1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Assembly/Writer.h" 71 #include "llvm/Transforms/Scalar.h" 72 #include "llvm/Support/CFG.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/ConstantRange.h" 76 #include "llvm/Support/InstIterator.h" 77 #include "llvm/Support/ManagedStatic.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/Streams.h" 80 #include "llvm/ADT/Statistic.h" 81 #include <ostream> 82 #include <algorithm> 83 #include <cmath> 84 using namespace llvm; 85 86 STATISTIC(NumBruteForceEvaluations, 87 "Number of brute force evaluations needed to " 88 "calculate high-order polynomial exit values"); 89 STATISTIC(NumArrayLenItCounts, 90 "Number of trip counts computed with array length"); 91 STATISTIC(NumTripCountsComputed, 92 "Number of loops with predictable loop counts"); 93 STATISTIC(NumTripCountsNotComputed, 94 "Number of loops without predictable loop counts"); 95 STATISTIC(NumBruteForceTripCountsComputed, 96 "Number of loops with trip counts computed by force"); 97 98 cl::opt<unsigned> 99 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 100 cl::desc("Maximum number of iterations SCEV will " 101 "symbolically execute a constant derived loop"), 102 cl::init(100)); 103 104 namespace { 105 RegisterPass<ScalarEvolution> 106 R("scalar-evolution", "Scalar Evolution Analysis"); 107 } 108 109 //===----------------------------------------------------------------------===// 110 // SCEV class definitions 111 //===----------------------------------------------------------------------===// 112 113 //===----------------------------------------------------------------------===// 114 // Implementation of the SCEV class. 115 // 116 SCEV::~SCEV() {} 117 void SCEV::dump() const { 118 print(cerr); 119 } 120 121 /// getValueRange - Return the tightest constant bounds that this value is 122 /// known to have. This method is only valid on integer SCEV objects. 123 ConstantRange SCEV::getValueRange() const { 124 const Type *Ty = getType(); 125 assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!"); 126 // Default to a full range if no better information is available. 127 return ConstantRange(getBitWidth()); 128 } 129 130 uint32_t SCEV::getBitWidth() const { 131 if (const IntegerType* ITy = dyn_cast<IntegerType>(getType())) 132 return ITy->getBitWidth(); 133 return 0; 134 } 135 136 137 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 138 139 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 140 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 141 return false; 142 } 143 144 const Type *SCEVCouldNotCompute::getType() const { 145 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 146 return 0; 147 } 148 149 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 150 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 151 return false; 152 } 153 154 SCEVHandle SCEVCouldNotCompute:: 155 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 156 const SCEVHandle &Conc) const { 157 return this; 158 } 159 160 void SCEVCouldNotCompute::print(std::ostream &OS) const { 161 OS << "***COULDNOTCOMPUTE***"; 162 } 163 164 bool SCEVCouldNotCompute::classof(const SCEV *S) { 165 return S->getSCEVType() == scCouldNotCompute; 166 } 167 168 169 // SCEVConstants - Only allow the creation of one SCEVConstant for any 170 // particular value. Don't use a SCEVHandle here, or else the object will 171 // never be deleted! 172 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 173 174 175 SCEVConstant::~SCEVConstant() { 176 SCEVConstants->erase(V); 177 } 178 179 SCEVHandle SCEVConstant::get(ConstantInt *V) { 180 SCEVConstant *&R = (*SCEVConstants)[V]; 181 if (R == 0) R = new SCEVConstant(V); 182 return R; 183 } 184 185 ConstantRange SCEVConstant::getValueRange() const { 186 return ConstantRange(V->getValue()); 187 } 188 189 const Type *SCEVConstant::getType() const { return V->getType(); } 190 191 void SCEVConstant::print(std::ostream &OS) const { 192 WriteAsOperand(OS, V, false); 193 } 194 195 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 196 // particular input. Don't use a SCEVHandle here, or else the object will 197 // never be deleted! 198 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 199 SCEVTruncateExpr*> > SCEVTruncates; 200 201 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 202 : SCEV(scTruncate), Op(op), Ty(ty) { 203 assert(Op->getType()->isInteger() && Ty->isInteger() && 204 "Cannot truncate non-integer value!"); 205 assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits() 206 && "This is not a truncating conversion!"); 207 } 208 209 SCEVTruncateExpr::~SCEVTruncateExpr() { 210 SCEVTruncates->erase(std::make_pair(Op, Ty)); 211 } 212 213 ConstantRange SCEVTruncateExpr::getValueRange() const { 214 return getOperand()->getValueRange().truncate(getBitWidth()); 215 } 216 217 void SCEVTruncateExpr::print(std::ostream &OS) const { 218 OS << "(truncate " << *Op << " to " << *Ty << ")"; 219 } 220 221 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 222 // particular input. Don't use a SCEVHandle here, or else the object will never 223 // be deleted! 224 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 225 SCEVZeroExtendExpr*> > SCEVZeroExtends; 226 227 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 228 : SCEV(scZeroExtend), Op(op), Ty(ty) { 229 assert(Op->getType()->isInteger() && Ty->isInteger() && 230 "Cannot zero extend non-integer value!"); 231 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 232 && "This is not an extending conversion!"); 233 } 234 235 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 236 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 237 } 238 239 ConstantRange SCEVZeroExtendExpr::getValueRange() const { 240 return getOperand()->getValueRange().zeroExtend(getBitWidth()); 241 } 242 243 void SCEVZeroExtendExpr::print(std::ostream &OS) const { 244 OS << "(zeroextend " << *Op << " to " << *Ty << ")"; 245 } 246 247 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 248 // particular input. Don't use a SCEVHandle here, or else the object will never 249 // be deleted! 250 static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >, 251 SCEVCommutativeExpr*> > SCEVCommExprs; 252 253 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 254 SCEVCommExprs->erase(std::make_pair(getSCEVType(), 255 std::vector<SCEV*>(Operands.begin(), 256 Operands.end()))); 257 } 258 259 void SCEVCommutativeExpr::print(std::ostream &OS) const { 260 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 261 const char *OpStr = getOperationStr(); 262 OS << "(" << *Operands[0]; 263 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 264 OS << OpStr << *Operands[i]; 265 OS << ")"; 266 } 267 268 SCEVHandle SCEVCommutativeExpr:: 269 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 270 const SCEVHandle &Conc) const { 271 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 272 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc); 273 if (H != getOperand(i)) { 274 std::vector<SCEVHandle> NewOps; 275 NewOps.reserve(getNumOperands()); 276 for (unsigned j = 0; j != i; ++j) 277 NewOps.push_back(getOperand(j)); 278 NewOps.push_back(H); 279 for (++i; i != e; ++i) 280 NewOps.push_back(getOperand(i)-> 281 replaceSymbolicValuesWithConcrete(Sym, Conc)); 282 283 if (isa<SCEVAddExpr>(this)) 284 return SCEVAddExpr::get(NewOps); 285 else if (isa<SCEVMulExpr>(this)) 286 return SCEVMulExpr::get(NewOps); 287 else 288 assert(0 && "Unknown commutative expr!"); 289 } 290 } 291 return this; 292 } 293 294 295 // SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular 296 // input. Don't use a SCEVHandle here, or else the object will never be 297 // deleted! 298 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 299 SCEVSDivExpr*> > SCEVSDivs; 300 301 SCEVSDivExpr::~SCEVSDivExpr() { 302 SCEVSDivs->erase(std::make_pair(LHS, RHS)); 303 } 304 305 void SCEVSDivExpr::print(std::ostream &OS) const { 306 OS << "(" << *LHS << " /s " << *RHS << ")"; 307 } 308 309 const Type *SCEVSDivExpr::getType() const { 310 return LHS->getType(); 311 } 312 313 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 314 // particular input. Don't use a SCEVHandle here, or else the object will never 315 // be deleted! 316 static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >, 317 SCEVAddRecExpr*> > SCEVAddRecExprs; 318 319 SCEVAddRecExpr::~SCEVAddRecExpr() { 320 SCEVAddRecExprs->erase(std::make_pair(L, 321 std::vector<SCEV*>(Operands.begin(), 322 Operands.end()))); 323 } 324 325 SCEVHandle SCEVAddRecExpr:: 326 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 327 const SCEVHandle &Conc) const { 328 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 329 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc); 330 if (H != getOperand(i)) { 331 std::vector<SCEVHandle> NewOps; 332 NewOps.reserve(getNumOperands()); 333 for (unsigned j = 0; j != i; ++j) 334 NewOps.push_back(getOperand(j)); 335 NewOps.push_back(H); 336 for (++i; i != e; ++i) 337 NewOps.push_back(getOperand(i)-> 338 replaceSymbolicValuesWithConcrete(Sym, Conc)); 339 340 return get(NewOps, L); 341 } 342 } 343 return this; 344 } 345 346 347 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 348 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 349 // contain L and if the start is invariant. 350 return !QueryLoop->contains(L->getHeader()) && 351 getOperand(0)->isLoopInvariant(QueryLoop); 352 } 353 354 355 void SCEVAddRecExpr::print(std::ostream &OS) const { 356 OS << "{" << *Operands[0]; 357 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 358 OS << ",+," << *Operands[i]; 359 OS << "}<" << L->getHeader()->getName() + ">"; 360 } 361 362 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 363 // value. Don't use a SCEVHandle here, or else the object will never be 364 // deleted! 365 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 366 367 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 368 369 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 370 // All non-instruction values are loop invariant. All instructions are loop 371 // invariant if they are not contained in the specified loop. 372 if (Instruction *I = dyn_cast<Instruction>(V)) 373 return !L->contains(I->getParent()); 374 return true; 375 } 376 377 const Type *SCEVUnknown::getType() const { 378 return V->getType(); 379 } 380 381 void SCEVUnknown::print(std::ostream &OS) const { 382 WriteAsOperand(OS, V, false); 383 } 384 385 //===----------------------------------------------------------------------===// 386 // SCEV Utilities 387 //===----------------------------------------------------------------------===// 388 389 namespace { 390 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 391 /// than the complexity of the RHS. This comparator is used to canonicalize 392 /// expressions. 393 struct VISIBILITY_HIDDEN SCEVComplexityCompare { 394 bool operator()(SCEV *LHS, SCEV *RHS) { 395 return LHS->getSCEVType() < RHS->getSCEVType(); 396 } 397 }; 398 } 399 400 /// GroupByComplexity - Given a list of SCEV objects, order them by their 401 /// complexity, and group objects of the same complexity together by value. 402 /// When this routine is finished, we know that any duplicates in the vector are 403 /// consecutive and that complexity is monotonically increasing. 404 /// 405 /// Note that we go take special precautions to ensure that we get determinstic 406 /// results from this routine. In other words, we don't want the results of 407 /// this to depend on where the addresses of various SCEV objects happened to 408 /// land in memory. 409 /// 410 static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { 411 if (Ops.size() < 2) return; // Noop 412 if (Ops.size() == 2) { 413 // This is the common case, which also happens to be trivially simple. 414 // Special case it. 415 if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType()) 416 std::swap(Ops[0], Ops[1]); 417 return; 418 } 419 420 // Do the rough sort by complexity. 421 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); 422 423 // Now that we are sorted by complexity, group elements of the same 424 // complexity. Note that this is, at worst, N^2, but the vector is likely to 425 // be extremely short in practice. Note that we take this approach because we 426 // do not want to depend on the addresses of the objects we are grouping. 