1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include <algorithm> 92 using namespace llvm; 93 94 #define DEBUG_TYPE "scalar-evolution" 95 96 STATISTIC(NumArrayLenItCounts, 97 "Number of trip counts computed with array length"); 98 STATISTIC(NumTripCountsComputed, 99 "Number of loops with predictable loop counts"); 100 STATISTIC(NumTripCountsNotComputed, 101 "Number of loops without predictable loop counts"); 102 STATISTIC(NumBruteForceTripCountsComputed, 103 "Number of loops with trip counts computed by force"); 104 105 static cl::opt<unsigned> 106 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 107 cl::desc("Maximum number of iterations SCEV will " 108 "symbolically execute a constant " 109 "derived loop"), 110 cl::init(100)); 111 112 // FIXME: Enable this with XDEBUG when the test suite is clean. 113 static cl::opt<bool> 114 VerifySCEV("verify-scev", 115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 116 117 //===----------------------------------------------------------------------===// 118 // SCEV class definitions 119 //===----------------------------------------------------------------------===// 120 121 //===----------------------------------------------------------------------===// 122 // Implementation of the SCEV class. 123 // 124 125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 126 void SCEV::dump() const { 127 print(dbgs()); 128 dbgs() << '\n'; 129 } 130 #endif 131 132 void SCEV::print(raw_ostream &OS) const { 133 switch (static_cast<SCEVTypes>(getSCEVType())) { 134 case scConstant: 135 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 136 return; 137 case scTruncate: { 138 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 139 const SCEV *Op = Trunc->getOperand(); 140 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 141 << *Trunc->getType() << ")"; 142 return; 143 } 144 case scZeroExtend: { 145 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 146 const SCEV *Op = ZExt->getOperand(); 147 OS << "(zext " << *Op->getType() << " " << *Op << " to " 148 << *ZExt->getType() << ")"; 149 return; 150 } 151 case scSignExtend: { 152 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 153 const SCEV *Op = SExt->getOperand(); 154 OS << "(sext " << *Op->getType() << " " << *Op << " to " 155 << *SExt->getType() << ")"; 156 return; 157 } 158 case scAddRecExpr: { 159 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 160 OS << "{" << *AR->getOperand(0); 161 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 162 OS << ",+," << *AR->getOperand(i); 163 OS << "}<"; 164 if (AR->getNoWrapFlags(FlagNUW)) 165 OS << "nuw><"; 166 if (AR->getNoWrapFlags(FlagNSW)) 167 OS << "nsw><"; 168 if (AR->getNoWrapFlags(FlagNW) && 169 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 170 OS << "nw><"; 171 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 172 OS << ">"; 173 return; 174 } 175 case scAddExpr: 176 case scMulExpr: 177 case scUMaxExpr: 178 case scSMaxExpr: { 179 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 180 const char *OpStr = nullptr; 181 switch (NAry->getSCEVType()) { 182 case scAddExpr: OpStr = " + "; break; 183 case scMulExpr: OpStr = " * "; break; 184 case scUMaxExpr: OpStr = " umax "; break; 185 case scSMaxExpr: OpStr = " smax "; break; 186 } 187 OS << "("; 188 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 189 I != E; ++I) { 190 OS << **I; 191 if (std::next(I) != E) 192 OS << OpStr; 193 } 194 OS << ")"; 195 switch (NAry->getSCEVType()) { 196 case scAddExpr: 197 case scMulExpr: 198 if (NAry->getNoWrapFlags(FlagNUW)) 199 OS << "<nuw>"; 200 if (NAry->getNoWrapFlags(FlagNSW)) 201 OS << "<nsw>"; 202 } 203 return; 204 } 205 case scUDivExpr: { 206 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 207 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 208 return; 209 } 210 case scUnknown: { 211 const SCEVUnknown *U = cast<SCEVUnknown>(this); 212 Type *AllocTy; 213 if (U->isSizeOf(AllocTy)) { 214 OS << "sizeof(" << *AllocTy << ")"; 215 return; 216 } 217 if (U->isAlignOf(AllocTy)) { 218 OS << "alignof(" << *AllocTy << ")"; 219 return; 220 } 221 222 Type *CTy; 223 Constant *FieldNo; 224 if (U->isOffsetOf(CTy, FieldNo)) { 225 OS << "offsetof(" << *CTy << ", "; 226 FieldNo->printAsOperand(OS, false); 227 OS << ")"; 228 return; 229 } 230 231 // Otherwise just print it normally. 232 U->getValue()->printAsOperand(OS, false); 233 return; 234 } 235 case scCouldNotCompute: 236 OS << "***COULDNOTCOMPUTE***"; 237 return; 238 } 239 llvm_unreachable("Unknown SCEV kind!"); 240 } 241 242 Type *SCEV::getType() const { 243 switch (static_cast<SCEVTypes>(getSCEVType())) { 244 case scConstant: 245 return cast<SCEVConstant>(this)->getType(); 246 case scTruncate: 247 case scZeroExtend: 248 case scSignExtend: 249 return cast<SCEVCastExpr>(this)->getType(); 250 case scAddRecExpr: 251 case scMulExpr: 252 case scUMaxExpr: 253 case scSMaxExpr: 254 return cast<SCEVNAryExpr>(this)->getType(); 255 case scAddExpr: 256 return cast<SCEVAddExpr>(this)->getType(); 257 case scUDivExpr: 258 return cast<SCEVUDivExpr>(this)->getType(); 259 case scUnknown: 260 return cast<SCEVUnknown>(this)->getType(); 261 case scCouldNotCompute: 262 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 263 } 264 llvm_unreachable("Unknown SCEV kind!"); 265 } 266 267 bool SCEV::isZero() const { 268 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 269 return SC->getValue()->isZero(); 270 return false; 271 } 272 273 bool SCEV::isOne() const { 274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 275 return SC->getValue()->isOne(); 276 return false; 277 } 278 279 bool SCEV::isAllOnesValue() const { 280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 281 return SC->getValue()->isAllOnesValue(); 282 return false; 283 } 284 285 /// isNonConstantNegative - Return true if the specified scev is negated, but 286 /// not a constant. 287 bool SCEV::isNonConstantNegative() const { 288 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 289 if (!Mul) return false; 290 291 // If there is a constant factor, it will be first. 292 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 293 if (!SC) return false; 294 295 // Return true if the value is negative, this matches things like (-42 * V). 296 return SC->getValue()->getValue().isNegative(); 297 } 298 299 SCEVCouldNotCompute::SCEVCouldNotCompute() : 300 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 301 302 bool SCEVCouldNotCompute::classof(const SCEV *S) { 303 return S->getSCEVType() == scCouldNotCompute; 304 } 305 306 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 307 FoldingSetNodeID ID; 308 ID.AddInteger(scConstant); 309 ID.AddPointer(V); 310 void *IP = nullptr; 311 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 312 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 313 UniqueSCEVs.InsertNode(S, IP); 314 return S; 315 } 316 317 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 318 return getConstant(ConstantInt::get(getContext(), Val)); 319 } 320 321 const SCEV * 322 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 323 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 324 return getConstant(ConstantInt::get(ITy, V, isSigned)); 325 } 326 327 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 328 unsigned SCEVTy, const SCEV *op, Type *ty) 329 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 330 331 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 332 const SCEV *op, Type *ty) 333 : SCEVCastExpr(ID, scTruncate, op, ty) { 334 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 335 (Ty->isIntegerTy() || Ty->isPointerTy()) && 336 "Cannot truncate non-integer value!"); 337 } 338 339 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 340 const SCEV *op, Type *ty) 341 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 343 (Ty->isIntegerTy() || Ty->isPointerTy()) && 344 "Cannot zero extend non-integer value!"); 345 } 346 347 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 348 const SCEV *op, Type *ty) 349 : SCEVCastExpr(ID, scSignExtend, op, ty) { 350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 351 (Ty->isIntegerTy() || Ty->isPointerTy()) && 352 "Cannot sign extend non-integer value!"); 353 } 354 355 void SCEVUnknown::deleted() { 356 // Clear this SCEVUnknown from various maps. 357 SE->forgetMemoizedResults(this); 358 359 // Remove this SCEVUnknown from the uniquing map. 360 SE->UniqueSCEVs.RemoveNode(this); 361 362 // Release the value. 363 setValPtr(nullptr); 364 } 365 366 void SCEVUnknown::allUsesReplacedWith(Value *New) { 367 // Clear this SCEVUnknown from various maps. 368 SE->forgetMemoizedResults(this); 369 370 // Remove this SCEVUnknown from the uniquing map. 371 SE->UniqueSCEVs.RemoveNode(this); 372 373 // Update this SCEVUnknown to point to the new value. This is needed 374 // because there may still be outstanding SCEVs which still point to 375 // this SCEVUnknown. 376 setValPtr(New); 377 } 378 379 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 380 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 381 if (VCE->getOpcode() == Instruction::PtrToInt) 382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 383 if (CE->getOpcode() == Instruction::GetElementPtr && 384 CE->getOperand(0)->isNullValue() && 385 CE->getNumOperands() == 2) 386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 387 if (CI->isOne()) { 388 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 389 ->getElementType(); 390 return true; 391 } 392 393 return false; 394 } 395 396 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 398 if (VCE->getOpcode() == Instruction::PtrToInt) 399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 400 if (CE->getOpcode() == Instruction::GetElementPtr && 401 CE->getOperand(0)->isNullValue()) { 402 Type *Ty = 403 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 404 if (StructType *STy = dyn_cast<StructType>(Ty)) 405 if (!STy->isPacked() && 406 CE->getNumOperands() == 3 && 407 CE->getOperand(1)->isNullValue()) { 408 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 409 if (CI->isOne() && 410 STy->getNumElements() == 2 && 411 STy->getElementType(0)->isIntegerTy(1)) { 412 AllocTy = STy->getElementType(1); 413 return true; 414 } 415 } 416 } 417 418 return false; 419 } 420 421 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 422 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 423 if (VCE->getOpcode() == Instruction::PtrToInt) 424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 425 if (CE->getOpcode() == Instruction::GetElementPtr && 426 CE->getNumOperands() == 3 && 427 CE->getOperand(0)->isNullValue() && 428 CE->getOperand(1)->isNullValue()) { 429 Type *Ty = 430 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 431 // Ignore vector types here so that ScalarEvolutionExpander doesn't 432 // emit getelementptrs that index into vectors. 433 if (Ty->isStructTy() || Ty->isArrayTy()) { 434 CTy = Ty; 435 FieldNo = CE->getOperand(2); 436 return true; 437 } 438 } 439 440 return false; 441 } 442 443 //===----------------------------------------------------------------------===// 444 // SCEV Utilities 445 //===----------------------------------------------------------------------===// 446 447 namespace { 448 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 449 /// than the complexity of the RHS. This comparator is used to canonicalize 450 /// expressions. 451 class SCEVComplexityCompare { 452 const LoopInfo *const LI; 453 public: 454 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 455 456 // Return true or false if LHS is less than, or at least RHS, respectively. 457 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 458 return compare(LHS, RHS) < 0; 459 } 460 461 // Return negative, zero, or positive, if LHS is less than, equal to, or 462 // greater than RHS, respectively. A three-way result allows recursive 463 // comparisons to be more efficient. 464 int compare(const SCEV *LHS, const SCEV *RHS) const { 465 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 466 if (LHS == RHS) 467 return 0; 468 469 // Primarily, sort the SCEVs by their getSCEVType(). 470 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 471 if (LType != RType) 472 return (int)LType - (int)RType; 473 474 // Aside from the getSCEVType() ordering, the particular ordering 475 // isn't very important except that it's beneficial to be consistent, 476 // so that (a + b) and (b + a) don't end up as different expressions. 477 switch (static_cast<SCEVTypes>(LType)) { 478 case scUnknown: { 479 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 480 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 481 482 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 483 // not as complete as it could be. 484 const Value *LV = LU->getValue(), *RV = RU->getValue(); 485 486 // Order pointer values after integer values. This helps SCEVExpander 487 // form GEPs. 488 bool LIsPointer = LV->getType()->isPointerTy(), 489 RIsPointer = RV->getType()->isPointerTy(); 490 if (LIsPointer != RIsPointer) 491 return (int)LIsPointer - (int)RIsPointer; 492 493 // Compare getValueID values. 494 unsigned LID = LV->getValueID(), 495 RID = RV->getValueID(); 496 if (LID != RID) 497 return (int)LID - (int)RID; 498 499 // Sort arguments by their position. 500 if (const Argument *LA = dyn_cast<Argument>(LV)) { 501 const Argument *RA = cast<Argument>(RV); 502 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 503 return (int)LArgNo - (int)RArgNo; 504 } 505 506 // For instructions, compare their loop depth, and their operand 507 // count. This is pretty loose. 508 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 509 const Instruction *RInst = cast<Instruction>(RV); 510 511 // Compare loop depths. 512 const BasicBlock *LParent = LInst->getParent(), 513 *RParent = RInst->getParent(); 514 if (LParent != RParent) { 515 unsigned LDepth = LI->getLoopDepth(LParent), 516 RDepth = LI->getLoopDepth(RParent); 517 if (LDepth != RDepth) 518 return (int)LDepth - (int)RDepth; 519 } 520 521 // Compare the number of operands. 522 unsigned LNumOps = LInst->getNumOperands(), 523 RNumOps = RInst->getNumOperands(); 524 return (int)LNumOps - (int)RNumOps; 525 } 526 527 return 0; 528 } 529 530 case scConstant: { 531 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 532 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 533 534 // Compare constant values. 535 const APInt &LA = LC->getValue()->getValue(); 536 const APInt &RA = RC->getValue()->getValue(); 537 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 538 if (LBitWidth != RBitWidth) 539 return (int)LBitWidth - (int)RBitWidth; 540 return LA.ult(RA) ? -1 : 1; 541 } 542 543 case scAddRecExpr: { 544 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 545 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 546 547 // Compare addrec loop depths. 548 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 549 if (LLoop != RLoop) { 550 unsigned LDepth = LLoop->getLoopDepth(), 551 RDepth = RLoop->getLoopDepth(); 552 if (LDepth != RDepth) 553 return (int)LDepth - (int)RDepth; 554 } 555 556 // Addrec complexity grows with operand count. 557 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 558 if (LNumOps != RNumOps) 559 return (int)LNumOps - (int)RNumOps; 560 561 // Lexicographically compare. 562 for (unsigned i = 0; i != LNumOps; ++i) { 563 long X = compare(LA->getOperand(i), RA->getOperand(i)); 564 if (X != 0) 565 return X; 566 } 567 568 return 0; 569 } 570 571 case scAddExpr: 572 case scMulExpr: 573 case scSMaxExpr: 574 case scUMaxExpr: { 575 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 577 578 // Lexicographically compare n-ary expressions. 579 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 580 if (LNumOps != RNumOps) 581 return (int)LNumOps - (int)RNumOps; 582 583 for (unsigned i = 0; i != LNumOps; ++i) { 584 if (i >= RNumOps) 585 return 1; 586 long X = compare(LC->getOperand(i), RC->getOperand(i)); 587 if (X != 0) 588 return X; 589 } 590 return (int)LNumOps - (int)RNumOps; 591 } 592 593 case scUDivExpr: { 594 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 595 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 596 597 // Lexicographically compare udiv expressions. 598 long X = compare(LC->getLHS(), RC->getLHS()); 599 if (X != 0) 600 return X; 601 return compare(LC->getRHS(), RC->getRHS()); 602 } 603 604 case scTruncate: 605 case scZeroExtend: 606 case scSignExtend: { 607 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 608 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 609 610 // Compare cast expressions by operand. 611 return compare(LC->getOperand(), RC->getOperand()); 612 } 613 614 case scCouldNotCompute: 615 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 616 } 617 llvm_unreachable("Unknown SCEV kind!"); 618 } 619 }; 620 } 621 622 /// GroupByComplexity - Given a list of SCEV objects, order them by their 623 /// complexity, and group objects of the same complexity together by value. 624 /// When this routine is finished, we know that any duplicates in the vector are 625 /// consecutive and that complexity is monotonically increasing. 626 /// 627 /// Note that we go take special precautions to ensure that we get deterministic 628 /// results from this routine. In other words, we don't want the results of 629 /// this to depend on where the addresses of various SCEV objects happened to 630 /// land in memory. 631 /// 632 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 633 LoopInfo *LI) { 634 if (Ops.size() < 2) return; // Noop 635 if (Ops.size() == 2) { 636 // This is the common case, which also happens to be trivially simple. 637 // Special case it. 638 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 639 if (SCEVComplexityCompare(LI)(RHS, LHS)) 640 std::swap(LHS, RHS); 641 return; 642 } 643 644 // Do the rough sort by complexity. 645 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 646 647 // Now that we are sorted by complexity, group elements of the same 648 // complexity. Note that this is, at worst, N^2, but the vector is likely to 649 // be extremely short in practice. Note that we take this approach because we 650 // do not want to depend on the addresses of the objects we are grouping. 651 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 652 const SCEV *S = Ops[i]; 653 unsigned Complexity = S->getSCEVType(); 654 655 // If there are any objects of the same complexity and same value as this 656 // one, group them. 657 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 658 if (Ops[j] == S) { // Found a duplicate. 659 // Move it to immediately after i'th element. 660 std::swap(Ops[i+1], Ops[j]); 661 ++i; // no need to rescan it. 662 if (i == e-2) return; // Done! 663 } 664 } 665 } 666 } 667 668 namespace { 669 struct FindSCEVSize { 670 int Size; 671 FindSCEVSize() : Size(0) {} 672 673 bool follow(const SCEV *S) { 674 ++Size; 675 // Keep looking at all operands of S. 676 return true; 677 } 678 bool isDone() const { 679 return false; 680 } 681 }; 682 } 683 684 // Returns the size of the SCEV S. 685 static inline int sizeOfSCEV(const SCEV *S) { 686 FindSCEVSize F; 687 SCEVTraversal<FindSCEVSize> ST(F); 688 ST.visitAll(S); 689 return F.Size; 690 } 691 692 namespace { 693 694 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 695 public: 696 // Computes the Quotient and Remainder of the division of Numerator by 697 // Denominator. 698 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 699 const SCEV *Denominator, const SCEV **Quotient, 700 const SCEV **Remainder) { 701 assert(Numerator && Denominator && "Uninitialized SCEV"); 702 703 SCEVDivision D(SE, Numerator, Denominator); 704 705 // Check for the trivial case here to avoid having to check for it in the 706 // rest of the code. 707 if (Numerator == Denominator) { 708 *Quotient = D.One; 709 *Remainder = D.Zero; 710 return; 711 } 712 713 if (Numerator->isZero()) { 714 *Quotient = D.Zero; 715 *Remainder = D.Zero; 716 return; 717 } 718 719 // A simple case when N/1. The quotient is N. 720 if (Denominator->isOne()) { 721 *Quotient = Numerator; 722 *Remainder = D.Zero; 723 return; 724 } 725 726 // Split the Denominator when it is a product. 727 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 728 const SCEV *Q, *R; 729 *Quotient = Numerator; 730 for (const SCEV *Op : T->operands()) { 731 divide(SE, *Quotient, Op, &Q, &R); 732 *Quotient = Q; 733 734 // Bail out when the Numerator is not divisible by one of the terms of 735 // the Denominator. 736 if (!R->isZero()) { 737 *Quotient = D.Zero; 738 *Remainder = Numerator; 739 return; 740 } 741 } 742 *Remainder = D.Zero; 743 return; 744 } 745 746 D.visit(Numerator); 747 *Quotient = D.Quotient; 748 *Remainder = D.Remainder; 749 } 750 751 // Except in the trivial case described above, we do not know how to divide 752 // Expr by Denominator for the following functions with empty implementation. 753 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 754 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 755 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 756 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 757 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 758 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 759 void visitUnknown(const SCEVUnknown *Numerator) {} 760 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 761 762 void visitConstant(const SCEVConstant *Numerator) { 763 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 764 APInt NumeratorVal = Numerator->getValue()->getValue(); 765 APInt DenominatorVal = D->getValue()->getValue(); 766 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 767 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 768 769 if (NumeratorBW > DenominatorBW) 770 DenominatorVal = DenominatorVal.sext(NumeratorBW); 771 else if (NumeratorBW < DenominatorBW) 772 NumeratorVal = NumeratorVal.sext(DenominatorBW); 773 774 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 775 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 776 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 777 Quotient = SE.getConstant(QuotientVal); 778 Remainder = SE.getConstant(RemainderVal); 779 return; 780 } 781 } 782 783 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 784 const SCEV *StartQ, *StartR, *StepQ, *StepR; 785 if (!Numerator->isAffine()) 786 return cannotDivide(Numerator); 787 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 788 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 789 // Bail out if the types do not match. 790 Type *Ty = Denominator->getType(); 791 if (Ty != StartQ->getType() || Ty != StartR->getType() || 792 Ty != StepQ->getType() || Ty != StepR->getType()) 793 return cannotDivide(Numerator); 794 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 795 Numerator->getNoWrapFlags()); 796 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 797 Numerator->getNoWrapFlags()); 798 } 799 800 void visitAddExpr(const SCEVAddExpr *Numerator) { 801 SmallVector<const SCEV *, 2> Qs, Rs; 802 Type *Ty = Denominator->getType(); 803 804 for (const SCEV *Op : Numerator->operands()) { 805 const SCEV *Q, *R; 806 divide(SE, Op, Denominator, &Q, &R); 807 808 // Bail out if types do not match. 809 if (Ty != Q->getType() || Ty != R->getType()) 810 return cannotDivide(Numerator); 811 812 Qs.push_back(Q); 813 Rs.push_back(R); 814 } 815 816 if (Qs.size() == 1) { 817 Quotient = Qs[0]; 818 Remainder = Rs[0]; 819 return; 820 } 821 822 Quotient = SE.getAddExpr(Qs); 823 Remainder = SE.getAddExpr(Rs); 824 } 825 826 void visitMulExpr(const SCEVMulExpr *Numerator) { 827 SmallVector<const SCEV *, 2> Qs; 828 Type *Ty = Denominator->getType(); 829 830 bool FoundDenominatorTerm = false; 831 for (const SCEV *Op : Numerator->operands()) { 832 // Bail out if types do not match. 833 if (Ty != Op->getType()) 834 return cannotDivide(Numerator); 835 836 if (FoundDenominatorTerm) { 837 Qs.push_back(Op); 838 continue; 839 } 840 841 // Check whether Denominator divides one of the product operands. 842 const SCEV *Q, *R; 843 divide(SE, Op, Denominator, &Q, &R); 844 if (!R->isZero()) { 845 Qs.push_back(Op); 846 continue; 847 } 848 849 // Bail out if types do not match. 850 if (Ty != Q->getType()) 851 return cannotDivide(Numerator); 852 853 FoundDenominatorTerm = true; 854 Qs.push_back(Q); 855 } 856 857 if (FoundDenominatorTerm) { 858 Remainder = Zero; 859 if (Qs.size() == 1) 860 Quotient = Qs[0]; 861 else 862 Quotient = SE.getMulExpr(Qs); 863 return; 864 } 865 866 if (!isa<SCEVUnknown>(Denominator)) 867 return cannotDivide(Numerator); 868 869 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 870 ValueToValueMap RewriteMap; 871 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 872 cast<SCEVConstant>(Zero)->getValue(); 873 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 874 875 if (Remainder->isZero()) { 876 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 877 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 878 cast<SCEVConstant>(One)->getValue(); 879 Quotient = 880 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 881 return; 882 } 883 884 // Quotient is (Numerator - Remainder) divided by Denominator. 885 const SCEV *Q, *R; 886 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 887 // This SCEV does not seem to simplify: fail the division here. 888 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 889 return cannotDivide(Numerator); 890 divide(SE, Diff, Denominator, &Q, &R); 891 if (R != Zero) 892 return cannotDivide(Numerator); 893 Quotient = Q; 894 } 895 896 private: 897 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 898 const SCEV *Denominator) 899 : SE(S), Denominator(Denominator) { 900 Zero = SE.getConstant(Denominator->getType(), 0); 901 One = SE.getConstant(Denominator->getType(), 1); 902 903 // We generally do not know how to divide Expr by Denominator. We 904 // initialize the division to a "cannot divide" state to simplify the rest 905 // of the code. 906 cannotDivide(Numerator); 907 } 908 909 // Convenience function for giving up on the division. We set the quotient to 910 // be equal to zero and the remainder to be equal to the numerator. 911 void cannotDivide(const SCEV *Numerator) { 912 Quotient = Zero; 913 Remainder = Numerator; 914 } 915 916 ScalarEvolution &SE; 917 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 918 }; 919 920 } 921 922 //===----------------------------------------------------------------------===// 923 // Simple SCEV method implementations 924 //===----------------------------------------------------------------------===// 925 926 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 927 /// Assume, K > 0. 928 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 929 ScalarEvolution &SE, 930 Type *ResultTy) { 931 // Handle the simplest case efficiently. 932 if (K == 1) 933 return SE.getTruncateOrZeroExtend(It, ResultTy); 934 935 // We are using the following formula for BC(It, K): 936 // 937 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 938 // 939 // Suppose, W is the bitwidth of the return value. We must be prepared for 940 // overflow. Hence, we must assure that the result of our computation is 941 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 942 // safe in modular arithmetic. 943 // 944 // However, this code doesn't use exactly that formula; the formula it uses 945 // is something like the following, where T is the number of factors of 2 in 946 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 947 // exponentiation: 948 // 949 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 950 // 951 // This formula is trivially equivalent to the previous formula. However, 952 // this formula can be implemented much more efficiently. The trick is that 953 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 954 // arithmetic. To do exact division in modular arithmetic, all we have 955 // to do is multiply by the inverse. Therefore, this step can be done at 956 // width W. 957 // 958 // The next issue is how to safely do the division by 2^T. The way this 959 // is done is by doing the multiplication step at a width of at least W + T 960 // bits. This way, the bottom W+T bits of the product are accurate. Then, 961 // when we perform the division by 2^T (which is equivalent to a right shift 962 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 963 // truncated out after the division by 2^T. 964 // 965 // In comparison to just directly using the first formula, this technique 966 // is much more efficient; using the first formula requires W * K bits, 967 // but this formula less than W + K bits. Also, the first formula requires 968 // a division step, whereas this formula only requires multiplies and shifts. 969 // 970 // It doesn't matter whether the subtraction step is done in the calculation 971 // width or the input iteration count's width; if the subtraction overflows, 972 // the result must be zero anyway. We prefer here to do it in the width of 973 // the induction variable because it helps a lot for certain cases; CodeGen 974 // isn't smart enough to ignore the overflow, which leads to much less 975 // efficient code if the width of the subtraction is wider than the native 976 // register width. 977 // 978 // (It's possible to not widen at all by pulling out factors of 2 before 979 // the multiplication; for example, K=2 can be calculated as 980 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 981 // extra arithmetic, so it's not an obvious win, and it gets 982 // much more complicated for K > 3.) 983 984 // Protection from insane SCEVs; this bound is conservative, 985 // but it probably doesn't matter. 986 if (K > 1000) 987 return SE.getCouldNotCompute(); 988 989 unsigned W = SE.getTypeSizeInBits(ResultTy); 990 991 // Calculate K! / 2^T and T; we divide out the factors of two before 992 // multiplying for calculating K! / 2^T to avoid overflow. 993 // Other overflow doesn't matter because we only care about the bottom 994 // W bits of the result. 995 APInt OddFactorial(W, 1); 996 unsigned T = 1; 997 for (unsigned i = 3; i <= K; ++i) { 998 APInt Mult(W, i); 999 unsigned TwoFactors = Mult.countTrailingZeros(); 1000 T += TwoFactors; 1001 Mult = Mult.lshr(TwoFactors); 1002 OddFactorial *= Mult; 1003 } 1004 1005 // We need at least W + T bits for the multiplication step 1006 unsigned CalculationBits = W + T; 1007 1008 // Calculate 2^T, at width T+W. 1009 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1010 1011 // Calculate the multiplicative inverse of K! / 2^T; 1012 // this multiplication factor will perform the exact division by 1013 // K! / 2^T. 1014 APInt Mod = APInt::getSignedMinValue(W+1); 1015 APInt MultiplyFactor = OddFactorial.zext(W+1); 1016 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1017 MultiplyFactor = MultiplyFactor.trunc(W); 1018 1019 // Calculate the product, at width T+W 1020 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1021 CalculationBits); 1022 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1023 for (unsigned i = 1; i != K; ++i) { 1024 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1025 Dividend = SE.getMulExpr(Dividend, 1026 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1027 } 1028 1029 // Divide by 2^T 1030 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1031 1032 // Truncate the result, and divide by K! / 2^T. 1033 1034 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1035 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1036 } 1037 1038 /// evaluateAtIteration - Return the value of this chain of recurrences at 1039 /// the specified iteration number. We can evaluate this recurrence by 1040 /// multiplying each element in the chain by the binomial coefficient 1041 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1042 /// 1043 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1044 /// 1045 /// where BC(It, k) stands for binomial coefficient. 1046 /// 1047 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1048 ScalarEvolution &SE) const { 1049 const SCEV *Result = getStart(); 1050 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1051 // The computation is correct in the face of overflow provided that the 1052 // multiplication is performed _after_ the evaluation of the binomial 1053 // coefficient. 1054 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1055 if (isa<SCEVCouldNotCompute>(Coeff)) 1056 return Coeff; 1057 1058 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1059 } 1060 return Result; 1061 } 1062 1063 //===----------------------------------------------------------------------===// 1064 // SCEV Expression folder implementations 1065 //===----------------------------------------------------------------------===// 1066 1067 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1068 Type *Ty) { 1069 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1070 "This is not a truncating conversion!"); 1071 assert(isSCEVable(Ty) && 1072 "This is not a conversion to a SCEVable type!"); 1073 Ty = getEffectiveSCEVType(Ty); 1074 1075 FoldingSetNodeID ID; 1076 ID.AddInteger(scTruncate); 1077 ID.AddPointer(Op); 1078 ID.AddPointer(Ty); 1079 void *IP = nullptr; 1080 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1081 1082 // Fold if the operand is constant. 1083 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1084 return getConstant( 1085 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1086 1087 // trunc(trunc(x)) --> trunc(x) 1088 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1089 return getTruncateExpr(ST->getOperand(), Ty); 1090 1091 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1092 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1093 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1094 1095 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1096 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1097 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1098 1099 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1100 // eliminate all the truncates, or we replace other casts with truncates. 1101 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1102 SmallVector<const SCEV *, 4> Operands; 1103 bool hasTrunc = false; 1104 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1105 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1106 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1107 hasTrunc = isa<SCEVTruncateExpr>(S); 1108 Operands.push_back(S); 1109 } 1110 if (!hasTrunc) 1111 return getAddExpr(Operands); 1112 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1113 } 1114 1115 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1116 // eliminate all the truncates, or we replace other casts with truncates. 1117 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1118 SmallVector<const SCEV *, 4> Operands; 1119 bool hasTrunc = false; 1120 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1121 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1122 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1123 hasTrunc = isa<SCEVTruncateExpr>(S); 1124 Operands.push_back(S); 1125 } 1126 if (!hasTrunc) 1127 return getMulExpr(Operands); 1128 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1129 } 1130 1131 // If the input value is a chrec scev, truncate the chrec's operands. 1132 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1133 SmallVector<const SCEV *, 4> Operands; 1134 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1135 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 1136 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1137 } 1138 1139 // The cast wasn't folded; create an explicit cast node. We can reuse 1140 // the existing insert position since if we get here, we won't have 1141 // made any changes which would invalidate it. 1142 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1143 Op, Ty); 1144 UniqueSCEVs.InsertNode(S, IP); 1145 return S; 1146 } 1147 1148 // Get the limit of a recurrence such that incrementing by Step cannot cause 1149 // signed overflow as long as the value of the recurrence within the 1150 // loop does not exceed this limit before incrementing. 1151 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1152 ICmpInst::Predicate *Pred, 1153 ScalarEvolution *SE) { 1154 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1155 if (SE->isKnownPositive(Step)) { 1156 *Pred = ICmpInst::ICMP_SLT; 1157 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1158 SE->getSignedRange(Step).getSignedMax()); 1159 } 1160 if (SE->isKnownNegative(Step)) { 1161 *Pred = ICmpInst::ICMP_SGT; 1162 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1163 SE->getSignedRange(Step).getSignedMin()); 1164 } 1165 return nullptr; 1166 } 1167 1168 // Get the limit of a recurrence such that incrementing by Step cannot cause 1169 // unsigned overflow as long as the value of the recurrence within the loop does 1170 // not exceed this limit before incrementing. 1171 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1172 ICmpInst::Predicate *Pred, 1173 ScalarEvolution *SE) { 1174 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1175 *Pred = ICmpInst::ICMP_ULT; 1176 1177 return SE->getConstant(APInt::getMinValue(BitWidth) - 1178 SE->getUnsignedRange(Step).getUnsignedMax()); 1179 } 1180 1181 namespace { 1182 1183 struct ExtendOpTraitsBase { 1184 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1185 }; 1186 1187 // Used to make code generic over signed and unsigned overflow. 1188 template <typename ExtendOp> struct ExtendOpTraits { 1189 // Members present: 1190 // 1191 // static const SCEV::NoWrapFlags WrapType; 1192 // 1193 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1194 // 1195 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1196 // ICmpInst::Predicate *Pred, 1197 // ScalarEvolution *SE); 1198 }; 1199 1200 template <> 1201 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1202 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1203 1204 static const GetExtendExprTy GetExtendExpr; 1205 1206 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1207 ICmpInst::Predicate *Pred, 1208 ScalarEvolution *SE) { 1209 return getSignedOverflowLimitForStep(Step, Pred, SE); 1210 } 1211 }; 1212 1213 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1214 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1215 1216 template <> 1217 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1218 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1219 1220 static const GetExtendExprTy GetExtendExpr; 1221 1222 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1223 ICmpInst::Predicate *Pred, 1224 ScalarEvolution *SE) { 1225 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1226 } 1227 }; 1228 1229 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1230 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1231 } 1232 1233 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1234 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1235 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1236 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1237 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1238 // expression "Step + sext/zext(PreIncAR)" is congruent with 1239 // "sext/zext(PostIncAR)" 1240 template <typename ExtendOpTy> 1241 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1242 ScalarEvolution *SE) { 1243 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1244 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1245 1246 const Loop *L = AR->getLoop(); 1247 const SCEV *Start = AR->getStart(); 1248 const SCEV *Step = AR->getStepRecurrence(*SE); 1249 1250 // Check for a simple looking step prior to loop entry. 1251 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1252 if (!SA) 1253 return nullptr; 1254 1255 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1256 // subtraction is expensive. For this purpose, perform a quick and dirty 1257 // difference, by checking for Step in the operand list. 1258 SmallVector<const SCEV *, 4> DiffOps; 1259 for (const SCEV *Op : SA->operands()) 1260 if (Op != Step) 1261 DiffOps.push_back(Op); 1262 1263 if (DiffOps.size() == SA->getNumOperands()) 1264 return nullptr; 1265 1266 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1267 // `Step`: 1268 1269 // 1. NSW/NUW flags on the step increment. 1270 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1271 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1272 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1273 1274 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1275 // "S+X does not sign/unsign-overflow". 