1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/LoopInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Assembly/Writer.h" 75 #include "llvm/Target/TargetData.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/ConstantRange.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/GetElementPtrTypeIterator.h" 81 #include "llvm/Support/InstIterator.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/ADT/Statistic.h" 85 #include "llvm/ADT/STLExtras.h" 86 #include "llvm/ADT/SmallPtrSet.h" 87 #include <algorithm> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant " 103 "derived loop"), 104 cl::init(100)); 105 106 static RegisterPass<ScalarEvolution> 107 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 118 SCEV::~SCEV() {} 119 120 void SCEV::dump() const { 121 print(errs()); 122 errs() << '\n'; 123 } 124 125 bool SCEV::isZero() const { 126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 127 return SC->getValue()->isZero(); 128 return false; 129 } 130 131 bool SCEV::isOne() const { 132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 133 return SC->getValue()->isOne(); 134 return false; 135 } 136 137 bool SCEV::isAllOnesValue() const { 138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 139 return SC->getValue()->isAllOnesValue(); 140 return false; 141 } 142 143 SCEVCouldNotCompute::SCEVCouldNotCompute() : 144 SCEV(FoldingSetNodeID(), scCouldNotCompute) {} 145 146 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 148 return false; 149 } 150 151 const Type *SCEVCouldNotCompute::getType() const { 152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 153 return 0; 154 } 155 156 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 158 return false; 159 } 160 161 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const { 162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 163 return false; 164 } 165 166 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 167 OS << "***COULDNOTCOMPUTE***"; 168 } 169 170 bool SCEVCouldNotCompute::classof(const SCEV *S) { 171 return S->getSCEVType() == scCouldNotCompute; 172 } 173 174 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 175 FoldingSetNodeID ID; 176 ID.AddInteger(scConstant); 177 ID.AddPointer(V); 178 void *IP = 0; 179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 180 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>(); 181 new (S) SCEVConstant(ID, V); 182 UniqueSCEVs.InsertNode(S, IP); 183 return S; 184 } 185 186 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 187 return getConstant(ConstantInt::get(getContext(), Val)); 188 } 189 190 const SCEV * 191 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 192 return getConstant( 193 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned)); 194 } 195 196 const Type *SCEVConstant::getType() const { return V->getType(); } 197 198 void SCEVConstant::print(raw_ostream &OS) const { 199 WriteAsOperand(OS, V, false); 200 } 201 202 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID, 203 unsigned SCEVTy, const SCEV *op, const Type *ty) 204 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 205 206 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 207 return Op->dominates(BB, DT); 208 } 209 210 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID, 211 const SCEV *op, const Type *ty) 212 : SCEVCastExpr(ID, scTruncate, op, ty) { 213 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 214 (Ty->isInteger() || isa<PointerType>(Ty)) && 215 "Cannot truncate non-integer value!"); 216 } 217 218 void SCEVTruncateExpr::print(raw_ostream &OS) const { 219 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 220 } 221 222 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID, 223 const SCEV *op, const Type *ty) 224 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 225 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 226 (Ty->isInteger() || isa<PointerType>(Ty)) && 227 "Cannot zero extend non-integer value!"); 228 } 229 230 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 231 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 232 } 233 234 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID, 235 const SCEV *op, const Type *ty) 236 : SCEVCastExpr(ID, scSignExtend, op, ty) { 237 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 238 (Ty->isInteger() || isa<PointerType>(Ty)) && 239 "Cannot sign extend non-integer value!"); 240 } 241 242 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 243 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 244 } 245 246 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 247 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 248 const char *OpStr = getOperationStr(); 249 OS << "(" << *Operands[0]; 250 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 251 OS << OpStr << *Operands[i]; 252 OS << ")"; 253 } 254 255 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 256 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 257 if (!getOperand(i)->dominates(BB, DT)) 258 return false; 259 } 260 return true; 261 } 262 263 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 264 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 265 } 266 267 void SCEVUDivExpr::print(raw_ostream &OS) const { 268 OS << "(" << *LHS << " /u " << *RHS << ")"; 269 } 270 271 const Type *SCEVUDivExpr::getType() const { 272 // In most cases the types of LHS and RHS will be the same, but in some 273 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 274 // depend on the type for correctness, but handling types carefully can 275 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 276 // a pointer type than the RHS, so use the RHS' type here. 277 return RHS->getType(); 278 } 279 280 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 281 // Add recurrences are never invariant in the function-body (null loop). 282 if (!QueryLoop) 283 return false; 284 285 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. 286 if (QueryLoop->contains(L->getHeader())) 287 return false; 288 289 // This recurrence is variant w.r.t. QueryLoop if any of its operands 290 // are variant. 291 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 292 if (!getOperand(i)->isLoopInvariant(QueryLoop)) 293 return false; 294 295 // Otherwise it's loop-invariant. 296 return true; 297 } 298 299 void SCEVAddRecExpr::print(raw_ostream &OS) const { 300 OS << "{" << *Operands[0]; 301 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 302 OS << ",+," << *Operands[i]; 303 OS << "}<" << L->getHeader()->getName() + ">"; 304 } 305 306 void SCEVFieldOffsetExpr::print(raw_ostream &OS) const { 307 // LLVM struct fields don't have names, so just print the field number. 308 OS << "offsetof(" << *STy << ", " << FieldNo << ")"; 309 } 310 311 void SCEVAllocSizeExpr::print(raw_ostream &OS) const { 312 OS << "sizeof(" << *AllocTy << ")"; 313 } 314 315 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 316 // All non-instruction values are loop invariant. All instructions are loop 317 // invariant if they are not contained in the specified loop. 318 // Instructions are never considered invariant in the function body 319 // (null loop) because they are defined within the "loop". 320 if (Instruction *I = dyn_cast<Instruction>(V)) 321 return L && !L->contains(I->getParent()); 322 return true; 323 } 324 325 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 326 if (Instruction *I = dyn_cast<Instruction>(getValue())) 327 return DT->dominates(I->getParent(), BB); 328 return true; 329 } 330 331 const Type *SCEVUnknown::getType() const { 332 return V->getType(); 333 } 334 335 void SCEVUnknown::print(raw_ostream &OS) const { 336 WriteAsOperand(OS, V, false); 337 } 338 339 //===----------------------------------------------------------------------===// 340 // SCEV Utilities 341 //===----------------------------------------------------------------------===// 342 343 static bool CompareTypes(const Type *A, const Type *B) { 344 if (A->getTypeID() != B->getTypeID()) 345 return A->getTypeID() < B->getTypeID(); 346 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) { 347 const IntegerType *BI = cast<IntegerType>(B); 348 return AI->getBitWidth() < BI->getBitWidth(); 349 } 350 if (const PointerType *AI = dyn_cast<PointerType>(A)) { 351 const PointerType *BI = cast<PointerType>(B); 352 return CompareTypes(AI->getElementType(), BI->getElementType()); 353 } 354 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) { 355 const ArrayType *BI = cast<ArrayType>(B); 356 if (AI->getNumElements() != BI->getNumElements()) 357 return AI->getNumElements() < BI->getNumElements(); 358 return CompareTypes(AI->getElementType(), BI->getElementType()); 359 } 360 if (const VectorType *AI = dyn_cast<VectorType>(A)) { 361 const VectorType *BI = cast<VectorType>(B); 362 if (AI->getNumElements() != BI->getNumElements()) 363 return AI->getNumElements() < BI->getNumElements(); 364 return CompareTypes(AI->getElementType(), BI->getElementType()); 365 } 366 if (const StructType *AI = dyn_cast<StructType>(A)) { 367 const StructType *BI = cast<StructType>(B); 368 if (AI->getNumElements() != BI->getNumElements()) 369 return AI->getNumElements() < BI->getNumElements(); 370 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i) 371 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) || 372 CompareTypes(BI->getElementType(i), AI->getElementType(i))) 373 return CompareTypes(AI->getElementType(i), BI->getElementType(i)); 374 } 375 return false; 376 } 377 378 namespace { 379 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 380 /// than the complexity of the RHS. This comparator is used to canonicalize 381 /// expressions. 382 class VISIBILITY_HIDDEN SCEVComplexityCompare { 383 LoopInfo *LI; 384 public: 385 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 386 387 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 388 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 389 if (LHS == RHS) 390 return false; 391 392 // Primarily, sort the SCEVs by their getSCEVType(). 393 if (LHS->getSCEVType() != RHS->getSCEVType()) 394 return LHS->getSCEVType() < RHS->getSCEVType(); 395 396 // Aside from the getSCEVType() ordering, the particular ordering 397 // isn't very important except that it's beneficial to be consistent, 398 // so that (a + b) and (b + a) don't end up as different expressions. 399 400 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 401 // not as complete as it could be. 402 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 403 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 404 405 // Order pointer values after integer values. This helps SCEVExpander 406 // form GEPs. 407 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType())) 408 return false; 409 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType())) 410 return true; 411 412 // Compare getValueID values. 413 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 414 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 415 416 // Sort arguments by their position. 417 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 418 const Argument *RA = cast<Argument>(RU->getValue()); 419 return LA->getArgNo() < RA->getArgNo(); 420 } 421 422 // For instructions, compare their loop depth, and their opcode. 423 // This is pretty loose. 424 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 425 Instruction *RV = cast<Instruction>(RU->getValue()); 426 427 // Compare loop depths. 428 if (LI->getLoopDepth(LV->getParent()) != 429 LI->getLoopDepth(RV->getParent())) 430 return LI->getLoopDepth(LV->getParent()) < 431 LI->getLoopDepth(RV->getParent()); 432 433 // Compare opcodes. 434 if (LV->getOpcode() != RV->getOpcode()) 435 return LV->getOpcode() < RV->getOpcode(); 436 437 // Compare the number of operands. 438 if (LV->getNumOperands() != RV->getNumOperands()) 439 return LV->getNumOperands() < RV->getNumOperands(); 440 } 441 442 return false; 443 } 444 445 // Compare constant values. 446 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 447 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 448 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth()) 449 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth(); 450 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 451 } 452 453 // Compare addrec loop depths. 454 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 455 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 456 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 457 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 458 } 459 460 // Lexicographically compare n-ary expressions. 461 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 462 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 463 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 464 if (i >= RC->getNumOperands()) 465 return false; 466 if (operator()(LC->getOperand(i), RC->getOperand(i))) 467 return true; 468 if (operator()(RC->getOperand(i), LC->getOperand(i))) 469 return false; 470 } 471 return LC->getNumOperands() < RC->getNumOperands(); 472 } 473 474 // Lexicographically compare udiv expressions. 475 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 476 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 477 if (operator()(LC->getLHS(), RC->getLHS())) 478 return true; 479 if (operator()(RC->getLHS(), LC->getLHS())) 480 return false; 481 if (operator()(LC->getRHS(), RC->getRHS())) 482 return true; 483 if (operator()(RC->getRHS(), LC->getRHS())) 484 return false; 485 return false; 486 } 487 488 // Compare cast expressions by operand. 489 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 490 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 491 return operator()(LC->getOperand(), RC->getOperand()); 492 } 493 494 // Compare offsetof expressions. 495 if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) { 496 const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS); 497 if (CompareTypes(LA->getStructType(), RA->getStructType()) || 498 CompareTypes(RA->getStructType(), LA->getStructType())) 499 return CompareTypes(LA->getStructType(), RA->getStructType()); 500 return LA->getFieldNo() < RA->getFieldNo(); 501 } 502 503 // Compare sizeof expressions by the allocation type. 504 if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) { 505 const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS); 506 return CompareTypes(LA->getAllocType(), RA->getAllocType()); 507 } 508 509 llvm_unreachable("Unknown SCEV kind!"); 510 return false; 511 } 512 }; 513 } 514 515 /// GroupByComplexity - Given a list of SCEV objects, order them by their 516 /// complexity, and group objects of the same complexity together by value. 517 /// When this routine is finished, we know that any duplicates in the vector are 518 /// consecutive and that complexity is monotonically increasing. 519 /// 520 /// Note that we go take special precautions to ensure that we get determinstic 521 /// results from this routine. In other words, we don't want the results of 522 /// this to depend on where the addresses of various SCEV objects happened to 523 /// land in memory. 524 /// 525 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 526 LoopInfo *LI) { 527 if (Ops.size() < 2) return; // Noop 528 if (Ops.size() == 2) { 529 // This is the common case, which also happens to be trivially simple. 530 // Special case it. 531 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 532 std::swap(Ops[0], Ops[1]); 533 return; 534 } 535 536 // Do the rough sort by complexity. 537 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 538 539 // Now that we are sorted by complexity, group elements of the same 540 // complexity. Note that this is, at worst, N^2, but the vector is likely to 541 // be extremely short in practice. Note that we take this approach because we 542 // do not want to depend on the addresses of the objects we are grouping. 543 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 544 const SCEV *S = Ops[i]; 545 unsigned Complexity = S->getSCEVType(); 546 547 // If there are any objects of the same complexity and same value as this 548 // one, group them. 549 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 550 if (Ops[j] == S) { // Found a duplicate. 551 // Move it to immediately after i'th element. 552 std::swap(Ops[i+1], Ops[j]); 553 ++i; // no need to rescan it. 554 if (i == e-2) return; // Done! 555 } 556 } 557 } 558 } 559 560 561 562 //===----------------------------------------------------------------------===// 563 // Simple SCEV method implementations 564 //===----------------------------------------------------------------------===// 565 566 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 567 /// Assume, K > 0. 568 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 569 ScalarEvolution &SE, 570 const Type* ResultTy) { 571 // Handle the simplest case efficiently. 572 if (K == 1) 573 return SE.getTruncateOrZeroExtend(It, ResultTy); 574 575 // We are using the following formula for BC(It, K): 576 // 577 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 578 // 579 // Suppose, W is the bitwidth of the return value. We must be prepared for 580 // overflow. Hence, we must assure that the result of our computation is 581 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 582 // safe in modular arithmetic. 583 // 584 // However, this code doesn't use exactly that formula; the formula it uses 585 // is something like the following, where T is the number of factors of 2 in 586 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 587 // exponentiation: 588 // 589 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 590 // 591 // This formula is trivially equivalent to the previous formula. However, 592 // this formula can be implemented much more efficiently. The trick is that 593 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 594 // arithmetic. To do exact division in modular arithmetic, all we have 595 // to do is multiply by the inverse. Therefore, this step can be done at 596 // width W. 597 // 598 // The next issue is how to safely do the division by 2^T. The way this 599 // is done is by doing the multiplication step at a width of at least W + T 600 // bits. This way, the bottom W+T bits of the product are accurate. Then, 601 // when we perform the division by 2^T (which is equivalent to a right shift 602 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 603 // truncated out after the division by 2^T. 604 // 605 // In comparison to just directly using the first formula, this technique 606 // is much more efficient; using the first formula requires W * K bits, 607 // but this formula less than W + K bits. Also, the first formula requires 608 // a division step, whereas this formula only requires multiplies and shifts. 609 // 610 // It doesn't matter whether the subtraction step is done in the calculation 611 // width or the input iteration count's width; if the subtraction overflows, 612 // the result must be zero anyway. We prefer here to do it in the width of 613 // the induction variable because it helps a lot for certain cases; CodeGen 614 // isn't smart enough to ignore the overflow, which leads to much less 615 // efficient code if the width of the subtraction is wider than the native 616 // register width. 617 // 618 // (It's possible to not widen at all by pulling out factors of 2 before 619 // the multiplication; for example, K=2 can be calculated as 620 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 621 // extra arithmetic, so it's not an obvious win, and it gets 622 // much more complicated for K > 3.) 623 624 // Protection from insane SCEVs; this bound is conservative, 625 // but it probably doesn't matter. 626 if (K > 1000) 627 return SE.getCouldNotCompute(); 628 629 unsigned W = SE.getTypeSizeInBits(ResultTy); 630 631 // Calculate K! / 2^T and T; we divide out the factors of two before 632 // multiplying for calculating K! / 2^T to avoid overflow. 633 // Other overflow doesn't matter because we only care about the bottom 634 // W bits of the result. 635 APInt OddFactorial(W, 1); 636 unsigned T = 1; 637 for (unsigned i = 3; i <= K; ++i) { 638 APInt Mult(W, i); 639 unsigned TwoFactors = Mult.countTrailingZeros(); 640 T += TwoFactors; 641 Mult = Mult.lshr(TwoFactors); 642 OddFactorial *= Mult; 643 } 644 645 // We need at least W + T bits for the multiplication step 646 unsigned CalculationBits = W + T; 647 648 // Calcuate 2^T, at width T+W. 649 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 650 651 // Calculate the multiplicative inverse of K! / 2^T; 652 // this multiplication factor will perform the exact division by 653 // K! / 2^T. 654 APInt Mod = APInt::getSignedMinValue(W+1); 655 APInt MultiplyFactor = OddFactorial.zext(W+1); 656 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 657 MultiplyFactor = MultiplyFactor.trunc(W); 658 659 // Calculate the product, at width T+W 660 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 661 CalculationBits); 662 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 663 for (unsigned i = 1; i != K; ++i) { 664 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 665 Dividend = SE.getMulExpr(Dividend, 666 SE.getTruncateOrZeroExtend(S, CalculationTy)); 667 } 668 669 // Divide by 2^T 670 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 671 672 // Truncate the result, and divide by K! / 2^T. 673 674 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 675 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 676 } 677 678 /// evaluateAtIteration - Return the value of this chain of recurrences at 679 /// the specified iteration number. We can evaluate this recurrence by 680 /// multiplying each element in the chain by the binomial coefficient 681 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 682 /// 683 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 684 /// 685 /// where BC(It, k) stands for binomial coefficient. 686 /// 687 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 688 ScalarEvolution &SE) const { 689 const SCEV *Result = getStart(); 690 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 691 // The computation is correct in the face of overflow provided that the 692 // multiplication is performed _after_ the evaluation of the binomial 693 // coefficient. 694 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 695 if (isa<SCEVCouldNotCompute>(Coeff)) 696 return Coeff; 697 698 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 699 } 700 return Result; 701 } 702 703 //===----------------------------------------------------------------------===// 704 // SCEV Expression folder implementations 705 //===----------------------------------------------------------------------===// 706 707 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 708 const Type *Ty) { 709 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 710 "This is not a truncating conversion!"); 711 assert(isSCEVable(Ty) && 712 "This is not a conversion to a SCEVable type!"); 713 Ty = getEffectiveSCEVType(Ty); 714 715 FoldingSetNodeID ID; 716 ID.AddInteger(scTruncate); 717 ID.AddPointer(Op); 718 ID.AddPointer(Ty); 719 void *IP = 0; 720 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 721 722 // Fold if the operand is constant. 723 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 724 return getConstant( 725 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 726 727 // trunc(trunc(x)) --> trunc(x) 728 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 729 return getTruncateExpr(ST->getOperand(), Ty); 730 731 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 732 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 733 return getTruncateOrSignExtend(SS->getOperand(), Ty); 734 735 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 736 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 737 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 738 739 // If the input value is a chrec scev, truncate the chrec's operands. 740 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 741 SmallVector<const SCEV *, 4> Operands; 742 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 743 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 744 return getAddRecExpr(Operands, AddRec->getLoop()); 745 } 746 747 // The cast wasn't folded; create an explicit cast node. 748 // Recompute the insert position, as it may have been invalidated. 