427 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 428 SCEV *S = Ops[i]; 429 unsigned Complexity = S->getSCEVType(); 430 431 // If there are any objects of the same complexity and same value as this 432 // one, group them. 433 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 434 if (Ops[j] == S) { // Found a duplicate. 435 // Move it to immediately after i'th element. 436 std::swap(Ops[i+1], Ops[j]); 437 ++i; // no need to rescan it. 438 if (i == e-2) return; // Done! 439 } 440 } 441 } 442 } 443 444 445 446 //===----------------------------------------------------------------------===// 447 // Simple SCEV method implementations 448 //===----------------------------------------------------------------------===// 449 450 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 451 /// specified signed integer value and return a SCEV for the constant. 452 SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) { 453 Constant *C; 454 if (Val == 0) 455 C = Constant::getNullValue(Ty); 456 else if (Ty->isFloatingPoint()) 457 C = ConstantFP::get(Ty, Val); 458 else 459 C = ConstantInt::get(Ty, Val); 460 return SCEVUnknown::get(C); 461 } 462 463 SCEVHandle SCEVUnknown::getIntegerSCEV(const APInt& Val) { 464 return SCEVUnknown::get(ConstantInt::get(Val)); 465 } 466 467 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 468 /// input value to the specified type. If the type must be extended, it is zero 469 /// extended. 470 static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) { 471 const Type *SrcTy = V->getType(); 472 assert(SrcTy->isInteger() && Ty->isInteger() && 473 "Cannot truncate or zero extend with non-integer arguments!"); 474 if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) 475 return V; // No conversion 476 if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()) 477 return SCEVTruncateExpr::get(V, Ty); 478 return SCEVZeroExtendExpr::get(V, Ty); 479 } 480 481 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 482 /// 483 SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) { 484 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 485 return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue())); 486 487 return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType())); 488 } 489 490 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 491 /// 492 SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) { 493 // X - Y --> X + -Y 494 return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS)); 495 } 496 497 498 /// PartialFact - Compute V!/(V-NumSteps)! 499 static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) { 500 // Handle this case efficiently, it is common to have constant iteration 501 // counts while computing loop exit values. 502 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) { 503 APInt Val = SC->getValue()->getValue(); 504 APInt Result(Val.getBitWidth(), 1); 505 for (; NumSteps; --NumSteps) 506 Result *= Val-(NumSteps-1); 507 return SCEVUnknown::get(ConstantInt::get(Result)); 508 } 509 510 const Type *Ty = V->getType(); 511 if (NumSteps == 0) 512 return SCEVUnknown::getIntegerSCEV(1, Ty); 513 514 SCEVHandle Result = V; 515 for (unsigned i = 1; i != NumSteps; ++i) 516 Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V, 517 SCEVUnknown::getIntegerSCEV(i, Ty))); 518 return Result; 519 } 520 521 522 /// evaluateAtIteration - Return the value of this chain of recurrences at 523 /// the specified iteration number. We can evaluate this recurrence by 524 /// multiplying each element in the chain by the binomial coefficient 525 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 526 /// 527 /// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3) 528 /// 529 /// FIXME/VERIFY: I don't trust that this is correct in the face of overflow. 530 /// Is the binomial equation safe using modular arithmetic?? 531 /// 532 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const { 533 SCEVHandle Result = getStart(); 534 int Divisor = 1; 535 const Type *Ty = It->getType(); 536 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 537 SCEVHandle BC = PartialFact(It, i); 538 Divisor *= i; 539 SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)), 540 SCEVUnknown::getIntegerSCEV(Divisor,Ty)); 541 Result = SCEVAddExpr::get(Result, Val); 542 } 543 return Result; 544 } 545 546 547 //===----------------------------------------------------------------------===// 548 // SCEV Expression folder implementations 549 //===----------------------------------------------------------------------===// 550 551 SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) { 552 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 553 return SCEVUnknown::get( 554 ConstantExpr::getTrunc(SC->getValue(), Ty)); 555 556 // If the input value is a chrec scev made out of constants, truncate 557 // all of the constants. 558 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 559 std::vector<SCEVHandle> Operands; 560 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 561 // FIXME: This should allow truncation of other expression types! 562 if (isa<SCEVConstant>(AddRec->getOperand(i))) 563 Operands.push_back(get(AddRec->getOperand(i), Ty)); 564 else 565 break; 566 if (Operands.size() == AddRec->getNumOperands()) 567 return SCEVAddRecExpr::get(Operands, AddRec->getLoop()); 568 } 569 570 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 571 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 572 return Result; 573 } 574 575 SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) { 576 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 577 return SCEVUnknown::get( 578 ConstantExpr::getZExt(SC->getValue(), Ty)); 579 580 // FIXME: If the input value is a chrec scev, and we can prove that the value 581 // did not overflow the old, smaller, value, we can zero extend all of the 582 // operands (often constants). This would allow analysis of something like 583 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 584 585 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 586 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 587 return Result; 588 } 589 590 // get - Get a canonical add expression, or something simpler if possible. 591 SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) { 592 assert(!Ops.empty() && "Cannot get empty add!"); 593 if (Ops.size() == 1) return Ops[0]; 594 595 // Sort by complexity, this groups all similar expression types together. 596 GroupByComplexity(Ops); 597 598 // If there are any constants, fold them together. 599 unsigned Idx = 0; 600 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 601 ++Idx; 602 assert(Idx < Ops.size()); 603 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 604 // We found two constants, fold them together! 605 Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue()); 606 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { 607 Ops[0] = SCEVConstant::get(CI); 608 Ops.erase(Ops.begin()+1); // Erase the folded element 609 if (Ops.size() == 1) return Ops[0]; 610 LHSC = cast<SCEVConstant>(Ops[0]); 611 } else { 612 // If we couldn't fold the expression, move to the next constant. Note 613 // that this is impossible to happen in practice because we always 614 // constant fold constant ints to constant ints. 615 ++Idx; 616 } 617 } 618 619 // If we are left with a constant zero being added, strip it off. 620 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 621 Ops.erase(Ops.begin()); 622 --Idx; 623 } 624 } 625 626 if (Ops.size() == 1) return Ops[0]; 627 628 // Okay, check to see if the same value occurs in the operand list twice. If 629 // so, merge them together into an multiply expression. Since we sorted the 630 // list, these values are required to be adjacent. 631 const Type *Ty = Ops[0]->getType(); 632 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 633 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 634 // Found a match, merge the two values into a multiply, and add any 635 // remaining values to the result. 636 SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty); 637 SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two); 638 if (Ops.size() == 2) 639 return Mul; 640 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 641 Ops.push_back(Mul); 642 return SCEVAddExpr::get(Ops); 643 } 644 645 // Okay, now we know the first non-constant operand. If there are add 646 // operands they would be next. 647 if (Idx < Ops.size()) { 648 bool DeletedAdd = false; 649 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 650 // If we have an add, expand the add operands onto the end of the operands 651 // list. 652 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 653 Ops.erase(Ops.begin()+Idx); 654 DeletedAdd = true; 655 } 656 657 // If we deleted at least one add, we added operands to the end of the list, 658 // and they are not necessarily sorted. Recurse to resort and resimplify 659 // any operands we just aquired. 660 if (DeletedAdd) 661 return get(Ops); 662 } 663 664 // Skip over the add expression until we get to a multiply. 665 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 666 ++Idx; 667 668 // If we are adding something to a multiply expression, make sure the 669 // something is not already an operand of the multiply. If so, merge it into 670 // the multiply. 671 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 672 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 673 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 674 SCEV *MulOpSCEV = Mul->getOperand(MulOp); 675 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 676 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { 677 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 678 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 679 if (Mul->getNumOperands() != 2) { 680 // If the multiply has more than two operands, we must get the 681 // Y*Z term. 682 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 683 MulOps.erase(MulOps.begin()+MulOp); 684 InnerMul = SCEVMulExpr::get(MulOps); 685 } 686 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty); 687 SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One); 688 SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]); 689 if (Ops.size() == 2) return OuterMul; 690 if (AddOp < Idx) { 691 Ops.erase(Ops.begin()+AddOp); 692 Ops.erase(Ops.begin()+Idx-1); 693 } else { 694 Ops.erase(Ops.begin()+Idx); 695 Ops.erase(Ops.begin()+AddOp-1); 696 } 697 Ops.push_back(OuterMul); 698 return SCEVAddExpr::get(Ops); 699 } 700 701 // Check this multiply against other multiplies being added together. 702 for (unsigned OtherMulIdx = Idx+1; 703 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 704 ++OtherMulIdx) { 705 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 706 // If MulOp occurs in OtherMul, we can fold the two multiplies 707 // together. 708 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 709 OMulOp != e; ++OMulOp) 710 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 711 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 712 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 713 if (Mul->getNumOperands() != 2) { 714 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 715 MulOps.erase(MulOps.begin()+MulOp); 716 InnerMul1 = SCEVMulExpr::get(MulOps); 717 } 718 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 719 if (OtherMul->getNumOperands() != 2) { 720 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), 721 OtherMul->op_end()); 722 MulOps.erase(MulOps.begin()+OMulOp); 723 InnerMul2 = SCEVMulExpr::get(MulOps); 724 } 725 SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2); 726 SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum); 727 if (Ops.size() == 2) return OuterMul; 728 Ops.erase(Ops.begin()+Idx); 729 Ops.erase(Ops.begin()+OtherMulIdx-1); 730 Ops.push_back(OuterMul); 731 return SCEVAddExpr::get(Ops); 732 } 733 } 734 } 735 } 736 737 // If there are any add recurrences in the operands list, see if any other 738 // added values are loop invariant. If so, we can fold them into the 739 // recurrence. 