1276 // 1277 1278 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1279 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1280 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1281 return PreStart; 1282 1283 // 2. Direct overflow check on the step operation's expression. 1284 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1285 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1286 const SCEV *OperandExtendedStart = 1287 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1288 (SE->*GetExtendExpr)(Step, WideTy)); 1289 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1290 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1291 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1292 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1293 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1294 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1295 } 1296 return PreStart; 1297 } 1298 1299 // 3. Loop precondition. 1300 ICmpInst::Predicate Pred; 1301 const SCEV *OverflowLimit = 1302 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1303 1304 if (OverflowLimit && 1305 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1306 return PreStart; 1307 } 1308 return nullptr; 1309 } 1310 1311 // Get the normalized zero or sign extended expression for this AddRec's Start. 1312 template <typename ExtendOpTy> 1313 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1314 ScalarEvolution *SE) { 1315 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1316 1317 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1318 if (!PreStart) 1319 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1320 1321 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1322 (SE->*GetExtendExpr)(PreStart, Ty)); 1323 } 1324 1325 // Try to prove away overflow by looking at "nearby" add recurrences. A 1326 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1327 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1328 // 1329 // Formally: 1330 // 1331 // {S,+,X} == {S-T,+,X} + T 1332 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1333 // 1334 // If ({S-T,+,X} + T) does not overflow ... (1) 1335 // 1336 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1337 // 1338 // If {S-T,+,X} does not overflow ... (2) 1339 // 1340 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1341 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1342 // 1343 // If (S-T)+T does not overflow ... (3) 1344 // 1345 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1346 // == {Ext(S),+,Ext(X)} == LHS 1347 // 1348 // Thus, if (1), (2) and (3) are true for some T, then 1349 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1350 // 1351 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1352 // does not overflow" restricted to the 0th iteration. Therefore we only need 1353 // to check for (1) and (2). 1354 // 1355 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1356 // is `Delta` (defined below). 1357 // 1358 template <typename ExtendOpTy> 1359 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1360 const SCEV *Step, 1361 const Loop *L) { 1362 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1363 1364 // We restrict `Start` to a constant to prevent SCEV from spending too much 1365 // time here. It is correct (but more expensive) to continue with a 1366 // non-constant `Start` and do a general SCEV subtraction to compute 1367 // `PreStart` below. 1368 // 1369 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1370 if (!StartC) 1371 return false; 1372 1373 APInt StartAI = StartC->getValue()->getValue(); 1374 1375 for (unsigned Delta : {-2, -1, 1, 2}) { 1376 const SCEV *PreStart = getConstant(StartAI - Delta); 1377 1378 // Give up if we don't already have the add recurrence we need because 1379 // actually constructing an add recurrence is relatively expensive. 1380 const SCEVAddRecExpr *PreAR = [&]() { 1381 FoldingSetNodeID ID; 1382 ID.AddInteger(scAddRecExpr); 1383 ID.AddPointer(PreStart); 1384 ID.AddPointer(Step); 1385 ID.AddPointer(L); 1386 void *IP = nullptr; 1387 return static_cast<SCEVAddRecExpr *>( 1388 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1389 }(); 1390 1391 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1392 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1393 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1394 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1395 DeltaS, &Pred, this); 1396 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1397 return true; 1398 } 1399 } 1400 1401 return false; 1402 } 1403 1404 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1405 Type *Ty) { 1406 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1407 "This is not an extending conversion!"); 1408 assert(isSCEVable(Ty) && 1409 "This is not a conversion to a SCEVable type!"); 1410 Ty = getEffectiveSCEVType(Ty); 1411 1412 // Fold if the operand is constant. 1413 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1414 return getConstant( 1415 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1416 1417 // zext(zext(x)) --> zext(x) 1418 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1419 return getZeroExtendExpr(SZ->getOperand(), Ty); 1420 1421 // Before doing any expensive analysis, check to see if we've already 1422 // computed a SCEV for this Op and Ty. 1423 FoldingSetNodeID ID; 1424 ID.AddInteger(scZeroExtend); 1425 ID.AddPointer(Op); 1426 ID.AddPointer(Ty); 1427 void *IP = nullptr; 1428 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1429 1430 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1431 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1432 // It's possible the bits taken off by the truncate were all zero bits. If 1433 // so, we should be able to simplify this further. 1434 const SCEV *X = ST->getOperand(); 1435 ConstantRange CR = getUnsignedRange(X); 1436 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1437 unsigned NewBits = getTypeSizeInBits(Ty); 1438 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1439 CR.zextOrTrunc(NewBits))) 1440 return getTruncateOrZeroExtend(X, Ty); 1441 } 1442 1443 // If the input value is a chrec scev, and we can prove that the value 1444 // did not overflow the old, smaller, value, we can zero extend all of the 1445 // operands (often constants). This allows analysis of something like 1446 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1447 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1448 if (AR->isAffine()) { 1449 const SCEV *Start = AR->getStart(); 1450 const SCEV *Step = AR->getStepRecurrence(*this); 1451 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1452 const Loop *L = AR->getLoop(); 1453 1454 // If we have special knowledge that this addrec won't overflow, 1455 // we don't need to do any further analysis. 1456 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1457 return getAddRecExpr( 1458 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1459 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1460 1461 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1462 // Note that this serves two purposes: It filters out loops that are 1463 // simply not analyzable, and it covers the case where this code is 1464 // being called from within backedge-taken count analysis, such that 1465 // attempting to ask for the backedge-taken count would likely result 1466 // in infinite recursion. In the later case, the analysis code will 1467 // cope with a conservative value, and it will take care to purge 1468 // that value once it has finished. 1469 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1470 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1471 // Manually compute the final value for AR, checking for 1472 // overflow. 1473 1474 // Check whether the backedge-taken count can be losslessly casted to 1475 // the addrec's type. The count is always unsigned. 1476 const SCEV *CastedMaxBECount = 1477 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1478 const SCEV *RecastedMaxBECount = 1479 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1480 if (MaxBECount == RecastedMaxBECount) { 1481 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1482 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1483 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1484 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1485 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1486 const SCEV *WideMaxBECount = 1487 getZeroExtendExpr(CastedMaxBECount, WideTy); 1488 const SCEV *OperandExtendedAdd = 1489 getAddExpr(WideStart, 1490 getMulExpr(WideMaxBECount, 1491 getZeroExtendExpr(Step, WideTy))); 1492 if (ZAdd == OperandExtendedAdd) { 1493 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1494 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1495 // Return the expression with the addrec on the outside. 1496 return getAddRecExpr( 1497 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1498 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1499 } 1500 // Similar to above, only this time treat the step value as signed. 1501 // This covers loops that count down. 1502 OperandExtendedAdd = 1503 getAddExpr(WideStart, 1504 getMulExpr(WideMaxBECount, 1505 getSignExtendExpr(Step, WideTy))); 1506 if (ZAdd == OperandExtendedAdd) { 1507 // Cache knowledge of AR NW, which is propagated to this AddRec. 1508 // Negative step causes unsigned wrap, but it still can't self-wrap. 1509 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1510 // Return the expression with the addrec on the outside. 1511 return getAddRecExpr( 1512 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1513 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1514 } 1515 } 1516 1517 // If the backedge is guarded by a comparison with the pre-inc value 1518 // the addrec is safe. Also, if the entry is guarded by a comparison 1519 // with the start value and the backedge is guarded by a comparison 1520 // with the post-inc value, the addrec is safe. 1521 if (isKnownPositive(Step)) { 1522 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1523 getUnsignedRange(Step).getUnsignedMax()); 1524 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1525 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1526 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1527 AR->getPostIncExpr(*this), N))) { 1528 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1529 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1530 // Return the expression with the addrec on the outside. 1531 return getAddRecExpr( 1532 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1533 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1534 } 1535 } else if (isKnownNegative(Step)) { 1536 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1537 getSignedRange(Step).getSignedMin()); 1538 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1539 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1540 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1541 AR->getPostIncExpr(*this), N))) { 1542 // Cache knowledge of AR NW, which is propagated to this AddRec. 1543 // Negative step causes unsigned wrap, but it still can't self-wrap. 1544 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1545 // Return the expression with the addrec on the outside. 1546 return getAddRecExpr( 1547 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1548 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1549 } 1550 } 1551 } 1552 1553 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1554 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1555 return getAddRecExpr( 1556 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1557 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1558 } 1559 } 1560 1561 // The cast wasn't folded; create an explicit cast node. 1562 // Recompute the insert position, as it may have been invalidated. 1563 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1564 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1565 Op, Ty); 1566 UniqueSCEVs.InsertNode(S, IP); 1567 return S; 1568 } 1569 1570 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1571 Type *Ty) { 1572 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1573 "This is not an extending conversion!"); 1574 assert(isSCEVable(Ty) && 1575 "This is not a conversion to a SCEVable type!"); 1576 Ty = getEffectiveSCEVType(Ty); 1577 1578 // Fold if the operand is constant. 1579 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1580 return getConstant( 1581 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1582 1583 // sext(sext(x)) --> sext(x) 1584 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1585 return getSignExtendExpr(SS->getOperand(), Ty); 1586 1587 // sext(zext(x)) --> zext(x) 1588 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1589 return getZeroExtendExpr(SZ->getOperand(), Ty); 1590 1591 // Before doing any expensive analysis, check to see if we've already 1592 // computed a SCEV for this Op and Ty. 1593 FoldingSetNodeID ID; 1594 ID.AddInteger(scSignExtend); 1595 ID.AddPointer(Op); 1596 ID.AddPointer(Ty); 1597 void *IP = nullptr; 1598 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1599 1600 // If the input value is provably positive, build a zext instead. 1601 if (isKnownNonNegative(Op)) 1602 return getZeroExtendExpr(Op, Ty); 1603 1604 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1605 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1606 // It's possible the bits taken off by the truncate were all sign bits. If 1607 // so, we should be able to simplify this further. 1608 const SCEV *X = ST->getOperand(); 1609 ConstantRange CR = getSignedRange(X); 1610 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1611 unsigned NewBits = getTypeSizeInBits(Ty); 1612 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1613 CR.sextOrTrunc(NewBits))) 1614 return getTruncateOrSignExtend(X, Ty); 1615 } 1616 1617 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1618 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) { 1619 if (SA->getNumOperands() == 2) { 1620 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1621 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1622 if (SMul && SC1) { 1623 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1624 const APInt &C1 = SC1->getValue()->getValue(); 1625 const APInt &C2 = SC2->getValue()->getValue(); 1626 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1627 C2.ugt(C1) && C2.isPowerOf2()) 1628 return getAddExpr(getSignExtendExpr(SC1, Ty), 1629 getSignExtendExpr(SMul, Ty)); 1630 } 1631 } 1632 } 1633 } 1634 // If the input value is a chrec scev, and we can prove that the value 1635 // did not overflow the old, smaller, value, we can sign extend all of the 1636 // operands (often constants). This allows analysis of something like 1637 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1638 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1639 if (AR->isAffine()) { 1640 const SCEV *Start = AR->getStart(); 1641 const SCEV *Step = AR->getStepRecurrence(*this); 1642 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1643 const Loop *L = AR->getLoop(); 1644 1645 // If we have special knowledge that this addrec won't overflow, 1646 // we don't need to do any further analysis. 1647 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1648 return getAddRecExpr( 1649 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1650 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1651 1652 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1653 // Note that this serves two purposes: It filters out loops that are 1654 // simply not analyzable, and it covers the case where this code is 1655 // being called from within backedge-taken count analysis, such that 1656 // attempting to ask for the backedge-taken count would likely result 1657 // in infinite recursion. In the later case, the analysis code will 1658 // cope with a conservative value, and it will take care to purge 1659 // that value once it has finished. 1660 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1661 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1662 // Manually compute the final value for AR, checking for 1663 // overflow. 1664 1665 // Check whether the backedge-taken count can be losslessly casted to 1666 // the addrec's type. The count is always unsigned. 1667 const SCEV *CastedMaxBECount = 1668 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1669 const SCEV *RecastedMaxBECount = 1670 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1671 if (MaxBECount == RecastedMaxBECount) { 1672 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1673 // Check whether Start+Step*MaxBECount has no signed overflow. 1674 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1675 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1676 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1677 const SCEV *WideMaxBECount = 1678 getZeroExtendExpr(CastedMaxBECount, WideTy); 1679 const SCEV *OperandExtendedAdd = 1680 getAddExpr(WideStart, 1681 getMulExpr(WideMaxBECount, 1682 getSignExtendExpr(Step, WideTy))); 1683 if (SAdd == OperandExtendedAdd) { 1684 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1685 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1686 // Return the expression with the addrec on the outside. 1687 return getAddRecExpr( 1688 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1689 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1690 } 1691 // Similar to above, only this time treat the step value as unsigned. 1692 // This covers loops that count up with an unsigned step. 1693 OperandExtendedAdd = 1694 getAddExpr(WideStart, 1695 getMulExpr(WideMaxBECount, 1696 getZeroExtendExpr(Step, WideTy))); 1697 if (SAdd == OperandExtendedAdd) { 1698 // If AR wraps around then 1699 // 1700 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1701 // => SAdd != OperandExtendedAdd 1702 // 1703 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1704 // (SAdd == OperandExtendedAdd => AR is NW) 1705 1706 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1707 1708 // Return the expression with the addrec on the outside. 1709 return getAddRecExpr( 1710 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1711 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1712 } 1713 } 1714 1715 // If the backedge is guarded by a comparison with the pre-inc value 1716 // the addrec is safe. Also, if the entry is guarded by a comparison 1717 // with the start value and the backedge is guarded by a comparison 1718 // with the post-inc value, the addrec is safe. 1719 ICmpInst::Predicate Pred; 1720 const SCEV *OverflowLimit = 1721 getSignedOverflowLimitForStep(Step, &Pred, this); 1722 if (OverflowLimit && 1723 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1724 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1725 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1726 OverflowLimit)))) { 1727 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1728 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1729 return getAddRecExpr( 1730 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1731 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1732 } 1733 } 1734 // If Start and Step are constants, check if we can apply this 1735 // transformation: 1736 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1737 auto SC1 = dyn_cast<SCEVConstant>(Start); 1738 auto SC2 = dyn_cast<SCEVConstant>(Step); 1739 if (SC1 && SC2) { 1740 const APInt &C1 = SC1->getValue()->getValue(); 1741 const APInt &C2 = SC2->getValue()->getValue(); 1742 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1743 C2.isPowerOf2()) { 1744 Start = getSignExtendExpr(Start, Ty); 1745 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step, 1746 L, AR->getNoWrapFlags()); 1747 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1748 } 1749 } 1750 1751 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1752 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1753 return getAddRecExpr( 1754 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1755 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1756 } 1757 } 1758 1759 // The cast wasn't folded; create an explicit cast node. 1760 // Recompute the insert position, as it may have been invalidated. 1761 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1762 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1763 Op, Ty); 1764 UniqueSCEVs.InsertNode(S, IP); 1765 return S; 1766 } 1767 1768 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1769 /// unspecified bits out to the given type. 1770 /// 1771 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1772 Type *Ty) { 1773 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1774 "This is not an extending conversion!"); 1775 assert(isSCEVable(Ty) && 1776 "This is not a conversion to a SCEVable type!"); 1777 Ty = getEffectiveSCEVType(Ty); 1778 1779 // Sign-extend negative constants. 1780 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1781 if (SC->getValue()->getValue().isNegative()) 1782 return getSignExtendExpr(Op, Ty); 1783 1784 // Peel off a truncate cast. 1785 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1786 const SCEV *NewOp = T->getOperand(); 1787 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1788 return getAnyExtendExpr(NewOp, Ty); 1789 return getTruncateOrNoop(NewOp, Ty); 1790 } 1791 1792 // Next try a zext cast. If the cast is folded, use it. 1793 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1794 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1795 return ZExt; 1796 1797 // Next try a sext cast. If the cast is folded, use it. 1798 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1799 if (!isa<SCEVSignExtendExpr>(SExt)) 1800 return SExt; 1801 1802 // Force the cast to be folded into the operands of an addrec. 1803 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1804 SmallVector<const SCEV *, 4> Ops; 1805 for (const SCEV *Op : AR->operands()) 1806 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1807 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1808 } 1809 1810 // If the expression is obviously signed, use the sext cast value. 1811 if (isa<SCEVSMaxExpr>(Op)) 1812 return SExt; 1813 1814 // Absent any other information, use the zext cast value. 1815 return ZExt; 1816 } 1817 1818 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1819 /// a list of operands to be added under the given scale, update the given 1820 /// map. This is a helper function for getAddRecExpr. As an example of 1821 /// what it does, given a sequence of operands that would form an add 1822 /// expression like this: 1823 /// 1824 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1825 /// 1826 /// where A and B are constants, update the map with these values: 1827 /// 1828 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1829 /// 1830 /// and add 13 + A*B*29 to AccumulatedConstant. 1831 /// This will allow getAddRecExpr to produce this: 1832 /// 1833 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1834 /// 1835 /// This form often exposes folding opportunities that are hidden in 1836 /// the original operand list. 1837 /// 1838 /// Return true iff it appears that any interesting folding opportunities 1839 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1840 /// the common case where no interesting opportunities are present, and 1841 /// is also used as a check to avoid infinite recursion. 1842 /// 1843 static bool 1844 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1845 SmallVectorImpl<const SCEV *> &NewOps, 1846 APInt &AccumulatedConstant, 1847 const SCEV *const *Ops, size_t NumOperands, 1848 const APInt &Scale, 1849 ScalarEvolution &SE) { 1850 bool Interesting = false; 1851 1852 // Iterate over the add operands. They are sorted, with constants first. 1853 unsigned i = 0; 1854 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1855 ++i; 1856 // Pull a buried constant out to the outside. 1857 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1858 Interesting = true; 1859 AccumulatedConstant += Scale * C->getValue()->getValue(); 1860 } 1861 1862 // Next comes everything else. We're especially interested in multiplies 1863 // here, but they're in the middle, so just visit the rest with one loop. 1864 for (; i != NumOperands; ++i) { 1865 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1866 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1867 APInt NewScale = 1868 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1869 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1870 // A multiplication of a constant with another add; recurse. 1871 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1872 Interesting |= 1873 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1874 Add->op_begin(), Add->getNumOperands(), 1875 NewScale, SE); 1876 } else { 1877 // A multiplication of a constant with some other value. Update 1878 // the map. 1879 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1880 const SCEV *Key = SE.getMulExpr(MulOps); 1881 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1882 M.insert(std::make_pair(Key, NewScale)); 1883 if (Pair.second) { 1884 NewOps.push_back(Pair.first->first); 1885 } else { 1886 Pair.first->second += NewScale; 1887 // The map already had an entry for this value, which may indicate 1888 // a folding opportunity. 1889 Interesting = true; 1890 } 1891 } 1892 } else { 1893 // An ordinary operand. Update the map. 1894 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1895 M.insert(std::make_pair(Ops[i], Scale)); 1896 if (Pair.second) { 1897 NewOps.push_back(Pair.first->first); 1898 } else { 1899 Pair.first->second += Scale; 1900 // The map already had an entry for this value, which may indicate 1901 // a folding opportunity. 1902 Interesting = true; 1903 } 1904 } 1905 } 1906 1907 return Interesting; 1908 } 1909 1910 namespace { 1911 struct APIntCompare { 1912 bool operator()(const APInt &LHS, const APInt &RHS) const { 1913 return LHS.ult(RHS); 1914 } 1915 }; 1916 } 1917 1918 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1919 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1920 // can't-overflow flags for the operation if possible. 1921 static SCEV::NoWrapFlags 1922 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1923 const SmallVectorImpl<const SCEV *> &Ops, 1924 SCEV::NoWrapFlags OldFlags) { 1925 using namespace std::placeholders; 1926 1927 bool CanAnalyze = 1928 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1929 (void)CanAnalyze; 1930 assert(CanAnalyze && "don't call from other places!"); 1931 1932 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1933 SCEV::NoWrapFlags SignOrUnsignWrap = 1934 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask); 1935 1936 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1937 auto IsKnownNonNegative = 1938 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1939 1940 if (SignOrUnsignWrap == SCEV::FlagNSW && 1941 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1942 return ScalarEvolution::setFlags(OldFlags, 1943 (SCEV::NoWrapFlags)SignOrUnsignMask); 1944 1945 return OldFlags; 1946 } 1947 1948 /// getAddExpr - Get a canonical add expression, or something simpler if 1949 /// possible. 1950 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1951 SCEV::NoWrapFlags Flags) { 1952 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1953 "only nuw or nsw allowed"); 1954 assert(!Ops.empty() && "Cannot get empty add!"); 1955 if (Ops.size() == 1) return Ops[0]; 1956 #ifndef NDEBUG 1957 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1958 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1959 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1960 "SCEVAddExpr operand types don't match!"); 1961 #endif 1962 1963 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 1964 1965 // Sort by complexity, this groups all similar expression types together. 1966 GroupByComplexity(Ops, &LI); 1967 1968 // If there are any constants, fold them together. 1969 unsigned Idx = 0; 1970 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1971 ++Idx; 1972 assert(Idx < Ops.size()); 1973 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1974 // We found two constants, fold them together! 1975 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1976 RHSC->getValue()->getValue()); 1977 if (Ops.size() == 2) return Ops[0]; 1978 Ops.erase(Ops.begin()+1); // Erase the folded element 1979 LHSC = cast<SCEVConstant>(Ops[0]); 1980 } 1981 1982 // If we are left with a constant zero being added, strip it off. 1983 if (LHSC->getValue()->isZero()) { 1984 Ops.erase(Ops.begin()); 1985 --Idx; 1986 } 1987 1988 if (Ops.size() == 1) return Ops[0]; 1989 } 1990 1991 // Okay, check to see if the same value occurs in the operand list more than 1992 // once. If so, merge them together into an multiply expression. Since we 1993 // sorted the list, these values are required to be adjacent. 1994 Type *Ty = Ops[0]->getType(); 1995 bool FoundMatch = false; 1996 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1997 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1998 // Scan ahead to count how many equal operands there are. 1999 unsigned Count = 2; 2000 while (i+Count != e && Ops[i+Count] == Ops[i]) 2001 ++Count; 2002 // Merge the values into a multiply. 2003 const SCEV *Scale = getConstant(Ty, Count); 2004 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2005 if (Ops.size() == Count) 2006 return Mul; 2007 Ops[i] = Mul; 2008 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2009 --i; e -= Count - 1; 2010 FoundMatch = true; 2011 } 2012 if (FoundMatch) 2013 return getAddExpr(Ops, Flags); 2014 2015 // Check for truncates. If all the operands are truncated from the same 2016 // type, see if factoring out the truncate would permit the result to be 2017 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2018 // if the contents of the resulting outer trunc fold to something simple. 2019 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2020 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2021 Type *DstType = Trunc->getType(); 2022 Type *SrcType = Trunc->getOperand()->getType(); 2023 SmallVector<const SCEV *, 8> LargeOps; 2024 bool Ok = true; 2025 // Check all the operands to see if they can be represented in the 2026 // source type of the truncate. 2027 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2028 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2029 if (T->getOperand()->getType() != SrcType) { 2030 Ok = false; 2031 break; 2032 } 2033 LargeOps.push_back(T->getOperand()); 2034 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2035 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2036 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2037 SmallVector<const SCEV *, 8> LargeMulOps; 2038 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2039 if (const SCEVTruncateExpr *T = 2040 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2041 if (T->getOperand()->getType() != SrcType) { 2042 Ok = false; 2043 break; 2044 } 2045 LargeMulOps.push_back(T->getOperand()); 2046 } else if (const SCEVConstant *C = 2047 dyn_cast<SCEVConstant>(M->getOperand(j))) { 2048 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2049 } else { 2050 Ok = false; 2051 break; 2052 } 2053 } 2054 if (Ok) 2055 LargeOps.push_back(getMulExpr(LargeMulOps)); 2056 } else { 2057 Ok = false; 2058 break; 2059 } 2060 } 2061 if (Ok) { 2062 // Evaluate the expression in the larger type. 2063 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2064 // If it folds to something simple, use it. Otherwise, don't. 2065 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2066 return getTruncateExpr(Fold, DstType); 2067 } 2068 } 2069 2070 // Skip past any other cast SCEVs. 2071 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2072 ++Idx; 2073 2074 // If there are add operands they would be next. 2075 if (Idx < Ops.size()) { 2076 bool DeletedAdd = false; 2077 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2078 // If we have an add, expand the add operands onto the end of the operands 2079 // list. 2080 Ops.erase(Ops.begin()+Idx); 2081 Ops.append(Add->op_begin(), Add->op_end()); 2082 DeletedAdd = true; 2083 } 2084 2085 // If we deleted at least one add, we added operands to the end of the list, 2086 // and they are not necessarily sorted. Recurse to resort and resimplify 2087 // any operands we just acquired. 2088 if (DeletedAdd) 2089 return getAddExpr(Ops); 2090 } 2091 2092 // Skip over the add expression until we get to a multiply. 2093 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2094 ++Idx; 2095 2096 // Check to see if there are any folding opportunities present with 2097 // operands multiplied by constant values. 2098 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2099 uint64_t BitWidth = getTypeSizeInBits(Ty); 2100 DenseMap<const SCEV *, APInt> M; 2101 SmallVector<const SCEV *, 8> NewOps; 2102 APInt AccumulatedConstant(BitWidth, 0); 2103 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2104 Ops.data(), Ops.size(), 2105 APInt(BitWidth, 1), *this)) { 2106 // Some interesting folding opportunity is present, so its worthwhile to 2107 // re-generate the operands list. Group the operands by constant scale, 2108 // to avoid multiplying by the same constant scale multiple times. 2109 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2110 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2111 E = NewOps.end(); I != E; ++I) 2112 MulOpLists[M.find(*I)->second].push_back(*I); 2113 // Re-generate the operands list. 2114 Ops.clear(); 2115 if (AccumulatedConstant != 0) 2116 Ops.push_back(getConstant(AccumulatedConstant)); 2117 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2118 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2119 if (I->first != 0) 2120 Ops.push_back(getMulExpr(getConstant(I->first), 2121 getAddExpr(I->second))); 2122 if (Ops.empty()) 2123 return getConstant(Ty, 0); 2124 if (Ops.size() == 1) 2125 return Ops[0]; 2126 return getAddExpr(Ops); 2127 } 2128 } 2129 2130 // If we are adding something to a multiply expression, make sure the 2131 // something is not already an operand of the multiply. If so, merge it into 2132 // the multiply. 2133 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2134 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2135 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2136 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2137 if (isa<SCEVConstant>(MulOpSCEV)) 2138 continue; 2139 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2140 if (MulOpSCEV == Ops[AddOp]) { 2141 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2142 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2143 if (Mul->getNumOperands() != 2) { 2144 // If the multiply has more than two operands, we must get the 2145 // Y*Z term. 2146 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2147 Mul->op_begin()+MulOp); 2148 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2149 InnerMul = getMulExpr(MulOps); 2150 } 2151 const SCEV *One = getConstant(Ty, 1); 2152 const SCEV *AddOne = getAddExpr(One, InnerMul); 2153 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2154 if (Ops.size() == 2) return OuterMul; 2155 if (AddOp < Idx) { 2156 Ops.erase(Ops.begin()+AddOp); 2157 Ops.erase(Ops.begin()+Idx-1); 2158 } else { 2159 Ops.erase(Ops.begin()+Idx); 2160 Ops.erase(Ops.begin()+AddOp-1); 2161 } 2162 Ops.push_back(OuterMul); 2163 return getAddExpr(Ops); 2164 } 2165 2166 // Check this multiply against other multiplies being added together. 2167 for (unsigned OtherMulIdx = Idx+1; 2168 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2169 ++OtherMulIdx) { 2170 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2171 // If MulOp occurs in OtherMul, we can fold the two multiplies 2172 // together. 2173 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2174 OMulOp != e; ++OMulOp) 2175 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2176 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2177 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2178 if (Mul->getNumOperands() != 2) { 2179 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2180 Mul->op_begin()+MulOp); 2181 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2182 InnerMul1 = getMulExpr(MulOps); 2183 } 2184 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2185 if (OtherMul->getNumOperands() != 2) { 2186 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2187 OtherMul->op_begin()+OMulOp); 2188 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2189 InnerMul2 = getMulExpr(MulOps); 2190 } 2191 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2192 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2193 if (Ops.size() == 2) return OuterMul; 2194 Ops.erase(Ops.begin()+Idx); 2195 Ops.erase(Ops.begin()+OtherMulIdx-1); 2196 Ops.push_back(OuterMul); 2197 return getAddExpr(Ops); 2198 } 2199 } 2200 } 2201 } 2202 2203 // If there are any add recurrences in the operands list, see if any other 2204 // added values are loop invariant. If so, we can fold them into the 2205 // recurrence. 2206 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2207 ++Idx; 2208 2209 // Scan over all recurrences, trying to fold loop invariants into them. 2210 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2211 // Scan all of the other operands to this add and add them to the vector if 2212 // they are loop invariant w.r.t. the recurrence. 2213 SmallVector<const SCEV *, 8> LIOps; 2214 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2215 const Loop *AddRecLoop = AddRec->getLoop(); 2216 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2217 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2218 LIOps.push_back(Ops[i]); 2219 Ops.erase(Ops.begin()+i); 2220 --i; --e; 2221 } 2222 2223 // If we found some loop invariants, fold them into the recurrence. 2224 if (!LIOps.empty()) { 2225 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2226 LIOps.push_back(AddRec->getStart()); 2227 2228 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2229 AddRec->op_end()); 2230 AddRecOps[0] = getAddExpr(LIOps); 2231 2232 // Build the new addrec. Propagate the NUW and NSW flags if both the 2233 // outer add and the inner addrec are guaranteed to have no overflow. 2234 // Always propagate NW. 2235 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2236 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2237 2238 // If all of the other operands were loop invariant, we are done. 2239 if (Ops.size() == 1) return NewRec; 2240 2241 // Otherwise, add the folded AddRec by the non-invariant parts. 2242 for (unsigned i = 0;; ++i) 2243 if (Ops[i] == AddRec) { 2244 Ops[i] = NewRec; 2245 break; 2246 } 2247 return getAddExpr(Ops); 2248 } 2249 2250 // Okay, if there weren't any loop invariants to be folded, check to see if 2251 // there are multiple AddRec's with the same loop induction variable being 2252 // added together. If so, we can fold them. 2253 for (unsigned OtherIdx = Idx+1; 2254 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2255 ++OtherIdx) 2256 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2257 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2258 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2259 AddRec->op_end()); 2260 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2261 ++OtherIdx) 2262 if (const SCEVAddRecExpr *OtherAddRec = 2263 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2264 if (OtherAddRec->getLoop() == AddRecLoop) { 2265 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2266 i != e; ++i) { 2267 if (i >= AddRecOps.size()) { 2268 AddRecOps.append(OtherAddRec->op_begin()+i, 2269 OtherAddRec->op_end()); 2270 break; 2271 } 2272 AddRecOps[i] = getAddExpr(AddRecOps[i], 2273 OtherAddRec->getOperand(i)); 2274 } 2275 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2276 } 2277 // Step size has changed, so we cannot guarantee no self-wraparound. 2278 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2279 return getAddExpr(Ops); 2280 } 2281 2282 // Otherwise couldn't fold anything into this recurrence. Move onto the 2283 // next one. 2284 } 2285 2286 // Okay, it looks like we really DO need an add expr. Check to see if we 2287 // already have one, otherwise create a new one. 2288 FoldingSetNodeID ID; 2289 ID.AddInteger(scAddExpr); 2290 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2291 ID.AddPointer(Ops[i]); 2292 void *IP = nullptr; 2293 SCEVAddExpr *S = 2294 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2295 if (!S) { 2296 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2297 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2298 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2299 O, Ops.size()); 2300 UniqueSCEVs.InsertNode(S, IP); 2301 } 2302 S->setNoWrapFlags(Flags); 2303 return S; 2304 } 2305 2306 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2307 uint64_t k = i*j; 2308 if (j > 1 && k / j != i) Overflow = true; 2309 return k; 2310 } 2311 2312 /// Compute the result of "n choose k", the binomial coefficient. If an 2313 /// intermediate computation overflows, Overflow will be set and the return will 2314 /// be garbage. Overflow is not cleared on absence of overflow. 