xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision d9c0b128e3543d5d30f43019257bfd96ce4cdcd1)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumArrayLenItCounts,
143           "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed,
145           "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed,
147           "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed,
149           "Number of loops with trip counts computed by force");
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161     "verify-scev", cl::Hidden,
162     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164     "verify-scev-strict", cl::Hidden,
165     cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167     VerifySCEVMap("verify-scev-maps", cl::Hidden,
168                   cl::desc("Verify no dangling value in ScalarEvolution's "
169                            "ExprValueMap (slow)"));
170 
171 static cl::opt<bool> VerifyIR(
172     "scev-verify-ir", cl::Hidden,
173     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174     cl::init(false));
175 
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177     "scev-mulops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179     cl::init(32));
180 
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182     "scev-addops-inline-threshold", cl::Hidden,
183     cl::desc("Threshold for inlining addition operands into a SCEV"),
184     cl::init(500));
185 
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189     cl::init(32));
190 
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194     cl::init(2));
195 
196 static cl::opt<unsigned> MaxValueCompareDepth(
197     "scalar-evolution-max-value-compare-depth", cl::Hidden,
198     cl::desc("Maximum depth of recursive value complexity comparisons"),
199     cl::init(2));
200 
201 static cl::opt<unsigned>
202     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203                   cl::desc("Maximum depth of recursive arithmetics"),
204                   cl::init(32));
205 
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209 
210 static cl::opt<unsigned>
211     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213                  cl::init(8));
214 
215 static cl::opt<unsigned>
216     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217                   cl::desc("Max coefficients in AddRec during evolving"),
218                   cl::init(8));
219 
220 static cl::opt<unsigned>
221     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222                   cl::desc("Size of the expression which is considered huge"),
223                   cl::init(4096));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 //===----------------------------------------------------------------------===//
237 //                           SCEV class definitions
238 //===----------------------------------------------------------------------===//
239 
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
242 //
243 
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD void SCEV::dump() const {
246   print(dbgs());
247   dbgs() << '\n';
248 }
249 #endif
250 
251 void SCEV::print(raw_ostream &OS) const {
252   switch (getSCEVType()) {
253   case scConstant:
254     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
255     return;
256   case scPtrToInt: {
257     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
258     const SCEV *Op = PtrToInt->getOperand();
259     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
260        << *PtrToInt->getType() << ")";
261     return;
262   }
263   case scTruncate: {
264     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
265     const SCEV *Op = Trunc->getOperand();
266     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
267        << *Trunc->getType() << ")";
268     return;
269   }
270   case scZeroExtend: {
271     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
272     const SCEV *Op = ZExt->getOperand();
273     OS << "(zext " << *Op->getType() << " " << *Op << " to "
274        << *ZExt->getType() << ")";
275     return;
276   }
277   case scSignExtend: {
278     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
279     const SCEV *Op = SExt->getOperand();
280     OS << "(sext " << *Op->getType() << " " << *Op << " to "
281        << *SExt->getType() << ")";
282     return;
283   }
284   case scAddRecExpr: {
285     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
286     OS << "{" << *AR->getOperand(0);
287     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
288       OS << ",+," << *AR->getOperand(i);
289     OS << "}<";
290     if (AR->hasNoUnsignedWrap())
291       OS << "nuw><";
292     if (AR->hasNoSignedWrap())
293       OS << "nsw><";
294     if (AR->hasNoSelfWrap() &&
295         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
296       OS << "nw><";
297     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
298     OS << ">";
299     return;
300   }
301   case scAddExpr:
302   case scMulExpr:
303   case scUMaxExpr:
304   case scSMaxExpr:
305   case scUMinExpr:
306   case scSMinExpr: {
307     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
308     const char *OpStr = nullptr;
309     switch (NAry->getSCEVType()) {
310     case scAddExpr: OpStr = " + "; break;
311     case scMulExpr: OpStr = " * "; break;
312     case scUMaxExpr: OpStr = " umax "; break;
313     case scSMaxExpr: OpStr = " smax "; break;
314     case scUMinExpr:
315       OpStr = " umin ";
316       break;
317     case scSMinExpr:
318       OpStr = " smin ";
319       break;
320     default:
321       llvm_unreachable("There are no other nary expression types.");
322     }
323     OS << "(";
324     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
325          I != E; ++I) {
326       OS << **I;
327       if (std::next(I) != E)
328         OS << OpStr;
329     }
330     OS << ")";
331     switch (NAry->getSCEVType()) {
332     case scAddExpr:
333     case scMulExpr:
334       if (NAry->hasNoUnsignedWrap())
335         OS << "<nuw>";
336       if (NAry->hasNoSignedWrap())
337         OS << "<nsw>";
338       break;
339     default:
340       // Nothing to print for other nary expressions.
341       break;
342     }
343     return;
344   }
345   case scUDivExpr: {
346     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
347     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
348     return;
349   }
350   case scUnknown: {
351     const SCEVUnknown *U = cast<SCEVUnknown>(this);
352     Type *AllocTy;
353     if (U->isSizeOf(AllocTy)) {
354       OS << "sizeof(" << *AllocTy << ")";
355       return;
356     }
357     if (U->isAlignOf(AllocTy)) {
358       OS << "alignof(" << *AllocTy << ")";
359       return;
360     }
361 
362     Type *CTy;
363     Constant *FieldNo;
364     if (U->isOffsetOf(CTy, FieldNo)) {
365       OS << "offsetof(" << *CTy << ", ";
366       FieldNo->printAsOperand(OS, false);
367       OS << ")";
368       return;
369     }
370 
371     // Otherwise just print it normally.
372     U->getValue()->printAsOperand(OS, false);
373     return;
374   }
375   case scCouldNotCompute:
376     OS << "***COULDNOTCOMPUTE***";
377     return;
378   }
379   llvm_unreachable("Unknown SCEV kind!");
380 }
381 
382 Type *SCEV::getType() const {
383   switch (getSCEVType()) {
384   case scConstant:
385     return cast<SCEVConstant>(this)->getType();
386   case scPtrToInt:
387   case scTruncate:
388   case scZeroExtend:
389   case scSignExtend:
390     return cast<SCEVCastExpr>(this)->getType();
391   case scAddRecExpr:
392   case scMulExpr:
393   case scUMaxExpr:
394   case scSMaxExpr:
395   case scUMinExpr:
396   case scSMinExpr:
397     return cast<SCEVNAryExpr>(this)->getType();
398   case scAddExpr:
399     return cast<SCEVAddExpr>(this)->getType();
400   case scUDivExpr:
401     return cast<SCEVUDivExpr>(this)->getType();
402   case scUnknown:
403     return cast<SCEVUnknown>(this)->getType();
404   case scCouldNotCompute:
405     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
406   }
407   llvm_unreachable("Unknown SCEV kind!");
408 }
409 
410 bool SCEV::isZero() const {
411   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
412     return SC->getValue()->isZero();
413   return false;
414 }
415 
416 bool SCEV::isOne() const {
417   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
418     return SC->getValue()->isOne();
419   return false;
420 }
421 
422 bool SCEV::isAllOnesValue() const {
423   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
424     return SC->getValue()->isMinusOne();
425   return false;
426 }
427 
428 bool SCEV::isNonConstantNegative() const {
429   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
430   if (!Mul) return false;
431 
432   // If there is a constant factor, it will be first.
433   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
434   if (!SC) return false;
435 
436   // Return true if the value is negative, this matches things like (-42 * V).
437   return SC->getAPInt().isNegative();
438 }
439 
440 SCEVCouldNotCompute::SCEVCouldNotCompute() :
441   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
442 
443 bool SCEVCouldNotCompute::classof(const SCEV *S) {
444   return S->getSCEVType() == scCouldNotCompute;
445 }
446 
447 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
448   FoldingSetNodeID ID;
449   ID.AddInteger(scConstant);
450   ID.AddPointer(V);
451   void *IP = nullptr;
452   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
453   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
454   UniqueSCEVs.InsertNode(S, IP);
455   return S;
456 }
457 
458 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
459   return getConstant(ConstantInt::get(getContext(), Val));
460 }
461 
462 const SCEV *
463 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
464   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
465   return getConstant(ConstantInt::get(ITy, V, isSigned));
466 }
467 
468 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
469                            const SCEV *op, Type *ty)
470     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
471   Operands[0] = op;
472 }
473 
474 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
475                                    Type *ITy)
476     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
477   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
478          "Must be a non-bit-width-changing pointer-to-integer cast!");
479 }
480 
481 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
482                                            SCEVTypes SCEVTy, const SCEV *op,
483                                            Type *ty)
484     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
485 
486 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
487                                    Type *ty)
488     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
489   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
490          "Cannot truncate non-integer value!");
491 }
492 
493 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
494                                        const SCEV *op, Type *ty)
495     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
496   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
497          "Cannot zero extend non-integer value!");
498 }
499 
500 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
501                                        const SCEV *op, Type *ty)
502     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
503   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
504          "Cannot sign extend non-integer value!");
505 }
506 
507 void SCEVUnknown::deleted() {
508   // Clear this SCEVUnknown from various maps.
509   SE->forgetMemoizedResults(this);
510 
511   // Remove this SCEVUnknown from the uniquing map.
512   SE->UniqueSCEVs.RemoveNode(this);
513 
514   // Release the value.
515   setValPtr(nullptr);
516 }
517 
518 void SCEVUnknown::allUsesReplacedWith(Value *New) {
519   // Remove this SCEVUnknown from the uniquing map.
520   SE->UniqueSCEVs.RemoveNode(this);
521 
522   // Update this SCEVUnknown to point to the new value. This is needed
523   // because there may still be outstanding SCEVs which still point to
524   // this SCEVUnknown.