740 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 741 ++Idx; 742 743 // Scan over all recurrences, trying to fold loop invariants into them. 744 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 745 // Scan all of the other operands to this add and add them to the vector if 746 // they are loop invariant w.r.t. the recurrence. 747 std::vector<SCEVHandle> LIOps; 748 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 749 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 750 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 751 LIOps.push_back(Ops[i]); 752 Ops.erase(Ops.begin()+i); 753 --i; --e; 754 } 755 756 // If we found some loop invariants, fold them into the recurrence. 757 if (!LIOps.empty()) { 758 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step } 759 LIOps.push_back(AddRec->getStart()); 760 761 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); 762 AddRecOps[0] = SCEVAddExpr::get(LIOps); 763 764 SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop()); 765 // If all of the other operands were loop invariant, we are done. 766 if (Ops.size() == 1) return NewRec; 767 768 // Otherwise, add the folded AddRec by the non-liv parts. 769 for (unsigned i = 0;; ++i) 770 if (Ops[i] == AddRec) { 771 Ops[i] = NewRec; 772 break; 773 } 774 return SCEVAddExpr::get(Ops); 775 } 776 777 // Okay, if there weren't any loop invariants to be folded, check to see if 778 // there are multiple AddRec's with the same loop induction variable being 779 // added together. If so, we can fold them. 780 for (unsigned OtherIdx = Idx+1; 781 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 782 if (OtherIdx != Idx) { 783 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 784 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 785 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 786 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); 787 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 788 if (i >= NewOps.size()) { 789 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 790 OtherAddRec->op_end()); 791 break; 792 } 793 NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i)); 794 } 795 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop()); 796 797 if (Ops.size() == 2) return NewAddRec; 798 799 Ops.erase(Ops.begin()+Idx); 800 Ops.erase(Ops.begin()+OtherIdx-1); 801 Ops.push_back(NewAddRec); 802 return SCEVAddExpr::get(Ops); 803 } 804 } 805 806 // Otherwise couldn't fold anything into this recurrence. Move onto the 807 // next one. 808 } 809 810 // Okay, it looks like we really DO need an add expr. Check to see if we 811 // already have one, otherwise create a new one. 812 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 813 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 814 SCEVOps)]; 815 if (Result == 0) Result = new SCEVAddExpr(Ops); 816 return Result; 817 } 818 819 820 SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) { 821 assert(!Ops.empty() && "Cannot get empty mul!"); 822 823 // Sort by complexity, this groups all similar expression types together. 824 GroupByComplexity(Ops); 825 826 // If there are any constants, fold them together. 827 unsigned Idx = 0; 828 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 829 830 // C1*(C2+V) -> C1*C2 + C1*V 831 if (Ops.size() == 2) 832 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 833 if (Add->getNumOperands() == 2 && 834 isa<SCEVConstant>(Add->getOperand(0))) 835 return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)), 836 SCEVMulExpr::get(LHSC, Add->getOperand(1))); 837 838 839 ++Idx; 840 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 841 // We found two constants, fold them together! 842 Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue()); 843 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { 844 Ops[0] = SCEVConstant::get(CI); 845 Ops.erase(Ops.begin()+1); // Erase the folded element 846 if (Ops.size() == 1) return Ops[0]; 847 LHSC = cast<SCEVConstant>(Ops[0]); 848 } else { 849 // If we couldn't fold the expression, move to the next constant. Note 850 // that this is impossible to happen in practice because we always 851 // constant fold constant ints to constant ints. 852 ++Idx; 853 } 854 } 855 856 // If we are left with a constant one being multiplied, strip it off. 857 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 858 Ops.erase(Ops.begin()); 859 --Idx; 860 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 861 // If we have a multiply of zero, it will always be zero. 862 return Ops[0]; 863 } 864 } 865 866 // Skip over the add expression until we get to a multiply. 867 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 868 ++Idx; 869 870 if (Ops.size() == 1) 871 return Ops[0]; 872 873 // If there are mul operands inline them all into this expression. 874 if (Idx < Ops.size()) { 875 bool DeletedMul = false; 876 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 877 // If we have an mul, expand the mul operands onto the end of the operands 878 // list. 879 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 880 Ops.erase(Ops.begin()+Idx); 881 DeletedMul = true; 882 } 883 884 // If we deleted at least one mul, we added operands to the end of the list, 885 // and they are not necessarily sorted. Recurse to resort and resimplify 886 // any operands we just aquired. 887 if (DeletedMul) 888 return get(Ops); 889 } 890 891 // If there are any add recurrences in the operands list, see if any other 892 // added values are loop invariant. If so, we can fold them into the 893 // recurrence. 894 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 895 ++Idx; 896 897 // Scan over all recurrences, trying to fold loop invariants into them. 898 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 899 // Scan all of the other operands to this mul and add them to the vector if 900 // they are loop invariant w.r.t. the recurrence. 901 std::vector<SCEVHandle> LIOps; 902 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 903 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 904 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 905 LIOps.push_back(Ops[i]); 906 Ops.erase(Ops.begin()+i); 907 --i; --e; 908 } 909 910 // If we found some loop invariants, fold them into the recurrence. 911 if (!LIOps.empty()) { 912 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step } 913 std::vector<SCEVHandle> NewOps; 914 NewOps.reserve(AddRec->getNumOperands()); 915 if (LIOps.size() == 1) { 916 SCEV *Scale = LIOps[0]; 917 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 918 NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i))); 919 } else { 920 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 921 std::vector<SCEVHandle> MulOps(LIOps); 922 MulOps.push_back(AddRec->getOperand(i)); 923 NewOps.push_back(SCEVMulExpr::get(MulOps)); 924 } 925 } 926 927 SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop()); 928 929 // If all of the other operands were loop invariant, we are done. 930 if (Ops.size() == 1) return NewRec; 931 932 // Otherwise, multiply the folded AddRec by the non-liv parts. 933 for (unsigned i = 0;; ++i) 934 if (Ops[i] == AddRec) { 935 Ops[i] = NewRec; 936 break; 937 } 938 return SCEVMulExpr::get(Ops); 939 } 940 941 // Okay, if there weren't any loop invariants to be folded, check to see if 942 // there are multiple AddRec's with the same loop induction variable being 943 // multiplied together. If so, we can fold them. 944 for (unsigned OtherIdx = Idx+1; 945 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 946 if (OtherIdx != Idx) { 947 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 948 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 949 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 950 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 951 SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(), 952 G->getStart()); 953 SCEVHandle B = F->getStepRecurrence(); 954 SCEVHandle D = G->getStepRecurrence(); 955 SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D), 956 SCEVMulExpr::get(G, B), 957 SCEVMulExpr::get(B, D)); 958 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep, 959 F->getLoop()); 960 if (Ops.size() == 2) return NewAddRec; 961 962 Ops.erase(Ops.begin()+Idx); 963 Ops.erase(Ops.begin()+OtherIdx-1); 964 Ops.push_back(NewAddRec); 965 return SCEVMulExpr::get(Ops); 966 } 967 } 968 969 // Otherwise couldn't fold anything into this recurrence. Move onto the 970 // next one. 971 } 972 973 // Okay, it looks like we really DO need an mul expr. Check to see if we 974 // already have one, otherwise create a new one. 975 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 976 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 977 SCEVOps)]; 978 if (Result == 0) 979 Result = new SCEVMulExpr(Ops); 980 return Result; 981 } 982 983 SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) { 984 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 985 if (RHSC->getValue()->equalsInt(1)) 986 return LHS; // X sdiv 1 --> x 987 if (RHSC->getValue()->isAllOnesValue()) 988 return SCEV::getNegativeSCEV(LHS); // X sdiv -1 --> -x 989 990 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 991 Constant *LHSCV = LHSC->getValue(); 992 Constant *RHSCV = RHSC->getValue(); 993 return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV)); 994 } 995 } 996 997 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. 998 999 SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)]; 1000 if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS); 1001 return Result; 1002 } 1003 1004 1005 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1006 /// specified loop. Simplify the expression as much as possible. 1007 SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start, 1008 const SCEVHandle &Step, const Loop *L) { 1009 std::vector<SCEVHandle> Operands; 1010 Operands.push_back(Start); 1011 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1012 if (StepChrec->getLoop() == L) { 1013 Operands.insert(Operands.end(), StepChrec->op_begin(), 1014 StepChrec->op_end()); 1015 return get(Operands, L); 1016 } 1017 1018 Operands.push_back(Step); 1019 return get(Operands, L); 1020 } 1021 1022 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1023 /// specified loop. Simplify the expression as much as possible. 1024 SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands, 1025 const Loop *L) { 1026 if (Operands.size() == 1) return Operands[0]; 1027 1028 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back())) 1029 if (StepC->getValue()->isZero()) { 1030 Operands.pop_back(); 1031 return get(Operands, L); // { X,+,0 } --> X 1032 } 1033 1034 SCEVAddRecExpr *&Result = 1035 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), 1036 Operands.end()))]; 1037 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1038 return Result; 1039 } 1040 1041 SCEVHandle SCEVUnknown::get(Value *V) { 1042 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1043 return SCEVConstant::get(CI); 1044 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1045 if (Result == 0) Result = new SCEVUnknown(V); 1046 return Result; 1047 } 1048 1049 1050 //===----------------------------------------------------------------------===// 1051 // ScalarEvolutionsImpl Definition and Implementation 1052 //===----------------------------------------------------------------------===// 1053 // 1054 /// ScalarEvolutionsImpl - This class implements the main driver for the scalar 1055 /// evolution code. 1056 /// 1057 namespace { 1058 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl { 1059 /// F - The function we are analyzing. 1060 /// 1061 Function &F; 1062 1063 /// LI - The loop information for the function we are currently analyzing. 1064 /// 1065 LoopInfo &LI; 1066 1067 /// UnknownValue - This SCEV is used to represent unknown trip counts and 1068 /// things. 1069 SCEVHandle UnknownValue; 1070 1071 /// Scalars - This is a cache of the scalars we have analyzed so far. 1072 /// 1073 std::map<Value*, SCEVHandle> Scalars; 1074 1075 /// IterationCounts - Cache the iteration count of the loops for this 1076 /// function as they are computed. 