2315 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2316 // We use the multiplicative formula: 2317 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2318 // At each iteration, we take the n-th term of the numeral and divide by the 2319 // (k-n)th term of the denominator. This division will always produce an 2320 // integral result, and helps reduce the chance of overflow in the 2321 // intermediate computations. However, we can still overflow even when the 2322 // final result would fit. 2323 2324 if (n == 0 || n == k) return 1; 2325 if (k > n) return 0; 2326 2327 if (k > n/2) 2328 k = n-k; 2329 2330 uint64_t r = 1; 2331 for (uint64_t i = 1; i <= k; ++i) { 2332 r = umul_ov(r, n-(i-1), Overflow); 2333 r /= i; 2334 } 2335 return r; 2336 } 2337 2338 /// Determine if any of the operands in this SCEV are a constant or if 2339 /// any of the add or multiply expressions in this SCEV contain a constant. 2340 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2341 SmallVector<const SCEV *, 4> Ops; 2342 Ops.push_back(StartExpr); 2343 while (!Ops.empty()) { 2344 const SCEV *CurrentExpr = Ops.pop_back_val(); 2345 if (isa<SCEVConstant>(*CurrentExpr)) 2346 return true; 2347 2348 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2349 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2350 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2351 } 2352 } 2353 return false; 2354 } 2355 2356 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2357 /// possible. 2358 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2359 SCEV::NoWrapFlags Flags) { 2360 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2361 "only nuw or nsw allowed"); 2362 assert(!Ops.empty() && "Cannot get empty mul!"); 2363 if (Ops.size() == 1) return Ops[0]; 2364 #ifndef NDEBUG 2365 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2366 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2367 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2368 "SCEVMulExpr operand types don't match!"); 2369 #endif 2370 2371 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2372 2373 // Sort by complexity, this groups all similar expression types together. 2374 GroupByComplexity(Ops, &LI); 2375 2376 // If there are any constants, fold them together. 2377 unsigned Idx = 0; 2378 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2379 2380 // C1*(C2+V) -> C1*C2 + C1*V 2381 if (Ops.size() == 2) 2382 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2383 // If any of Add's ops are Adds or Muls with a constant, 2384 // apply this transformation as well. 2385 if (Add->getNumOperands() == 2) 2386 if (containsConstantSomewhere(Add)) 2387 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2388 getMulExpr(LHSC, Add->getOperand(1))); 2389 2390 ++Idx; 2391 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2392 // We found two constants, fold them together! 2393 ConstantInt *Fold = ConstantInt::get(getContext(), 2394 LHSC->getValue()->getValue() * 2395 RHSC->getValue()->getValue()); 2396 Ops[0] = getConstant(Fold); 2397 Ops.erase(Ops.begin()+1); // Erase the folded element 2398 if (Ops.size() == 1) return Ops[0]; 2399 LHSC = cast<SCEVConstant>(Ops[0]); 2400 } 2401 2402 // If we are left with a constant one being multiplied, strip it off. 2403 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2404 Ops.erase(Ops.begin()); 2405 --Idx; 2406 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2407 // If we have a multiply of zero, it will always be zero. 2408 return Ops[0]; 2409 } else if (Ops[0]->isAllOnesValue()) { 2410 // If we have a mul by -1 of an add, try distributing the -1 among the 2411 // add operands. 2412 if (Ops.size() == 2) { 2413 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2414 SmallVector<const SCEV *, 4> NewOps; 2415 bool AnyFolded = false; 2416 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2417 E = Add->op_end(); I != E; ++I) { 2418 const SCEV *Mul = getMulExpr(Ops[0], *I); 2419 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2420 NewOps.push_back(Mul); 2421 } 2422 if (AnyFolded) 2423 return getAddExpr(NewOps); 2424 } 2425 else if (const SCEVAddRecExpr * 2426 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2427 // Negation preserves a recurrence's no self-wrap property. 2428 SmallVector<const SCEV *, 4> Operands; 2429 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2430 E = AddRec->op_end(); I != E; ++I) { 2431 Operands.push_back(getMulExpr(Ops[0], *I)); 2432 } 2433 return getAddRecExpr(Operands, AddRec->getLoop(), 2434 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2435 } 2436 } 2437 } 2438 2439 if (Ops.size() == 1) 2440 return Ops[0]; 2441 } 2442 2443 // Skip over the add expression until we get to a multiply. 2444 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2445 ++Idx; 2446 2447 // If there are mul operands inline them all into this expression. 2448 if (Idx < Ops.size()) { 2449 bool DeletedMul = false; 2450 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2451 // If we have an mul, expand the mul operands onto the end of the operands 2452 // list. 2453 Ops.erase(Ops.begin()+Idx); 2454 Ops.append(Mul->op_begin(), Mul->op_end()); 2455 DeletedMul = true; 2456 } 2457 2458 // If we deleted at least one mul, we added operands to the end of the list, 2459 // and they are not necessarily sorted. Recurse to resort and resimplify 2460 // any operands we just acquired. 2461 if (DeletedMul) 2462 return getMulExpr(Ops); 2463 } 2464 2465 // If there are any add recurrences in the operands list, see if any other 2466 // added values are loop invariant. If so, we can fold them into the 2467 // recurrence. 2468 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2469 ++Idx; 2470 2471 // Scan over all recurrences, trying to fold loop invariants into them. 2472 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2473 // Scan all of the other operands to this mul and add them to the vector if 2474 // they are loop invariant w.r.t. the recurrence. 2475 SmallVector<const SCEV *, 8> LIOps; 2476 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2477 const Loop *AddRecLoop = AddRec->getLoop(); 2478 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2479 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2480 LIOps.push_back(Ops[i]); 2481 Ops.erase(Ops.begin()+i); 2482 --i; --e; 2483 } 2484 2485 // If we found some loop invariants, fold them into the recurrence. 2486 if (!LIOps.empty()) { 2487 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2488 SmallVector<const SCEV *, 4> NewOps; 2489 NewOps.reserve(AddRec->getNumOperands()); 2490 const SCEV *Scale = getMulExpr(LIOps); 2491 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2492 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2493 2494 // Build the new addrec. Propagate the NUW and NSW flags if both the 2495 // outer mul and the inner addrec are guaranteed to have no overflow. 2496 // 2497 // No self-wrap cannot be guaranteed after changing the step size, but 2498 // will be inferred if either NUW or NSW is true. 2499 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2500 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2501 2502 // If all of the other operands were loop invariant, we are done. 2503 if (Ops.size() == 1) return NewRec; 2504 2505 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2506 for (unsigned i = 0;; ++i) 2507 if (Ops[i] == AddRec) { 2508 Ops[i] = NewRec; 2509 break; 2510 } 2511 return getMulExpr(Ops); 2512 } 2513 2514 // Okay, if there weren't any loop invariants to be folded, check to see if 2515 // there are multiple AddRec's with the same loop induction variable being 2516 // multiplied together. If so, we can fold them. 2517 2518 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2519 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2520 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2521 // ]]],+,...up to x=2n}. 2522 // Note that the arguments to choose() are always integers with values 2523 // known at compile time, never SCEV objects. 2524 // 2525 // The implementation avoids pointless extra computations when the two 2526 // addrec's are of different length (mathematically, it's equivalent to 2527 // an infinite stream of zeros on the right). 2528 bool OpsModified = false; 2529 for (unsigned OtherIdx = Idx+1; 2530 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2531 ++OtherIdx) { 2532 const SCEVAddRecExpr *OtherAddRec = 2533 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2534 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2535 continue; 2536 2537 bool Overflow = false; 2538 Type *Ty = AddRec->getType(); 2539 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2540 SmallVector<const SCEV*, 7> AddRecOps; 2541 for (int x = 0, xe = AddRec->getNumOperands() + 2542 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2543 const SCEV *Term = getConstant(Ty, 0); 2544 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2545 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2546 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2547 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2548 z < ze && !Overflow; ++z) { 2549 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2550 uint64_t Coeff; 2551 if (LargerThan64Bits) 2552 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2553 else 2554 Coeff = Coeff1*Coeff2; 2555 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2556 const SCEV *Term1 = AddRec->getOperand(y-z); 2557 const SCEV *Term2 = OtherAddRec->getOperand(z); 2558 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2559 } 2560 } 2561 AddRecOps.push_back(Term); 2562 } 2563 if (!Overflow) { 2564 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2565 SCEV::FlagAnyWrap); 2566 if (Ops.size() == 2) return NewAddRec; 2567 Ops[Idx] = NewAddRec; 2568 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2569 OpsModified = true; 2570 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2571 if (!AddRec) 2572 break; 2573 } 2574 } 2575 if (OpsModified) 2576 return getMulExpr(Ops); 2577 2578 // Otherwise couldn't fold anything into this recurrence. Move onto the 2579 // next one. 2580 } 2581 2582 // Okay, it looks like we really DO need an mul expr. Check to see if we 2583 // already have one, otherwise create a new one. 2584 FoldingSetNodeID ID; 2585 ID.AddInteger(scMulExpr); 2586 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2587 ID.AddPointer(Ops[i]); 2588 void *IP = nullptr; 2589 SCEVMulExpr *S = 2590 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2591 if (!S) { 2592 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2593 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2594 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2595 O, Ops.size()); 2596 UniqueSCEVs.InsertNode(S, IP); 2597 } 2598 S->setNoWrapFlags(Flags); 2599 return S; 2600 } 2601 2602 /// getUDivExpr - Get a canonical unsigned division expression, or something 2603 /// simpler if possible. 2604 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2605 const SCEV *RHS) { 2606 assert(getEffectiveSCEVType(LHS->getType()) == 2607 getEffectiveSCEVType(RHS->getType()) && 2608 "SCEVUDivExpr operand types don't match!"); 2609 2610 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2611 if (RHSC->getValue()->equalsInt(1)) 2612 return LHS; // X udiv 1 --> x 2613 // If the denominator is zero, the result of the udiv is undefined. Don't 2614 // try to analyze it, because the resolution chosen here may differ from 2615 // the resolution chosen in other parts of the compiler. 2616 if (!RHSC->getValue()->isZero()) { 2617 // Determine if the division can be folded into the operands of 2618 // its operands. 2619 // TODO: Generalize this to non-constants by using known-bits information. 2620 Type *Ty = LHS->getType(); 2621 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2622 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2623 // For non-power-of-two values, effectively round the value up to the 2624 // nearest power of two. 2625 if (!RHSC->getValue()->getValue().isPowerOf2()) 2626 ++MaxShiftAmt; 2627 IntegerType *ExtTy = 2628 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2629 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2630 if (const SCEVConstant *Step = 2631 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2632 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2633 const APInt &StepInt = Step->getValue()->getValue(); 2634 const APInt &DivInt = RHSC->getValue()->getValue(); 2635 if (!StepInt.urem(DivInt) && 2636 getZeroExtendExpr(AR, ExtTy) == 2637 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2638 getZeroExtendExpr(Step, ExtTy), 2639 AR->getLoop(), SCEV::FlagAnyWrap)) { 2640 SmallVector<const SCEV *, 4> Operands; 2641 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2642 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2643 return getAddRecExpr(Operands, AR->getLoop(), 2644 SCEV::FlagNW); 2645 } 2646 /// Get a canonical UDivExpr for a recurrence. 2647 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2648 // We can currently only fold X%N if X is constant. 2649 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2650 if (StartC && !DivInt.urem(StepInt) && 2651 getZeroExtendExpr(AR, ExtTy) == 2652 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2653 getZeroExtendExpr(Step, ExtTy), 2654 AR->getLoop(), SCEV::FlagAnyWrap)) { 2655 const APInt &StartInt = StartC->getValue()->getValue(); 2656 const APInt &StartRem = StartInt.urem(StepInt); 2657 if (StartRem != 0) 2658 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2659 AR->getLoop(), SCEV::FlagNW); 2660 } 2661 } 2662 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2663 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2664 SmallVector<const SCEV *, 4> Operands; 2665 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2666 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2667 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2668 // Find an operand that's safely divisible. 2669 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2670 const SCEV *Op = M->getOperand(i); 2671 const SCEV *Div = getUDivExpr(Op, RHSC); 2672 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2673 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2674 M->op_end()); 2675 Operands[i] = Div; 2676 return getMulExpr(Operands); 2677 } 2678 } 2679 } 2680 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2681 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2682 SmallVector<const SCEV *, 4> Operands; 2683 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2684 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2685 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2686 Operands.clear(); 2687 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2688 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2689 if (isa<SCEVUDivExpr>(Op) || 2690 getMulExpr(Op, RHS) != A->getOperand(i)) 2691 break; 2692 Operands.push_back(Op); 2693 } 2694 if (Operands.size() == A->getNumOperands()) 2695 return getAddExpr(Operands); 2696 } 2697 } 2698 2699 // Fold if both operands are constant. 2700 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2701 Constant *LHSCV = LHSC->getValue(); 2702 Constant *RHSCV = RHSC->getValue(); 2703 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2704 RHSCV))); 2705 } 2706 } 2707 } 2708 2709 FoldingSetNodeID ID; 2710 ID.AddInteger(scUDivExpr); 2711 ID.AddPointer(LHS); 2712 ID.AddPointer(RHS); 2713 void *IP = nullptr; 2714 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2715 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2716 LHS, RHS); 2717 UniqueSCEVs.InsertNode(S, IP); 2718 return S; 2719 } 2720 2721 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2722 APInt A = C1->getValue()->getValue().abs(); 2723 APInt B = C2->getValue()->getValue().abs(); 2724 uint32_t ABW = A.getBitWidth(); 2725 uint32_t BBW = B.getBitWidth(); 2726 2727 if (ABW > BBW) 2728 B = B.zext(ABW); 2729 else if (ABW < BBW) 2730 A = A.zext(BBW); 2731 2732 return APIntOps::GreatestCommonDivisor(A, B); 2733 } 2734 2735 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2736 /// something simpler if possible. There is no representation for an exact udiv 2737 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2738 /// We can't do this when it's not exact because the udiv may be clearing bits. 2739 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2740 const SCEV *RHS) { 2741 // TODO: we could try to find factors in all sorts of things, but for now we 2742 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2743 // end of this file for inspiration. 2744 2745 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2746 if (!Mul) 2747 return getUDivExpr(LHS, RHS); 2748 2749 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2750 // If the mulexpr multiplies by a constant, then that constant must be the 2751 // first element of the mulexpr. 2752 if (const SCEVConstant *LHSCst = 2753 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2754 if (LHSCst == RHSCst) { 2755 SmallVector<const SCEV *, 2> Operands; 2756 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2757 return getMulExpr(Operands); 2758 } 2759 2760 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2761 // that there's a factor provided by one of the other terms. We need to 2762 // check. 2763 APInt Factor = gcd(LHSCst, RHSCst); 2764 if (!Factor.isIntN(1)) { 2765 LHSCst = cast<SCEVConstant>( 2766 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2767 RHSCst = cast<SCEVConstant>( 2768 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2769 SmallVector<const SCEV *, 2> Operands; 2770 Operands.push_back(LHSCst); 2771 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2772 LHS = getMulExpr(Operands); 2773 RHS = RHSCst; 2774 Mul = dyn_cast<SCEVMulExpr>(LHS); 2775 if (!Mul) 2776 return getUDivExactExpr(LHS, RHS); 2777 } 2778 } 2779 } 2780 2781 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2782 if (Mul->getOperand(i) == RHS) { 2783 SmallVector<const SCEV *, 2> Operands; 2784 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2785 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2786 return getMulExpr(Operands); 2787 } 2788 } 2789 2790 return getUDivExpr(LHS, RHS); 2791 } 2792 2793 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2794 /// Simplify the expression as much as possible. 2795 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2796 const Loop *L, 2797 SCEV::NoWrapFlags Flags) { 2798 SmallVector<const SCEV *, 4> Operands; 2799 Operands.push_back(Start); 2800 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2801 if (StepChrec->getLoop() == L) { 2802 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2803 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2804 } 2805 2806 Operands.push_back(Step); 2807 return getAddRecExpr(Operands, L, Flags); 2808 } 2809 2810 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2811 /// Simplify the expression as much as possible. 2812 const SCEV * 2813 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2814 const Loop *L, SCEV::NoWrapFlags Flags) { 2815 if (Operands.size() == 1) return Operands[0]; 2816 #ifndef NDEBUG 2817 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2818 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2819 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2820 "SCEVAddRecExpr operand types don't match!"); 2821 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2822 assert(isLoopInvariant(Operands[i], L) && 2823 "SCEVAddRecExpr operand is not loop-invariant!"); 2824 #endif 2825 2826 if (Operands.back()->isZero()) { 2827 Operands.pop_back(); 2828 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2829 } 2830 2831 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2832 // use that information to infer NUW and NSW flags. However, computing a 2833 // BE count requires calling getAddRecExpr, so we may not yet have a 2834 // meaningful BE count at this point (and if we don't, we'd be stuck 2835 // with a SCEVCouldNotCompute as the cached BE count). 2836 2837 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2838 2839 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2840 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2841 const Loop *NestedLoop = NestedAR->getLoop(); 2842 if (L->contains(NestedLoop) 2843 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2844 : (!NestedLoop->contains(L) && 2845 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2846 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2847 NestedAR->op_end()); 2848 Operands[0] = NestedAR->getStart(); 2849 // AddRecs require their operands be loop-invariant with respect to their 2850 // loops. Don't perform this transformation if it would break this 2851 // requirement. 2852 bool AllInvariant = true; 2853 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2854 if (!isLoopInvariant(Operands[i], L)) { 2855 AllInvariant = false; 2856 break; 2857 } 2858 if (AllInvariant) { 2859 // Create a recurrence for the outer loop with the same step size. 2860 // 2861 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2862 // inner recurrence has the same property. 2863 SCEV::NoWrapFlags OuterFlags = 2864 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2865 2866 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2867 AllInvariant = true; 2868 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2869 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2870 AllInvariant = false; 2871 break; 2872 } 2873 if (AllInvariant) { 2874 // Ok, both add recurrences are valid after the transformation. 2875 // 2876 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2877 // the outer recurrence has the same property. 2878 SCEV::NoWrapFlags InnerFlags = 2879 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2880 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2881 } 2882 } 2883 // Reset Operands to its original state. 2884 Operands[0] = NestedAR; 2885 } 2886 } 2887 2888 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2889 // already have one, otherwise create a new one. 2890 FoldingSetNodeID ID; 2891 ID.AddInteger(scAddRecExpr); 2892 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2893 ID.AddPointer(Operands[i]); 2894 ID.AddPointer(L); 2895 void *IP = nullptr; 2896 SCEVAddRecExpr *S = 2897 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2898 if (!S) { 2899 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2900 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2901 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2902 O, Operands.size(), L); 2903 UniqueSCEVs.InsertNode(S, IP); 2904 } 2905 S->setNoWrapFlags(Flags); 2906 return S; 2907 } 2908 2909 const SCEV * 2910 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2911 const SmallVectorImpl<const SCEV *> &IndexExprs, 2912 bool InBounds) { 2913 // getSCEV(Base)->getType() has the same address space as Base->getType() 2914 // because SCEV::getType() preserves the address space. 2915 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2916 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2917 // instruction to its SCEV, because the Instruction may be guarded by control 2918 // flow and the no-overflow bits may not be valid for the expression in any 2919 // context. This can be fixed similarly to how these flags are handled for 2920 // adds. 2921 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2922 2923 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2924 // The address space is unimportant. The first thing we do on CurTy is getting 2925 // its element type. 2926 Type *CurTy = PointerType::getUnqual(PointeeType); 2927 for (const SCEV *IndexExpr : IndexExprs) { 2928 // Compute the (potentially symbolic) offset in bytes for this index. 2929 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2930 // For a struct, add the member offset. 2931 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2932 unsigned FieldNo = Index->getZExtValue(); 2933 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2934 2935 // Add the field offset to the running total offset. 2936 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2937 2938 // Update CurTy to the type of the field at Index. 2939 CurTy = STy->getTypeAtIndex(Index); 2940 } else { 2941 // Update CurTy to its element type. 2942 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2943 // For an array, add the element offset, explicitly scaled. 2944 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2945 // Getelementptr indices are signed. 2946 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2947 2948 // Multiply the index by the element size to compute the element offset. 2949 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2950 2951 // Add the element offset to the running total offset. 2952 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2953 } 2954 } 2955 2956 // Add the total offset from all the GEP indices to the base. 2957 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2958 } 2959 2960 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2961 const SCEV *RHS) { 2962 SmallVector<const SCEV *, 2> Ops; 2963 Ops.push_back(LHS); 2964 Ops.push_back(RHS); 2965 return getSMaxExpr(Ops); 2966 } 2967 2968 const SCEV * 2969 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2970 assert(!Ops.empty() && "Cannot get empty smax!"); 2971 if (Ops.size() == 1) return Ops[0]; 2972 #ifndef NDEBUG 2973 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2974 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2975 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2976 "SCEVSMaxExpr operand types don't match!"); 2977 #endif 2978 2979 // Sort by complexity, this groups all similar expression types together. 2980 GroupByComplexity(Ops, &LI); 2981 2982 // If there are any constants, fold them together. 2983 unsigned Idx = 0; 2984 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2985 ++Idx; 2986 assert(Idx < Ops.size()); 2987 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2988 // We found two constants, fold them together! 2989 ConstantInt *Fold = ConstantInt::get(getContext(), 2990 APIntOps::smax(LHSC->getValue()->getValue(), 2991 RHSC->getValue()->getValue())); 2992 Ops[0] = getConstant(Fold); 2993 Ops.erase(Ops.begin()+1); // Erase the folded element 2994 if (Ops.size() == 1) return Ops[0]; 2995 LHSC = cast<SCEVConstant>(Ops[0]); 2996 } 2997 2998 // If we are left with a constant minimum-int, strip it off. 2999 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3000 Ops.erase(Ops.begin()); 3001 --Idx; 3002 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3003 // If we have an smax with a constant maximum-int, it will always be 3004 // maximum-int. 3005 return Ops[0]; 3006 } 3007 3008 if (Ops.size() == 1) return Ops[0]; 3009 } 3010 3011 // Find the first SMax 3012 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3013 ++Idx; 3014 3015 // Check to see if one of the operands is an SMax. If so, expand its operands 3016 // onto our operand list, and recurse to simplify. 3017 if (Idx < Ops.size()) { 3018 bool DeletedSMax = false; 3019 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3020 Ops.erase(Ops.begin()+Idx); 3021 Ops.append(SMax->op_begin(), SMax->op_end()); 3022 DeletedSMax = true; 3023 } 3024 3025 if (DeletedSMax) 3026 return getSMaxExpr(Ops); 3027 } 3028 3029 // Okay, check to see if the same value occurs in the operand list twice. If 3030 // so, delete one. Since we sorted the list, these values are required to 3031 // be adjacent. 3032 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3033 // X smax Y smax Y --> X smax Y 3034 // X smax Y --> X, if X is always greater than Y 3035 if (Ops[i] == Ops[i+1] || 3036 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3037 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3038 --i; --e; 3039 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3040 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3041 --i; --e; 3042 } 3043 3044 if (Ops.size() == 1) return Ops[0]; 3045 3046 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3047 3048 // Okay, it looks like we really DO need an smax expr. Check to see if we 3049 // already have one, otherwise create a new one. 3050 FoldingSetNodeID ID; 3051 ID.AddInteger(scSMaxExpr); 3052 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3053 ID.AddPointer(Ops[i]); 3054 void *IP = nullptr; 3055 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3056 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3057 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3058 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3059 O, Ops.size()); 3060 UniqueSCEVs.InsertNode(S, IP); 3061 return S; 3062 } 3063 3064 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3065 const SCEV *RHS) { 3066 SmallVector<const SCEV *, 2> Ops; 3067 Ops.push_back(LHS); 3068 Ops.push_back(RHS); 3069 return getUMaxExpr(Ops); 3070 } 3071 3072 const SCEV * 3073 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3074 assert(!Ops.empty() && "Cannot get empty umax!"); 3075 if (Ops.size() == 1) return Ops[0]; 3076 #ifndef NDEBUG 3077 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3078 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3079 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3080 "SCEVUMaxExpr operand types don't match!"); 3081 #endif 3082 3083 // Sort by complexity, this groups all similar expression types together. 3084 GroupByComplexity(Ops, &LI); 3085 3086 // If there are any constants, fold them together. 3087 unsigned Idx = 0; 3088 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3089 ++Idx; 3090 assert(Idx < Ops.size()); 3091 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3092 // We found two constants, fold them together! 3093 ConstantInt *Fold = ConstantInt::get(getContext(), 3094 APIntOps::umax(LHSC->getValue()->getValue(), 3095 RHSC->getValue()->getValue())); 3096 Ops[0] = getConstant(Fold); 3097 Ops.erase(Ops.begin()+1); // Erase the folded element 3098 if (Ops.size() == 1) return Ops[0]; 3099 LHSC = cast<SCEVConstant>(Ops[0]); 3100 } 3101 3102 // If we are left with a constant minimum-int, strip it off. 3103 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3104 Ops.erase(Ops.begin()); 3105 --Idx; 3106 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3107 // If we have an umax with a constant maximum-int, it will always be 3108 // maximum-int. 3109 return Ops[0]; 3110 } 3111 3112 if (Ops.size() == 1) return Ops[0]; 3113 } 3114 3115 // Find the first UMax 3116 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3117 ++Idx; 3118 3119 // Check to see if one of the operands is a UMax. If so, expand its operands 3120 // onto our operand list, and recurse to simplify. 3121 if (Idx < Ops.size()) { 3122 bool DeletedUMax = false; 3123 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3124 Ops.erase(Ops.begin()+Idx); 3125 Ops.append(UMax->op_begin(), UMax->op_end()); 3126 DeletedUMax = true; 3127 } 3128 3129 if (DeletedUMax) 3130 return getUMaxExpr(Ops); 3131 } 3132 3133 // Okay, check to see if the same value occurs in the operand list twice. If 3134 // so, delete one. Since we sorted the list, these values are required to 3135 // be adjacent. 3136 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3137 // X umax Y umax Y --> X umax Y 3138 // X umax Y --> X, if X is always greater than Y 3139 if (Ops[i] == Ops[i+1] || 3140 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3141 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3142 --i; --e; 3143 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3144 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3145 --i; --e; 3146 } 3147 3148 if (Ops.size() == 1) return Ops[0]; 3149 3150 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3151 3152 // Okay, it looks like we really DO need a umax expr. Check to see if we 3153 // already have one, otherwise create a new one. 3154 FoldingSetNodeID ID; 3155 ID.AddInteger(scUMaxExpr); 3156 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3157 ID.AddPointer(Ops[i]); 3158 void *IP = nullptr; 3159 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3160 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3161 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3162 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3163 O, Ops.size()); 3164 UniqueSCEVs.InsertNode(S, IP); 3165 return S; 3166 } 3167 3168 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3169 const SCEV *RHS) { 3170 // ~smax(~x, ~y) == smin(x, y). 3171 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3172 } 3173 3174 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3175 const SCEV *RHS) { 3176 // ~umax(~x, ~y) == umin(x, y) 3177 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3178 } 3179 3180 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3181 // We can bypass creating a target-independent 3182 // constant expression and then folding it back into a ConstantInt. 3183 // This is just a compile-time optimization. 3184 return getConstant(IntTy, 3185 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy)); 3186 } 3187 3188 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3189 StructType *STy, 3190 unsigned FieldNo) { 3191 // We can bypass creating a target-independent 3192 // constant expression and then folding it back into a ConstantInt. 3193 // This is just a compile-time optimization. 3194 return getConstant( 3195 IntTy, 3196 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset( 3197 FieldNo)); 3198 } 3199 3200 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3201 // Don't attempt to do anything other than create a SCEVUnknown object 3202 // here. createSCEV only calls getUnknown after checking for all other 3203 // interesting possibilities, and any other code that calls getUnknown 3204 // is doing so in order to hide a value from SCEV canonicalization. 3205 3206 FoldingSetNodeID ID; 3207 ID.AddInteger(scUnknown); 3208 ID.AddPointer(V); 3209 void *IP = nullptr; 3210 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3211 assert(cast<SCEVUnknown>(S)->getValue() == V && 3212 "Stale SCEVUnknown in uniquing map!"); 3213 return S; 3214 } 3215 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3216 FirstUnknown); 3217 FirstUnknown = cast<SCEVUnknown>(S); 3218 UniqueSCEVs.InsertNode(S, IP); 3219 return S; 3220 } 3221 3222 //===----------------------------------------------------------------------===// 3223 // Basic SCEV Analysis and PHI Idiom Recognition Code 3224 // 3225 3226 /// isSCEVable - Test if values of the given type are analyzable within 3227 /// the SCEV framework. This primarily includes integer types, and it 3228 /// can optionally include pointer types if the ScalarEvolution class 3229 /// has access to target-specific information. 3230 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3231 // Integers and pointers are always SCEVable. 3232 return Ty->isIntegerTy() || Ty->isPointerTy(); 3233 } 3234 3235 /// getTypeSizeInBits - Return the size in bits of the specified type, 3236 /// for which isSCEVable must return true. 3237 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3238 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3239 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty); 3240 } 3241 3242 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3243 /// the given type and which represents how SCEV will treat the given 3244 /// type, for which isSCEVable must return true. For pointer types, 3245 /// this is the pointer-sized integer type. 3246 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3247 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3248 3249 if (Ty->isIntegerTy()) { 3250 return Ty; 3251 } 3252 3253 // The only other support type is pointer. 3254 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3255 return F.getParent()->getDataLayout().getIntPtrType(Ty); 3256 } 3257 3258 const SCEV *ScalarEvolution::getCouldNotCompute() { 3259 return CouldNotCompute.get(); 3260 } 3261 3262 namespace { 3263 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3264 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3265 // is set iff if find such SCEVUnknown. 3266 // 3267 struct FindInvalidSCEVUnknown { 3268 bool FindOne; 3269 FindInvalidSCEVUnknown() { FindOne = false; } 3270 bool follow(const SCEV *S) { 3271 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3272 case scConstant: 3273 return false; 3274 case scUnknown: 3275 if (!cast<SCEVUnknown>(S)->getValue()) 3276 FindOne = true; 3277 return false; 3278 default: 3279 return true; 3280 } 3281 } 3282 bool isDone() const { return FindOne; } 3283 }; 3284 } 3285 3286 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3287 FindInvalidSCEVUnknown F; 3288 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3289 ST.visitAll(S); 3290 3291 return !F.FindOne; 3292 } 3293 3294 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3295 /// expression and create a new one. 3296 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3297 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3298 3299 const SCEV *S = getExistingSCEV(V); 3300 if (S == nullptr) { 3301 S = createSCEV(V); 3302 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3303 } 3304 return S; 3305 } 3306 3307 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3308 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3309 3310 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3311 if (I != ValueExprMap.end()) { 3312 const SCEV *S = I->second; 3313 if (checkValidity(S)) 3314 return S; 3315 ValueExprMap.erase(I); 3316 } 3317 return nullptr; 3318 } 3319 3320 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3321 /// 3322 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3323 SCEV::NoWrapFlags Flags) { 3324 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3325 return getConstant( 3326 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3327 3328 Type *Ty = V->getType(); 3329 Ty = getEffectiveSCEVType(Ty); 3330 return getMulExpr( 3331 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3332 } 3333 3334 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3335 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3336 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3337 return getConstant( 3338 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3339 3340 Type *Ty = V->getType(); 3341 Ty = getEffectiveSCEVType(Ty); 3342 const SCEV *AllOnes = 3343 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3344 return getMinusSCEV(AllOnes, V); 3345 } 3346 3347 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3348 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3349 SCEV::NoWrapFlags Flags) { 3350 // Fast path: X - X --> 0. 3351 if (LHS == RHS) 3352 return getConstant(LHS->getType(), 0); 3353 3354 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3355 // makes it so that we cannot make much use of NUW. 3356 auto AddFlags = SCEV::FlagAnyWrap; 3357 const bool RHSIsNotMinSigned = 3358 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3359 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3360 // Let M be the minimum representable signed value. Then (-1)*RHS 3361 // signed-wraps if and only if RHS is M. That can happen even for 3362 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3363 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3364 // (-1)*RHS, we need to prove that RHS != M. 3365 // 3366 // If LHS is non-negative and we know that LHS - RHS does not 3367 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3368 // either by proving that RHS > M or that LHS >= 0. 3369 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3370 AddFlags = SCEV::FlagNSW; 3371 } 3372 } 3373 3374 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3375 // RHS is NSW and LHS >= 0. 3376 // 3377 // The difficulty here is that the NSW flag may have been proven 3378 // relative to a loop that is to be found in a recurrence in LHS and 3379 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3380 // larger scope than intended. 