525   setValPtr(New);
526 }
527 
528 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
529   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
530     if (VCE->getOpcode() == Instruction::PtrToInt)
531       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
532         if (CE->getOpcode() == Instruction::GetElementPtr &&
533             CE->getOperand(0)->isNullValue() &&
534             CE->getNumOperands() == 2)
535           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
536             if (CI->isOne()) {
537               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
538                                  ->getElementType();
539               return true;
540             }
541 
542   return false;
543 }
544 
545 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
546   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
547     if (VCE->getOpcode() == Instruction::PtrToInt)
548       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
549         if (CE->getOpcode() == Instruction::GetElementPtr &&
550             CE->getOperand(0)->isNullValue()) {
551           Type *Ty =
552             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
553           if (StructType *STy = dyn_cast<StructType>(Ty))
554             if (!STy->isPacked() &&
555                 CE->getNumOperands() == 3 &&
556                 CE->getOperand(1)->isNullValue()) {
557               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
558                 if (CI->isOne() &&
559                     STy->getNumElements() == 2 &&
560                     STy->getElementType(0)->isIntegerTy(1)) {
561                   AllocTy = STy->getElementType(1);
562                   return true;
563                 }
564             }
565         }
566 
567   return false;
568 }
569 
570 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
571   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
572     if (VCE->getOpcode() == Instruction::PtrToInt)
573       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
574         if (CE->getOpcode() == Instruction::GetElementPtr &&
575             CE->getNumOperands() == 3 &&
576             CE->getOperand(0)->isNullValue() &&
577             CE->getOperand(1)->isNullValue()) {
578           Type *Ty =
579             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
580           // Ignore vector types here so that ScalarEvolutionExpander doesn't
581           // emit getelementptrs that index into vectors.
582           if (Ty->isStructTy() || Ty->isArrayTy()) {
583             CTy = Ty;
584             FieldNo = CE->getOperand(2);
585             return true;
586           }
587         }
588 
589   return false;
590 }
591 
592 //===----------------------------------------------------------------------===//
593 //                               SCEV Utilities
594 //===----------------------------------------------------------------------===//
595 
596 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
597 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
598 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
599 /// have been previously deemed to be "equally complex" by this routine.  It is
600 /// intended to avoid exponential time complexity in cases like:
601 ///
602 ///   %a = f(%x, %y)
603 ///   %b = f(%a, %a)
604 ///   %c = f(%b, %b)
605 ///
606 ///   %d = f(%x, %y)
607 ///   %e = f(%d, %d)
608 ///   %f = f(%e, %e)
609 ///
610 ///   CompareValueComplexity(%f, %c)
611 ///
612 /// Since we do not continue running this routine on expression trees once we
613 /// have seen unequal values, there is no need to track them in the cache.
614 static int
615 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
616                        const LoopInfo *const LI, Value *LV, Value *RV,
617                        unsigned Depth) {
618   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
619     return 0;
620 
621   // Order pointer values after integer values. This helps SCEVExpander form
622   // GEPs.
623   bool LIsPointer = LV->getType()->isPointerTy(),
624        RIsPointer = RV->getType()->isPointerTy();
625   if (LIsPointer != RIsPointer)
626     return (int)LIsPointer - (int)RIsPointer;
627 
628   // Compare getValueID values.
629   unsigned LID = LV->getValueID(), RID = RV->getValueID();
630   if (LID != RID)
631     return (int)LID - (int)RID;
632 
633   // Sort arguments by their position.
634   if (const auto *LA = dyn_cast<Argument>(LV)) {
635     const auto *RA = cast<Argument>(RV);
636     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
637     return (int)LArgNo - (int)RArgNo;
638   }
639 
640   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
641     const auto *RGV = cast<GlobalValue>(RV);
642 
643     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
644       auto LT = GV->getLinkage();
645       return !(GlobalValue::isPrivateLinkage(LT) ||
646                GlobalValue::isInternalLinkage(LT));
647     };
648 
649     // Use the names to distinguish the two values, but only if the
650     // names are semantically important.
651     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
652       return LGV->getName().compare(RGV->getName());
653   }
654 
655   // For instructions, compare their loop depth, and their operand count.  This
656   // is pretty loose.
657   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
658     const auto *RInst = cast<Instruction>(RV);
659 
660     // Compare loop depths.
661     const BasicBlock *LParent = LInst->getParent(),
662                      *RParent = RInst->getParent();
663     if (LParent != RParent) {
664       unsigned LDepth = LI->getLoopDepth(LParent),
665                RDepth = LI->getLoopDepth(RParent);
666       if (LDepth != RDepth)
667         return (int)LDepth - (int)RDepth;
668     }
669 
670     // Compare the number of operands.
671     unsigned LNumOps = LInst->getNumOperands(),
672              RNumOps = RInst->getNumOperands();
673     if (LNumOps != RNumOps)
674       return (int)LNumOps - (int)RNumOps;
675 
676     for (unsigned Idx : seq(0u, LNumOps)) {
677       int Result =
678           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
679                                  RInst->getOperand(Idx), Depth + 1);
680       if (Result != 0)
681         return Result;
682     }
683   }
684 
685   EqCacheValue.unionSets(LV, RV);
686   return 0;
687 }
688 
689 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
690 // than RHS, respectively. A three-way result allows recursive comparisons to be
691 // more efficient.
692 static int CompareSCEVComplexity(
693     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
694     EquivalenceClasses<const Value *> &EqCacheValue,
695     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
696     DominatorTree &DT, unsigned Depth = 0) {
697   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
698   if (LHS == RHS)
699     return 0;
700 
701   // Primarily, sort the SCEVs by their getSCEVType().
702   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
703   if (LType != RType)
704     return (int)LType - (int)RType;
705 
706   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
707     return 0;
708   // Aside from the getSCEVType() ordering, the particular ordering
709   // isn't very important except that it's beneficial to be consistent,
710   // so that (a + b) and (b + a) don't end up as different expressions.
711   switch (LType) {
712   case scUnknown: {
713     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
714     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
715 
716     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
717                                    RU->getValue(), Depth + 1);
718     if (X == 0)
719       EqCacheSCEV.unionSets(LHS, RHS);
720     return X;
721   }
722 
723   case scConstant: {
724     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
725     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
726 
727     // Compare constant values.
728     const APInt &LA = LC->getAPInt();
729     const APInt &RA = RC->getAPInt();
730     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
731     if (LBitWidth != RBitWidth)
732       return (int)LBitWidth - (int)RBitWidth;
733     return LA.ult(RA) ? -1 : 1;
734   }
735 
736   case scAddRecExpr: {
737     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
738     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
739 
740     // There is always a dominance between two recs that are used by one SCEV,
741     // so we can safely sort recs by loop header dominance. We require such
742     // order in getAddExpr.
743     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
744     if (LLoop != RLoop) {
745       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
746       assert(LHead != RHead && "Two loops share the same header?");
747       if (DT.dominates(LHead, RHead))
748         return 1;
749       else
750         assert(DT.dominates(RHead, LHead) &&
751                "No dominance between recurrences used by one SCEV?");
752       return -1;
753     }
754 
755     // Addrec complexity grows with operand count.
756     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
757     if (LNumOps != RNumOps)
758       return (int)LNumOps - (int)RNumOps;
759 
760     // Lexicographically compare.
761     for (unsigned i = 0; i != LNumOps; ++i) {
762       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
763                                     LA->getOperand(i), RA->getOperand(i), DT,
764                                     Depth + 1);
765       if (X != 0)
766         return X;
767     }
768     EqCacheSCEV.unionSets(LHS, RHS);
769     return 0;
770   }
771 
772   case scAddExpr:
773   case scMulExpr:
774   case scSMaxExpr:
775   case scUMaxExpr:
776   case scSMinExpr:
777   case scUMinExpr: {
778     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
779     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
780 
781     // Lexicographically compare n-ary expressions.
782     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
783     if (LNumOps != RNumOps)
784       return (int)LNumOps - (int)RNumOps;
785 
786     for (unsigned i = 0; i != LNumOps; ++i) {
787       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
788                                     LC->getOperand(i), RC->getOperand(i), DT,
789                                     Depth + 1);
790       if (X != 0)
791         return X;
792     }
793     EqCacheSCEV.unionSets(LHS, RHS);
794     return 0;
795   }
796 
797   case scUDivExpr: {
798     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
799     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
800 
801     // Lexicographically compare udiv expressions.
802     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
803                                   RC->getLHS(), DT, Depth + 1);
804     if (X != 0)
805       return X;
806     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
807                               RC->getRHS(), DT, Depth + 1);
808     if (X == 0)
809       EqCacheSCEV.unionSets(LHS, RHS);
810     return X;
811   }
812 
813   case scPtrToInt:
814   case scTruncate:
815   case scZeroExtend:
816   case scSignExtend: {
817     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
818     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
819 
820     // Compare cast expressions by operand.
821     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
822                                   LC->getOperand(), RC->getOperand(), DT,
823                                   Depth + 1);
824     if (X == 0)
825       EqCacheSCEV.unionSets(LHS, RHS);
826     return X;
827   }
828 
829   case scCouldNotCompute:
830     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
831   }
832   llvm_unreachable("Unknown SCEV kind!");
833 }
834 
835 /// Given a list of SCEV objects, order them by their complexity, and group
836 /// objects of the same complexity together by value.  When this routine is
837 /// finished, we know that any duplicates in the vector are consecutive and that
838 /// complexity is monotonically increasing.
839 ///
840 /// Note that we go take special precautions to ensure that we get deterministic
841 /// results from this routine.  In other words, we don't want the results of
842 /// this to depend on where the addresses of various SCEV objects happened to
843 /// land in memory.
844 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
845                               LoopInfo *LI, DominatorTree &DT) {
846   if (Ops.size() < 2) return;  // Noop
847 
848   EquivalenceClasses<const SCEV *> EqCacheSCEV;
849   EquivalenceClasses<const Value *> EqCacheValue;
850   if (Ops.size() == 2) {
851     // This is the common case, which also happens to be trivially simple.
852     // Special case it.
853     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
854     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
855       std::swap(LHS, RHS);
856     return;
857   }
858 
859   // Do the rough sort by complexity.
860   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
861     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
862            0;
863   });
864 
865   // Now that we are sorted by complexity, group elements of the same
866   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
867   // be extremely short in practice.  Note that we take this approach because we
868   // do not want to depend on the addresses of the objects we are grouping.
