << *Operands[i];
415   OS << "}<" << L->getHeader()->getName() + ">";
416 }
417 
418 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
419 // value.  Don't use a SCEVHandle here, or else the object will never be
420 // deleted!
421 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
422 
423 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
424 
425 bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
426   // All non-instruction values are loop invariant.  All instructions are loop
427   // invariant if they are not contained in the specified loop.
428   if (Instruction *I = dyn_cast<Instruction>(V))
429     return !L->contains(I->getParent());
430   return true;
431 }
432 
433 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
434   if (Instruction *I = dyn_cast<Instruction>(getValue()))
435     return DT->dominates(I->getParent(), BB);
436   return true;
437 }
438 
439 const Type *SCEVUnknown::getType() const {
440   return V->getType();
441 }
442 
443 void SCEVUnknown::print(raw_ostream &OS) const {
444   if (isa<PointerType>(V->getType()))
445     OS << "(ptrtoint " << *V->getType() << " ";
446   WriteAsOperand(OS, V, false);
447   if (isa<PointerType>(V->getType()))
448     OS << " to iPTR)";
449 }
450 
451 //===----------------------------------------------------------------------===//
452 //                               SCEV Utilities
453 //===----------------------------------------------------------------------===//
454 
455 namespace {
456   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
457   /// than the complexity of the RHS.  This comparator is used to canonicalize
458   /// expressions.
459   struct VISIBILITY_HIDDEN SCEVComplexityCompare {
460     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
461       return LHS->getSCEVType() < RHS->getSCEVType();
462     }
463   };
464 }
465 
466 /// GroupByComplexity - Given a list of SCEV objects, order them by their
467 /// complexity, and group objects of the same complexity together by value.
468 /// When this routine is finished, we know that any duplicates in the vector are
469 /// consecutive and that complexity is monotonically increasing.
470 ///
471 /// Note that we go take special precautions to ensure that we get determinstic
472 /// results from this routine.  In other words, we don't want the results of
473 /// this to depend on where the addresses of various SCEV objects happened to
474 /// land in memory.
475 ///
476 static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
477   if (Ops.size() < 2) return;  // Noop
478   if (Ops.size() == 2) {
479     // This is the common case, which also happens to be trivially simple.
480     // Special case it.
481     if (SCEVComplexityCompare()(Ops[1], Ops[0]))
482       std::swap(Ops[0], Ops[1]);
483     return;
484   }
485 
486   // Do the rough sort by complexity.
487   std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
488 
489   // Now that we are sorted by complexity, group elements of the same
490   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
491   // be extremely short in practice.  Note that we take this approach because we
492   // do not want to depend on the addresses of the objects we are grouping.
493   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
494     SCEV *S = Ops[i];
495     unsigned Complexity = S->getSCEVType();
496 
497     // If there are any objects of the same complexity and same value as this
498     // one, group them.
499     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
500       if (Ops[j] == S) { // Found a duplicate.
501         // Move it to immediately after i'th element.
502         std::swap(Ops[i+1], Ops[j]);
503         ++i;   // no need to rescan it.
504         if (i == e-2) return;  // Done!
505       }
506     }
507   }
508 }
509 
510 
511 
512 //===----------------------------------------------------------------------===//
513 //                      Simple SCEV method implementations
514 //===----------------------------------------------------------------------===//
515 
516 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
517 // Assume, K > 0.
518 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
519                                       ScalarEvolution &SE,
520                                       const Type* ResultTy) {
521   // Handle the simplest case efficiently.
522   if (K == 1)
523     return SE.getTruncateOrZeroExtend(It, ResultTy);
524 
525   // We are using the following formula for BC(It, K):
526   //
527   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
528   //
529   // Suppose, W is the bitwidth of the return value.  We must be prepared for
530   // overflow.  Hence, we must assure that the result of our computation is
531   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
532   // safe in modular arithmetic.
533   //
534   // However, this code doesn't use exactly that formula; the formula it uses
535   // is something like the following, where T is the number of factors of 2 in
536   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
537   // exponentiation:
538   //
539   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
540   //
541   // This formula is trivially equivalent to the previous formula.  However,
542   // this formula can be implemented much more efficiently.  The trick is that
543   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
544   // arithmetic.  To do exact division in modular arithmetic, all we have
545   // to do is multiply by the inverse.  Therefore, this step can be done at
546   // width W.
547   //
548   // The next issue is how to safely do the division by 2^T.  The way this
549   // is done is by doing the multiplication step at a width of at least W + T
550   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
551   // when we perform the division by 2^T (which is equivalent to a right shift
552   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
553   // truncated out after the division by 2^T.
554   //
555   // In comparison to just directly using the first formula, this technique
556   // is much more efficient; using the first formula requires W * K bits,
557   // but this formula less than W + K bits. Also, the first formula requires
558   // a division step, whereas this formula only requires multiplies and shifts.
559   //
560   // It doesn't matter whether the subtraction step is done in the calculation
561   // width or the input iteration count's width; if the subtraction overflows,
562   // the result must be zero anyway.  We prefer here to do it in the width of
563   // the induction variable because it helps a lot for certain cases; CodeGen
564   // isn't smart enough to ignore the overflow, which leads to much less
565   // efficient code if the width of the subtraction is wider than the native
566   // register width.
567   //
568   // (It's possible to not widen at all by pulling out factors of 2 before
569   // the multiplication; for example, K=2 can be calculated as
570   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
571   // extra arithmetic, so it's not an obvious win, and it gets
572   // much more complicated for K > 3.)
573 
574   // Protection from insane SCEVs; this bound is conservative,
575   // but it probably doesn't matter.
576   if (K > 1000)
577     return SE.getCouldNotCompute();
578 
579   unsigned W = SE.getTargetData().getTypeSizeInBits(ResultTy);
580 
581   // Calculate K! / 2^T and T; we divide out the factors of two before
582   // multiplying for calculating K! / 2^T to avoid overflow.
583   // Other overflow doesn't matter because we only care about the bottom
584   // W bits of the result.
585   APInt OddFactorial(W, 1);
586   unsigned T = 1;
587   for (unsigned i = 3; i <= K; ++i) {
588     APInt Mult(W, i);
589     unsigned TwoFactors = Mult.countTrailingZeros();
590     T += TwoFactors;
591     Mult = Mult.lshr(TwoFactors);
592     OddFactorial *= Mult;
593   }
594 
595   // We need at least W + T bits for the multiplication step
596   unsigned CalculationBits = W + T;
597 
598   // Calcuate 2^T, at width T+W.
599   APInt DivFactor = APInt(CalculationBits, 1).shl(T);
600 
601   // Calculate the multiplicative inverse of K! / 2^T;
602   // this multiplication factor will perform the exact division by
603   // K! / 2^T.
604   APInt Mod = APInt::getSignedMinValue(W+1);
605   APInt MultiplyFactor = OddFactorial.zext(W+1);
606   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
607   MultiplyFactor = MultiplyFactor.trunc(W);
608 
609   // Calculate the product, at width T+W
610   const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
611   SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
612   for (unsigned i = 1; i != K; ++i) {
613     SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
614     Dividend = SE.getMulExpr(Dividend,
615                              SE.getTruncateOrZeroExtend(S, CalculationTy));
616   }
617 
618   // Divide by 2^T
619   SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
620 
621   // Truncate the result, and divide by K! / 2^T.
622 
623   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
624                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
625 }
626 
627 /// evaluateAtIteration - Return the value of this chain of recurrences at
628 /// the specified iteration number.  We can evaluate this recurrence by
629 /// multiplying each element in the chain by the binomial coefficient
630 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
631 ///
632 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
633 ///
634 /// where BC(It, k) stands for binomial coefficient.
635 ///
636 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
637                                                ScalarEvolution &SE) const {
638   SCEVHandle Result = getStart();
639   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
640     // The computation is correct in the face of overflow provided that the
641     // multiplication is performed _after_ the evaluation of the binomial
642     // coefficient.
643     SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
644     if (isa<SCEVCouldNotCompute>(Coeff))
645       return Coeff;
646 
647     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
648   }
649   return Result;
650 }
651 
652 //===----------------------------------------------------------------------===//
653 //                    SCEV Expression folder implementations
654 //===----------------------------------------------------------------------===//
655 
656 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) {
657   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
658     return getUnknown(
659         ConstantExpr::getTrunc(SC->getValue(), Ty));
660 
661   // If the input value is a chrec scev made out of constants, truncate
662   // all of the constants.
663   if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
664     std::vector<SCEVHandle> Operands;
665     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
666       // FIXME: This should allow truncation of other expression types!
667       if (isa<SCEVConstant>(AddRec->getOperand(i)))
668         Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
669       else
670         break;
671     if (Operands.size() == AddRec->getNumOperands())
672       return getAddRecExpr(Operands, AddRec->getLoop());
673   }
674 
675   SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
676   if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
677   return Result;
678 }
679 
680 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
681                                               const Type *Ty) {
682   assert(getTargetData().getTypeSizeInBits(Op->getType()) <
683          getTargetData().getTypeSizeInBits(Ty) &&
684          "This is not an extending conversion!");
685 
686   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
687     const Type *IntTy = Ty;
688     if (isa<PointerType>(IntTy)) IntTy = getTargetData().getIntPtrType();
689     Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
690     if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
691     return getUnknown(C);
692   }
693 
694   // FIXME: If the input value is a chrec scev, and we can prove that the value
695   // did not overflow the old, smaller, value, we can zero extend all of the
696   // operands (often constants).  This would allow analysis of something like
697   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
698 
699   SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
700   if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
701   return Result;
702 }
703 
704 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) {
705   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
706     const Type *IntTy = Ty;
707     if (isa<PointerType>(IntTy)) IntTy = getTargetData().getIntPtrType();
708     Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
709     if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
710     return getUnknown(C);
711   }
712 
713   // FIXME: If the input value is a chrec scev, and we can prove that the value
714   // did not overflow the old, smaller, value, we can sign extend all of the
715   // operands (often constants).  This would allow analysis of something like
716   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
717 
718   SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
719   if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
720   return Result;
721 }
722 
723 // get - Get a canonical add expression, or something simpler if possible.
724 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
725   assert(!Ops.empty() && "Cannot get empty add!");
726   if (Ops.size() == 1) return Ops[0];
727 
728   // Sort by complexity, this groups all similar expression types together.
729   GroupByComplexity(Ops);
730 
731   // If there are any constants, fold them together.
732   unsigned Idx = 0;
733   if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
734     ++Idx;
735     assert(Idx < Ops.size());
736     while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
737       // We found two constants, fold them together!
738       ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
739                                            RHSC->getValue()->getValue());
740       Ops[0] = getConstant(Fold);
741       Ops.erase(Ops.begin()+1);  // Erase the folded element
742       if (Ops.size() == 1) return Ops[0];
743       LHSC = cast<SCEVConstant>(Ops[0]);
744     }
745 
746     // If we are left with a constant zero being added, strip it off.
747     if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
748       Ops.erase(Ops.begin());
749       --Idx;
750     }
751   }
752 
753   if (Ops.size() == 1) return Ops[0];
754 
755   // Okay, check to see if the same value occurs in the operand list twice.  If
756   // so, merge them together into an multiply expression.  Since we sorted the
757   // list, these values are required to be adjacent.
758   const Type *Ty = Ops[0]->getType();
759   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
760     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
761       // Found a match, merge the two values into a multiply, and add any
762       // remaining values to the result.
763       SCEVHandle Two = getIntegerSCEV(2, Ty);
764       SCEVHandle Mul = getMulExpr(Ops[i], Two);
765       if (Ops.size() == 2)
766         return Mul;
767       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
768       Ops.push_back(Mul);
769       return getAddExpr(Ops);
770     }
771 
772   // Now we know the first non-constant operand.  Skip past any cast SCEVs.
773   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
774     ++Idx;
775 
776   // If there are add operands they would be next.
777   if (Idx < Ops.size()) {
778     bool DeletedAdd = false;
779     while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
780       // If we have an add, expand the add operands onto the end of the operands
781       // list.
782       Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
783       Ops.erase(Ops.begin()+Idx);
784       DeletedAdd = true;
785     }
786 
787     // If we deleted at least one add, we added operands to the end of the list,
788     // and they are not necessarily sorted.  Recurse to resort and resimplify
789     // any operands we just aquired.
790     if (DeletedAdd)
791       return getAddExpr(Ops);
792   }
793 
794   // Skip over the add expression until we get to a multiply.
795   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
796     ++Idx;
797 
798   // If we are adding something to a multiply expression, make sure the
799   // something is not already an operand of the multiply.  If so, merge it into
800   // the multiply.
801   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
802     SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
803     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
804       SCEV *MulOpSCEV = Mul->getOperand(MulOp);
805       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
806         if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
807           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
808           SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
809           if (Mul->getNumOperands() != 2) {
810             // If the multiply has more than two operands, we must get the
811             // Y*Z term.