3381 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3382 3383 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3384 } 3385 3386 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3387 /// input value to the specified type. If the type must be extended, it is zero 3388 /// extended. 3389 const SCEV * 3390 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3391 Type *SrcTy = V->getType(); 3392 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3393 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3394 "Cannot truncate or zero extend with non-integer arguments!"); 3395 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3396 return V; // No conversion 3397 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3398 return getTruncateExpr(V, Ty); 3399 return getZeroExtendExpr(V, Ty); 3400 } 3401 3402 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3403 /// input value to the specified type. If the type must be extended, it is sign 3404 /// extended. 3405 const SCEV * 3406 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3407 Type *Ty) { 3408 Type *SrcTy = V->getType(); 3409 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3410 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3411 "Cannot truncate or zero extend with non-integer arguments!"); 3412 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3413 return V; // No conversion 3414 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3415 return getTruncateExpr(V, Ty); 3416 return getSignExtendExpr(V, Ty); 3417 } 3418 3419 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3420 /// input value to the specified type. If the type must be extended, it is zero 3421 /// extended. The conversion must not be narrowing. 3422 const SCEV * 3423 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3424 Type *SrcTy = V->getType(); 3425 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3426 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3427 "Cannot noop or zero extend with non-integer arguments!"); 3428 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3429 "getNoopOrZeroExtend cannot truncate!"); 3430 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3431 return V; // No conversion 3432 return getZeroExtendExpr(V, Ty); 3433 } 3434 3435 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3436 /// input value to the specified type. If the type must be extended, it is sign 3437 /// extended. The conversion must not be narrowing. 3438 const SCEV * 3439 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3440 Type *SrcTy = V->getType(); 3441 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3442 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3443 "Cannot noop or sign extend with non-integer arguments!"); 3444 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3445 "getNoopOrSignExtend cannot truncate!"); 3446 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3447 return V; // No conversion 3448 return getSignExtendExpr(V, Ty); 3449 } 3450 3451 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3452 /// the input value to the specified type. If the type must be extended, 3453 /// it is extended with unspecified bits. The conversion must not be 3454 /// narrowing. 3455 const SCEV * 3456 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3457 Type *SrcTy = V->getType(); 3458 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3459 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3460 "Cannot noop or any extend with non-integer arguments!"); 3461 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3462 "getNoopOrAnyExtend cannot truncate!"); 3463 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3464 return V; // No conversion 3465 return getAnyExtendExpr(V, Ty); 3466 } 3467 3468 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3469 /// input value to the specified type. The conversion must not be widening. 3470 const SCEV * 3471 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3472 Type *SrcTy = V->getType(); 3473 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3474 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3475 "Cannot truncate or noop with non-integer arguments!"); 3476 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3477 "getTruncateOrNoop cannot extend!"); 3478 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3479 return V; // No conversion 3480 return getTruncateExpr(V, Ty); 3481 } 3482 3483 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3484 /// the types using zero-extension, and then perform a umax operation 3485 /// with them. 3486 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3487 const SCEV *RHS) { 3488 const SCEV *PromotedLHS = LHS; 3489 const SCEV *PromotedRHS = RHS; 3490 3491 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3492 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3493 else 3494 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3495 3496 return getUMaxExpr(PromotedLHS, PromotedRHS); 3497 } 3498 3499 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3500 /// the types using zero-extension, and then perform a umin operation 3501 /// with them. 3502 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3503 const SCEV *RHS) { 3504 const SCEV *PromotedLHS = LHS; 3505 const SCEV *PromotedRHS = RHS; 3506 3507 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3508 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3509 else 3510 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3511 3512 return getUMinExpr(PromotedLHS, PromotedRHS); 3513 } 3514 3515 /// getPointerBase - Transitively follow the chain of pointer-type operands 3516 /// until reaching a SCEV that does not have a single pointer operand. This 3517 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3518 /// but corner cases do exist. 3519 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3520 // A pointer operand may evaluate to a nonpointer expression, such as null. 3521 if (!V->getType()->isPointerTy()) 3522 return V; 3523 3524 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3525 return getPointerBase(Cast->getOperand()); 3526 } 3527 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3528 const SCEV *PtrOp = nullptr; 3529 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3530 I != E; ++I) { 3531 if ((*I)->getType()->isPointerTy()) { 3532 // Cannot find the base of an expression with multiple pointer operands. 3533 if (PtrOp) 3534 return V; 3535 PtrOp = *I; 3536 } 3537 } 3538 if (!PtrOp) 3539 return V; 3540 return getPointerBase(PtrOp); 3541 } 3542 return V; 3543 } 3544 3545 /// PushDefUseChildren - Push users of the given Instruction 3546 /// onto the given Worklist. 3547 static void 3548 PushDefUseChildren(Instruction *I, 3549 SmallVectorImpl<Instruction *> &Worklist) { 3550 // Push the def-use children onto the Worklist stack. 3551 for (User *U : I->users()) 3552 Worklist.push_back(cast<Instruction>(U)); 3553 } 3554 3555 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3556 /// instructions that depend on the given instruction and removes them from 3557 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3558 /// resolution. 3559 void 3560 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3561 SmallVector<Instruction *, 16> Worklist; 3562 PushDefUseChildren(PN, Worklist); 3563 3564 SmallPtrSet<Instruction *, 8> Visited; 3565 Visited.insert(PN); 3566 while (!Worklist.empty()) { 3567 Instruction *I = Worklist.pop_back_val(); 3568 if (!Visited.insert(I).second) 3569 continue; 3570 3571 ValueExprMapType::iterator It = 3572 ValueExprMap.find_as(static_cast<Value *>(I)); 3573 if (It != ValueExprMap.end()) { 3574 const SCEV *Old = It->second; 3575 3576 // Short-circuit the def-use traversal if the symbolic name 3577 // ceases to appear in expressions. 3578 if (Old != SymName && !hasOperand(Old, SymName)) 3579 continue; 3580 3581 // SCEVUnknown for a PHI either means that it has an unrecognized 3582 // structure, it's a PHI that's in the progress of being computed 3583 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3584 // additional loop trip count information isn't going to change anything. 3585 // In the second case, createNodeForPHI will perform the necessary 3586 // updates on its own when it gets to that point. In the third, we do 3587 // want to forget the SCEVUnknown. 3588 if (!isa<PHINode>(I) || 3589 !isa<SCEVUnknown>(Old) || 3590 (I != PN && Old == SymName)) { 3591 forgetMemoizedResults(Old); 3592 ValueExprMap.erase(It); 3593 } 3594 } 3595 3596 PushDefUseChildren(I, Worklist); 3597 } 3598 } 3599 3600 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3601 /// a loop header, making it a potential recurrence, or it doesn't. 3602 /// 3603 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3604 if (const Loop *L = LI.getLoopFor(PN->getParent())) 3605 if (L->getHeader() == PN->getParent()) { 3606 // The loop may have multiple entrances or multiple exits; we can analyze 3607 // this phi as an addrec if it has a unique entry value and a unique 3608 // backedge value. 3609 Value *BEValueV = nullptr, *StartValueV = nullptr; 3610 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3611 Value *V = PN->getIncomingValue(i); 3612 if (L->contains(PN->getIncomingBlock(i))) { 3613 if (!BEValueV) { 3614 BEValueV = V; 3615 } else if (BEValueV != V) { 3616 BEValueV = nullptr; 3617 break; 3618 } 3619 } else if (!StartValueV) { 3620 StartValueV = V; 3621 } else if (StartValueV != V) { 3622 StartValueV = nullptr; 3623 break; 3624 } 3625 } 3626 if (BEValueV && StartValueV) { 3627 // While we are analyzing this PHI node, handle its value symbolically. 3628 const SCEV *SymbolicName = getUnknown(PN); 3629 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3630 "PHI node already processed?"); 3631 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3632 3633 // Using this symbolic name for the PHI, analyze the value coming around 3634 // the back-edge. 3635 const SCEV *BEValue = getSCEV(BEValueV); 3636 3637 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3638 // has a special value for the first iteration of the loop. 3639 3640 // If the value coming around the backedge is an add with the symbolic 3641 // value we just inserted, then we found a simple induction variable! 3642 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3643 // If there is a single occurrence of the symbolic value, replace it 3644 // with a recurrence. 3645 unsigned FoundIndex = Add->getNumOperands(); 3646 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3647 if (Add->getOperand(i) == SymbolicName) 3648 if (FoundIndex == e) { 3649 FoundIndex = i; 3650 break; 3651 } 3652 3653 if (FoundIndex != Add->getNumOperands()) { 3654 // Create an add with everything but the specified operand. 3655 SmallVector<const SCEV *, 8> Ops; 3656 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3657 if (i != FoundIndex) 3658 Ops.push_back(Add->getOperand(i)); 3659 const SCEV *Accum = getAddExpr(Ops); 3660 3661 // This is not a valid addrec if the step amount is varying each 3662 // loop iteration, but is not itself an addrec in this loop. 3663 if (isLoopInvariant(Accum, L) || 3664 (isa<SCEVAddRecExpr>(Accum) && 3665 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3666 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3667 3668 // If the increment doesn't overflow, then neither the addrec nor 3669 // the post-increment will overflow. 3670 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3671 if (OBO->getOperand(0) == PN) { 3672 if (OBO->hasNoUnsignedWrap()) 3673 Flags = setFlags(Flags, SCEV::FlagNUW); 3674 if (OBO->hasNoSignedWrap()) 3675 Flags = setFlags(Flags, SCEV::FlagNSW); 3676 } 3677 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3678 // If the increment is an inbounds GEP, then we know the address 3679 // space cannot be wrapped around. We cannot make any guarantee 3680 // about signed or unsigned overflow because pointers are 3681 // unsigned but we may have a negative index from the base 3682 // pointer. We can guarantee that no unsigned wrap occurs if the 3683 // indices form a positive value. 3684 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3685 Flags = setFlags(Flags, SCEV::FlagNW); 3686 3687 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3688 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3689 Flags = setFlags(Flags, SCEV::FlagNUW); 3690 } 3691 3692 // We cannot transfer nuw and nsw flags from subtraction 3693 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3694 // for instance. 3695 } 3696 3697 const SCEV *StartVal = getSCEV(StartValueV); 3698 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3699 3700 // Since the no-wrap flags are on the increment, they apply to the 3701 // post-incremented value as well. 3702 if (isLoopInvariant(Accum, L)) 3703 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3704 Accum, L, Flags); 3705 3706 // Okay, for the entire analysis of this edge we assumed the PHI 3707 // to be symbolic. We now need to go back and purge all of the 3708 // entries for the scalars that use the symbolic expression. 3709 ForgetSymbolicName(PN, SymbolicName); 3710 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3711 return PHISCEV; 3712 } 3713 } 3714 } else if (const SCEVAddRecExpr *AddRec = 3715 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3716 // Otherwise, this could be a loop like this: 3717 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3718 // In this case, j = {1,+,1} and BEValue is j. 3719 // Because the other in-value of i (0) fits the evolution of BEValue 3720 // i really is an addrec evolution. 3721 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3722 const SCEV *StartVal = getSCEV(StartValueV); 3723 3724 // If StartVal = j.start - j.stride, we can use StartVal as the 3725 // initial step of the addrec evolution. 3726 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3727 AddRec->getOperand(1))) { 3728 // FIXME: For constant StartVal, we should be able to infer 3729 // no-wrap flags. 3730 const SCEV *PHISCEV = 3731 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3732 SCEV::FlagAnyWrap); 3733 3734 // Okay, for the entire analysis of this edge we assumed the PHI 3735 // to be symbolic. We now need to go back and purge all of the 3736 // entries for the scalars that use the symbolic expression. 3737 ForgetSymbolicName(PN, SymbolicName); 3738 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3739 return PHISCEV; 3740 } 3741 } 3742 } 3743 } 3744 } 3745 3746 // If the PHI has a single incoming value, follow that value, unless the 3747 // PHI's incoming blocks are in a different loop, in which case doing so 3748 // risks breaking LCSSA form. Instcombine would normally zap these, but 3749 // it doesn't have DominatorTree information, so it may miss cases. 3750 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI, 3751 &DT, &AC)) 3752 if (LI.replacementPreservesLCSSAForm(PN, V)) 3753 return getSCEV(V); 3754 3755 // If it's not a loop phi, we can't handle it yet. 3756 return getUnknown(PN); 3757 } 3758 3759 /// createNodeForGEP - Expand GEP instructions into add and multiply 3760 /// operations. This allows them to be analyzed by regular SCEV code. 3761 /// 3762 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3763 Value *Base = GEP->getOperand(0); 3764 // Don't attempt to analyze GEPs over unsized objects. 3765 if (!Base->getType()->getPointerElementType()->isSized()) 3766 return getUnknown(GEP); 3767 3768 SmallVector<const SCEV *, 4> IndexExprs; 3769 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 3770 IndexExprs.push_back(getSCEV(*Index)); 3771 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 3772 GEP->isInBounds()); 3773 } 3774 3775 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3776 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3777 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3778 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3779 uint32_t 3780 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3781 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3782 return C->getValue()->getValue().countTrailingZeros(); 3783 3784 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3785 return std::min(GetMinTrailingZeros(T->getOperand()), 3786 (uint32_t)getTypeSizeInBits(T->getType())); 3787 3788 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3789 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3790 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3791 getTypeSizeInBits(E->getType()) : OpRes; 3792 } 3793 3794 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3795 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3796 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3797 getTypeSizeInBits(E->getType()) : OpRes; 3798 } 3799 3800 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3801 // The result is the min of all operands results. 3802 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3803 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3804 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3805 return MinOpRes; 3806 } 3807 3808 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3809 // The result is the sum of all operands results. 3810 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3811 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3812 for (unsigned i = 1, e = M->getNumOperands(); 3813 SumOpRes != BitWidth && i != e; ++i) 3814 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3815 BitWidth); 3816 return SumOpRes; 3817 } 3818 3819 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3820 // The result is the min of all operands results. 3821 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3822 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3823 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3824 return MinOpRes; 3825 } 3826 3827 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3828 // The result is the min of all operands results. 3829 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3830 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3831 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3832 return MinOpRes; 3833 } 3834 3835 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3836 // The result is the min of all operands results. 3837 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3838 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3839 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3840 return MinOpRes; 3841 } 3842 3843 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3844 // For a SCEVUnknown, ask ValueTracking. 3845 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3846 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3847 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(), 3848 0, &AC, nullptr, &DT); 3849 return Zeros.countTrailingOnes(); 3850 } 3851 3852 // SCEVUDivExpr 3853 return 0; 3854 } 3855 3856 /// GetRangeFromMetadata - Helper method to assign a range to V from 3857 /// metadata present in the IR. 3858 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 3859 if (Instruction *I = dyn_cast<Instruction>(V)) { 3860 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { 3861 ConstantRange TotalRange( 3862 cast<IntegerType>(I->getType())->getBitWidth(), false); 3863 3864 unsigned NumRanges = MD->getNumOperands() / 2; 3865 assert(NumRanges >= 1); 3866 3867 for (unsigned i = 0; i < NumRanges; ++i) { 3868 ConstantInt *Lower = 3869 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0)); 3870 ConstantInt *Upper = 3871 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1)); 3872 ConstantRange Range(Lower->getValue(), Upper->getValue()); 3873 TotalRange = TotalRange.unionWith(Range); 3874 } 3875 3876 return TotalRange; 3877 } 3878 } 3879 3880 return None; 3881 } 3882 3883 /// getRange - Determine the range for a particular SCEV. If SignHint is 3884 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 3885 /// with a "cleaner" unsigned (resp. signed) representation. 3886 /// 3887 ConstantRange 3888 ScalarEvolution::getRange(const SCEV *S, 3889 ScalarEvolution::RangeSignHint SignHint) { 3890 DenseMap<const SCEV *, ConstantRange> &Cache = 3891 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 3892 : SignedRanges; 3893 3894 // See if we've computed this range already. 3895 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 3896 if (I != Cache.end()) 3897 return I->second; 3898 3899 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3900 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 3901 3902 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3903 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3904 3905 // If the value has known zeros, the maximum value will have those known zeros 3906 // as well. 3907 uint32_t TZ = GetMinTrailingZeros(S); 3908 if (TZ != 0) { 3909 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 3910 ConservativeResult = 3911 ConstantRange(APInt::getMinValue(BitWidth), 3912 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3913 else 3914 ConservativeResult = ConstantRange( 3915 APInt::getSignedMinValue(BitWidth), 3916 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3917 } 3918 3919 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3920 ConstantRange X = getRange(Add->getOperand(0), SignHint); 3921 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3922 X = X.add(getRange(Add->getOperand(i), SignHint)); 3923 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 3924 } 3925 3926 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3927 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 3928 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3929 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 3930 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 3931 } 3932 3933 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3934 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 3935 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3936 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 3937 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 3938 } 3939 3940 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3941 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 3942 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3943 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 3944 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 3945 } 3946 3947 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3948 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 3949 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 3950 return setRange(UDiv, SignHint, 3951 ConservativeResult.intersectWith(X.udiv(Y))); 3952 } 3953 3954 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3955 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 3956 return setRange(ZExt, SignHint, 3957 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3958 } 3959 3960 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3961 ConstantRange X = getRange(SExt->getOperand(), SignHint); 3962 return setRange(SExt, SignHint, 3963 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3964 } 3965 3966 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3967 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 3968 return setRange(Trunc, SignHint, 3969 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3970 } 3971 3972 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3973 // If there's no unsigned wrap, the value will never be less than its 3974 // initial value. 3975 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3976 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3977 if (!C->getValue()->isZero()) 3978 ConservativeResult = 3979 ConservativeResult.intersectWith( 3980 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3981 3982 // If there's no signed wrap, and all the operands have the same sign or 3983 // zero, the value won't ever change sign. 3984 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3985 bool AllNonNeg = true; 3986 bool AllNonPos = true; 3987 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3988 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3989 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3990 } 3991 if (AllNonNeg) 3992 ConservativeResult = ConservativeResult.intersectWith( 3993 ConstantRange(APInt(BitWidth, 0), 3994 APInt::getSignedMinValue(BitWidth))); 3995 else if (AllNonPos) 3996 ConservativeResult = ConservativeResult.intersectWith( 3997 ConstantRange(APInt::getSignedMinValue(BitWidth), 3998 APInt(BitWidth, 1))); 3999 } 4000 4001 // TODO: non-affine addrec 4002 if (AddRec->isAffine()) { 4003 Type *Ty = AddRec->getType(); 4004 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4005 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4006 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4007 4008 // Check for overflow. This must be done with ConstantRange arithmetic 4009 // because we could be called from within the ScalarEvolution overflow 4010 // checking code. 4011 4012 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4013 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4014 ConstantRange ZExtMaxBECountRange = 4015 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4016 4017 const SCEV *Start = AddRec->getStart(); 4018 const SCEV *Step = AddRec->getStepRecurrence(*this); 4019 ConstantRange StepSRange = getSignedRange(Step); 4020 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4021 4022 ConstantRange StartURange = getUnsignedRange(Start); 4023 ConstantRange EndURange = 4024 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4025 4026 // Check for unsigned overflow. 4027 ConstantRange ZExtStartURange = 4028 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4029 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4030 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4031 ZExtEndURange) { 4032 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4033 EndURange.getUnsignedMin()); 4034 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4035 EndURange.getUnsignedMax()); 4036 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4037 if (!IsFullRange) 4038 ConservativeResult = 4039 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4040 } 4041 4042 ConstantRange StartSRange = getSignedRange(Start); 4043 ConstantRange EndSRange = 4044 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4045 4046 // Check for signed overflow. This must be done with ConstantRange 4047 // arithmetic because we could be called from within the ScalarEvolution 4048 // overflow checking code. 4049 ConstantRange SExtStartSRange = 4050 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4051 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4052 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4053 SExtEndSRange) { 4054 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4055 EndSRange.getSignedMin()); 4056 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4057 EndSRange.getSignedMax()); 4058 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4059 if (!IsFullRange) 4060 ConservativeResult = 4061 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4062 } 4063 } 4064 } 4065 4066 return setRange(AddRec, SignHint, ConservativeResult); 4067 } 4068 4069 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4070 // Check if the IR explicitly contains !range metadata. 4071 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4072 if (MDRange.hasValue()) 4073 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4074 4075 // Split here to avoid paying the compile-time cost of calling both 4076 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4077 // if needed. 4078 const DataLayout &DL = F.getParent()->getDataLayout(); 4079 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4080 // For a SCEVUnknown, ask ValueTracking. 4081 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4082 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4083 if (Ones != ~Zeros + 1) 4084 ConservativeResult = 4085 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4086 } else { 4087 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4088 "generalize as needed!"); 4089 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4090 if (NS > 1) 4091 ConservativeResult = ConservativeResult.intersectWith( 4092 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4093 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4094 } 4095 4096 return setRange(U, SignHint, ConservativeResult); 4097 } 4098 4099 return setRange(S, SignHint, ConservativeResult); 4100 } 4101 4102 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4103 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4104 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4105 4106 // Return early if there are no flags to propagate to the SCEV. 4107 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4108 if (BinOp->hasNoUnsignedWrap()) 4109 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4110 if (BinOp->hasNoSignedWrap()) 4111 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4112 if (Flags == SCEV::FlagAnyWrap) { 4113 return SCEV::FlagAnyWrap; 4114 } 4115 4116 // Here we check that BinOp is in the header of the innermost loop 4117 // containing BinOp, since we only deal with instructions in the loop 4118 // header. The actual loop we need to check later will come from an add 4119 // recurrence, but getting that requires computing the SCEV of the operands, 4120 // which can be expensive. This check we can do cheaply to rule out some 4121 // cases early. 4122 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4123 if (innermostContainingLoop == nullptr || 4124 innermostContainingLoop->getHeader() != BinOp->getParent()) 4125 return SCEV::FlagAnyWrap; 4126 4127 // Only proceed if we can prove that BinOp does not yield poison. 4128 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4129 4130 // At this point we know that if V is executed, then it does not wrap 4131 // according to at least one of NSW or NUW. If V is not executed, then we do 4132 // not know if the calculation that V represents would wrap. Multiple 4133 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4134 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4135 // derived from other instructions that map to the same SCEV. We cannot make 4136 // that guarantee for cases where V is not executed. So we need to find the 4137 // loop that V is considered in relation to and prove that V is executed for 4138 // every iteration of that loop. That implies that the value that V 4139 // calculates does not wrap anywhere in the loop, so then we can apply the 4140 // flags to the SCEV. 4141 // 4142 // We check isLoopInvariant to disambiguate in case we are adding two 4143 // recurrences from different loops, so that we know which loop to prove 4144 // that V is executed in. 4145 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4146 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4147 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4148 const int OtherOpIndex = 1 - OpIndex; 4149 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4150 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4151 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4152 return Flags; 4153 } 4154 } 4155 return SCEV::FlagAnyWrap; 4156 } 4157 4158 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4159 /// the expression. 4160 /// 4161 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4162 if (!isSCEVable(V->getType())) 4163 return getUnknown(V); 4164 4165 unsigned Opcode = Instruction::UserOp1; 4166 if (Instruction *I = dyn_cast<Instruction>(V)) { 4167 Opcode = I->getOpcode(); 4168 4169 // Don't attempt to analyze instructions in blocks that aren't 4170 // reachable. Such instructions don't matter, and they aren't required 4171 // to obey basic rules for definitions dominating uses which this 4172 // analysis depends on. 4173 if (!DT.isReachableFromEntry(I->getParent())) 4174 return getUnknown(V); 4175 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4176 Opcode = CE->getOpcode(); 4177 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4178 return getConstant(CI); 4179 else if (isa<ConstantPointerNull>(V)) 4180 return getConstant(V->getType(), 0); 4181 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4182 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4183 else 4184 return getUnknown(V); 4185 4186 Operator *U = cast<Operator>(V); 4187 switch (Opcode) { 4188 case Instruction::Add: { 4189 // The simple thing to do would be to just call getSCEV on both operands 4190 // and call getAddExpr with the result. However if we're looking at a 4191 // bunch of things all added together, this can be quite inefficient, 4192 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4193 // Instead, gather up all the operands and make a single getAddExpr call. 4194 // LLVM IR canonical form means we need only traverse the left operands. 4195 SmallVector<const SCEV *, 4> AddOps; 4196 for (Value *Op = U;; Op = U->getOperand(0)) { 4197 U = dyn_cast<Operator>(Op); 4198 unsigned Opcode = U ? U->getOpcode() : 0; 4199 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4200 assert(Op != V && "V should be an add"); 4201 AddOps.push_back(getSCEV(Op)); 4202 break; 4203 } 4204 4205 if (auto *OpSCEV = getExistingSCEV(U)) { 4206 AddOps.push_back(OpSCEV); 4207 break; 4208 } 4209 4210 // If a NUW or NSW flag can be applied to the SCEV for this 4211 // addition, then compute the SCEV for this addition by itself 4212 // with a separate call to getAddExpr. We need to do that 4213 // instead of pushing the operands of the addition onto AddOps, 4214 // since the flags are only known to apply to this particular 4215 // addition - they may not apply to other additions that can be 4216 // formed with operands from AddOps. 4217 const SCEV *RHS = getSCEV(U->getOperand(1)); 4218 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4219 if (Flags != SCEV::FlagAnyWrap) { 4220 const SCEV *LHS = getSCEV(U->getOperand(0)); 4221 if (Opcode == Instruction::Sub) 4222 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4223 else 4224 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4225 break; 4226 } 4227 4228 if (Opcode == Instruction::Sub) 4229 AddOps.push_back(getNegativeSCEV(RHS)); 4230 else 4231 AddOps.push_back(RHS); 4232 } 4233 return getAddExpr(AddOps); 4234 } 4235 4236 case Instruction::Mul: { 4237 SmallVector<const SCEV *, 4> MulOps; 4238 for (Value *Op = U;; Op = U->getOperand(0)) { 4239 U = dyn_cast<Operator>(Op); 4240 if (!U || U->getOpcode() != Instruction::Mul) { 4241 assert(Op != V && "V should be a mul"); 4242 MulOps.push_back(getSCEV(Op)); 4243 break; 4244 } 4245 4246 if (auto *OpSCEV = getExistingSCEV(U)) { 4247 MulOps.push_back(OpSCEV); 4248 break; 4249 } 4250 4251 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4252 if (Flags != SCEV::FlagAnyWrap) { 4253 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4254 getSCEV(U->getOperand(1)), Flags)); 4255 break; 4256 } 4257 4258 MulOps.push_back(getSCEV(U->getOperand(1))); 4259 } 4260 return getMulExpr(MulOps); 4261 } 4262 case Instruction::UDiv: 4263 return getUDivExpr(getSCEV(U->getOperand(0)), 4264 getSCEV(U->getOperand(1))); 4265 case Instruction::Sub: 4266 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4267 getNoWrapFlagsFromUB(U)); 4268 case Instruction::And: 4269 // For an expression like x&255 that merely masks off the high bits, 4270 // use zext(trunc(x)) as the SCEV expression. 4271 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4272 if (CI->isNullValue()) 4273 return getSCEV(U->getOperand(1)); 4274 if (CI->isAllOnesValue()) 4275 return getSCEV(U->getOperand(0)); 4276 const APInt &A = CI->getValue(); 4277 4278 // Instcombine's ShrinkDemandedConstant may strip bits out of 4279 // constants, obscuring what would otherwise be a low-bits mask. 4280 // Use computeKnownBits to compute what ShrinkDemandedConstant 4281 // knew about to reconstruct a low-bits mask value. 4282 unsigned LZ = A.countLeadingZeros(); 4283 unsigned TZ = A.countTrailingZeros(); 4284 unsigned BitWidth = A.getBitWidth(); 4285 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4286 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, 4287 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT); 4288 4289 APInt EffectiveMask = 4290 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4291 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4292 const SCEV *MulCount = getConstant( 4293 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4294 return getMulExpr( 4295 getZeroExtendExpr( 4296 getTruncateExpr( 4297 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4298 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4299 U->getType()), 4300 MulCount); 4301 } 4302 } 4303 break; 4304 4305 case Instruction::Or: 4306 // If the RHS of the Or is a constant, we may have something like: 4307 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4308 // optimizations will transparently handle this case. 4309 // 4310 // In order for this transformation to be safe, the LHS must be of the 4311 // form X*(2^n) and the Or constant must be less than 2^n. 4312 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4313 const SCEV *LHS = getSCEV(U->getOperand(0)); 4314 const APInt &CIVal = CI->getValue(); 4315 if (GetMinTrailingZeros(LHS) >= 4316 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4317 // Build a plain add SCEV. 4318 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4319 // If the LHS of the add was an addrec and it has no-wrap flags, 4320 // transfer the no-wrap flags, since an or won't introduce a wrap. 4321 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4322 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4323 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4324 OldAR->getNoWrapFlags()); 4325 } 4326 return S; 4327 } 4328 } 4329 break; 4330 case Instruction::Xor: 4331 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4332 // If the RHS of the xor is a signbit, then this is just an add. 4333 // Instcombine turns add of signbit into xor as a strength reduction step. 4334 if (CI->getValue().isSignBit()) 4335 return getAddExpr(getSCEV(U->getOperand(0)), 4336 getSCEV(U->getOperand(1))); 4337 4338 // If the RHS of xor is -1, then this is a not operation. 4339 if (CI->isAllOnesValue()) 4340 return getNotSCEV(getSCEV(U->getOperand(0))); 4341 4342 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4343 // This is a variant of the check for xor with -1, and it handles 4344 // the case where instcombine has trimmed non-demanded bits out 4345 // of an xor with -1. 4346 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4347 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4348 if (BO->getOpcode() == Instruction::And && 4349 LCI->getValue() == CI->getValue()) 4350 if (const SCEVZeroExtendExpr *Z = 4351 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4352 Type *UTy = U->getType(); 4353 const SCEV *Z0 = Z->getOperand(); 4354 Type *Z0Ty = Z0->getType(); 4355 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4356 4357 // If C is a low-bits mask, the zero extend is serving to 4358 // mask off the high bits. Complement the operand and 4359 // re-apply the zext. 4360 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4361 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4362 4363 // If C is a single bit, it may be in the sign-bit position 4364 // before the zero-extend. In this case, represent the xor 4365 // using an add, which is equivalent, and re-apply the zext. 4366 APInt Trunc = CI->getValue().trunc(Z0TySize); 4367 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4368 Trunc.isSignBit()) 4369 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4370 UTy); 4371 } 4372 } 4373 break; 4374 4375 case Instruction::Shl: 4376 // Turn shift left of a constant amount into a multiply. 4377 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4378 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4379 4380 // If the shift count is not less than the bitwidth, the result of 4381 // the shift is undefined. Don't try to analyze it, because the 4382 // resolution chosen here may differ from the resolution chosen in 4383 // other parts of the compiler. 4384 if (SA->getValue().uge(BitWidth)) 4385 break; 4386 4387 // It is currently not resolved how to interpret NSW for left 4388 // shift by BitWidth - 1, so we avoid applying flags in that 4389 // case. Remove this check (or this comment) once the situation 4390 // is resolved. See 4391 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4392 // and http://reviews.llvm.org/D8890 . 