869   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
870     const SCEV *S = Ops[i];
871     unsigned Complexity = S->getSCEVType();
872 
873     // If there are any objects of the same complexity and same value as this
874     // one, group them.
875     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
876       if (Ops[j] == S) { // Found a duplicate.
877         // Move it to immediately after i'th element.
878         std::swap(Ops[i+1], Ops[j]);
879         ++i;   // no need to rescan it.
880         if (i == e-2) return;  // Done!
881       }
882     }
883   }
884 }
885 
886 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
887 /// least HugeExprThreshold nodes).
888 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
889   return any_of(Ops, [](const SCEV *S) {
890     return S->getExpressionSize() >= HugeExprThreshold;
891   });
892 }
893 
894 //===----------------------------------------------------------------------===//
895 //                      Simple SCEV method implementations
896 //===----------------------------------------------------------------------===//
897 
898 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
899 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
900                                        ScalarEvolution &SE,
901                                        Type *ResultTy) {
902   // Handle the simplest case efficiently.
903   if (K == 1)
904     return SE.getTruncateOrZeroExtend(It, ResultTy);
905 
906   // We are using the following formula for BC(It, K):
907   //
908   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
909   //
910   // Suppose, W is the bitwidth of the return value.  We must be prepared for
911   // overflow.  Hence, we must assure that the result of our computation is
912   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
913   // safe in modular arithmetic.
914   //
915   // However, this code doesn't use exactly that formula; the formula it uses
916   // is something like the following, where T is the number of factors of 2 in
917   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
918   // exponentiation:
919   //
920   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
921   //
922   // This formula is trivially equivalent to the previous formula.  However,
923   // this formula can be implemented much more efficiently.  The trick is that
924   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
925   // arithmetic.  To do exact division in modular arithmetic, all we have
926   // to do is multiply by the inverse.  Therefore, this step can be done at
927   // width W.
928   //
929   // The next issue is how to safely do the division by 2^T.  The way this
930   // is done is by doing the multiplication step at a width of at least W + T
931   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
932   // when we perform the division by 2^T (which is equivalent to a right shift
933   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
934   // truncated out after the division by 2^T.
935   //
936   // In comparison to just directly using the first formula, this technique
937   // is much more efficient; using the first formula requires W * K bits,
938   // but this formula less than W + K bits. Also, the first formula requires
939   // a division step, whereas this formula only requires multiplies and shifts.
940   //
941   // It doesn't matter whether the subtraction step is done in the calculation
942   // width or the input iteration count's width; if the subtraction overflows,
943   // the result must be zero anyway.  We prefer here to do it in the width of
944   // the induction variable because it helps a lot for certain cases; CodeGen
945   // isn't smart enough to ignore the overflow, which leads to much less
946   // efficient code if the width of the subtraction is wider than the native
947   // register width.
948   //
949   // (It's possible to not widen at all by pulling out factors of 2 before
950   // the multiplication; for example, K=2 can be calculated as
951   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
952   // extra arithmetic, so it's not an obvious win, and it gets
953   // much more complicated for K > 3.)
954 
955   // Protection from insane SCEVs; this bound is conservative,
956   // but it probably doesn't matter.
957   if (K > 1000)
958     return SE.getCouldNotCompute();
959 
960   unsigned W = SE.getTypeSizeInBits(ResultTy);
961 
962   // Calculate K! / 2^T and T; we divide out the factors of two before
963   // multiplying for calculating K! / 2^T to avoid overflow.
964   // Other overflow doesn't matter because we only care about the bottom
965   // W bits of the result.
966   APInt OddFactorial(W, 1);
967   unsigned T = 1;
968   for (unsigned i = 3; i <= K; ++i) {
969     APInt Mult(W, i);
970     unsigned TwoFactors = Mult.countTrailingZeros();
971     T += TwoFactors;
972     Mult.lshrInPlace(TwoFactors);
973     OddFactorial *= Mult;
974   }
975 
976   // We need at least W + T bits for the multiplication step
977   unsigned CalculationBits = W + T;
978 
979   // Calculate 2^T, at width T+W.
980   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
981 
982   // Calculate the multiplicative inverse of K! / 2^T;
983   // this multiplication factor will perform the exact division by
984   // K! / 2^T.
985   APInt Mod = APInt::getSignedMinValue(W+1);
986   APInt MultiplyFactor = OddFactorial.zext(W+1);
987   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
988   MultiplyFactor = MultiplyFactor.trunc(W);
989 
990   // Calculate the product, at width T+W
991   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
992                                                       CalculationBits);
993   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
994   for (unsigned i = 1; i != K; ++i) {
995     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
996     Dividend = SE.getMulExpr(Dividend,
997                              SE.getTruncateOrZeroExtend(S, CalculationTy));
998   }
999 
1000   // Divide by 2^T
1001   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1002 
1003   // Truncate the result, and divide by K! / 2^T.
1004 
1005   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1006                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1007 }
1008 
1009 /// Return the value of this chain of recurrences at the specified iteration
1010 /// number.  We can evaluate this recurrence by multiplying each element in the
1011 /// chain by the binomial coefficient corresponding to it.  In other words, we
1012 /// can evaluate {A,+,B,+,C,+,D} as:
1013 ///
1014 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1015 ///
1016 /// where BC(It, k) stands for binomial coefficient.
1017 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1018                                                 ScalarEvolution &SE) const {
1019   const SCEV *Result = getStart();
1020   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1021     // The computation is correct in the face of overflow provided that the
1022     // multiplication is performed _after_ the evaluation of the binomial
1023     // coefficient.
1024     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1025     if (isa<SCEVCouldNotCompute>(Coeff))
1026       return Coeff;
1027 
1028     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1029   }
1030   return Result;
1031 }
1032 
1033 //===----------------------------------------------------------------------===//
1034 //                    SCEV Expression folder implementations
1035 //===----------------------------------------------------------------------===//
1036 
1037 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty,
1038                                              unsigned Depth) {
1039   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1040   assert(Depth <= 1 && "getPtrToIntExpr() should self-recurse at most once.");
1041 
1042   // We could be called with an integer-typed operands during SCEV rewrites.
1043   // Since the operand is an integer already, just perform zext/trunc/self cast.
1044   if (!Op->getType()->isPointerTy())
1045     return getTruncateOrZeroExtend(Op, Ty);
1046 
1047   // What would be an ID for such a SCEV cast expression?
1048   FoldingSetNodeID ID;
1049   ID.AddInteger(scPtrToInt);
1050   ID.AddPointer(Op);
1051 
1052   void *IP = nullptr;
1053 
1054   // Is there already an expression for such a cast?
1055   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1056     return getTruncateOrZeroExtend(S, Ty);
1057 
1058   // If not, is this expression something we can't reduce any further?
1059   if (isa<SCEVUnknown>(Op)) {
1060     // Create an explicit cast node.
1061     // We can reuse the existing insert position since if we get here,
1062     // we won't have made any changes which would invalidate it.
1063     Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1064     assert(getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(
1065                Op->getType())) == getDataLayout().getTypeSizeInBits(IntPtrTy) &&
1066            "We can only model ptrtoint if SCEV's effective (integer) type is "
1067            "sufficiently wide to represent all possible pointer values.");
1068     SCEV *S = new (SCEVAllocator)
1069         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1070     UniqueSCEVs.InsertNode(S, IP);
1071     addToLoopUseLists(S);
1072     return getTruncateOrZeroExtend(S, Ty);
1073   }
1074 
1075   assert(Depth == 0 &&
1076          "getPtrToIntExpr() should not self-recurse for non-SCEVUnknown's.");
1077 
1078   // Otherwise, we've got some expression that is more complex than just a
1079   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1080   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1081   // only, and the expressions must otherwise be integer-typed.
1082   // So sink the cast down to the SCEVUnknown's.
1083 
1084   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1085   /// which computes a pointer-typed value, and rewrites the whole expression
1086   /// tree so that *all* the computations are done on integers, and the only
1087   /// pointer-typed operands in the expression are SCEVUnknown.
1088   class SCEVPtrToIntSinkingRewriter
1089       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1090     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1091 
1092   public:
1093     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1094 
1095     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1096       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1097       return Rewriter.visit(Scev);
1098     }
1099 
1100     const SCEV *visit(const SCEV *S) {
1101       Type *STy = S->getType();
1102       // If the expression is not pointer-typed, just keep it as-is.
1103       if (!STy->isPointerTy())
1104         return S;
1105       // Else, recursively sink the cast down into it.
1106       return Base::visit(S);
1107     }
1108 
1109     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1110       SmallVector<const SCEV *, 2> Operands;
1111       bool Changed = false;
1112       for (auto *Op : Expr->operands()) {
1113         Operands.push_back(visit(Op));
1114         Changed |= Op != Operands.back();
1115       }
1116       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1117     }
1118 
1119     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1120       SmallVector<const SCEV *, 2> Operands;
1121       bool Changed = false;
1122       for (auto *Op : Expr->operands()) {
1123         Operands.push_back(visit(Op));
1124         Changed |= Op != Operands.back();
1125       }
1126       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1127     }
1128 
1129     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1130       Type *ExprPtrTy = Expr->getType();
1131       assert(ExprPtrTy->isPointerTy() &&
1132              "Should only reach pointer-typed SCEVUnknown's.");
1133       Type *ExprIntPtrTy = SE.getDataLayout().getIntPtrType(ExprPtrTy);
1134       return SE.getPtrToIntExpr(Expr, ExprIntPtrTy, /*Depth=*/1);
1135     }
1136   };
1137 
1138   // And actually perform the cast sinking.
1139   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1140   assert(IntOp->getType()->isIntegerTy() &&
1141          "We must have succeeded in sinking the cast, "
1142          "and ending up with an integer-typed expression!");
1143   return getTruncateOrZeroExtend(IntOp, Ty);
1144 }
1145 
1146 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1147                                              unsigned Depth) {
1148   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1149          "This is not a truncating conversion!");
1150   assert(isSCEVable(Ty) &&
1151          "This is not a conversion to a SCEVable type!");
1152   Ty = getEffectiveSCEVType(Ty);
1153 
1154   FoldingSetNodeID ID;
1155   ID.AddInteger(scTruncate);
1156   ID.AddPointer(Op);
1157   ID.AddPointer(Ty);
1158   void *IP = nullptr;
1159   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1160 
1161   // Fold if the operand is constant.