749 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 750 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>(); 751 new (S) SCEVTruncateExpr(ID, Op, Ty); 752 UniqueSCEVs.InsertNode(S, IP); 753 return S; 754 } 755 756 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 757 const Type *Ty) { 758 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 759 "This is not an extending conversion!"); 760 assert(isSCEVable(Ty) && 761 "This is not a conversion to a SCEVable type!"); 762 Ty = getEffectiveSCEVType(Ty); 763 764 // Fold if the operand is constant. 765 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 766 const Type *IntTy = getEffectiveSCEVType(Ty); 767 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 768 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 769 return getConstant(cast<ConstantInt>(C)); 770 } 771 772 // zext(zext(x)) --> zext(x) 773 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 774 return getZeroExtendExpr(SZ->getOperand(), Ty); 775 776 // Before doing any expensive analysis, check to see if we've already 777 // computed a SCEV for this Op and Ty. 778 FoldingSetNodeID ID; 779 ID.AddInteger(scZeroExtend); 780 ID.AddPointer(Op); 781 ID.AddPointer(Ty); 782 void *IP = 0; 783 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 784 785 // If the input value is a chrec scev, and we can prove that the value 786 // did not overflow the old, smaller, value, we can zero extend all of the 787 // operands (often constants). This allows analysis of something like 788 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 789 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 790 if (AR->isAffine()) { 791 const SCEV *Start = AR->getStart(); 792 const SCEV *Step = AR->getStepRecurrence(*this); 793 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 794 const Loop *L = AR->getLoop(); 795 796 // If we have special knowledge that this addrec won't overflow, 797 // we don't need to do any further analysis. 798 if (AR->hasNoUnsignedWrap()) 799 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 800 getZeroExtendExpr(Step, Ty), 801 L); 802 803 // Check whether the backedge-taken count is SCEVCouldNotCompute. 804 // Note that this serves two purposes: It filters out loops that are 805 // simply not analyzable, and it covers the case where this code is 806 // being called from within backedge-taken count analysis, such that 807 // attempting to ask for the backedge-taken count would likely result 808 // in infinite recursion. In the later case, the analysis code will 809 // cope with a conservative value, and it will take care to purge 810 // that value once it has finished. 811 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 812 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 813 // Manually compute the final value for AR, checking for 814 // overflow. 815 816 // Check whether the backedge-taken count can be losslessly casted to 817 // the addrec's type. The count is always unsigned. 818 const SCEV *CastedMaxBECount = 819 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 820 const SCEV *RecastedMaxBECount = 821 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 822 if (MaxBECount == RecastedMaxBECount) { 823 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 824 // Check whether Start+Step*MaxBECount has no unsigned overflow. 825 const SCEV *ZMul = 826 getMulExpr(CastedMaxBECount, 827 getTruncateOrZeroExtend(Step, Start->getType())); 828 const SCEV *Add = getAddExpr(Start, ZMul); 829 const SCEV *OperandExtendedAdd = 830 getAddExpr(getZeroExtendExpr(Start, WideTy), 831 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 832 getZeroExtendExpr(Step, WideTy))); 833 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 834 // Return the expression with the addrec on the outside. 835 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 836 getZeroExtendExpr(Step, Ty), 837 L); 838 839 // Similar to above, only this time treat the step value as signed. 840 // This covers loops that count down. 841 const SCEV *SMul = 842 getMulExpr(CastedMaxBECount, 843 getTruncateOrSignExtend(Step, Start->getType())); 844 Add = getAddExpr(Start, SMul); 845 OperandExtendedAdd = 846 getAddExpr(getZeroExtendExpr(Start, WideTy), 847 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 848 getSignExtendExpr(Step, WideTy))); 849 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 850 // Return the expression with the addrec on the outside. 851 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 852 getSignExtendExpr(Step, Ty), 853 L); 854 } 855 856 // If the backedge is guarded by a comparison with the pre-inc value 857 // the addrec is safe. Also, if the entry is guarded by a comparison 858 // with the start value and the backedge is guarded by a comparison 859 // with the post-inc value, the addrec is safe. 860 if (isKnownPositive(Step)) { 861 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 862 getUnsignedRange(Step).getUnsignedMax()); 863 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 864 (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 865 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 866 AR->getPostIncExpr(*this), N))) 867 // Return the expression with the addrec on the outside. 868 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 869 getZeroExtendExpr(Step, Ty), 870 L); 871 } else if (isKnownNegative(Step)) { 872 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 873 getSignedRange(Step).getSignedMin()); 874 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) && 875 (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) || 876 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 877 AR->getPostIncExpr(*this), N))) 878 // Return the expression with the addrec on the outside. 879 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 880 getSignExtendExpr(Step, Ty), 881 L); 882 } 883 } 884 } 885 886 // The cast wasn't folded; create an explicit cast node. 887 // Recompute the insert position, as it may have been invalidated. 888 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 889 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>(); 890 new (S) SCEVZeroExtendExpr(ID, Op, Ty); 891 UniqueSCEVs.InsertNode(S, IP); 892 return S; 893 } 894 895 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 896 const Type *Ty) { 897 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 898 "This is not an extending conversion!"); 899 assert(isSCEVable(Ty) && 900 "This is not a conversion to a SCEVable type!"); 901 Ty = getEffectiveSCEVType(Ty); 902 903 // Fold if the operand is constant. 904 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 905 const Type *IntTy = getEffectiveSCEVType(Ty); 906 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 907 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 908 return getConstant(cast<ConstantInt>(C)); 909 } 910 911 // sext(sext(x)) --> sext(x) 912 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 913 return getSignExtendExpr(SS->getOperand(), Ty); 914 915 // Before doing any expensive analysis, check to see if we've already 916 // computed a SCEV for this Op and Ty. 917 FoldingSetNodeID ID; 918 ID.AddInteger(scSignExtend); 919 ID.AddPointer(Op); 920 ID.AddPointer(Ty); 921 void *IP = 0; 922 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 923 924 // If the input value is a chrec scev, and we can prove that the value 925 // did not overflow the old, smaller, value, we can sign extend all of the 926 // operands (often constants). This allows analysis of something like 927 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 928 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 929 if (AR->isAffine()) { 930 const SCEV *Start = AR->getStart(); 931 const SCEV *Step = AR->getStepRecurrence(*this); 932 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 933 const Loop *L = AR->getLoop(); 934 935 // If we have special knowledge that this addrec won't overflow, 936 // we don't need to do any further analysis. 937 if (AR->hasNoSignedWrap()) 938 return getAddRecExpr(getSignExtendExpr(Start, Ty), 939 getSignExtendExpr(Step, Ty), 940 L); 941 942 // Check whether the backedge-taken count is SCEVCouldNotCompute. 943 // Note that this serves two purposes: It filters out loops that are 944 // simply not analyzable, and it covers the case where this code is 945 // being called from within backedge-taken count analysis, such that 946 // attempting to ask for the backedge-taken count would likely result 947 // in infinite recursion. In the later case, the analysis code will 948 // cope with a conservative value, and it will take care to purge 949 // that value once it has finished. 950 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 951 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 952 // Manually compute the final value for AR, checking for 953 // overflow. 954 955 // Check whether the backedge-taken count can be losslessly casted to 956 // the addrec's type. The count is always unsigned. 957 const SCEV *CastedMaxBECount = 958 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 959 const SCEV *RecastedMaxBECount = 960 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 961 if (MaxBECount == RecastedMaxBECount) { 962 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 963 // Check whether Start+Step*MaxBECount has no signed overflow. 964 const SCEV *SMul = 965 getMulExpr(CastedMaxBECount, 966 getTruncateOrSignExtend(Step, Start->getType())); 967 const SCEV *Add = getAddExpr(Start, SMul); 968 const SCEV *OperandExtendedAdd = 969 getAddExpr(getSignExtendExpr(Start, WideTy), 970 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 971 getSignExtendExpr(Step, WideTy))); 972 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 973 // Return the expression with the addrec on the outside. 974 return getAddRecExpr(getSignExtendExpr(Start, Ty), 975 getSignExtendExpr(Step, Ty), 976 L); 977 978 // Similar to above, only this time treat the step value as unsigned. 979 // This covers loops that count up with an unsigned step. 980 const SCEV *UMul = 981 getMulExpr(CastedMaxBECount, 982 getTruncateOrZeroExtend(Step, Start->getType())); 983 Add = getAddExpr(Start, UMul); 984 OperandExtendedAdd = 985 getAddExpr(getSignExtendExpr(Start, WideTy), 986 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 987 getZeroExtendExpr(Step, WideTy))); 988 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 989 // Return the expression with the addrec on the outside. 990 return getAddRecExpr(getSignExtendExpr(Start, Ty), 991 getZeroExtendExpr(Step, Ty), 992 L); 993 } 994 995 // If the backedge is guarded by a comparison with the pre-inc value 996 // the addrec is safe. Also, if the entry is guarded by a comparison 997 // with the start value and the backedge is guarded by a comparison 998 // with the post-inc value, the addrec is safe. 999 if (isKnownPositive(Step)) { 1000 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1001 getSignedRange(Step).getSignedMax()); 1002 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1003 (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1004 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1005 AR->getPostIncExpr(*this), N))) 1006 // Return the expression with the addrec on the outside. 1007 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1008 getSignExtendExpr(Step, Ty), 1009 L); 1010 } else if (isKnownNegative(Step)) { 1011 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1012 getSignedRange(Step).getSignedMin()); 1013 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1014 (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1015 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1016 AR->getPostIncExpr(*this), N))) 1017 // Return the expression with the addrec on the outside. 1018 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1019 getSignExtendExpr(Step, Ty), 1020 L); 1021 } 1022 } 1023 } 1024 1025 // The cast wasn't folded; create an explicit cast node. 1026 // Recompute the insert position, as it may have been invalidated. 1027 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1028 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>(); 1029 new (S) SCEVSignExtendExpr(ID, Op, Ty); 1030 UniqueSCEVs.InsertNode(S, IP); 1031 return S; 1032 } 1033 1034 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1035 /// unspecified bits out to the given type. 1036 /// 1037 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1038 const Type *Ty) { 1039 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1040 "This is not an extending conversion!"); 1041 assert(isSCEVable(Ty) && 1042 "This is not a conversion to a SCEVable type!"); 1043 Ty = getEffectiveSCEVType(Ty); 1044 1045 // Sign-extend negative constants. 1046 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1047 if (SC->getValue()->getValue().isNegative()) 1048 return getSignExtendExpr(Op, Ty); 1049 1050 // Peel off a truncate cast. 1051 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1052 const SCEV *NewOp = T->getOperand(); 1053 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1054 return getAnyExtendExpr(NewOp, Ty); 1055 return getTruncateOrNoop(NewOp, Ty); 1056 } 1057 1058 // Next try a zext cast. If the cast is folded, use it. 1059 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1060 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1061 return ZExt; 1062 1063 // Next try a sext cast. If the cast is folded, use it. 1064 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1065 if (!isa<SCEVSignExtendExpr>(SExt)) 1066 return SExt; 1067 1068 // If the expression is obviously signed, use the sext cast value. 1069 if (isa<SCEVSMaxExpr>(Op)) 1070 return SExt; 1071 1072 // Absent any other information, use the zext cast value. 1073 return ZExt; 1074 } 1075 1076 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1077 /// a list of operands to be added under the given scale, update the given 1078 /// map. This is a helper function for getAddRecExpr. As an example of 1079 /// what it does, given a sequence of operands that would form an add 1080 /// expression like this: 1081 /// 1082 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1083 /// 1084 /// where A and B are constants, update the map with these values: 1085 /// 1086 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1087 /// 1088 /// and add 13 + A*B*29 to AccumulatedConstant. 1089 /// This will allow getAddRecExpr to produce this: 1090 /// 1091 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1092 /// 1093 /// This form often exposes folding opportunities that are hidden in 1094 /// the original operand list. 1095 /// 1096 /// Return true iff it appears that any interesting folding opportunities 1097 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1098 /// the common case where no interesting opportunities are present, and 1099 /// is also used as a check to avoid infinite recursion. 1100 /// 1101 static bool 1102 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1103 SmallVector<const SCEV *, 8> &NewOps, 1104 APInt &AccumulatedConstant, 1105 const SmallVectorImpl<const SCEV *> &Ops, 1106 const APInt &Scale, 1107 ScalarEvolution &SE) { 1108 bool Interesting = false; 1109 1110 // Iterate over the add operands. 1111 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1112 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1113 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1114 APInt NewScale = 1115 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1116 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1117 // A multiplication of a constant with another add; recurse. 1118 Interesting |= 1119 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1120 cast<SCEVAddExpr>(Mul->getOperand(1)) 1121 ->getOperands(), 1122 NewScale, SE); 1123 } else { 1124 // A multiplication of a constant with some other value. Update 1125 // the map. 1126 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1127 const SCEV *Key = SE.getMulExpr(MulOps); 1128 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1129 M.insert(std::make_pair(Key, NewScale)); 1130 if (Pair.second) { 1131 NewOps.push_back(Pair.first->first); 1132 } else { 1133 Pair.first->second += NewScale; 1134 // The map already had an entry for this value, which may indicate 1135 // a folding opportunity. 1136 Interesting = true; 1137 } 1138 } 1139 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1140 // Pull a buried constant out to the outside. 1141 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero()) 1142 Interesting = true; 1143 AccumulatedConstant += Scale * C->getValue()->getValue(); 1144 } else { 1145 // An ordinary operand. Update the map. 1146 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1147 M.insert(std::make_pair(Ops[i], Scale)); 1148 if (Pair.second) { 1149 NewOps.push_back(Pair.first->first); 1150 } else { 1151 Pair.first->second += Scale; 1152 // The map already had an entry for this value, which may indicate 1153 // a folding opportunity. 1154 Interesting = true; 1155 } 1156 } 1157 } 1158 1159 return Interesting; 1160 } 1161 1162 namespace { 1163 struct APIntCompare { 1164 bool operator()(const APInt &LHS, const APInt &RHS) const { 1165 return LHS.ult(RHS); 1166 } 1167 }; 1168 } 1169 1170 /// getAddExpr - Get a canonical add expression, or something simpler if 1171 /// possible. 1172 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops) { 1173 assert(!Ops.empty() && "Cannot get empty add!"); 1174 if (Ops.size() == 1) return Ops[0]; 1175 #ifndef NDEBUG 1176 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1177 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1178 getEffectiveSCEVType(Ops[0]->getType()) && 1179 "SCEVAddExpr operand types don't match!"); 1180 #endif 1181 1182 // Sort by complexity, this groups all similar expression types together. 1183 GroupByComplexity(Ops, LI); 1184 1185 // If there are any constants, fold them together. 1186 unsigned Idx = 0; 1187 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1188 ++Idx; 1189 assert(Idx < Ops.size()); 1190 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1191 // We found two constants, fold them together! 1192 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1193 RHSC->getValue()->getValue()); 1194 if (Ops.size() == 2) return Ops[0]; 1195 Ops.erase(Ops.begin()+1); // Erase the folded element 1196 LHSC = cast<SCEVConstant>(Ops[0]); 1197 } 1198 1199 // If we are left with a constant zero being added, strip it off. 1200 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1201 Ops.erase(Ops.begin()); 1202 --Idx; 1203 } 1204 } 1205 1206 if (Ops.size() == 1) return Ops[0]; 1207 1208 // Okay, check to see if the same value occurs in the operand list twice. If 1209 // so, merge them together into an multiply expression. Since we sorted the 1210 // list, these values are required to be adjacent. 1211 const Type *Ty = Ops[0]->getType(); 1212 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1213 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1214 // Found a match, merge the two values into a multiply, and add any 1215 // remaining values to the result. 1216 const SCEV *Two = getIntegerSCEV(2, Ty); 1217 const SCEV *Mul = getMulExpr(Ops[i], Two); 1218 if (Ops.size() == 2) 1219 return Mul; 1220 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1221 Ops.push_back(Mul); 1222 return getAddExpr(Ops); 1223 } 1224 1225 // Check for truncates. If all the operands are truncated from the same 1226 // type, see if factoring out the truncate would permit the result to be 1227 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1228 // if the contents of the resulting outer trunc fold to something simple. 1229 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1230 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1231 const Type *DstType = Trunc->getType(); 1232 const Type *SrcType = Trunc->getOperand()->getType(); 1233 SmallVector<const SCEV *, 8> LargeOps; 1234 bool Ok = true; 1235 // Check all the operands to see if they can be represented in the 1236 // source type of the truncate. 1237 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1238 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1239 if (T->getOperand()->getType() != SrcType) { 1240 Ok = false; 1241 break; 1242 } 1243 LargeOps.push_back(T->getOperand()); 1244 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1245 // This could be either sign or zero extension, but sign extension 1246 // is much more likely to be foldable here. 1247 LargeOps.push_back(getSignExtendExpr(C, SrcType)); 1248 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1249 SmallVector<const SCEV *, 8> LargeMulOps; 1250 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1251 if (const SCEVTruncateExpr *T = 1252 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1253 if (T->getOperand()->getType() != SrcType) { 1254 Ok = false; 1255 break; 1256 } 1257 LargeMulOps.push_back(T->getOperand()); 1258 } else if (const SCEVConstant *C = 1259 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1260 // This could be either sign or zero extension, but sign extension 1261 // is much more likely to be foldable here. 1262 LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); 1263 } else { 1264 Ok = false; 1265 break; 1266 } 1267 } 1268 if (Ok) 1269 LargeOps.push_back(getMulExpr(LargeMulOps)); 1270 } else { 1271 Ok = false; 1272 break; 1273 } 1274 } 1275 if (Ok) { 1276 // Evaluate the expression in the larger type. 1277 const SCEV *Fold = getAddExpr(LargeOps); 1278 // If it folds to something simple, use it. Otherwise, don't. 1279 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1280 return getTruncateExpr(Fold, DstType); 1281 } 1282 } 1283 1284 // Skip past any other cast SCEVs. 1285 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1286 ++Idx; 1287 1288 // If there are add operands they would be next. 1289 if (Idx < Ops.size()) { 1290 bool DeletedAdd = false; 1291 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1292 // If we have an add, expand the add operands onto the end of the operands 1293 // list. 1294 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 1295 Ops.erase(Ops.begin()+Idx); 1296 DeletedAdd = true; 1297 } 1298 1299 // If we deleted at least one add, we added operands to the end of the list, 1300 // and they are not necessarily sorted. Recurse to resort and resimplify 1301 // any operands we just aquired. 1302 if (DeletedAdd) 1303 return getAddExpr(Ops); 1304 } 1305 1306 // Skip over the add expression until we get to a multiply. 1307 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1308 ++Idx; 1309 1310 // Check to see if there are any folding opportunities present with 1311 // operands multiplied by constant values. 1312 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1313 uint64_t BitWidth = getTypeSizeInBits(Ty); 1314 DenseMap<const SCEV *, APInt> M; 1315 SmallVector<const SCEV *, 8> NewOps; 1316 APInt AccumulatedConstant(BitWidth, 0); 1317 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1318 Ops, APInt(BitWidth, 1), *this)) { 1319 // Some interesting folding opportunity is present, so its worthwhile to 1320 // re-generate the operands list. Group the operands by constant scale, 1321 // to avoid multiplying by the same constant scale multiple times. 1322 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1323 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), 1324 E = NewOps.end(); I != E; ++I) 1325 MulOpLists[M.find(*I)->second].push_back(*I); 1326 // Re-generate the operands list. 1327 Ops.clear(); 1328 if (AccumulatedConstant != 0) 1329 Ops.push_back(getConstant(AccumulatedConstant)); 1330 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1331 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1332 if (I->first != 0) 1333 Ops.push_back(getMulExpr(getConstant(I->first), 1334 getAddExpr(I->second))); 1335 if (Ops.empty()) 1336 return getIntegerSCEV(0, Ty); 1337 if (Ops.size() == 1) 1338 return Ops[0]; 1339 return getAddExpr(Ops); 1340 } 1341 } 1342 1343 // If we are adding something to a multiply expression, make sure the 1344 // something is not already an operand of the multiply. If so, merge it into 1345 // the multiply. 