1077 std::map<const Loop*, SCEVHandle> IterationCounts; 1078 1079 /// ConstantEvolutionLoopExitValue - This map contains entries for all of 1080 /// the PHI instructions that we attempt to compute constant evolutions for. 1081 /// This allows us to avoid potentially expensive recomputation of these 1082 /// properties. An instruction maps to null if we are unable to compute its 1083 /// exit value. 1084 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue; 1085 1086 public: 1087 ScalarEvolutionsImpl(Function &f, LoopInfo &li) 1088 : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {} 1089 1090 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1091 /// expression and create a new one. 1092 SCEVHandle getSCEV(Value *V); 1093 1094 /// hasSCEV - Return true if the SCEV for this value has already been 1095 /// computed. 1096 bool hasSCEV(Value *V) const { 1097 return Scalars.count(V); 1098 } 1099 1100 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 1101 /// the specified value. 1102 void setSCEV(Value *V, const SCEVHandle &H) { 1103 bool isNew = Scalars.insert(std::make_pair(V, H)).second; 1104 assert(isNew && "This entry already existed!"); 1105 } 1106 1107 1108 /// getSCEVAtScope - Compute the value of the specified expression within 1109 /// the indicated loop (which may be null to indicate in no loop). If the 1110 /// expression cannot be evaluated, return UnknownValue itself. 1111 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L); 1112 1113 1114 /// hasLoopInvariantIterationCount - Return true if the specified loop has 1115 /// an analyzable loop-invariant iteration count. 1116 bool hasLoopInvariantIterationCount(const Loop *L); 1117 1118 /// getIterationCount - If the specified loop has a predictable iteration 1119 /// count, return it. Note that it is not valid to call this method on a 1120 /// loop without a loop-invariant iteration count. 1121 SCEVHandle getIterationCount(const Loop *L); 1122 1123 /// deleteInstructionFromRecords - This method should be called by the 1124 /// client before it removes an instruction from the program, to make sure 1125 /// that no dangling references are left around. 1126 void deleteInstructionFromRecords(Instruction *I); 1127 1128 private: 1129 /// createSCEV - We know that there is no SCEV for the specified value. 1130 /// Analyze the expression. 1131 SCEVHandle createSCEV(Value *V); 1132 1133 /// createNodeForPHI - Provide the special handling we need to analyze PHI 1134 /// SCEVs. 1135 SCEVHandle createNodeForPHI(PHINode *PN); 1136 1137 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value 1138 /// for the specified instruction and replaces any references to the 1139 /// symbolic value SymName with the specified value. This is used during 1140 /// PHI resolution. 1141 void ReplaceSymbolicValueWithConcrete(Instruction *I, 1142 const SCEVHandle &SymName, 1143 const SCEVHandle &NewVal); 1144 1145 /// ComputeIterationCount - Compute the number of times the specified loop 1146 /// will iterate. 1147 SCEVHandle ComputeIterationCount(const Loop *L); 1148 1149 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 1150 /// 'setcc load X, cst', try to se if we can compute the trip count. 1151 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI, 1152 Constant *RHS, 1153 const Loop *L, 1154 ICmpInst::Predicate p); 1155 1156 /// ComputeIterationCountExhaustively - If the trip is known to execute a 1157 /// constant number of times (the condition evolves only from constants), 1158 /// try to evaluate a few iterations of the loop until we get the exit 1159 /// condition gets a value of ExitWhen (true or false). If we cannot 1160 /// evaluate the trip count of the loop, return UnknownValue. 1161 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond, 1162 bool ExitWhen); 1163 1164 /// HowFarToZero - Return the number of times a backedge comparing the 1165 /// specified value to zero will execute. If not computable, return 1166 /// UnknownValue. 1167 SCEVHandle HowFarToZero(SCEV *V, const Loop *L); 1168 1169 /// HowFarToNonZero - Return the number of times a backedge checking the 1170 /// specified value for nonzero will execute. If not computable, return 1171 /// UnknownValue. 1172 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L); 1173 1174 /// HowManyLessThans - Return the number of times a backedge containing the 1175 /// specified less-than comparison will execute. If not computable, return 1176 /// UnknownValue. 1177 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L); 1178 1179 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1180 /// in the header of its containing loop, we know the loop executes a 1181 /// constant number of times, and the PHI node is just a recurrence 1182 /// involving constants, fold it. 1183 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, 1184 const Loop *L); 1185 }; 1186 } 1187 1188 //===----------------------------------------------------------------------===// 1189 // Basic SCEV Analysis and PHI Idiom Recognition Code 1190 // 1191 1192 /// deleteInstructionFromRecords - This method should be called by the 1193 /// client before it removes an instruction from the program, to make sure 1194 /// that no dangling references are left around. 1195 void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) { 1196 Scalars.erase(I); 1197 if (PHINode *PN = dyn_cast<PHINode>(I)) 1198 ConstantEvolutionLoopExitValue.erase(PN); 1199 } 1200 1201 1202 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1203 /// expression and create a new one. 1204 SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) { 1205 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!"); 1206 1207 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); 1208 if (I != Scalars.end()) return I->second; 1209 SCEVHandle S = createSCEV(V); 1210 Scalars.insert(std::make_pair(V, S)); 1211 return S; 1212 } 1213 1214 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 1215 /// the specified instruction and replaces any references to the symbolic value 1216 /// SymName with the specified value. This is used during PHI resolution. 1217 void ScalarEvolutionsImpl:: 1218 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 1219 const SCEVHandle &NewVal) { 1220 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); 1221 if (SI == Scalars.end()) return; 1222 1223 SCEVHandle NV = 1224 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal); 1225 if (NV == SI->second) return; // No change. 1226 1227 SI->second = NV; // Update the scalars map! 1228 1229 // Any instruction values that use this instruction might also need to be 1230 // updated! 1231 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1232 UI != E; ++UI) 1233 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 1234 } 1235 1236 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 1237 /// a loop header, making it a potential recurrence, or it doesn't. 1238 /// 1239 SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) { 1240 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 1241 if (const Loop *L = LI.getLoopFor(PN->getParent())) 1242 if (L->getHeader() == PN->getParent()) { 1243 // If it lives in the loop header, it has two incoming values, one 1244 // from outside the loop, and one from inside. 1245 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1246 unsigned BackEdge = IncomingEdge^1; 1247 1248 // While we are analyzing this PHI node, handle its value symbolically. 1249 SCEVHandle SymbolicName = SCEVUnknown::get(PN); 1250 assert(Scalars.find(PN) == Scalars.end() && 1251 "PHI node already processed?"); 1252 Scalars.insert(std::make_pair(PN, SymbolicName)); 1253 1254 // Using this symbolic name for the PHI, analyze the value coming around 1255 // the back-edge. 1256 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 1257 1258 // NOTE: If BEValue is loop invariant, we know that the PHI node just 1259 // has a special value for the first iteration of the loop. 1260 1261 // If the value coming around the backedge is an add with the symbolic 1262 // value we just inserted, then we found a simple induction variable! 1263 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 1264 // If there is a single occurrence of the symbolic value, replace it 1265 // with a recurrence. 1266 unsigned FoundIndex = Add->getNumOperands(); 1267 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1268 if (Add->getOperand(i) == SymbolicName) 1269 if (FoundIndex == e) { 1270 FoundIndex = i; 1271 break; 1272 } 1273 1274 if (FoundIndex != Add->getNumOperands()) { 1275 // Create an add with everything but the specified operand. 1276 std::vector<SCEVHandle> Ops; 1277 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1278 if (i != FoundIndex) 1279 Ops.push_back(Add->getOperand(i)); 1280 SCEVHandle Accum = SCEVAddExpr::get(Ops); 1281 1282 // This is not a valid addrec if the step amount is varying each 1283 // loop iteration, but is not itself an addrec in this loop. 1284 if (Accum->isLoopInvariant(L) || 1285 (isa<SCEVAddRecExpr>(Accum) && 1286 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 1287 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1288 SCEVHandle PHISCEV = SCEVAddRecExpr::get(StartVal, Accum, L); 1289 1290 // Okay, for the entire analysis of this edge we assumed the PHI 1291 // to be symbolic. We now need to go back and update all of the 1292 // entries for the scalars that use the PHI (except for the PHI 1293 // itself) to use the new analyzed value instead of the "symbolic" 1294 // value. 1295 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1296 return PHISCEV; 1297 } 1298 } 1299 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 1300 // Otherwise, this could be a loop like this: 1301 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 1302 // In this case, j = {1,+,1} and BEValue is j. 1303 // Because the other in-value of i (0) fits the evolution of BEValue 1304 // i really is an addrec evolution. 1305 if (AddRec->getLoop() == L && AddRec->isAffine()) { 1306 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1307 1308 // If StartVal = j.start - j.stride, we can use StartVal as the 1309 // initial step of the addrec evolution. 1310 if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0), 1311 AddRec->getOperand(1))) { 1312 SCEVHandle PHISCEV = 1313 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L); 1314 1315 // Okay, for the entire analysis of this edge we assumed the PHI 1316 // to be symbolic. We now need to go back and update all of the 1317 // entries for the scalars that use the PHI (except for the PHI 1318 // itself) to use the new analyzed value instead of the "symbolic" 1319 // value. 1320 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1321 return PHISCEV; 1322 } 1323 } 1324 } 1325 1326 return SymbolicName; 1327 } 1328 1329 // If it's not a loop phi, we can't handle it yet. 1330 return SCEVUnknown::get(PN); 1331 } 1332 1333 /// GetConstantFactor - Determine the largest constant factor that S has. For 1334 /// example, turn {4,+,8} -> 4. (S umod result) should always equal zero. 1335 static APInt GetConstantFactor(SCEVHandle S) { 1336 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 1337 APInt V = C->getValue()->getValue(); 1338 if (!V.isMinValue()) 1339 return V; 1340 else // Zero is a multiple of everything. 1341 return APInt(C->getBitWidth(), 1).shl(C->getBitWidth()-1); 1342 } 1343 1344 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) { 1345 APInt Mask(cast<IntegerType>(T->getType())->getMask()); 1346 APInt GCF(GetConstantFactor(T->getOperand())); 1347 Mask.zextOrTrunc(GCF.getBitWidth()); 1348 return GCF & Mask; 1349 } 1350 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) 1351 return GetConstantFactor(E->getOperand()); 1352 1353 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 1354 // The result is the min of all operands. 1355 APInt Res = GetConstantFactor(A->getOperand(0)); 1356 for (unsigned i = 1, e = A->getNumOperands(); 1357 i != e && Res.ugt(APInt(Res.getBitWidth(),1)); ++i) 1358 Res = APIntOps::umin(Res, GetConstantFactor(A->getOperand(i))); 1359 return Res; 1360 } 1361 1362 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 1363 // The result is the product of all the operands. 