812             std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
813             MulOps.erase(MulOps.begin()+MulOp);
814             InnerMul = getMulExpr(MulOps);
815           }
816           SCEVHandle One = getIntegerSCEV(1, Ty);
817           SCEVHandle AddOne = getAddExpr(InnerMul, One);
818           SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
819           if (Ops.size() == 2) return OuterMul;
820           if (AddOp < Idx) {
821             Ops.erase(Ops.begin()+AddOp);
822             Ops.erase(Ops.begin()+Idx-1);
823           } else {
824             Ops.erase(Ops.begin()+Idx);
825             Ops.erase(Ops.begin()+AddOp-1);
826           }
827           Ops.push_back(OuterMul);
828           return getAddExpr(Ops);
829         }
830 
831       // Check this multiply against other multiplies being added together.
832       for (unsigned OtherMulIdx = Idx+1;
833            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
834            ++OtherMulIdx) {
835         SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
836         // If MulOp occurs in OtherMul, we can fold the two multiplies
837         // together.
838         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
839              OMulOp != e; ++OMulOp)
840           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
841             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
842             SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
843             if (Mul->getNumOperands() != 2) {
844               std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
845               MulOps.erase(MulOps.begin()+MulOp);
846               InnerMul1 = getMulExpr(MulOps);
847             }
848             SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
849             if (OtherMul->getNumOperands() != 2) {
850               std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
851                                              OtherMul->op_end());
852               MulOps.erase(MulOps.begin()+OMulOp);
853               InnerMul2 = getMulExpr(MulOps);
854             }
855             SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
856             SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
857             if (Ops.size() == 2) return OuterMul;
858             Ops.erase(Ops.begin()+Idx);
859             Ops.erase(Ops.begin()+OtherMulIdx-1);
860             Ops.push_back(OuterMul);
861             return getAddExpr(Ops);
862           }
863       }
864     }
865   }
866 
867   // If there are any add recurrences in the operands list, see if any other
868   // added values are loop invariant.  If so, we can fold them into the
869   // recurrence.
870   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
871     ++Idx;
872 
873   // Scan over all recurrences, trying to fold loop invariants into them.
874   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
875     // Scan all of the other operands to this add and add them to the vector if
876     // they are loop invariant w.r.t. the recurrence.
877     std::vector<SCEVHandle> LIOps;
878     SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
879     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
880       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
881         LIOps.push_back(Ops[i]);
882         Ops.erase(Ops.begin()+i);
883         --i; --e;
884       }
885 
886     // If we found some loop invariants, fold them into the recurrence.
887     if (!LIOps.empty()) {
888       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
889       LIOps.push_back(AddRec->getStart());
890 
891       std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
892       AddRecOps[0] = getAddExpr(LIOps);
893 
894       SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
895       // If all of the other operands were loop invariant, we are done.
896       if (Ops.size() == 1) return NewRec;
897 
898       // Otherwise, add the folded AddRec by the non-liv parts.
899       for (unsigned i = 0;; ++i)
900         if (Ops[i] == AddRec) {
901           Ops[i] = NewRec;
902           break;
903         }
904       return getAddExpr(Ops);
905     }
906 
907     // Okay, if there weren't any loop invariants to be folded, check to see if
908     // there are multiple AddRec's with the same loop induction variable being
909     // added together.  If so, we can fold them.
910     for (unsigned OtherIdx = Idx+1;
911          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
912       if (OtherIdx != Idx) {
913         SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
914         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
915           // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
916           std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
917           for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
918             if (i >= NewOps.size()) {
919               NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
920                             OtherAddRec->op_end());
921               break;
922             }
923             NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
924           }
925           SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
926 
927           if (Ops.size() == 2) return NewAddRec;
928 
929           Ops.erase(Ops.begin()+Idx);
930           Ops.erase(Ops.begin()+OtherIdx-1);
931           Ops.push_back(NewAddRec);
932           return getAddExpr(Ops);
933         }
934       }
935 
936     // Otherwise couldn't fold anything into this recurrence.  Move onto the
937     // next one.
938   }
939 
940   // Okay, it looks like we really DO need an add expr.  Check to see if we
941   // already have one, otherwise create a new one.
942   std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
943   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
944                                                                  SCEVOps)];
945   if (Result == 0) Result = new SCEVAddExpr(Ops);
946   return Result;
947 }
948 
949 
950 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
951   assert(!Ops.empty() && "Cannot get empty mul!");
952 
953   // Sort by complexity, this groups all similar expression types together.
954   GroupByComplexity(Ops);
955 
956   // If there are any constants, fold them together.
957   unsigned Idx = 0;
958   if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
959 
960     // C1*(C2+V) -> C1*C2 + C1*V
961     if (Ops.size() == 2)
962       if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
963         if (Add->getNumOperands() == 2 &&
964             isa<SCEVConstant>(Add->getOperand(0)))
965           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
966                             getMulExpr(LHSC, Add->getOperand(1)));
967 
968 
969     ++Idx;
970     while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
971       // We found two constants, fold them together!
972       ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
973                                            RHSC->getValue()->getValue());
974       Ops[0] = getConstant(Fold);
975       Ops.erase(Ops.begin()+1);  // Erase the folded element
976       if (Ops.size() == 1) return Ops[0];
977       LHSC = cast<SCEVConstant>(Ops[0]);
978     }
979 
980     // If we are left with a constant one being multiplied, strip it off.
981     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
982       Ops.erase(Ops.begin());
983       --Idx;
984     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
985       // If we have a multiply of zero, it will always be zero.
986       return Ops[0];
987     }
988   }
989 
990   // Skip over the add expression until we get to a multiply.
991   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
992     ++Idx;
993 
994   if (Ops.size() == 1)
995     return Ops[0];
996 
997   // If there are mul operands inline them all into this expression.
998   if (Idx < Ops.size()) {
999     bool DeletedMul = false;
1000     while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1001       // If we have an mul, expand the mul operands onto the end of the operands
1002       // list.
1003       Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1004       Ops.erase(Ops.begin()+Idx);
1005       DeletedMul = true;
1006     }
1007 
1008     // If we deleted at least one mul, we added operands to the end of the list,
1009     // and they are not necessarily sorted.  Recurse to resort and resimplify
1010     // any operands we just aquired.
1011     if (DeletedMul)
1012       return getMulExpr(Ops);
1013   }
1014 
1015   // If there are any add recurrences in the operands list, see if any other
1016   // added values are loop invariant.  If so, we can fold them into the
1017   // recurrence.
1018   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1019     ++Idx;
1020 
1021   // Scan over all recurrences, trying to fold loop invariants into them.
1022   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1023     // Scan all of the other operands to this mul and add them to the vector if
1024     // they are loop invariant w.r.t. the recurrence.
1025     std::vector<SCEVHandle> LIOps;
1026     SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1027     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1028       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1029         LIOps.push_back(Ops[i]);
1030         Ops.erase(Ops.begin()+i);
1031         --i; --e;
1032       }
1033 
1034     // If we found some loop invariants, fold them into the recurrence.
1035     if (!LIOps.empty()) {
1036       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1037       std::vector<SCEVHandle> NewOps;
1038       NewOps.reserve(AddRec->getNumOperands());
1039       if (LIOps.size() == 1) {
1040         SCEV *Scale = LIOps[0];
1041         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1042           NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1043       } else {
1044         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1045           std::vector<SCEVHandle> MulOps(LIOps);
1046           MulOps.push_back(AddRec->getOperand(i));
1047           NewOps.push_back(getMulExpr(MulOps));
1048         }
1049       }
1050 
1051       SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1052 
1053       // If all of the other operands were loop invariant, we are done.
1054       if (Ops.size() == 1) return NewRec;
1055 
1056       // Otherwise, multiply the folded AddRec by the non-liv parts.
1057       for (unsigned i = 0;; ++i)
1058         if (Ops[i] == AddRec) {
1059           Ops[i] = NewRec;
1060           break;
1061         }
1062       return getMulExpr(Ops);
1063     }
1064 
1065     // Okay, if there weren't any loop invariants to be folded, check to see if
1066     // there are multiple AddRec's with the same loop induction variable being
1067     // multiplied together.  If so, we can fold them.
1068     for (unsigned OtherIdx = Idx+1;
1069          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1070       if (OtherIdx != Idx) {
1071         SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1072         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1073           // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1074           SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1075           SCEVHandle NewStart = getMulExpr(F->getStart(),
1076                                                  G->getStart());
1077           SCEVHandle B = F->getStepRecurrence(*this);
1078           SCEVHandle D = G->getStepRecurrence(*this);
1079           SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1080                                           getMulExpr(G, B),
1081                                           getMulExpr(B, D));
1082           SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1083                                                F->getLoop());
1084           if (Ops.size() == 2) return NewAddRec;
1085 
1086           Ops.erase(Ops.begin()+Idx);
1087           Ops.erase(Ops.begin()+OtherIdx-1);
1088           Ops.push_back(NewAddRec);
1089           return getMulExpr(Ops);
1090         }
1091       }
1092 
1093     // Otherwise couldn't fold anything into this recurrence.  Move onto the
1094     // next one.
1095   }
1096 
1097   // Okay, it looks like we really DO need an mul expr.  Check to see if we
1098   // already have one, otherwise create a new one.
1099   std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1100   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1101                                                                  SCEVOps)];
1102   if (Result == 0)
1103     Result = new SCEVMulExpr(Ops);
1104   return Result;
1105 }
1106 
1107 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1108   if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1109     if (RHSC->getValue()->equalsInt(1))
1110       return LHS;                            // X udiv 1 --> x
1111 
1112     if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1113       Constant *LHSCV = LHSC->getValue();
1114       Constant *RHSCV = RHSC->getValue();
1115       return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1116     }
1117   }
1118 
1119   // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1120 
1121   SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1122   if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1123   return Result;
1124 }
1125 
1126 
1127 /// SCEVAddRecExpr::get - Get a add recurrence expression for the
1128 /// specified loop.  Simplify the expression as much as possible.
1129 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1130                                const SCEVHandle &Step, const Loop *L) {
1131   std::vector<SCEVHandle> Operands;
1132   Operands.push_back(Start);
1133   if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1134     if (StepChrec->getLoop() == L) {
1135       Operands.insert(Operands.end(), StepChrec->op_begin(),
1136                       StepChrec->op_end());
1137       return getAddRecExpr(Operands, L);
1138     }
1139 
1140   Operands.push_back(Step);
1141   return getAddRecExpr(Operands, L);
1142 }
1143 
1144 /// SCEVAddRecExpr::get - Get a add recurrence expression for the
1145 /// specified loop.  Simplify the expression as much as possible.
1146 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1147                                const Loop *L) {
1148   if (Operands.size() == 1) return Operands[0];
1149 
1150   if (Operands.back()->isZero()) {
1151     Operands.pop_back();
1152     return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1153   }
1154 
1155   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1156   if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1157     const Loop* NestedLoop = NestedAR->getLoop();
1158     if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1159       std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1160                                              NestedAR->op_end());
1161       SCEVHandle NestedARHandle(NestedAR);
1162       Operands[0] = NestedAR->getStart();
1163       NestedOperands[0] = getAddRecExpr(Operands, L);
1164       return getAddRecExpr(NestedOperands, NestedLoop);
1165     }
1166   }
1167 
1168   SCEVAddRecExpr *&Result =
1169     (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1170                                                             Operands.end()))];
1171   if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1172   return Result;
1173 }
1174 
1175 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1176                                         const SCEVHandle &RHS) {
1177   std::vector<SCEVHandle> Ops;
1178   Ops.push_back(LHS);
1179   Ops.push_back(RHS);
1180   return getSMaxExpr(Ops);
1181 }
1182 
1183 SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1184   assert(!Ops.empty() && "Cannot get empty smax!");
1185   if (Ops.size() == 1) return Ops[0];
1186 
1187   // Sort by complexity, this groups all similar expression types together.
1188   GroupByComplexity(Ops);
1189 
1190   // If there are any constants, fold them together.
1191   unsigned Idx = 0;
1192   if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1193     ++Idx;
1194     assert(Idx < Ops.size());
1195     while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1196       // We found two constants, fold them together!
1197       ConstantInt *Fold = ConstantInt::get(
1198                               APIntOps::smax(LHSC->getValue()->getValue(),
1199                                              RHSC->getValue()->getValue()));
1200       Ops[0] = getConstant(Fold);
1201       Ops.erase(Ops.begin()+1);  // Erase the folded element
1202       if (Ops.size() == 1) return Ops[0];
1203       LHSC = cast<SCEVConstant>(Ops[0]);
1204     }
1205 
1206     // If we are left with a constant -inf, strip it off.
1207     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1208       Ops.erase(Ops.begin());
1209       --Idx;
1210     }
1211   }
1212 
1213   if (Ops.size() == 1) return Ops[0];
1214 
1215   // Find the first SMax
1216   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1217     ++Idx;
1218 
1219   // Check to see if one of the operands is an SMax. If so, expand its operands
1220   // onto our operand list, and recurse to simplify.