1346 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1347 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1348 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1349 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1350 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1351 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1352 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1353 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1354 if (Mul->getNumOperands() != 2) { 1355 // If the multiply has more than two operands, we must get the 1356 // Y*Z term. 1357 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1358 MulOps.erase(MulOps.begin()+MulOp); 1359 InnerMul = getMulExpr(MulOps); 1360 } 1361 const SCEV *One = getIntegerSCEV(1, Ty); 1362 const SCEV *AddOne = getAddExpr(InnerMul, One); 1363 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1364 if (Ops.size() == 2) return OuterMul; 1365 if (AddOp < Idx) { 1366 Ops.erase(Ops.begin()+AddOp); 1367 Ops.erase(Ops.begin()+Idx-1); 1368 } else { 1369 Ops.erase(Ops.begin()+Idx); 1370 Ops.erase(Ops.begin()+AddOp-1); 1371 } 1372 Ops.push_back(OuterMul); 1373 return getAddExpr(Ops); 1374 } 1375 1376 // Check this multiply against other multiplies being added together. 1377 for (unsigned OtherMulIdx = Idx+1; 1378 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1379 ++OtherMulIdx) { 1380 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1381 // If MulOp occurs in OtherMul, we can fold the two multiplies 1382 // together. 1383 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1384 OMulOp != e; ++OMulOp) 1385 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1386 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1387 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1388 if (Mul->getNumOperands() != 2) { 1389 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1390 Mul->op_end()); 1391 MulOps.erase(MulOps.begin()+MulOp); 1392 InnerMul1 = getMulExpr(MulOps); 1393 } 1394 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1395 if (OtherMul->getNumOperands() != 2) { 1396 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1397 OtherMul->op_end()); 1398 MulOps.erase(MulOps.begin()+OMulOp); 1399 InnerMul2 = getMulExpr(MulOps); 1400 } 1401 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1402 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1403 if (Ops.size() == 2) return OuterMul; 1404 Ops.erase(Ops.begin()+Idx); 1405 Ops.erase(Ops.begin()+OtherMulIdx-1); 1406 Ops.push_back(OuterMul); 1407 return getAddExpr(Ops); 1408 } 1409 } 1410 } 1411 } 1412 1413 // If there are any add recurrences in the operands list, see if any other 1414 // added values are loop invariant. If so, we can fold them into the 1415 // recurrence. 1416 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1417 ++Idx; 1418 1419 // Scan over all recurrences, trying to fold loop invariants into them. 1420 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1421 // Scan all of the other operands to this add and add them to the vector if 1422 // they are loop invariant w.r.t. the recurrence. 1423 SmallVector<const SCEV *, 8> LIOps; 1424 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1425 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1426 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1427 LIOps.push_back(Ops[i]); 1428 Ops.erase(Ops.begin()+i); 1429 --i; --e; 1430 } 1431 1432 // If we found some loop invariants, fold them into the recurrence. 1433 if (!LIOps.empty()) { 1434 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1435 LIOps.push_back(AddRec->getStart()); 1436 1437 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1438 AddRec->op_end()); 1439 AddRecOps[0] = getAddExpr(LIOps); 1440 1441 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1442 // If all of the other operands were loop invariant, we are done. 1443 if (Ops.size() == 1) return NewRec; 1444 1445 // Otherwise, add the folded AddRec by the non-liv parts. 1446 for (unsigned i = 0;; ++i) 1447 if (Ops[i] == AddRec) { 1448 Ops[i] = NewRec; 1449 break; 1450 } 1451 return getAddExpr(Ops); 1452 } 1453 1454 // Okay, if there weren't any loop invariants to be folded, check to see if 1455 // there are multiple AddRec's with the same loop induction variable being 1456 // added together. If so, we can fold them. 1457 for (unsigned OtherIdx = Idx+1; 1458 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1459 if (OtherIdx != Idx) { 1460 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1461 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1462 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1463 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), 1464 AddRec->op_end()); 1465 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1466 if (i >= NewOps.size()) { 1467 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1468 OtherAddRec->op_end()); 1469 break; 1470 } 1471 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1472 } 1473 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1474 1475 if (Ops.size() == 2) return NewAddRec; 1476 1477 Ops.erase(Ops.begin()+Idx); 1478 Ops.erase(Ops.begin()+OtherIdx-1); 1479 Ops.push_back(NewAddRec); 1480 return getAddExpr(Ops); 1481 } 1482 } 1483 1484 // Otherwise couldn't fold anything into this recurrence. Move onto the 1485 // next one. 1486 } 1487 1488 // Okay, it looks like we really DO need an add expr. Check to see if we 1489 // already have one, otherwise create a new one. 1490 FoldingSetNodeID ID; 1491 ID.AddInteger(scAddExpr); 1492 ID.AddInteger(Ops.size()); 1493 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1494 ID.AddPointer(Ops[i]); 1495 void *IP = 0; 1496 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1497 SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>(); 1498 new (S) SCEVAddExpr(ID, Ops); 1499 UniqueSCEVs.InsertNode(S, IP); 1500 return S; 1501 } 1502 1503 1504 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1505 /// possible. 1506 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) { 1507 assert(!Ops.empty() && "Cannot get empty mul!"); 1508 #ifndef NDEBUG 1509 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1510 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1511 getEffectiveSCEVType(Ops[0]->getType()) && 1512 "SCEVMulExpr operand types don't match!"); 1513 #endif 1514 1515 // Sort by complexity, this groups all similar expression types together. 1516 GroupByComplexity(Ops, LI); 1517 1518 // If there are any constants, fold them together. 1519 unsigned Idx = 0; 1520 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1521 1522 // C1*(C2+V) -> C1*C2 + C1*V 1523 if (Ops.size() == 2) 1524 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1525 if (Add->getNumOperands() == 2 && 1526 isa<SCEVConstant>(Add->getOperand(0))) 1527 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1528 getMulExpr(LHSC, Add->getOperand(1))); 1529 1530 1531 ++Idx; 1532 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1533 // We found two constants, fold them together! 1534 ConstantInt *Fold = ConstantInt::get(getContext(), 1535 LHSC->getValue()->getValue() * 1536 RHSC->getValue()->getValue()); 1537 Ops[0] = getConstant(Fold); 1538 Ops.erase(Ops.begin()+1); // Erase the folded element 1539 if (Ops.size() == 1) return Ops[0]; 1540 LHSC = cast<SCEVConstant>(Ops[0]); 1541 } 1542 1543 // If we are left with a constant one being multiplied, strip it off. 1544 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1545 Ops.erase(Ops.begin()); 1546 --Idx; 1547 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1548 // If we have a multiply of zero, it will always be zero. 1549 return Ops[0]; 1550 } 1551 } 1552 1553 // Skip over the add expression until we get to a multiply. 1554 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1555 ++Idx; 1556 1557 if (Ops.size() == 1) 1558 return Ops[0]; 1559 1560 // If there are mul operands inline them all into this expression. 1561 if (Idx < Ops.size()) { 1562 bool DeletedMul = false; 1563 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1564 // If we have an mul, expand the mul operands onto the end of the operands 1565 // list. 1566 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1567 Ops.erase(Ops.begin()+Idx); 1568 DeletedMul = true; 1569 } 1570 1571 // If we deleted at least one mul, we added operands to the end of the list, 1572 // and they are not necessarily sorted. Recurse to resort and resimplify 1573 // any operands we just aquired. 1574 if (DeletedMul) 1575 return getMulExpr(Ops); 1576 } 1577 1578 // If there are any add recurrences in the operands list, see if any other 1579 // added values are loop invariant. If so, we can fold them into the 1580 // recurrence. 1581 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1582 ++Idx; 1583 1584 // Scan over all recurrences, trying to fold loop invariants into them. 1585 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1586 // Scan all of the other operands to this mul and add them to the vector if 1587 // they are loop invariant w.r.t. the recurrence. 1588 SmallVector<const SCEV *, 8> LIOps; 1589 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1590 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1591 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1592 LIOps.push_back(Ops[i]); 1593 Ops.erase(Ops.begin()+i); 1594 --i; --e; 1595 } 1596 1597 // If we found some loop invariants, fold them into the recurrence. 1598 if (!LIOps.empty()) { 1599 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1600 SmallVector<const SCEV *, 4> NewOps; 1601 NewOps.reserve(AddRec->getNumOperands()); 1602 if (LIOps.size() == 1) { 1603 const SCEV *Scale = LIOps[0]; 1604 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1605 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1606 } else { 1607 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1608 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end()); 1609 MulOps.push_back(AddRec->getOperand(i)); 1610 NewOps.push_back(getMulExpr(MulOps)); 1611 } 1612 } 1613 1614 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1615 1616 // If all of the other operands were loop invariant, we are done. 1617 if (Ops.size() == 1) return NewRec; 1618 1619 // Otherwise, multiply the folded AddRec by the non-liv parts. 1620 for (unsigned i = 0;; ++i) 1621 if (Ops[i] == AddRec) { 1622 Ops[i] = NewRec; 1623 break; 1624 } 1625 return getMulExpr(Ops); 1626 } 1627 1628 // Okay, if there weren't any loop invariants to be folded, check to see if 1629 // there are multiple AddRec's with the same loop induction variable being 1630 // multiplied together. If so, we can fold them. 1631 for (unsigned OtherIdx = Idx+1; 1632 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1633 if (OtherIdx != Idx) { 1634 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1635 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1636 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1637 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1638 const SCEV *NewStart = getMulExpr(F->getStart(), 1639 G->getStart()); 1640 const SCEV *B = F->getStepRecurrence(*this); 1641 const SCEV *D = G->getStepRecurrence(*this); 1642 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1643 getMulExpr(G, B), 1644 getMulExpr(B, D)); 1645 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1646 F->getLoop()); 1647 if (Ops.size() == 2) return NewAddRec; 1648 1649 Ops.erase(Ops.begin()+Idx); 1650 Ops.erase(Ops.begin()+OtherIdx-1); 1651 Ops.push_back(NewAddRec); 1652 return getMulExpr(Ops); 1653 } 1654 } 1655 1656 // Otherwise couldn't fold anything into this recurrence. Move onto the 1657 // next one. 1658 } 1659 1660 // Okay, it looks like we really DO need an mul expr. Check to see if we 1661 // already have one, otherwise create a new one. 1662 FoldingSetNodeID ID; 1663 ID.AddInteger(scMulExpr); 1664 ID.AddInteger(Ops.size()); 1665 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1666 ID.AddPointer(Ops[i]); 1667 void *IP = 0; 1668 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1669 SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>(); 1670 new (S) SCEVMulExpr(ID, Ops); 1671 UniqueSCEVs.InsertNode(S, IP); 1672 return S; 1673 } 1674 1675 /// getUDivExpr - Get a canonical unsigned division expression, or something 1676 /// simpler if possible. 1677 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1678 const SCEV *RHS) { 1679 assert(getEffectiveSCEVType(LHS->getType()) == 1680 getEffectiveSCEVType(RHS->getType()) && 1681 "SCEVUDivExpr operand types don't match!"); 1682 1683 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1684 if (RHSC->getValue()->equalsInt(1)) 1685 return LHS; // X udiv 1 --> x 1686 if (RHSC->isZero()) 1687 return getIntegerSCEV(0, LHS->getType()); // value is undefined 1688 1689 // Determine if the division can be folded into the operands of 1690 // its operands. 1691 // TODO: Generalize this to non-constants by using known-bits information. 1692 const Type *Ty = LHS->getType(); 1693 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1694 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1695 // For non-power-of-two values, effectively round the value up to the 1696 // nearest power of two. 1697 if (!RHSC->getValue()->getValue().isPowerOf2()) 1698 ++MaxShiftAmt; 1699 const IntegerType *ExtTy = 1700 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1701 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1702 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1703 if (const SCEVConstant *Step = 1704 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1705 if (!Step->getValue()->getValue() 1706 .urem(RHSC->getValue()->getValue()) && 1707 getZeroExtendExpr(AR, ExtTy) == 1708 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1709 getZeroExtendExpr(Step, ExtTy), 1710 AR->getLoop())) { 1711 SmallVector<const SCEV *, 4> Operands; 1712 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1713 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1714 return getAddRecExpr(Operands, AR->getLoop()); 1715 } 1716 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1717 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1718 SmallVector<const SCEV *, 4> Operands; 1719 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1720 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1721 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1722 // Find an operand that's safely divisible. 1723 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1724 const SCEV *Op = M->getOperand(i); 1725 const SCEV *Div = getUDivExpr(Op, RHSC); 1726 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1727 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands(); 1728 Operands = SmallVector<const SCEV *, 4>(MOperands.begin(), 1729 MOperands.end()); 1730 Operands[i] = Div; 1731 return getMulExpr(Operands); 1732 } 1733 } 1734 } 1735 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1736 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1737 SmallVector<const SCEV *, 4> Operands; 1738 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1739 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1740 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1741 Operands.clear(); 1742 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1743 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1744 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) 1745 break; 1746 Operands.push_back(Op); 1747 } 1748 if (Operands.size() == A->getNumOperands()) 1749 return getAddExpr(Operands); 1750 } 1751 } 1752 1753 // Fold if both operands are constant. 1754 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1755 Constant *LHSCV = LHSC->getValue(); 1756 Constant *RHSCV = RHSC->getValue(); 1757 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1758 RHSCV))); 1759 } 1760 } 1761 1762 FoldingSetNodeID ID; 1763 ID.AddInteger(scUDivExpr); 1764 ID.AddPointer(LHS); 1765 ID.AddPointer(RHS); 1766 void *IP = 0; 1767 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1768 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>(); 1769 new (S) SCEVUDivExpr(ID, LHS, RHS); 1770 UniqueSCEVs.InsertNode(S, IP); 1771 return S; 1772 } 1773 1774 1775 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1776 /// Simplify the expression as much as possible. 1777 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 1778 const SCEV *Step, const Loop *L) { 1779 SmallVector<const SCEV *, 4> Operands; 1780 Operands.push_back(Start); 1781 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1782 if (StepChrec->getLoop() == L) { 1783 Operands.insert(Operands.end(), StepChrec->op_begin(), 1784 StepChrec->op_end()); 1785 return getAddRecExpr(Operands, L); 1786 } 1787 1788 Operands.push_back(Step); 1789 return getAddRecExpr(Operands, L); 1790 } 1791 1792 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1793 /// Simplify the expression as much as possible. 1794 const SCEV * 1795 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 1796 const Loop *L) { 1797 if (Operands.size() == 1) return Operands[0]; 1798 #ifndef NDEBUG 1799 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1800 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1801 getEffectiveSCEVType(Operands[0]->getType()) && 1802 "SCEVAddRecExpr operand types don't match!"); 1803 #endif 1804 1805 if (Operands.back()->isZero()) { 1806 Operands.pop_back(); 1807 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1808 } 1809 1810 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1811 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1812 const Loop* NestedLoop = NestedAR->getLoop(); 1813 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1814 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 1815 NestedAR->op_end()); 1816 Operands[0] = NestedAR->getStart(); 1817 // AddRecs require their operands be loop-invariant with respect to their 1818 // loops. Don't perform this transformation if it would break this 1819 // requirement. 1820 bool AllInvariant = true; 1821 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1822 if (!Operands[i]->isLoopInvariant(L)) { 1823 AllInvariant = false; 1824 break; 1825 } 1826 if (AllInvariant) { 1827 NestedOperands[0] = getAddRecExpr(Operands, L); 1828 AllInvariant = true; 1829 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 1830 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { 1831 AllInvariant = false; 1832 break; 1833 } 1834 if (AllInvariant) 1835 // Ok, both add recurrences are valid after the transformation. 1836 return getAddRecExpr(NestedOperands, NestedLoop); 1837 } 1838 // Reset Operands to its original state. 1839 Operands[0] = NestedAR; 1840 } 1841 } 1842 1843 FoldingSetNodeID ID; 1844 ID.AddInteger(scAddRecExpr); 1845 ID.AddInteger(Operands.size()); 1846 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1847 ID.AddPointer(Operands[i]); 1848 ID.AddPointer(L); 1849 void *IP = 0; 1850 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1851 SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>(); 1852 new (S) SCEVAddRecExpr(ID, Operands, L); 1853 UniqueSCEVs.InsertNode(S, IP); 1854 return S; 1855 } 1856 1857 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 1858 const SCEV *RHS) { 1859 SmallVector<const SCEV *, 2> Ops; 1860 Ops.push_back(LHS); 1861 Ops.push_back(RHS); 1862 return getSMaxExpr(Ops); 1863 } 1864 1865 const SCEV * 1866 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 1867 assert(!Ops.empty() && "Cannot get empty smax!"); 1868 if (Ops.size() == 1) return Ops[0]; 1869 #ifndef NDEBUG 1870 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1871 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1872 getEffectiveSCEVType(Ops[0]->getType()) && 1873 "SCEVSMaxExpr operand types don't match!"); 1874 #endif 1875 1876 // Sort by complexity, this groups all similar expression types together. 1877 GroupByComplexity(Ops, LI); 1878 1879 // If there are any constants, fold them together. 1880 unsigned Idx = 0; 1881 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1882 ++Idx; 1883 assert(Idx < Ops.size()); 1884 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1885 // We found two constants, fold them together! 1886 ConstantInt *Fold = ConstantInt::get(getContext(), 1887 APIntOps::smax(LHSC->getValue()->getValue(), 1888 RHSC->getValue()->getValue())); 1889 Ops[0] = getConstant(Fold); 1890 Ops.erase(Ops.begin()+1); // Erase the folded element 1891 if (Ops.size() == 1) return Ops[0]; 1892 LHSC = cast<SCEVConstant>(Ops[0]); 1893 } 1894 1895 // If we are left with a constant minimum-int, strip it off. 1896 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1897 Ops.erase(Ops.begin()); 1898 --Idx; 1899 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 1900 // If we have an smax with a constant maximum-int, it will always be 1901 // maximum-int. 1902 return Ops[0]; 1903 } 1904 } 1905 1906 if (Ops.size() == 1) return Ops[0]; 1907 1908 // Find the first SMax 1909 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1910 ++Idx; 1911 1912 // Check to see if one of the operands is an SMax. If so, expand its operands 1913 // onto our operand list, and recurse to simplify. 1914 if (Idx < Ops.size()) { 1915 bool DeletedSMax = false; 1916 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1917 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1918 Ops.erase(Ops.begin()+Idx); 1919 DeletedSMax = true; 1920 } 1921 1922 if (DeletedSMax) 1923 return getSMaxExpr(Ops); 1924 } 1925 1926 // Okay, check to see if the same value occurs in the operand list twice. If 1927 // so, delete one. Since we sorted the list, these values are required to 1928 // be adjacent. 1929 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1930 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1931 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1932 --i; --e; 1933 } 1934 1935 if (Ops.size() == 1) return Ops[0]; 1936 1937 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1938 1939 // Okay, it looks like we really DO need an smax expr. Check to see if we 1940 // already have one, otherwise create a new one. 1941 FoldingSetNodeID ID; 1942 ID.AddInteger(scSMaxExpr); 1943 ID.AddInteger(Ops.size()); 1944 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1945 ID.AddPointer(Ops[i]); 1946 void *IP = 0; 1947 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1948 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>(); 1949 new (S) SCEVSMaxExpr(ID, Ops); 1950 UniqueSCEVs.InsertNode(S, IP); 1951 return S; 1952 } 1953 1954 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 1955 const SCEV *RHS) { 1956 SmallVector<const SCEV *, 2> Ops; 1957 Ops.push_back(LHS); 1958 Ops.push_back(RHS); 1959 return getUMaxExpr(Ops); 1960 } 1961 1962 const SCEV * 1963 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 1964 assert(!Ops.empty() && "Cannot get empty umax!"); 1965 if (Ops.size() == 1) return Ops[0]; 1966 #ifndef NDEBUG 1967 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1968 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1969 getEffectiveSCEVType(Ops[0]->getType()) && 1970 "SCEVUMaxExpr operand types don't match!"); 1971 #endif 1972 1973 // Sort by complexity, this groups all similar expression types together. 1974 GroupByComplexity(Ops, LI); 1975 1976 // If there are any constants, fold them together. 1977 unsigned Idx = 0; 1978 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1979 ++Idx; 1980 assert(Idx < Ops.size()); 1981 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1982 // We found two constants, fold them together! 1983 ConstantInt *Fold = ConstantInt::get(getContext(), 1984 APIntOps::umax(LHSC->getValue()->getValue(), 1985 RHSC->getValue()->getValue())); 1986 Ops[0] = getConstant(Fold); 1987 Ops.erase(Ops.begin()+1); // Erase the folded element 1988 if (Ops.size() == 1) return Ops[0]; 1989 LHSC = cast<SCEVConstant>(Ops[0]); 1990 } 1991 1992 // If we are left with a constant minimum-int, strip it off. 1993 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1994 Ops.erase(Ops.begin()); 1995 --Idx; 1996 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 1997 // If we have an umax with a constant maximum-int, it will always be 1998 // maximum-int. 1999 return Ops[0]; 2000 } 2001 } 2002 2003 if (Ops.size() == 1) return Ops[0]; 2004 2005 // Find the first UMax 2006 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2007 ++Idx; 2008 2009 // Check to see if one of the operands is a UMax. If so, expand its operands 2010 // onto our operand list, and recurse to simplify. 