4393 auto Flags = SCEV::FlagAnyWrap; 4394 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4395 4396 Constant *X = ConstantInt::get(getContext(), 4397 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4398 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4399 } 4400 break; 4401 4402 case Instruction::LShr: 4403 // Turn logical shift right of a constant into a unsigned divide. 4404 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4405 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4406 4407 // If the shift count is not less than the bitwidth, the result of 4408 // the shift is undefined. Don't try to analyze it, because the 4409 // resolution chosen here may differ from the resolution chosen in 4410 // other parts of the compiler. 4411 if (SA->getValue().uge(BitWidth)) 4412 break; 4413 4414 Constant *X = ConstantInt::get(getContext(), 4415 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4416 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4417 } 4418 break; 4419 4420 case Instruction::AShr: 4421 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4422 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4423 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4424 if (L->getOpcode() == Instruction::Shl && 4425 L->getOperand(1) == U->getOperand(1)) { 4426 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4427 4428 // If the shift count is not less than the bitwidth, the result of 4429 // the shift is undefined. Don't try to analyze it, because the 4430 // resolution chosen here may differ from the resolution chosen in 4431 // other parts of the compiler. 4432 if (CI->getValue().uge(BitWidth)) 4433 break; 4434 4435 uint64_t Amt = BitWidth - CI->getZExtValue(); 4436 if (Amt == BitWidth) 4437 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4438 return 4439 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4440 IntegerType::get(getContext(), 4441 Amt)), 4442 U->getType()); 4443 } 4444 break; 4445 4446 case Instruction::Trunc: 4447 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4448 4449 case Instruction::ZExt: 4450 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4451 4452 case Instruction::SExt: 4453 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4454 4455 case Instruction::BitCast: 4456 // BitCasts are no-op casts so we just eliminate the cast. 4457 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4458 return getSCEV(U->getOperand(0)); 4459 break; 4460 4461 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4462 // lead to pointer expressions which cannot safely be expanded to GEPs, 4463 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4464 // simplifying integer expressions. 4465 4466 case Instruction::GetElementPtr: 4467 return createNodeForGEP(cast<GEPOperator>(U)); 4468 4469 case Instruction::PHI: 4470 return createNodeForPHI(cast<PHINode>(U)); 4471 4472 case Instruction::Select: 4473 // This could be a smax or umax that was lowered earlier. 4474 // Try to recover it. 4475 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 4476 Value *LHS = ICI->getOperand(0); 4477 Value *RHS = ICI->getOperand(1); 4478 switch (ICI->getPredicate()) { 4479 case ICmpInst::ICMP_SLT: 4480 case ICmpInst::ICMP_SLE: 4481 std::swap(LHS, RHS); 4482 // fall through 4483 case ICmpInst::ICMP_SGT: 4484 case ICmpInst::ICMP_SGE: 4485 // a >s b ? a+x : b+x -> smax(a, b)+x 4486 // a >s b ? b+x : a+x -> smin(a, b)+x 4487 if (getTypeSizeInBits(LHS->getType()) <= 4488 getTypeSizeInBits(U->getType())) { 4489 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType()); 4490 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType()); 4491 const SCEV *LA = getSCEV(U->getOperand(1)); 4492 const SCEV *RA = getSCEV(U->getOperand(2)); 4493 const SCEV *LDiff = getMinusSCEV(LA, LS); 4494 const SCEV *RDiff = getMinusSCEV(RA, RS); 4495 if (LDiff == RDiff) 4496 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4497 LDiff = getMinusSCEV(LA, RS); 4498 RDiff = getMinusSCEV(RA, LS); 4499 if (LDiff == RDiff) 4500 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4501 } 4502 break; 4503 case ICmpInst::ICMP_ULT: 4504 case ICmpInst::ICMP_ULE: 4505 std::swap(LHS, RHS); 4506 // fall through 4507 case ICmpInst::ICMP_UGT: 4508 case ICmpInst::ICMP_UGE: 4509 // a >u b ? a+x : b+x -> umax(a, b)+x 4510 // a >u b ? b+x : a+x -> umin(a, b)+x 4511 if (getTypeSizeInBits(LHS->getType()) <= 4512 getTypeSizeInBits(U->getType())) { 4513 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4514 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType()); 4515 const SCEV *LA = getSCEV(U->getOperand(1)); 4516 const SCEV *RA = getSCEV(U->getOperand(2)); 4517 const SCEV *LDiff = getMinusSCEV(LA, LS); 4518 const SCEV *RDiff = getMinusSCEV(RA, RS); 4519 if (LDiff == RDiff) 4520 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4521 LDiff = getMinusSCEV(LA, RS); 4522 RDiff = getMinusSCEV(RA, LS); 4523 if (LDiff == RDiff) 4524 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4525 } 4526 break; 4527 case ICmpInst::ICMP_NE: 4528 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4529 if (getTypeSizeInBits(LHS->getType()) <= 4530 getTypeSizeInBits(U->getType()) && 4531 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4532 const SCEV *One = getConstant(U->getType(), 1); 4533 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4534 const SCEV *LA = getSCEV(U->getOperand(1)); 4535 const SCEV *RA = getSCEV(U->getOperand(2)); 4536 const SCEV *LDiff = getMinusSCEV(LA, LS); 4537 const SCEV *RDiff = getMinusSCEV(RA, One); 4538 if (LDiff == RDiff) 4539 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4540 } 4541 break; 4542 case ICmpInst::ICMP_EQ: 4543 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4544 if (getTypeSizeInBits(LHS->getType()) <= 4545 getTypeSizeInBits(U->getType()) && 4546 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4547 const SCEV *One = getConstant(U->getType(), 1); 4548 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4549 const SCEV *LA = getSCEV(U->getOperand(1)); 4550 const SCEV *RA = getSCEV(U->getOperand(2)); 4551 const SCEV *LDiff = getMinusSCEV(LA, One); 4552 const SCEV *RDiff = getMinusSCEV(RA, LS); 4553 if (LDiff == RDiff) 4554 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4555 } 4556 break; 4557 default: 4558 break; 4559 } 4560 } 4561 4562 default: // We cannot analyze this expression. 4563 break; 4564 } 4565 4566 return getUnknown(V); 4567 } 4568 4569 4570 4571 //===----------------------------------------------------------------------===// 4572 // Iteration Count Computation Code 4573 // 4574 4575 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4576 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4577 return getSmallConstantTripCount(L, ExitingBB); 4578 4579 // No trip count information for multiple exits. 4580 return 0; 4581 } 4582 4583 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4584 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4585 /// constant. Will also return 0 if the maximum trip count is very large (>= 4586 /// 2^32). 4587 /// 4588 /// This "trip count" assumes that control exits via ExitingBlock. More 4589 /// precisely, it is the number of times that control may reach ExitingBlock 4590 /// before taking the branch. For loops with multiple exits, it may not be the 4591 /// number times that the loop header executes because the loop may exit 4592 /// prematurely via another branch. 4593 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4594 BasicBlock *ExitingBlock) { 4595 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4596 assert(L->isLoopExiting(ExitingBlock) && 4597 "Exiting block must actually branch out of the loop!"); 4598 const SCEVConstant *ExitCount = 4599 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4600 if (!ExitCount) 4601 return 0; 4602 4603 ConstantInt *ExitConst = ExitCount->getValue(); 4604 4605 // Guard against huge trip counts. 4606 if (ExitConst->getValue().getActiveBits() > 32) 4607 return 0; 4608 4609 // In case of integer overflow, this returns 0, which is correct. 4610 return ((unsigned)ExitConst->getZExtValue()) + 1; 4611 } 4612 4613 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4614 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4615 return getSmallConstantTripMultiple(L, ExitingBB); 4616 4617 // No trip multiple information for multiple exits. 4618 return 0; 4619 } 4620 4621 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4622 /// trip count of this loop as a normal unsigned value, if possible. This 4623 /// means that the actual trip count is always a multiple of the returned 4624 /// value (don't forget the trip count could very well be zero as well!). 4625 /// 4626 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4627 /// multiple of a constant (which is also the case if the trip count is simply 4628 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4629 /// if the trip count is very large (>= 2^32). 4630 /// 4631 /// As explained in the comments for getSmallConstantTripCount, this assumes 4632 /// that control exits the loop via ExitingBlock. 4633 unsigned 4634 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4635 BasicBlock *ExitingBlock) { 4636 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4637 assert(L->isLoopExiting(ExitingBlock) && 4638 "Exiting block must actually branch out of the loop!"); 4639 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4640 if (ExitCount == getCouldNotCompute()) 4641 return 1; 4642 4643 // Get the trip count from the BE count by adding 1. 4644 const SCEV *TCMul = getAddExpr(ExitCount, 4645 getConstant(ExitCount->getType(), 1)); 4646 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4647 // to factor simple cases. 4648 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4649 TCMul = Mul->getOperand(0); 4650 4651 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4652 if (!MulC) 4653 return 1; 4654 4655 ConstantInt *Result = MulC->getValue(); 4656 4657 // Guard against huge trip counts (this requires checking 4658 // for zero to handle the case where the trip count == -1 and the 4659 // addition wraps). 4660 if (!Result || Result->getValue().getActiveBits() > 32 || 4661 Result->getValue().getActiveBits() == 0) 4662 return 1; 4663 4664 return (unsigned)Result->getZExtValue(); 4665 } 4666 4667 // getExitCount - Get the expression for the number of loop iterations for which 4668 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4669 // SCEVCouldNotCompute. 4670 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4671 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4672 } 4673 4674 /// getBackedgeTakenCount - If the specified loop has a predictable 4675 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4676 /// object. The backedge-taken count is the number of times the loop header 4677 /// will be branched to from within the loop. This is one less than the 4678 /// trip count of the loop, since it doesn't count the first iteration, 4679 /// when the header is branched to from outside the loop. 4680 /// 4681 /// Note that it is not valid to call this method on a loop without a 4682 /// loop-invariant backedge-taken count (see 4683 /// hasLoopInvariantBackedgeTakenCount). 4684 /// 4685 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4686 return getBackedgeTakenInfo(L).getExact(this); 4687 } 4688 4689 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4690 /// return the least SCEV value that is known never to be less than the 4691 /// actual backedge taken count. 4692 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4693 return getBackedgeTakenInfo(L).getMax(this); 4694 } 4695 4696 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4697 /// onto the given Worklist. 4698 static void 4699 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4700 BasicBlock *Header = L->getHeader(); 4701 4702 // Push all Loop-header PHIs onto the Worklist stack. 4703 for (BasicBlock::iterator I = Header->begin(); 4704 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4705 Worklist.push_back(PN); 4706 } 4707 4708 const ScalarEvolution::BackedgeTakenInfo & 4709 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4710 // Initially insert an invalid entry for this loop. If the insertion 4711 // succeeds, proceed to actually compute a backedge-taken count and 4712 // update the value. The temporary CouldNotCompute value tells SCEV 4713 // code elsewhere that it shouldn't attempt to request a new 4714 // backedge-taken count, which could result in infinite recursion. 4715 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4716 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4717 if (!Pair.second) 4718 return Pair.first->second; 4719 4720 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4721 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4722 // must be cleared in this scope. 4723 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4724 4725 if (Result.getExact(this) != getCouldNotCompute()) { 4726 assert(isLoopInvariant(Result.getExact(this), L) && 4727 isLoopInvariant(Result.getMax(this), L) && 4728 "Computed backedge-taken count isn't loop invariant for loop!"); 4729 ++NumTripCountsComputed; 4730 } 4731 else if (Result.getMax(this) == getCouldNotCompute() && 4732 isa<PHINode>(L->getHeader()->begin())) { 4733 // Only count loops that have phi nodes as not being computable. 4734 ++NumTripCountsNotComputed; 4735 } 4736 4737 // Now that we know more about the trip count for this loop, forget any 4738 // existing SCEV values for PHI nodes in this loop since they are only 4739 // conservative estimates made without the benefit of trip count 4740 // information. This is similar to the code in forgetLoop, except that 4741 // it handles SCEVUnknown PHI nodes specially. 4742 if (Result.hasAnyInfo()) { 4743 SmallVector<Instruction *, 16> Worklist; 4744 PushLoopPHIs(L, Worklist); 4745 4746 SmallPtrSet<Instruction *, 8> Visited; 4747 while (!Worklist.empty()) { 4748 Instruction *I = Worklist.pop_back_val(); 4749 if (!Visited.insert(I).second) 4750 continue; 4751 4752 ValueExprMapType::iterator It = 4753 ValueExprMap.find_as(static_cast<Value *>(I)); 4754 if (It != ValueExprMap.end()) { 4755 const SCEV *Old = It->second; 4756 4757 // SCEVUnknown for a PHI either means that it has an unrecognized 4758 // structure, or it's a PHI that's in the progress of being computed 4759 // by createNodeForPHI. In the former case, additional loop trip 4760 // count information isn't going to change anything. In the later 4761 // case, createNodeForPHI will perform the necessary updates on its 4762 // own when it gets to that point. 4763 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4764 forgetMemoizedResults(Old); 4765 ValueExprMap.erase(It); 4766 } 4767 if (PHINode *PN = dyn_cast<PHINode>(I)) 4768 ConstantEvolutionLoopExitValue.erase(PN); 4769 } 4770 4771 PushDefUseChildren(I, Worklist); 4772 } 4773 } 4774 4775 // Re-lookup the insert position, since the call to 4776 // ComputeBackedgeTakenCount above could result in a 4777 // recusive call to getBackedgeTakenInfo (on a different 4778 // loop), which would invalidate the iterator computed 4779 // earlier. 4780 return BackedgeTakenCounts.find(L)->second = Result; 4781 } 4782 4783 /// forgetLoop - This method should be called by the client when it has 4784 /// changed a loop in a way that may effect ScalarEvolution's ability to 4785 /// compute a trip count, or if the loop is deleted. 4786 void ScalarEvolution::forgetLoop(const Loop *L) { 4787 // Drop any stored trip count value. 4788 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4789 BackedgeTakenCounts.find(L); 4790 if (BTCPos != BackedgeTakenCounts.end()) { 4791 BTCPos->second.clear(); 4792 BackedgeTakenCounts.erase(BTCPos); 4793 } 4794 4795 // Drop information about expressions based on loop-header PHIs. 4796 SmallVector<Instruction *, 16> Worklist; 4797 PushLoopPHIs(L, Worklist); 4798 4799 SmallPtrSet<Instruction *, 8> Visited; 4800 while (!Worklist.empty()) { 4801 Instruction *I = Worklist.pop_back_val(); 4802 if (!Visited.insert(I).second) 4803 continue; 4804 4805 ValueExprMapType::iterator It = 4806 ValueExprMap.find_as(static_cast<Value *>(I)); 4807 if (It != ValueExprMap.end()) { 4808 forgetMemoizedResults(It->second); 4809 ValueExprMap.erase(It); 4810 if (PHINode *PN = dyn_cast<PHINode>(I)) 4811 ConstantEvolutionLoopExitValue.erase(PN); 4812 } 4813 4814 PushDefUseChildren(I, Worklist); 4815 } 4816 4817 // Forget all contained loops too, to avoid dangling entries in the 4818 // ValuesAtScopes map. 4819 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4820 forgetLoop(*I); 4821 } 4822 4823 /// forgetValue - This method should be called by the client when it has 4824 /// changed a value in a way that may effect its value, or which may 4825 /// disconnect it from a def-use chain linking it to a loop. 4826 void ScalarEvolution::forgetValue(Value *V) { 4827 Instruction *I = dyn_cast<Instruction>(V); 4828 if (!I) return; 4829 4830 // Drop information about expressions based on loop-header PHIs. 4831 SmallVector<Instruction *, 16> Worklist; 4832 Worklist.push_back(I); 4833 4834 SmallPtrSet<Instruction *, 8> Visited; 4835 while (!Worklist.empty()) { 4836 I = Worklist.pop_back_val(); 4837 if (!Visited.insert(I).second) 4838 continue; 4839 4840 ValueExprMapType::iterator It = 4841 ValueExprMap.find_as(static_cast<Value *>(I)); 4842 if (It != ValueExprMap.end()) { 4843 forgetMemoizedResults(It->second); 4844 ValueExprMap.erase(It); 4845 if (PHINode *PN = dyn_cast<PHINode>(I)) 4846 ConstantEvolutionLoopExitValue.erase(PN); 4847 } 4848 4849 PushDefUseChildren(I, Worklist); 4850 } 4851 } 4852 4853 /// getExact - Get the exact loop backedge taken count considering all loop 4854 /// exits. A computable result can only be returned for loops with a single 4855 /// exit. Returning the minimum taken count among all exits is incorrect 4856 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 4857 /// assumes that the limit of each loop test is never skipped. This is a valid 4858 /// assumption as long as the loop exits via that test. For precise results, it 4859 /// is the caller's responsibility to specify the relevant loop exit using 4860 /// getExact(ExitingBlock, SE). 4861 const SCEV * 4862 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4863 // If any exits were not computable, the loop is not computable. 4864 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4865 4866 // We need exactly one computable exit. 4867 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4868 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4869 4870 const SCEV *BECount = nullptr; 4871 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4872 ENT != nullptr; ENT = ENT->getNextExit()) { 4873 4874 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4875 4876 if (!BECount) 4877 BECount = ENT->ExactNotTaken; 4878 else if (BECount != ENT->ExactNotTaken) 4879 return SE->getCouldNotCompute(); 4880 } 4881 assert(BECount && "Invalid not taken count for loop exit"); 4882 return BECount; 4883 } 4884 4885 /// getExact - Get the exact not taken count for this loop exit. 4886 const SCEV * 4887 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4888 ScalarEvolution *SE) const { 4889 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4890 ENT != nullptr; ENT = ENT->getNextExit()) { 4891 4892 if (ENT->ExitingBlock == ExitingBlock) 4893 return ENT->ExactNotTaken; 4894 } 4895 return SE->getCouldNotCompute(); 4896 } 4897 4898 /// getMax - Get the max backedge taken count for the loop. 4899 const SCEV * 4900 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4901 return Max ? Max : SE->getCouldNotCompute(); 4902 } 4903 4904 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4905 ScalarEvolution *SE) const { 4906 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4907 return true; 4908 4909 if (!ExitNotTaken.ExitingBlock) 4910 return false; 4911 4912 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4913 ENT != nullptr; ENT = ENT->getNextExit()) { 4914 4915 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4916 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4917 return true; 4918 } 4919 } 4920 return false; 4921 } 4922 4923 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4924 /// computable exit into a persistent ExitNotTakenInfo array. 4925 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4926 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4927 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4928 4929 if (!Complete) 4930 ExitNotTaken.setIncomplete(); 4931 4932 unsigned NumExits = ExitCounts.size(); 4933 if (NumExits == 0) return; 4934 4935 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4936 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4937 if (NumExits == 1) return; 4938 4939 // Handle the rare case of multiple computable exits. 4940 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4941 4942 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4943 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4944 PrevENT->setNextExit(ENT); 4945 ENT->ExitingBlock = ExitCounts[i].first; 4946 ENT->ExactNotTaken = ExitCounts[i].second; 4947 } 4948 } 4949 4950 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4951 void ScalarEvolution::BackedgeTakenInfo::clear() { 4952 ExitNotTaken.ExitingBlock = nullptr; 4953 ExitNotTaken.ExactNotTaken = nullptr; 4954 delete[] ExitNotTaken.getNextExit(); 4955 } 4956 4957 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4958 /// of the specified loop will execute. 4959 ScalarEvolution::BackedgeTakenInfo 4960 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4961 SmallVector<BasicBlock *, 8> ExitingBlocks; 4962 L->getExitingBlocks(ExitingBlocks); 4963 4964 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4965 bool CouldComputeBECount = true; 4966 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 4967 const SCEV *MustExitMaxBECount = nullptr; 4968 const SCEV *MayExitMaxBECount = nullptr; 4969 4970 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 4971 // and compute maxBECount. 4972 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4973 BasicBlock *ExitBB = ExitingBlocks[i]; 4974 ExitLimit EL = ComputeExitLimit(L, ExitBB); 4975 4976 // 1. For each exit that can be computed, add an entry to ExitCounts. 4977 // CouldComputeBECount is true only if all exits can be computed. 4978 if (EL.Exact == getCouldNotCompute()) 4979 // We couldn't compute an exact value for this exit, so 4980 // we won't be able to compute an exact value for the loop. 4981 CouldComputeBECount = false; 4982 else 4983 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 4984 4985 // 2. Derive the loop's MaxBECount from each exit's max number of 4986 // non-exiting iterations. Partition the loop exits into two kinds: 4987 // LoopMustExits and LoopMayExits. 4988 // 4989 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 4990 // is a LoopMayExit. If any computable LoopMustExit is found, then 4991 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 4992 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 4993 // considered greater than any computable EL.Max. 4994 if (EL.Max != getCouldNotCompute() && Latch && 4995 DT.dominates(ExitBB, Latch)) { 4996 if (!MustExitMaxBECount) 4997 MustExitMaxBECount = EL.Max; 4998 else { 4999 MustExitMaxBECount = 5000 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5001 } 5002 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5003 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5004 MayExitMaxBECount = EL.Max; 5005 else { 5006 MayExitMaxBECount = 5007 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5008 } 5009 } 5010 } 5011 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5012 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5013 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5014 } 5015 5016 /// ComputeExitLimit - Compute the number of times the backedge of the specified 5017 /// loop will execute if it exits via the specified block. 5018 ScalarEvolution::ExitLimit 5019 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5020 5021 // Okay, we've chosen an exiting block. See what condition causes us to 5022 // exit at this block and remember the exit block and whether all other targets 5023 // lead to the loop header. 5024 bool MustExecuteLoopHeader = true; 5025 BasicBlock *Exit = nullptr; 5026 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5027 SI != SE; ++SI) 5028 if (!L->contains(*SI)) { 5029 if (Exit) // Multiple exit successors. 5030 return getCouldNotCompute(); 5031 Exit = *SI; 5032 } else if (*SI != L->getHeader()) { 5033 MustExecuteLoopHeader = false; 5034 } 5035 5036 // At this point, we know we have a conditional branch that determines whether 5037 // the loop is exited. However, we don't know if the branch is executed each 5038 // time through the loop. If not, then the execution count of the branch will 5039 // not be equal to the trip count of the loop. 5040 // 5041 // Currently we check for this by checking to see if the Exit branch goes to 5042 // the loop header. If so, we know it will always execute the same number of 5043 // times as the loop. We also handle the case where the exit block *is* the 5044 // loop header. This is common for un-rotated loops. 5045 // 5046 // If both of those tests fail, walk up the unique predecessor chain to the 5047 // header, stopping if there is an edge that doesn't exit the loop. If the 5048 // header is reached, the execution count of the branch will be equal to the 5049 // trip count of the loop. 5050 // 5051 // More extensive analysis could be done to handle more cases here. 5052 // 5053 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5054 // The simple checks failed, try climbing the unique predecessor chain 5055 // up to the header. 5056 bool Ok = false; 5057 for (BasicBlock *BB = ExitingBlock; BB; ) { 5058 BasicBlock *Pred = BB->getUniquePredecessor(); 5059 if (!Pred) 5060 return getCouldNotCompute(); 5061 TerminatorInst *PredTerm = Pred->getTerminator(); 5062 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5063 if (PredSucc == BB) 5064 continue; 5065 // If the predecessor has a successor that isn't BB and isn't 5066 // outside the loop, assume the worst. 5067 if (L->contains(PredSucc)) 5068 return getCouldNotCompute(); 5069 } 5070 if (Pred == L->getHeader()) { 5071 Ok = true; 5072 break; 5073 } 5074 BB = Pred; 5075 } 5076 if (!Ok) 5077 return getCouldNotCompute(); 5078 } 5079 5080 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5081 TerminatorInst *Term = ExitingBlock->getTerminator(); 5082 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5083 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5084 // Proceed to the next level to examine the exit condition expression. 5085 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5086 BI->getSuccessor(1), 5087 /*ControlsExit=*/IsOnlyExit); 5088 } 5089 5090 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5091 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 5092 /*ControlsExit=*/IsOnlyExit); 5093 5094 return getCouldNotCompute(); 5095 } 5096 5097 /// ComputeExitLimitFromCond - Compute the number of times the 5098 /// backedge of the specified loop will execute if its exit condition 5099 /// were a conditional branch of ExitCond, TBB, and FBB. 5100 /// 5101 /// @param ControlsExit is true if ExitCond directly controls the exit 5102 /// branch. In this case, we can assume that the loop exits only if the 5103 /// condition is true and can infer that failing to meet the condition prior to 5104 /// integer wraparound results in undefined behavior. 5105 ScalarEvolution::ExitLimit 5106 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 5107 Value *ExitCond, 5108 BasicBlock *TBB, 5109 BasicBlock *FBB, 5110 bool ControlsExit) { 5111 // Check if the controlling expression for this loop is an And or Or. 5112 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5113 if (BO->getOpcode() == Instruction::And) { 5114 // Recurse on the operands of the and. 5115 bool EitherMayExit = L->contains(TBB); 5116 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5117 ControlsExit && !EitherMayExit); 5118 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5119 ControlsExit && !EitherMayExit); 5120 const SCEV *BECount = getCouldNotCompute(); 5121 const SCEV *MaxBECount = getCouldNotCompute(); 5122 if (EitherMayExit) { 5123 // Both conditions must be true for the loop to continue executing. 5124 // Choose the less conservative count. 5125 if (EL0.Exact == getCouldNotCompute() || 5126 EL1.Exact == getCouldNotCompute()) 5127 BECount = getCouldNotCompute(); 5128 else 5129 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5130 if (EL0.Max == getCouldNotCompute()) 5131 MaxBECount = EL1.Max; 5132 else if (EL1.Max == getCouldNotCompute()) 5133 MaxBECount = EL0.Max; 5134 else 5135 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5136 } else { 5137 // Both conditions must be true at the same time for the loop to exit. 5138 // For now, be conservative. 5139 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5140 if (EL0.Max == EL1.Max) 5141 MaxBECount = EL0.Max; 5142 if (EL0.Exact == EL1.Exact) 5143 BECount = EL0.Exact; 5144 } 5145 5146 return ExitLimit(BECount, MaxBECount); 5147 } 5148 if (BO->getOpcode() == Instruction::Or) { 5149 // Recurse on the operands of the or. 5150 bool EitherMayExit = L->contains(FBB); 5151 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5152 ControlsExit && !EitherMayExit); 5153 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5154 ControlsExit && !EitherMayExit); 5155 const SCEV *BECount = getCouldNotCompute(); 5156 const SCEV *MaxBECount = getCouldNotCompute(); 5157 if (EitherMayExit) { 5158 // Both conditions must be false for the loop to continue executing. 5159 // Choose the less conservative count. 5160 if (EL0.Exact == getCouldNotCompute() || 5161 EL1.Exact == getCouldNotCompute()) 5162 BECount = getCouldNotCompute(); 5163 else 5164 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5165 if (EL0.Max == getCouldNotCompute()) 5166 MaxBECount = EL1.Max; 5167 else if (EL1.Max == getCouldNotCompute()) 5168 MaxBECount = EL0.Max; 5169 else 5170 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5171 } else { 5172 // Both conditions must be false at the same time for the loop to exit. 5173 // For now, be conservative. 5174 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5175 if (EL0.Max == EL1.Max) 5176 MaxBECount = EL0.Max; 5177 if (EL0.Exact == EL1.Exact) 5178 BECount = EL0.Exact; 5179 } 5180 5181 return ExitLimit(BECount, MaxBECount); 5182 } 5183 } 5184 5185 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5186 // Proceed to the next level to examine the icmp. 5187 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5188 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5189 5190 // Check for a constant condition. These are normally stripped out by 5191 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5192 // preserve the CFG and is temporarily leaving constant conditions 5193 // in place. 5194 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5195 if (L->contains(FBB) == !CI->getZExtValue()) 5196 // The backedge is always taken. 5197 return getCouldNotCompute(); 5198 else 5199 // The backedge is never taken. 5200 return getConstant(CI->getType(), 0); 5201 } 5202 5203 // If it's not an integer or pointer comparison then compute it the hard way. 5204 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5205 } 5206 5207 /// ComputeExitLimitFromICmp - Compute the number of times the 5208 /// backedge of the specified loop will execute if its exit condition 5209 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 5210 ScalarEvolution::ExitLimit 5211 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 5212 ICmpInst *ExitCond, 5213 BasicBlock *TBB, 5214 BasicBlock *FBB, 5215 bool ControlsExit) { 5216 5217 // If the condition was exit on true, convert the condition to exit on false 5218 ICmpInst::Predicate Cond; 5219 if (!L->contains(FBB)) 5220 Cond = ExitCond->getPredicate(); 5221 else 5222 Cond = ExitCond->getInversePredicate(); 5223 5224 // Handle common loops like: for (X = "string"; *X; ++X) 5225 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5226 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5227 ExitLimit ItCnt = 5228 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5229 if (ItCnt.hasAnyInfo()) 5230 return ItCnt; 5231 } 5232 5233 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5234 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5235 5236 // Try to evaluate any dependencies out of the loop. 5237 LHS = getSCEVAtScope(LHS, L); 5238 RHS = getSCEVAtScope(RHS, L); 5239 5240 // At this point, we would like to compute how many iterations of the 5241 // loop the predicate will return true for these inputs. 5242 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5243 // If there is a loop-invariant, force it into the RHS. 5244 std::swap(LHS, RHS); 5245 Cond = ICmpInst::getSwappedPredicate(Cond); 5246 } 5247 5248 // Simplify the operands before analyzing them. 5249 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5250 5251 // If we have a comparison of a chrec against a constant, try to use value 5252 // ranges to answer this query. 5253 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5254 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5255 if (AddRec->getLoop() == L) { 5256 // Form the constant range. 5257 ConstantRange CompRange( 5258 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5259 5260 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5261 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5262 } 5263 5264 switch (Cond) { 5265 case ICmpInst::ICMP_NE: { // while (X != Y) 5266 // Convert to: while (X-Y != 0) 5267 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5268 if (EL.hasAnyInfo()) return EL; 5269 break; 5270 } 5271 case ICmpInst::ICMP_EQ: { // while (X == Y) 5272 // Convert to: while (X-Y == 0) 5273 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5274 if (EL.hasAnyInfo()) return EL; 5275 break; 5276 } 5277 case ICmpInst::ICMP_SLT: 5278 case ICmpInst::ICMP_ULT: { // while (X < Y) 5279 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5280 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5281 if (EL.hasAnyInfo()) return EL; 5282 break; 5283 } 5284 case ICmpInst::ICMP_SGT: 5285 case ICmpInst::ICMP_UGT: { // while (X > Y) 5286 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5287 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5288 if (EL.hasAnyInfo()) return EL; 5289 break; 5290 } 5291 default: 5292 #if 0 5293 dbgs() << "ComputeBackedgeTakenCount "; 5294 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5295 dbgs() << "[unsigned] "; 5296 dbgs() << *LHS << " " 5297 << Instruction::getOpcodeName(Instruction::ICmp) 5298 << " " << *RHS << "\n"; 5299 #endif 5300 break; 5301 } 5302 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5303 } 5304 5305 ScalarEvolution::ExitLimit 5306 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 5307 SwitchInst *Switch, 5308 BasicBlock *ExitingBlock, 5309 bool ControlsExit) { 5310 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5311 5312 // Give up if the exit is the default dest of a switch. 5313 if (Switch->getDefaultDest() == ExitingBlock) 5314 return getCouldNotCompute(); 5315 5316 assert(L->contains(Switch->getDefaultDest()) && 5317 "Default case must not exit the loop!"); 5318 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5319 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5320 5321 // while (X != Y) --> while (X-Y != 0) 5322 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5323 if (EL.hasAnyInfo()) 5324 return EL; 5325 5326 return getCouldNotCompute(); 5327 } 5328 5329 static ConstantInt * 5330 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5331 ScalarEvolution &SE) { 5332 const SCEV *InVal = SE.getConstant(C); 5333 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5334 assert(isa<SCEVConstant>(Val) && 5335 "Evaluation of SCEV at constant didn't fold correctly?"); 5336 return cast<SCEVConstant>(Val)->getValue(); 5337 } 5338 5339 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 5340 /// 'icmp op load X, cst', try to see if we can compute the backedge 5341 /// execution count. 5342 ScalarEvolution::ExitLimit 5343 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 5344 LoadInst *LI, 5345 Constant *RHS, 5346 const Loop *L, 5347 ICmpInst::Predicate predicate) { 5348 5349 if (LI->isVolatile()) return getCouldNotCompute(); 5350 5351 // Check to see if the loaded pointer is a getelementptr of a global. 5352 // TODO: Use SCEV instead of manually grubbing with GEPs. 5353 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5354 if (!GEP) return getCouldNotCompute(); 5355 5356 // Make sure that it is really a constant global we are gepping, with an 5357 // initializer, and make sure the first IDX is really 0. 5358 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5359 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5360 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5361 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5362 return getCouldNotCompute(); 5363 5364 // Okay, we allow one non-constant index into the GEP instruction. 5365 Value *VarIdx = nullptr; 5366 std::vector<Constant*> Indexes; 5367 unsigned VarIdxNum = 0; 5368 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5369 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5370 Indexes.push_back(CI); 5371 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5372 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5373 VarIdx = GEP->getOperand(i); 5374 VarIdxNum = i-2; 5375 Indexes.push_back(nullptr); 5376 } 5377 5378 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5379 if (!VarIdx) 5380 return getCouldNotCompute(); 5381 5382 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5383 // Check to see if X is a loop variant variable value now. 5384 const SCEV *Idx = getSCEV(VarIdx); 5385 Idx = getSCEVAtScope(Idx, L); 5386 5387 // We can only recognize very limited forms of loop index expressions, in 5388 // particular, only affine AddRec's like {C1,+,C2}. 5389 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5390 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5391 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5392 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5393 return getCouldNotCompute(); 5394 5395 unsigned MaxSteps = MaxBruteForceIterations; 5396 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5397 ConstantInt *ItCst = ConstantInt::get( 5398 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5399 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5400 5401 // Form the GEP offset. 5402 Indexes[VarIdxNum] = Val; 5403 5404 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5405 Indexes); 5406 if (!Result) break; // Cannot compute! 5407 5408 // Evaluate the condition for this iteration. 5409 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5410 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5411 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5412 #if 0 5413 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5414 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5415 << "***\n"; 5416 #endif 5417 ++NumArrayLenItCounts; 5418 return getConstant(ItCst); // Found terminating iteration! 5419 } 5420 } 5421 return getCouldNotCompute(); 5422 } 5423 5424 5425 /// CanConstantFold - Return true if we can constant fold an instruction of the 5426 /// specified type, assuming that all operands were constants. 5427 static bool CanConstantFold(const Instruction *I) { 5428 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5429 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5430 isa<LoadInst>(I)) 5431 return true; 5432 5433 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5434 if (const Function *F = CI->getCalledFunction()) 5435 return canConstantFoldCallTo(F); 5436 return false; 5437 } 5438 5439 /// Determine whether this instruction can constant evolve within this loop 5440 /// assuming its operands can all constant evolve. 5441 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5442 // An instruction outside of the loop can't be derived from a loop PHI. 5443 if (!L->contains(I)) return false; 5444 5445 if (isa<PHINode>(I)) { 5446 // We don't currently keep track of the control flow needed to evaluate 5447 // PHIs, so we cannot handle PHIs inside of loops. 