1162   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1163     return getConstant(
1164       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1165 
1166   // trunc(trunc(x)) --> trunc(x)
1167   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1168     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1169 
1170   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1171   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1172     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1173 
1174   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1175   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1176     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1177 
1178   if (Depth > MaxCastDepth) {
1179     SCEV *S =
1180         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1181     UniqueSCEVs.InsertNode(S, IP);
1182     addToLoopUseLists(S);
1183     return S;
1184   }
1185 
1186   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1187   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1188   // if after transforming we have at most one truncate, not counting truncates
1189   // that replace other casts.
1190   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1191     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1192     SmallVector<const SCEV *, 4> Operands;
1193     unsigned numTruncs = 0;
1194     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1195          ++i) {
1196       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1197       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1198           isa<SCEVTruncateExpr>(S))
1199         numTruncs++;
1200       Operands.push_back(S);
1201     }
1202     if (numTruncs < 2) {
1203       if (isa<SCEVAddExpr>(Op))
1204         return getAddExpr(Operands);
1205       else if (isa<SCEVMulExpr>(Op))
1206         return getMulExpr(Operands);
1207       else
1208         llvm_unreachable("Unexpected SCEV type for Op.");
1209     }
1210     // Although we checked in the beginning that ID is not in the cache, it is
1211     // possible that during recursion and different modification ID was inserted
1212     // into the cache. So if we find it, just return it.
1213     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1214       return S;
1215   }
1216 
1217   // If the input value is a chrec scev, truncate the chrec's operands.
1218   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1219     SmallVector<const SCEV *, 4> Operands;
1220     for (const SCEV *Op : AddRec->operands())
1221       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1222     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1223   }
1224 
1225   // Return zero if truncating to known zeros.
1226   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1227   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1228     return getZero(Ty);
1229 
1230   // The cast wasn't folded; create an explicit cast node. We can reuse
1231   // the existing insert position since if we get here, we won't have
1232   // made any changes which would invalidate it.
1233   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1234                                                  Op, Ty);
1235   UniqueSCEVs.InsertNode(S, IP);
1236   addToLoopUseLists(S);
1237   return S;
1238 }
1239 
1240 // Get the limit of a recurrence such that incrementing by Step cannot cause
1241 // signed overflow as long as the value of the recurrence within the
1242 // loop does not exceed this limit before incrementing.
1243 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1244                                                  ICmpInst::Predicate *Pred,
1245                                                  ScalarEvolution *SE) {
1246   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1247   if (SE->isKnownPositive(Step)) {
1248     *Pred = ICmpInst::ICMP_SLT;
1249     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1250                            SE->getSignedRangeMax(Step));
1251   }
1252   if (SE->isKnownNegative(Step)) {
1253     *Pred = ICmpInst::ICMP_SGT;
1254     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1255                            SE->getSignedRangeMin(Step));
1256   }
1257   return nullptr;
1258 }
1259 
1260 // Get the limit of a recurrence such that incrementing by Step cannot cause
1261 // unsigned overflow as long as the value of the recurrence within the loop does
1262 // not exceed this limit before incrementing.
1263 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1264                                                    ICmpInst::Predicate *Pred,
1265                                                    ScalarEvolution *SE) {
1266   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1267   *Pred = ICmpInst::ICMP_ULT;
1268 
1269   return SE->getConstant(APInt::getMinValue(BitWidth) -
1270                          SE->getUnsignedRangeMax(Step));
1271 }
1272 
1273 namespace {
1274 
1275 struct ExtendOpTraitsBase {
1276   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1277                                                           unsigned);
1278 };
1279 
1280 // Used to make code generic over signed and unsigned overflow.
1281 template <typename ExtendOp> struct ExtendOpTraits {
1282   // Members present:
1283   //
1284   // static const SCEV::NoWrapFlags WrapType;
1285   //
1286   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1287   //
1288   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1289   //                                           ICmpInst::Predicate *Pred,
1290   //                                           ScalarEvolution *SE);
1291 };
1292 
1293 template <>
1294 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1295   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1296 
1297   static const GetExtendExprTy GetExtendExpr;
1298 
1299   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1300                                              ICmpInst::Predicate *Pred,
1301                                              ScalarEvolution *SE) {
1302     return getSignedOverflowLimitForStep(Step, Pred, SE);
1303   }
1304 };
1305 
1306 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1307     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1308 
1309 template <>
1310 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1311   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1312 
1313   static const GetExtendExprTy GetExtendExpr;
1314 
1315   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1316                                              ICmpInst::Predicate *Pred,
1317                                              ScalarEvolution *SE) {
1318     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1319   }
1320 };
1321 
1322 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1323     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1324 
1325 } // end anonymous namespace
1326 
1327 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1328 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1329 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1330 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1331 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1332 // expression "Step + sext/zext(PreIncAR)" is congruent with
1333 // "sext/zext(PostIncAR)"
1334 template <typename ExtendOpTy>
1335 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1336                                         ScalarEvolution *SE, unsigned Depth) {
1337   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1338   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1339 
1340   const Loop *L = AR->getLoop();
1341   const SCEV *Start = AR->getStart();
1342   const SCEV *Step = AR->getStepRecurrence(*SE);
1343 
1344   // Check for a simple looking step prior to loop entry.
1345   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1346   if (!SA)
1347     return nullptr;
1348 
1349   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1350   // subtraction is expensive. For this purpose, perform a quick and dirty
1351   // difference, by checking for Step in the operand list.
1352   SmallVector<const SCEV *, 4> DiffOps;
1353   for (const SCEV *Op : SA->operands())
1354     if (Op != Step)
1355       DiffOps.push_back(Op);
1356 
1357   if (DiffOps.size() == SA->getNumOperands())
1358     return nullptr;
1359 
1360   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1361   // `Step`:
1362 
1363   // 1. NSW/NUW flags on the step increment.
1364   auto PreStartFlags =
1365     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1366   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1367   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1368       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1369 
1370   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1371   // "S+X does not sign/unsign-overflow".
1372   //
1373 
1374   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1375   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1376       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1377     return PreStart;
1378 
1379   // 2. Direct overflow check on the step operation's expression.
1380   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1381   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1382   const SCEV *OperandExtendedStart =
1383       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1384                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1385   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1386     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1387       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1388       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1389       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1390       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1391     }
1392     return PreStart;
1393   }
1394 
1395   // 3. Loop precondition.
1396   ICmpInst::Predicate Pred;
1397   const SCEV *OverflowLimit =
1398       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1399 
1400   if (OverflowLimit &&
1401       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1402     return PreStart;
1403 
1404   return nullptr;
1405 }
1406 
1407 // Get the normalized zero or sign extended expression for this AddRec's Start.
1408 template <typename ExtendOpTy>
1409 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1410                                         ScalarEvolution *SE,
1411                                         unsigned Depth) {
1412   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1413 
1414   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1415   if (!PreStart)
1416     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1417 
1418   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1419                                              Depth),
1420                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1421 }
1422 
1423 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1424 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1425 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1426 //
1427 // Formally:
1428 //
1429 //     {S,+,X} == {S-T,+,X} + T
1430 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1431 //
1432 // If ({S-T,+,X} + T) does not overflow  ... (1)
1433 //
1434 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1435 //
1436 // If {S-T,+,X} does not overflow  ... (2)
1437 //
1438 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1439 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1440 //
1441 // If (S-T)+T does not overflow  ... (3)
1442 //
1443 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1444 //      == {Ext(S),+,Ext(X)} == LHS
1445 //
1446 // Thus, if (1), (2) and (3) are true for some T, then
1447 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1448 //
1449 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1450 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1451 // to check for (1) and (2).
1452 //
1453 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1454 // is `Delta` (defined below).
1455 template <typename ExtendOpTy>
1456 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1457                                                 const SCEV *Step,
1458                                                 const Loop *L) {
1459   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1460 
1461   // We restrict `Start` to a constant to prevent SCEV from spending too much
1462   // time here.  It is correct (but more expensive) to continue with a
1463   // non-constant `Start` and do a general SCEV subtraction to compute
1464   // `PreStart` below.
1465   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1466   if (!StartC)
1467     return false;
1468 
1469   APInt StartAI = StartC->getAPInt();
1470 
1471   for (unsigned Delta : {-2, -1, 1, 2}) {
1472     const SCEV *PreStart = getConstant(StartAI - Delta);
1473 
1474     FoldingSetNodeID ID;
1475     ID.AddInteger(scAddRecExpr);
1476     ID.AddPointer(PreStart);
1477     ID.AddPointer(Step);
1478     ID.AddPointer(L);
1479     void *IP = nullptr;
1480     const auto *PreAR =
1481       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1482 
1483     // Give up if we don't already have the add recurrence we need because
1484     // actually constructing an add recurrence is relatively expensive.
1485     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1486       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1487       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1488       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1489           DeltaS, &Pred, this);
1490       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1491         return true;
1492     }
1493   }
1494 
1495   return false;
1496 }
1497 
1498 // Finds an integer D for an expression (C + x + y + ...) such that the top
1499 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1500 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1501 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1502 // the (C + x + y + ...) expression is \p WholeAddExpr.
1503 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1504                                             const SCEVConstant *ConstantTerm,
1505                                             const SCEVAddExpr *WholeAddExpr) {
1506   const APInt &C = ConstantTerm->getAPInt();
1507   const unsigned BitWidth = C.getBitWidth();
1508   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1509   uint32_t TZ = BitWidth;
1510   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1511     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1512   if (TZ) {
1513     // Set D to be as many least significant bits of C as possible while still
1514     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1515     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1516   }
1517   return APInt(BitWidth, 0);
1518 }
1519 
1520 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1521 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1522 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1523 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1524 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1525                                             const APInt &ConstantStart,
1526                                             const SCEV *Step) {
1527   const unsigned BitWidth = ConstantStart.getBitWidth();
1528   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1529   if (TZ)
1530     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1531                          : ConstantStart;
1532   return APInt(BitWidth, 0);
1533 }
1534 
1535 const SCEV *
1536 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1537   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1538          "This is not an extending conversion!");
1539   assert(isSCEVable(Ty) &&
1540          "This is not a conversion to a SCEVable type!");
1541   Ty = getEffectiveSCEVType(Ty);
1542 
1543   // Fold if the operand is constant.