1364 APInt Res = GetConstantFactor(M->getOperand(0)); 1365 for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i) 1366 Res *= GetConstantFactor(M->getOperand(i)); 1367 return Res; 1368 } 1369 1370 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 1371 // For now, we just handle linear expressions. 1372 if (A->getNumOperands() == 2) { 1373 // We want the GCD between the start and the stride value. 1374 APInt Start = GetConstantFactor(A->getOperand(0)); 1375 if (Start == 1) 1376 return APInt(A->getBitWidth(),1); 1377 APInt Stride = GetConstantFactor(A->getOperand(1)); 1378 return APIntOps::GreatestCommonDivisor(Start, Stride); 1379 } 1380 } 1381 1382 // SCEVSDivExpr, SCEVUnknown. 1383 return APInt(S->getBitWidth(), 1); 1384 } 1385 1386 /// createSCEV - We know that there is no SCEV for the specified value. 1387 /// Analyze the expression. 1388 /// 1389 SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) { 1390 if (Instruction *I = dyn_cast<Instruction>(V)) { 1391 switch (I->getOpcode()) { 1392 case Instruction::Add: 1393 return SCEVAddExpr::get(getSCEV(I->getOperand(0)), 1394 getSCEV(I->getOperand(1))); 1395 case Instruction::Mul: 1396 return SCEVMulExpr::get(getSCEV(I->getOperand(0)), 1397 getSCEV(I->getOperand(1))); 1398 case Instruction::SDiv: 1399 return SCEVSDivExpr::get(getSCEV(I->getOperand(0)), 1400 getSCEV(I->getOperand(1))); 1401 break; 1402 1403 case Instruction::Sub: 1404 return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)), 1405 getSCEV(I->getOperand(1))); 1406 case Instruction::Or: 1407 // If the RHS of the Or is a constant, we may have something like: 1408 // X*4+1 which got turned into X*4|1. Handle this as an add so loop 1409 // optimizations will transparently handle this case. 1410 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 1411 SCEVHandle LHS = getSCEV(I->getOperand(0)); 1412 APInt CommonFact = GetConstantFactor(LHS); 1413 assert(!CommonFact.isMinValue() && 1414 "Common factor should at least be 1!"); 1415 CommonFact.zextOrTrunc(CI->getValue().getBitWidth()); 1416 if (CommonFact.ugt(CI->getValue())) { 1417 // If the LHS is a multiple that is larger than the RHS, use +. 1418 return SCEVAddExpr::get(LHS, 1419 getSCEV(I->getOperand(1))); 1420 } 1421 } 1422 break; 1423 1424 case Instruction::Shl: 1425 // Turn shift left of a constant amount into a multiply. 1426 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1427 Constant *X = ConstantInt::get(V->getType(), 1); 1428 X = ConstantExpr::getShl(X, SA); 1429 return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X)); 1430 } 1431 break; 1432 1433 case Instruction::Trunc: 1434 return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)), I->getType()); 1435 1436 case Instruction::ZExt: 1437 return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)), I->getType()); 1438 1439 case Instruction::BitCast: 1440 // BitCasts are no-op casts so we just eliminate the cast. 1441 if (I->getType()->isInteger() && 1442 I->getOperand(0)->getType()->isInteger()) 1443 return getSCEV(I->getOperand(0)); 1444 break; 1445 1446 case Instruction::PHI: 1447 return createNodeForPHI(cast<PHINode>(I)); 1448 1449 default: // We cannot analyze this expression. 1450 break; 1451 } 1452 } 1453 1454 return SCEVUnknown::get(V); 1455 } 1456 1457 1458 1459 //===----------------------------------------------------------------------===// 1460 // Iteration Count Computation Code 1461 // 1462 1463 /// getIterationCount - If the specified loop has a predictable iteration 1464 /// count, return it. Note that it is not valid to call this method on a 1465 /// loop without a loop-invariant iteration count. 1466 SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) { 1467 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L); 1468 if (I == IterationCounts.end()) { 1469 SCEVHandle ItCount = ComputeIterationCount(L); 1470 I = IterationCounts.insert(std::make_pair(L, ItCount)).first; 1471 if (ItCount != UnknownValue) { 1472 assert(ItCount->isLoopInvariant(L) && 1473 "Computed trip count isn't loop invariant for loop!"); 1474 ++NumTripCountsComputed; 1475 } else if (isa<PHINode>(L->getHeader()->begin())) { 1476 // Only count loops that have phi nodes as not being computable. 1477 ++NumTripCountsNotComputed; 1478 } 1479 } 1480 return I->second; 1481 } 1482 1483 /// ComputeIterationCount - Compute the number of times the specified loop 1484 /// will iterate. 1485 SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) { 1486 // If the loop has a non-one exit block count, we can't analyze it. 1487 std::vector<BasicBlock*> ExitBlocks; 1488 L->getExitBlocks(ExitBlocks); 1489 if (ExitBlocks.size() != 1) return UnknownValue; 1490 1491 // Okay, there is one exit block. Try to find the condition that causes the 1492 // loop to be exited. 1493 BasicBlock *ExitBlock = ExitBlocks[0]; 1494 1495 BasicBlock *ExitingBlock = 0; 1496 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); 1497 PI != E; ++PI) 1498 if (L->contains(*PI)) { 1499 if (ExitingBlock == 0) 1500 ExitingBlock = *PI; 1501 else 1502 return UnknownValue; // More than one block exiting! 1503 } 1504 assert(ExitingBlock && "No exits from loop, something is broken!"); 1505 1506 // Okay, we've computed the exiting block. See what condition causes us to 1507 // exit. 1508 // 1509 // FIXME: we should be able to handle switch instructions (with a single exit) 1510 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1511 if (ExitBr == 0) return UnknownValue; 1512 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 1513 1514 // At this point, we know we have a conditional branch that determines whether 1515 // the loop is exited. However, we don't know if the branch is executed each 1516 // time through the loop. If not, then the execution count of the branch will 1517 // not be equal to the trip count of the loop. 1518 // 1519 // Currently we check for this by checking to see if the Exit branch goes to 1520 // the loop header. If so, we know it will always execute the same number of 1521 // times as the loop. We also handle the case where the exit block *is* the 1522 // loop header. This is common for un-rotated loops. More extensive analysis 1523 // could be done to handle more cases here. 1524 if (ExitBr->getSuccessor(0) != L->getHeader() && 1525 ExitBr->getSuccessor(1) != L->getHeader() && 1526 ExitBr->getParent() != L->getHeader()) 1527 return UnknownValue; 1528 1529 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 1530 1531 // If its not an integer comparison then compute it the hard way. 1532 // Note that ICmpInst deals with pointer comparisons too so we must check 1533 // the type of the operand. 1534 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType())) 1535 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(), 1536 ExitBr->getSuccessor(0) == ExitBlock); 1537 1538 // If the condition was exit on true, convert the condition to exit on false 1539 ICmpInst::Predicate Cond; 1540 if (ExitBr->getSuccessor(1) == ExitBlock) 1541 Cond = ExitCond->getPredicate(); 1542 else 1543 Cond = ExitCond->getInversePredicate(); 1544 1545 // Handle common loops like: for (X = "string"; *X; ++X) 1546 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 1547 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 1548 SCEVHandle ItCnt = 1549 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond); 1550 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 1551 } 1552 1553 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 1554 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 1555 1556 // Try to evaluate any dependencies out of the loop. 1557 SCEVHandle Tmp = getSCEVAtScope(LHS, L); 1558 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; 1559 Tmp = getSCEVAtScope(RHS, L); 1560 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; 1561 1562 // At this point, we would like to compute how many iterations of the 1563 // loop the predicate will return true for these inputs. 1564 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) { 1565 // If there is a constant, force it into the RHS. 1566 std::swap(LHS, RHS); 1567 Cond = ICmpInst::getSwappedPredicate(Cond); 1568 } 1569 1570 // FIXME: think about handling pointer comparisons! i.e.: 1571 // while (P != P+100) ++P; 1572 1573 // If we have a comparison of a chrec against a constant, try to use value 1574 // ranges to answer this query. 1575 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 1576 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 1577 if (AddRec->getLoop() == L) { 1578 // Form the comparison range using the constant of the correct type so 1579 // that the ConstantRange class knows to do a signed or unsigned 1580 // comparison. 1581 ConstantInt *CompVal = RHSC->getValue(); 1582 const Type *RealTy = ExitCond->getOperand(0)->getType(); 1583 CompVal = dyn_cast<ConstantInt>( 1584 ConstantExpr::getBitCast(CompVal, RealTy)); 1585 if (CompVal) { 1586 // Form the constant range. 1587 ConstantRange CompRange( 1588 ICmpInst::makeConstantRange(Cond, CompVal->getValue())); 1589 1590 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, 1591 false /*Always treat as unsigned range*/); 1592 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 1593 } 1594 } 1595 1596 switch (Cond) { 1597 case ICmpInst::ICMP_NE: { // while (X != Y) 1598 // Convert to: while (X-Y != 0) 1599 SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L); 1600 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1601 break; 1602 } 1603 case ICmpInst::ICMP_EQ: { 1604 // Convert to: while (X-Y == 0) // while (X == Y) 1605 SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L); 1606 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1607 break; 1608 } 1609 case ICmpInst::ICMP_SLT: { 1610 SCEVHandle TC = HowManyLessThans(LHS, RHS, L); 1611 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1612 break; 1613 } 1614 case ICmpInst::ICMP_SGT: { 1615 SCEVHandle TC = HowManyLessThans(RHS, LHS, L); 1616 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1617 break; 1618 } 1619 default: 1620 #if 0 1621 cerr << "ComputeIterationCount "; 1622 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 1623 cerr << "[unsigned] "; 1624 cerr << *LHS << " " 1625 << Instruction::getOpcodeName(Instruction::ICmp) 1626 << " " << *RHS << "\n"; 1627 #endif 1628 break; 1629 } 1630 return ComputeIterationCountExhaustively(L, ExitCond, 1631 ExitBr->getSuccessor(0) == ExitBlock); 1632 } 1633 1634 static ConstantInt * 1635 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) { 1636 SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C)); 1637 SCEVHandle Val = AddRec->evaluateAtIteration(InVal); 1638 assert(isa<SCEVConstant>(Val) && 1639 "Evaluation of SCEV at constant didn't fold correctly?"); 1640 return cast<SCEVConstant>(Val)->getValue(); 1641 } 1642 1643 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 1644 /// and a GEP expression (missing the pointer index) indexing into it, return 1645 /// the addressed element of the initializer or null if the index expression is 1646 /// invalid. 1647 static Constant * 1648 GetAddressedElementFromGlobal(GlobalVariable *GV, 1649 const std::vector<ConstantInt*> &Indices) { 1650 Constant *Init = GV->getInitializer(); 1651 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 1652 uint64_t Idx = Indices[i]->getZExtValue(); 1653 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 1654 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 1655 Init = cast<Constant>(CS->getOperand(Idx)); 1656 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 1657 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 1658 Init = cast<Constant>(CA->getOperand(Idx)); 1659 } else if (isa<ConstantAggregateZero>(Init)) { 1660 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 1661 assert(Idx < STy->getNumElements() && "Bad struct index!"); 1662 Init = Constant::getNullValue(STy->getElementType(Idx)); 1663 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 1664 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 1665 Init = Constant::getNullValue(ATy->getElementType()); 1666 } else { 1667 assert(0 && "Unknown constant aggregate type!"); 1668 } 1669 return 0; 1670 } else { 1671 return 0; // Unknown initializer type 1672 } 1673 } 1674 return Init; 1675 } 1676 1677 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 1678 /// 'setcc load X, cst', try to se if we can compute the trip count. 