5448 return L->getHeader() == I->getParent(); 5449 } 5450 5451 // If we won't be able to constant fold this expression even if the operands 5452 // are constants, bail early. 5453 return CanConstantFold(I); 5454 } 5455 5456 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5457 /// recursing through each instruction operand until reaching a loop header phi. 5458 static PHINode * 5459 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5460 DenseMap<Instruction *, PHINode *> &PHIMap) { 5461 5462 // Otherwise, we can evaluate this instruction if all of its operands are 5463 // constant or derived from a PHI node themselves. 5464 PHINode *PHI = nullptr; 5465 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5466 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5467 5468 if (isa<Constant>(*OpI)) continue; 5469 5470 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5471 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5472 5473 PHINode *P = dyn_cast<PHINode>(OpInst); 5474 if (!P) 5475 // If this operand is already visited, reuse the prior result. 5476 // We may have P != PHI if this is the deepest point at which the 5477 // inconsistent paths meet. 5478 P = PHIMap.lookup(OpInst); 5479 if (!P) { 5480 // Recurse and memoize the results, whether a phi is found or not. 5481 // This recursive call invalidates pointers into PHIMap. 5482 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5483 PHIMap[OpInst] = P; 5484 } 5485 if (!P) 5486 return nullptr; // Not evolving from PHI 5487 if (PHI && PHI != P) 5488 return nullptr; // Evolving from multiple different PHIs. 5489 PHI = P; 5490 } 5491 // This is a expression evolving from a constant PHI! 5492 return PHI; 5493 } 5494 5495 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5496 /// in the loop that V is derived from. We allow arbitrary operations along the 5497 /// way, but the operands of an operation must either be constants or a value 5498 /// derived from a constant PHI. If this expression does not fit with these 5499 /// constraints, return null. 5500 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5501 Instruction *I = dyn_cast<Instruction>(V); 5502 if (!I || !canConstantEvolve(I, L)) return nullptr; 5503 5504 if (PHINode *PN = dyn_cast<PHINode>(I)) { 5505 return PN; 5506 } 5507 5508 // Record non-constant instructions contained by the loop. 5509 DenseMap<Instruction *, PHINode *> PHIMap; 5510 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5511 } 5512 5513 /// EvaluateExpression - Given an expression that passes the 5514 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5515 /// in the loop has the value PHIVal. If we can't fold this expression for some 5516 /// reason, return null. 5517 static Constant *EvaluateExpression(Value *V, const Loop *L, 5518 DenseMap<Instruction *, Constant *> &Vals, 5519 const DataLayout &DL, 5520 const TargetLibraryInfo *TLI) { 5521 // Convenient constant check, but redundant for recursive calls. 5522 if (Constant *C = dyn_cast<Constant>(V)) return C; 5523 Instruction *I = dyn_cast<Instruction>(V); 5524 if (!I) return nullptr; 5525 5526 if (Constant *C = Vals.lookup(I)) return C; 5527 5528 // An instruction inside the loop depends on a value outside the loop that we 5529 // weren't given a mapping for, or a value such as a call inside the loop. 5530 if (!canConstantEvolve(I, L)) return nullptr; 5531 5532 // An unmapped PHI can be due to a branch or another loop inside this loop, 5533 // or due to this not being the initial iteration through a loop where we 5534 // couldn't compute the evolution of this particular PHI last time. 5535 if (isa<PHINode>(I)) return nullptr; 5536 5537 std::vector<Constant*> Operands(I->getNumOperands()); 5538 5539 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5540 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5541 if (!Operand) { 5542 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5543 if (!Operands[i]) return nullptr; 5544 continue; 5545 } 5546 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5547 Vals[Operand] = C; 5548 if (!C) return nullptr; 5549 Operands[i] = C; 5550 } 5551 5552 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5553 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5554 Operands[1], DL, TLI); 5555 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5556 if (!LI->isVolatile()) 5557 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5558 } 5559 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5560 TLI); 5561 } 5562 5563 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5564 /// in the header of its containing loop, we know the loop executes a 5565 /// constant number of times, and the PHI node is just a recurrence 5566 /// involving constants, fold it. 5567 Constant * 5568 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5569 const APInt &BEs, 5570 const Loop *L) { 5571 DenseMap<PHINode*, Constant*>::const_iterator I = 5572 ConstantEvolutionLoopExitValue.find(PN); 5573 if (I != ConstantEvolutionLoopExitValue.end()) 5574 return I->second; 5575 5576 if (BEs.ugt(MaxBruteForceIterations)) 5577 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5578 5579 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5580 5581 DenseMap<Instruction *, Constant *> CurrentIterVals; 5582 BasicBlock *Header = L->getHeader(); 5583 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5584 5585 // Since the loop is canonicalized, the PHI node must have two entries. One 5586 // entry must be a constant (coming in from outside of the loop), and the 5587 // second must be derived from the same PHI. 5588 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5589 PHINode *PHI = nullptr; 5590 for (BasicBlock::iterator I = Header->begin(); 5591 (PHI = dyn_cast<PHINode>(I)); ++I) { 5592 Constant *StartCST = 5593 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5594 if (!StartCST) continue; 5595 CurrentIterVals[PHI] = StartCST; 5596 } 5597 if (!CurrentIterVals.count(PN)) 5598 return RetVal = nullptr; 5599 5600 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5601 5602 // Execute the loop symbolically to determine the exit value. 5603 if (BEs.getActiveBits() >= 32) 5604 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5605 5606 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5607 unsigned IterationNum = 0; 5608 const DataLayout &DL = F.getParent()->getDataLayout(); 5609 for (; ; ++IterationNum) { 5610 if (IterationNum == NumIterations) 5611 return RetVal = CurrentIterVals[PN]; // Got exit value! 5612 5613 // Compute the value of the PHIs for the next iteration. 5614 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5615 DenseMap<Instruction *, Constant *> NextIterVals; 5616 Constant *NextPHI = 5617 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5618 if (!NextPHI) 5619 return nullptr; // Couldn't evaluate! 5620 NextIterVals[PN] = NextPHI; 5621 5622 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5623 5624 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5625 // cease to be able to evaluate one of them or if they stop evolving, 5626 // because that doesn't necessarily prevent us from computing PN. 5627 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5628 for (DenseMap<Instruction *, Constant *>::const_iterator 5629 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5630 PHINode *PHI = dyn_cast<PHINode>(I->first); 5631 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5632 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5633 } 5634 // We use two distinct loops because EvaluateExpression may invalidate any 5635 // iterators into CurrentIterVals. 5636 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5637 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5638 PHINode *PHI = I->first; 5639 Constant *&NextPHI = NextIterVals[PHI]; 5640 if (!NextPHI) { // Not already computed. 5641 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5642 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5643 } 5644 if (NextPHI != I->second) 5645 StoppedEvolving = false; 5646 } 5647 5648 // If all entries in CurrentIterVals == NextIterVals then we can stop 5649 // iterating, the loop can't continue to change. 5650 if (StoppedEvolving) 5651 return RetVal = CurrentIterVals[PN]; 5652 5653 CurrentIterVals.swap(NextIterVals); 5654 } 5655 } 5656 5657 /// ComputeExitCountExhaustively - If the loop is known to execute a 5658 /// constant number of times (the condition evolves only from constants), 5659 /// try to evaluate a few iterations of the loop until we get the exit 5660 /// condition gets a value of ExitWhen (true or false). If we cannot 5661 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5662 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5663 Value *Cond, 5664 bool ExitWhen) { 5665 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5666 if (!PN) return getCouldNotCompute(); 5667 5668 // If the loop is canonicalized, the PHI will have exactly two entries. 5669 // That's the only form we support here. 5670 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5671 5672 DenseMap<Instruction *, Constant *> CurrentIterVals; 5673 BasicBlock *Header = L->getHeader(); 5674 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5675 5676 // One entry must be a constant (coming in from outside of the loop), and the 5677 // second must be derived from the same PHI. 5678 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5679 PHINode *PHI = nullptr; 5680 for (BasicBlock::iterator I = Header->begin(); 5681 (PHI = dyn_cast<PHINode>(I)); ++I) { 5682 Constant *StartCST = 5683 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5684 if (!StartCST) continue; 5685 CurrentIterVals[PHI] = StartCST; 5686 } 5687 if (!CurrentIterVals.count(PN)) 5688 return getCouldNotCompute(); 5689 5690 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5691 // the loop symbolically to determine when the condition gets a value of 5692 // "ExitWhen". 5693 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5694 const DataLayout &DL = F.getParent()->getDataLayout(); 5695 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5696 ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>( 5697 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 5698 5699 // Couldn't symbolically evaluate. 5700 if (!CondVal) return getCouldNotCompute(); 5701 5702 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5703 ++NumBruteForceTripCountsComputed; 5704 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5705 } 5706 5707 // Update all the PHI nodes for the next iteration. 5708 DenseMap<Instruction *, Constant *> NextIterVals; 5709 5710 // Create a list of which PHIs we need to compute. We want to do this before 5711 // calling EvaluateExpression on them because that may invalidate iterators 5712 // into CurrentIterVals. 5713 SmallVector<PHINode *, 8> PHIsToCompute; 5714 for (DenseMap<Instruction *, Constant *>::const_iterator 5715 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5716 PHINode *PHI = dyn_cast<PHINode>(I->first); 5717 if (!PHI || PHI->getParent() != Header) continue; 5718 PHIsToCompute.push_back(PHI); 5719 } 5720 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5721 E = PHIsToCompute.end(); I != E; ++I) { 5722 PHINode *PHI = *I; 5723 Constant *&NextPHI = NextIterVals[PHI]; 5724 if (NextPHI) continue; // Already computed! 5725 5726 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5727 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5728 } 5729 CurrentIterVals.swap(NextIterVals); 5730 } 5731 5732 // Too many iterations were needed to evaluate. 5733 return getCouldNotCompute(); 5734 } 5735 5736 /// getSCEVAtScope - Return a SCEV expression for the specified value 5737 /// at the specified scope in the program. The L value specifies a loop 5738 /// nest to evaluate the expression at, where null is the top-level or a 5739 /// specified loop is immediately inside of the loop. 5740 /// 5741 /// This method can be used to compute the exit value for a variable defined 5742 /// in a loop by querying what the value will hold in the parent loop. 5743 /// 5744 /// In the case that a relevant loop exit value cannot be computed, the 5745 /// original value V is returned. 5746 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5747 // Check to see if we've folded this expression at this loop before. 5748 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5749 for (unsigned u = 0; u < Values.size(); u++) { 5750 if (Values[u].first == L) 5751 return Values[u].second ? Values[u].second : V; 5752 } 5753 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5754 // Otherwise compute it. 5755 const SCEV *C = computeSCEVAtScope(V, L); 5756 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5757 for (unsigned u = Values2.size(); u > 0; u--) { 5758 if (Values2[u - 1].first == L) { 5759 Values2[u - 1].second = C; 5760 break; 5761 } 5762 } 5763 return C; 5764 } 5765 5766 /// This builds up a Constant using the ConstantExpr interface. That way, we 5767 /// will return Constants for objects which aren't represented by a 5768 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5769 /// Returns NULL if the SCEV isn't representable as a Constant. 5770 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5771 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5772 case scCouldNotCompute: 5773 case scAddRecExpr: 5774 break; 5775 case scConstant: 5776 return cast<SCEVConstant>(V)->getValue(); 5777 case scUnknown: 5778 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5779 case scSignExtend: { 5780 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5781 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5782 return ConstantExpr::getSExt(CastOp, SS->getType()); 5783 break; 5784 } 5785 case scZeroExtend: { 5786 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5787 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5788 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5789 break; 5790 } 5791 case scTruncate: { 5792 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5793 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5794 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5795 break; 5796 } 5797 case scAddExpr: { 5798 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5799 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5800 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5801 unsigned AS = PTy->getAddressSpace(); 5802 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5803 C = ConstantExpr::getBitCast(C, DestPtrTy); 5804 } 5805 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5806 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5807 if (!C2) return nullptr; 5808 5809 // First pointer! 5810 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5811 unsigned AS = C2->getType()->getPointerAddressSpace(); 5812 std::swap(C, C2); 5813 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5814 // The offsets have been converted to bytes. We can add bytes to an 5815 // i8* by GEP with the byte count in the first index. 5816 C = ConstantExpr::getBitCast(C, DestPtrTy); 5817 } 5818 5819 // Don't bother trying to sum two pointers. We probably can't 5820 // statically compute a load that results from it anyway. 5821 if (C2->getType()->isPointerTy()) 5822 return nullptr; 5823 5824 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5825 if (PTy->getElementType()->isStructTy()) 5826 C2 = ConstantExpr::getIntegerCast( 5827 C2, Type::getInt32Ty(C->getContext()), true); 5828 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 5829 } else 5830 C = ConstantExpr::getAdd(C, C2); 5831 } 5832 return C; 5833 } 5834 break; 5835 } 5836 case scMulExpr: { 5837 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5838 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5839 // Don't bother with pointers at all. 5840 if (C->getType()->isPointerTy()) return nullptr; 5841 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5842 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5843 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 5844 C = ConstantExpr::getMul(C, C2); 5845 } 5846 return C; 5847 } 5848 break; 5849 } 5850 case scUDivExpr: { 5851 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5852 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5853 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5854 if (LHS->getType() == RHS->getType()) 5855 return ConstantExpr::getUDiv(LHS, RHS); 5856 break; 5857 } 5858 case scSMaxExpr: 5859 case scUMaxExpr: 5860 break; // TODO: smax, umax. 5861 } 5862 return nullptr; 5863 } 5864 5865 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5866 if (isa<SCEVConstant>(V)) return V; 5867 5868 // If this instruction is evolved from a constant-evolving PHI, compute the 5869 // exit value from the loop without using SCEVs. 5870 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5871 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5872 const Loop *LI = this->LI[I->getParent()]; 5873 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5874 if (PHINode *PN = dyn_cast<PHINode>(I)) 5875 if (PN->getParent() == LI->getHeader()) { 5876 // Okay, there is no closed form solution for the PHI node. Check 5877 // to see if the loop that contains it has a known backedge-taken 5878 // count. If so, we may be able to force computation of the exit 5879 // value. 5880 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5881 if (const SCEVConstant *BTCC = 5882 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5883 // Okay, we know how many times the containing loop executes. If 5884 // this is a constant evolving PHI node, get the final value at 5885 // the specified iteration number. 5886 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5887 BTCC->getValue()->getValue(), 5888 LI); 5889 if (RV) return getSCEV(RV); 5890 } 5891 } 5892 5893 // Okay, this is an expression that we cannot symbolically evaluate 5894 // into a SCEV. Check to see if it's possible to symbolically evaluate 5895 // the arguments into constants, and if so, try to constant propagate the 5896 // result. This is particularly useful for computing loop exit values. 5897 if (CanConstantFold(I)) { 5898 SmallVector<Constant *, 4> Operands; 5899 bool MadeImprovement = false; 5900 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5901 Value *Op = I->getOperand(i); 5902 if (Constant *C = dyn_cast<Constant>(Op)) { 5903 Operands.push_back(C); 5904 continue; 5905 } 5906 5907 // If any of the operands is non-constant and if they are 5908 // non-integer and non-pointer, don't even try to analyze them 5909 // with scev techniques. 5910 if (!isSCEVable(Op->getType())) 5911 return V; 5912 5913 const SCEV *OrigV = getSCEV(Op); 5914 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5915 MadeImprovement |= OrigV != OpV; 5916 5917 Constant *C = BuildConstantFromSCEV(OpV); 5918 if (!C) return V; 5919 if (C->getType() != Op->getType()) 5920 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5921 Op->getType(), 5922 false), 5923 C, Op->getType()); 5924 Operands.push_back(C); 5925 } 5926 5927 // Check to see if getSCEVAtScope actually made an improvement. 5928 if (MadeImprovement) { 5929 Constant *C = nullptr; 5930 const DataLayout &DL = F.getParent()->getDataLayout(); 5931 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5932 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5933 Operands[1], DL, &TLI); 5934 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5935 if (!LI->isVolatile()) 5936 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 5937 } else 5938 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 5939 DL, &TLI); 5940 if (!C) return V; 5941 return getSCEV(C); 5942 } 5943 } 5944 } 5945 5946 // This is some other type of SCEVUnknown, just return it. 5947 return V; 5948 } 5949 5950 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5951 // Avoid performing the look-up in the common case where the specified 5952 // expression has no loop-variant portions. 5953 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5954 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5955 if (OpAtScope != Comm->getOperand(i)) { 5956 // Okay, at least one of these operands is loop variant but might be 5957 // foldable. Build a new instance of the folded commutative expression. 5958 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5959 Comm->op_begin()+i); 5960 NewOps.push_back(OpAtScope); 5961 5962 for (++i; i != e; ++i) { 5963 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5964 NewOps.push_back(OpAtScope); 5965 } 5966 if (isa<SCEVAddExpr>(Comm)) 5967 return getAddExpr(NewOps); 5968 if (isa<SCEVMulExpr>(Comm)) 5969 return getMulExpr(NewOps); 5970 if (isa<SCEVSMaxExpr>(Comm)) 5971 return getSMaxExpr(NewOps); 5972 if (isa<SCEVUMaxExpr>(Comm)) 5973 return getUMaxExpr(NewOps); 5974 llvm_unreachable("Unknown commutative SCEV type!"); 5975 } 5976 } 5977 // If we got here, all operands are loop invariant. 5978 return Comm; 5979 } 5980 5981 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5982 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5983 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5984 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5985 return Div; // must be loop invariant 5986 return getUDivExpr(LHS, RHS); 5987 } 5988 5989 // If this is a loop recurrence for a loop that does not contain L, then we 5990 // are dealing with the final value computed by the loop. 5991 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5992 // First, attempt to evaluate each operand. 5993 // Avoid performing the look-up in the common case where the specified 5994 // expression has no loop-variant portions. 5995 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5996 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5997 if (OpAtScope == AddRec->getOperand(i)) 5998 continue; 5999 6000 // Okay, at least one of these operands is loop variant but might be 6001 // foldable. Build a new instance of the folded commutative expression. 6002 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6003 AddRec->op_begin()+i); 6004 NewOps.push_back(OpAtScope); 6005 for (++i; i != e; ++i) 6006 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6007 6008 const SCEV *FoldedRec = 6009 getAddRecExpr(NewOps, AddRec->getLoop(), 6010 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6011 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6012 // The addrec may be folded to a nonrecurrence, for example, if the 6013 // induction variable is multiplied by zero after constant folding. Go 6014 // ahead and return the folded value. 6015 if (!AddRec) 6016 return FoldedRec; 6017 break; 6018 } 6019 6020 // If the scope is outside the addrec's loop, evaluate it by using the 6021 // loop exit value of the addrec. 6022 if (!AddRec->getLoop()->contains(L)) { 6023 // To evaluate this recurrence, we need to know how many times the AddRec 6024 // loop iterates. Compute this now. 6025 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6026 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6027 6028 // Then, evaluate the AddRec. 6029 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6030 } 6031 6032 return AddRec; 6033 } 6034 6035 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6036 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6037 if (Op == Cast->getOperand()) 6038 return Cast; // must be loop invariant 6039 return getZeroExtendExpr(Op, Cast->getType()); 6040 } 6041 6042 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6043 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6044 if (Op == Cast->getOperand()) 6045 return Cast; // must be loop invariant 6046 return getSignExtendExpr(Op, Cast->getType()); 6047 } 6048 6049 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6050 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6051 if (Op == Cast->getOperand()) 6052 return Cast; // must be loop invariant 6053 return getTruncateExpr(Op, Cast->getType()); 6054 } 6055 6056 llvm_unreachable("Unknown SCEV type!"); 6057 } 6058 6059 /// getSCEVAtScope - This is a convenience function which does 6060 /// getSCEVAtScope(getSCEV(V), L). 6061 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6062 return getSCEVAtScope(getSCEV(V), L); 6063 } 6064 6065 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6066 /// following equation: 6067 /// 6068 /// A * X = B (mod N) 6069 /// 6070 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6071 /// A and B isn't important. 6072 /// 6073 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6074 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6075 ScalarEvolution &SE) { 6076 uint32_t BW = A.getBitWidth(); 6077 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6078 assert(A != 0 && "A must be non-zero."); 6079 6080 // 1. D = gcd(A, N) 6081 // 6082 // The gcd of A and N may have only one prime factor: 2. The number of 6083 // trailing zeros in A is its multiplicity 6084 uint32_t Mult2 = A.countTrailingZeros(); 6085 // D = 2^Mult2 6086 6087 // 2. Check if B is divisible by D. 6088 // 6089 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6090 // is not less than multiplicity of this prime factor for D. 6091 if (B.countTrailingZeros() < Mult2) 6092 return SE.getCouldNotCompute(); 6093 6094 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6095 // modulo (N / D). 6096 // 6097 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6098 // bit width during computations. 6099 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6100 APInt Mod(BW + 1, 0); 6101 Mod.setBit(BW - Mult2); // Mod = N / D 6102 APInt I = AD.multiplicativeInverse(Mod); 6103 6104 // 4. Compute the minimum unsigned root of the equation: 6105 // I * (B / D) mod (N / D) 6106 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6107 6108 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6109 // bits. 6110 return SE.getConstant(Result.trunc(BW)); 6111 } 6112 6113 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6114 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6115 /// might be the same) or two SCEVCouldNotCompute objects. 6116 /// 6117 static std::pair<const SCEV *,const SCEV *> 6118 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6119 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6120 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6121 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6122 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6123 6124 // We currently can only solve this if the coefficients are constants. 6125 if (!LC || !MC || !NC) { 6126 const SCEV *CNC = SE.getCouldNotCompute(); 6127 return std::make_pair(CNC, CNC); 6128 } 6129 6130 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6131 const APInt &L = LC->getValue()->getValue(); 6132 const APInt &M = MC->getValue()->getValue(); 6133 const APInt &N = NC->getValue()->getValue(); 6134 APInt Two(BitWidth, 2); 6135 APInt Four(BitWidth, 4); 6136 6137 { 6138 using namespace APIntOps; 6139 const APInt& C = L; 6140 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6141 // The B coefficient is M-N/2 6142 APInt B(M); 6143 B -= sdiv(N,Two); 6144 6145 // The A coefficient is N/2 6146 APInt A(N.sdiv(Two)); 6147 6148 // Compute the B^2-4ac term. 6149 APInt SqrtTerm(B); 6150 SqrtTerm *= B; 6151 SqrtTerm -= Four * (A * C); 6152 6153 if (SqrtTerm.isNegative()) { 6154 // The loop is provably infinite. 6155 const SCEV *CNC = SE.getCouldNotCompute(); 6156 return std::make_pair(CNC, CNC); 6157 } 6158 6159 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6160 // integer value or else APInt::sqrt() will assert. 6161 APInt SqrtVal(SqrtTerm.sqrt()); 6162 6163 // Compute the two solutions for the quadratic formula. 6164 // The divisions must be performed as signed divisions. 6165 APInt NegB(-B); 6166 APInt TwoA(A << 1); 6167 if (TwoA.isMinValue()) { 6168 const SCEV *CNC = SE.getCouldNotCompute(); 6169 return std::make_pair(CNC, CNC); 6170 } 6171 6172 LLVMContext &Context = SE.getContext(); 6173 6174 ConstantInt *Solution1 = 6175 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6176 ConstantInt *Solution2 = 6177 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6178 6179 return std::make_pair(SE.getConstant(Solution1), 6180 SE.getConstant(Solution2)); 6181 } // end APIntOps namespace 6182 } 6183 6184 /// HowFarToZero - Return the number of times a backedge comparing the specified 6185 /// value to zero will execute. If not computable, return CouldNotCompute. 6186 /// 6187 /// This is only used for loops with a "x != y" exit test. The exit condition is 6188 /// now expressed as a single expression, V = x-y. So the exit test is 6189 /// effectively V != 0. We know and take advantage of the fact that this 6190 /// expression only being used in a comparison by zero context. 6191 ScalarEvolution::ExitLimit 6192 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6193 // If the value is a constant 6194 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6195 // If the value is already zero, the branch will execute zero times. 6196 if (C->getValue()->isZero()) return C; 6197 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6198 } 6199 6200 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6201 if (!AddRec || AddRec->getLoop() != L) 6202 return getCouldNotCompute(); 6203 6204 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6205 // the quadratic equation to solve it. 6206 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6207 std::pair<const SCEV *,const SCEV *> Roots = 6208 SolveQuadraticEquation(AddRec, *this); 6209 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6210 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6211 if (R1 && R2) { 6212 #if 0 6213 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6214 << " sol#2: " << *R2 << "\n"; 6215 #endif 6216 // Pick the smallest positive root value. 6217 if (ConstantInt *CB = 6218 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6219 R1->getValue(), 6220 R2->getValue()))) { 6221 if (!CB->getZExtValue()) 6222 std::swap(R1, R2); // R1 is the minimum root now. 6223 6224 // We can only use this value if the chrec ends up with an exact zero 6225 // value at this index. When solving for "X*X != 5", for example, we 6226 // should not accept a root of 2. 6227 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6228 if (Val->isZero()) 6229 return R1; // We found a quadratic root! 6230 } 6231 } 6232 return getCouldNotCompute(); 6233 } 6234 6235 // Otherwise we can only handle this if it is affine. 6236 if (!AddRec->isAffine()) 6237 return getCouldNotCompute(); 6238 6239 // If this is an affine expression, the execution count of this branch is 6240 // the minimum unsigned root of the following equation: 6241 // 6242 // Start + Step*N = 0 (mod 2^BW) 6243 // 6244 // equivalent to: 6245 // 6246 // Step*N = -Start (mod 2^BW) 6247 // 6248 // where BW is the common bit width of Start and Step. 6249 6250 // Get the initial value for the loop. 6251 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6252 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6253 6254 // For now we handle only constant steps. 6255 // 6256 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6257 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6258 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6259 // We have not yet seen any such cases. 6260 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6261 if (!StepC || StepC->getValue()->equalsInt(0)) 6262 return getCouldNotCompute(); 6263 6264 // For positive steps (counting up until unsigned overflow): 6265 // N = -Start/Step (as unsigned) 6266 // For negative steps (counting down to zero): 6267 // N = Start/-Step 6268 // First compute the unsigned distance from zero in the direction of Step. 6269 bool CountDown = StepC->getValue()->getValue().isNegative(); 6270 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6271 6272 // Handle unitary steps, which cannot wraparound. 6273 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6274 // N = Distance (as unsigned) 6275 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6276 ConstantRange CR = getUnsignedRange(Start); 6277 const SCEV *MaxBECount; 6278 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6279 // When counting up, the worst starting value is 1, not 0. 6280 MaxBECount = CR.getUnsignedMax().isMinValue() 6281 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6282 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6283 else 6284 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6285 : -CR.getUnsignedMin()); 6286 return ExitLimit(Distance, MaxBECount); 6287 } 6288 6289 // As a special case, handle the instance where Step is a positive power of 6290 // two. In this case, determining whether Step divides Distance evenly can be 6291 // done by counting and comparing the number of trailing zeros of Step and 6292 // Distance. 6293 if (!CountDown) { 6294 const APInt &StepV = StepC->getValue()->getValue(); 6295 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6296 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6297 // case is not handled as this code is guarded by !CountDown. 6298 if (StepV.isPowerOf2() && 6299 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6300 // Here we've constrained the equation to be of the form 6301 // 6302 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6303 // 6304 // where we're operating on a W bit wide integer domain and k is 6305 // non-negative. The smallest unsigned solution for X is the trip count. 6306 // 6307 // (0) is equivalent to: 6308 // 6309 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6310 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6311 // <=> 2^k * Distance' - X = L * 2^(W - N) 6312 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6313 // 6314 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6315 // by 2^(W - N). 6316 // 6317 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6318 // 6319 // E.g. say we're solving 6320 // 6321 // 2 * Val = 2 * X (in i8) ... (3) 6322 // 6323 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6324 // 6325 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6326 // necessarily the smallest unsigned value of X that satisfies (3). 6327 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6328 // is i8 1, not i8 -127 6329 6330 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6331 6332 // Since SCEV does not have a URem node, we construct one using a truncate 6333 // and a zero extend. 6334 6335 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6336 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6337 auto *WideTy = Distance->getType(); 6338 6339 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6340 } 6341 } 6342 6343 // If the condition controls loop exit (the loop exits only if the expression 6344 // is true) and the addition is no-wrap we can use unsigned divide to 6345 // compute the backedge count. In this case, the step may not divide the 6346 // distance, but we don't care because if the condition is "missed" the loop 6347 // will have undefined behavior due to wrapping. 6348 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6349 const SCEV *Exact = 6350 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6351 return ExitLimit(Exact, Exact); 6352 } 6353 6354 // Then, try to solve the above equation provided that Start is constant. 6355 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6356 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6357 -StartC->getValue()->getValue(), 6358 *this); 6359 return getCouldNotCompute(); 6360 } 6361 6362 /// HowFarToNonZero - Return the number of times a backedge checking the 6363 /// specified value for nonzero will execute. If not computable, return 6364 /// CouldNotCompute 6365 ScalarEvolution::ExitLimit 6366 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6367 // Loops that look like: while (X == 0) are very strange indeed. We don't 6368 // handle them yet except for the trivial case. This could be expanded in the 6369 // future as needed. 6370 6371 // If the value is a constant, check to see if it is known to be non-zero 6372 // already. If so, the backedge will execute zero times. 6373 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6374 if (!C->getValue()->isNullValue()) 6375 return getConstant(C->getType(), 0); 6376 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6377 } 6378 6379 // We could implement others, but I really doubt anyone writes loops like 6380 // this, and if they did, they would already be constant folded. 6381 return getCouldNotCompute(); 6382 } 6383 6384 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6385 /// (which may not be an immediate predecessor) which has exactly one 6386 /// successor from which BB is reachable, or null if no such block is 6387 /// found. 6388 /// 6389 std::pair<BasicBlock *, BasicBlock *> 6390 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6391 // If the block has a unique predecessor, then there is no path from the 6392 // predecessor to the block that does not go through the direct edge 6393 // from the predecessor to the block. 6394 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6395 return std::make_pair(Pred, BB); 6396 6397 // A loop's header is defined to be a block that dominates the loop. 6398 // If the header has a unique predecessor outside the loop, it must be 6399 // a block that has exactly one successor that can reach the loop. 6400 if (Loop *L = LI.getLoopFor(BB)) 6401 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6402 6403 return std::pair<BasicBlock *, BasicBlock *>(); 6404 } 6405 6406 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6407 /// testing whether two expressions are equal, however for the purposes of 6408 /// looking for a condition guarding a loop, it can be useful to be a little 6409 /// more general, since a front-end may have replicated the controlling 6410 /// expression. 6411 /// 6412 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6413 // Quick check to see if they are the same SCEV. 6414 if (A == B) return true; 6415 6416 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6417 // two different instructions with the same value. Check for this case. 6418 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6419 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6420 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6421 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6422 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 6423 return true; 6424 6425 // Otherwise assume they may have a different value. 6426 return false; 6427 } 6428 6429 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6430 /// predicate Pred. Return true iff any changes were made. 6431 /// 6432 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6433 const SCEV *&LHS, const SCEV *&RHS, 6434 unsigned Depth) { 6435 bool Changed = false; 6436 6437 // If we hit the max recursion limit bail out. 6438 if (Depth >= 3) 6439 return false; 6440 6441 // Canonicalize a constant to the right side. 6442 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6443 // Check for both operands constant. 6444 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6445 if (ConstantExpr::getICmp(Pred, 6446 LHSC->getValue(), 6447 RHSC->getValue())->isNullValue()) 6448 goto trivially_false; 6449 else 6450 goto trivially_true; 6451 } 6452 // Otherwise swap the operands to put the constant on the right. 