1544   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1545     return getConstant(
1546       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1547 
1548   // zext(zext(x)) --> zext(x)
1549   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1550     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1551 
1552   // Before doing any expensive analysis, check to see if we've already
1553   // computed a SCEV for this Op and Ty.
1554   FoldingSetNodeID ID;
1555   ID.AddInteger(scZeroExtend);
1556   ID.AddPointer(Op);
1557   ID.AddPointer(Ty);
1558   void *IP = nullptr;
1559   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1560   if (Depth > MaxCastDepth) {
1561     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1562                                                      Op, Ty);
1563     UniqueSCEVs.InsertNode(S, IP);
1564     addToLoopUseLists(S);
1565     return S;
1566   }
1567 
1568   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1569   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1570     // It's possible the bits taken off by the truncate were all zero bits. If
1571     // so, we should be able to simplify this further.
1572     const SCEV *X = ST->getOperand();
1573     ConstantRange CR = getUnsignedRange(X);
1574     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1575     unsigned NewBits = getTypeSizeInBits(Ty);
1576     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1577             CR.zextOrTrunc(NewBits)))
1578       return getTruncateOrZeroExtend(X, Ty, Depth);
1579   }
1580 
1581   // If the input value is a chrec scev, and we can prove that the value
1582   // did not overflow the old, smaller, value, we can zero extend all of the
1583   // operands (often constants).  This allows analysis of something like
1584   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1585   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1586     if (AR->isAffine()) {
1587       const SCEV *Start = AR->getStart();
1588       const SCEV *Step = AR->getStepRecurrence(*this);
1589       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1590       const Loop *L = AR->getLoop();
1591 
1592       if (!AR->hasNoUnsignedWrap()) {
1593         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1594         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1595       }
1596 
1597       // If we have special knowledge that this addrec won't overflow,
1598       // we don't need to do any further analysis.
1599       if (AR->hasNoUnsignedWrap())
1600         return getAddRecExpr(
1601             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1602             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1603 
1604       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1605       // Note that this serves two purposes: It filters out loops that are
1606       // simply not analyzable, and it covers the case where this code is
1607       // being called from within backedge-taken count analysis, such that
1608       // attempting to ask for the backedge-taken count would likely result
1609       // in infinite recursion. In the later case, the analysis code will
1610       // cope with a conservative value, and it will take care to purge
1611       // that value once it has finished.
1612       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1613       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1614         // Manually compute the final value for AR, checking for overflow.
1615 
1616         // Check whether the backedge-taken count can be losslessly casted to
1617         // the addrec's type. The count is always unsigned.
1618         const SCEV *CastedMaxBECount =
1619             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1620         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1621             CastedMaxBECount, MaxBECount->getType(), Depth);
1622         if (MaxBECount == RecastedMaxBECount) {
1623           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1624           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1625           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1626                                         SCEV::FlagAnyWrap, Depth + 1);
1627           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1628                                                           SCEV::FlagAnyWrap,
1629                                                           Depth + 1),
1630                                                WideTy, Depth + 1);
1631           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1632           const SCEV *WideMaxBECount =
1633             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1634           const SCEV *OperandExtendedAdd =
1635             getAddExpr(WideStart,
1636                        getMulExpr(WideMaxBECount,
1637                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1638                                   SCEV::FlagAnyWrap, Depth + 1),
1639                        SCEV::FlagAnyWrap, Depth + 1);
1640           if (ZAdd == OperandExtendedAdd) {
1641             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1642             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1643             // Return the expression with the addrec on the outside.
1644             return getAddRecExpr(
1645                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1646                                                          Depth + 1),
1647                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1648                 AR->getNoWrapFlags());
1649           }
1650           // Similar to above, only this time treat the step value as signed.
1651           // This covers loops that count down.
1652           OperandExtendedAdd =
1653             getAddExpr(WideStart,
1654                        getMulExpr(WideMaxBECount,
1655                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1656                                   SCEV::FlagAnyWrap, Depth + 1),
1657                        SCEV::FlagAnyWrap, Depth + 1);
1658           if (ZAdd == OperandExtendedAdd) {
1659             // Cache knowledge of AR NW, which is propagated to this AddRec.
1660             // Negative step causes unsigned wrap, but it still can't self-wrap.
1661             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1662             // Return the expression with the addrec on the outside.
1663             return getAddRecExpr(
1664                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1665                                                          Depth + 1),
1666                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1667                 AR->getNoWrapFlags());
1668           }
1669         }
1670       }
1671 
1672       // Normally, in the cases we can prove no-overflow via a
1673       // backedge guarding condition, we can also compute a backedge
1674       // taken count for the loop.  The exceptions are assumptions and
1675       // guards present in the loop -- SCEV is not great at exploiting
1676       // these to compute max backedge taken counts, but can still use
1677       // these to prove lack of overflow.  Use this fact to avoid
1678       // doing extra work that may not pay off.
1679       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1680           !AC.assumptions().empty()) {
1681 
1682         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1683         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1684         if (AR->hasNoUnsignedWrap()) {
1685           // Same as nuw case above - duplicated here to avoid a compile time
1686           // issue.  It's not clear that the order of checks does matter, but
1687           // it's one of two issue possible causes for a change which was
1688           // reverted.  Be conservative for the moment.
1689           return getAddRecExpr(
1690                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1691                                                          Depth + 1),
1692                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1693                 AR->getNoWrapFlags());
1694         }
1695 
1696         // For a negative step, we can extend the operands iff doing so only
1697         // traverses values in the range zext([0,UINT_MAX]).
1698         if (isKnownNegative(Step)) {
1699           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1700                                       getSignedRangeMin(Step));
1701           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1702               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1703             // Cache knowledge of AR NW, which is propagated to this
1704             // AddRec.  Negative step causes unsigned wrap, but it
1705             // still can't self-wrap.
1706             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1707             // Return the expression with the addrec on the outside.
1708             return getAddRecExpr(
1709                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1710                                                          Depth + 1),
1711                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1712                 AR->getNoWrapFlags());
1713           }
1714         }
1715       }
1716 
1717       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1718       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1719       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1720       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1721         const APInt &C = SC->getAPInt();
1722         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1723         if (D != 0) {
1724           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1725           const SCEV *SResidual =
1726               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1727           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1728           return getAddExpr(SZExtD, SZExtR,
1729                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1730                             Depth + 1);
1731         }
1732       }
1733 
1734       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1735         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1736         return getAddRecExpr(
1737             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1738             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1739       }
1740     }
1741 
1742   // zext(A % B) --> zext(A) % zext(B)
1743   {
1744     const SCEV *LHS;
1745     const SCEV *RHS;
1746     if (matchURem(Op, LHS, RHS))
1747       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1748                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1749   }
1750 
1751   // zext(A / B) --> zext(A) / zext(B).
1752   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1753     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1754                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1755 
1756   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1757     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1758     if (SA->hasNoUnsignedWrap()) {
1759       // If the addition does not unsign overflow then we can, by definition,
1760       // commute the zero extension with the addition operation.
1761       SmallVector<const SCEV *, 4> Ops;
1762       for (const auto *Op : SA->operands())
1763         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1764       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1765     }
1766 
1767     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1768     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1769     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1770     //
1771     // Often address arithmetics contain expressions like
1772     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1773     // This transformation is useful while proving that such expressions are
1774     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1775     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1776       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1777       if (D != 0) {
1778         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1779         const SCEV *SResidual =
1780             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1781         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1782         return getAddExpr(SZExtD, SZExtR,
1783                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1784                           Depth + 1);
1785       }
1786     }
1787   }
1788 
1789   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1790     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1791     if (SM->hasNoUnsignedWrap()) {
1792       // If the multiply does not unsign overflow then we can, by definition,
1793       // commute the zero extension with the multiply operation.
1794       SmallVector<const SCEV *, 4> Ops;
1795       for (const auto *Op : SM->operands())
1796         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1797       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1798     }
1799 
1800     // zext(2^K * (trunc X to iN)) to iM ->
1801     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1802     //
1803     // Proof:
1804     //
1805     //     zext(2^K * (trunc X to iN)) to iM
1806     //   = zext((trunc X to iN) << K) to iM
1807     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1808     //     (because shl removes the top K bits)
1809     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1810     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1811     //
1812     if (SM->getNumOperands() == 2)
1813       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1814         if (MulLHS->getAPInt().isPowerOf2())
1815           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1816             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1817                                MulLHS->getAPInt().logBase2();
1818             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1819             return getMulExpr(
1820                 getZeroExtendExpr(MulLHS, Ty),
1821                 getZeroExtendExpr(
1822                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1823                 SCEV::FlagNUW, Depth + 1);
1824           }
1825   }
1826 
1827   // The cast wasn't folded; create an explicit cast node.
1828   // Recompute the insert position, as it may have been invalidated.
1829   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1830   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1831                                                    Op, Ty);
1832   UniqueSCEVs.InsertNode(S, IP);
1833   addToLoopUseLists(S);
1834   return S;
1835 }
1836 
1837 const SCEV *
1838 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1839   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1840          "This is not an extending conversion!");
1841   assert(isSCEVable(Ty) &&
1842          "This is not a conversion to a SCEVable type!");
1843   Ty = getEffectiveSCEVType(Ty);
1844 
1845   // Fold if the operand is constant.
1846   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1847     return getConstant(
1848       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1849 
1850   // sext(sext(x)) --> sext(x)
1851   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1852     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1853 
1854   // sext(zext(x)) --> zext(x)
1855   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1856     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1857 
1858   // Before doing any expensive analysis, check to see if we've already
1859   // computed a SCEV for this Op and Ty.
1860   FoldingSetNodeID ID;
1861   ID.AddInteger(scSignExtend);
1862   ID.AddPointer(Op);
1863   ID.AddPointer(Ty);
1864   void *IP = nullptr;
1865   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1866   // Limit recursion depth.