2011 if (Idx < Ops.size()) { 2012 bool DeletedUMax = false; 2013 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2014 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 2015 Ops.erase(Ops.begin()+Idx); 2016 DeletedUMax = true; 2017 } 2018 2019 if (DeletedUMax) 2020 return getUMaxExpr(Ops); 2021 } 2022 2023 // Okay, check to see if the same value occurs in the operand list twice. If 2024 // so, delete one. Since we sorted the list, these values are required to 2025 // be adjacent. 2026 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2027 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 2028 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2029 --i; --e; 2030 } 2031 2032 if (Ops.size() == 1) return Ops[0]; 2033 2034 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2035 2036 // Okay, it looks like we really DO need a umax expr. Check to see if we 2037 // already have one, otherwise create a new one. 2038 FoldingSetNodeID ID; 2039 ID.AddInteger(scUMaxExpr); 2040 ID.AddInteger(Ops.size()); 2041 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2042 ID.AddPointer(Ops[i]); 2043 void *IP = 0; 2044 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2045 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>(); 2046 new (S) SCEVUMaxExpr(ID, Ops); 2047 UniqueSCEVs.InsertNode(S, IP); 2048 return S; 2049 } 2050 2051 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2052 const SCEV *RHS) { 2053 // ~smax(~x, ~y) == smin(x, y). 2054 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2055 } 2056 2057 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2058 const SCEV *RHS) { 2059 // ~umax(~x, ~y) == umin(x, y) 2060 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2061 } 2062 2063 const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy, 2064 unsigned FieldNo) { 2065 // If we have TargetData we can determine the constant offset. 2066 if (TD) { 2067 const Type *IntPtrTy = TD->getIntPtrType(getContext()); 2068 const StructLayout &SL = *TD->getStructLayout(STy); 2069 uint64_t Offset = SL.getElementOffset(FieldNo); 2070 return getIntegerSCEV(Offset, IntPtrTy); 2071 } 2072 2073 // Field 0 is always at offset 0. 2074 if (FieldNo == 0) { 2075 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2076 return getIntegerSCEV(0, Ty); 2077 } 2078 2079 // Okay, it looks like we really DO need an offsetof expr. Check to see if we 2080 // already have one, otherwise create a new one. 2081 FoldingSetNodeID ID; 2082 ID.AddInteger(scFieldOffset); 2083 ID.AddPointer(STy); 2084 ID.AddInteger(FieldNo); 2085 void *IP = 0; 2086 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2087 SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>(); 2088 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2089 new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo); 2090 UniqueSCEVs.InsertNode(S, IP); 2091 return S; 2092 } 2093 2094 const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) { 2095 // If we have TargetData we can determine the constant size. 2096 if (TD && AllocTy->isSized()) { 2097 const Type *IntPtrTy = TD->getIntPtrType(getContext()); 2098 return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy); 2099 } 2100 2101 // Expand an array size into the element size times the number 2102 // of elements. 2103 if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) { 2104 const SCEV *E = getAllocSizeExpr(ATy->getElementType()); 2105 return getMulExpr( 2106 E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()), 2107 ATy->getNumElements()))); 2108 } 2109 2110 // Expand a vector size into the element size times the number 2111 // of elements. 2112 if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) { 2113 const SCEV *E = getAllocSizeExpr(VTy->getElementType()); 2114 return getMulExpr( 2115 E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()), 2116 VTy->getNumElements()))); 2117 } 2118 2119 // Okay, it looks like we really DO need a sizeof expr. Check to see if we 2120 // already have one, otherwise create a new one. 2121 FoldingSetNodeID ID; 2122 ID.AddInteger(scAllocSize); 2123 ID.AddPointer(AllocTy); 2124 void *IP = 0; 2125 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2126 SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>(); 2127 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2128 new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy); 2129 UniqueSCEVs.InsertNode(S, IP); 2130 return S; 2131 } 2132 2133 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2134 // Don't attempt to do anything other than create a SCEVUnknown object 2135 // here. createSCEV only calls getUnknown after checking for all other 2136 // interesting possibilities, and any other code that calls getUnknown 2137 // is doing so in order to hide a value from SCEV canonicalization. 2138 2139 FoldingSetNodeID ID; 2140 ID.AddInteger(scUnknown); 2141 ID.AddPointer(V); 2142 void *IP = 0; 2143 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2144 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>(); 2145 new (S) SCEVUnknown(ID, V); 2146 UniqueSCEVs.InsertNode(S, IP); 2147 return S; 2148 } 2149 2150 //===----------------------------------------------------------------------===// 2151 // Basic SCEV Analysis and PHI Idiom Recognition Code 2152 // 2153 2154 /// isSCEVable - Test if values of the given type are analyzable within 2155 /// the SCEV framework. This primarily includes integer types, and it 2156 /// can optionally include pointer types if the ScalarEvolution class 2157 /// has access to target-specific information. 2158 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2159 // Integers and pointers are always SCEVable. 2160 return Ty->isInteger() || isa<PointerType>(Ty); 2161 } 2162 2163 /// getTypeSizeInBits - Return the size in bits of the specified type, 2164 /// for which isSCEVable must return true. 2165 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2166 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2167 2168 // If we have a TargetData, use it! 2169 if (TD) 2170 return TD->getTypeSizeInBits(Ty); 2171 2172 // Integer types have fixed sizes. 2173 if (Ty->isInteger()) 2174 return Ty->getPrimitiveSizeInBits(); 2175 2176 // The only other support type is pointer. Without TargetData, conservatively 2177 // assume pointers are 64-bit. 2178 assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!"); 2179 return 64; 2180 } 2181 2182 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2183 /// the given type and which represents how SCEV will treat the given 2184 /// type, for which isSCEVable must return true. For pointer types, 2185 /// this is the pointer-sized integer type. 2186 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2187 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2188 2189 if (Ty->isInteger()) 2190 return Ty; 2191 2192 // The only other support type is pointer. 2193 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); 2194 if (TD) return TD->getIntPtrType(getContext()); 2195 2196 // Without TargetData, conservatively assume pointers are 64-bit. 2197 return Type::getInt64Ty(getContext()); 2198 } 2199 2200 const SCEV *ScalarEvolution::getCouldNotCompute() { 2201 return &CouldNotCompute; 2202 } 2203 2204 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2205 /// expression and create a new one. 2206 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2207 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2208 2209 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); 2210 if (I != Scalars.end()) return I->second; 2211 const SCEV *S = createSCEV(V); 2212 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2213 return S; 2214 } 2215 2216 /// getIntegerSCEV - Given a SCEVable type, create a constant for the 2217 /// specified signed integer value and return a SCEV for the constant. 2218 const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 2219 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 2220 return getConstant(ConstantInt::get(ITy, Val)); 2221 } 2222 2223 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2224 /// 2225 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2226 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2227 return getConstant( 2228 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2229 2230 const Type *Ty = V->getType(); 2231 Ty = getEffectiveSCEVType(Ty); 2232 return getMulExpr(V, 2233 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2234 } 2235 2236 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2237 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2238 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2239 return getConstant( 2240 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2241 2242 const Type *Ty = V->getType(); 2243 Ty = getEffectiveSCEVType(Ty); 2244 const SCEV *AllOnes = 2245 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2246 return getMinusSCEV(AllOnes, V); 2247 } 2248 2249 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2250 /// 2251 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2252 const SCEV *RHS) { 2253 // X - Y --> X + -Y 2254 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2255 } 2256 2257 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2258 /// input value to the specified type. If the type must be extended, it is zero 2259 /// extended. 2260 const SCEV * 2261 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, 2262 const Type *Ty) { 2263 const Type *SrcTy = V->getType(); 2264 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2265 (Ty->isInteger() || isa<PointerType>(Ty)) && 2266 "Cannot truncate or zero extend with non-integer arguments!"); 2267 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2268 return V; // No conversion 2269 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2270 return getTruncateExpr(V, Ty); 2271 return getZeroExtendExpr(V, Ty); 2272 } 2273 2274 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2275 /// input value to the specified type. If the type must be extended, it is sign 2276 /// extended. 2277 const SCEV * 2278 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2279 const Type *Ty) { 2280 const Type *SrcTy = V->getType(); 2281 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2282 (Ty->isInteger() || isa<PointerType>(Ty)) && 2283 "Cannot truncate or zero extend with non-integer arguments!"); 2284 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2285 return V; // No conversion 2286 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2287 return getTruncateExpr(V, Ty); 2288 return getSignExtendExpr(V, Ty); 2289 } 2290 2291 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2292 /// input value to the specified type. If the type must be extended, it is zero 2293 /// extended. The conversion must not be narrowing. 2294 const SCEV * 2295 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2296 const Type *SrcTy = V->getType(); 2297 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2298 (Ty->isInteger() || isa<PointerType>(Ty)) && 2299 "Cannot noop or zero extend with non-integer arguments!"); 2300 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2301 "getNoopOrZeroExtend cannot truncate!"); 2302 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2303 return V; // No conversion 2304 return getZeroExtendExpr(V, Ty); 2305 } 2306 2307 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2308 /// input value to the specified type. If the type must be extended, it is sign 2309 /// extended. The conversion must not be narrowing. 2310 const SCEV * 2311 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2312 const Type *SrcTy = V->getType(); 2313 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2314 (Ty->isInteger() || isa<PointerType>(Ty)) && 2315 "Cannot noop or sign extend with non-integer arguments!"); 2316 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2317 "getNoopOrSignExtend cannot truncate!"); 2318 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2319 return V; // No conversion 2320 return getSignExtendExpr(V, Ty); 2321 } 2322 2323 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2324 /// the input value to the specified type. If the type must be extended, 2325 /// it is extended with unspecified bits. The conversion must not be 2326 /// narrowing. 2327 const SCEV * 2328 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2329 const Type *SrcTy = V->getType(); 2330 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2331 (Ty->isInteger() || isa<PointerType>(Ty)) && 2332 "Cannot noop or any extend with non-integer arguments!"); 2333 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2334 "getNoopOrAnyExtend cannot truncate!"); 2335 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2336 return V; // No conversion 2337 return getAnyExtendExpr(V, Ty); 2338 } 2339 2340 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2341 /// input value to the specified type. The conversion must not be widening. 2342 const SCEV * 2343 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2344 const Type *SrcTy = V->getType(); 2345 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2346 (Ty->isInteger() || isa<PointerType>(Ty)) && 2347 "Cannot truncate or noop with non-integer arguments!"); 2348 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2349 "getTruncateOrNoop cannot extend!"); 2350 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2351 return V; // No conversion 2352 return getTruncateExpr(V, Ty); 2353 } 2354 2355 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2356 /// the types using zero-extension, and then perform a umax operation 2357 /// with them. 2358 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2359 const SCEV *RHS) { 2360 const SCEV *PromotedLHS = LHS; 2361 const SCEV *PromotedRHS = RHS; 2362 2363 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2364 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2365 else 2366 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2367 2368 return getUMaxExpr(PromotedLHS, PromotedRHS); 2369 } 2370 2371 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2372 /// the types using zero-extension, and then perform a umin operation 2373 /// with them. 2374 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2375 const SCEV *RHS) { 2376 const SCEV *PromotedLHS = LHS; 2377 const SCEV *PromotedRHS = RHS; 2378 2379 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2380 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2381 else 2382 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2383 2384 return getUMinExpr(PromotedLHS, PromotedRHS); 2385 } 2386 2387 /// PushDefUseChildren - Push users of the given Instruction 2388 /// onto the given Worklist. 2389 static void 2390 PushDefUseChildren(Instruction *I, 2391 SmallVectorImpl<Instruction *> &Worklist) { 2392 // Push the def-use children onto the Worklist stack. 2393 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2394 UI != UE; ++UI) 2395 Worklist.push_back(cast<Instruction>(UI)); 2396 } 2397 2398 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2399 /// instructions that depend on the given instruction and removes them from 2400 /// the Scalars map if they reference SymName. This is used during PHI 2401 /// resolution. 2402 void 2403 ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) { 2404 SmallVector<Instruction *, 16> Worklist; 2405 PushDefUseChildren(I, Worklist); 2406 2407 SmallPtrSet<Instruction *, 8> Visited; 2408 Visited.insert(I); 2409 while (!Worklist.empty()) { 2410 Instruction *I = Worklist.pop_back_val(); 2411 if (!Visited.insert(I)) continue; 2412 2413 std::map<SCEVCallbackVH, const SCEV*>::iterator It = 2414 Scalars.find(static_cast<Value *>(I)); 2415 if (It != Scalars.end()) { 2416 // Short-circuit the def-use traversal if the symbolic name 2417 // ceases to appear in expressions. 2418 if (!It->second->hasOperand(SymName)) 2419 continue; 2420 2421 // SCEVUnknown for a PHI either means that it has an unrecognized 2422 // structure, or it's a PHI that's in the progress of being computed 2423 // by createNodeForPHI. In the former case, additional loop trip 2424 // count information isn't going to change anything. In the later 2425 // case, createNodeForPHI will perform the necessary updates on its 2426 // own when it gets to that point. 2427 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { 2428 ValuesAtScopes.erase(It->second); 2429 Scalars.erase(It); 2430 } 2431 } 2432 2433 PushDefUseChildren(I, Worklist); 2434 } 2435 } 2436 2437 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2438 /// a loop header, making it a potential recurrence, or it doesn't. 2439 /// 2440 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2441 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 2442 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2443 if (L->getHeader() == PN->getParent()) { 2444 // If it lives in the loop header, it has two incoming values, one 2445 // from outside the loop, and one from inside. 2446 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 2447 unsigned BackEdge = IncomingEdge^1; 2448 2449 // While we are analyzing this PHI node, handle its value symbolically. 2450 const SCEV *SymbolicName = getUnknown(PN); 2451 assert(Scalars.find(PN) == Scalars.end() && 2452 "PHI node already processed?"); 2453 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2454 2455 // Using this symbolic name for the PHI, analyze the value coming around 2456 // the back-edge. 2457 Value *BEValueV = PN->getIncomingValue(BackEdge); 2458 const SCEV *BEValue = getSCEV(BEValueV); 2459 2460 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2461 // has a special value for the first iteration of the loop. 2462 2463 // If the value coming around the backedge is an add with the symbolic 2464 // value we just inserted, then we found a simple induction variable! 2465 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2466 // If there is a single occurrence of the symbolic value, replace it 2467 // with a recurrence. 2468 unsigned FoundIndex = Add->getNumOperands(); 2469 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2470 if (Add->getOperand(i) == SymbolicName) 2471 if (FoundIndex == e) { 2472 FoundIndex = i; 2473 break; 2474 } 2475 2476 if (FoundIndex != Add->getNumOperands()) { 2477 // Create an add with everything but the specified operand. 2478 SmallVector<const SCEV *, 8> Ops; 2479 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2480 if (i != FoundIndex) 2481 Ops.push_back(Add->getOperand(i)); 2482 const SCEV *Accum = getAddExpr(Ops); 2483 2484 // This is not a valid addrec if the step amount is varying each 2485 // loop iteration, but is not itself an addrec in this loop. 2486 if (Accum->isLoopInvariant(L) || 2487 (isa<SCEVAddRecExpr>(Accum) && 2488 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2489 const SCEV *StartVal = 2490 getSCEV(PN->getIncomingValue(IncomingEdge)); 2491 const SCEVAddRecExpr *PHISCEV = 2492 cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L)); 2493 2494 // If the increment doesn't overflow, then neither the addrec nor the 2495 // post-increment will overflow. 2496 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) 2497 if (OBO->getOperand(0) == PN && 2498 getSCEV(OBO->getOperand(1)) == 2499 PHISCEV->getStepRecurrence(*this)) { 2500 const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this); 2501 if (OBO->hasNoUnsignedWrap()) { 2502 const_cast<SCEVAddRecExpr *>(PHISCEV) 2503 ->setHasNoUnsignedWrap(true); 2504 const_cast<SCEVAddRecExpr *>(PostInc) 2505 ->setHasNoUnsignedWrap(true); 2506 } 2507 if (OBO->hasNoSignedWrap()) { 2508 const_cast<SCEVAddRecExpr *>(PHISCEV) 2509 ->setHasNoSignedWrap(true); 2510 const_cast<SCEVAddRecExpr *>(PostInc) 2511 ->setHasNoSignedWrap(true); 2512 } 2513 } 2514 2515 // Okay, for the entire analysis of this edge we assumed the PHI 2516 // to be symbolic. We now need to go back and purge all of the 2517 // entries for the scalars that use the symbolic expression. 2518 ForgetSymbolicName(PN, SymbolicName); 2519 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2520 return PHISCEV; 2521 } 2522 } 2523 } else if (const SCEVAddRecExpr *AddRec = 2524 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2525 // Otherwise, this could be a loop like this: 2526 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2527 // In this case, j = {1,+,1} and BEValue is j. 2528 // Because the other in-value of i (0) fits the evolution of BEValue 2529 // i really is an addrec evolution. 2530 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2531 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2532 2533 // If StartVal = j.start - j.stride, we can use StartVal as the 2534 // initial step of the addrec evolution. 2535 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2536 AddRec->getOperand(1))) { 2537 const SCEV *PHISCEV = 2538 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2539 2540 // Okay, for the entire analysis of this edge we assumed the PHI 2541 // to be symbolic. We now need to go back and purge all of the 2542 // entries for the scalars that use the symbolic expression. 2543 ForgetSymbolicName(PN, SymbolicName); 2544 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2545 return PHISCEV; 2546 } 2547 } 2548 } 2549 2550 return SymbolicName; 2551 } 2552 2553 // It's tempting to recognize PHIs with a unique incoming value, however 2554 // this leads passes like indvars to break LCSSA form. Fortunately, such 2555 // PHIs are rare, as instcombine zaps them. 2556 2557 // If it's not a loop phi, we can't handle it yet. 2558 return getUnknown(PN); 2559 } 2560 2561 /// createNodeForGEP - Expand GEP instructions into add and multiply 2562 /// operations. This allows them to be analyzed by regular SCEV code. 2563 /// 2564 const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) { 2565 2566 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2567 Value *Base = GEP->getOperand(0); 2568 // Don't attempt to analyze GEPs over unsized objects. 2569 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2570 return getUnknown(GEP); 2571 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy); 2572 gep_type_iterator GTI = gep_type_begin(GEP); 2573 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2574 E = GEP->op_end(); 2575 I != E; ++I) { 2576 Value *Index = *I; 2577 // Compute the (potentially symbolic) offset in bytes for this index. 2578 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2579 // For a struct, add the member offset. 2580 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2581 TotalOffset = getAddExpr(TotalOffset, 2582 getFieldOffsetExpr(STy, FieldNo)); 2583 } else { 2584 // For an array, add the element offset, explicitly scaled. 2585 const SCEV *LocalOffset = getSCEV(Index); 2586 if (!isa<PointerType>(LocalOffset->getType())) 2587 // Getelementptr indicies are signed. 2588 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy); 2589 LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI)); 2590 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2591 } 2592 } 2593 return getAddExpr(getSCEV(Base), TotalOffset); 2594 } 2595 2596 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2597 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2598 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2599 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2600 uint32_t 2601 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2602 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2603 return C->getValue()->getValue().countTrailingZeros(); 2604 2605 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2606 return std::min(GetMinTrailingZeros(T->getOperand()), 2607 (uint32_t)getTypeSizeInBits(T->getType())); 2608 2609 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2610 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2611 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2612 getTypeSizeInBits(E->getType()) : OpRes; 2613 } 2614 2615 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2616 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2617 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2618 getTypeSizeInBits(E->getType()) : OpRes; 2619 } 2620 2621 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2622 // The result is the min of all operands results. 