1221   if (Idx < Ops.size()) {
1222     bool DeletedSMax = false;
1223     while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1224       Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1225       Ops.erase(Ops.begin()+Idx);
1226       DeletedSMax = true;
1227     }
1228 
1229     if (DeletedSMax)
1230       return getSMaxExpr(Ops);
1231   }
1232 
1233   // Okay, check to see if the same value occurs in the operand list twice.  If
1234   // so, delete one.  Since we sorted the list, these values are required to
1235   // be adjacent.
1236   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1237     if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1238       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1239       --i; --e;
1240     }
1241 
1242   if (Ops.size() == 1) return Ops[0];
1243 
1244   assert(!Ops.empty() && "Reduced smax down to nothing!");
1245 
1246   // Okay, it looks like we really DO need an smax expr.  Check to see if we
1247   // already have one, otherwise create a new one.
1248   std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1249   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1250                                                                  SCEVOps)];
1251   if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1252   return Result;
1253 }
1254 
1255 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1256                                         const SCEVHandle &RHS) {
1257   std::vector<SCEVHandle> Ops;
1258   Ops.push_back(LHS);
1259   Ops.push_back(RHS);
1260   return getUMaxExpr(Ops);
1261 }
1262 
1263 SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1264   assert(!Ops.empty() && "Cannot get empty umax!");
1265   if (Ops.size() == 1) return Ops[0];
1266 
1267   // Sort by complexity, this groups all similar expression types together.
1268   GroupByComplexity(Ops);
1269 
1270   // If there are any constants, fold them together.
1271   unsigned Idx = 0;
1272   if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1273     ++Idx;
1274     assert(Idx < Ops.size());
1275     while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1276       // We found two constants, fold them together!
1277       ConstantInt *Fold = ConstantInt::get(
1278                               APIntOps::umax(LHSC->getValue()->getValue(),
1279                                              RHSC->getValue()->getValue()));
1280       Ops[0] = getConstant(Fold);
1281       Ops.erase(Ops.begin()+1);  // Erase the folded element
1282       if (Ops.size() == 1) return Ops[0];
1283       LHSC = cast<SCEVConstant>(Ops[0]);
1284     }
1285 
1286     // If we are left with a constant zero, strip it off.
1287     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1288       Ops.erase(Ops.begin());
1289       --Idx;
1290     }
1291   }
1292 
1293   if (Ops.size() == 1) return Ops[0];
1294 
1295   // Find the first UMax
1296   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1297     ++Idx;
1298 
1299   // Check to see if one of the operands is a UMax. If so, expand its operands
1300   // onto our operand list, and recurse to simplify.
1301   if (Idx < Ops.size()) {
1302     bool DeletedUMax = false;
1303     while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1304       Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1305       Ops.erase(Ops.begin()+Idx);
1306       DeletedUMax = true;
1307     }
1308 
1309     if (DeletedUMax)
1310       return getUMaxExpr(Ops);
1311   }
1312 
1313   // Okay, check to see if the same value occurs in the operand list twice.  If
1314   // so, delete one.  Since we sorted the list, these values are required to
1315   // be adjacent.
1316   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1317     if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1318       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1319       --i; --e;
1320     }
1321 
1322   if (Ops.size() == 1) return Ops[0];
1323 
1324   assert(!Ops.empty() && "Reduced umax down to nothing!");
1325 
1326   // Okay, it looks like we really DO need a umax expr.  Check to see if we
1327   // already have one, otherwise create a new one.
1328   std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1329   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1330                                                                  SCEVOps)];
1331   if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1332   return Result;
1333 }
1334 
1335 SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1336   if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1337     return getConstant(CI);
1338   if (isa<ConstantPointerNull>(V))
1339     return getIntegerSCEV(0, V->getType());
1340   SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1341   if (Result == 0) Result = new SCEVUnknown(V);
1342   return Result;
1343 }
1344 
1345 //===----------------------------------------------------------------------===//
1346 //             ScalarEvolutionsImpl Definition and Implementation
1347 //===----------------------------------------------------------------------===//
1348 //
1349 /// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1350 /// evolution code.
1351 ///
1352 namespace {
1353   struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
1354     /// SE - A reference to the public ScalarEvolution object.
1355     ScalarEvolution &SE;
1356 
1357     /// F - The function we are analyzing.
1358     ///
1359     Function &F;
1360 
1361     /// LI - The loop information for the function we are currently analyzing.
1362     ///
1363     LoopInfo &LI;
1364 
1365     /// TD - The target data information for the target we are targetting.
1366     ///
1367     TargetData &TD;
1368 
1369     /// UnknownValue - This SCEV is used to represent unknown trip counts and
1370     /// things.
1371     SCEVHandle UnknownValue;
1372 
1373     /// Scalars - This is a cache of the scalars we have analyzed so far.
1374     ///
1375     std::map<Value*, SCEVHandle> Scalars;
1376 
1377     /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
1378     /// this function as they are computed.
1379     std::map<const Loop*, SCEVHandle> BackedgeTakenCounts;
1380 
1381     /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1382     /// the PHI instructions that we attempt to compute constant evolutions for.
1383     /// This allows us to avoid potentially expensive recomputation of these
1384     /// properties.  An instruction maps to null if we are unable to compute its
1385     /// exit value.
1386     std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1387 
1388   public:
1389     ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li,
1390                          TargetData &td)
1391       : SE(se), F(f), LI(li), TD(td), UnknownValue(new SCEVCouldNotCompute()) {}
1392 
1393     SCEVHandle getCouldNotCompute();
1394 
1395     /// getIntegerSCEV - Given an integer or FP type, create a constant for the
1396     /// specified signed integer value and return a SCEV for the constant.
1397     SCEVHandle getIntegerSCEV(int Val, const Type *Ty);
1398 
1399     /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1400     ///
1401     SCEVHandle getNegativeSCEV(const SCEVHandle &V);
1402 
1403     /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1404     ///
1405     SCEVHandle getNotSCEV(const SCEVHandle &V);
1406 
1407     /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1408     ///
1409     SCEVHandle getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS);
1410 
1411     /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
1412     /// of the input value to the specified type.  If the type must be extended,
1413     /// it is zero extended.
1414     SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty);
1415 
1416     /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
1417     /// of the input value to the specified type.  If the type must be extended,
1418     /// it is sign extended.
1419     SCEVHandle getTruncateOrSignExtend(const SCEVHandle &V, const Type *Ty);
1420 
1421     /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1422     /// expression and create a new one.
1423     SCEVHandle getSCEV(Value *V);
1424 
1425     /// hasSCEV - Return true if the SCEV for this value has already been
1426     /// computed.
1427     bool hasSCEV(Value *V) const {
1428       return Scalars.count(V);
1429     }
1430 
1431     /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1432     /// the specified value.
1433     void setSCEV(Value *V, const SCEVHandle &H) {
1434       bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1435       assert(isNew && "This entry already existed!");
1436       isNew = false;
1437     }
1438 
1439 
1440     /// getSCEVAtScope - Compute the value of the specified expression within
1441     /// the indicated loop (which may be null to indicate in no loop).  If the
1442     /// expression cannot be evaluated, return UnknownValue itself.
1443     SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1444 
1445 
1446     /// isLoopGuardedByCond - Test whether entry to the loop is protected by
1447     /// a conditional between LHS and RHS.
1448     bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
1449                              SCEV *LHS, SCEV *RHS);
1450 
1451     /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
1452     /// has an analyzable loop-invariant backedge-taken count.
1453     bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
1454 
1455     /// forgetLoopBackedgeTakenCount - This method should be called by the
1456     /// client when it has changed a loop in a way that may effect
1457     /// ScalarEvolution's ability to compute a trip count, or if the loop
1458     /// is deleted.
1459     void forgetLoopBackedgeTakenCount(const Loop *L);
1460 
1461     /// getBackedgeTakenCount - If the specified loop has a predictable
1462     /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
1463     /// object. The backedge-taken count is the number of times the loop header
1464     /// will be branched to from within the loop. This is one less than the
1465     /// trip count of the loop, since it doesn't count the first iteration,
1466     /// when the header is branched to from outside the loop.
1467     ///
1468     /// Note that it is not valid to call this method on a loop without a
1469     /// loop-invariant backedge-taken count (see
1470     /// hasLoopInvariantBackedgeTakenCount).
1471     ///
1472     SCEVHandle getBackedgeTakenCount(const Loop *L);
1473 
1474     /// deleteValueFromRecords - This method should be called by the
1475     /// client before it removes a value from the program, to make sure
1476     /// that no dangling references are left around.
1477     void deleteValueFromRecords(Value *V);
1478 
1479     /// getTargetData - Return the TargetData.
1480     const TargetData &getTargetData() const;
1481 
1482   private:
1483     /// createSCEV - We know that there is no SCEV for the specified value.
1484     /// Analyze the expression.
1485     SCEVHandle createSCEV(Value *V);
1486 
1487     /// createNodeForPHI - Provide the special handling we need to analyze PHI
1488     /// SCEVs.
1489     SCEVHandle createNodeForPHI(PHINode *PN);
1490 
1491     /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1492     /// for the specified instruction and replaces any references to the
1493     /// symbolic value SymName with the specified value.  This is used during
1494     /// PHI resolution.
1495     void ReplaceSymbolicValueWithConcrete(Instruction *I,
1496                                           const SCEVHandle &SymName,
1497                                           const SCEVHandle &NewVal);
1498 
1499     /// ComputeBackedgeTakenCount - Compute the number of times the specified
1500     /// loop will iterate.
1501     SCEVHandle ComputeBackedgeTakenCount(const Loop *L);
1502 
1503     /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
1504     /// of 'icmp op load X, cst', try to see if we can compute the trip count.
1505     SCEVHandle
1506       ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
1507                                                    Constant *RHS,
1508                                                    const Loop *L,
1509                                                    ICmpInst::Predicate p);
1510 
1511     /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute
1512     /// a constant number of times (the condition evolves only from constants),
1513     /// try to evaluate a few iterations of the loop until we get the exit
1514     /// condition gets a value of ExitWhen (true or false).  If we cannot
1515     /// evaluate the trip count of the loop, return UnknownValue.
1516     SCEVHandle ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond,
1517                                                      bool ExitWhen);
1518 
1519     /// HowFarToZero - Return the number of times a backedge comparing the
1520     /// specified value to zero will execute.  If not computable, return
1521     /// UnknownValue.
1522     SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1523 
1524     /// HowFarToNonZero - Return the number of times a backedge checking the
1525     /// specified value for nonzero will execute.  If not computable, return
1526     /// UnknownValue.
1527     SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1528 
1529     /// HowManyLessThans - Return the number of times a backedge containing the
1530     /// specified less-than comparison will execute.  If not computable, return
1531     /// UnknownValue. isSigned specifies whether the less-than is signed.
1532     SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
1533                                 bool isSigned);
1534 
1535     /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
1536     /// (which may not be an immediate predecessor) which has exactly one
1537     /// successor from which BB is reachable, or null if no such block is
1538     /// found.
1539     BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
1540 
1541     /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1542     /// in the header of its containing loop, we know the loop executes a
1543     /// constant number of times, and the PHI node is just a recurrence
1544     /// involving constants, fold it.
1545     Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
1546                                                 const Loop *L);
1547   };
1548 }
1549 
1550 //===----------------------------------------------------------------------===//
1551 //            Basic SCEV Analysis and PHI Idiom Recognition Code
1552 //
1553 
1554 /// deleteValueFromRecords - This method should be called by the
1555 /// client before it removes an instruction from the program, to make sure
1556 /// that no dangling references are left around.
1557 void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) {
1558   SmallVector<Value *, 16> Worklist;
1559 
1560   if (Scalars.erase(V)) {
1561     if (PHINode *PN = dyn_cast<PHINode>(V))
1562       ConstantEvolutionLoopExitValue.erase(PN);
1563     Worklist.push_back(V);
1564   }
1565 
1566   while (!Worklist.empty()) {
1567     Value *VV = Worklist.back();
1568     Worklist.pop_back();
1569 
1570     for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1571          UI != UE; ++UI) {
1572       Instruction *Inst = cast<Instruction>(*UI);
1573       if (Scalars.erase(Inst)) {
1574         if (PHINode *PN = dyn_cast<PHINode>(VV))
1575           ConstantEvolutionLoopExitValue.erase(PN);
1576         Worklist.push_back(Inst);
1577       }
1578     }
1579   }
1580 }
1581 
1582 const TargetData &ScalarEvolutionsImpl::getTargetData() const {
1583   return TD;
1584 }
1585 
1586 SCEVHandle ScalarEvolutionsImpl::getCouldNotCompute() {
1587   return UnknownValue;
1588 }
1589 
1590 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1591 /// expression and create a new one.