1867   if (Depth > MaxCastDepth) {
1868     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1869                                                      Op, Ty);
1870     UniqueSCEVs.InsertNode(S, IP);
1871     addToLoopUseLists(S);
1872     return S;
1873   }
1874 
1875   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1876   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1877     // It's possible the bits taken off by the truncate were all sign bits. If
1878     // so, we should be able to simplify this further.
1879     const SCEV *X = ST->getOperand();
1880     ConstantRange CR = getSignedRange(X);
1881     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1882     unsigned NewBits = getTypeSizeInBits(Ty);
1883     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1884             CR.sextOrTrunc(NewBits)))
1885       return getTruncateOrSignExtend(X, Ty, Depth);
1886   }
1887 
1888   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1889     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1890     if (SA->hasNoSignedWrap()) {
1891       // If the addition does not sign overflow then we can, by definition,
1892       // commute the sign extension with the addition operation.
1893       SmallVector<const SCEV *, 4> Ops;
1894       for (const auto *Op : SA->operands())
1895         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1896       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1897     }
1898 
1899     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1900     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1901     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1902     //
1903     // For instance, this will bring two seemingly different expressions:
1904     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1905     //         sext(6 + 20 * %x + 24 * %y)
1906     // to the same form:
1907     //     2 + sext(4 + 20 * %x + 24 * %y)
1908     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1909       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1910       if (D != 0) {
1911         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1912         const SCEV *SResidual =
1913             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1914         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1915         return getAddExpr(SSExtD, SSExtR,
1916                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1917                           Depth + 1);
1918       }
1919     }
1920   }
1921   // If the input value is a chrec scev, and we can prove that the value
1922   // did not overflow the old, smaller, value, we can sign extend all of the
1923   // operands (often constants).  This allows analysis of something like
1924   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1925   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1926     if (AR->isAffine()) {
1927       const SCEV *Start = AR->getStart();
1928       const SCEV *Step = AR->getStepRecurrence(*this);
1929       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1930       const Loop *L = AR->getLoop();
1931 
1932       if (!AR->hasNoSignedWrap()) {
1933         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1934         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1935       }
1936 
1937       // If we have special knowledge that this addrec won't overflow,
1938       // we don't need to do any further analysis.
1939       if (AR->hasNoSignedWrap())
1940         return getAddRecExpr(
1941             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1942             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1943 
1944       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1945       // Note that this serves two purposes: It filters out loops that are
1946       // simply not analyzable, and it covers the case where this code is
1947       // being called from within backedge-taken count analysis, such that
1948       // attempting to ask for the backedge-taken count would likely result
1949       // in infinite recursion. In the later case, the analysis code will
1950       // cope with a conservative value, and it will take care to purge
1951       // that value once it has finished.
1952       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1953       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1954         // Manually compute the final value for AR, checking for
1955         // overflow.
1956 
1957         // Check whether the backedge-taken count can be losslessly casted to
1958         // the addrec's type. The count is always unsigned.
1959         const SCEV *CastedMaxBECount =
1960             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1961         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1962             CastedMaxBECount, MaxBECount->getType(), Depth);
1963         if (MaxBECount == RecastedMaxBECount) {
1964           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1965           // Check whether Start+Step*MaxBECount has no signed overflow.
1966           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1967                                         SCEV::FlagAnyWrap, Depth + 1);
1968           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1969                                                           SCEV::FlagAnyWrap,
1970                                                           Depth + 1),
1971                                                WideTy, Depth + 1);
1972           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1973           const SCEV *WideMaxBECount =
1974             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1975           const SCEV *OperandExtendedAdd =
1976             getAddExpr(WideStart,
1977                        getMulExpr(WideMaxBECount,
1978                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1979                                   SCEV::FlagAnyWrap, Depth + 1),
1980                        SCEV::FlagAnyWrap, Depth + 1);
1981           if (SAdd == OperandExtendedAdd) {
1982             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1983             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
1984             // Return the expression with the addrec on the outside.
1985             return getAddRecExpr(
1986                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1987                                                          Depth + 1),
1988                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1989                 AR->getNoWrapFlags());
1990           }
1991           // Similar to above, only this time treat the step value as unsigned.
1992           // This covers loops that count up with an unsigned step.
1993           OperandExtendedAdd =
1994             getAddExpr(WideStart,
1995                        getMulExpr(WideMaxBECount,
1996                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1997                                   SCEV::FlagAnyWrap, Depth + 1),
1998                        SCEV::FlagAnyWrap, Depth + 1);
1999           if (SAdd == OperandExtendedAdd) {
2000             // If AR wraps around then
2001             //
2002             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2003             // => SAdd != OperandExtendedAdd
2004             //
2005             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2006             // (SAdd == OperandExtendedAdd => AR is NW)
2007 
2008             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2009 
2010             // Return the expression with the addrec on the outside.
2011             return getAddRecExpr(
2012                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2013                                                          Depth + 1),
2014                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2015                 AR->getNoWrapFlags());
2016           }
2017         }
2018       }
2019 
2020       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2021       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2022       if (AR->hasNoSignedWrap()) {
2023         // Same as nsw case above - duplicated here to avoid a compile time
2024         // issue.  It's not clear that the order of checks does matter, but
2025         // it's one of two issue possible causes for a change which was
2026         // reverted.  Be conservative for the moment.
2027         return getAddRecExpr(
2028             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2029             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2030       }
2031 
2032       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2033       // if D + (C - D + Step * n) could be proven to not signed wrap
2034       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2035       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2036         const APInt &C = SC->getAPInt();
2037         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2038         if (D != 0) {
2039           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2040           const SCEV *SResidual =
2041               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2042           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2043           return getAddExpr(SSExtD, SSExtR,
2044                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2045                             Depth + 1);
2046         }
2047       }
2048 
2049       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2050         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2051         return getAddRecExpr(
2052             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2053             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2054       }
2055     }
2056 
2057   // If the input value is provably positive and we could not simplify
2058   // away the sext build a zext instead.
2059   if (isKnownNonNegative(Op))
2060     return getZeroExtendExpr(Op, Ty, Depth + 1);
2061 
2062   // The cast wasn't folded; create an explicit cast node.
2063   // Recompute the insert position, as it may have been invalidated.
2064   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2065   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2066                                                    Op, Ty);
2067   UniqueSCEVs.InsertNode(S, IP);
2068   addToLoopUseLists(S);
2069   return S;
2070 }
2071 
2072 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2073 /// unspecified bits out to the given type.
2074 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2075                                               Type *Ty) {
2076   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2077          "This is not an extending conversion!");
2078   assert(isSCEVable(Ty) &&
2079          "This is not a conversion to a SCEVable type!");
2080   Ty = getEffectiveSCEVType(Ty);
2081 
2082   // Sign-extend negative constants.
2083   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2084     if (SC->getAPInt().isNegative())
2085       return getSignExtendExpr(Op, Ty);
2086 
2087   // Peel off a truncate cast.
2088   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2089     const SCEV *NewOp = T->getOperand();
2090     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2091       return getAnyExtendExpr(NewOp, Ty);
2092     return getTruncateOrNoop(NewOp, Ty);
2093   }
2094 
2095   // Next try a zext cast. If the cast is folded, use it.
2096   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2097   if (!isa<SCEVZeroExtendExpr>(ZExt))
2098     return ZExt;
2099 
2100   // Next try a sext cast. If the cast is folded, use it.
2101   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2102   if (!isa<SCEVSignExtendExpr>(SExt))
2103     return SExt;
2104 
2105   // Force the cast to be folded into the operands of an addrec.
2106   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2107     SmallVector<const SCEV *, 4> Ops;
2108     for (const SCEV *Op : AR->operands())
2109       Ops.push_back(getAnyExtendExpr(Op, Ty));
2110     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2111   }
2112 
2113   // If the expression is obviously signed, use the sext cast value.
2114   if (isa<SCEVSMaxExpr>(Op))
2115     return SExt;
2116 
2117   // Absent any other information, use the zext cast value.
2118   return ZExt;
2119 }
2120 
2121 /// Process the given Ops list, which is a list of operands to be added under
2122 /// the given scale, update the given map. This is a helper function for
2123 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2124 /// that would form an add expression like this:
2125 ///
2126 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2127 ///
2128 /// where A and B are constants, update the map with these values:
2129 ///
2130 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2131 ///
2132 /// and add 13 + A*B*29 to AccumulatedConstant.
2133 /// This will allow getAddRecExpr to produce this:
2134 ///
2135 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2136 ///
2137 /// This form often exposes folding opportunities that are hidden in
2138 /// the original operand list.
2139 ///
2140 /// Return true iff it appears that any interesting folding opportunities
2141 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2142 /// the common case where no interesting opportunities are present, and
2143 /// is also used as a check to avoid infinite recursion.
2144 static bool
2145 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2146                              SmallVectorImpl<const SCEV *> &NewOps,
2147                              APInt &AccumulatedConstant,
2148                              const SCEV *const *Ops, size_t NumOperands,
2149                              const APInt &Scale,
2150                              ScalarEvolution &SE) {
2151   bool Interesting = false;
2152 
2153   // Iterate over the add operands. They are sorted, with constants first.
2154   unsigned i = 0;
2155   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2156     ++i;
2157     // Pull a buried constant out to the outside.
2158     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2159       Interesting = true;
2160     AccumulatedConstant += Scale * C->getAPInt();
2161   }
2162 
2163   // Next comes everything else. We're especially interested in multiplies
2164   // here, but they're in the middle, so just visit the rest with one loop.
2165   for (; i != NumOperands; ++i) {
2166     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2167     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2168       APInt NewScale =
2169           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2170       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2171         // A multiplication of a constant with another add; recurse.
2172         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2173         Interesting |=
2174           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2175                                        Add->op_begin(), Add->getNumOperands(),
2176                                        NewScale, SE);
2177       } else {
2178         // A multiplication of a constant with some other value. Update
2179         // the map.