2623 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2624 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2625 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2626 return MinOpRes; 2627 } 2628 2629 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2630 // The result is the sum of all operands results. 2631 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2632 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2633 for (unsigned i = 1, e = M->getNumOperands(); 2634 SumOpRes != BitWidth && i != e; ++i) 2635 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2636 BitWidth); 2637 return SumOpRes; 2638 } 2639 2640 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2641 // The result is the min of all operands results. 2642 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2643 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2644 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2645 return MinOpRes; 2646 } 2647 2648 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2649 // The result is the min of all operands results. 2650 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2651 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2652 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2653 return MinOpRes; 2654 } 2655 2656 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2657 // The result is the min of all operands results. 2658 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2659 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2660 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2661 return MinOpRes; 2662 } 2663 2664 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2665 // For a SCEVUnknown, ask ValueTracking. 2666 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2667 APInt Mask = APInt::getAllOnesValue(BitWidth); 2668 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2669 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2670 return Zeros.countTrailingOnes(); 2671 } 2672 2673 // SCEVUDivExpr 2674 return 0; 2675 } 2676 2677 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2678 /// 2679 ConstantRange 2680 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2681 2682 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2683 return ConstantRange(C->getValue()->getValue()); 2684 2685 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2686 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 2687 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2688 X = X.add(getUnsignedRange(Add->getOperand(i))); 2689 return X; 2690 } 2691 2692 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2693 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 2694 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2695 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 2696 return X; 2697 } 2698 2699 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2700 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 2701 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2702 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 2703 return X; 2704 } 2705 2706 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2707 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 2708 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2709 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 2710 return X; 2711 } 2712 2713 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2714 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 2715 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 2716 return X.udiv(Y); 2717 } 2718 2719 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2720 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 2721 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth()); 2722 } 2723 2724 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2725 ConstantRange X = getUnsignedRange(SExt->getOperand()); 2726 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth()); 2727 } 2728 2729 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 2730 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 2731 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth()); 2732 } 2733 2734 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true); 2735 2736 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 2737 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop()); 2738 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T); 2739 if (!Trip) return FullSet; 2740 2741 // TODO: non-affine addrec 2742 if (AddRec->isAffine()) { 2743 const Type *Ty = AddRec->getType(); 2744 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 2745 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) { 2746 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 2747 2748 const SCEV *Start = AddRec->getStart(); 2749 const SCEV *Step = AddRec->getStepRecurrence(*this); 2750 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 2751 2752 // Check for overflow. 2753 // TODO: This is very conservative. 2754 if (!(Step->isOne() && 2755 isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) && 2756 !(Step->isAllOnesValue() && 2757 isKnownPredicate(ICmpInst::ICMP_UGT, Start, End))) 2758 return FullSet; 2759 2760 ConstantRange StartRange = getUnsignedRange(Start); 2761 ConstantRange EndRange = getUnsignedRange(End); 2762 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 2763 EndRange.getUnsignedMin()); 2764 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 2765 EndRange.getUnsignedMax()); 2766 if (Min.isMinValue() && Max.isMaxValue()) 2767 return FullSet; 2768 return ConstantRange(Min, Max+1); 2769 } 2770 } 2771 } 2772 2773 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2774 // For a SCEVUnknown, ask ValueTracking. 2775 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2776 APInt Mask = APInt::getAllOnesValue(BitWidth); 2777 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2778 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 2779 if (Ones == ~Zeros + 1) 2780 return FullSet; 2781 return ConstantRange(Ones, ~Zeros + 1); 2782 } 2783 2784 return FullSet; 2785 } 2786 2787 /// getSignedRange - Determine the signed range for a particular SCEV. 2788 /// 2789 ConstantRange 2790 ScalarEvolution::getSignedRange(const SCEV *S) { 2791 2792 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2793 return ConstantRange(C->getValue()->getValue()); 2794 2795 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2796 ConstantRange X = getSignedRange(Add->getOperand(0)); 2797 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2798 X = X.add(getSignedRange(Add->getOperand(i))); 2799 return X; 2800 } 2801 2802 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2803 ConstantRange X = getSignedRange(Mul->getOperand(0)); 2804 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2805 X = X.multiply(getSignedRange(Mul->getOperand(i))); 2806 return X; 2807 } 2808 2809 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2810 ConstantRange X = getSignedRange(SMax->getOperand(0)); 2811 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2812 X = X.smax(getSignedRange(SMax->getOperand(i))); 2813 return X; 2814 } 2815 2816 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2817 ConstantRange X = getSignedRange(UMax->getOperand(0)); 2818 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2819 X = X.umax(getSignedRange(UMax->getOperand(i))); 2820 return X; 2821 } 2822 2823 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2824 ConstantRange X = getSignedRange(UDiv->getLHS()); 2825 ConstantRange Y = getSignedRange(UDiv->getRHS()); 2826 return X.udiv(Y); 2827 } 2828 2829 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2830 ConstantRange X = getSignedRange(ZExt->getOperand()); 2831 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth()); 2832 } 2833 2834 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2835 ConstantRange X = getSignedRange(SExt->getOperand()); 2836 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth()); 2837 } 2838 2839 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 2840 ConstantRange X = getSignedRange(Trunc->getOperand()); 2841 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth()); 2842 } 2843 2844 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true); 2845 2846 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 2847 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop()); 2848 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T); 2849 if (!Trip) return FullSet; 2850 2851 // TODO: non-affine addrec 2852 if (AddRec->isAffine()) { 2853 const Type *Ty = AddRec->getType(); 2854 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 2855 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) { 2856 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 2857 2858 const SCEV *Start = AddRec->getStart(); 2859 const SCEV *Step = AddRec->getStepRecurrence(*this); 2860 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 2861 2862 // Check for overflow. 2863 // TODO: This is very conservative. 2864 if (!(Step->isOne() && 2865 isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) && 2866 !(Step->isAllOnesValue() && 2867 isKnownPredicate(ICmpInst::ICMP_SGT, Start, End))) 2868 return FullSet; 2869 2870 ConstantRange StartRange = getSignedRange(Start); 2871 ConstantRange EndRange = getSignedRange(End); 2872 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 2873 EndRange.getSignedMin()); 2874 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 2875 EndRange.getSignedMax()); 2876 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 2877 return FullSet; 2878 return ConstantRange(Min, Max+1); 2879 } 2880 } 2881 } 2882 2883 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2884 // For a SCEVUnknown, ask ValueTracking. 2885 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2886 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 2887 if (NS == 1) 2888 return FullSet; 2889 return 2890 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 2891 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1); 2892 } 2893 2894 return FullSet; 2895 } 2896 2897 /// createSCEV - We know that there is no SCEV for the specified value. 2898 /// Analyze the expression. 2899 /// 2900 const SCEV *ScalarEvolution::createSCEV(Value *V) { 2901 if (!isSCEVable(V->getType())) 2902 return getUnknown(V); 2903 2904 unsigned Opcode = Instruction::UserOp1; 2905 if (Instruction *I = dyn_cast<Instruction>(V)) 2906 Opcode = I->getOpcode(); 2907 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 2908 Opcode = CE->getOpcode(); 2909 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 2910 return getConstant(CI); 2911 else if (isa<ConstantPointerNull>(V)) 2912 return getIntegerSCEV(0, V->getType()); 2913 else if (isa<UndefValue>(V)) 2914 return getIntegerSCEV(0, V->getType()); 2915 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 2916 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 2917 else 2918 return getUnknown(V); 2919 2920 Operator *U = cast<Operator>(V); 2921 switch (Opcode) { 2922 case Instruction::Add: 2923 return getAddExpr(getSCEV(U->getOperand(0)), 2924 getSCEV(U->getOperand(1))); 2925 case Instruction::Mul: 2926 return getMulExpr(getSCEV(U->getOperand(0)), 2927 getSCEV(U->getOperand(1))); 2928 case Instruction::UDiv: 2929 return getUDivExpr(getSCEV(U->getOperand(0)), 2930 getSCEV(U->getOperand(1))); 2931 case Instruction::Sub: 2932 return getMinusSCEV(getSCEV(U->getOperand(0)), 2933 getSCEV(U->getOperand(1))); 2934 case Instruction::And: 2935 // For an expression like x&255 that merely masks off the high bits, 2936 // use zext(trunc(x)) as the SCEV expression. 2937 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2938 if (CI->isNullValue()) 2939 return getSCEV(U->getOperand(1)); 2940 if (CI->isAllOnesValue()) 2941 return getSCEV(U->getOperand(0)); 2942 const APInt &A = CI->getValue(); 2943 2944 // Instcombine's ShrinkDemandedConstant may strip bits out of 2945 // constants, obscuring what would otherwise be a low-bits mask. 2946 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 2947 // knew about to reconstruct a low-bits mask value. 2948 unsigned LZ = A.countLeadingZeros(); 2949 unsigned BitWidth = A.getBitWidth(); 2950 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 2951 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2952 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 2953 2954 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 2955 2956 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 2957 return 2958 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 2959 IntegerType::get(getContext(), BitWidth - LZ)), 2960 U->getType()); 2961 } 2962 break; 2963 2964 case Instruction::Or: 2965 // If the RHS of the Or is a constant, we may have something like: 2966 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 2967 // optimizations will transparently handle this case. 2968 // 2969 // In order for this transformation to be safe, the LHS must be of the 2970 // form X*(2^n) and the Or constant must be less than 2^n. 2971 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2972 const SCEV *LHS = getSCEV(U->getOperand(0)); 2973 const APInt &CIVal = CI->getValue(); 2974 if (GetMinTrailingZeros(LHS) >= 2975 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 2976 return getAddExpr(LHS, getSCEV(U->getOperand(1))); 2977 } 2978 break; 2979 case Instruction::Xor: 2980 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2981 // If the RHS of the xor is a signbit, then this is just an add. 2982 // Instcombine turns add of signbit into xor as a strength reduction step. 2983 if (CI->getValue().isSignBit()) 2984 return getAddExpr(getSCEV(U->getOperand(0)), 2985 getSCEV(U->getOperand(1))); 2986 2987 // If the RHS of xor is -1, then this is a not operation. 2988 if (CI->isAllOnesValue()) 2989 return getNotSCEV(getSCEV(U->getOperand(0))); 2990 2991 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 2992 // This is a variant of the check for xor with -1, and it handles 2993 // the case where instcombine has trimmed non-demanded bits out 2994 // of an xor with -1. 2995 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 2996 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 2997 if (BO->getOpcode() == Instruction::And && 2998 LCI->getValue() == CI->getValue()) 2999 if (const SCEVZeroExtendExpr *Z = 3000 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3001 const Type *UTy = U->getType(); 3002 const SCEV *Z0 = Z->getOperand(); 3003 const Type *Z0Ty = Z0->getType(); 3004 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3005 3006 // If C is a low-bits mask, the zero extend is zerving to 3007 // mask off the high bits. Complement the operand and 3008 // re-apply the zext. 3009 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3010 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3011 3012 // If C is a single bit, it may be in the sign-bit position 3013 // before the zero-extend. In this case, represent the xor 3014 // using an add, which is equivalent, and re-apply the zext. 3015 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 3016 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3017 Trunc.isSignBit()) 3018 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3019 UTy); 3020 } 3021 } 3022 break; 3023 3024 case Instruction::Shl: 3025 // Turn shift left of a constant amount into a multiply. 3026 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3027 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 3028 Constant *X = ConstantInt::get(getContext(), 3029 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 3030 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3031 } 3032 break; 3033 3034 case Instruction::LShr: 3035 // Turn logical shift right of a constant into a unsigned divide. 3036 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3037 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 3038 Constant *X = ConstantInt::get(getContext(), 3039 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 3040 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3041 } 3042 break; 3043 3044 case Instruction::AShr: 3045 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3046 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3047 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 3048 if (L->getOpcode() == Instruction::Shl && 3049 L->getOperand(1) == U->getOperand(1)) { 3050 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3051 uint64_t Amt = BitWidth - CI->getZExtValue(); 3052 if (Amt == BitWidth) 3053 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3054 if (Amt > BitWidth) 3055 return getIntegerSCEV(0, U->getType()); // value is undefined 3056 return 3057 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3058 IntegerType::get(getContext(), Amt)), 3059 U->getType()); 3060 } 3061 break; 3062 3063 case Instruction::Trunc: 3064 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3065 3066 case Instruction::ZExt: 3067 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3068 3069 case Instruction::SExt: 3070 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3071 3072 case Instruction::BitCast: 3073 // BitCasts are no-op casts so we just eliminate the cast. 3074 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3075 return getSCEV(U->getOperand(0)); 3076 break; 3077 3078 // It's tempting to handle inttoptr and ptrtoint, however this can 3079 // lead to pointer expressions which cannot be expanded to GEPs 3080 // (because they may overflow). For now, the only pointer-typed 3081 // expressions we handle are GEPs and address literals. 3082 3083 case Instruction::GetElementPtr: 3084 return createNodeForGEP(U); 3085 3086 case Instruction::PHI: 3087 return createNodeForPHI(cast<PHINode>(U)); 3088 3089 case Instruction::Select: 3090 // This could be a smax or umax that was lowered earlier. 3091 // Try to recover it. 3092 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3093 Value *LHS = ICI->getOperand(0); 3094 Value *RHS = ICI->getOperand(1); 3095 switch (ICI->getPredicate()) { 3096 case ICmpInst::ICMP_SLT: 3097 case ICmpInst::ICMP_SLE: 3098 std::swap(LHS, RHS); 3099 // fall through 3100 case ICmpInst::ICMP_SGT: 3101 case ICmpInst::ICMP_SGE: 3102 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 3103 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 3104 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 3105 return getSMinExpr(getSCEV(LHS), getSCEV(RHS)); 3106 break; 3107 case ICmpInst::ICMP_ULT: 3108 case ICmpInst::ICMP_ULE: 3109 std::swap(LHS, RHS); 3110 // fall through 3111 case ICmpInst::ICMP_UGT: 3112 case ICmpInst::ICMP_UGE: 3113 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 3114 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 3115 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 3116 return getUMinExpr(getSCEV(LHS), getSCEV(RHS)); 3117 break; 3118 case ICmpInst::ICMP_NE: 3119 // n != 0 ? n : 1 -> umax(n, 1) 3120 if (LHS == U->getOperand(1) && 3121 isa<ConstantInt>(U->getOperand(2)) && 3122 cast<ConstantInt>(U->getOperand(2))->isOne() && 3123 isa<ConstantInt>(RHS) && 3124 cast<ConstantInt>(RHS)->isZero()) 3125 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2))); 3126 break; 3127 case ICmpInst::ICMP_EQ: 3128 // n == 0 ? 1 : n -> umax(n, 1) 3129 if (LHS == U->getOperand(2) && 3130 isa<ConstantInt>(U->getOperand(1)) && 3131 cast<ConstantInt>(U->getOperand(1))->isOne() && 3132 isa<ConstantInt>(RHS) && 3133 cast<ConstantInt>(RHS)->isZero()) 3134 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1))); 3135 break; 3136 default: 3137 break; 3138 } 3139 } 3140 3141 default: // We cannot analyze this expression. 3142 break; 3143 } 3144 3145 return getUnknown(V); 3146 } 3147 3148 3149 3150 //===----------------------------------------------------------------------===// 3151 // Iteration Count Computation Code 3152 // 3153 3154 /// getBackedgeTakenCount - If the specified loop has a predictable 3155 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3156 /// object. The backedge-taken count is the number of times the loop header 3157 /// will be branched to from within the loop. This is one less than the 3158 /// trip count of the loop, since it doesn't count the first iteration, 3159 /// when the header is branched to from outside the loop. 3160 /// 3161 /// Note that it is not valid to call this method on a loop without a 3162 /// loop-invariant backedge-taken count (see 3163 /// hasLoopInvariantBackedgeTakenCount). 3164 /// 3165 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3166 return getBackedgeTakenInfo(L).Exact; 3167 } 3168 3169 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3170 /// return the least SCEV value that is known never to be less than the 3171 /// actual backedge taken count. 3172 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3173 return getBackedgeTakenInfo(L).Max; 3174 } 3175 3176 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3177 /// onto the given Worklist. 3178 static void 3179 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3180 BasicBlock *Header = L->getHeader(); 3181 3182 // Push all Loop-header PHIs onto the Worklist stack. 3183 for (BasicBlock::iterator I = Header->begin(); 3184 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3185 Worklist.push_back(PN); 3186 } 3187 3188 const ScalarEvolution::BackedgeTakenInfo & 3189 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3190 // Initially insert a CouldNotCompute for this loop. If the insertion 3191 // succeeds, procede to actually compute a backedge-taken count and 3192 // update the value. The temporary CouldNotCompute value tells SCEV 3193 // code elsewhere that it shouldn't attempt to request a new 3194 // backedge-taken count, which could result in infinite recursion. 3195 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = 3196 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3197 if (Pair.second) { 3198 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); 3199 if (ItCount.Exact != getCouldNotCompute()) { 3200 assert(ItCount.Exact->isLoopInvariant(L) && 3201 ItCount.Max->isLoopInvariant(L) && 3202 "Computed trip count isn't loop invariant for loop!"); 3203 ++NumTripCountsComputed; 3204 3205 // Update the value in the map. 3206 Pair.first->second = ItCount; 3207 } else { 3208 if (ItCount.Max != getCouldNotCompute()) 3209 // Update the value in the map. 3210 Pair.first->second = ItCount; 3211 if (isa<PHINode>(L->getHeader()->begin())) 3212 // Only count loops that have phi nodes as not being computable. 3213 ++NumTripCountsNotComputed; 3214 } 3215 3216 // Now that we know more about the trip count for this loop, forget any 3217 // existing SCEV values for PHI nodes in this loop since they are only 3218 // conservative estimates made without the benefit of trip count 3219 // information. This is similar to the code in 3220 // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI 3221 // nodes specially. 3222 if (ItCount.hasAnyInfo()) { 3223 SmallVector<Instruction *, 16> Worklist; 3224 PushLoopPHIs(L, Worklist); 3225 3226 SmallPtrSet<Instruction *, 8> Visited; 3227 while (!Worklist.empty()) { 3228 Instruction *I = Worklist.pop_back_val(); 3229 if (!Visited.insert(I)) continue; 3230 3231 std::map<SCEVCallbackVH, const SCEV*>::iterator It = 3232 Scalars.find(static_cast<Value *>(I)); 3233 if (It != Scalars.end()) { 3234 // SCEVUnknown for a PHI either means that it has an unrecognized 3235 // structure, or it's a PHI that's in the progress of being computed 3236 // by createNodeForPHI. In the former case, additional loop trip 3237 // count information isn't going to change anything. In the later 3238 // case, createNodeForPHI will perform the necessary updates on its 3239 // own when it gets to that point. 3240 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { 3241 ValuesAtScopes.erase(It->second); 3242 Scalars.erase(It); 3243 } 3244 if (PHINode *PN = dyn_cast<PHINode>(I)) 3245 ConstantEvolutionLoopExitValue.erase(PN); 3246 } 3247 3248 PushDefUseChildren(I, Worklist); 3249 } 3250 } 3251 } 3252 return Pair.first->second; 3253 } 3254 3255 /// forgetLoopBackedgeTakenCount - This method should be called by the 3256 /// client when it has changed a loop in a way that may effect 3257 /// ScalarEvolution's ability to compute a trip count, or if the loop 3258 /// is deleted. 