1592 SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1593   assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1594 
1595   std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1596   if (I != Scalars.end()) return I->second;
1597   SCEVHandle S = createSCEV(V);
1598   Scalars.insert(std::make_pair(V, S));
1599   return S;
1600 }
1601 
1602 /// getIntegerSCEV - Given an integer or FP type, create a constant for the
1603 /// specified signed integer value and return a SCEV for the constant.
1604 SCEVHandle ScalarEvolutionsImpl::getIntegerSCEV(int Val, const Type *Ty) {
1605   if (isa<PointerType>(Ty))
1606     Ty = TD.getIntPtrType();
1607   Constant *C;
1608   if (Val == 0)
1609     C = Constant::getNullValue(Ty);
1610   else if (Ty->isFloatingPoint())
1611     C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1612                                 APFloat::IEEEdouble, Val));
1613   else
1614     C = ConstantInt::get(Ty, Val);
1615   return SE.getUnknown(C);
1616 }
1617 
1618 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1619 ///
1620 SCEVHandle ScalarEvolutionsImpl::getNegativeSCEV(const SCEVHandle &V) {
1621   if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1622     return SE.getUnknown(ConstantExpr::getNeg(VC->getValue()));
1623 
1624   const Type *Ty = V->getType();
1625   if (isa<PointerType>(Ty))
1626     Ty = TD.getIntPtrType();
1627   return SE.getMulExpr(V, SE.getConstant(ConstantInt::getAllOnesValue(Ty)));
1628 }
1629 
1630 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1631 SCEVHandle ScalarEvolutionsImpl::getNotSCEV(const SCEVHandle &V) {
1632   if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1633     return SE.getUnknown(ConstantExpr::getNot(VC->getValue()));
1634 
1635   const Type *Ty = V->getType();
1636   if (isa<PointerType>(Ty))
1637     Ty = TD.getIntPtrType();
1638   SCEVHandle AllOnes = SE.getConstant(ConstantInt::getAllOnesValue(Ty));
1639   return getMinusSCEV(AllOnes, V);
1640 }
1641 
1642 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1643 ///
1644 SCEVHandle ScalarEvolutionsImpl::getMinusSCEV(const SCEVHandle &LHS,
1645                                               const SCEVHandle &RHS) {
1646   // X - Y --> X + -Y
1647   return SE.getAddExpr(LHS, SE.getNegativeSCEV(RHS));
1648 }
1649 
1650 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1651 /// input value to the specified type.  If the type must be extended, it is zero
1652 /// extended.
1653 SCEVHandle
1654 ScalarEvolutionsImpl::getTruncateOrZeroExtend(const SCEVHandle &V,
1655                                               const Type *Ty) {
1656   const Type *SrcTy = V->getType();
1657   assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
1658          (Ty->isInteger() || isa<PointerType>(Ty)) &&
1659          "Cannot truncate or zero extend with non-integer arguments!");
1660   if (TD.getTypeSizeInBits(SrcTy) == TD.getTypeSizeInBits(Ty))
1661     return V;  // No conversion
1662   if (TD.getTypeSizeInBits(SrcTy) > TD.getTypeSizeInBits(Ty))
1663     return SE.getTruncateExpr(V, Ty);
1664   return SE.getZeroExtendExpr(V, Ty);
1665 }
1666 
1667 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1668 /// input value to the specified type.  If the type must be extended, it is sign
1669 /// extended.
1670 SCEVHandle
1671 ScalarEvolutionsImpl::getTruncateOrSignExtend(const SCEVHandle &V,
1672                                               const Type *Ty) {
1673   const Type *SrcTy = V->getType();
1674   assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
1675          (Ty->isInteger() || isa<PointerType>(Ty)) &&
1676          "Cannot truncate or zero extend with non-integer arguments!");
1677   if (TD.getTypeSizeInBits(SrcTy) == TD.getTypeSizeInBits(Ty))
1678     return V;  // No conversion
1679   if (TD.getTypeSizeInBits(SrcTy) > TD.getTypeSizeInBits(Ty))
1680     return SE.getTruncateExpr(V, Ty);
1681   return SE.getSignExtendExpr(V, Ty);
1682 }
1683 
1684 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1685 /// the specified instruction and replaces any references to the symbolic value
1686 /// SymName with the specified value.  This is used during PHI resolution.
1687 void ScalarEvolutionsImpl::
1688 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1689                                  const SCEVHandle &NewVal) {
1690   std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1691   if (SI == Scalars.end()) return;
1692 
1693   SCEVHandle NV =
1694     SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE);
1695   if (NV == SI->second) return;  // No change.
1696 
1697   SI->second = NV;       // Update the scalars map!
1698 
1699   // Any instruction values that use this instruction might also need to be
1700   // updated!
1701   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1702        UI != E; ++UI)
1703     ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1704 }
1705 
1706 /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1707 /// a loop header, making it a potential recurrence, or it doesn't.
1708 ///
1709 SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1710   if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1711     if (const Loop *L = LI.getLoopFor(PN->getParent()))
1712       if (L->getHeader() == PN->getParent()) {
1713         // If it lives in the loop header, it has two incoming values, one
1714         // from outside the loop, and one from inside.
1715         unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1716         unsigned BackEdge     = IncomingEdge^1;
1717 
1718         // While we are analyzing this PHI node, handle its value symbolically.
1719         SCEVHandle SymbolicName = SE.getUnknown(PN);
1720         assert(Scalars.find(PN) == Scalars.end() &&
1721                "PHI node already processed?");
1722         Scalars.insert(std::make_pair(PN, SymbolicName));
1723 
1724         // Using this symbolic name for the PHI, analyze the value coming around
1725         // the back-edge.
1726         SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1727 
1728         // NOTE: If BEValue is loop invariant, we know that the PHI node just
1729         // has a special value for the first iteration of the loop.
1730 
1731         // If the value coming around the backedge is an add with the symbolic
1732         // value we just inserted, then we found a simple induction variable!
1733         if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1734           // If there is a single occurrence of the symbolic value, replace it
1735           // with a recurrence.
1736           unsigned FoundIndex = Add->getNumOperands();
1737           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1738             if (Add->getOperand(i) == SymbolicName)
1739               if (FoundIndex == e) {
1740                 FoundIndex = i;
1741                 break;
1742               }
1743 
1744           if (FoundIndex != Add->getNumOperands()) {
1745             // Create an add with everything but the specified operand.
1746             std::vector<SCEVHandle> Ops;
1747             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1748               if (i != FoundIndex)
1749                 Ops.push_back(Add->getOperand(i));
1750             SCEVHandle Accum = SE.getAddExpr(Ops);
1751 
1752             // This is not a valid addrec if the step amount is varying each
1753             // loop iteration, but is not itself an addrec in this loop.
1754             if (Accum->isLoopInvariant(L) ||
1755                 (isa<SCEVAddRecExpr>(Accum) &&
1756                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1757               SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1758               SCEVHandle PHISCEV  = SE.getAddRecExpr(StartVal, Accum, L);
1759 
1760               // Okay, for the entire analysis of this edge we assumed the PHI
1761               // to be symbolic.  We now need to go back and update all of the
1762               // entries for the scalars that use the PHI (except for the PHI
1763               // itself) to use the new analyzed value instead of the "symbolic"
1764               // value.
1765               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1766               return PHISCEV;
1767             }
1768           }
1769         } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1770           // Otherwise, this could be a loop like this:
1771           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1772           // In this case, j = {1,+,1}  and BEValue is j.
1773           // Because the other in-value of i (0) fits the evolution of BEValue
1774           // i really is an addrec evolution.
1775           if (AddRec->getLoop() == L && AddRec->isAffine()) {
1776             SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1777 
1778             // If StartVal = j.start - j.stride, we can use StartVal as the
1779             // initial step of the addrec evolution.
1780             if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0),
1781                                             AddRec->getOperand(1))) {
1782               SCEVHandle PHISCEV =
1783                  SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L);
1784 
1785               // Okay, for the entire analysis of this edge we assumed the PHI
1786               // to be symbolic.  We now need to go back and update all of the
1787               // entries for the scalars that use the PHI (except for the PHI
1788               // itself) to use the new analyzed value instead of the "symbolic"
1789               // value.
1790               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1791               return PHISCEV;
1792             }
1793           }
1794         }
1795 
1796         return SymbolicName;
1797       }
1798 
1799   // If it's not a loop phi, we can't handle it yet.
1800   return SE.getUnknown(PN);
1801 }
1802 
1803 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1804 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
1805 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
1806 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
1807 static uint32_t GetMinTrailingZeros(SCEVHandle S, const TargetData &TD) {
1808   if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
1809     return C->getValue()->getValue().countTrailingZeros();
1810 
1811   if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1812     return std::min(GetMinTrailingZeros(T->getOperand(), TD),
1813                     (uint32_t)TD.getTypeSizeInBits(T->getType()));
1814 
1815   if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
1816     uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), TD);
1817     return OpRes == TD.getTypeSizeInBits(E->getOperand()->getType()) ?
1818              TD.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1819   }
1820 
1821   if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
1822     uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), TD);
1823     return OpRes == TD.getTypeSizeInBits(E->getOperand()->getType()) ?
1824              TD.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1825   }
1826 
1827   if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1828     // The result is the min of all operands results.
1829     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), TD);
1830     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1831       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), TD));
1832     return MinOpRes;
1833   }
1834 
1835   if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1836     // The result is the sum of all operands results.
1837     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), TD);
1838     uint32_t BitWidth = TD.getTypeSizeInBits(M->getType());
1839     for (unsigned i = 1, e = M->getNumOperands();
1840          SumOpRes != BitWidth && i != e; ++i)
1841       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), TD),
1842                           BitWidth);
1843     return SumOpRes;
1844   }
1845 
1846   if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1847     // The result is the min of all operands results.
1848     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), TD);
1849     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1850       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), TD));
1851     return MinOpRes;
1852   }
1853 
1854   if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1855     // The result is the min of all operands results.
1856     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), TD);
1857     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1858       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), TD));
1859     return MinOpRes;
1860   }
1861 
1862   if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
1863     // The result is the min of all operands results.
1864     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), TD);
1865     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1866       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), TD));
1867     return MinOpRes;
1868   }
1869 
1870   // SCEVUDivExpr, SCEVUnknown
1871   return 0;
1872 }
1873 
1874 /// createSCEV - We know that there is no SCEV for the specified value.
1875 /// Analyze the expression.
1876 ///
1877 SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1878   if (!isa<IntegerType>(V->getType()) &&
1879       !isa<PointerType>(V->getType()))
1880     return SE.getUnknown(V);
1881 
1882   unsigned Opcode = Instruction::UserOp1;
1883   if (Instruction *I = dyn_cast<Instruction>(V))
1884     Opcode = I->getOpcode();
1885   else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1886     Opcode = CE->getOpcode();
1887   else
1888     return SE.getUnknown(V);
1889 
1890   User *U = cast<User>(V);
1891   switch (Opcode) {
1892   case Instruction::Add:
1893     return SE.getAddExpr(getSCEV(U->getOperand(0)),
1894                          getSCEV(U->getOperand(1)));
1895   case Instruction::Mul:
1896     return SE.getMulExpr(getSCEV(U->getOperand(0)),
1897                          getSCEV(U->getOperand(1)));
1898   case Instruction::UDiv:
1899     return SE.getUDivExpr(getSCEV(U->getOperand(0)),
1900                           getSCEV(U->getOperand(1)));
1901   case Instruction::Sub:
1902     return SE.getMinusSCEV(getSCEV(U->getOperand(0)),
1903                            getSCEV(U->getOperand(1)));
1904   case Instruction::Or:
1905     // If the RHS of the Or is a constant, we may have something like:
1906     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
1907     // optimizations will transparently handle this case.
1908     //
1909     // In order for this transformation to be safe, the LHS must be of the
1910     // form X*(2^n) and the Or constant must be less than 2^n.
1911     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1912       SCEVHandle LHS = getSCEV(U->getOperand(0));
1913       const APInt &CIVal = CI->getValue();
1914       if (GetMinTrailingZeros(LHS, TD) >=
1915           (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
1916         return SE.getAddExpr(LHS, getSCEV(U->getOperand(1)));
1917     }
1918     break;
1919   case Instruction::Xor:
1920     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1921       // If the RHS of the xor is a signbit, then this is just an add.
1922       // Instcombine turns add of signbit into xor as a strength reduction step.
1923       if (CI->getValue().isSignBit())
1924         return SE.getAddExpr(getSCEV(U->getOperand(0)),
1925                              getSCEV(U->getOperand(1)));
1926 
1927       // If the RHS of xor is -1, then this is a not operation.
1928       else if (CI->isAllOnesValue())
1929         return SE.getNotSCEV(getSCEV(U->getOperand(0)));
1930     }
1931     break;
1932 
1933   case Instruction::Shl:
1934     // Turn shift left of a constant amount into a multiply.