1679 SCEVHandle ScalarEvolutionsImpl:: 1680 ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS, 1681 const Loop *L, 1682 ICmpInst::Predicate predicate) { 1683 if (LI->isVolatile()) return UnknownValue; 1684 1685 // Check to see if the loaded pointer is a getelementptr of a global. 1686 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 1687 if (!GEP) return UnknownValue; 1688 1689 // Make sure that it is really a constant global we are gepping, with an 1690 // initializer, and make sure the first IDX is really 0. 1691 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 1692 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 1693 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 1694 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 1695 return UnknownValue; 1696 1697 // Okay, we allow one non-constant index into the GEP instruction. 1698 Value *VarIdx = 0; 1699 std::vector<ConstantInt*> Indexes; 1700 unsigned VarIdxNum = 0; 1701 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 1702 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 1703 Indexes.push_back(CI); 1704 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 1705 if (VarIdx) return UnknownValue; // Multiple non-constant idx's. 1706 VarIdx = GEP->getOperand(i); 1707 VarIdxNum = i-2; 1708 Indexes.push_back(0); 1709 } 1710 1711 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 1712 // Check to see if X is a loop variant variable value now. 1713 SCEVHandle Idx = getSCEV(VarIdx); 1714 SCEVHandle Tmp = getSCEVAtScope(Idx, L); 1715 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; 1716 1717 // We can only recognize very limited forms of loop index expressions, in 1718 // particular, only affine AddRec's like {C1,+,C2}. 1719 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 1720 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 1721 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 1722 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 1723 return UnknownValue; 1724 1725 unsigned MaxSteps = MaxBruteForceIterations; 1726 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 1727 ConstantInt *ItCst = 1728 ConstantInt::get(IdxExpr->getType(), IterationNum); 1729 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst); 1730 1731 // Form the GEP offset. 1732 Indexes[VarIdxNum] = Val; 1733 1734 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 1735 if (Result == 0) break; // Cannot compute! 1736 1737 // Evaluate the condition for this iteration. 1738 Result = ConstantExpr::getICmp(predicate, Result, RHS); 1739 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 1740 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 1741 #if 0 1742 cerr << "\n***\n*** Computed loop count " << *ItCst 1743 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 1744 << "***\n"; 1745 #endif 1746 ++NumArrayLenItCounts; 1747 return SCEVConstant::get(ItCst); // Found terminating iteration! 1748 } 1749 } 1750 return UnknownValue; 1751 } 1752 1753 1754 /// CanConstantFold - Return true if we can constant fold an instruction of the 1755 /// specified type, assuming that all operands were constants. 1756 static bool CanConstantFold(const Instruction *I) { 1757 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 1758 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 1759 return true; 1760 1761 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1762 if (const Function *F = CI->getCalledFunction()) 1763 return canConstantFoldCallTo((Function*)F); // FIXME: elim cast 1764 return false; 1765 } 1766 1767 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 1768 /// in the loop that V is derived from. We allow arbitrary operations along the 1769 /// way, but the operands of an operation must either be constants or a value 1770 /// derived from a constant PHI. If this expression does not fit with these 1771 /// constraints, return null. 1772 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 1773 // If this is not an instruction, or if this is an instruction outside of the 1774 // loop, it can't be derived from a loop PHI. 1775 Instruction *I = dyn_cast<Instruction>(V); 1776 if (I == 0 || !L->contains(I->getParent())) return 0; 1777 1778 if (PHINode *PN = dyn_cast<PHINode>(I)) 1779 if (L->getHeader() == I->getParent()) 1780 return PN; 1781 else 1782 // We don't currently keep track of the control flow needed to evaluate 1783 // PHIs, so we cannot handle PHIs inside of loops. 1784 return 0; 1785 1786 // If we won't be able to constant fold this expression even if the operands 1787 // are constants, return early. 1788 if (!CanConstantFold(I)) return 0; 1789 1790 // Otherwise, we can evaluate this instruction if all of its operands are 1791 // constant or derived from a PHI node themselves. 1792 PHINode *PHI = 0; 1793 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 1794 if (!(isa<Constant>(I->getOperand(Op)) || 1795 isa<GlobalValue>(I->getOperand(Op)))) { 1796 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 1797 if (P == 0) return 0; // Not evolving from PHI 1798 if (PHI == 0) 1799 PHI = P; 1800 else if (PHI != P) 1801 return 0; // Evolving from multiple different PHIs. 1802 } 1803 1804 // This is a expression evolving from a constant PHI! 1805 return PHI; 1806 } 1807 1808 /// EvaluateExpression - Given an expression that passes the 1809 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 1810 /// in the loop has the value PHIVal. If we can't fold this expression for some 1811 /// reason, return null. 1812 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 1813 if (isa<PHINode>(V)) return PHIVal; 1814 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) 1815 return GV; 1816 if (Constant *C = dyn_cast<Constant>(V)) return C; 1817 Instruction *I = cast<Instruction>(V); 1818 1819 std::vector<Constant*> Operands; 1820 Operands.resize(I->getNumOperands()); 1821 1822 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 1823 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 1824 if (Operands[i] == 0) return 0; 1825 } 1826 1827 return ConstantFoldInstOperands(I, &Operands[0], Operands.size()); 1828 } 1829 1830 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1831 /// in the header of its containing loop, we know the loop executes a 1832 /// constant number of times, and the PHI node is just a recurrence 1833 /// involving constants, fold it. 1834 Constant *ScalarEvolutionsImpl:: 1835 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){ 1836 std::map<PHINode*, Constant*>::iterator I = 1837 ConstantEvolutionLoopExitValue.find(PN); 1838 if (I != ConstantEvolutionLoopExitValue.end()) 1839 return I->second; 1840 1841 if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations))) 1842 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 1843 1844 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 1845 1846 // Since the loop is canonicalized, the PHI node must have two entries. One 1847 // entry must be a constant (coming in from outside of the loop), and the 1848 // second must be derived from the same PHI. 1849 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 1850 Constant *StartCST = 1851 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 1852 if (StartCST == 0) 1853 return RetVal = 0; // Must be a constant. 1854 1855 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 1856 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 1857 if (PN2 != PN) 1858 return RetVal = 0; // Not derived from same PHI. 1859 1860 // Execute the loop symbolically to determine the exit value. 1861 if (Its.getActiveBits() >= 32) 1862 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 1863 1864 unsigned NumIterations = Its.getZExtValue(); // must be in range 1865 unsigned IterationNum = 0; 1866 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 1867 if (IterationNum == NumIterations) 1868 return RetVal = PHIVal; // Got exit value! 1869 1870 // Compute the value of the PHI node for the next iteration. 1871 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 1872 if (NextPHI == PHIVal) 1873 return RetVal = NextPHI; // Stopped evolving! 1874 if (NextPHI == 0) 1875 return 0; // Couldn't evaluate! 1876 PHIVal = NextPHI; 1877 } 1878 } 1879 1880 /// ComputeIterationCountExhaustively - If the trip is known to execute a 1881 /// constant number of times (the condition evolves only from constants), 1882 /// try to evaluate a few iterations of the loop until we get the exit 1883 /// condition gets a value of ExitWhen (true or false). If we cannot 1884 /// evaluate the trip count of the loop, return UnknownValue. 1885 SCEVHandle ScalarEvolutionsImpl:: 1886 ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 1887 PHINode *PN = getConstantEvolvingPHI(Cond, L); 1888 if (PN == 0) return UnknownValue; 1889 1890 // Since the loop is canonicalized, the PHI node must have two entries. One 1891 // entry must be a constant (coming in from outside of the loop), and the 1892 // second must be derived from the same PHI. 1893 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 1894 Constant *StartCST = 1895 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 1896 if (StartCST == 0) return UnknownValue; // Must be a constant. 1897 1898 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 1899 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 1900 if (PN2 != PN) return UnknownValue; // Not derived from same PHI. 1901 1902 // Okay, we find a PHI node that defines the trip count of this loop. Execute 1903 // the loop symbolically to determine when the condition gets a value of 1904 // "ExitWhen". 1905 unsigned IterationNum = 0; 1906 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 1907 for (Constant *PHIVal = StartCST; 1908 IterationNum != MaxIterations; ++IterationNum) { 1909 ConstantInt *CondVal = 1910 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 1911 1912 // Couldn't symbolically evaluate. 1913 if (!CondVal) return UnknownValue; 1914 1915 if (CondVal->getValue() == uint64_t(ExitWhen)) { 1916 ConstantEvolutionLoopExitValue[PN] = PHIVal; 1917 ++NumBruteForceTripCountsComputed; 1918 return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum)); 1919 } 1920 1921 // Compute the value of the PHI node for the next iteration. 1922 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 1923 if (NextPHI == 0 || NextPHI == PHIVal) 1924 return UnknownValue; // Couldn't evaluate or not making progress... 1925 PHIVal = NextPHI; 1926 } 1927 1928 // Too many iterations were needed to evaluate. 1929 return UnknownValue; 1930 } 1931 1932 /// getSCEVAtScope - Compute the value of the specified expression within the 1933 /// indicated loop (which may be null to indicate in no loop). If the 1934 /// expression cannot be evaluated, return UnknownValue. 1935 SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) { 1936 // FIXME: this should be turned into a virtual method on SCEV! 1937 1938 if (isa<SCEVConstant>(V)) return V; 1939 1940 // If this instruction is evolves from a constant-evolving PHI, compute the 1941 // exit value from the loop without using SCEVs. 1942 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 1943 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 1944 const Loop *LI = this->LI[I->getParent()]; 1945 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 1946 if (PHINode *PN = dyn_cast<PHINode>(I)) 1947 if (PN->getParent() == LI->getHeader()) { 1948 // Okay, there is no closed form solution for the PHI node. Check 1949 // to see if the loop that contains it has a known iteration count. 1950 // If so, we may be able to force computation of the exit value. 1951 SCEVHandle IterationCount = getIterationCount(LI); 1952 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) { 1953 // Okay, we know how many times the containing loop executes. If 1954 // this is a constant evolving PHI node, get the final value at 1955 // the specified iteration number. 