3259 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 3260 BackedgeTakenCounts.erase(L); 3261 3262 SmallVector<Instruction *, 16> Worklist; 3263 PushLoopPHIs(L, Worklist); 3264 3265 SmallPtrSet<Instruction *, 8> Visited; 3266 while (!Worklist.empty()) { 3267 Instruction *I = Worklist.pop_back_val(); 3268 if (!Visited.insert(I)) continue; 3269 3270 std::map<SCEVCallbackVH, const SCEV*>::iterator It = 3271 Scalars.find(static_cast<Value *>(I)); 3272 if (It != Scalars.end()) { 3273 ValuesAtScopes.erase(It->second); 3274 Scalars.erase(It); 3275 if (PHINode *PN = dyn_cast<PHINode>(I)) 3276 ConstantEvolutionLoopExitValue.erase(PN); 3277 } 3278 3279 PushDefUseChildren(I, Worklist); 3280 } 3281 } 3282 3283 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3284 /// of the specified loop will execute. 3285 ScalarEvolution::BackedgeTakenInfo 3286 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3287 SmallVector<BasicBlock*, 8> ExitingBlocks; 3288 L->getExitingBlocks(ExitingBlocks); 3289 3290 // Examine all exits and pick the most conservative values. 3291 const SCEV *BECount = getCouldNotCompute(); 3292 const SCEV *MaxBECount = getCouldNotCompute(); 3293 bool CouldNotComputeBECount = false; 3294 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3295 BackedgeTakenInfo NewBTI = 3296 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3297 3298 if (NewBTI.Exact == getCouldNotCompute()) { 3299 // We couldn't compute an exact value for this exit, so 3300 // we won't be able to compute an exact value for the loop. 3301 CouldNotComputeBECount = true; 3302 BECount = getCouldNotCompute(); 3303 } else if (!CouldNotComputeBECount) { 3304 if (BECount == getCouldNotCompute()) 3305 BECount = NewBTI.Exact; 3306 else 3307 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3308 } 3309 if (MaxBECount == getCouldNotCompute()) 3310 MaxBECount = NewBTI.Max; 3311 else if (NewBTI.Max != getCouldNotCompute()) 3312 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3313 } 3314 3315 return BackedgeTakenInfo(BECount, MaxBECount); 3316 } 3317 3318 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3319 /// of the specified loop will execute if it exits via the specified block. 3320 ScalarEvolution::BackedgeTakenInfo 3321 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3322 BasicBlock *ExitingBlock) { 3323 3324 // Okay, we've chosen an exiting block. See what condition causes us to 3325 // exit at this block. 3326 // 3327 // FIXME: we should be able to handle switch instructions (with a single exit) 3328 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3329 if (ExitBr == 0) return getCouldNotCompute(); 3330 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3331 3332 // At this point, we know we have a conditional branch that determines whether 3333 // the loop is exited. However, we don't know if the branch is executed each 3334 // time through the loop. If not, then the execution count of the branch will 3335 // not be equal to the trip count of the loop. 3336 // 3337 // Currently we check for this by checking to see if the Exit branch goes to 3338 // the loop header. If so, we know it will always execute the same number of 3339 // times as the loop. We also handle the case where the exit block *is* the 3340 // loop header. This is common for un-rotated loops. 3341 // 3342 // If both of those tests fail, walk up the unique predecessor chain to the 3343 // header, stopping if there is an edge that doesn't exit the loop. If the 3344 // header is reached, the execution count of the branch will be equal to the 3345 // trip count of the loop. 3346 // 3347 // More extensive analysis could be done to handle more cases here. 3348 // 3349 if (ExitBr->getSuccessor(0) != L->getHeader() && 3350 ExitBr->getSuccessor(1) != L->getHeader() && 3351 ExitBr->getParent() != L->getHeader()) { 3352 // The simple checks failed, try climbing the unique predecessor chain 3353 // up to the header. 3354 bool Ok = false; 3355 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3356 BasicBlock *Pred = BB->getUniquePredecessor(); 3357 if (!Pred) 3358 return getCouldNotCompute(); 3359 TerminatorInst *PredTerm = Pred->getTerminator(); 3360 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3361 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3362 if (PredSucc == BB) 3363 continue; 3364 // If the predecessor has a successor that isn't BB and isn't 3365 // outside the loop, assume the worst. 3366 if (L->contains(PredSucc)) 3367 return getCouldNotCompute(); 3368 } 3369 if (Pred == L->getHeader()) { 3370 Ok = true; 3371 break; 3372 } 3373 BB = Pred; 3374 } 3375 if (!Ok) 3376 return getCouldNotCompute(); 3377 } 3378 3379 // Procede to the next level to examine the exit condition expression. 3380 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3381 ExitBr->getSuccessor(0), 3382 ExitBr->getSuccessor(1)); 3383 } 3384 3385 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3386 /// backedge of the specified loop will execute if its exit condition 3387 /// were a conditional branch of ExitCond, TBB, and FBB. 3388 ScalarEvolution::BackedgeTakenInfo 3389 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3390 Value *ExitCond, 3391 BasicBlock *TBB, 3392 BasicBlock *FBB) { 3393 // Check if the controlling expression for this loop is an And or Or. 3394 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3395 if (BO->getOpcode() == Instruction::And) { 3396 // Recurse on the operands of the and. 3397 BackedgeTakenInfo BTI0 = 3398 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3399 BackedgeTakenInfo BTI1 = 3400 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3401 const SCEV *BECount = getCouldNotCompute(); 3402 const SCEV *MaxBECount = getCouldNotCompute(); 3403 if (L->contains(TBB)) { 3404 // Both conditions must be true for the loop to continue executing. 3405 // Choose the less conservative count. 3406 if (BTI0.Exact == getCouldNotCompute() || 3407 BTI1.Exact == getCouldNotCompute()) 3408 BECount = getCouldNotCompute(); 3409 else 3410 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3411 if (BTI0.Max == getCouldNotCompute()) 3412 MaxBECount = BTI1.Max; 3413 else if (BTI1.Max == getCouldNotCompute()) 3414 MaxBECount = BTI0.Max; 3415 else 3416 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3417 } else { 3418 // Both conditions must be true for the loop to exit. 3419 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3420 if (BTI0.Exact != getCouldNotCompute() && 3421 BTI1.Exact != getCouldNotCompute()) 3422 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3423 if (BTI0.Max != getCouldNotCompute() && 3424 BTI1.Max != getCouldNotCompute()) 3425 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3426 } 3427 3428 return BackedgeTakenInfo(BECount, MaxBECount); 3429 } 3430 if (BO->getOpcode() == Instruction::Or) { 3431 // Recurse on the operands of the or. 3432 BackedgeTakenInfo BTI0 = 3433 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3434 BackedgeTakenInfo BTI1 = 3435 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3436 const SCEV *BECount = getCouldNotCompute(); 3437 const SCEV *MaxBECount = getCouldNotCompute(); 3438 if (L->contains(FBB)) { 3439 // Both conditions must be false for the loop to continue executing. 3440 // Choose the less conservative count. 3441 if (BTI0.Exact == getCouldNotCompute() || 3442 BTI1.Exact == getCouldNotCompute()) 3443 BECount = getCouldNotCompute(); 3444 else 3445 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3446 if (BTI0.Max == getCouldNotCompute()) 3447 MaxBECount = BTI1.Max; 3448 else if (BTI1.Max == getCouldNotCompute()) 3449 MaxBECount = BTI0.Max; 3450 else 3451 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3452 } else { 3453 // Both conditions must be false for the loop to exit. 3454 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3455 if (BTI0.Exact != getCouldNotCompute() && 3456 BTI1.Exact != getCouldNotCompute()) 3457 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3458 if (BTI0.Max != getCouldNotCompute() && 3459 BTI1.Max != getCouldNotCompute()) 3460 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3461 } 3462 3463 return BackedgeTakenInfo(BECount, MaxBECount); 3464 } 3465 } 3466 3467 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3468 // Procede to the next level to examine the icmp. 3469 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3470 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3471 3472 // If it's not an integer or pointer comparison then compute it the hard way. 3473 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3474 } 3475 3476 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3477 /// backedge of the specified loop will execute if its exit condition 3478 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3479 ScalarEvolution::BackedgeTakenInfo 3480 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3481 ICmpInst *ExitCond, 3482 BasicBlock *TBB, 3483 BasicBlock *FBB) { 3484 3485 // If the condition was exit on true, convert the condition to exit on false 3486 ICmpInst::Predicate Cond; 3487 if (!L->contains(FBB)) 3488 Cond = ExitCond->getPredicate(); 3489 else 3490 Cond = ExitCond->getInversePredicate(); 3491 3492 // Handle common loops like: for (X = "string"; *X; ++X) 3493 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3494 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3495 const SCEV *ItCnt = 3496 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3497 if (!isa<SCEVCouldNotCompute>(ItCnt)) { 3498 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType()); 3499 return BackedgeTakenInfo(ItCnt, 3500 isa<SCEVConstant>(ItCnt) ? ItCnt : 3501 getConstant(APInt::getMaxValue(BitWidth)-1)); 3502 } 3503 } 3504 3505 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 3506 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 3507 3508 // Try to evaluate any dependencies out of the loop. 3509 LHS = getSCEVAtScope(LHS, L); 3510 RHS = getSCEVAtScope(RHS, L); 3511 3512 // At this point, we would like to compute how many iterations of the 3513 // loop the predicate will return true for these inputs. 3514 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3515 // If there is a loop-invariant, force it into the RHS. 3516 std::swap(LHS, RHS); 3517 Cond = ICmpInst::getSwappedPredicate(Cond); 3518 } 3519 3520 // If we have a comparison of a chrec against a constant, try to use value 3521 // ranges to answer this query. 3522 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3523 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3524 if (AddRec->getLoop() == L) { 3525 // Form the constant range. 3526 ConstantRange CompRange( 3527 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3528 3529 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3530 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3531 } 3532 3533 switch (Cond) { 3534 case ICmpInst::ICMP_NE: { // while (X != Y) 3535 // Convert to: while (X-Y != 0) 3536 const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3537 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 3538 break; 3539 } 3540 case ICmpInst::ICMP_EQ: { // while (X == Y) 3541 // Convert to: while (X-Y == 0) 3542 const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 3543 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 3544 break; 3545 } 3546 case ICmpInst::ICMP_SLT: { 3547 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 3548 if (BTI.hasAnyInfo()) return BTI; 3549 break; 3550 } 3551 case ICmpInst::ICMP_SGT: { 3552 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3553 getNotSCEV(RHS), L, true); 3554 if (BTI.hasAnyInfo()) return BTI; 3555 break; 3556 } 3557 case ICmpInst::ICMP_ULT: { 3558 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 3559 if (BTI.hasAnyInfo()) return BTI; 3560 break; 3561 } 3562 case ICmpInst::ICMP_UGT: { 3563 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3564 getNotSCEV(RHS), L, false); 3565 if (BTI.hasAnyInfo()) return BTI; 3566 break; 3567 } 3568 default: 3569 #if 0 3570 errs() << "ComputeBackedgeTakenCount "; 3571 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 3572 errs() << "[unsigned] "; 3573 errs() << *LHS << " " 3574 << Instruction::getOpcodeName(Instruction::ICmp) 3575 << " " << *RHS << "\n"; 3576 #endif 3577 break; 3578 } 3579 return 3580 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3581 } 3582 3583 static ConstantInt * 3584 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 3585 ScalarEvolution &SE) { 3586 const SCEV *InVal = SE.getConstant(C); 3587 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 3588 assert(isa<SCEVConstant>(Val) && 3589 "Evaluation of SCEV at constant didn't fold correctly?"); 3590 return cast<SCEVConstant>(Val)->getValue(); 3591 } 3592 3593 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 3594 /// and a GEP expression (missing the pointer index) indexing into it, return 3595 /// the addressed element of the initializer or null if the index expression is 3596 /// invalid. 3597 static Constant * 3598 GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV, 3599 const std::vector<ConstantInt*> &Indices) { 3600 Constant *Init = GV->getInitializer(); 3601 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 3602 uint64_t Idx = Indices[i]->getZExtValue(); 3603 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 3604 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 3605 Init = cast<Constant>(CS->getOperand(Idx)); 3606 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 3607 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 3608 Init = cast<Constant>(CA->getOperand(Idx)); 3609 } else if (isa<ConstantAggregateZero>(Init)) { 3610 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 3611 assert(Idx < STy->getNumElements() && "Bad struct index!"); 3612 Init = Constant::getNullValue(STy->getElementType(Idx)); 3613 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 3614 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 3615 Init = Constant::getNullValue(ATy->getElementType()); 3616 } else { 3617 llvm_unreachable("Unknown constant aggregate type!"); 3618 } 3619 return 0; 3620 } else { 3621 return 0; // Unknown initializer type 3622 } 3623 } 3624 return Init; 3625 } 3626 3627 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 3628 /// 'icmp op load X, cst', try to see if we can compute the backedge 3629 /// execution count. 3630 const SCEV * 3631 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 3632 LoadInst *LI, 3633 Constant *RHS, 3634 const Loop *L, 3635 ICmpInst::Predicate predicate) { 3636 if (LI->isVolatile()) return getCouldNotCompute(); 3637 3638 // Check to see if the loaded pointer is a getelementptr of a global. 3639 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 3640 if (!GEP) return getCouldNotCompute(); 3641 3642 // Make sure that it is really a constant global we are gepping, with an 3643 // initializer, and make sure the first IDX is really 0. 3644 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 3645 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 3646 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 3647 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 3648 return getCouldNotCompute(); 3649 3650 // Okay, we allow one non-constant index into the GEP instruction. 3651 Value *VarIdx = 0; 3652 std::vector<ConstantInt*> Indexes; 3653 unsigned VarIdxNum = 0; 3654 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 3655 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 3656 Indexes.push_back(CI); 3657 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 3658 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 3659 VarIdx = GEP->getOperand(i); 3660 VarIdxNum = i-2; 3661 Indexes.push_back(0); 3662 } 3663 3664 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 3665 // Check to see if X is a loop variant variable value now. 3666 const SCEV *Idx = getSCEV(VarIdx); 3667 Idx = getSCEVAtScope(Idx, L); 3668 3669 // We can only recognize very limited forms of loop index expressions, in 3670 // particular, only affine AddRec's like {C1,+,C2}. 3671 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 3672 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 3673 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 3674 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 3675 return getCouldNotCompute(); 3676 3677 unsigned MaxSteps = MaxBruteForceIterations; 3678 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 3679 ConstantInt *ItCst = ConstantInt::get( 3680 cast<IntegerType>(IdxExpr->getType()), IterationNum); 3681 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 3682 3683 // Form the GEP offset. 3684 Indexes[VarIdxNum] = Val; 3685 3686 Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes); 3687 if (Result == 0) break; // Cannot compute! 3688 3689 // Evaluate the condition for this iteration. 3690 Result = ConstantExpr::getICmp(predicate, Result, RHS); 3691 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 3692 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 3693 #if 0 3694 errs() << "\n***\n*** Computed loop count " << *ItCst 3695 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 3696 << "***\n"; 3697 #endif 3698 ++NumArrayLenItCounts; 3699 return getConstant(ItCst); // Found terminating iteration! 3700 } 3701 } 3702 return getCouldNotCompute(); 3703 } 3704 3705 3706 /// CanConstantFold - Return true if we can constant fold an instruction of the 3707 /// specified type, assuming that all operands were constants. 3708 static bool CanConstantFold(const Instruction *I) { 3709 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 3710 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 3711 return true; 3712 3713 if (const CallInst *CI = dyn_cast<CallInst>(I)) 3714 if (const Function *F = CI->getCalledFunction()) 3715 return canConstantFoldCallTo(F); 3716 return false; 3717 } 3718 3719 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 3720 /// in the loop that V is derived from. We allow arbitrary operations along the 3721 /// way, but the operands of an operation must either be constants or a value 3722 /// derived from a constant PHI. If this expression does not fit with these 3723 /// constraints, return null. 3724 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 3725 // If this is not an instruction, or if this is an instruction outside of the 3726 // loop, it can't be derived from a loop PHI. 3727 Instruction *I = dyn_cast<Instruction>(V); 3728 if (I == 0 || !L->contains(I->getParent())) return 0; 3729 3730 if (PHINode *PN = dyn_cast<PHINode>(I)) { 3731 if (L->getHeader() == I->getParent()) 3732 return PN; 3733 else 3734 // We don't currently keep track of the control flow needed to evaluate 3735 // PHIs, so we cannot handle PHIs inside of loops. 3736 return 0; 3737 } 3738 3739 // If we won't be able to constant fold this expression even if the operands 3740 // are constants, return early. 3741 if (!CanConstantFold(I)) return 0; 3742 3743 // Otherwise, we can evaluate this instruction if all of its operands are 3744 // constant or derived from a PHI node themselves. 3745 PHINode *PHI = 0; 3746 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 3747 if (!(isa<Constant>(I->getOperand(Op)) || 3748 isa<GlobalValue>(I->getOperand(Op)))) { 3749 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 3750 if (P == 0) return 0; // Not evolving from PHI 3751 if (PHI == 0) 3752 PHI = P; 3753 else if (PHI != P) 3754 return 0; // Evolving from multiple different PHIs. 3755 } 3756 3757 // This is a expression evolving from a constant PHI! 3758 return PHI; 3759 } 3760 3761 /// EvaluateExpression - Given an expression that passes the 3762 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 3763 /// in the loop has the value PHIVal. If we can't fold this expression for some 3764 /// reason, return null. 3765 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 3766 if (isa<PHINode>(V)) return PHIVal; 3767 if (Constant *C = dyn_cast<Constant>(V)) return C; 3768 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 3769 Instruction *I = cast<Instruction>(V); 3770 LLVMContext &Context = I->getParent()->getContext(); 3771 3772 std::vector<Constant*> Operands; 3773 Operands.resize(I->getNumOperands()); 3774 3775 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3776 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 3777 if (Operands[i] == 0) return 0; 3778 } 3779 3780 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3781 return ConstantFoldCompareInstOperands(CI->getPredicate(), 3782 &Operands[0], Operands.size(), 3783 Context); 3784 else 3785 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3786 &Operands[0], Operands.size(), 3787 Context); 3788 } 3789 3790 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 3791 /// in the header of its containing loop, we know the loop executes a 3792 /// constant number of times, and the PHI node is just a recurrence 3793 /// involving constants, fold it. 3794 Constant * 3795 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 3796 const APInt& BEs, 3797 const Loop *L) { 3798 std::map<PHINode*, Constant*>::iterator I = 3799 ConstantEvolutionLoopExitValue.find(PN); 3800 if (I != ConstantEvolutionLoopExitValue.end()) 3801 return I->second; 3802 3803 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 3804 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 3805 3806 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 3807 3808 // Since the loop is canonicalized, the PHI node must have two entries. One 3809 // entry must be a constant (coming in from outside of the loop), and the 3810 // second must be derived from the same PHI. 3811 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3812 Constant *StartCST = 3813 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3814 if (StartCST == 0) 3815 return RetVal = 0; // Must be a constant. 3816 3817 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3818 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3819 if (PN2 != PN) 3820 return RetVal = 0; // Not derived from same PHI. 3821 3822 // Execute the loop symbolically to determine the exit value. 3823 if (BEs.getActiveBits() >= 32) 3824 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 3825 3826 unsigned NumIterations = BEs.getZExtValue(); // must be in range 3827 unsigned IterationNum = 0; 3828 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 3829 if (IterationNum == NumIterations) 3830 return RetVal = PHIVal; // Got exit value! 3831 3832 // Compute the value of the PHI node for the next iteration. 3833 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3834 if (NextPHI == PHIVal) 3835 return RetVal = NextPHI; // Stopped evolving! 3836 if (NextPHI == 0) 3837 return 0; // Couldn't evaluate! 3838 PHIVal = NextPHI; 3839 } 3840 } 3841 3842 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 3843 /// constant number of times (the condition evolves only from constants), 3844 /// try to evaluate a few iterations of the loop until we get the exit 3845 /// condition gets a value of ExitWhen (true or false). If we cannot 3846 /// evaluate the trip count of the loop, return getCouldNotCompute(). 3847 const SCEV * 3848 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 3849 Value *Cond, 3850 bool ExitWhen) { 3851 PHINode *PN = getConstantEvolvingPHI(Cond, L); 3852 if (PN == 0) return getCouldNotCompute(); 3853 3854 // Since the loop is canonicalized, the PHI node must have two entries. One 3855 // entry must be a constant (coming in from outside of the loop), and the 3856 // second must be derived from the same PHI. 3857 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3858 Constant *StartCST = 3859 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3860 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 3861 3862 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3863 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3864 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI. 3865 3866 // Okay, we find a PHI node that defines the trip count of this loop. Execute 3867 // the loop symbolically to determine when the condition gets a value of 3868 // "ExitWhen". 