1935     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1936       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1937       Constant *X = ConstantInt::get(
1938         APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1939       return SE.getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1940     }
1941     break;
1942 
1943   case Instruction::LShr:
1944     // Turn logical shift right of a constant into a unsigned divide.
1945     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1946       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1947       Constant *X = ConstantInt::get(
1948         APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1949       return SE.getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1950     }
1951     break;
1952 
1953   case Instruction::Trunc:
1954     return SE.getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
1955 
1956   case Instruction::ZExt:
1957     return SE.getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1958 
1959   case Instruction::SExt:
1960     return SE.getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1961 
1962   case Instruction::BitCast:
1963     // BitCasts are no-op casts so we just eliminate the cast.
1964     if ((U->getType()->isInteger() ||
1965          isa<PointerType>(U->getType())) &&
1966         (U->getOperand(0)->getType()->isInteger() ||
1967          isa<PointerType>(U->getOperand(0)->getType())))
1968       return getSCEV(U->getOperand(0));
1969     break;
1970 
1971   case Instruction::IntToPtr:
1972     return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1973                                    TD.getIntPtrType());
1974 
1975   case Instruction::PtrToInt:
1976     return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1977                                    U->getType());
1978 
1979   case Instruction::GetElementPtr: {
1980     const Type *IntPtrTy = TD.getIntPtrType();
1981     Value *Base = U->getOperand(0);
1982     SCEVHandle TotalOffset = SE.getIntegerSCEV(0, IntPtrTy);
1983     gep_type_iterator GTI = gep_type_begin(U);
1984     for (GetElementPtrInst::op_iterator I = next(U->op_begin()),
1985                                         E = U->op_end();
1986          I != E; ++I) {
1987       Value *Index = *I;
1988       // Compute the (potentially symbolic) offset in bytes for this index.
1989       if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
1990         // For a struct, add the member offset.
1991         const StructLayout &SL = *TD.getStructLayout(STy);
1992         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
1993         uint64_t Offset = SL.getElementOffset(FieldNo);
1994         TotalOffset = SE.getAddExpr(TotalOffset,
1995                                     SE.getIntegerSCEV(Offset, IntPtrTy));
1996       } else {
1997         // For an array, add the element offset, explicitly scaled.
1998         SCEVHandle LocalOffset = getSCEV(Index);
1999         if (!isa<PointerType>(LocalOffset->getType()))
2000           // Getelementptr indicies are signed.
2001           LocalOffset = getTruncateOrSignExtend(LocalOffset,
2002                                                 IntPtrTy);
2003         LocalOffset =
2004           SE.getMulExpr(LocalOffset,
2005                         SE.getIntegerSCEV(TD.getTypePaddedSize(*GTI),
2006                                           IntPtrTy));
2007         TotalOffset = SE.getAddExpr(TotalOffset, LocalOffset);
2008       }
2009     }
2010     return SE.getAddExpr(getSCEV(Base), TotalOffset);
2011   }
2012 
2013   case Instruction::PHI:
2014     return createNodeForPHI(cast<PHINode>(U));
2015 
2016   case Instruction::Select:
2017     // This could be a smax or umax that was lowered earlier.
2018     // Try to recover it.
2019     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2020       Value *LHS = ICI->getOperand(0);
2021       Value *RHS = ICI->getOperand(1);
2022       switch (ICI->getPredicate()) {
2023       case ICmpInst::ICMP_SLT:
2024       case ICmpInst::ICMP_SLE:
2025         std::swap(LHS, RHS);
2026         // fall through
2027       case ICmpInst::ICMP_SGT:
2028       case ICmpInst::ICMP_SGE:
2029         if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2030           return SE.getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2031         else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2032           // ~smax(~x, ~y) == smin(x, y).
2033           return SE.getNotSCEV(SE.getSMaxExpr(
2034                                    SE.getNotSCEV(getSCEV(LHS)),
2035                                    SE.getNotSCEV(getSCEV(RHS))));
2036         break;
2037       case ICmpInst::ICMP_ULT:
2038       case ICmpInst::ICMP_ULE:
2039         std::swap(LHS, RHS);
2040         // fall through
2041       case ICmpInst::ICMP_UGT:
2042       case ICmpInst::ICMP_UGE:
2043         if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2044           return SE.getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2045         else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2046           // ~umax(~x, ~y) == umin(x, y)
2047           return SE.getNotSCEV(SE.getUMaxExpr(SE.getNotSCEV(getSCEV(LHS)),
2048                                               SE.getNotSCEV(getSCEV(RHS))));
2049         break;
2050       default:
2051         break;
2052       }
2053     }
2054 
2055   default: // We cannot analyze this expression.
2056     break;
2057   }
2058 
2059   return SE.getUnknown(V);
2060 }
2061 
2062 
2063 
2064 //===----------------------------------------------------------------------===//
2065 //                   Iteration Count Computation Code
2066 //
2067 
2068 /// getBackedgeTakenCount - If the specified loop has a predictable
2069 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2070 /// object. The backedge-taken count is the number of times the loop header
2071 /// will be branched to from within the loop. This is one less than the
2072 /// trip count of the loop, since it doesn't count the first iteration,
2073 /// when the header is branched to from outside the loop.
2074 ///
2075 /// Note that it is not valid to call this method on a loop without a
2076 /// loop-invariant backedge-taken count (see
2077 /// hasLoopInvariantBackedgeTakenCount).
2078 ///
2079 SCEVHandle ScalarEvolutionsImpl::getBackedgeTakenCount(const Loop *L) {
2080   std::map<const Loop*, SCEVHandle>::iterator I = BackedgeTakenCounts.find(L);
2081   if (I == BackedgeTakenCounts.end()) {
2082     SCEVHandle ItCount = ComputeBackedgeTakenCount(L);
2083     I = BackedgeTakenCounts.insert(std::make_pair(L, ItCount)).first;
2084     if (ItCount != UnknownValue) {
2085       assert(ItCount->isLoopInvariant(L) &&
2086              "Computed trip count isn't loop invariant for loop!");
2087       ++NumTripCountsComputed;
2088     } else if (isa<PHINode>(L->getHeader()->begin())) {
2089       // Only count loops that have phi nodes as not being computable.
2090       ++NumTripCountsNotComputed;
2091     }
2092   }
2093   return I->second;
2094 }
2095 
2096 /// forgetLoopBackedgeTakenCount - This method should be called by the
2097 /// client when it has changed a loop in a way that may effect
2098 /// ScalarEvolution's ability to compute a trip count, or if the loop
2099 /// is deleted.
2100 void ScalarEvolutionsImpl::forgetLoopBackedgeTakenCount(const Loop *L) {
2101   BackedgeTakenCounts.erase(L);
2102 }
2103 
2104 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
2105 /// of the specified loop will execute.
2106 SCEVHandle ScalarEvolutionsImpl::ComputeBackedgeTakenCount(const Loop *L) {
2107   // If the loop has a non-one exit block count, we can't analyze it.
2108   SmallVector<BasicBlock*, 8> ExitBlocks;
2109   L->getExitBlocks(ExitBlocks);
2110   if (ExitBlocks.size() != 1) return UnknownValue;
2111 
2112   // Okay, there is one exit block.  Try to find the condition that causes the
2113   // loop to be exited.
2114   BasicBlock *ExitBlock = ExitBlocks[0];
2115 
2116   BasicBlock *ExitingBlock = 0;
2117   for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2118        PI != E; ++PI)
2119     if (L->contains(*PI)) {
2120       if (ExitingBlock == 0)
2121         ExitingBlock = *PI;
2122       else
2123         return UnknownValue;   // More than one block exiting!
2124     }
2125   assert(ExitingBlock && "No exits from loop, something is broken!");
2126 
2127   // Okay, we've computed the exiting block.  See what condition causes us to
2128   // exit.
2129   //
2130   // FIXME: we should be able to handle switch instructions (with a single exit)
2131   BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2132   if (ExitBr == 0) return UnknownValue;
2133   assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2134 
2135   // At this point, we know we have a conditional branch that determines whether
2136   // the loop is exited.  However, we don't know if the branch is executed each
2137   // time through the loop.  If not, then the execution count of the branch will
2138   // not be equal to the trip count of the loop.
2139   //
2140   // Currently we check for this by checking to see if the Exit branch goes to
2141   // the loop header.  If so, we know it will always execute the same number of
2142   // times as the loop.  We also handle the case where the exit block *is* the
2143   // loop header.  This is common for un-rotated loops.  More extensive analysis
2144   // could be done to handle more cases here.
2145   if (ExitBr->getSuccessor(0) != L->getHeader() &&
2146       ExitBr->getSuccessor(1) != L->getHeader() &&
2147       ExitBr->getParent() != L->getHeader())
2148     return UnknownValue;
2149 
2150   ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2151 
2152   // If it's not an integer comparison then compute it the hard way.
2153   // Note that ICmpInst deals with pointer comparisons too so we must check
2154   // the type of the operand.
2155   if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
2156     return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
2157                                           ExitBr->getSuccessor(0) == ExitBlock);
2158 
2159   // If the condition was exit on true, convert the condition to exit on false
2160   ICmpInst::Predicate Cond;
2161   if (ExitBr->getSuccessor(1) == ExitBlock)
2162     Cond = ExitCond->getPredicate();
2163   else
2164     Cond = ExitCond->getInversePredicate();
2165 
2166   // Handle common loops like: for (X = "string"; *X; ++X)
2167   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2168     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2169       SCEVHandle ItCnt =
2170         ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
2171       if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2172     }
2173 
2174   SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2175   SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2176 
2177   // Try to evaluate any dependencies out of the loop.
2178   SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2179   if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2180   Tmp = getSCEVAtScope(RHS, L);
2181   if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2182 
2183   // At this point, we would like to compute how many iterations of the
2184   // loop the predicate will return true for these inputs.
2185   if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2186     // If there is a loop-invariant, force it into the RHS.
2187     std::swap(LHS, RHS);
2188     Cond = ICmpInst::getSwappedPredicate(Cond);
2189   }
2190 
2191   // FIXME: think about handling pointer comparisons!  i.e.:
2192   // while (P != P+100) ++P;
2193 
2194   // If we have a comparison of a chrec against a constant, try to use value
2195   // ranges to answer this query.
2196   if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2197     if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2198       if (AddRec->getLoop() == L) {
2199         // Form the comparison range using the constant of the correct type so
2200         // that the ConstantRange class knows to do a signed or unsigned
2201         // comparison.
2202         ConstantInt *CompVal = RHSC->getValue();
2203         const Type *RealTy = ExitCond->getOperand(0)->getType();
2204         CompVal = dyn_cast<ConstantInt>(
2205           ConstantExpr::getBitCast(CompVal, RealTy));
2206         if (CompVal) {
2207           // Form the constant range.
2208           ConstantRange CompRange(
2209               ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
2210 
2211           SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE);
2212           if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2213         }
2214       }
2215 
2216   switch (Cond) {
2217   case ICmpInst::ICMP_NE: {                     // while (X != Y)
2218     // Convert to: while (X-Y != 0)
2219     SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L);
2220     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2221     break;
2222   }
2223   case ICmpInst::ICMP_EQ: {
2224     // Convert to: while (X-Y == 0)           // while (X == Y)
2225     SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L);
2226     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2227     break;
2228   }
2229   case ICmpInst::ICMP_SLT: {
2230     SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true);
2231     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2232     break;
2233   }
2234   case ICmpInst::ICMP_SGT: {
2235     SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
2236                                      SE.getNotSCEV(RHS), L, true);
2237     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2238     break;
2239   }
2240   case ICmpInst::ICMP_ULT: {
2241     SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false);
2242     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2243     break;
2244   }
2245   case ICmpInst::ICMP_UGT: {
2246     SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
2247                                      SE.getNotSCEV(RHS), L, false);
2248     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2249     break;
2250   }
2251   default:
2252 #if 0
2253     errs() << "ComputeBackedgeTakenCount ";
2254     if (ExitCond->getOperand(0)->getType()->isUnsigned())
2255       errs() << "[unsigned] ";
2256     errs() << *LHS << "   "
2257          << Instruction::getOpcodeName(Instruction::ICmp)
2258          << "   " << *RHS << "\n";
2259 #endif
2260     break;
2261   }
2262   return
2263     ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2264                                           ExitBr->getSuccessor(0) == ExitBlock);
2265 }
2266 
2267 static ConstantInt *
2268 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2269                                 ScalarEvolution &SE) {
2270   SCEVHandle InVal = SE.getConstant(C);
2271   SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2272   assert(isa<SCEVConstant>(Val) &&
2273          "Evaluation of SCEV at constant didn't fold correctly?");
2274   return cast<SCEVConstant>(Val)->getValue();
2275 }
2276 
2277 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
2278 /// and a GEP expression (missing the pointer index) indexing into it, return
2279 /// the addressed element of the initializer or null if the index expression is
2280 /// invalid.