1956 Constant *RV = getConstantEvolutionLoopExitValue(PN, 1957 ICC->getValue()->getValue(), 1958 LI); 1959 if (RV) return SCEVUnknown::get(RV); 1960 } 1961 } 1962 1963 // Okay, this is an expression that we cannot symbolically evaluate 1964 // into a SCEV. Check to see if it's possible to symbolically evaluate 1965 // the arguments into constants, and if so, try to constant propagate the 1966 // result. This is particularly useful for computing loop exit values. 1967 if (CanConstantFold(I)) { 1968 std::vector<Constant*> Operands; 1969 Operands.reserve(I->getNumOperands()); 1970 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 1971 Value *Op = I->getOperand(i); 1972 if (Constant *C = dyn_cast<Constant>(Op)) { 1973 Operands.push_back(C); 1974 } else { 1975 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 1976 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 1977 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(), 1978 Op->getType(), 1979 false)); 1980 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 1981 if (Constant *C = dyn_cast<Constant>(SU->getValue())) 1982 Operands.push_back(ConstantExpr::getIntegerCast(C, 1983 Op->getType(), 1984 false)); 1985 else 1986 return V; 1987 } else { 1988 return V; 1989 } 1990 } 1991 } 1992 Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size()); 1993 return SCEVUnknown::get(C); 1994 } 1995 } 1996 1997 // This is some other type of SCEVUnknown, just return it. 1998 return V; 1999 } 2000 2001 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 2002 // Avoid performing the look-up in the common case where the specified 2003 // expression has no loop-variant portions. 2004 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 2005 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2006 if (OpAtScope != Comm->getOperand(i)) { 2007 if (OpAtScope == UnknownValue) return UnknownValue; 2008 // Okay, at least one of these operands is loop variant but might be 2009 // foldable. Build a new instance of the folded commutative expression. 2010 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); 2011 NewOps.push_back(OpAtScope); 2012 2013 for (++i; i != e; ++i) { 2014 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2015 if (OpAtScope == UnknownValue) return UnknownValue; 2016 NewOps.push_back(OpAtScope); 2017 } 2018 if (isa<SCEVAddExpr>(Comm)) 2019 return SCEVAddExpr::get(NewOps); 2020 assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!"); 2021 return SCEVMulExpr::get(NewOps); 2022 } 2023 } 2024 // If we got here, all operands are loop invariant. 2025 return Comm; 2026 } 2027 2028 if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) { 2029 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 2030 if (LHS == UnknownValue) return LHS; 2031 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 2032 if (RHS == UnknownValue) return RHS; 2033 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 2034 return Div; // must be loop invariant 2035 return SCEVSDivExpr::get(LHS, RHS); 2036 } 2037 2038 // If this is a loop recurrence for a loop that does not contain L, then we 2039 // are dealing with the final value computed by the loop. 2040 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 2041 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 2042 // To evaluate this recurrence, we need to know how many times the AddRec 2043 // loop iterates. Compute this now. 2044 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop()); 2045 if (IterationCount == UnknownValue) return UnknownValue; 2046 IterationCount = getTruncateOrZeroExtend(IterationCount, 2047 AddRec->getType()); 2048 2049 // If the value is affine, simplify the expression evaluation to just 2050 // Start + Step*IterationCount. 2051 if (AddRec->isAffine()) 2052 return SCEVAddExpr::get(AddRec->getStart(), 2053 SCEVMulExpr::get(IterationCount, 2054 AddRec->getOperand(1))); 2055 2056 // Otherwise, evaluate it the hard way. 2057 return AddRec->evaluateAtIteration(IterationCount); 2058 } 2059 return UnknownValue; 2060 } 2061 2062 //assert(0 && "Unknown SCEV type!"); 2063 return UnknownValue; 2064 } 2065 2066 2067 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 2068 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 2069 /// might be the same) or two SCEVCouldNotCompute objects. 2070 /// 2071 static std::pair<SCEVHandle,SCEVHandle> 2072 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) { 2073 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 2074 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 2075 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 2076 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 2077 2078 // We currently can only solve this if the coefficients are constants. 2079 if (!LC || !MC || !NC) { 2080 SCEV *CNC = new SCEVCouldNotCompute(); 2081 return std::make_pair(CNC, CNC); 2082 } 2083 2084 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 2085 APInt L(LC->getValue()->getValue()); 2086 APInt M(MC->getValue()->getValue()); 2087 APInt N(MC->getValue()->getValue()); 2088 APInt Two(BitWidth, 2); 2089 APInt Four(BitWidth, 4); 2090 2091 { 2092 using namespace APIntOps; 2093 APInt C(L); 2094 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 2095 // The B coefficient is M-N/2 2096 APInt B(M); 2097 B -= sdiv(N,Two); 2098 2099 // The A coefficient is N/2 2100 APInt A(N); 2101 A = A.sdiv(Two); 2102 2103 // Compute the B^2-4ac term. 2104 APInt SqrtTerm(B); 2105 SqrtTerm *= B; 2106 SqrtTerm -= Four * (A * C); 2107 2108 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 2109 // integer value or else APInt::sqrt() will assert. 2110 APInt SqrtVal(SqrtTerm.sqrt()); 2111 2112 // Compute the two solutions for the quadratic formula. 2113 // The divisions must be performed as signed divisions. 2114 APInt NegB(-B); 2115 APInt TwoA( A * Two ); 2116 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 2117 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 2118 2119 return std::make_pair(SCEVUnknown::get(Solution1), 2120 SCEVUnknown::get(Solution2)); 2121 } // end APIntOps namespace 2122 } 2123 2124 /// HowFarToZero - Return the number of times a backedge comparing the specified 2125 /// value to zero will execute. If not computable, return UnknownValue 2126 SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) { 2127 // If the value is a constant 2128 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2129 // If the value is already zero, the branch will execute zero times. 2130 if (C->getValue()->isZero()) return C; 2131 return UnknownValue; // Otherwise it will loop infinitely. 2132 } 2133 2134 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 2135 if (!AddRec || AddRec->getLoop() != L) 2136 return UnknownValue; 2137 2138 if (AddRec->isAffine()) { 2139 // If this is an affine expression the execution count of this branch is 2140 // equal to: 2141 // 2142 // (0 - Start/Step) iff Start % Step == 0 2143 // 2144 // Get the initial value for the loop. 2145 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 2146 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; 2147 SCEVHandle Step = AddRec->getOperand(1); 2148 2149 Step = getSCEVAtScope(Step, L->getParentLoop()); 2150 2151 // Figure out if Start % Step == 0. 2152 // FIXME: We should add DivExpr and RemExpr operations to our AST. 2153 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 2154 if (StepC->getValue()->equalsInt(1)) // N % 1 == 0 2155 return SCEV::getNegativeSCEV(Start); // 0 - Start/1 == -Start 2156 if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0 2157 return Start; // 0 - Start/-1 == Start 2158 2159 // Check to see if Start is divisible by SC with no remainder. 2160 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) { 2161 ConstantInt *StartCC = StartC->getValue(); 2162 Constant *StartNegC = ConstantExpr::getNeg(StartCC); 2163 Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue()); 2164 if (Rem->isNullValue()) { 2165 Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue()); 2166 return SCEVUnknown::get(Result); 2167 } 2168 } 2169 } 2170 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 2171 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 2172 // the quadratic equation to solve it. 2173 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec); 2174 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2175 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2176 if (R1) { 2177 #if 0 2178 cerr << "HFTZ: " << *V << " - sol#1: " << *R1 2179 << " sol#2: " << *R2 << "\n"; 2180 #endif 2181 // Pick the smallest positive root value. 2182 if (ConstantInt *CB = 2183 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2184 R1->getValue(), R2->getValue()))) { 2185 if (CB->getZExtValue() == false) 2186 std::swap(R1, R2); // R1 is the minimum root now. 2187 2188 // We can only use this value if the chrec ends up with an exact zero 2189 // value at this index. When solving for "X*X != 5", for example, we 2190 // should not accept a root of 2. 2191 SCEVHandle Val = AddRec->evaluateAtIteration(R1); 2192 if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val)) 2193 if (EvalVal->getValue()->isZero()) 2194 return R1; // We found a quadratic root! 2195 } 2196 } 2197 } 2198 2199 return UnknownValue; 2200 } 2201 2202 /// HowFarToNonZero - Return the number of times a backedge checking the 2203 /// specified value for nonzero will execute. If not computable, return 2204 /// UnknownValue 2205 SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) { 2206 // Loops that look like: while (X == 0) are very strange indeed. We don't 2207 // handle them yet except for the trivial case. This could be expanded in the 2208 // future as needed. 2209 2210 // If the value is a constant, check to see if it is known to be non-zero 2211 // already. If so, the backedge will execute zero times. 2212 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2213 Constant *Zero = Constant::getNullValue(C->getValue()->getType()); 2214 Constant *NonZero = 2215 ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero); 2216 if (NonZero == ConstantInt::getTrue()) 2217 return getSCEV(Zero); 2218 return UnknownValue; // Otherwise it will loop infinitely. 2219 } 2220 2221 // We could implement others, but I really doubt anyone writes loops like 2222 // this, and if they did, they would already be constant folded. 2223 return UnknownValue; 2224 } 2225 2226 /// HowManyLessThans - Return the number of times a backedge containing the 2227 /// specified less-than comparison will execute. If not computable, return 2228 /// UnknownValue. 2229 SCEVHandle ScalarEvolutionsImpl:: 2230 HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) { 2231 // Only handle: "ADDREC < LoopInvariant". 2232 if (!RHS->isLoopInvariant(L)) return UnknownValue; 2233 2234 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 2235 if (!AddRec || AddRec->getLoop() != L) 2236 return UnknownValue; 2237 2238 if (AddRec->isAffine()) { 2239 // FORNOW: We only support unit strides. 2240 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType()); 2241 if (AddRec->getOperand(1) != One) 2242 return UnknownValue; 2243 2244 // The number of iterations for "[n,+,1] < m", is m-n. However, we don't 2245 // know that m is >= n on input to the loop. If it is, the condition return 2246 // true zero times. What we really should return, for full generality, is 2247 // SMAX(0, m-n). Since we cannot check this, we will instead check for a 2248 // canonical loop form: most do-loops will have a check that dominates the 2249 // loop, that only enters the loop if [n-1]<m. If we can find this check, 2250 // we know that the SMAX will evaluate to m-n, because we know that m >= n. 2251 2252 // Search for the check. 2253 BasicBlock *Preheader = L->getLoopPreheader(); 2254 BasicBlock *PreheaderDest = L->getHeader(); 2255 if (Preheader == 0) return UnknownValue; 2256 2257 BranchInst *LoopEntryPredicate = 2258 dyn_cast<BranchInst>(Preheader->getTerminator()); 2259 if (!LoopEntryPredicate) return UnknownValue; 2260 2261 // This might be a critical edge broken out. If the loop preheader ends in 2262 // an unconditional branch to the loop, check to see if the preheader has a 2263 // single predecessor, and if so, look for its terminator. 