2180         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2181         const SCEV *Key = SE.getMulExpr(MulOps);
2182         auto Pair = M.insert({Key, NewScale});
2183         if (Pair.second) {
2184           NewOps.push_back(Pair.first->first);
2185         } else {
2186           Pair.first->second += NewScale;
2187           // The map already had an entry for this value, which may indicate
2188           // a folding opportunity.
2189           Interesting = true;
2190         }
2191       }
2192     } else {
2193       // An ordinary operand. Update the map.
2194       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2195           M.insert({Ops[i], Scale});
2196       if (Pair.second) {
2197         NewOps.push_back(Pair.first->first);
2198       } else {
2199         Pair.first->second += Scale;
2200         // The map already had an entry for this value, which may indicate
2201         // a folding opportunity.
2202         Interesting = true;
2203       }
2204     }
2205   }
2206 
2207   return Interesting;
2208 }
2209 
2210 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2211 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2212 // can't-overflow flags for the operation if possible.
2213 static SCEV::NoWrapFlags
2214 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2215                       const ArrayRef<const SCEV *> Ops,
2216                       SCEV::NoWrapFlags Flags) {
2217   using namespace std::placeholders;
2218 
2219   using OBO = OverflowingBinaryOperator;
2220 
2221   bool CanAnalyze =
2222       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2223   (void)CanAnalyze;
2224   assert(CanAnalyze && "don't call from other places!");
2225 
2226   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2227   SCEV::NoWrapFlags SignOrUnsignWrap =
2228       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2229 
2230   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2231   auto IsKnownNonNegative = [&](const SCEV *S) {
2232     return SE->isKnownNonNegative(S);
2233   };
2234 
2235   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2236     Flags =
2237         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2238 
2239   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2240 
2241   if (SignOrUnsignWrap != SignOrUnsignMask &&
2242       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2243       isa<SCEVConstant>(Ops[0])) {
2244 
2245     auto Opcode = [&] {
2246       switch (Type) {
2247       case scAddExpr:
2248         return Instruction::Add;
2249       case scMulExpr:
2250         return Instruction::Mul;
2251       default:
2252         llvm_unreachable("Unexpected SCEV op.");
2253       }
2254     }();
2255 
2256     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2257 
2258     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2259     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2260       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2261           Opcode, C, OBO::NoSignedWrap);
2262       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2263         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2264     }
2265 
2266     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2267     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2268       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2269           Opcode, C, OBO::NoUnsignedWrap);
2270       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2271         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2272     }
2273   }
2274 
2275   return Flags;
2276 }
2277 
2278 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2279   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2280 }
2281 
2282 /// Get a canonical add expression, or something simpler if possible.
2283 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2284                                         SCEV::NoWrapFlags OrigFlags,
2285                                         unsigned Depth) {
2286   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2287          "only nuw or nsw allowed");
2288   assert(!Ops.empty() && "Cannot get empty add!");
2289   if (Ops.size() == 1) return Ops[0];
2290 #ifndef NDEBUG
2291   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2292   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2293     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2294            "SCEVAddExpr operand types don't match!");
2295 #endif
2296 
2297   // Sort by complexity, this groups all similar expression types together.
2298   GroupByComplexity(Ops, &LI, DT);
2299 
2300   // If there are any constants, fold them together.
2301   unsigned Idx = 0;
2302   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2303     ++Idx;
2304     assert(Idx < Ops.size());
2305     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2306       // We found two constants, fold them together!
2307       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2308       if (Ops.size() == 2) return Ops[0];
2309       Ops.erase(Ops.begin()+1);  // Erase the folded element
2310       LHSC = cast<SCEVConstant>(Ops[0]);
2311     }
2312 
2313     // If we are left with a constant zero being added, strip it off.
2314     if (LHSC->getValue()->isZero()) {
2315       Ops.erase(Ops.begin());
2316       --Idx;
2317     }
2318 
2319     if (Ops.size() == 1) return Ops[0];
2320   }
2321 
2322   // Delay expensive flag strengthening until necessary.
2323   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2324     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2325   };
2326 
2327   // Limit recursion calls depth.
2328   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2329     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2330 
2331   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2332     // Don't strengthen flags if we have no new information.
2333     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2334     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2335       Add->setNoWrapFlags(ComputeFlags(Ops));
2336     return S;
2337   }
2338 
2339   // Okay, check to see if the same value occurs in the operand list more than
2340   // once.  If so, merge them together into an multiply expression.  Since we
2341   // sorted the list, these values are required to be adjacent.
2342   Type *Ty = Ops[0]->getType();
2343   bool FoundMatch = false;
2344   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2345     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2346       // Scan ahead to count how many equal operands there are.
2347       unsigned Count = 2;
2348       while (i+Count != e && Ops[i+Count] == Ops[i])
2349         ++Count;
2350       // Merge the values into a multiply.
2351       const SCEV *Scale = getConstant(Ty, Count);
2352       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2353       if (Ops.size() == Count)
2354         return Mul;
2355       Ops[i] = Mul;
2356       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2357       --i; e -= Count - 1;
2358       FoundMatch = true;
2359     }
2360   if (FoundMatch)
2361     return getAddExpr(Ops, OrigFlags, Depth + 1);
2362 
2363   // Check for truncates. If all the operands are truncated from the same
2364   // type, see if factoring out the truncate would permit the result to be
2365   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2366   // if the contents of the resulting outer trunc fold to something simple.
2367   auto FindTruncSrcType = [&]() -> Type * {
2368     // We're ultimately looking to fold an addrec of truncs and muls of only
2369     // constants and truncs, so if we find any other types of SCEV
2370     // as operands of the addrec then we bail and return nullptr here.
2371     // Otherwise, we return the type of the operand of a trunc that we find.
2372     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2373       return T->getOperand()->getType();
2374     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2375       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2376       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2377         return T->getOperand()->getType();
2378     }
2379     return nullptr;
2380   };
2381   if (auto *SrcType = FindTruncSrcType()) {
2382     SmallVector<const SCEV *, 8> LargeOps;
2383     bool Ok = true;
2384     // Check all the operands to see if they can be represented in the
2385     // source type of the truncate.
2386     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2387       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2388         if (T->getOperand()->getType() != SrcType) {
2389           Ok = false;
2390           break;
2391         }
2392         LargeOps.push_back(T->getOperand());
2393       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2394         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2395       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2396         SmallVector<const SCEV *, 8> LargeMulOps;
2397         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2398           if (const SCEVTruncateExpr *T =
2399                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2400             if (T->getOperand()->getType() != SrcType) {
2401               Ok = false;
2402               break;
2403             }
2404             LargeMulOps.push_back(T->getOperand());
2405           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2406             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2407           } else {
2408             Ok = false;
2409             break;
2410           }
2411         }
2412         if (Ok)
2413           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2414       } else {
2415         Ok = false;
2416         break;
2417       }
2418     }
2419     if (Ok) {
2420       // Evaluate the expression in the larger type.
2421       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2422       // If it folds to something simple, use it. Otherwise, don't.
2423       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2424         return getTruncateExpr(Fold, Ty);
2425     }
2426   }
2427 
2428   // Skip past any other cast SCEVs.
2429   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2430     ++Idx;
2431 
2432   // If there are add operands they would be next.
2433   if (Idx < Ops.size()) {
2434     bool DeletedAdd = false;
2435     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2436       if (Ops.size() > AddOpsInlineThreshold ||
2437           Add->getNumOperands() > AddOpsInlineThreshold)
2438         break;
2439       // If we have an add, expand the add operands onto the end of the operands
2440       // list.
2441       Ops.erase(Ops.begin()+Idx);
2442       Ops.append(Add->op_begin(), Add->op_end());
2443       DeletedAdd = true;
2444     }
2445 
2446     // If we deleted at least one add, we added operands to the end of the list,
2447     // and they are not necessarily sorted.  Recurse to resort and resimplify
2448     // any operands we just acquired.
2449     if (DeletedAdd)
2450       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2451   }
2452 
2453   // Skip over the add expression until we get to a multiply.
2454   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2455     ++Idx;
2456 
2457   // Check to see if there are any folding opportunities present with
2458   // operands multiplied by constant values.
2459   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2460     uint64_t BitWidth = getTypeSizeInBits(Ty);
2461     DenseMap<const SCEV *, APInt> M;
2462     SmallVector<const SCEV *, 8> NewOps;
2463     APInt AccumulatedConstant(BitWidth, 0);
2464     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2465                                      Ops.data(), Ops.size(),
2466                                      APInt(BitWidth, 1), *this)) {
2467       struct APIntCompare {
2468         bool operator()(const APInt &LHS, const APInt &RHS) const {
2469           return LHS.ult(RHS);
2470         }
2471       };
2472 
2473       // Some interesting folding opportunity is present, so its worthwhile to
2474       // re-generate the operands list. Group the operands by constant scale,
2475       // to avoid multiplying by the same constant scale multiple times.
2476       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2477       for (const SCEV *NewOp : NewOps)
2478         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2479       // Re-generate the operands list.
2480       Ops.clear();
2481       if (AccumulatedConstant != 0)
2482         Ops.push_back(getConstant(AccumulatedConstant));
2483       for (auto &MulOp : MulOpLists)
2484         if (MulOp.first != 0)
2485           Ops.push_back(getMulExpr(
2486               getConstant(MulOp.first),
2487               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2488               SCEV::FlagAnyWrap, Depth + 1));
2489       if (Ops.empty())
2490         return getZero(Ty);
2491       if (Ops.size() == 1)
2492         return Ops[0];
2493       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2494     }
2495   }
2496 
2497   // If we are adding something to a multiply expression, make sure the
2498   // something is not already an operand of the multiply.  If so, merge it into
2499   // the multiply.
2500   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2501     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2502     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2503       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2504       if (isa<SCEVConstant>(MulOpSCEV))
2505         continue;
2506       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2507         if (MulOpSCEV == Ops[AddOp]) {
2508           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2509           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2510           if (Mul->getNumOperands() != 2) {
2511             // If the multiply has more than two operands, we must get the
2512             // Y*Z term.