6453 std::swap(LHS, RHS); 6454 Pred = ICmpInst::getSwappedPredicate(Pred); 6455 Changed = true; 6456 } 6457 6458 // If we're comparing an addrec with a value which is loop-invariant in the 6459 // addrec's loop, put the addrec on the left. Also make a dominance check, 6460 // as both operands could be addrecs loop-invariant in each other's loop. 6461 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6462 const Loop *L = AR->getLoop(); 6463 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6464 std::swap(LHS, RHS); 6465 Pred = ICmpInst::getSwappedPredicate(Pred); 6466 Changed = true; 6467 } 6468 } 6469 6470 // If there's a constant operand, canonicalize comparisons with boundary 6471 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6472 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6473 const APInt &RA = RC->getValue()->getValue(); 6474 switch (Pred) { 6475 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6476 case ICmpInst::ICMP_EQ: 6477 case ICmpInst::ICMP_NE: 6478 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6479 if (!RA) 6480 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6481 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6482 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6483 ME->getOperand(0)->isAllOnesValue()) { 6484 RHS = AE->getOperand(1); 6485 LHS = ME->getOperand(1); 6486 Changed = true; 6487 } 6488 break; 6489 case ICmpInst::ICMP_UGE: 6490 if ((RA - 1).isMinValue()) { 6491 Pred = ICmpInst::ICMP_NE; 6492 RHS = getConstant(RA - 1); 6493 Changed = true; 6494 break; 6495 } 6496 if (RA.isMaxValue()) { 6497 Pred = ICmpInst::ICMP_EQ; 6498 Changed = true; 6499 break; 6500 } 6501 if (RA.isMinValue()) goto trivially_true; 6502 6503 Pred = ICmpInst::ICMP_UGT; 6504 RHS = getConstant(RA - 1); 6505 Changed = true; 6506 break; 6507 case ICmpInst::ICMP_ULE: 6508 if ((RA + 1).isMaxValue()) { 6509 Pred = ICmpInst::ICMP_NE; 6510 RHS = getConstant(RA + 1); 6511 Changed = true; 6512 break; 6513 } 6514 if (RA.isMinValue()) { 6515 Pred = ICmpInst::ICMP_EQ; 6516 Changed = true; 6517 break; 6518 } 6519 if (RA.isMaxValue()) goto trivially_true; 6520 6521 Pred = ICmpInst::ICMP_ULT; 6522 RHS = getConstant(RA + 1); 6523 Changed = true; 6524 break; 6525 case ICmpInst::ICMP_SGE: 6526 if ((RA - 1).isMinSignedValue()) { 6527 Pred = ICmpInst::ICMP_NE; 6528 RHS = getConstant(RA - 1); 6529 Changed = true; 6530 break; 6531 } 6532 if (RA.isMaxSignedValue()) { 6533 Pred = ICmpInst::ICMP_EQ; 6534 Changed = true; 6535 break; 6536 } 6537 if (RA.isMinSignedValue()) goto trivially_true; 6538 6539 Pred = ICmpInst::ICMP_SGT; 6540 RHS = getConstant(RA - 1); 6541 Changed = true; 6542 break; 6543 case ICmpInst::ICMP_SLE: 6544 if ((RA + 1).isMaxSignedValue()) { 6545 Pred = ICmpInst::ICMP_NE; 6546 RHS = getConstant(RA + 1); 6547 Changed = true; 6548 break; 6549 } 6550 if (RA.isMinSignedValue()) { 6551 Pred = ICmpInst::ICMP_EQ; 6552 Changed = true; 6553 break; 6554 } 6555 if (RA.isMaxSignedValue()) goto trivially_true; 6556 6557 Pred = ICmpInst::ICMP_SLT; 6558 RHS = getConstant(RA + 1); 6559 Changed = true; 6560 break; 6561 case ICmpInst::ICMP_UGT: 6562 if (RA.isMinValue()) { 6563 Pred = ICmpInst::ICMP_NE; 6564 Changed = true; 6565 break; 6566 } 6567 if ((RA + 1).isMaxValue()) { 6568 Pred = ICmpInst::ICMP_EQ; 6569 RHS = getConstant(RA + 1); 6570 Changed = true; 6571 break; 6572 } 6573 if (RA.isMaxValue()) goto trivially_false; 6574 break; 6575 case ICmpInst::ICMP_ULT: 6576 if (RA.isMaxValue()) { 6577 Pred = ICmpInst::ICMP_NE; 6578 Changed = true; 6579 break; 6580 } 6581 if ((RA - 1).isMinValue()) { 6582 Pred = ICmpInst::ICMP_EQ; 6583 RHS = getConstant(RA - 1); 6584 Changed = true; 6585 break; 6586 } 6587 if (RA.isMinValue()) goto trivially_false; 6588 break; 6589 case ICmpInst::ICMP_SGT: 6590 if (RA.isMinSignedValue()) { 6591 Pred = ICmpInst::ICMP_NE; 6592 Changed = true; 6593 break; 6594 } 6595 if ((RA + 1).isMaxSignedValue()) { 6596 Pred = ICmpInst::ICMP_EQ; 6597 RHS = getConstant(RA + 1); 6598 Changed = true; 6599 break; 6600 } 6601 if (RA.isMaxSignedValue()) goto trivially_false; 6602 break; 6603 case ICmpInst::ICMP_SLT: 6604 if (RA.isMaxSignedValue()) { 6605 Pred = ICmpInst::ICMP_NE; 6606 Changed = true; 6607 break; 6608 } 6609 if ((RA - 1).isMinSignedValue()) { 6610 Pred = ICmpInst::ICMP_EQ; 6611 RHS = getConstant(RA - 1); 6612 Changed = true; 6613 break; 6614 } 6615 if (RA.isMinSignedValue()) goto trivially_false; 6616 break; 6617 } 6618 } 6619 6620 // Check for obvious equality. 6621 if (HasSameValue(LHS, RHS)) { 6622 if (ICmpInst::isTrueWhenEqual(Pred)) 6623 goto trivially_true; 6624 if (ICmpInst::isFalseWhenEqual(Pred)) 6625 goto trivially_false; 6626 } 6627 6628 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6629 // adding or subtracting 1 from one of the operands. 6630 switch (Pred) { 6631 case ICmpInst::ICMP_SLE: 6632 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6633 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6634 SCEV::FlagNSW); 6635 Pred = ICmpInst::ICMP_SLT; 6636 Changed = true; 6637 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6638 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6639 SCEV::FlagNSW); 6640 Pred = ICmpInst::ICMP_SLT; 6641 Changed = true; 6642 } 6643 break; 6644 case ICmpInst::ICMP_SGE: 6645 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6646 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6647 SCEV::FlagNSW); 6648 Pred = ICmpInst::ICMP_SGT; 6649 Changed = true; 6650 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6651 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6652 SCEV::FlagNSW); 6653 Pred = ICmpInst::ICMP_SGT; 6654 Changed = true; 6655 } 6656 break; 6657 case ICmpInst::ICMP_ULE: 6658 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6659 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6660 SCEV::FlagNUW); 6661 Pred = ICmpInst::ICMP_ULT; 6662 Changed = true; 6663 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6664 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6665 SCEV::FlagNUW); 6666 Pred = ICmpInst::ICMP_ULT; 6667 Changed = true; 6668 } 6669 break; 6670 case ICmpInst::ICMP_UGE: 6671 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6672 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6673 SCEV::FlagNUW); 6674 Pred = ICmpInst::ICMP_UGT; 6675 Changed = true; 6676 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6677 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6678 SCEV::FlagNUW); 6679 Pred = ICmpInst::ICMP_UGT; 6680 Changed = true; 6681 } 6682 break; 6683 default: 6684 break; 6685 } 6686 6687 // TODO: More simplifications are possible here. 6688 6689 // Recursively simplify until we either hit a recursion limit or nothing 6690 // changes. 6691 if (Changed) 6692 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6693 6694 return Changed; 6695 6696 trivially_true: 6697 // Return 0 == 0. 6698 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6699 Pred = ICmpInst::ICMP_EQ; 6700 return true; 6701 6702 trivially_false: 6703 // Return 0 != 0. 6704 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6705 Pred = ICmpInst::ICMP_NE; 6706 return true; 6707 } 6708 6709 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6710 return getSignedRange(S).getSignedMax().isNegative(); 6711 } 6712 6713 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6714 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6715 } 6716 6717 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6718 return !getSignedRange(S).getSignedMin().isNegative(); 6719 } 6720 6721 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6722 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6723 } 6724 6725 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6726 return isKnownNegative(S) || isKnownPositive(S); 6727 } 6728 6729 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6730 const SCEV *LHS, const SCEV *RHS) { 6731 // Canonicalize the inputs first. 6732 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6733 6734 // If LHS or RHS is an addrec, check to see if the condition is true in 6735 // every iteration of the loop. 6736 // If LHS and RHS are both addrec, both conditions must be true in 6737 // every iteration of the loop. 6738 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6739 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6740 bool LeftGuarded = false; 6741 bool RightGuarded = false; 6742 if (LAR) { 6743 const Loop *L = LAR->getLoop(); 6744 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6745 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6746 if (!RAR) return true; 6747 LeftGuarded = true; 6748 } 6749 } 6750 if (RAR) { 6751 const Loop *L = RAR->getLoop(); 6752 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6753 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6754 if (!LAR) return true; 6755 RightGuarded = true; 6756 } 6757 } 6758 if (LeftGuarded && RightGuarded) 6759 return true; 6760 6761 // Otherwise see what can be done with known constant ranges. 6762 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6763 } 6764 6765 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 6766 ICmpInst::Predicate Pred, 6767 bool &Increasing) { 6768 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 6769 6770 #ifndef NDEBUG 6771 // Verify an invariant: inverting the predicate should turn a monotonically 6772 // increasing change to a monotonically decreasing one, and vice versa. 6773 bool IncreasingSwapped; 6774 bool ResultSwapped = isMonotonicPredicateImpl( 6775 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 6776 6777 assert(Result == ResultSwapped && "should be able to analyze both!"); 6778 if (ResultSwapped) 6779 assert(Increasing == !IncreasingSwapped && 6780 "monotonicity should flip as we flip the predicate"); 6781 #endif 6782 6783 return Result; 6784 } 6785 6786 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 6787 ICmpInst::Predicate Pred, 6788 bool &Increasing) { 6789 6790 // A zero step value for LHS means the induction variable is essentially a 6791 // loop invariant value. We don't really depend on the predicate actually 6792 // flipping from false to true (for increasing predicates, and the other way 6793 // around for decreasing predicates), all we care about is that *if* the 6794 // predicate changes then it only changes from false to true. 6795 // 6796 // A zero step value in itself is not very useful, but there may be places 6797 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 6798 // as general as possible. 6799 6800 switch (Pred) { 6801 default: 6802 return false; // Conservative answer 6803 6804 case ICmpInst::ICMP_UGT: 6805 case ICmpInst::ICMP_UGE: 6806 case ICmpInst::ICMP_ULT: 6807 case ICmpInst::ICMP_ULE: 6808 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 6809 return false; 6810 6811 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 6812 return true; 6813 6814 case ICmpInst::ICMP_SGT: 6815 case ICmpInst::ICMP_SGE: 6816 case ICmpInst::ICMP_SLT: 6817 case ICmpInst::ICMP_SLE: { 6818 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 6819 return false; 6820 6821 const SCEV *Step = LHS->getStepRecurrence(*this); 6822 6823 if (isKnownNonNegative(Step)) { 6824 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 6825 return true; 6826 } 6827 6828 if (isKnownNonPositive(Step)) { 6829 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 6830 return true; 6831 } 6832 6833 return false; 6834 } 6835 6836 } 6837 6838 llvm_unreachable("switch has default clause!"); 6839 } 6840 6841 bool ScalarEvolution::isLoopInvariantPredicate( 6842 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 6843 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 6844 const SCEV *&InvariantRHS) { 6845 6846 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 6847 if (!isLoopInvariant(RHS, L)) { 6848 if (!isLoopInvariant(LHS, L)) 6849 return false; 6850 6851 std::swap(LHS, RHS); 6852 Pred = ICmpInst::getSwappedPredicate(Pred); 6853 } 6854 6855 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 6856 if (!ArLHS || ArLHS->getLoop() != L) 6857 return false; 6858 6859 bool Increasing; 6860 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 6861 return false; 6862 6863 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 6864 // true as the loop iterates, and the backedge is control dependent on 6865 // "ArLHS `Pred` RHS" == true then we can reason as follows: 6866 // 6867 // * if the predicate was false in the first iteration then the predicate 6868 // is never evaluated again, since the loop exits without taking the 6869 // backedge. 6870 // * if the predicate was true in the first iteration then it will 6871 // continue to be true for all future iterations since it is 6872 // monotonically increasing. 6873 // 6874 // For both the above possibilities, we can replace the loop varying 6875 // predicate with its value on the first iteration of the loop (which is 6876 // loop invariant). 6877 // 6878 // A similar reasoning applies for a monotonically decreasing predicate, by 6879 // replacing true with false and false with true in the above two bullets. 6880 6881 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 6882 6883 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 6884 return false; 6885 6886 InvariantPred = Pred; 6887 InvariantLHS = ArLHS->getStart(); 6888 InvariantRHS = RHS; 6889 return true; 6890 } 6891 6892 bool 6893 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6894 const SCEV *LHS, const SCEV *RHS) { 6895 if (HasSameValue(LHS, RHS)) 6896 return ICmpInst::isTrueWhenEqual(Pred); 6897 6898 // This code is split out from isKnownPredicate because it is called from 6899 // within isLoopEntryGuardedByCond. 6900 switch (Pred) { 6901 default: 6902 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6903 case ICmpInst::ICMP_SGT: 6904 std::swap(LHS, RHS); 6905 case ICmpInst::ICMP_SLT: { 6906 ConstantRange LHSRange = getSignedRange(LHS); 6907 ConstantRange RHSRange = getSignedRange(RHS); 6908 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6909 return true; 6910 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6911 return false; 6912 break; 6913 } 6914 case ICmpInst::ICMP_SGE: 6915 std::swap(LHS, RHS); 6916 case ICmpInst::ICMP_SLE: { 6917 ConstantRange LHSRange = getSignedRange(LHS); 6918 ConstantRange RHSRange = getSignedRange(RHS); 6919 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6920 return true; 6921 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6922 return false; 6923 break; 6924 } 6925 case ICmpInst::ICMP_UGT: 6926 std::swap(LHS, RHS); 6927 case ICmpInst::ICMP_ULT: { 6928 ConstantRange LHSRange = getUnsignedRange(LHS); 6929 ConstantRange RHSRange = getUnsignedRange(RHS); 6930 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6931 return true; 6932 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6933 return false; 6934 break; 6935 } 6936 case ICmpInst::ICMP_UGE: 6937 std::swap(LHS, RHS); 6938 case ICmpInst::ICMP_ULE: { 6939 ConstantRange LHSRange = getUnsignedRange(LHS); 6940 ConstantRange RHSRange = getUnsignedRange(RHS); 6941 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6942 return true; 6943 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6944 return false; 6945 break; 6946 } 6947 case ICmpInst::ICMP_NE: { 6948 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6949 return true; 6950 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6951 return true; 6952 6953 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6954 if (isKnownNonZero(Diff)) 6955 return true; 6956 break; 6957 } 6958 case ICmpInst::ICMP_EQ: 6959 // The check at the top of the function catches the case where 6960 // the values are known to be equal. 6961 break; 6962 } 6963 return false; 6964 } 6965 6966 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6967 /// protected by a conditional between LHS and RHS. This is used to 6968 /// to eliminate casts. 6969 bool 6970 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6971 ICmpInst::Predicate Pred, 6972 const SCEV *LHS, const SCEV *RHS) { 6973 // Interpret a null as meaning no loop, where there is obviously no guard 6974 // (interprocedural conditions notwithstanding). 6975 if (!L) return true; 6976 6977 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 6978 6979 BasicBlock *Latch = L->getLoopLatch(); 6980 if (!Latch) 6981 return false; 6982 6983 BranchInst *LoopContinuePredicate = 6984 dyn_cast<BranchInst>(Latch->getTerminator()); 6985 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 6986 isImpliedCond(Pred, LHS, RHS, 6987 LoopContinuePredicate->getCondition(), 6988 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 6989 return true; 6990 6991 struct ClearWalkingBEDominatingCondsOnExit { 6992 ScalarEvolution &SE; 6993 6994 explicit ClearWalkingBEDominatingCondsOnExit(ScalarEvolution &SE) 6995 : SE(SE){} 6996 6997 ~ClearWalkingBEDominatingCondsOnExit() { 6998 SE.WalkingBEDominatingConds = false; 6999 } 7000 }; 7001 7002 // We don't want more than one activation of the following loops on the stack 7003 // -- that can lead to O(n!) time complexity. 7004 if (WalkingBEDominatingConds) 7005 return false; 7006 7007 WalkingBEDominatingConds = true; 7008 ClearWalkingBEDominatingCondsOnExit ClearOnExit(*this); 7009 7010 // Check conditions due to any @llvm.assume intrinsics. 7011 for (auto &AssumeVH : AC.assumptions()) { 7012 if (!AssumeVH) 7013 continue; 7014 auto *CI = cast<CallInst>(AssumeVH); 7015 if (!DT.dominates(CI, Latch->getTerminator())) 7016 continue; 7017 7018 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7019 return true; 7020 } 7021 7022 // If the loop is not reachable from the entry block, we risk running into an 7023 // infinite loop as we walk up into the dom tree. These loops do not matter 7024 // anyway, so we just return a conservative answer when we see them. 7025 if (!DT.isReachableFromEntry(L->getHeader())) 7026 return false; 7027 7028 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7029 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7030 7031 assert(DTN && "should reach the loop header before reaching the root!"); 7032 7033 BasicBlock *BB = DTN->getBlock(); 7034 BasicBlock *PBB = BB->getSinglePredecessor(); 7035 if (!PBB) 7036 continue; 7037 7038 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7039 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7040 continue; 7041 7042 Value *Condition = ContinuePredicate->getCondition(); 7043 7044 // If we have an edge `E` within the loop body that dominates the only 7045 // latch, the condition guarding `E` also guards the backedge. This 7046 // reasoning works only for loops with a single latch. 7047 7048 BasicBlockEdge DominatingEdge(PBB, BB); 7049 if (DominatingEdge.isSingleEdge()) { 7050 // We're constructively (and conservatively) enumerating edges within the 7051 // loop body that dominate the latch. The dominator tree better agree 7052 // with us on this: 7053 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7054 7055 if (isImpliedCond(Pred, LHS, RHS, Condition, 7056 BB != ContinuePredicate->getSuccessor(0))) 7057 return true; 7058 } 7059 } 7060 7061 return false; 7062 } 7063 7064 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7065 /// by a conditional between LHS and RHS. This is used to help avoid max 7066 /// expressions in loop trip counts, and to eliminate casts. 7067 bool 7068 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7069 ICmpInst::Predicate Pred, 7070 const SCEV *LHS, const SCEV *RHS) { 7071 // Interpret a null as meaning no loop, where there is obviously no guard 7072 // (interprocedural conditions notwithstanding). 7073 if (!L) return false; 7074 7075 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7076 7077 // Starting at the loop predecessor, climb up the predecessor chain, as long 7078 // as there are predecessors that can be found that have unique successors 7079 // leading to the original header. 7080 for (std::pair<BasicBlock *, BasicBlock *> 7081 Pair(L->getLoopPredecessor(), L->getHeader()); 7082 Pair.first; 7083 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7084 7085 BranchInst *LoopEntryPredicate = 7086 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7087 if (!LoopEntryPredicate || 7088 LoopEntryPredicate->isUnconditional()) 7089 continue; 7090 7091 if (isImpliedCond(Pred, LHS, RHS, 7092 LoopEntryPredicate->getCondition(), 7093 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7094 return true; 7095 } 7096 7097 // Check conditions due to any @llvm.assume intrinsics. 7098 for (auto &AssumeVH : AC.assumptions()) { 7099 if (!AssumeVH) 7100 continue; 7101 auto *CI = cast<CallInst>(AssumeVH); 7102 if (!DT.dominates(CI, L->getHeader())) 7103 continue; 7104 7105 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7106 return true; 7107 } 7108 7109 return false; 7110 } 7111 7112 /// RAII wrapper to prevent recursive application of isImpliedCond. 7113 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7114 /// currently evaluating isImpliedCond. 7115 struct MarkPendingLoopPredicate { 7116 Value *Cond; 7117 DenseSet<Value*> &LoopPreds; 7118 bool Pending; 7119 7120 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7121 : Cond(C), LoopPreds(LP) { 7122 Pending = !LoopPreds.insert(Cond).second; 7123 } 7124 ~MarkPendingLoopPredicate() { 7125 if (!Pending) 7126 LoopPreds.erase(Cond); 7127 } 7128 }; 7129 7130 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7131 /// and RHS is true whenever the given Cond value evaluates to true. 7132 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7133 const SCEV *LHS, const SCEV *RHS, 7134 Value *FoundCondValue, 7135 bool Inverse) { 7136 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7137 if (Mark.Pending) 7138 return false; 7139 7140 // Recursively handle And and Or conditions. 7141 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7142 if (BO->getOpcode() == Instruction::And) { 7143 if (!Inverse) 7144 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7145 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7146 } else if (BO->getOpcode() == Instruction::Or) { 7147 if (Inverse) 7148 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7149 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7150 } 7151 } 7152 7153 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7154 if (!ICI) return false; 7155 7156 // Now that we found a conditional branch that dominates the loop or controls 7157 // the loop latch. Check to see if it is the comparison we are looking for. 7158 ICmpInst::Predicate FoundPred; 7159 if (Inverse) 7160 FoundPred = ICI->getInversePredicate(); 7161 else 7162 FoundPred = ICI->getPredicate(); 7163 7164 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7165 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7166 7167 // Balance the types. 7168 if (getTypeSizeInBits(LHS->getType()) < 7169 getTypeSizeInBits(FoundLHS->getType())) { 7170 if (CmpInst::isSigned(Pred)) { 7171 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7172 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7173 } else { 7174 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7175 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7176 } 7177 } else if (getTypeSizeInBits(LHS->getType()) > 7178 getTypeSizeInBits(FoundLHS->getType())) { 7179 if (CmpInst::isSigned(FoundPred)) { 7180 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7181 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7182 } else { 7183 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7184 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7185 } 7186 } 7187 7188 // Canonicalize the query to match the way instcombine will have 7189 // canonicalized the comparison. 7190 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7191 if (LHS == RHS) 7192 return CmpInst::isTrueWhenEqual(Pred); 7193 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7194 if (FoundLHS == FoundRHS) 7195 return CmpInst::isFalseWhenEqual(FoundPred); 7196 7197 // Check to see if we can make the LHS or RHS match. 7198 if (LHS == FoundRHS || RHS == FoundLHS) { 7199 if (isa<SCEVConstant>(RHS)) { 7200 std::swap(FoundLHS, FoundRHS); 7201 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7202 } else { 7203 std::swap(LHS, RHS); 7204 Pred = ICmpInst::getSwappedPredicate(Pred); 7205 } 7206 } 7207 7208 // Check whether the found predicate is the same as the desired predicate. 7209 if (FoundPred == Pred) 7210 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7211 7212 // Check whether swapping the found predicate makes it the same as the 7213 // desired predicate. 7214 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7215 if (isa<SCEVConstant>(RHS)) 7216 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7217 else 7218 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7219 RHS, LHS, FoundLHS, FoundRHS); 7220 } 7221 7222 // Check if we can make progress by sharpening ranges. 7223 if (FoundPred == ICmpInst::ICMP_NE && 7224 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7225 7226 const SCEVConstant *C = nullptr; 7227 const SCEV *V = nullptr; 7228 7229 if (isa<SCEVConstant>(FoundLHS)) { 7230 C = cast<SCEVConstant>(FoundLHS); 7231 V = FoundRHS; 7232 } else { 7233 C = cast<SCEVConstant>(FoundRHS); 7234 V = FoundLHS; 7235 } 7236 7237 // The guarding predicate tells us that C != V. If the known range 7238 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7239 // range we consider has to correspond to same signedness as the 7240 // predicate we're interested in folding. 7241 7242 APInt Min = ICmpInst::isSigned(Pred) ? 7243 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7244 7245 if (Min == C->getValue()->getValue()) { 7246 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7247 // This is true even if (Min + 1) wraps around -- in case of 7248 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7249 7250 APInt SharperMin = Min + 1; 7251 7252 switch (Pred) { 7253 case ICmpInst::ICMP_SGE: 7254 case ICmpInst::ICMP_UGE: 7255 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7256 // RHS, we're done. 7257 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7258 getConstant(SharperMin))) 7259 return true; 7260 7261 case ICmpInst::ICMP_SGT: 7262 case ICmpInst::ICMP_UGT: 7263 // We know from the range information that (V `Pred` Min || 7264 // V == Min). We know from the guarding condition that !(V 7265 // == Min). This gives us 7266 // 7267 // V `Pred` Min || V == Min && !(V == Min) 7268 // => V `Pred` Min 7269 // 7270 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7271 7272 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7273 return true; 7274 7275 default: 7276 // No change 7277 break; 7278 } 7279 } 7280 } 7281 7282 // Check whether the actual condition is beyond sufficient. 7283 if (FoundPred == ICmpInst::ICMP_EQ) 7284 if (ICmpInst::isTrueWhenEqual(Pred)) 7285 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7286 return true; 7287 if (Pred == ICmpInst::ICMP_NE) 7288 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7289 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7290 return true; 7291 7292 // Otherwise assume the worst. 7293 return false; 7294 } 7295 7296 /// isImpliedCondOperands - Test whether the condition described by Pred, 7297 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7298 /// and FoundRHS is true. 7299 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7300 const SCEV *LHS, const SCEV *RHS, 7301 const SCEV *FoundLHS, 7302 const SCEV *FoundRHS) { 7303 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7304 return true; 7305 7306 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7307 FoundLHS, FoundRHS) || 7308 // ~x < ~y --> x > y 7309 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7310 getNotSCEV(FoundRHS), 7311 getNotSCEV(FoundLHS)); 7312 } 7313 7314 7315 /// If Expr computes ~A, return A else return nullptr 7316 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7317 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7318 if (!Add || Add->getNumOperands() != 2) return nullptr; 7319 7320 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0)); 7321 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue())) 7322 return nullptr; 7323 7324 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7325 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr; 7326 7327 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0)); 7328 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue())) 7329 return nullptr; 7330 7331 return AddRHS->getOperand(1); 7332 } 7333 7334 7335 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7336 template<typename MaxExprType> 7337 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7338 const SCEV *Candidate) { 7339 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7340 if (!MaxExpr) return false; 7341 7342 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7343 return It != MaxExpr->op_end(); 7344 } 7345 7346 7347 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7348 template<typename MaxExprType> 7349 static bool IsMinConsistingOf(ScalarEvolution &SE, 7350 const SCEV *MaybeMinExpr, 7351 const SCEV *Candidate) { 7352 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7353 if (!MaybeMaxExpr) 7354 return false; 7355 7356 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7357 } 7358 7359 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7360 ICmpInst::Predicate Pred, 7361 const SCEV *LHS, const SCEV *RHS) { 7362 7363 // If both sides are affine addrecs for the same loop, with equal 7364 // steps, and we know the recurrences don't wrap, then we only 7365 // need to check the predicate on the starting values. 7366 7367 if (!ICmpInst::isRelational(Pred)) 7368 return false; 7369 7370 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7371 if (!LAR) 7372 return false; 7373 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7374 if (!RAR) 7375 return false; 7376 if (LAR->getLoop() != RAR->getLoop()) 7377 return false; 7378 if (!LAR->isAffine() || !RAR->isAffine()) 7379 return false; 7380 7381 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 7382 return false; 7383 7384 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 7385 SCEV::FlagNSW : SCEV::FlagNUW; 7386 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 7387 return false; 7388 7389 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 7390 } 7391 7392 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7393 /// expression? 7394 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7395 ICmpInst::Predicate Pred, 7396 const SCEV *LHS, const SCEV *RHS) { 7397 switch (Pred) { 7398 default: 7399 return false; 7400 7401 case ICmpInst::ICMP_SGE: 7402 std::swap(LHS, RHS); 7403 // fall through 7404 case ICmpInst::ICMP_SLE: 7405 return 7406 // min(A, ...) <= A 7407 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7408 // A <= max(A, ...) 7409 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7410 7411 case ICmpInst::ICMP_UGE: 7412 std::swap(LHS, RHS); 7413 // fall through 7414 case ICmpInst::ICMP_ULE: 7415 return 7416 // min(A, ...) <= A 7417 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7418 // A <= max(A, ...) 7419 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7420 } 7421 7422 llvm_unreachable("covered switch fell through?!"); 7423 } 7424 7425 /// isImpliedCondOperandsHelper - Test whether the condition described by 7426 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7427 /// FoundLHS, and FoundRHS is true. 7428 bool 7429 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7430 const SCEV *LHS, const SCEV *RHS, 7431 const SCEV *FoundLHS, 7432 const SCEV *FoundRHS) { 7433 auto IsKnownPredicateFull = 7434 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7435 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7436 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 7437 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS); 7438 }; 7439 7440 switch (Pred) { 7441 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7442 case ICmpInst::ICMP_EQ: 7443 case ICmpInst::ICMP_NE: 7444 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7445 return true; 7446 break; 7447 case ICmpInst::ICMP_SLT: 7448 case ICmpInst::ICMP_SLE: 7449 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7450 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7451 return true; 7452 break; 7453 case ICmpInst::ICMP_SGT: 7454 case ICmpInst::ICMP_SGE: 7455 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7456 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7457 return true; 7458 break; 7459 case ICmpInst::ICMP_ULT: 7460 case ICmpInst::ICMP_ULE: 7461 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7462 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7463 return true; 7464 break; 7465 case ICmpInst::ICMP_UGT: 7466 case ICmpInst::ICMP_UGE: 7467 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7468 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7469 return true; 7470 break; 7471 } 7472 7473 return false; 7474 } 7475 7476 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7477 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7478 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7479 const SCEV *LHS, 7480 const SCEV *RHS, 7481 const SCEV *FoundLHS, 7482 const SCEV *FoundRHS) { 7483 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7484 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7485 // reduce the compile time impact of this optimization. 7486 return false; 7487 7488 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7489 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7490 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7491 return false; 7492 7493 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7494 7495 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7496 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7497 ConstantRange FoundLHSRange = 7498 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7499 7500 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7501 // for `LHS`: 7502 APInt Addend = 7503 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7504 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7505 7506 // We can also compute the range of values for `LHS` that satisfy the 7507 // consequent, "`LHS` `Pred` `RHS`": 7508 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7509 ConstantRange SatisfyingLHSRange = 7510 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7511 7512 // The antecedent implies the consequent if every value of `LHS` that 7513 // satisfies the antecedent also satisfies the consequent. 7514 return SatisfyingLHSRange.contains(LHSRange); 7515 } 7516 7517 // Verify if an linear IV with positive stride can overflow when in a 7518 // less-than comparison, knowing the invariant term of the comparison, the 7519 // stride and the knowledge of NSW/NUW flags on the recurrence. 7520 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7521 bool IsSigned, bool NoWrap) { 7522 if (NoWrap) return false; 7523 7524 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7525 const SCEV *One = getConstant(Stride->getType(), 1); 7526 7527 if (IsSigned) { 7528 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7529 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7530 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7531 .getSignedMax(); 7532 7533 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7534 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7535 } 7536 7537 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7538 APInt MaxValue = APInt::getMaxValue(BitWidth); 7539 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7540 .getUnsignedMax(); 7541 7542 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7543 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7544 } 7545 7546 // Verify if an linear IV with negative stride can overflow when in a 7547 // greater-than comparison, knowing the invariant term of the comparison, 7548 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7549 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7550 bool IsSigned, bool NoWrap) { 7551 if (NoWrap) return false; 7552 7553 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7554 const SCEV *One = getConstant(Stride->getType(), 1); 7555 7556 if (IsSigned) { 7557 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7558 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7559 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7560 .getSignedMax(); 7561 7562 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7563 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7564 } 7565 7566 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 7567 APInt MinValue = APInt::getMinValue(BitWidth); 7568 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7569 .getUnsignedMax(); 7570 7571 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 7572 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 7573 } 7574 7575 // Compute the backedge taken count knowing the interval difference, the 7576 // stride and presence of the equality in the comparison. 7577 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 7578 bool Equality) { 7579 const SCEV *One = getConstant(Step->getType(), 1); 7580 Delta = Equality ? getAddExpr(Delta, Step) 7581 : getAddExpr(Delta, getMinusSCEV(Step, One)); 7582 return getUDivExpr(Delta, Step); 7583 } 7584 7585 /// HowManyLessThans - Return the number of times a backedge containing the 7586 /// specified less-than comparison will execute. If not computable, return 7587 /// CouldNotCompute. 7588 /// 7589 /// @param ControlsExit is true when the LHS < RHS condition directly controls 7590 /// the branch (loops exits only if condition is true). In this case, we can use 7591 /// NoWrapFlags to skip overflow checks. 7592 ScalarEvolution::ExitLimit 7593 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 7594 const Loop *L, bool IsSigned, 7595 bool ControlsExit) { 7596 // We handle only IV < Invariant 7597 if (!isLoopInvariant(RHS, L)) 7598 return getCouldNotCompute(); 7599 7600 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7601 7602 // Avoid weird loops 7603 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7604 return getCouldNotCompute(); 7605 7606 bool NoWrap = ControlsExit && 7607 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7608 7609 const SCEV *Stride = IV->getStepRecurrence(*this); 7610 7611 // Avoid negative or zero stride values 7612 if (!isKnownPositive(Stride)) 7613 return getCouldNotCompute(); 7614 7615 // Avoid proven overflow cases: this will ensure that the backedge taken count 7616 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7617 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7618 // behaviors like the case of C language. 7619 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 7620 return getCouldNotCompute(); 7621 7622 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 7623 : ICmpInst::ICMP_ULT; 7624 const SCEV *Start = IV->getStart(); 7625 const SCEV *End = RHS; 7626 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 7627 const SCEV *Diff = getMinusSCEV(RHS, Start); 7628 // If we have NoWrap set, then we can assume that the increment won't 7629 // overflow, in which case if RHS - Start is a constant, we don't need to 7630 // do a max operation since we can just figure it out statically 7631 if (NoWrap && isa<SCEVConstant>(Diff)) { 7632 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7633 if (D.isNegative()) 7634 End = Start; 7635 } else 7636 End = IsSigned ? getSMaxExpr(RHS, Start) 7637 : getUMaxExpr(RHS, Start); 7638 } 7639 7640 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 7641 7642 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 7643 : getUnsignedRange(Start).getUnsignedMin(); 7644 7645 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7646 : getUnsignedRange(Stride).getUnsignedMin(); 7647 7648 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7649 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 7650 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 7651 7652 // Although End can be a MAX expression we estimate MaxEnd considering only 7653 // the case End = RHS. This is safe because in the other case (End - Start) 7654 // is zero, leading to a zero maximum backedge taken count. 7655 APInt MaxEnd = 7656 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 7657 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 7658 7659 const SCEV *MaxBECount; 7660 if (isa<SCEVConstant>(BECount)) 7661 MaxBECount = BECount; 7662 else 7663 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 7664 getConstant(MinStride), false); 7665 7666 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7667 MaxBECount = BECount; 7668 7669 return ExitLimit(BECount, MaxBECount); 7670 } 7671 7672 ScalarEvolution::ExitLimit 7673 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 7674 const Loop *L, bool IsSigned, 7675 bool ControlsExit) { 7676 // We handle only IV > Invariant 7677 if (!isLoopInvariant(RHS, L)) 7678 return getCouldNotCompute(); 7679 7680 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7681 7682 // Avoid weird loops 7683 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7684 return getCouldNotCompute(); 7685 7686 bool NoWrap = ControlsExit && 7687 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7688 7689 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 7690 7691 // Avoid negative or zero stride values 7692 if (!isKnownPositive(Stride)) 7693 return getCouldNotCompute(); 7694 7695 // Avoid proven overflow cases: this will ensure that the backedge taken count 7696 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7697 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7698 // behaviors like the case of C language. 