2264 while (LoopEntryPredicate->isUnconditional()) { 2265 PreheaderDest = Preheader; 2266 Preheader = Preheader->getSinglePredecessor(); 2267 if (!Preheader) return UnknownValue; // Multiple preds. 2268 2269 LoopEntryPredicate = 2270 dyn_cast<BranchInst>(Preheader->getTerminator()); 2271 if (!LoopEntryPredicate) return UnknownValue; 2272 } 2273 2274 // Now that we found a conditional branch that dominates the loop, check to 2275 // see if it is the comparison we are looking for. 2276 if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){ 2277 Value *PreCondLHS = ICI->getOperand(0); 2278 Value *PreCondRHS = ICI->getOperand(1); 2279 ICmpInst::Predicate Cond; 2280 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) 2281 Cond = ICI->getPredicate(); 2282 else 2283 Cond = ICI->getInversePredicate(); 2284 2285 switch (Cond) { 2286 case ICmpInst::ICMP_UGT: 2287 std::swap(PreCondLHS, PreCondRHS); 2288 Cond = ICmpInst::ICMP_ULT; 2289 break; 2290 case ICmpInst::ICMP_SGT: 2291 std::swap(PreCondLHS, PreCondRHS); 2292 Cond = ICmpInst::ICMP_SLT; 2293 break; 2294 default: break; 2295 } 2296 2297 if (Cond == ICmpInst::ICMP_SLT) { 2298 if (PreCondLHS->getType()->isInteger()) { 2299 if (RHS != getSCEV(PreCondRHS)) 2300 return UnknownValue; // Not a comparison against 'm'. 2301 2302 if (SCEV::getMinusSCEV(AddRec->getOperand(0), One) 2303 != getSCEV(PreCondLHS)) 2304 return UnknownValue; // Not a comparison against 'n-1'. 2305 } 2306 else return UnknownValue; 2307 } else if (Cond == ICmpInst::ICMP_ULT) 2308 return UnknownValue; 2309 2310 // cerr << "Computed Loop Trip Count as: " 2311 // << // *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n"; 2312 return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)); 2313 } 2314 else 2315 return UnknownValue; 2316 } 2317 2318 return UnknownValue; 2319 } 2320 2321 /// getNumIterationsInRange - Return the number of iterations of this loop that 2322 /// produce values in the specified constant range. Another way of looking at 2323 /// this is that it returns the first iteration number where the value is not in 2324 /// the condition, thus computing the exit count. If the iteration count can't 2325 /// be computed, an instance of SCEVCouldNotCompute is returned. 2326 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 2327 bool isSigned) const { 2328 if (Range.isFullSet()) // Infinite loop. 2329 return new SCEVCouldNotCompute(); 2330 2331 // If the start is a non-zero constant, shift the range to simplify things. 2332 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 2333 if (!SC->getValue()->isZero()) { 2334 std::vector<SCEVHandle> Operands(op_begin(), op_end()); 2335 Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType()); 2336 SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop()); 2337 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 2338 return ShiftedAddRec->getNumIterationsInRange( 2339 Range.subtract(SC->getValue()->getValue()),isSigned); 2340 // This is strange and shouldn't happen. 2341 return new SCEVCouldNotCompute(); 2342 } 2343 2344 // The only time we can solve this is when we have all constant indices. 2345 // Otherwise, we cannot determine the overflow conditions. 2346 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 2347 if (!isa<SCEVConstant>(getOperand(i))) 2348 return new SCEVCouldNotCompute(); 2349 2350 2351 // Okay at this point we know that all elements of the chrec are constants and 2352 // that the start element is zero. 2353 2354 // First check to see if the range contains zero. If not, the first 2355 // iteration exits. 2356 if (!Range.contains(APInt(getBitWidth(),0))) 2357 return SCEVConstant::get(ConstantInt::get(getType(),0)); 2358 2359 if (isAffine()) { 2360 // If this is an affine expression then we have this situation: 2361 // Solve {0,+,A} in Range === Ax in Range 2362 2363 // Since we know that zero is in the range, we know that the upper value of 2364 // the range must be the first possible exit value. Also note that we 2365 // already checked for a full range. 2366 const APInt &Upper = Range.getUpper(); 2367 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 2368 APInt One(getBitWidth(),1); 2369 2370 // The exit value should be (Upper+A-1)/A. 2371 APInt ExitVal(Upper); 2372 if (A != One) 2373 ExitVal = (Upper + A - One).sdiv(A); 2374 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 2375 2376 // Evaluate at the exit value. If we really did fall out of the valid 2377 // range, then we computed our trip count, otherwise wrap around or other 2378 // things must have happened. 2379 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue); 2380 if (Range.contains(Val->getValue())) 2381 return new SCEVCouldNotCompute(); // Something strange happened 2382 2383 // Ensure that the previous value is in the range. This is a sanity check. 2384 assert(Range.contains( 2385 EvaluateConstantChrecAtConstant(this, 2386 ConstantInt::get(ExitVal - One))->getValue()) && 2387 "Linear scev computation is off in a bad way!"); 2388 return SCEVConstant::get(cast<ConstantInt>(ExitValue)); 2389 } else if (isQuadratic()) { 2390 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 2391 // quadratic equation to solve it. To do this, we must frame our problem in 2392 // terms of figuring out when zero is crossed, instead of when 2393 // Range.getUpper() is crossed. 2394 std::vector<SCEVHandle> NewOps(op_begin(), op_end()); 2395 NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get( 2396 ConstantInt::get(Range.getUpper()))); 2397 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop()); 2398 2399 // Next, solve the constructed addrec 2400 std::pair<SCEVHandle,SCEVHandle> Roots = 2401 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec)); 2402 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2403 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2404 if (R1) { 2405 // Pick the smallest positive root value. 2406 if (ConstantInt *CB = 2407 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2408 R1->getValue(), R2->getValue()))) { 2409 if (CB->getZExtValue() == false) 2410 std::swap(R1, R2); // R1 is the minimum root now. 2411 2412 // Make sure the root is not off by one. The returned iteration should 2413 // not be in the range, but the previous one should be. When solving 2414 // for "X*X < 5", for example, we should not return a root of 2. 2415 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 2416 R1->getValue()); 2417 if (Range.contains(R1Val->getValue())) { 2418 // The next iteration must be out of the range... 2419 Constant *NextVal = 2420 ConstantExpr::getAdd(R1->getValue(), 2421 ConstantInt::get(R1->getType(), 1)); 2422 2423 R1Val = EvaluateConstantChrecAtConstant(this, NextVal); 2424 if (!Range.contains(R1Val->getValue())) 2425 return SCEVUnknown::get(NextVal); 2426 return new SCEVCouldNotCompute(); // Something strange happened 2427 } 2428 2429 // If R1 was not in the range, then it is a good return value. Make 2430 // sure that R1-1 WAS in the range though, just in case. 2431 Constant *NextVal = 2432 ConstantExpr::getSub(R1->getValue(), 2433 ConstantInt::get(R1->getType(), 1)); 2434 R1Val = EvaluateConstantChrecAtConstant(this, NextVal); 2435 if (Range.contains(R1Val->getValue())) 2436 return R1; 2437 return new SCEVCouldNotCompute(); // Something strange happened 2438 } 2439 } 2440 } 2441 2442 // Fallback, if this is a general polynomial, figure out the progression 2443 // through brute force: evaluate until we find an iteration that fails the 2444 // test. This is likely to be slow, but getting an accurate trip count is 2445 // incredibly important, we will be able to simplify the exit test a lot, and 2446 // we are almost guaranteed to get a trip count in this case. 2447 ConstantInt *TestVal = ConstantInt::get(getType(), 0); 2448 ConstantInt *One = ConstantInt::get(getType(), 1); 2449 ConstantInt *EndVal = TestVal; // Stop when we wrap around. 2450 do { 2451 ++NumBruteForceEvaluations; 2452 SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal)); 2453 if (!isa<SCEVConstant>(Val)) // This shouldn't happen. 2454 return new SCEVCouldNotCompute(); 2455 2456 // Check to see if we found the value! 2457 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue())) 2458 return SCEVConstant::get(TestVal); 2459 2460 // Increment to test the next index. 2461 TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One)); 2462 } while (TestVal != EndVal); 2463 2464 return new SCEVCouldNotCompute(); 2465 } 2466 2467 2468 2469 //===----------------------------------------------------------------------===// 2470 // ScalarEvolution Class Implementation 2471 //===----------------------------------------------------------------------===// 2472 2473 bool ScalarEvolution::runOnFunction(Function &F) { 2474 Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>()); 2475 return false; 2476 } 2477 2478 void ScalarEvolution::releaseMemory() { 2479 delete (ScalarEvolutionsImpl*)Impl; 2480 Impl = 0; 2481 } 2482 2483 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 2484 AU.setPreservesAll(); 2485 AU.addRequiredTransitive<LoopInfo>(); 2486 } 2487 2488 SCEVHandle ScalarEvolution::getSCEV(Value *V) const { 2489 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V); 2490 } 2491 2492 /// hasSCEV - Return true if the SCEV for this value has already been 2493 /// computed. 2494 bool ScalarEvolution::hasSCEV(Value *V) const { 2495 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V); 2496 } 2497 2498 2499 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 2500 /// the specified value. 2501 void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) { 2502 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H); 2503 } 2504 2505 2506 SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const { 2507 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L); 2508 } 2509 2510 bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const { 2511 return !isa<SCEVCouldNotCompute>(getIterationCount(L)); 2512 } 2513 2514 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const { 2515 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L); 2516 } 2517 2518 void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const { 2519 return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I); 2520 } 2521 2522 static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, 2523 const Loop *L) { 2524 // Print all inner loops first 2525 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 2526 PrintLoopInfo(OS, SE, *I); 2527 2528 cerr << "Loop " << L->getHeader()->getName() << ": "; 2529 2530 std::vector<BasicBlock*> ExitBlocks; 2531 L->getExitBlocks(ExitBlocks); 2532 if (ExitBlocks.size() != 1) 2533 cerr << "<multiple exits> "; 2534 2535 if (SE->hasLoopInvariantIterationCount(L)) { 2536 cerr << *SE->getIterationCount(L) << " iterations! "; 2537 } else { 2538 cerr << "Unpredictable iteration count. "; 2539 } 2540 2541 cerr << "\n"; 2542 } 2543 2544 void ScalarEvolution::print(std::ostream &OS, const Module* ) const { 2545 Function &F = ((ScalarEvolutionsImpl*)Impl)->F; 2546 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI; 2547 2548 OS << "Classifying expressions for: " << F.getName() << "\n"; 2549 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 2550 if (I->getType()->isInteger()) { 2551 OS << *I; 2552 OS << " --> "; 2553 SCEVHandle SV = getSCEV(&*I); 2554 SV->print(OS); 2555 OS << "\t\t"; 2556 2557 if ((*I).getType()->isInteger()) { 2558 ConstantRange Bounds = SV->getValueRange(); 2559 if (!Bounds.isFullSet()) 2560 OS << "Bounds: " << Bounds << " "; 2561 } 2562 2563 if (const Loop *L = LI.getLoopFor((*I).getParent())) { 2564 OS << "Exits: "; 2565 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop()); 2566 if (isa<SCEVCouldNotCompute>(ExitValue)) { 2567 OS << "<<Unknown>>"; 2568 } else { 2569 OS << *ExitValue; 2570 } 2571 } 2572 2573 2574 OS << "\n"; 2575 } 2576 2577 OS << "Determining loop execution counts for: " << F.getName() << "\n"; 2578 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 2579 PrintLoopInfo(OS, this, *I); 2580 } 2581 2582