2281 static Constant *
2282 GetAddressedElementFromGlobal(GlobalVariable *GV,
2283                               const std::vector<ConstantInt*> &Indices) {
2284   Constant *Init = GV->getInitializer();
2285   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2286     uint64_t Idx = Indices[i]->getZExtValue();
2287     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2288       assert(Idx < CS->getNumOperands() && "Bad struct index!");
2289       Init = cast<Constant>(CS->getOperand(Idx));
2290     } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2291       if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2292       Init = cast<Constant>(CA->getOperand(Idx));
2293     } else if (isa<ConstantAggregateZero>(Init)) {
2294       if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2295         assert(Idx < STy->getNumElements() && "Bad struct index!");
2296         Init = Constant::getNullValue(STy->getElementType(Idx));
2297       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2298         if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2299         Init = Constant::getNullValue(ATy->getElementType());
2300       } else {
2301         assert(0 && "Unknown constant aggregate type!");
2302       }
2303       return 0;
2304     } else {
2305       return 0; // Unknown initializer type
2306     }
2307   }
2308   return Init;
2309 }
2310 
2311 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2312 /// 'icmp op load X, cst', try to see if we can compute the backedge
2313 /// execution count.
2314 SCEVHandle ScalarEvolutionsImpl::
2315 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2316                                              const Loop *L,
2317                                              ICmpInst::Predicate predicate) {
2318   if (LI->isVolatile()) return UnknownValue;
2319 
2320   // Check to see if the loaded pointer is a getelementptr of a global.
2321   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2322   if (!GEP) return UnknownValue;
2323 
2324   // Make sure that it is really a constant global we are gepping, with an
2325   // initializer, and make sure the first IDX is really 0.
2326   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2327   if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2328       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2329       !cast<Constant>(GEP->getOperand(1))->isNullValue())
2330     return UnknownValue;
2331 
2332   // Okay, we allow one non-constant index into the GEP instruction.
2333   Value *VarIdx = 0;
2334   std::vector<ConstantInt*> Indexes;
2335   unsigned VarIdxNum = 0;
2336   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2337     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2338       Indexes.push_back(CI);
2339     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2340       if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2341       VarIdx = GEP->getOperand(i);
2342       VarIdxNum = i-2;
2343       Indexes.push_back(0);
2344     }
2345 
2346   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2347   // Check to see if X is a loop variant variable value now.
2348   SCEVHandle Idx = getSCEV(VarIdx);
2349   SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2350   if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2351 
2352   // We can only recognize very limited forms of loop index expressions, in
2353   // particular, only affine AddRec's like {C1,+,C2}.
2354   SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2355   if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2356       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2357       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2358     return UnknownValue;
2359 
2360   unsigned MaxSteps = MaxBruteForceIterations;
2361   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2362     ConstantInt *ItCst =
2363       ConstantInt::get(IdxExpr->getType(), IterationNum);
2364     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE);
2365 
2366     // Form the GEP offset.
2367     Indexes[VarIdxNum] = Val;
2368 
2369     Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2370     if (Result == 0) break;  // Cannot compute!
2371 
2372     // Evaluate the condition for this iteration.
2373     Result = ConstantExpr::getICmp(predicate, Result, RHS);
2374     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2375     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2376 #if 0
2377       errs() << "\n***\n*** Computed loop count " << *ItCst
2378              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2379              << "***\n";
2380 #endif
2381       ++NumArrayLenItCounts;
2382       return SE.getConstant(ItCst);   // Found terminating iteration!
2383     }
2384   }
2385   return UnknownValue;
2386 }
2387 
2388 
2389 /// CanConstantFold - Return true if we can constant fold an instruction of the
2390 /// specified type, assuming that all operands were constants.
2391 static bool CanConstantFold(const Instruction *I) {
2392   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2393       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2394     return true;
2395 
2396   if (const CallInst *CI = dyn_cast<CallInst>(I))
2397     if (const Function *F = CI->getCalledFunction())
2398       return canConstantFoldCallTo(F);
2399   return false;
2400 }
2401 
2402 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2403 /// in the loop that V is derived from.  We allow arbitrary operations along the
2404 /// way, but the operands of an operation must either be constants or a value
2405 /// derived from a constant PHI.  If this expression does not fit with these
2406 /// constraints, return null.
2407 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2408   // If this is not an instruction, or if this is an instruction outside of the
2409   // loop, it can't be derived from a loop PHI.
2410   Instruction *I = dyn_cast<Instruction>(V);
2411   if (I == 0 || !L->contains(I->getParent())) return 0;
2412 
2413   if (PHINode *PN = dyn_cast<PHINode>(I)) {
2414     if (L->getHeader() == I->getParent())
2415       return PN;
2416     else
2417       // We don't currently keep track of the control flow needed to evaluate
2418       // PHIs, so we cannot handle PHIs inside of loops.
2419       return 0;
2420   }
2421 
2422   // If we won't be able to constant fold this expression even if the operands
2423   // are constants, return early.
2424   if (!CanConstantFold(I)) return 0;
2425 
2426   // Otherwise, we can evaluate this instruction if all of its operands are
2427   // constant or derived from a PHI node themselves.
2428   PHINode *PHI = 0;
2429   for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2430     if (!(isa<Constant>(I->getOperand(Op)) ||
2431           isa<GlobalValue>(I->getOperand(Op)))) {
2432       PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2433       if (P == 0) return 0;  // Not evolving from PHI
2434       if (PHI == 0)
2435         PHI = P;
2436       else if (PHI != P)
2437         return 0;  // Evolving from multiple different PHIs.
2438     }
2439 
2440   // This is a expression evolving from a constant PHI!
2441   return PHI;
2442 }
2443 
2444 /// EvaluateExpression - Given an expression that passes the
2445 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2446 /// in the loop has the value PHIVal.  If we can't fold this expression for some
2447 /// reason, return null.
2448 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2449   if (isa<PHINode>(V)) return PHIVal;
2450   if (Constant *C = dyn_cast<Constant>(V)) return C;
2451   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
2452   Instruction *I = cast<Instruction>(V);
2453 
2454   std::vector<Constant*> Operands;
2455   Operands.resize(I->getNumOperands());
2456 
2457   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2458     Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2459     if (Operands[i] == 0) return 0;
2460   }
2461 
2462   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2463     return ConstantFoldCompareInstOperands(CI->getPredicate(),
2464                                            &Operands[0], Operands.size());
2465   else
2466     return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2467                                     &Operands[0], Operands.size());
2468 }
2469 
2470 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2471 /// in the header of its containing loop, we know the loop executes a
2472 /// constant number of times, and the PHI node is just a recurrence
2473 /// involving constants, fold it.
2474 Constant *ScalarEvolutionsImpl::
2475 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
2476   std::map<PHINode*, Constant*>::iterator I =
2477     ConstantEvolutionLoopExitValue.find(PN);
2478   if (I != ConstantEvolutionLoopExitValue.end())
2479     return I->second;
2480 
2481   if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
2482     return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2483 
2484   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2485 
2486   // Since the loop is canonicalized, the PHI node must have two entries.  One
2487   // entry must be a constant (coming in from outside of the loop), and the
2488   // second must be derived from the same PHI.
2489   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2490   Constant *StartCST =
2491     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2492   if (StartCST == 0)
2493     return RetVal = 0;  // Must be a constant.
2494 
2495   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2496   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2497   if (PN2 != PN)
2498     return RetVal = 0;  // Not derived from same PHI.
2499 
2500   // Execute the loop symbolically to determine the exit value.
2501   if (BEs.getActiveBits() >= 32)
2502     return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2503 
2504   unsigned NumIterations = BEs.getZExtValue(); // must be in range
2505   unsigned IterationNum = 0;
2506   for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2507     if (IterationNum == NumIterations)
2508       return RetVal = PHIVal;  // Got exit value!
2509 
2510     // Compute the value of the PHI node for the next iteration.
2511     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2512     if (NextPHI == PHIVal)
2513       return RetVal = NextPHI;  // Stopped evolving!
2514     if (NextPHI == 0)
2515       return 0;        // Couldn't evaluate!
2516     PHIVal = NextPHI;
2517   }
2518 }
2519 
2520 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2521 /// constant number of times (the condition evolves only from constants),
2522 /// try to evaluate a few iterations of the loop until we get the exit
2523 /// condition gets a value of ExitWhen (true or false).  If we cannot
2524 /// evaluate the trip count of the loop, return UnknownValue.
2525 SCEVHandle ScalarEvolutionsImpl::
2526 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2527   PHINode *PN = getConstantEvolvingPHI(Cond, L);
2528   if (PN == 0) return UnknownValue;
2529 
2530   // Since the loop is canonicalized, the PHI node must have two entries.  One
2531   // entry must be a constant (coming in from outside of the loop), and the
2532   // second must be derived from the same PHI.
2533   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2534   Constant *StartCST =
2535     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2536   if (StartCST == 0) return UnknownValue;  // Must be a constant.
2537 
2538   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2539   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2540   if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2541 
2542   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2543   // the loop symbolically to determine when the condition gets a value of
2544   // "ExitWhen".
2545   unsigned IterationNum = 0;
2546   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2547   for (Constant *PHIVal = StartCST;
2548        IterationNum != MaxIterations; ++IterationNum) {
2549     ConstantInt *CondVal =
2550       dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2551 
2552     // Couldn't symbolically evaluate.
2553     if (!CondVal) return UnknownValue;
2554 
2555     if (CondVal->getValue() == uint64_t(ExitWhen)) {
2556       ConstantEvolutionLoopExitValue[PN] = PHIVal;
2557       ++NumBruteForceTripCountsComputed;
2558       return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2559     }
2560 
2561     // Compute the value of the PHI node for the next iteration.
2562     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2563     if (NextPHI == 0 || NextPHI == PHIVal)
2564       return UnknownValue;  // Couldn't evaluate or not making progress...
2565     PHIVal = NextPHI;
2566   }
2567 
2568   // Too many iterations were needed to evaluate.
2569   return UnknownValue;
2570 }
2571 
2572 /// getSCEVAtScope - Compute the value of the specified expression within the
2573 /// indicated loop (which may be null to indicate in no loop).  If the
2574 /// expression cannot be evaluated, return UnknownValue.
2575 SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
2576   // FIXME: this should be turned into a virtual method on SCEV!
2577 
2578   if (isa<SCEVConstant>(V)) return V;
2579 
2580   // If this instruction is evolved from a constant-evolving PHI, compute the
2581   // exit value from the loop without using SCEVs.
2582   if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2583     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2584       const Loop *LI = this->LI[I->getParent()];
2585       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2586         if (PHINode *PN = dyn_cast<PHINode>(I))
2587           if (PN->getParent() == LI->getHeader()) {
2588             // Okay, there is no closed form solution for the PHI node.  Check
2589             // to see if the loop that contains it has a known backedge-taken
2590             // count.  If so, we may be able to force computation of the exit
2591             // value.
2592             SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2593             if (SCEVConstant *BTCC =
2594                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
2595               // Okay, we know how many times the containing loop executes.  If
2596               // this is a constant evolving PHI node, get the final value at
2597               // the specified iteration number.
2598               Constant *RV = getConstantEvolutionLoopExitValue(PN,
2599                                                    BTCC->getValue()->getValue(),
2600                                                                LI);
2601               if (RV) return SE.getUnknown(RV);
2602             }
2603           }
2604 
2605       // Okay, this is an expression that we cannot symbolically evaluate
2606       // into a SCEV.  Check to see if it's possible to symbolically evaluate
2607       // the arguments into constants, and if so, try to constant propagate the
2608       // result.  This is particularly useful for computing loop exit values.
2609       if (CanConstantFold(I)) {
2610         std::vector<Constant*> Operands;
2611         Operands.reserve(I->getNumOperands());
2612         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2613           Value *Op = I->getOperand(i);
2614           if (Constant *C = dyn_cast<Constant>(Op)) {
2615             Operands.push_back(C);
2616           } else {
2617             // If any of the operands is non-constant and if they are
2618             // non-integer and non-pointer, don't even try to analyze them
2619             // with scev techniques.
2620             if (!isa<IntegerType>(Op->getType()) &&
2621                 !isa<PointerType>(Op->getType()))
2622               return V;
2623 
2624             SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2625             if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
2626               Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
2627                                                               Op->getType(),
2628                                                               false));
2629             else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2630               if (Constant *C = dyn_cast<Constant>(SU->getValue()))
2631                 Operands.push_back(ConstantExpr::getIntegerCast(C,
2632                                                                 Op->getType(),
2633                                                                 false));
2634               else
2635                 return V;
2636             } else {
2637               return V;
2638             }
2639           }
2640         }
2641 
2642         Constant *C;
2643         if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2644           C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2645                                               &Operands[0], Operands.size());
2646         else
2647           C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2648                                        &Operands[0], Operands.size());
2649         return SE.getUnknown(C);
2650       }
2651     }
2652 
2653     // This is some other type of SCEVUnknown, just return it.