7699 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 7700 return getCouldNotCompute(); 7701 7702 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 7703 : ICmpInst::ICMP_UGT; 7704 7705 const SCEV *Start = IV->getStart(); 7706 const SCEV *End = RHS; 7707 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 7708 const SCEV *Diff = getMinusSCEV(RHS, Start); 7709 // If we have NoWrap set, then we can assume that the increment won't 7710 // overflow, in which case if RHS - Start is a constant, we don't need to 7711 // do a max operation since we can just figure it out statically 7712 if (NoWrap && isa<SCEVConstant>(Diff)) { 7713 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7714 if (!D.isNegative()) 7715 End = Start; 7716 } else 7717 End = IsSigned ? getSMinExpr(RHS, Start) 7718 : getUMinExpr(RHS, Start); 7719 } 7720 7721 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 7722 7723 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 7724 : getUnsignedRange(Start).getUnsignedMax(); 7725 7726 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7727 : getUnsignedRange(Stride).getUnsignedMin(); 7728 7729 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7730 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 7731 : APInt::getMinValue(BitWidth) + (MinStride - 1); 7732 7733 // Although End can be a MIN expression we estimate MinEnd considering only 7734 // the case End = RHS. This is safe because in the other case (Start - End) 7735 // is zero, leading to a zero maximum backedge taken count. 7736 APInt MinEnd = 7737 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 7738 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 7739 7740 7741 const SCEV *MaxBECount = getCouldNotCompute(); 7742 if (isa<SCEVConstant>(BECount)) 7743 MaxBECount = BECount; 7744 else 7745 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 7746 getConstant(MinStride), false); 7747 7748 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7749 MaxBECount = BECount; 7750 7751 return ExitLimit(BECount, MaxBECount); 7752 } 7753 7754 /// getNumIterationsInRange - Return the number of iterations of this loop that 7755 /// produce values in the specified constant range. Another way of looking at 7756 /// this is that it returns the first iteration number where the value is not in 7757 /// the condition, thus computing the exit count. If the iteration count can't 7758 /// be computed, an instance of SCEVCouldNotCompute is returned. 7759 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 7760 ScalarEvolution &SE) const { 7761 if (Range.isFullSet()) // Infinite loop. 7762 return SE.getCouldNotCompute(); 7763 7764 // If the start is a non-zero constant, shift the range to simplify things. 7765 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 7766 if (!SC->getValue()->isZero()) { 7767 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 7768 Operands[0] = SE.getConstant(SC->getType(), 0); 7769 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 7770 getNoWrapFlags(FlagNW)); 7771 if (const SCEVAddRecExpr *ShiftedAddRec = 7772 dyn_cast<SCEVAddRecExpr>(Shifted)) 7773 return ShiftedAddRec->getNumIterationsInRange( 7774 Range.subtract(SC->getValue()->getValue()), SE); 7775 // This is strange and shouldn't happen. 7776 return SE.getCouldNotCompute(); 7777 } 7778 7779 // The only time we can solve this is when we have all constant indices. 7780 // Otherwise, we cannot determine the overflow conditions. 7781 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 7782 if (!isa<SCEVConstant>(getOperand(i))) 7783 return SE.getCouldNotCompute(); 7784 7785 7786 // Okay at this point we know that all elements of the chrec are constants and 7787 // that the start element is zero. 7788 7789 // First check to see if the range contains zero. If not, the first 7790 // iteration exits. 7791 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 7792 if (!Range.contains(APInt(BitWidth, 0))) 7793 return SE.getConstant(getType(), 0); 7794 7795 if (isAffine()) { 7796 // If this is an affine expression then we have this situation: 7797 // Solve {0,+,A} in Range === Ax in Range 7798 7799 // We know that zero is in the range. If A is positive then we know that 7800 // the upper value of the range must be the first possible exit value. 7801 // If A is negative then the lower of the range is the last possible loop 7802 // value. Also note that we already checked for a full range. 7803 APInt One(BitWidth,1); 7804 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 7805 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 7806 7807 // The exit value should be (End+A)/A. 7808 APInt ExitVal = (End + A).udiv(A); 7809 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 7810 7811 // Evaluate at the exit value. If we really did fall out of the valid 7812 // range, then we computed our trip count, otherwise wrap around or other 7813 // things must have happened. 7814 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 7815 if (Range.contains(Val->getValue())) 7816 return SE.getCouldNotCompute(); // Something strange happened 7817 7818 // Ensure that the previous value is in the range. This is a sanity check. 7819 assert(Range.contains( 7820 EvaluateConstantChrecAtConstant(this, 7821 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 7822 "Linear scev computation is off in a bad way!"); 7823 return SE.getConstant(ExitValue); 7824 } else if (isQuadratic()) { 7825 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 7826 // quadratic equation to solve it. To do this, we must frame our problem in 7827 // terms of figuring out when zero is crossed, instead of when 7828 // Range.getUpper() is crossed. 7829 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 7830 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 7831 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 7832 // getNoWrapFlags(FlagNW) 7833 FlagAnyWrap); 7834 7835 // Next, solve the constructed addrec 7836 std::pair<const SCEV *,const SCEV *> Roots = 7837 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 7838 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 7839 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 7840 if (R1) { 7841 // Pick the smallest positive root value. 7842 if (ConstantInt *CB = 7843 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 7844 R1->getValue(), R2->getValue()))) { 7845 if (!CB->getZExtValue()) 7846 std::swap(R1, R2); // R1 is the minimum root now. 7847 7848 // Make sure the root is not off by one. The returned iteration should 7849 // not be in the range, but the previous one should be. When solving 7850 // for "X*X < 5", for example, we should not return a root of 2. 7851 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 7852 R1->getValue(), 7853 SE); 7854 if (Range.contains(R1Val->getValue())) { 7855 // The next iteration must be out of the range... 7856 ConstantInt *NextVal = 7857 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 7858 7859 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 7860 if (!Range.contains(R1Val->getValue())) 7861 return SE.getConstant(NextVal); 7862 return SE.getCouldNotCompute(); // Something strange happened 7863 } 7864 7865 // If R1 was not in the range, then it is a good return value. Make 7866 // sure that R1-1 WAS in the range though, just in case. 7867 ConstantInt *NextVal = 7868 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 7869 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 7870 if (Range.contains(R1Val->getValue())) 7871 return R1; 7872 return SE.getCouldNotCompute(); // Something strange happened 7873 } 7874 } 7875 } 7876 7877 return SE.getCouldNotCompute(); 7878 } 7879 7880 namespace { 7881 struct FindUndefs { 7882 bool Found; 7883 FindUndefs() : Found(false) {} 7884 7885 bool follow(const SCEV *S) { 7886 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 7887 if (isa<UndefValue>(C->getValue())) 7888 Found = true; 7889 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 7890 if (isa<UndefValue>(C->getValue())) 7891 Found = true; 7892 } 7893 7894 // Keep looking if we haven't found it yet. 7895 return !Found; 7896 } 7897 bool isDone() const { 7898 // Stop recursion if we have found an undef. 7899 return Found; 7900 } 7901 }; 7902 } 7903 7904 // Return true when S contains at least an undef value. 7905 static inline bool 7906 containsUndefs(const SCEV *S) { 7907 FindUndefs F; 7908 SCEVTraversal<FindUndefs> ST(F); 7909 ST.visitAll(S); 7910 7911 return F.Found; 7912 } 7913 7914 namespace { 7915 // Collect all steps of SCEV expressions. 7916 struct SCEVCollectStrides { 7917 ScalarEvolution &SE; 7918 SmallVectorImpl<const SCEV *> &Strides; 7919 7920 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 7921 : SE(SE), Strides(S) {} 7922 7923 bool follow(const SCEV *S) { 7924 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 7925 Strides.push_back(AR->getStepRecurrence(SE)); 7926 return true; 7927 } 7928 bool isDone() const { return false; } 7929 }; 7930 7931 // Collect all SCEVUnknown and SCEVMulExpr expressions. 7932 struct SCEVCollectTerms { 7933 SmallVectorImpl<const SCEV *> &Terms; 7934 7935 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 7936 : Terms(T) {} 7937 7938 bool follow(const SCEV *S) { 7939 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 7940 if (!containsUndefs(S)) 7941 Terms.push_back(S); 7942 7943 // Stop recursion: once we collected a term, do not walk its operands. 7944 return false; 7945 } 7946 7947 // Keep looking. 7948 return true; 7949 } 7950 bool isDone() const { return false; } 7951 }; 7952 } 7953 7954 /// Find parametric terms in this SCEVAddRecExpr. 7955 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 7956 SmallVectorImpl<const SCEV *> &Terms) { 7957 SmallVector<const SCEV *, 4> Strides; 7958 SCEVCollectStrides StrideCollector(*this, Strides); 7959 visitAll(Expr, StrideCollector); 7960 7961 DEBUG({ 7962 dbgs() << "Strides:\n"; 7963 for (const SCEV *S : Strides) 7964 dbgs() << *S << "\n"; 7965 }); 7966 7967 for (const SCEV *S : Strides) { 7968 SCEVCollectTerms TermCollector(Terms); 7969 visitAll(S, TermCollector); 7970 } 7971 7972 DEBUG({ 7973 dbgs() << "Terms:\n"; 7974 for (const SCEV *T : Terms) 7975 dbgs() << *T << "\n"; 7976 }); 7977 } 7978 7979 static bool findArrayDimensionsRec(ScalarEvolution &SE, 7980 SmallVectorImpl<const SCEV *> &Terms, 7981 SmallVectorImpl<const SCEV *> &Sizes) { 7982 int Last = Terms.size() - 1; 7983 const SCEV *Step = Terms[Last]; 7984 7985 // End of recursion. 7986 if (Last == 0) { 7987 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 7988 SmallVector<const SCEV *, 2> Qs; 7989 for (const SCEV *Op : M->operands()) 7990 if (!isa<SCEVConstant>(Op)) 7991 Qs.push_back(Op); 7992 7993 Step = SE.getMulExpr(Qs); 7994 } 7995 7996 Sizes.push_back(Step); 7997 return true; 7998 } 7999 8000 for (const SCEV *&Term : Terms) { 8001 // Normalize the terms before the next call to findArrayDimensionsRec. 8002 const SCEV *Q, *R; 8003 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8004 8005 // Bail out when GCD does not evenly divide one of the terms. 8006 if (!R->isZero()) 8007 return false; 8008 8009 Term = Q; 8010 } 8011 8012 // Remove all SCEVConstants. 8013 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8014 return isa<SCEVConstant>(E); 8015 }), 8016 Terms.end()); 8017 8018 if (Terms.size() > 0) 8019 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8020 return false; 8021 8022 Sizes.push_back(Step); 8023 return true; 8024 } 8025 8026 namespace { 8027 struct FindParameter { 8028 bool FoundParameter; 8029 FindParameter() : FoundParameter(false) {} 8030 8031 bool follow(const SCEV *S) { 8032 if (isa<SCEVUnknown>(S)) { 8033 FoundParameter = true; 8034 // Stop recursion: we found a parameter. 8035 return false; 8036 } 8037 // Keep looking. 8038 return true; 8039 } 8040 bool isDone() const { 8041 // Stop recursion if we have found a parameter. 8042 return FoundParameter; 8043 } 8044 }; 8045 } 8046 8047 // Returns true when S contains at least a SCEVUnknown parameter. 8048 static inline bool 8049 containsParameters(const SCEV *S) { 8050 FindParameter F; 8051 SCEVTraversal<FindParameter> ST(F); 8052 ST.visitAll(S); 8053 8054 return F.FoundParameter; 8055 } 8056 8057 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8058 static inline bool 8059 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8060 for (const SCEV *T : Terms) 8061 if (containsParameters(T)) 8062 return true; 8063 return false; 8064 } 8065 8066 // Return the number of product terms in S. 8067 static inline int numberOfTerms(const SCEV *S) { 8068 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8069 return Expr->getNumOperands(); 8070 return 1; 8071 } 8072 8073 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8074 if (isa<SCEVConstant>(T)) 8075 return nullptr; 8076 8077 if (isa<SCEVUnknown>(T)) 8078 return T; 8079 8080 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8081 SmallVector<const SCEV *, 2> Factors; 8082 for (const SCEV *Op : M->operands()) 8083 if (!isa<SCEVConstant>(Op)) 8084 Factors.push_back(Op); 8085 8086 return SE.getMulExpr(Factors); 8087 } 8088 8089 return T; 8090 } 8091 8092 /// Return the size of an element read or written by Inst. 8093 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8094 Type *Ty; 8095 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8096 Ty = Store->getValueOperand()->getType(); 8097 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8098 Ty = Load->getType(); 8099 else 8100 return nullptr; 8101 8102 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8103 return getSizeOfExpr(ETy, Ty); 8104 } 8105 8106 /// Second step of delinearization: compute the array dimensions Sizes from the 8107 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8108 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8109 SmallVectorImpl<const SCEV *> &Sizes, 8110 const SCEV *ElementSize) const { 8111 8112 if (Terms.size() < 1 || !ElementSize) 8113 return; 8114 8115 // Early return when Terms do not contain parameters: we do not delinearize 8116 // non parametric SCEVs. 8117 if (!containsParameters(Terms)) 8118 return; 8119 8120 DEBUG({ 8121 dbgs() << "Terms:\n"; 8122 for (const SCEV *T : Terms) 8123 dbgs() << *T << "\n"; 8124 }); 8125 8126 // Remove duplicates. 8127 std::sort(Terms.begin(), Terms.end()); 8128 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8129 8130 // Put larger terms first. 8131 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8132 return numberOfTerms(LHS) > numberOfTerms(RHS); 8133 }); 8134 8135 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8136 8137 // Divide all terms by the element size. 8138 for (const SCEV *&Term : Terms) { 8139 const SCEV *Q, *R; 8140 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8141 Term = Q; 8142 } 8143 8144 SmallVector<const SCEV *, 4> NewTerms; 8145 8146 // Remove constant factors. 8147 for (const SCEV *T : Terms) 8148 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8149 NewTerms.push_back(NewT); 8150 8151 DEBUG({ 8152 dbgs() << "Terms after sorting:\n"; 8153 for (const SCEV *T : NewTerms) 8154 dbgs() << *T << "\n"; 8155 }); 8156 8157 if (NewTerms.empty() || 8158 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8159 Sizes.clear(); 8160 return; 8161 } 8162 8163 // The last element to be pushed into Sizes is the size of an element. 8164 Sizes.push_back(ElementSize); 8165 8166 DEBUG({ 8167 dbgs() << "Sizes:\n"; 8168 for (const SCEV *S : Sizes) 8169 dbgs() << *S << "\n"; 8170 }); 8171 } 8172 8173 /// Third step of delinearization: compute the access functions for the 8174 /// Subscripts based on the dimensions in Sizes. 8175 void ScalarEvolution::computeAccessFunctions( 8176 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8177 SmallVectorImpl<const SCEV *> &Sizes) { 8178 8179 // Early exit in case this SCEV is not an affine multivariate function. 8180 if (Sizes.empty()) 8181 return; 8182 8183 if (auto AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8184 if (!AR->isAffine()) 8185 return; 8186 8187 const SCEV *Res = Expr; 8188 int Last = Sizes.size() - 1; 8189 for (int i = Last; i >= 0; i--) { 8190 const SCEV *Q, *R; 8191 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8192 8193 DEBUG({ 8194 dbgs() << "Res: " << *Res << "\n"; 8195 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8196 dbgs() << "Res divided by Sizes[i]:\n"; 8197 dbgs() << "Quotient: " << *Q << "\n"; 8198 dbgs() << "Remainder: " << *R << "\n"; 8199 }); 8200 8201 Res = Q; 8202 8203 // Do not record the last subscript corresponding to the size of elements in 8204 // the array. 8205 if (i == Last) { 8206 8207 // Bail out if the remainder is too complex. 8208 if (isa<SCEVAddRecExpr>(R)) { 8209 Subscripts.clear(); 8210 Sizes.clear(); 8211 return; 8212 } 8213 8214 continue; 8215 } 8216 8217 // Record the access function for the current subscript. 8218 Subscripts.push_back(R); 8219 } 8220 8221 // Also push in last position the remainder of the last division: it will be 8222 // the access function of the innermost dimension. 8223 Subscripts.push_back(Res); 8224 8225 std::reverse(Subscripts.begin(), Subscripts.end()); 8226 8227 DEBUG({ 8228 dbgs() << "Subscripts:\n"; 8229 for (const SCEV *S : Subscripts) 8230 dbgs() << *S << "\n"; 8231 }); 8232 } 8233 8234 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8235 /// sizes of an array access. Returns the remainder of the delinearization that 8236 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8237 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8238 /// expressions in the stride and base of a SCEV corresponding to the 8239 /// computation of a GCD (greatest common divisor) of base and stride. When 8240 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8241 /// 8242 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8243 /// 8244 /// void foo(long n, long m, long o, double A[n][m][o]) { 8245 /// 8246 /// for (long i = 0; i < n; i++) 8247 /// for (long j = 0; j < m; j++) 8248 /// for (long k = 0; k < o; k++) 8249 /// A[i][j][k] = 1.0; 8250 /// } 8251 /// 8252 /// the delinearization input is the following AddRec SCEV: 8253 /// 8254 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8255 /// 8256 /// From this SCEV, we are able to say that the base offset of the access is %A 8257 /// because it appears as an offset that does not divide any of the strides in 8258 /// the loops: 8259 /// 8260 /// CHECK: Base offset: %A 8261 /// 8262 /// and then SCEV->delinearize determines the size of some of the dimensions of 8263 /// the array as these are the multiples by which the strides are happening: 8264 /// 8265 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8266 /// 8267 /// Note that the outermost dimension remains of UnknownSize because there are 8268 /// no strides that would help identifying the size of the last dimension: when 8269 /// the array has been statically allocated, one could compute the size of that 8270 /// dimension by dividing the overall size of the array by the size of the known 8271 /// dimensions: %m * %o * 8. 8272 /// 8273 /// Finally delinearize provides the access functions for the array reference 8274 /// that does correspond to A[i][j][k] of the above C testcase: 8275 /// 8276 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8277 /// 8278 /// The testcases are checking the output of a function pass: 8279 /// DelinearizationPass that walks through all loads and stores of a function 8280 /// asking for the SCEV of the memory access with respect to all enclosing 8281 /// loops, calling SCEV->delinearize on that and printing the results. 8282 8283 void ScalarEvolution::delinearize(const SCEV *Expr, 8284 SmallVectorImpl<const SCEV *> &Subscripts, 8285 SmallVectorImpl<const SCEV *> &Sizes, 8286 const SCEV *ElementSize) { 8287 // First step: collect parametric terms. 8288 SmallVector<const SCEV *, 4> Terms; 8289 collectParametricTerms(Expr, Terms); 8290 8291 if (Terms.empty()) 8292 return; 8293 8294 // Second step: find subscript sizes. 8295 findArrayDimensions(Terms, Sizes, ElementSize); 8296 8297 if (Sizes.empty()) 8298 return; 8299 8300 // Third step: compute the access functions for each subscript. 8301 computeAccessFunctions(Expr, Subscripts, Sizes); 8302 8303 if (Subscripts.empty()) 8304 return; 8305 8306 DEBUG({ 8307 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8308 dbgs() << "ArrayDecl[UnknownSize]"; 8309 for (const SCEV *S : Sizes) 8310 dbgs() << "[" << *S << "]"; 8311 8312 dbgs() << "\nArrayRef"; 8313 for (const SCEV *S : Subscripts) 8314 dbgs() << "[" << *S << "]"; 8315 dbgs() << "\n"; 8316 }); 8317 } 8318 8319 //===----------------------------------------------------------------------===// 8320 // SCEVCallbackVH Class Implementation 8321 //===----------------------------------------------------------------------===// 8322 8323 void ScalarEvolution::SCEVCallbackVH::deleted() { 8324 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8325 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8326 SE->ConstantEvolutionLoopExitValue.erase(PN); 8327 SE->ValueExprMap.erase(getValPtr()); 8328 // this now dangles! 8329 } 8330 8331 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8332 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8333 8334 // Forget all the expressions associated with users of the old value, 8335 // so that future queries will recompute the expressions using the new 8336 // value. 8337 Value *Old = getValPtr(); 8338 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8339 SmallPtrSet<User *, 8> Visited; 8340 while (!Worklist.empty()) { 8341 User *U = Worklist.pop_back_val(); 8342 // Deleting the Old value will cause this to dangle. Postpone 8343 // that until everything else is done. 8344 if (U == Old) 8345 continue; 8346 if (!Visited.insert(U).second) 8347 continue; 8348 if (PHINode *PN = dyn_cast<PHINode>(U)) 8349 SE->ConstantEvolutionLoopExitValue.erase(PN); 8350 SE->ValueExprMap.erase(U); 8351 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8352 } 8353 // Delete the Old value. 8354 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8355 SE->ConstantEvolutionLoopExitValue.erase(PN); 8356 SE->ValueExprMap.erase(Old); 8357 // this now dangles! 8358 } 8359 8360 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8361 : CallbackVH(V), SE(se) {} 8362 8363 //===----------------------------------------------------------------------===// 8364 // ScalarEvolution Class Implementation 8365 //===----------------------------------------------------------------------===// 8366 8367 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 8368 AssumptionCache &AC, DominatorTree &DT, 8369 LoopInfo &LI) 8370 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 8371 CouldNotCompute(new SCEVCouldNotCompute()), 8372 WalkingBEDominatingConds(false), ValuesAtScopes(64), LoopDispositions(64), 8373 BlockDispositions(64), FirstUnknown(nullptr) {} 8374 8375 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 8376 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 8377 CouldNotCompute(std::move(Arg.CouldNotCompute)), 8378 ValueExprMap(std::move(Arg.ValueExprMap)), 8379 WalkingBEDominatingConds(false), 8380 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 8381 ConstantEvolutionLoopExitValue( 8382 std::move(Arg.ConstantEvolutionLoopExitValue)), 8383 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 8384 LoopDispositions(std::move(Arg.LoopDispositions)), 8385 BlockDispositions(std::move(Arg.BlockDispositions)), 8386 UnsignedRanges(std::move(Arg.UnsignedRanges)), 8387 SignedRanges(std::move(Arg.SignedRanges)), 8388 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 8389 SCEVAllocator(std::move(Arg.SCEVAllocator)), 8390 FirstUnknown(Arg.FirstUnknown) { 8391 Arg.FirstUnknown = nullptr; 8392 } 8393 8394 ScalarEvolution::~ScalarEvolution() { 8395 // Iterate through all the SCEVUnknown instances and call their 8396 // destructors, so that they release their references to their values. 8397 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 8398 U->~SCEVUnknown(); 8399 FirstUnknown = nullptr; 8400 8401 ValueExprMap.clear(); 8402 8403 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8404 // that a loop had multiple computable exits. 8405 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8406 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 8407 I != E; ++I) { 8408 I->second.clear(); 8409 } 8410 8411 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8412 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8413 } 8414 8415 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8416 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8417 } 8418 8419 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8420 const Loop *L) { 8421 // Print all inner loops first 8422 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8423 PrintLoopInfo(OS, SE, *I); 8424 8425 OS << "Loop "; 8426 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8427 OS << ": "; 8428 8429 SmallVector<BasicBlock *, 8> ExitBlocks; 8430 L->getExitBlocks(ExitBlocks); 8431 if (ExitBlocks.size() != 1) 8432 OS << "<multiple exits> "; 8433 8434 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8435 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8436 } else { 8437 OS << "Unpredictable backedge-taken count. "; 8438 } 8439 8440 OS << "\n" 8441 "Loop "; 8442 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8443 OS << ": "; 8444 8445 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8446 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8447 } else { 8448 OS << "Unpredictable max backedge-taken count. "; 8449 } 8450 8451 OS << "\n"; 8452 } 8453 8454 void ScalarEvolution::print(raw_ostream &OS) const { 8455 // ScalarEvolution's implementation of the print method is to print 8456 // out SCEV values of all instructions that are interesting. Doing 8457 // this potentially causes it to create new SCEV objects though, 8458 // which technically conflicts with the const qualifier. This isn't 8459 // observable from outside the class though, so casting away the 8460 // const isn't dangerous. 8461 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8462 8463 OS << "Classifying expressions for: "; 8464 F.printAsOperand(OS, /*PrintType=*/false); 8465 OS << "\n"; 8466 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 8467 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 8468 OS << *I << '\n'; 8469 OS << " --> "; 8470 const SCEV *SV = SE.getSCEV(&*I); 8471 SV->print(OS); 8472 if (!isa<SCEVCouldNotCompute>(SV)) { 8473 OS << " U: "; 8474 SE.getUnsignedRange(SV).print(OS); 8475 OS << " S: "; 8476 SE.getSignedRange(SV).print(OS); 8477 } 8478 8479 const Loop *L = LI.getLoopFor((*I).getParent()); 8480 8481 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8482 if (AtUse != SV) { 8483 OS << " --> "; 8484 AtUse->print(OS); 8485 if (!isa<SCEVCouldNotCompute>(AtUse)) { 8486 OS << " U: "; 8487 SE.getUnsignedRange(AtUse).print(OS); 8488 OS << " S: "; 8489 SE.getSignedRange(AtUse).print(OS); 8490 } 8491 } 8492 8493 if (L) { 8494 OS << "\t\t" "Exits: "; 8495 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 8496 if (!SE.isLoopInvariant(ExitValue, L)) { 8497 OS << "<<Unknown>>"; 8498 } else { 8499 OS << *ExitValue; 8500 } 8501 } 8502 8503 OS << "\n"; 8504 } 8505 8506 OS << "Determining loop execution counts for: "; 8507 F.printAsOperand(OS, /*PrintType=*/false); 8508 OS << "\n"; 8509 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 8510 PrintLoopInfo(OS, &SE, *I); 8511 } 8512 8513 ScalarEvolution::LoopDisposition 8514 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 8515 auto &Values = LoopDispositions[S]; 8516 for (auto &V : Values) { 8517 if (V.getPointer() == L) 8518 return V.getInt(); 8519 } 8520 Values.emplace_back(L, LoopVariant); 8521 LoopDisposition D = computeLoopDisposition(S, L); 8522 auto &Values2 = LoopDispositions[S]; 8523 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8524 if (V.getPointer() == L) { 8525 V.setInt(D); 8526 break; 8527 } 8528 } 8529 return D; 8530 } 8531 8532 ScalarEvolution::LoopDisposition 8533 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 8534 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8535 case scConstant: 8536 return LoopInvariant; 8537 case scTruncate: 8538 case scZeroExtend: 8539 case scSignExtend: 8540 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 8541 case scAddRecExpr: { 8542 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8543 8544 // If L is the addrec's loop, it's computable. 8545 if (AR->getLoop() == L) 8546 return LoopComputable; 8547 8548 // Add recurrences are never invariant in the function-body (null loop). 8549 if (!L) 8550 return LoopVariant; 8551 8552 // This recurrence is variant w.r.t. L if L contains AR's loop. 8553 if (L->contains(AR->getLoop())) 8554 return LoopVariant; 8555 8556 // This recurrence is invariant w.r.t. L if AR's loop contains L. 8557 if (AR->getLoop()->contains(L)) 8558 return LoopInvariant; 8559 8560 // This recurrence is variant w.r.t. L if any of its operands 8561 // are variant. 8562 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 8563 I != E; ++I) 8564 if (!isLoopInvariant(*I, L)) 8565 return LoopVariant; 8566 8567 // Otherwise it's loop-invariant. 8568 return LoopInvariant; 8569 } 8570 case scAddExpr: 8571 case scMulExpr: 8572 case scUMaxExpr: 8573 case scSMaxExpr: { 8574 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8575 bool HasVarying = false; 8576 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8577 I != E; ++I) { 8578 LoopDisposition D = getLoopDisposition(*I, L); 8579 if (D == LoopVariant) 8580 return LoopVariant; 8581 if (D == LoopComputable) 8582 HasVarying = true; 8583 } 8584 return HasVarying ? LoopComputable : LoopInvariant; 8585 } 8586 case scUDivExpr: { 8587 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8588 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 8589 if (LD == LoopVariant) 8590 return LoopVariant; 8591 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 8592 if (RD == LoopVariant) 8593 return LoopVariant; 8594 return (LD == LoopInvariant && RD == LoopInvariant) ? 8595 LoopInvariant : LoopComputable; 8596 } 8597 case scUnknown: 8598 // All non-instruction values are loop invariant. All instructions are loop 8599 // invariant if they are not contained in the specified loop. 8600 // Instructions are never considered invariant in the function body 8601 // (null loop) because they are defined within the "loop". 8602 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 8603 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 8604 return LoopInvariant; 8605 case scCouldNotCompute: 8606 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8607 } 8608 llvm_unreachable("Unknown SCEV kind!"); 8609 } 8610 8611 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 8612 return getLoopDisposition(S, L) == LoopInvariant; 8613 } 8614 8615 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 8616 return getLoopDisposition(S, L) == LoopComputable; 8617 } 8618 8619 ScalarEvolution::BlockDisposition 8620 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8621 auto &Values = BlockDispositions[S]; 8622 for (auto &V : Values) { 8623 if (V.getPointer() == BB) 8624 return V.getInt(); 8625 } 8626 Values.emplace_back(BB, DoesNotDominateBlock); 8627 BlockDisposition D = computeBlockDisposition(S, BB); 8628 auto &Values2 = BlockDispositions[S]; 8629 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8630 if (V.getPointer() == BB) { 8631 V.setInt(D); 8632 break; 8633 } 8634 } 8635 return D; 8636 } 8637 8638 ScalarEvolution::BlockDisposition 8639 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8640 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8641 case scConstant: 8642 return ProperlyDominatesBlock; 8643 case scTruncate: 8644 case scZeroExtend: 8645 case scSignExtend: 8646 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 8647 case scAddRecExpr: { 8648 // This uses a "dominates" query instead of "properly dominates" query 8649 // to test for proper dominance too, because the instruction which 8650 // produces the addrec's value is a PHI, and a PHI effectively properly 8651 // dominates its entire containing block. 8652 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8653 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 8654 return DoesNotDominateBlock; 8655 } 8656 // FALL THROUGH into SCEVNAryExpr handling. 8657 case scAddExpr: 8658 case scMulExpr: 8659 case scUMaxExpr: 8660 case scSMaxExpr: { 8661 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8662 bool Proper = true; 8663 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8664 I != E; ++I) { 8665 BlockDisposition D = getBlockDisposition(*I, BB); 8666 if (D == DoesNotDominateBlock) 8667 return DoesNotDominateBlock; 8668 if (D == DominatesBlock) 8669 Proper = false; 8670 } 8671 return Proper ? ProperlyDominatesBlock : DominatesBlock; 8672 } 8673 case scUDivExpr: { 8674 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8675 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 8676 BlockDisposition LD = getBlockDisposition(LHS, BB); 8677 if (LD == DoesNotDominateBlock) 8678 return DoesNotDominateBlock; 8679 BlockDisposition RD = getBlockDisposition(RHS, BB); 8680 if (RD == DoesNotDominateBlock) 8681 return DoesNotDominateBlock; 8682 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 8683 ProperlyDominatesBlock : DominatesBlock; 8684 } 8685 case scUnknown: 8686 if (Instruction *I = 8687 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 8688 if (I->getParent() == BB) 8689 return DominatesBlock; 8690 if (DT.properlyDominates(I->getParent(), BB)) 8691 return ProperlyDominatesBlock; 8692 return DoesNotDominateBlock; 8693 } 8694 return ProperlyDominatesBlock; 8695 case scCouldNotCompute: 8696 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8697 } 8698 llvm_unreachable("Unknown SCEV kind!"); 8699 } 8700 8701 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 8702 return getBlockDisposition(S, BB) >= DominatesBlock; 8703 } 8704 8705 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 8706 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 8707 } 8708 8709 namespace { 8710 // Search for a SCEV expression node within an expression tree. 8711 // Implements SCEVTraversal::Visitor. 8712 struct SCEVSearch { 8713 const SCEV *Node; 8714 bool IsFound; 8715 8716 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 8717 8718 bool follow(const SCEV *S) { 8719 IsFound |= (S == Node); 8720 return !IsFound; 8721 } 8722 bool isDone() const { return IsFound; } 8723 }; 8724 } 8725 8726 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 8727 SCEVSearch Search(Op); 8728 visitAll(S, Search); 8729 return Search.IsFound; 8730 } 8731 8732 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 8733 ValuesAtScopes.erase(S); 8734 LoopDispositions.erase(S); 8735 BlockDispositions.erase(S); 8736 UnsignedRanges.erase(S); 8737 SignedRanges.erase(S); 8738 8739 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8740 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 8741 BackedgeTakenInfo &BEInfo = I->second; 8742 if (BEInfo.hasOperand(S, this)) { 8743 BEInfo.clear(); 8744 BackedgeTakenCounts.erase(I++); 8745 } 8746 else 8747 ++I; 8748 } 8749 } 8750 8751 typedef DenseMap<const Loop *, std::string> VerifyMap; 8752 8753 /// replaceSubString - Replaces all occurrences of From in Str with To. 8754 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 8755 size_t Pos = 0; 8756 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 8757 Str.replace(Pos, From.size(), To.data(), To.size()); 8758 Pos += To.size(); 8759 } 8760 } 8761 8762 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 8763 static void 8764 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 8765 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 8766 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 8767 8768 std::string &S = Map[L]; 8769 if (S.empty()) { 8770 raw_string_ostream OS(S); 8771 SE.getBackedgeTakenCount(L)->print(OS); 8772 8773 // false and 0 are semantically equivalent. This can happen in dead loops. 8774 replaceSubString(OS.str(), "false", "0"); 8775 // Remove wrap flags, their use in SCEV is highly fragile. 8776 // FIXME: Remove this when SCEV gets smarter about them. 8777 replaceSubString(OS.str(), "<nw>", ""); 8778 replaceSubString(OS.str(), "<nsw>", ""); 8779 replaceSubString(OS.str(), "<nuw>", ""); 8780 } 8781 } 8782 } 8783 8784 void ScalarEvolution::verify() const { 8785 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8786 8787 // Gather stringified backedge taken counts for all loops using SCEV's caches. 8788 // FIXME: It would be much better to store actual values instead of strings, 8789 // but SCEV pointers will change if we drop the caches. 8790 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 8791 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 8792 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 8793 8794 // Gather stringified backedge taken counts for all loops using a fresh 8795 // ScalarEvolution object. 8796 ScalarEvolution SE2(F, TLI, AC, DT, LI); 8797 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 8798 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 8799 8800 // Now compare whether they're the same with and without caches. This allows 8801 // verifying that no pass changed the cache. 8802 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 8803 "New loops suddenly appeared!"); 8804 8805 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 8806 OldE = BackedgeDumpsOld.end(), 8807 NewI = BackedgeDumpsNew.begin(); 8808 OldI != OldE; ++OldI, ++NewI) { 8809 assert(OldI->first == NewI->first && "Loop order changed!"); 8810 8811 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 8812 // changes. 8813 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 8814 // means that a pass is buggy or SCEV has to learn a new pattern but is 8815 // usually not harmful. 8816 if (OldI->second != NewI->second && 8817 OldI->second.find("undef") == std::string::npos && 8818 NewI->second.find("undef") == std::string::npos && 8819 OldI->second != "***COULDNOTCOMPUTE***" && 8820 NewI->second != "***COULDNOTCOMPUTE***") { 8821 dbgs() << "SCEVValidator: SCEV for loop '" 8822 << OldI->first->getHeader()->getName() 8823 << "' changed from '" << OldI->second 8824 << "' to '" << NewI->second << "'!\n"; 8825 std::abort(); 8826 } 8827 } 8828 8829 // TODO: Verify more things. 8830 } 8831 8832 char ScalarEvolutionAnalysis::PassID; 8833 8834 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 8835 AnalysisManager<Function> *AM) { 8836 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 8837 AM->getResult<AssumptionAnalysis>(F), 8838 AM->getResult<DominatorTreeAnalysis>(F), 8839 AM->getResult<LoopAnalysis>(F)); 8840 } 8841 8842 PreservedAnalyses 8843 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 8844 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 8845 return PreservedAnalyses::all(); 8846 } 8847 8848 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 8849 "Scalar Evolution Analysis", false, true) 8850 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 8851 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 8852 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 8853 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 8854 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 8855 "Scalar Evolution Analysis", false, true) 8856 char ScalarEvolutionWrapperPass::ID = 0; 8857 8858 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 8859 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 8860 } 8861 8862 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 8863 SE.reset(new ScalarEvolution( 8864 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 8865 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 8866 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 8867 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 8868 return false; 8869 } 8870 8871 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 8872 8873 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 8874 SE->print(OS); 8875 } 8876 8877 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 8878 if (!VerifySCEV) 8879 return; 8880 8881 SE->verify(); 8882 } 8883 8884 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 8885 AU.setPreservesAll(); 8886 AU.addRequiredTransitive<AssumptionCacheTracker>(); 8887 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 8888 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 8889 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 8890 } 8891