3869 unsigned IterationNum = 0; 3870 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 3871 for (Constant *PHIVal = StartCST; 3872 IterationNum != MaxIterations; ++IterationNum) { 3873 ConstantInt *CondVal = 3874 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 3875 3876 // Couldn't symbolically evaluate. 3877 if (!CondVal) return getCouldNotCompute(); 3878 3879 if (CondVal->getValue() == uint64_t(ExitWhen)) { 3880 ++NumBruteForceTripCountsComputed; 3881 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 3882 } 3883 3884 // Compute the value of the PHI node for the next iteration. 3885 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3886 if (NextPHI == 0 || NextPHI == PHIVal) 3887 return getCouldNotCompute();// Couldn't evaluate or not making progress... 3888 PHIVal = NextPHI; 3889 } 3890 3891 // Too many iterations were needed to evaluate. 3892 return getCouldNotCompute(); 3893 } 3894 3895 /// getSCEVAtScope - Return a SCEV expression handle for the specified value 3896 /// at the specified scope in the program. The L value specifies a loop 3897 /// nest to evaluate the expression at, where null is the top-level or a 3898 /// specified loop is immediately inside of the loop. 3899 /// 3900 /// This method can be used to compute the exit value for a variable defined 3901 /// in a loop by querying what the value will hold in the parent loop. 3902 /// 3903 /// In the case that a relevant loop exit value cannot be computed, the 3904 /// original value V is returned. 3905 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 3906 // Check to see if we've folded this expression at this loop before. 3907 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 3908 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 3909 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 3910 if (!Pair.second) 3911 return Pair.first->second ? Pair.first->second : V; 3912 3913 // Otherwise compute it. 3914 const SCEV *C = computeSCEVAtScope(V, L); 3915 ValuesAtScopes[V][L] = C; 3916 return C; 3917 } 3918 3919 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 3920 if (isa<SCEVConstant>(V)) return V; 3921 3922 // If this instruction is evolved from a constant-evolving PHI, compute the 3923 // exit value from the loop without using SCEVs. 3924 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 3925 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 3926 const Loop *LI = (*this->LI)[I->getParent()]; 3927 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 3928 if (PHINode *PN = dyn_cast<PHINode>(I)) 3929 if (PN->getParent() == LI->getHeader()) { 3930 // Okay, there is no closed form solution for the PHI node. Check 3931 // to see if the loop that contains it has a known backedge-taken 3932 // count. If so, we may be able to force computation of the exit 3933 // value. 3934 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 3935 if (const SCEVConstant *BTCC = 3936 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 3937 // Okay, we know how many times the containing loop executes. If 3938 // this is a constant evolving PHI node, get the final value at 3939 // the specified iteration number. 3940 Constant *RV = getConstantEvolutionLoopExitValue(PN, 3941 BTCC->getValue()->getValue(), 3942 LI); 3943 if (RV) return getSCEV(RV); 3944 } 3945 } 3946 3947 // Okay, this is an expression that we cannot symbolically evaluate 3948 // into a SCEV. Check to see if it's possible to symbolically evaluate 3949 // the arguments into constants, and if so, try to constant propagate the 3950 // result. This is particularly useful for computing loop exit values. 3951 if (CanConstantFold(I)) { 3952 std::vector<Constant*> Operands; 3953 Operands.reserve(I->getNumOperands()); 3954 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3955 Value *Op = I->getOperand(i); 3956 if (Constant *C = dyn_cast<Constant>(Op)) { 3957 Operands.push_back(C); 3958 } else { 3959 // If any of the operands is non-constant and if they are 3960 // non-integer and non-pointer, don't even try to analyze them 3961 // with scev techniques. 3962 if (!isSCEVable(Op->getType())) 3963 return V; 3964 3965 const SCEV* OpV = getSCEVAtScope(Op, L); 3966 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 3967 Constant *C = SC->getValue(); 3968 if (C->getType() != Op->getType()) 3969 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3970 Op->getType(), 3971 false), 3972 C, Op->getType()); 3973 Operands.push_back(C); 3974 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 3975 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 3976 if (C->getType() != Op->getType()) 3977 C = 3978 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3979 Op->getType(), 3980 false), 3981 C, Op->getType()); 3982 Operands.push_back(C); 3983 } else 3984 return V; 3985 } else { 3986 return V; 3987 } 3988 } 3989 } 3990 3991 Constant *C; 3992 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3993 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 3994 &Operands[0], Operands.size(), 3995 getContext()); 3996 else 3997 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3998 &Operands[0], Operands.size(), 3999 getContext()); 4000 return getSCEV(C); 4001 } 4002 } 4003 4004 // This is some other type of SCEVUnknown, just return it. 4005 return V; 4006 } 4007 4008 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4009 // Avoid performing the look-up in the common case where the specified 4010 // expression has no loop-variant portions. 4011 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4012 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4013 if (OpAtScope != Comm->getOperand(i)) { 4014 // Okay, at least one of these operands is loop variant but might be 4015 // foldable. Build a new instance of the folded commutative expression. 4016 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4017 Comm->op_begin()+i); 4018 NewOps.push_back(OpAtScope); 4019 4020 for (++i; i != e; ++i) { 4021 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4022 NewOps.push_back(OpAtScope); 4023 } 4024 if (isa<SCEVAddExpr>(Comm)) 4025 return getAddExpr(NewOps); 4026 if (isa<SCEVMulExpr>(Comm)) 4027 return getMulExpr(NewOps); 4028 if (isa<SCEVSMaxExpr>(Comm)) 4029 return getSMaxExpr(NewOps); 4030 if (isa<SCEVUMaxExpr>(Comm)) 4031 return getUMaxExpr(NewOps); 4032 llvm_unreachable("Unknown commutative SCEV type!"); 4033 } 4034 } 4035 // If we got here, all operands are loop invariant. 4036 return Comm; 4037 } 4038 4039 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4040 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4041 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4042 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4043 return Div; // must be loop invariant 4044 return getUDivExpr(LHS, RHS); 4045 } 4046 4047 // If this is a loop recurrence for a loop that does not contain L, then we 4048 // are dealing with the final value computed by the loop. 4049 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4050 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 4051 // To evaluate this recurrence, we need to know how many times the AddRec 4052 // loop iterates. Compute this now. 4053 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4054 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4055 4056 // Then, evaluate the AddRec. 4057 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4058 } 4059 return AddRec; 4060 } 4061 4062 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4063 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4064 if (Op == Cast->getOperand()) 4065 return Cast; // must be loop invariant 4066 return getZeroExtendExpr(Op, Cast->getType()); 4067 } 4068 4069 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4070 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4071 if (Op == Cast->getOperand()) 4072 return Cast; // must be loop invariant 4073 return getSignExtendExpr(Op, Cast->getType()); 4074 } 4075 4076 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4077 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4078 if (Op == Cast->getOperand()) 4079 return Cast; // must be loop invariant 4080 return getTruncateExpr(Op, Cast->getType()); 4081 } 4082 4083 if (isa<SCEVTargetDataConstant>(V)) 4084 return V; 4085 4086 llvm_unreachable("Unknown SCEV type!"); 4087 return 0; 4088 } 4089 4090 /// getSCEVAtScope - This is a convenience function which does 4091 /// getSCEVAtScope(getSCEV(V), L). 4092 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4093 return getSCEVAtScope(getSCEV(V), L); 4094 } 4095 4096 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4097 /// following equation: 4098 /// 4099 /// A * X = B (mod N) 4100 /// 4101 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4102 /// A and B isn't important. 4103 /// 4104 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4105 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4106 ScalarEvolution &SE) { 4107 uint32_t BW = A.getBitWidth(); 4108 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4109 assert(A != 0 && "A must be non-zero."); 4110 4111 // 1. D = gcd(A, N) 4112 // 4113 // The gcd of A and N may have only one prime factor: 2. The number of 4114 // trailing zeros in A is its multiplicity 4115 uint32_t Mult2 = A.countTrailingZeros(); 4116 // D = 2^Mult2 4117 4118 // 2. Check if B is divisible by D. 4119 // 4120 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4121 // is not less than multiplicity of this prime factor for D. 4122 if (B.countTrailingZeros() < Mult2) 4123 return SE.getCouldNotCompute(); 4124 4125 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4126 // modulo (N / D). 4127 // 4128 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4129 // bit width during computations. 4130 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4131 APInt Mod(BW + 1, 0); 4132 Mod.set(BW - Mult2); // Mod = N / D 4133 APInt I = AD.multiplicativeInverse(Mod); 4134 4135 // 4. Compute the minimum unsigned root of the equation: 4136 // I * (B / D) mod (N / D) 4137 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4138 4139 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4140 // bits. 4141 return SE.getConstant(Result.trunc(BW)); 4142 } 4143 4144 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4145 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4146 /// might be the same) or two SCEVCouldNotCompute objects. 4147 /// 4148 static std::pair<const SCEV *,const SCEV *> 4149 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4150 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4151 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4152 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4153 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4154 4155 // We currently can only solve this if the coefficients are constants. 4156 if (!LC || !MC || !NC) { 4157 const SCEV *CNC = SE.getCouldNotCompute(); 4158 return std::make_pair(CNC, CNC); 4159 } 4160 4161 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4162 const APInt &L = LC->getValue()->getValue(); 4163 const APInt &M = MC->getValue()->getValue(); 4164 const APInt &N = NC->getValue()->getValue(); 4165 APInt Two(BitWidth, 2); 4166 APInt Four(BitWidth, 4); 4167 4168 { 4169 using namespace APIntOps; 4170 const APInt& C = L; 4171 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4172 // The B coefficient is M-N/2 4173 APInt B(M); 4174 B -= sdiv(N,Two); 4175 4176 // The A coefficient is N/2 4177 APInt A(N.sdiv(Two)); 4178 4179 // Compute the B^2-4ac term. 4180 APInt SqrtTerm(B); 4181 SqrtTerm *= B; 4182 SqrtTerm -= Four * (A * C); 4183 4184 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4185 // integer value or else APInt::sqrt() will assert. 4186 APInt SqrtVal(SqrtTerm.sqrt()); 4187 4188 // Compute the two solutions for the quadratic formula. 4189 // The divisions must be performed as signed divisions. 4190 APInt NegB(-B); 4191 APInt TwoA( A << 1 ); 4192 if (TwoA.isMinValue()) { 4193 const SCEV *CNC = SE.getCouldNotCompute(); 4194 return std::make_pair(CNC, CNC); 4195 } 4196 4197 LLVMContext &Context = SE.getContext(); 4198 4199 ConstantInt *Solution1 = 4200 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4201 ConstantInt *Solution2 = 4202 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4203 4204 return std::make_pair(SE.getConstant(Solution1), 4205 SE.getConstant(Solution2)); 4206 } // end APIntOps namespace 4207 } 4208 4209 /// HowFarToZero - Return the number of times a backedge comparing the specified 4210 /// value to zero will execute. If not computable, return CouldNotCompute. 4211 const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4212 // If the value is a constant 4213 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4214 // If the value is already zero, the branch will execute zero times. 4215 if (C->getValue()->isZero()) return C; 4216 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4217 } 4218 4219 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4220 if (!AddRec || AddRec->getLoop() != L) 4221 return getCouldNotCompute(); 4222 4223 if (AddRec->isAffine()) { 4224 // If this is an affine expression, the execution count of this branch is 4225 // the minimum unsigned root of the following equation: 4226 // 4227 // Start + Step*N = 0 (mod 2^BW) 4228 // 4229 // equivalent to: 4230 // 4231 // Step*N = -Start (mod 2^BW) 4232 // 4233 // where BW is the common bit width of Start and Step. 4234 4235 // Get the initial value for the loop. 4236 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 4237 L->getParentLoop()); 4238 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 4239 L->getParentLoop()); 4240 4241 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 4242 // For now we handle only constant steps. 4243 4244 // First, handle unitary steps. 4245 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4246 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4247 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4248 return Start; // N = Start (as unsigned) 4249 4250 // Then, try to solve the above equation provided that Start is constant. 4251 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4252 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4253 -StartC->getValue()->getValue(), 4254 *this); 4255 } 4256 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 4257 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4258 // the quadratic equation to solve it. 4259 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, 4260 *this); 4261 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4262 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4263 if (R1) { 4264 #if 0 4265 errs() << "HFTZ: " << *V << " - sol#1: " << *R1 4266 << " sol#2: " << *R2 << "\n"; 4267 #endif 4268 // Pick the smallest positive root value. 4269 if (ConstantInt *CB = 4270 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4271 R1->getValue(), R2->getValue()))) { 4272 if (CB->getZExtValue() == false) 4273 std::swap(R1, R2); // R1 is the minimum root now. 4274 4275 // We can only use this value if the chrec ends up with an exact zero 4276 // value at this index. When solving for "X*X != 5", for example, we 4277 // should not accept a root of 2. 4278 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4279 if (Val->isZero()) 4280 return R1; // We found a quadratic root! 4281 } 4282 } 4283 } 4284 4285 return getCouldNotCompute(); 4286 } 4287 4288 /// HowFarToNonZero - Return the number of times a backedge checking the 4289 /// specified value for nonzero will execute. If not computable, return 4290 /// CouldNotCompute 4291 const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4292 // Loops that look like: while (X == 0) are very strange indeed. We don't 4293 // handle them yet except for the trivial case. This could be expanded in the 4294 // future as needed. 4295 4296 // If the value is a constant, check to see if it is known to be non-zero 4297 // already. If so, the backedge will execute zero times. 4298 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4299 if (!C->getValue()->isNullValue()) 4300 return getIntegerSCEV(0, C->getType()); 4301 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4302 } 4303 4304 // We could implement others, but I really doubt anyone writes loops like 4305 // this, and if they did, they would already be constant folded. 4306 return getCouldNotCompute(); 4307 } 4308 4309 /// getLoopPredecessor - If the given loop's header has exactly one unique 4310 /// predecessor outside the loop, return it. Otherwise return null. 4311 /// 4312 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { 4313 BasicBlock *Header = L->getHeader(); 4314 BasicBlock *Pred = 0; 4315 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); 4316 PI != E; ++PI) 4317 if (!L->contains(*PI)) { 4318 if (Pred && Pred != *PI) return 0; // Multiple predecessors. 4319 Pred = *PI; 4320 } 4321 return Pred; 4322 } 4323 4324 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4325 /// (which may not be an immediate predecessor) which has exactly one 4326 /// successor from which BB is reachable, or null if no such block is 4327 /// found. 4328 /// 4329 BasicBlock * 4330 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4331 // If the block has a unique predecessor, then there is no path from the 4332 // predecessor to the block that does not go through the direct edge 4333 // from the predecessor to the block. 4334 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4335 return Pred; 4336 4337 // A loop's header is defined to be a block that dominates the loop. 4338 // If the header has a unique predecessor outside the loop, it must be 4339 // a block that has exactly one successor that can reach the loop. 4340 if (Loop *L = LI->getLoopFor(BB)) 4341 return getLoopPredecessor(L); 4342 4343 return 0; 4344 } 4345 4346 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4347 /// testing whether two expressions are equal, however for the purposes of 4348 /// looking for a condition guarding a loop, it can be useful to be a little 4349 /// more general, since a front-end may have replicated the controlling 4350 /// expression. 4351 /// 4352 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4353 // Quick check to see if they are the same SCEV. 4354 if (A == B) return true; 4355 4356 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4357 // two different instructions with the same value. Check for this case. 4358 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4359 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4360 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4361 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4362 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 4363 return true; 4364 4365 // Otherwise assume they may have a different value. 4366 return false; 4367 } 4368 4369 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 4370 return getSignedRange(S).getSignedMax().isNegative(); 4371 } 4372 4373 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 4374 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 4375 } 4376 4377 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 4378 return !getSignedRange(S).getSignedMin().isNegative(); 4379 } 4380 4381 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 4382 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 4383 } 4384 4385 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 4386 return isKnownNegative(S) || isKnownPositive(S); 4387 } 4388 4389 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 4390 const SCEV *LHS, const SCEV *RHS) { 4391 4392 if (HasSameValue(LHS, RHS)) 4393 return ICmpInst::isTrueWhenEqual(Pred); 4394 4395 switch (Pred) { 4396 default: 4397 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4398 break; 4399 case ICmpInst::ICMP_SGT: 4400 Pred = ICmpInst::ICMP_SLT; 4401 std::swap(LHS, RHS); 4402 case ICmpInst::ICMP_SLT: { 4403 ConstantRange LHSRange = getSignedRange(LHS); 4404 ConstantRange RHSRange = getSignedRange(RHS); 4405 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 4406 return true; 4407 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 4408 return false; 4409 break; 4410 } 4411 case ICmpInst::ICMP_SGE: 4412 Pred = ICmpInst::ICMP_SLE; 4413 std::swap(LHS, RHS); 4414 case ICmpInst::ICMP_SLE: { 4415 ConstantRange LHSRange = getSignedRange(LHS); 4416 ConstantRange RHSRange = getSignedRange(RHS); 4417 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 4418 return true; 4419 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 4420 return false; 4421 break; 4422 } 4423 case ICmpInst::ICMP_UGT: 4424 Pred = ICmpInst::ICMP_ULT; 4425 std::swap(LHS, RHS); 4426 case ICmpInst::ICMP_ULT: { 4427 ConstantRange LHSRange = getUnsignedRange(LHS); 4428 ConstantRange RHSRange = getUnsignedRange(RHS); 4429 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 4430 return true; 4431 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 4432 return false; 4433 break; 4434 } 4435 case ICmpInst::ICMP_UGE: 4436 Pred = ICmpInst::ICMP_ULE; 4437 std::swap(LHS, RHS); 4438 case ICmpInst::ICMP_ULE: { 4439 ConstantRange LHSRange = getUnsignedRange(LHS); 4440 ConstantRange RHSRange = getUnsignedRange(RHS); 4441 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 4442 return true; 4443 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 4444 return false; 4445 break; 4446 } 4447 case ICmpInst::ICMP_NE: { 4448 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 4449 return true; 4450 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 4451 return true; 4452 4453 const SCEV *Diff = getMinusSCEV(LHS, RHS); 4454 if (isKnownNonZero(Diff)) 4455 return true; 4456 break; 4457 } 4458 case ICmpInst::ICMP_EQ: 4459 // The check at the top of the function catches the case where 4460 // the values are known to be equal. 4461 break; 4462 } 4463 return false; 4464 } 4465 4466 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 4467 /// protected by a conditional between LHS and RHS. This is used to 4468 /// to eliminate casts. 4469 bool 4470 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 4471 ICmpInst::Predicate Pred, 4472 const SCEV *LHS, const SCEV *RHS) { 4473 // Interpret a null as meaning no loop, where there is obviously no guard 4474 // (interprocedural conditions notwithstanding). 4475 if (!L) return true; 4476 4477 BasicBlock *Latch = L->getLoopLatch(); 4478 if (!Latch) 4479 return false; 4480 4481 BranchInst *LoopContinuePredicate = 4482 dyn_cast<BranchInst>(Latch->getTerminator()); 4483 if (!LoopContinuePredicate || 4484 LoopContinuePredicate->isUnconditional()) 4485 return false; 4486 4487 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS, 4488 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 4489 } 4490 4491 /// isLoopGuardedByCond - Test whether entry to the loop is protected 4492 /// by a conditional between LHS and RHS. This is used to help avoid max 4493 /// expressions in loop trip counts, and to eliminate casts. 4494 bool 4495 ScalarEvolution::isLoopGuardedByCond(const Loop *L, 4496 ICmpInst::Predicate Pred, 4497 const SCEV *LHS, const SCEV *RHS) { 4498 // Interpret a null as meaning no loop, where there is obviously no guard 4499 // (interprocedural conditions notwithstanding). 4500 if (!L) return false; 4501 4502 BasicBlock *Predecessor = getLoopPredecessor(L); 4503 BasicBlock *PredecessorDest = L->getHeader(); 4504 4505 // Starting at the loop predecessor, climb up the predecessor chain, as long 4506 // as there are predecessors that can be found that have unique successors 4507 // leading to the original header. 4508 for (; Predecessor; 4509 PredecessorDest = Predecessor, 4510 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { 4511 4512 BranchInst *LoopEntryPredicate = 4513 dyn_cast<BranchInst>(Predecessor->getTerminator()); 4514 if (!LoopEntryPredicate || 4515 LoopEntryPredicate->isUnconditional()) 4516 continue; 4517 4518 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS, 4519 LoopEntryPredicate->getSuccessor(0) != PredecessorDest)) 4520 return true; 4521 } 4522 4523 return false; 4524 } 4525 4526 /// isImpliedCond - Test whether the condition described by Pred, LHS, 4527 /// and RHS is true whenever the given Cond value evaluates to true. 4528 bool ScalarEvolution::isImpliedCond(Value *CondValue, 4529 ICmpInst::Predicate Pred, 4530 const SCEV *LHS, const SCEV *RHS, 4531 bool Inverse) { 4532 // Recursivly handle And and Or conditions. 