2654     return V;
2655   }
2656 
2657   if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2658     // Avoid performing the look-up in the common case where the specified
2659     // expression has no loop-variant portions.
2660     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2661       SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2662       if (OpAtScope != Comm->getOperand(i)) {
2663         if (OpAtScope == UnknownValue) return UnknownValue;
2664         // Okay, at least one of these operands is loop variant but might be
2665         // foldable.  Build a new instance of the folded commutative expression.
2666         std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2667         NewOps.push_back(OpAtScope);
2668 
2669         for (++i; i != e; ++i) {
2670           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2671           if (OpAtScope == UnknownValue) return UnknownValue;
2672           NewOps.push_back(OpAtScope);
2673         }
2674         if (isa<SCEVAddExpr>(Comm))
2675           return SE.getAddExpr(NewOps);
2676         if (isa<SCEVMulExpr>(Comm))
2677           return SE.getMulExpr(NewOps);
2678         if (isa<SCEVSMaxExpr>(Comm))
2679           return SE.getSMaxExpr(NewOps);
2680         if (isa<SCEVUMaxExpr>(Comm))
2681           return SE.getUMaxExpr(NewOps);
2682         assert(0 && "Unknown commutative SCEV type!");
2683       }
2684     }
2685     // If we got here, all operands are loop invariant.
2686     return Comm;
2687   }
2688 
2689   if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2690     SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2691     if (LHS == UnknownValue) return LHS;
2692     SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2693     if (RHS == UnknownValue) return RHS;
2694     if (LHS == Div->getLHS() && RHS == Div->getRHS())
2695       return Div;   // must be loop invariant
2696     return SE.getUDivExpr(LHS, RHS);
2697   }
2698 
2699   // If this is a loop recurrence for a loop that does not contain L, then we
2700   // are dealing with the final value computed by the loop.
2701   if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2702     if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2703       // To evaluate this recurrence, we need to know how many times the AddRec
2704       // loop iterates.  Compute this now.
2705       SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2706       if (BackedgeTakenCount == UnknownValue) return UnknownValue;
2707 
2708       // Then, evaluate the AddRec.
2709       return AddRec->evaluateAtIteration(BackedgeTakenCount, SE);
2710     }
2711     return UnknownValue;
2712   }
2713 
2714   //assert(0 && "Unknown SCEV type!");
2715   return UnknownValue;
2716 }
2717 
2718 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2719 /// following equation:
2720 ///
2721 ///     A * X = B (mod N)
2722 ///
2723 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2724 /// A and B isn't important.
2725 ///
2726 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2727 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2728                                                ScalarEvolution &SE) {
2729   uint32_t BW = A.getBitWidth();
2730   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2731   assert(A != 0 && "A must be non-zero.");
2732 
2733   // 1. D = gcd(A, N)
2734   //
2735   // The gcd of A and N may have only one prime factor: 2. The number of
2736   // trailing zeros in A is its multiplicity
2737   uint32_t Mult2 = A.countTrailingZeros();
2738   // D = 2^Mult2
2739 
2740   // 2. Check if B is divisible by D.
2741   //
2742   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2743   // is not less than multiplicity of this prime factor for D.
2744   if (B.countTrailingZeros() < Mult2)
2745     return SE.getCouldNotCompute();
2746 
2747   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2748   // modulo (N / D).
2749   //
2750   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
2751   // bit width during computations.
2752   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
2753   APInt Mod(BW + 1, 0);
2754   Mod.set(BW - Mult2);  // Mod = N / D
2755   APInt I = AD.multiplicativeInverse(Mod);
2756 
2757   // 4. Compute the minimum unsigned root of the equation:
2758   // I * (B / D) mod (N / D)
2759   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
2760 
2761   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2762   // bits.
2763   return SE.getConstant(Result.trunc(BW));
2764 }
2765 
2766 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2767 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2768 /// might be the same) or two SCEVCouldNotCompute objects.
2769 ///
2770 static std::pair<SCEVHandle,SCEVHandle>
2771 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
2772   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2773   SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2774   SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2775   SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2776 
2777   // We currently can only solve this if the coefficients are constants.
2778   if (!LC || !MC || !NC) {
2779     SCEV *CNC = SE.getCouldNotCompute();
2780     return std::make_pair(CNC, CNC);
2781   }
2782 
2783   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2784   const APInt &L = LC->getValue()->getValue();
2785   const APInt &M = MC->getValue()->getValue();
2786   const APInt &N = NC->getValue()->getValue();
2787   APInt Two(BitWidth, 2);
2788   APInt Four(BitWidth, 4);
2789 
2790   {
2791     using namespace APIntOps;
2792     const APInt& C = L;
2793     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2794     // The B coefficient is M-N/2
2795     APInt B(M);
2796     B -= sdiv(N,Two);
2797 
2798     // The A coefficient is N/2
2799     APInt A(N.sdiv(Two));
2800 
2801     // Compute the B^2-4ac term.
2802     APInt SqrtTerm(B);
2803     SqrtTerm *= B;
2804     SqrtTerm -= Four * (A * C);
2805 
2806     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2807     // integer value or else APInt::sqrt() will assert.
2808     APInt SqrtVal(SqrtTerm.sqrt());
2809 
2810     // Compute the two solutions for the quadratic formula.
2811     // The divisions must be performed as signed divisions.
2812     APInt NegB(-B);
2813     APInt TwoA( A << 1 );
2814     if (TwoA.isMinValue()) {
2815       SCEV *CNC = SE.getCouldNotCompute();
2816       return std::make_pair(CNC, CNC);
2817     }
2818 
2819     ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2820     ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2821 
2822     return std::make_pair(SE.getConstant(Solution1),
2823                           SE.getConstant(Solution2));
2824     } // end APIntOps namespace
2825 }
2826 
2827 /// HowFarToZero - Return the number of times a backedge comparing the specified
2828 /// value to zero will execute.  If not computable, return UnknownValue
2829 SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2830   // If the value is a constant
2831   if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2832     // If the value is already zero, the branch will execute zero times.
2833     if (C->getValue()->isZero()) return C;
2834     return UnknownValue;  // Otherwise it will loop infinitely.
2835   }
2836 
2837   SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2838   if (!AddRec || AddRec->getLoop() != L)
2839     return UnknownValue;
2840 
2841   if (AddRec->isAffine()) {
2842     // If this is an affine expression, the execution count of this branch is
2843     // the minimum unsigned root of the following equation:
2844     //
2845     //     Start + Step*N = 0 (mod 2^BW)
2846     //
2847     // equivalent to:
2848     //
2849     //             Step*N = -Start (mod 2^BW)
2850     //
2851     // where BW is the common bit width of Start and Step.
2852 
2853     // Get the initial value for the loop.
2854     SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2855     if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2856 
2857     SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
2858 
2859     if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2860       // For now we handle only constant steps.
2861 
2862       // First, handle unitary steps.
2863       if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
2864         return SE.getNegativeSCEV(Start);       //   N = -Start (as unsigned)
2865       if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
2866         return Start;                           //    N = Start (as unsigned)
2867 
2868       // Then, try to solve the above equation provided that Start is constant.
2869       if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
2870         return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
2871                                             -StartC->getValue()->getValue(),SE);
2872     }
2873   } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2874     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2875     // the quadratic equation to solve it.
2876     std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE);
2877     SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2878     SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2879     if (R1) {
2880 #if 0
2881       errs() << "HFTZ: " << *V << " - sol#1: " << *R1
2882              << "  sol#2: " << *R2 << "\n";
2883 #endif
2884       // Pick the smallest positive root value.
2885       if (ConstantInt *CB =
2886           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2887                                    R1->getValue(), R2->getValue()))) {
2888         if (CB->getZExtValue() == false)
2889           std::swap(R1, R2);   // R1 is the minimum root now.
2890 
2891         // We can only use this value if the chrec ends up with an exact zero
2892         // value at this index.  When solving for "X*X != 5", for example, we
2893         // should not accept a root of 2.
2894         SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE);
2895         if (Val->isZero())
2896           return R1;  // We found a quadratic root!
2897       }
2898     }
2899   }
2900 
2901   return UnknownValue;
2902 }
2903 
2904 /// HowFarToNonZero - Return the number of times a backedge checking the
2905 /// specified value for nonzero will execute.  If not computable, return
2906 /// UnknownValue
2907 SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2908   // Loops that look like: while (X == 0) are very strange indeed.  We don't
2909   // handle them yet except for the trivial case.  This could be expanded in the
2910   // future as needed.
2911 
2912   // If the value is a constant, check to see if it is known to be non-zero
2913   // already.  If so, the backedge will execute zero times.
2914   if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2915     if (!C->getValue()->isNullValue())
2916       return SE.getIntegerSCEV(0, C->getType());
2917     return UnknownValue;  // Otherwise it will loop infinitely.
2918   }
2919 
2920   // We could implement others, but I really doubt anyone writes loops like
2921   // this, and if they did, they would already be constant folded.
2922   return UnknownValue;
2923 }
2924 
2925 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
2926 /// (which may not be an immediate predecessor) which has exactly one
2927 /// successor from which BB is reachable, or null if no such block is
2928 /// found.
2929 ///
2930 BasicBlock *
2931 ScalarEvolutionsImpl::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
2932   // If the block has a unique predecessor, the predecessor must have
2933   // no other successors from which BB is reachable.
2934   if (BasicBlock *Pred = BB->getSinglePredecessor())
2935     return Pred;
2936 
2937   // A loop's header is defined to be a block that dominates the loop.
2938   // If the loop has a preheader, it must be a block that has exactly
2939   // one successor that can reach BB. This is slightly more strict
2940   // than necessary, but works if critical edges are split.
2941   if (Loop *L = LI.getLoopFor(BB))
2942     return L->getLoopPreheader();
2943 
2944   return 0;
2945 }
2946 
2947 /// isLoopGuardedByCond - Test whether entry to the loop is protected by
2948 /// a conditional between LHS and RHS.
2949 bool ScalarEvolutionsImpl::isLoopGuardedByCond(const Loop *L,
2950                                                ICmpInst::Predicate Pred,
2951                                                SCEV *LHS, SCEV *RHS) {
2952   BasicBlock *Preheader = L->getLoopPreheader();
2953   BasicBlock *PreheaderDest = L->getHeader();
2954 
2955   // Starting at the preheader, climb up the predecessor chain, as long as
2956   // there are predecessors that can be found that have unique successors
2957   // leading to the original header.
2958   for (; Preheader;
2959        PreheaderDest = Preheader,
2960        Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
2961 
2962     BranchInst *LoopEntryPredicate =
2963       dyn_cast<BranchInst>(Preheader->getTerminator());
2964     if (!LoopEntryPredicate ||
2965         LoopEntryPredicate->isUnconditional())
2966       continue;
2967 
2968     ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
2969     if (!ICI) continue;
2970 
2971     // Now that we found a conditional branch that dominates the loop, check to
2972     // see if it is the comparison we are looking for.
2973     Value *PreCondLHS = ICI->getOperand(0);
2974     Value *PreCondRHS = ICI->getOperand(1);
2975     ICmpInst::Predicate Cond;
2976     if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2977       Cond = ICI->getPredicate();
2978     else
2979       Cond = ICI->getInversePredicate();
2980 
2981     if (Cond == Pred)
2982       ; // An exact match.
2983     else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
2984       ; // The actual condition is beyond sufficient.
2985     else
2986       // Check a few special cases.
2987       switch (Cond) {
2988       case ICmpInst::ICMP_UGT:
2989         if (Pred == ICmpInst::ICMP_ULT) {
2990           std::swap(PreCondLHS, PreCondRHS);
2991           Cond = ICmpInst::ICMP_ULT;
2992           break;
2993         }
2994         continue;
2995       case ICmpInst::ICMP_SGT:
2996         if (Pred == ICmpInst::ICMP_SLT) {
2997           std::swap(PreCondLHS, PreCondRHS);
2998           Cond = ICmpInst::ICMP_SLT;
2999           break;
3000         }
3001         continue;
3002       case ICmpInst::ICMP_NE:
3003         // Expressions like (x >u 0) are often canonicalized to (x != 0),
3004         // so check for this case by checking if the NE is comparing against
3005         // a minimum or maximum constant.
3006         if (!ICmpInst::isTrueWhenEqual(Pred))
3007           if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3008             const APInt &A = CI->getValue();
3009             switch (Pred) {
3010             case ICmpInst::ICMP_SLT:
3011               if (A.isMaxSignedValue()) break;
3012               continue;
3013             case ICmpInst::ICMP_SGT:
3014               if (A.isMinSignedValue()) break;
3015               continue;
3016             case ICmpInst::ICMP_ULT:
3017               if (A.isMaxValue()) break;
3018               continue;
3019             case ICmpInst::ICMP_UGT:
3020               if (A.isMinValue()) break;
3021               continue;
3022             default:
3023               continue;
3024             }
3025             Cond = ICmpInst::ICMP_NE;
3026             // NE is symmetric but the original comparison may not be. Swap
3027             // the operands if necessary so that they match below.
3028             if (isa<SCEVConstant>(LHS))
3029               std::swap(PreCondLHS, PreCondRHS);
3030             break;
3031           }
3032         continue;
3033       default:
3034         // We weren't able to reconcile the condition.
3035         continue;
3036       }
3037 
3038     if (!PreCondLHS->getType()->isInteger()) continue;
3039 
3040     SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3041     SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3042     if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3043         (LHS == SE.getNotSCEV(PreCondRHSSCEV) &&
3044          RHS == SE.getNotSCEV(PreCondLHSSCEV)))
3045       return true;
3046   }
3047 
3048   return false;
3049 }
3050 
3051 /// HowManyLessThans - Return the number of times a backedge containing the
3052 /// specified less-than comparison will execute.  If not computable, return
3053 /// UnknownValue.
3054 SCEVHandle ScalarEvolutionsImpl::
3055 HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
3056   // Only handle:  "ADDREC < LoopInvariant".
3057   if (!RHS->isLoopInvariant(L)) return UnknownValue;
3058 
3059   SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3060   if (!AddRec || AddRec->getLoop() != L)
3061     return UnknownValue;
3062 
3063   if (AddRec->isAffine()) {
3064     // FORNOW: We only support unit strides.
3065     SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType());
3066     if (AddRec->getOperand(1) != One)
3067       return UnknownValue;
3068 
3069     // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant
3070     // m.  So, we count the number of iterations in which {n,+,1} < m is true.
3071     // Note that we cannot simply return max(m-n,0) because it's not safe to
3072     // treat m-n as signed nor unsigned due to overflow possibility.
3073 
3074     // First, we get the value of the LHS in the first iteration: n
3075     SCEVHandle Start = AddRec->getOperand(0);
3076 
3077     if (isLoopGuardedByCond(L,
3078                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3079                             SE.getMinusSCEV(AddRec->getOperand(0), One), RHS)) {
3080       // Since we know that the condition is true in order to enter the loop,
3081       // we know that it will run exactly m-n times.
3082       return SE.getMinusSCEV(RHS, Start);
3083     } else {
3084       // Then, we get the value of the LHS in the first iteration in which the
3085       // above condition doesn't hold.  This equals to max(m,n).
3086       SCEVHandle End = isSigned ? SE.getSMaxExpr(RHS, Start)
3087                                 : SE.getUMaxExpr(RHS, Start);
3088 
3089       // Finally, we subtract these two values to get the number of times the
3090       // backedge is executed: max(m,n)-n.
3091       return SE.getMinusSCEV(End, Start);
3092     }
3093   }
3094 
3095   return UnknownValue;
3096 }
3097 
3098 /// getNumIterationsInRange - Return the number of iterations of this loop that
3099 /// produce values in the specified constant range.  Another way of looking at
3100 /// this is that it returns the first iteration number where the value is not in
3101 /// the condition, thus computing the exit count. If the iteration count can't
3102 /// be computed, an instance of SCEVCouldNotCompute is returned.
3103 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3104                                                    ScalarEvolution &SE) const {
3105   if (Range.isFullSet())  // Infinite loop.
3106     return SE.getCouldNotCompute();
3107 
3108   // If the start is a non-zero constant, shift the range to simplify things.
3109   if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3110     if (!SC->getValue()->isZero()) {
3111       std::vector<SCEVHandle> Operands(op_begin(), op_end());
3112       Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3113       SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
3114       if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
3115         return ShiftedAddRec->getNumIterationsInRange(
3116                            Range.subtract(SC->getValue()->getValue()), SE);
3117       // This is strange and shouldn't happen.
3118       return SE.getCouldNotCompute();
3119     }
3120 
3121   // The only time we can solve this is when we have all constant indices.
3122   // Otherwise, we cannot determine the overflow conditions.
3123   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3124     if (!isa<SCEVConstant>(getOperand(i)))
3125       return SE.getCouldNotCompute();
3126 
3127 
3128   // Okay at this point we know that all elements of the chrec are constants and
3129   // that the start element is zero.
3130 
3131   // First check to see if the range contains zero.  If not, the first
3132   // iteration exits.
3133   unsigned BitWidth = SE.getTargetData().getTypeSizeInBits(getType());
3134   if (!Range.contains(APInt(BitWidth, 0)))
3135     return SE.getConstant(ConstantInt::get(getType(),0));
3136 
3137   if (isAffine()) {
3138     // If this is an affine expression then we have this situation:
3139     //   Solve {0,+,A} in Range  ===  Ax in Range
3140 
3141     // We know that zero is in the range.  If A is positive then we know that
3142     // the upper value of the range must be the first possible exit value.
3143     // If A is negative then the lower of the range is the last possible loop
3144     // value.  Also note that we already checked for a full range.
3145     APInt One(BitWidth,1);
3146     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3147     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3148 
3149     // The exit value should be (End+A)/A.
3150     APInt ExitVal = (End + A).udiv(A);
3151     ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3152 
3153     // Evaluate at the exit value.  If we really did fall out of the valid
3154     // range, then we computed our trip count, otherwise wrap around or other
3155     // things must have happened.
3156     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
3157     if (Range.contains(Val->getValue()))
3158       return SE.getCouldNotCompute();  // Something strange happened
3159 
3160     // Ensure that the previous value is in the range.  This is a sanity check.
3161     assert(Range.contains(
3162            EvaluateConstantChrecAtConstant(this,
3163            ConstantInt::get(ExitVal - One), SE)->getValue()) &&
3164            "Linear scev computation is off in a bad way!");
3165     return SE.getConstant(ExitValue);
3166   } else if (isQuadratic()) {
3167     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3168     // quadratic equation to solve it.  To do this, we must frame our problem in
3169     // terms of figuring out when zero is crossed, instead of when
3170     // Range.getUpper() is crossed.
3171     std::vector<SCEVHandle> NewOps(op_begin(), op_end());
3172     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3173     SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
3174 
3175     // Next, solve the constructed addrec
3176     std::pair<SCEVHandle,SCEVHandle> Roots =
3177       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
3178     SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3179     SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3180     if (R1) {
3181       // Pick the smallest positive root value.
3182       if (ConstantInt *CB =
3183           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3184                                    R1->getValue(), R2->getValue()))) {
3185         if (CB->getZExtValue() == false)
3186           std::swap(R1, R2);   // R1 is the minimum root now.
3187 
3188         // Make sure the root is not off by one.  The returned iteration should
3189         // not be in the range, but the previous one should be.  When solving
3190         // for "X*X < 5", for example, we should not return a root of 2.
3191         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
3192                                                              R1->getValue(),
3193                                                              SE);
3194         if (Range.contains(R1Val->getValue())) {
3195           // The next iteration must be out of the range...
3196           ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3197 
3198           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3199           if (!Range.contains(R1Val->getValue()))
3200             return SE.getConstant(NextVal);
3201           return SE.getCouldNotCompute();  // Something strange happened
3202         }
3203 
3204         // If R1 was not in the range, then it is a good return value.  Make
3205         // sure that R1-1 WAS in the range though, just in case.
3206         ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
3207         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3208         if (Range.contains(R1Val->getValue()))
3209           return R1;
3210         return SE.getCouldNotCompute();  // Something strange happened
3211       }
3212     }
3213   }
3214 
3215   return SE.getCouldNotCompute();
3216 }
3217 
3218 
3219 
3220 //===----------------------------------------------------------------------===//
3221 //                   ScalarEvolution Class Implementation
3222 //===----------------------------------------------------------------------===//
3223 
3224 bool ScalarEvolution::runOnFunction(Function &F) {
3225   Impl = new ScalarEvolutionsImpl(*this, F,
3226                                   getAnalysis<LoopInfo>(),
3227                                   getAnalysis<TargetData>());
3228   return false;
3229 }
3230 
3231 void ScalarEvolution::releaseMemory() {
3232   delete (ScalarEvolutionsImpl*)Impl;
3233   Impl = 0;
3234 }
3235 
3236 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3237   AU.setPreservesAll();
3238   AU.addRequiredTransitive<LoopInfo>();
3239   AU.addRequiredTransitive<TargetData>();
3240 }
3241 
3242 const TargetData &ScalarEvolution::getTargetData() const {
3243   return ((ScalarEvolutionsImpl*)Impl)->getTargetData();
3244 }
3245 
3246 SCEVHandle ScalarEvolution::getCouldNotCompute() {
3247   return ((ScalarEvolutionsImpl*)Impl)->getCouldNotCompute();
3248 }
3249 
3250 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
3251   return ((ScalarEvolutionsImpl*)Impl)->getIntegerSCEV(Val, Ty);
3252 }
3253 
3254 SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
3255   return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
3256 }
3257 
3258 /// hasSCEV - Return true if the SCEV for this value has already been
3259 /// computed.
3260 bool ScalarEvolution::hasSCEV(Value *V) const {
3261   return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
3262 }
3263 
3264 
3265 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
3266 /// the specified value.
3267 void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
3268   ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
3269 }
3270 
3271 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3272 ///
3273 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
3274   return ((ScalarEvolutionsImpl*)Impl)->getNegativeSCEV(V);
3275 }
3276 
3277 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3278 ///
3279 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
3280   return ((ScalarEvolutionsImpl*)Impl)->getNotSCEV(V);
3281 }
3282 
3283 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
3284 ///
3285 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
3286                                          const SCEVHandle &RHS) {
3287   return ((ScalarEvolutionsImpl*)Impl)->getMinusSCEV(LHS, RHS);
3288 }
3289 
3290 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
3291 /// of the input value to the specified type.  If the type must be
3292 /// extended, it is zero extended.
3293 SCEVHandle ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
3294                                                     const Type *Ty) {
3295   return ((ScalarEvolutionsImpl*)Impl)->getTruncateOrZeroExtend(V, Ty);
3296 }
3297 
3298 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
3299 /// of the input value to the specified type.  If the type must be
3300 /// extended, it is sign extended.
3301 SCEVHandle ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
3302                                                     const Type *Ty) {
3303   return ((ScalarEvolutionsImpl*)Impl)->getTruncateOrSignExtend(V, Ty);
3304 }
3305 
3306 
3307 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3308                                           ICmpInst::Predicate Pred,
3309                                           SCEV *LHS, SCEV *RHS) {
3310   return ((ScalarEvolutionsImpl*)Impl)->isLoopGuardedByCond(L, Pred,
3311                                                             LHS, RHS);
3312 }
3313 
3314 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) const {
3315   return ((ScalarEvolutionsImpl*)Impl)->getBackedgeTakenCount(L);
3316 }
3317 
3318 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) const {
3319   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
3320 }
3321 
3322 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
3323   return ((ScalarEvolutionsImpl*)Impl)->forgetLoopBackedgeTakenCount(L);
3324 }
3325 
3326 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
3327   return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
3328 }
3329 
3330 void ScalarEvolution::deleteValueFromRecords(Value *V) const {
3331   return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V);
3332 }
3333 
3334 static void PrintLoopInfo(raw_ostream &OS, const ScalarEvolution *SE,
3335                           const Loop *L) {
3336   // Print all inner loops first
3337   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3338     PrintLoopInfo(OS, SE, *I);
3339 
3340   OS << "Loop " << L->getHeader()->getName() << ": ";
3341 
3342   SmallVector<BasicBlock*, 8> ExitBlocks;
3343   L->getExitBlocks(ExitBlocks);
3344   if (ExitBlocks.size() != 1)
3345     OS << "<multiple exits> ";
3346 
3347   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3348     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
3349   } else {
3350     OS << "Unpredictable backedge-taken count. ";
3351   }
3352 
3353   OS << "\n";
3354 }
3355 
3356 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
3357   Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
3358   LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
3359 
3360   OS << "Classifying expressions for: " << F.getName() << "\n";
3361   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3362     if (I->getType()->isInteger()) {
3363       OS << *I;
3364       OS << "  -->  ";
3365       SCEVHandle SV = getSCEV(&*I);
3366       SV->print(OS);
3367       OS << "\t\t";
3368 
3369       if (const Loop *L = LI.getLoopFor((*I).getParent())) {
3370         OS << "Exits: ";
3371         SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
3372         if (isa<SCEVCouldNotCompute>(ExitValue)) {
3373           OS << "<<Unknown>>";
3374         } else {
3375           OS << *ExitValue;
3376         }
3377       }
3378 
3379 
3380       OS << "\n";
3381     }
3382 
3383   OS << "Determining loop execution counts for: " << F.getName() << "\n";
3384   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
3385     PrintLoopInfo(OS, this, *I);
3386 }
3387 
3388 void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3389   raw_os_ostream OS(o);
3390   print(OS, M);
3391 }
3392