4533 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) { 4534 if (BO->getOpcode() == Instruction::And) { 4535 if (!Inverse) 4536 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 4537 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 4538 } else if (BO->getOpcode() == Instruction::Or) { 4539 if (Inverse) 4540 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 4541 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 4542 } 4543 } 4544 4545 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue); 4546 if (!ICI) return false; 4547 4548 // Bail if the ICmp's operands' types are wider than the needed type 4549 // before attempting to call getSCEV on them. This avoids infinite 4550 // recursion, since the analysis of widening casts can require loop 4551 // exit condition information for overflow checking, which would 4552 // lead back here. 4553 if (getTypeSizeInBits(LHS->getType()) < 4554 getTypeSizeInBits(ICI->getOperand(0)->getType())) 4555 return false; 4556 4557 // Now that we found a conditional branch that dominates the loop, check to 4558 // see if it is the comparison we are looking for. 4559 ICmpInst::Predicate FoundPred; 4560 if (Inverse) 4561 FoundPred = ICI->getInversePredicate(); 4562 else 4563 FoundPred = ICI->getPredicate(); 4564 4565 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 4566 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 4567 4568 // Balance the types. The case where FoundLHS' type is wider than 4569 // LHS' type is checked for above. 4570 if (getTypeSizeInBits(LHS->getType()) > 4571 getTypeSizeInBits(FoundLHS->getType())) { 4572 if (CmpInst::isSigned(Pred)) { 4573 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 4574 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 4575 } else { 4576 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 4577 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 4578 } 4579 } 4580 4581 // Canonicalize the query to match the way instcombine will have 4582 // canonicalized the comparison. 4583 // First, put a constant operand on the right. 4584 if (isa<SCEVConstant>(LHS)) { 4585 std::swap(LHS, RHS); 4586 Pred = ICmpInst::getSwappedPredicate(Pred); 4587 } 4588 // Then, canonicalize comparisons with boundary cases. 4589 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 4590 const APInt &RA = RC->getValue()->getValue(); 4591 switch (Pred) { 4592 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4593 case ICmpInst::ICMP_EQ: 4594 case ICmpInst::ICMP_NE: 4595 break; 4596 case ICmpInst::ICMP_UGE: 4597 if ((RA - 1).isMinValue()) { 4598 Pred = ICmpInst::ICMP_NE; 4599 RHS = getConstant(RA - 1); 4600 break; 4601 } 4602 if (RA.isMaxValue()) { 4603 Pred = ICmpInst::ICMP_EQ; 4604 break; 4605 } 4606 if (RA.isMinValue()) return true; 4607 break; 4608 case ICmpInst::ICMP_ULE: 4609 if ((RA + 1).isMaxValue()) { 4610 Pred = ICmpInst::ICMP_NE; 4611 RHS = getConstant(RA + 1); 4612 break; 4613 } 4614 if (RA.isMinValue()) { 4615 Pred = ICmpInst::ICMP_EQ; 4616 break; 4617 } 4618 if (RA.isMaxValue()) return true; 4619 break; 4620 case ICmpInst::ICMP_SGE: 4621 if ((RA - 1).isMinSignedValue()) { 4622 Pred = ICmpInst::ICMP_NE; 4623 RHS = getConstant(RA - 1); 4624 break; 4625 } 4626 if (RA.isMaxSignedValue()) { 4627 Pred = ICmpInst::ICMP_EQ; 4628 break; 4629 } 4630 if (RA.isMinSignedValue()) return true; 4631 break; 4632 case ICmpInst::ICMP_SLE: 4633 if ((RA + 1).isMaxSignedValue()) { 4634 Pred = ICmpInst::ICMP_NE; 4635 RHS = getConstant(RA + 1); 4636 break; 4637 } 4638 if (RA.isMinSignedValue()) { 4639 Pred = ICmpInst::ICMP_EQ; 4640 break; 4641 } 4642 if (RA.isMaxSignedValue()) return true; 4643 break; 4644 case ICmpInst::ICMP_UGT: 4645 if (RA.isMinValue()) { 4646 Pred = ICmpInst::ICMP_NE; 4647 break; 4648 } 4649 if ((RA + 1).isMaxValue()) { 4650 Pred = ICmpInst::ICMP_EQ; 4651 RHS = getConstant(RA + 1); 4652 break; 4653 } 4654 if (RA.isMaxValue()) return false; 4655 break; 4656 case ICmpInst::ICMP_ULT: 4657 if (RA.isMaxValue()) { 4658 Pred = ICmpInst::ICMP_NE; 4659 break; 4660 } 4661 if ((RA - 1).isMinValue()) { 4662 Pred = ICmpInst::ICMP_EQ; 4663 RHS = getConstant(RA - 1); 4664 break; 4665 } 4666 if (RA.isMinValue()) return false; 4667 break; 4668 case ICmpInst::ICMP_SGT: 4669 if (RA.isMinSignedValue()) { 4670 Pred = ICmpInst::ICMP_NE; 4671 break; 4672 } 4673 if ((RA + 1).isMaxSignedValue()) { 4674 Pred = ICmpInst::ICMP_EQ; 4675 RHS = getConstant(RA + 1); 4676 break; 4677 } 4678 if (RA.isMaxSignedValue()) return false; 4679 break; 4680 case ICmpInst::ICMP_SLT: 4681 if (RA.isMaxSignedValue()) { 4682 Pred = ICmpInst::ICMP_NE; 4683 break; 4684 } 4685 if ((RA - 1).isMinSignedValue()) { 4686 Pred = ICmpInst::ICMP_EQ; 4687 RHS = getConstant(RA - 1); 4688 break; 4689 } 4690 if (RA.isMinSignedValue()) return false; 4691 break; 4692 } 4693 } 4694 4695 // Check to see if we can make the LHS or RHS match. 4696 if (LHS == FoundRHS || RHS == FoundLHS) { 4697 if (isa<SCEVConstant>(RHS)) { 4698 std::swap(FoundLHS, FoundRHS); 4699 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 4700 } else { 4701 std::swap(LHS, RHS); 4702 Pred = ICmpInst::getSwappedPredicate(Pred); 4703 } 4704 } 4705 4706 // Check whether the found predicate is the same as the desired predicate. 4707 if (FoundPred == Pred) 4708 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 4709 4710 // Check whether swapping the found predicate makes it the same as the 4711 // desired predicate. 4712 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 4713 if (isa<SCEVConstant>(RHS)) 4714 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 4715 else 4716 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 4717 RHS, LHS, FoundLHS, FoundRHS); 4718 } 4719 4720 // Check whether the actual condition is beyond sufficient. 4721 if (FoundPred == ICmpInst::ICMP_EQ) 4722 if (ICmpInst::isTrueWhenEqual(Pred)) 4723 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 4724 return true; 4725 if (Pred == ICmpInst::ICMP_NE) 4726 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 4727 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 4728 return true; 4729 4730 // Otherwise assume the worst. 4731 return false; 4732 } 4733 4734 /// isImpliedCondOperands - Test whether the condition described by Pred, 4735 /// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS, 4736 /// and FoundRHS is true. 4737 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 4738 const SCEV *LHS, const SCEV *RHS, 4739 const SCEV *FoundLHS, 4740 const SCEV *FoundRHS) { 4741 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 4742 FoundLHS, FoundRHS) || 4743 // ~x < ~y --> x > y 4744 isImpliedCondOperandsHelper(Pred, LHS, RHS, 4745 getNotSCEV(FoundRHS), 4746 getNotSCEV(FoundLHS)); 4747 } 4748 4749 /// isImpliedCondOperandsHelper - Test whether the condition described by 4750 /// Pred, LHS, and RHS is true whenever the condition desribed by Pred, 4751 /// FoundLHS, and FoundRHS is true. 4752 bool 4753 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 4754 const SCEV *LHS, const SCEV *RHS, 4755 const SCEV *FoundLHS, 4756 const SCEV *FoundRHS) { 4757 switch (Pred) { 4758 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4759 case ICmpInst::ICMP_EQ: 4760 case ICmpInst::ICMP_NE: 4761 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 4762 return true; 4763 break; 4764 case ICmpInst::ICMP_SLT: 4765 case ICmpInst::ICMP_SLE: 4766 if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 4767 isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 4768 return true; 4769 break; 4770 case ICmpInst::ICMP_SGT: 4771 case ICmpInst::ICMP_SGE: 4772 if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 4773 isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 4774 return true; 4775 break; 4776 case ICmpInst::ICMP_ULT: 4777 case ICmpInst::ICMP_ULE: 4778 if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 4779 isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 4780 return true; 4781 break; 4782 case ICmpInst::ICMP_UGT: 4783 case ICmpInst::ICMP_UGE: 4784 if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 4785 isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 4786 return true; 4787 break; 4788 } 4789 4790 return false; 4791 } 4792 4793 /// getBECount - Subtract the end and start values and divide by the step, 4794 /// rounding up, to get the number of times the backedge is executed. Return 4795 /// CouldNotCompute if an intermediate computation overflows. 4796 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 4797 const SCEV *End, 4798 const SCEV *Step) { 4799 const Type *Ty = Start->getType(); 4800 const SCEV *NegOne = getIntegerSCEV(-1, Ty); 4801 const SCEV *Diff = getMinusSCEV(End, Start); 4802 const SCEV *RoundUp = getAddExpr(Step, NegOne); 4803 4804 // Add an adjustment to the difference between End and Start so that 4805 // the division will effectively round up. 4806 const SCEV *Add = getAddExpr(Diff, RoundUp); 4807 4808 // Check Add for unsigned overflow. 4809 // TODO: More sophisticated things could be done here. 4810 const Type *WideTy = IntegerType::get(getContext(), 4811 getTypeSizeInBits(Ty) + 1); 4812 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 4813 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 4814 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 4815 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 4816 return getCouldNotCompute(); 4817 4818 return getUDivExpr(Add, Step); 4819 } 4820 4821 /// HowManyLessThans - Return the number of times a backedge containing the 4822 /// specified less-than comparison will execute. If not computable, return 4823 /// CouldNotCompute. 4824 ScalarEvolution::BackedgeTakenInfo 4825 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 4826 const Loop *L, bool isSigned) { 4827 // Only handle: "ADDREC < LoopInvariant". 4828 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); 4829 4830 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 4831 if (!AddRec || AddRec->getLoop() != L) 4832 return getCouldNotCompute(); 4833 4834 if (AddRec->isAffine()) { 4835 // FORNOW: We only support unit strides. 4836 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 4837 const SCEV *Step = AddRec->getStepRecurrence(*this); 4838 4839 // TODO: handle non-constant strides. 4840 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); 4841 if (!CStep || CStep->isZero()) 4842 return getCouldNotCompute(); 4843 if (CStep->isOne()) { 4844 // With unit stride, the iteration never steps past the limit value. 4845 } else if (CStep->getValue()->getValue().isStrictlyPositive()) { 4846 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { 4847 // Test whether a positive iteration iteration can step past the limit 4848 // value and past the maximum value for its type in a single step. 4849 if (isSigned) { 4850 APInt Max = APInt::getSignedMaxValue(BitWidth); 4851 if ((Max - CStep->getValue()->getValue()) 4852 .slt(CLimit->getValue()->getValue())) 4853 return getCouldNotCompute(); 4854 } else { 4855 APInt Max = APInt::getMaxValue(BitWidth); 4856 if ((Max - CStep->getValue()->getValue()) 4857 .ult(CLimit->getValue()->getValue())) 4858 return getCouldNotCompute(); 4859 } 4860 } else 4861 // TODO: handle non-constant limit values below. 4862 return getCouldNotCompute(); 4863 } else 4864 // TODO: handle negative strides below. 4865 return getCouldNotCompute(); 4866 4867 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 4868 // m. So, we count the number of iterations in which {n,+,s} < m is true. 4869 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 4870 // treat m-n as signed nor unsigned due to overflow possibility. 4871 4872 // First, we get the value of the LHS in the first iteration: n 4873 const SCEV *Start = AddRec->getOperand(0); 4874 4875 // Determine the minimum constant start value. 4876 const SCEV *MinStart = getConstant(isSigned ? 4877 getSignedRange(Start).getSignedMin() : 4878 getUnsignedRange(Start).getUnsignedMin()); 4879 4880 // If we know that the condition is true in order to enter the loop, 4881 // then we know that it will run exactly (m-n)/s times. Otherwise, we 4882 // only know that it will execute (max(m,n)-n)/s times. In both cases, 4883 // the division must round up. 4884 const SCEV *End = RHS; 4885 if (!isLoopGuardedByCond(L, 4886 isSigned ? ICmpInst::ICMP_SLT : 4887 ICmpInst::ICMP_ULT, 4888 getMinusSCEV(Start, Step), RHS)) 4889 End = isSigned ? getSMaxExpr(RHS, Start) 4890 : getUMaxExpr(RHS, Start); 4891 4892 // Determine the maximum constant end value. 4893 const SCEV *MaxEnd = getConstant(isSigned ? 4894 getSignedRange(End).getSignedMax() : 4895 getUnsignedRange(End).getUnsignedMax()); 4896 4897 // Finally, we subtract these two values and divide, rounding up, to get 4898 // the number of times the backedge is executed. 4899 const SCEV *BECount = getBECount(Start, End, Step); 4900 4901 // The maximum backedge count is similar, except using the minimum start 4902 // value and the maximum end value. 4903 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step); 4904 4905 return BackedgeTakenInfo(BECount, MaxBECount); 4906 } 4907 4908 return getCouldNotCompute(); 4909 } 4910 4911 /// getNumIterationsInRange - Return the number of iterations of this loop that 4912 /// produce values in the specified constant range. Another way of looking at 4913 /// this is that it returns the first iteration number where the value is not in 4914 /// the condition, thus computing the exit count. If the iteration count can't 4915 /// be computed, an instance of SCEVCouldNotCompute is returned. 4916 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 4917 ScalarEvolution &SE) const { 4918 if (Range.isFullSet()) // Infinite loop. 4919 return SE.getCouldNotCompute(); 4920 4921 // If the start is a non-zero constant, shift the range to simplify things. 4922 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 4923 if (!SC->getValue()->isZero()) { 4924 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 4925 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 4926 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 4927 if (const SCEVAddRecExpr *ShiftedAddRec = 4928 dyn_cast<SCEVAddRecExpr>(Shifted)) 4929 return ShiftedAddRec->getNumIterationsInRange( 4930 Range.subtract(SC->getValue()->getValue()), SE); 4931 // This is strange and shouldn't happen. 4932 return SE.getCouldNotCompute(); 4933 } 4934 4935 // The only time we can solve this is when we have all constant indices. 4936 // Otherwise, we cannot determine the overflow conditions. 4937 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 4938 if (!isa<SCEVConstant>(getOperand(i))) 4939 return SE.getCouldNotCompute(); 4940 4941 4942 // Okay at this point we know that all elements of the chrec are constants and 4943 // that the start element is zero. 4944 4945 // First check to see if the range contains zero. If not, the first 4946 // iteration exits. 4947 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 4948 if (!Range.contains(APInt(BitWidth, 0))) 4949 return SE.getIntegerSCEV(0, getType()); 4950 4951 if (isAffine()) { 4952 // If this is an affine expression then we have this situation: 4953 // Solve {0,+,A} in Range === Ax in Range 4954 4955 // We know that zero is in the range. If A is positive then we know that 4956 // the upper value of the range must be the first possible exit value. 4957 // If A is negative then the lower of the range is the last possible loop 4958 // value. Also note that we already checked for a full range. 4959 APInt One(BitWidth,1); 4960 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 4961 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 4962 4963 // The exit value should be (End+A)/A. 4964 APInt ExitVal = (End + A).udiv(A); 4965 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 4966 4967 // Evaluate at the exit value. If we really did fall out of the valid 4968 // range, then we computed our trip count, otherwise wrap around or other 4969 // things must have happened. 4970 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 4971 if (Range.contains(Val->getValue())) 4972 return SE.getCouldNotCompute(); // Something strange happened 4973 4974 // Ensure that the previous value is in the range. This is a sanity check. 4975 assert(Range.contains( 4976 EvaluateConstantChrecAtConstant(this, 4977 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 4978 "Linear scev computation is off in a bad way!"); 4979 return SE.getConstant(ExitValue); 4980 } else if (isQuadratic()) { 4981 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 4982 // quadratic equation to solve it. To do this, we must frame our problem in 4983 // terms of figuring out when zero is crossed, instead of when 4984 // Range.getUpper() is crossed. 4985 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 4986 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 4987 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 4988 4989 // Next, solve the constructed addrec 4990 std::pair<const SCEV *,const SCEV *> Roots = 4991 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 4992 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4993 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4994 if (R1) { 4995 // Pick the smallest positive root value. 4996 if (ConstantInt *CB = 4997 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4998 R1->getValue(), R2->getValue()))) { 4999 if (CB->getZExtValue() == false) 5000 std::swap(R1, R2); // R1 is the minimum root now. 5001 5002 // Make sure the root is not off by one. The returned iteration should 5003 // not be in the range, but the previous one should be. When solving 5004 // for "X*X < 5", for example, we should not return a root of 2. 5005 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5006 R1->getValue(), 5007 SE); 5008 if (Range.contains(R1Val->getValue())) { 5009 // The next iteration must be out of the range... 5010 ConstantInt *NextVal = 5011 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5012 5013 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5014 if (!Range.contains(R1Val->getValue())) 5015 return SE.getConstant(NextVal); 5016 return SE.getCouldNotCompute(); // Something strange happened 5017 } 5018 5019 // If R1 was not in the range, then it is a good return value. Make 5020 // sure that R1-1 WAS in the range though, just in case. 5021 ConstantInt *NextVal = 5022 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5023 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5024 if (Range.contains(R1Val->getValue())) 5025 return R1; 5026 return SE.getCouldNotCompute(); // Something strange happened 5027 } 5028 } 5029 } 5030 5031 return SE.getCouldNotCompute(); 5032 } 5033 5034 5035 5036 //===----------------------------------------------------------------------===// 5037 // SCEVCallbackVH Class Implementation 5038 //===----------------------------------------------------------------------===// 5039 5040 void ScalarEvolution::SCEVCallbackVH::deleted() { 5041 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5042 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5043 SE->ConstantEvolutionLoopExitValue.erase(PN); 5044 SE->Scalars.erase(getValPtr()); 5045 // this now dangles! 5046 } 5047 5048 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 5049 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5050 5051 // Forget all the expressions associated with users of the old value, 5052 // so that future queries will recompute the expressions using the new 5053 // value. 5054 SmallVector<User *, 16> Worklist; 5055 SmallPtrSet<User *, 8> Visited; 5056 Value *Old = getValPtr(); 5057 bool DeleteOld = false; 5058 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5059 UI != UE; ++UI) 5060 Worklist.push_back(*UI); 5061 while (!Worklist.empty()) { 5062 User *U = Worklist.pop_back_val(); 5063 // Deleting the Old value will cause this to dangle. Postpone 5064 // that until everything else is done. 5065 if (U == Old) { 5066 DeleteOld = true; 5067 continue; 5068 } 5069 if (!Visited.insert(U)) 5070 continue; 5071 if (PHINode *PN = dyn_cast<PHINode>(U)) 5072 SE->ConstantEvolutionLoopExitValue.erase(PN); 5073 SE->Scalars.erase(U); 5074 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5075 UI != UE; ++UI) 5076 Worklist.push_back(*UI); 5077 } 5078 // Delete the Old value if it (indirectly) references itself. 5079 if (DeleteOld) { 5080 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5081 SE->ConstantEvolutionLoopExitValue.erase(PN); 5082 SE->Scalars.erase(Old); 5083 // this now dangles! 5084 } 5085 // this may dangle! 5086 } 5087 5088 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5089 : CallbackVH(V), SE(se) {} 5090 5091 //===----------------------------------------------------------------------===// 5092 // ScalarEvolution Class Implementation 5093 //===----------------------------------------------------------------------===// 5094 5095 ScalarEvolution::ScalarEvolution() 5096 : FunctionPass(&ID) { 5097 } 5098 5099 bool ScalarEvolution::runOnFunction(Function &F) { 5100 this->F = &F; 5101 LI = &getAnalysis<LoopInfo>(); 5102 TD = getAnalysisIfAvailable<TargetData>(); 5103 return false; 5104 } 5105 5106 void ScalarEvolution::releaseMemory() { 5107 Scalars.clear(); 5108 BackedgeTakenCounts.clear(); 5109 ConstantEvolutionLoopExitValue.clear(); 5110 ValuesAtScopes.clear(); 5111 UniqueSCEVs.clear(); 5112 SCEVAllocator.Reset(); 5113 } 5114 5115 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5116 AU.setPreservesAll(); 5117 AU.addRequiredTransitive<LoopInfo>(); 5118 } 5119 5120 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5121 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5122 } 5123 5124 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5125 const Loop *L) { 5126 // Print all inner loops first 5127 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5128 PrintLoopInfo(OS, SE, *I); 5129 5130 OS << "Loop " << L->getHeader()->getName() << ": "; 5131 5132 SmallVector<BasicBlock*, 8> ExitBlocks; 5133 L->getExitBlocks(ExitBlocks); 5134 if (ExitBlocks.size() != 1) 5135 OS << "<multiple exits> "; 5136 5137 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5138 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5139 } else { 5140 OS << "Unpredictable backedge-taken count. "; 5141 } 5142 5143 OS << "\n"; 5144 OS << "Loop " << L->getHeader()->getName() << ": "; 5145 5146 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5147 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5148 } else { 5149 OS << "Unpredictable max backedge-taken count. "; 5150 } 5151 5152 OS << "\n"; 5153 } 5154 5155 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { 5156 // ScalarEvolution's implementaiton of the print method is to print 5157 // out SCEV values of all instructions that are interesting. Doing 5158 // this potentially causes it to create new SCEV objects though, 5159 // which technically conflicts with the const qualifier. This isn't 5160 // observable from outside the class though, so casting away the 5161 // const isn't dangerous. 5162 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); 5163 5164 OS << "Classifying expressions for: " << F->getName() << "\n"; 5165 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 5166 if (isSCEVable(I->getType())) { 5167 OS << *I << '\n'; 5168 OS << " --> "; 5169 const SCEV *SV = SE.getSCEV(&*I); 5170 SV->print(OS); 5171 5172 const Loop *L = LI->getLoopFor((*I).getParent()); 5173 5174 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 5175 if (AtUse != SV) { 5176 OS << " --> "; 5177 AtUse->print(OS); 5178 } 5179 5180 if (L) { 5181 OS << "\t\t" "Exits: "; 5182 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 5183 if (!ExitValue->isLoopInvariant(L)) { 5184 OS << "<<Unknown>>"; 5185 } else { 5186 OS << *ExitValue; 5187 } 5188 } 5189 5190 OS << "\n"; 5191 } 5192 5193 OS << "Determining loop execution counts for: " << F->getName() << "\n"; 5194 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 5195 PrintLoopInfo(OS, &SE, *I); 5196 } 5197 5198