2513             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2514                                                 Mul->op_begin()+MulOp);
2515             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2516             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2517           }
2518           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2519           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2520           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2521                                             SCEV::FlagAnyWrap, Depth + 1);
2522           if (Ops.size() == 2) return OuterMul;
2523           if (AddOp < Idx) {
2524             Ops.erase(Ops.begin()+AddOp);
2525             Ops.erase(Ops.begin()+Idx-1);
2526           } else {
2527             Ops.erase(Ops.begin()+Idx);
2528             Ops.erase(Ops.begin()+AddOp-1);
2529           }
2530           Ops.push_back(OuterMul);
2531           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2532         }
2533 
2534       // Check this multiply against other multiplies being added together.
2535       for (unsigned OtherMulIdx = Idx+1;
2536            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2537            ++OtherMulIdx) {
2538         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2539         // If MulOp occurs in OtherMul, we can fold the two multiplies
2540         // together.
2541         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2542              OMulOp != e; ++OMulOp)
2543           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2544             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2545             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2546             if (Mul->getNumOperands() != 2) {
2547               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2548                                                   Mul->op_begin()+MulOp);
2549               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2550               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2551             }
2552             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2553             if (OtherMul->getNumOperands() != 2) {
2554               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2555                                                   OtherMul->op_begin()+OMulOp);
2556               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2557               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2558             }
2559             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2560             const SCEV *InnerMulSum =
2561                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2562             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2563                                               SCEV::FlagAnyWrap, Depth + 1);
2564             if (Ops.size() == 2) return OuterMul;
2565             Ops.erase(Ops.begin()+Idx);
2566             Ops.erase(Ops.begin()+OtherMulIdx-1);
2567             Ops.push_back(OuterMul);
2568             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2569           }
2570       }
2571     }
2572   }
2573 
2574   // If there are any add recurrences in the operands list, see if any other
2575   // added values are loop invariant.  If so, we can fold them into the
2576   // recurrence.
2577   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2578     ++Idx;
2579 
2580   // Scan over all recurrences, trying to fold loop invariants into them.
2581   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2582     // Scan all of the other operands to this add and add them to the vector if
2583     // they are loop invariant w.r.t. the recurrence.
2584     SmallVector<const SCEV *, 8> LIOps;
2585     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2586     const Loop *AddRecLoop = AddRec->getLoop();
2587     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2588       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2589         LIOps.push_back(Ops[i]);
2590         Ops.erase(Ops.begin()+i);
2591         --i; --e;
2592       }
2593 
2594     // If we found some loop invariants, fold them into the recurrence.
2595     if (!LIOps.empty()) {
2596       // Compute nowrap flags for the addition of the loop-invariant ops and
2597       // the addrec. Temporarily push it as an operand for that purpose.
2598       LIOps.push_back(AddRec);
2599       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2600       LIOps.pop_back();
2601 
2602       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2603       LIOps.push_back(AddRec->getStart());
2604 
2605       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2606                                              AddRec->op_end());
2607       // This follows from the fact that the no-wrap flags on the outer add
2608       // expression are applicable on the 0th iteration, when the add recurrence
2609       // will be equal to its start value.
2610       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2611 
2612       // Build the new addrec. Propagate the NUW and NSW flags if both the
2613       // outer add and the inner addrec are guaranteed to have no overflow.
2614       // Always propagate NW.
2615       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2616       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2617 
2618       // If all of the other operands were loop invariant, we are done.
2619       if (Ops.size() == 1) return NewRec;
2620 
2621       // Otherwise, add the folded AddRec by the non-invariant parts.
2622       for (unsigned i = 0;; ++i)
2623         if (Ops[i] == AddRec) {
2624           Ops[i] = NewRec;
2625           break;
2626         }
2627       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2628     }
2629 
2630     // Okay, if there weren't any loop invariants to be folded, check to see if
2631     // there are multiple AddRec's with the same loop induction variable being
2632     // added together.  If so, we can fold them.
2633     for (unsigned OtherIdx = Idx+1;
2634          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2635          ++OtherIdx) {
2636       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2637       // so that the 1st found AddRecExpr is dominated by all others.
2638       assert(DT.dominates(
2639            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2640            AddRec->getLoop()->getHeader()) &&
2641         "AddRecExprs are not sorted in reverse dominance order?");
2642       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2643         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2644         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2645                                                AddRec->op_end());
2646         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2647              ++OtherIdx) {
2648           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2649           if (OtherAddRec->getLoop() == AddRecLoop) {
2650             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2651                  i != e; ++i) {
2652               if (i >= AddRecOps.size()) {
2653                 AddRecOps.append(OtherAddRec->op_begin()+i,
2654                                  OtherAddRec->op_end());
2655                 break;
2656               }
2657               SmallVector<const SCEV *, 2> TwoOps = {
2658                   AddRecOps[i], OtherAddRec->getOperand(i)};
2659               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2660             }
2661             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2662           }
2663         }
2664         // Step size has changed, so we cannot guarantee no self-wraparound.
2665         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2666         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2667       }
2668     }
2669 
2670     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2671     // next one.
2672   }
2673 
2674   // Okay, it looks like we really DO need an add expr.  Check to see if we
2675   // already have one, otherwise create a new one.
2676   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2677 }
2678 
2679 const SCEV *
2680 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2681                                     SCEV::NoWrapFlags Flags) {
2682   FoldingSetNodeID ID;
2683   ID.AddInteger(scAddExpr);
2684   for (const SCEV *Op : Ops)
2685     ID.AddPointer(Op);
2686   void *IP = nullptr;
2687   SCEVAddExpr *S =
2688       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2689   if (!S) {
2690     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2691     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2692     S = new (SCEVAllocator)
2693         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2694     UniqueSCEVs.InsertNode(S, IP);
2695     addToLoopUseLists(S);
2696   }
2697   S->setNoWrapFlags(Flags);
2698   return S;
2699 }
2700 
2701 const SCEV *
2702 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2703                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2704   FoldingSetNodeID ID;
2705   ID.AddInteger(scAddRecExpr);
2706   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2707     ID.AddPointer(Ops[i]);
2708   ID.AddPointer(L);
2709   void *IP = nullptr;
2710   SCEVAddRecExpr *S =
2711       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2712   if (!S) {
2713     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2714     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2715     S = new (SCEVAllocator)
2716         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2717     UniqueSCEVs.InsertNode(S, IP);
2718     addToLoopUseLists(S);
2719   }
2720   setNoWrapFlags(S, Flags);
2721   return S;
2722 }
2723 
2724 const SCEV *
2725 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2726                                     SCEV::NoWrapFlags Flags) {
2727   FoldingSetNodeID ID;
2728   ID.AddInteger(scMulExpr);
2729   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2730     ID.AddPointer(Ops[i]);
2731   void *IP = nullptr;
2732   SCEVMulExpr *S =
2733     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2734   if (!S) {
2735     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2736     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2737     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2738                                         O, Ops.size());
2739     UniqueSCEVs.InsertNode(S, IP);
2740     addToLoopUseLists(S);
2741   }
2742   S->setNoWrapFlags(Flags);
2743   return S;
2744 }
2745 
2746 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2747   uint64_t k = i*j;
2748   if (j > 1 && k / j != i) Overflow = true;
2749   return k;
2750 }
2751 
2752 /// Compute the result of "n choose k", the binomial coefficient.  If an
2753 /// intermediate computation overflows, Overflow will be set and the return will
2754 /// be garbage. Overflow is not cleared on absence of overflow.
2755 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2756   // We use the multiplicative formula:
2757   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2758   // At each iteration, we take the n-th term of the numeral and divide by the
2759   // (k-n)th term of the denominator.  This division will always produce an
2760   // integral result, and helps reduce the chance of overflow in the
2761   // intermediate computations. However, we can still overflow even when the
2762   // final result would fit.
2763 
2764   if (n == 0 || n == k) return 1;
2765   if (k > n) return 0;
2766 
2767   if (k > n/2)
2768     k = n-k;
2769 
2770   uint64_t r = 1;
2771   for (uint64_t i = 1; i <= k; ++i) {
2772     r = umul_ov(r, n-(i-1), Overflow);
2773     r /= i;
2774   }
2775   return r;
2776 }
2777 
2778 /// Determine if any of the operands in this SCEV are a constant or if
2779 /// any of the add or multiply expressions in this SCEV contain a constant.
2780 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2781   struct FindConstantInAddMulChain {
2782     bool FoundConstant = false;
2783 
2784     bool follow(const SCEV *S) {
2785       FoundConstant |= isa<SCEVConstant>(S);
2786       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2787     }
2788 
2789     bool isDone() const {
2790       return FoundConstant;
2791     }
2792   };
2793 
2794   FindConstantInAddMulChain F;
2795   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2796   ST.visitAll(StartExpr);
2797   return F.FoundConstant;
2798 }
2799 
2800 /// Get a canonical multiply expression, or something simpler if possible.
2801 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2802                                         SCEV::NoWrapFlags OrigFlags,
2803                                         unsigned Depth) {
2804   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2805          "only nuw or nsw allowed");
2806   assert(!Ops.empty() && "Cannot get empty mul!");
2807   if (Ops.size() == 1) return Ops[0];
2808 #ifndef NDEBUG
2809   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2810   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2811     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2812            "SCEVMulExpr operand types don't match!");
2813 #endif
2814 
2815   // Sort by complexity, this groups all similar expression types together.
2816   GroupByComplexity(Ops, &LI, DT);
2817 
2818   // If there are any constants, fold them together.
2819   unsigned Idx = 0;
2820   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2821     ++Idx;
2822     assert(Idx < Ops.size());
2823     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2824       // We found two constants, fold them together!
2825       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
2826       if (Ops.size() == 2) return Ops[0];
2827       Ops.erase(Ops.begin()+1);  // Erase the folded element
2828       LHSC = cast<SCEVConstant>(Ops[0]);
2829     }
2830 
2831     // If we have a multiply of zero, it will always be zero.
2832     if (LHSC->getValue()->isZero())
2833       return LHSC;
2834 
2835     // If we are left with a constant one being multiplied, strip it off.
2836     if (LHSC->getValue()->isOne()) {
2837       Ops.erase(Ops.begin());
2838       --Idx;
2839     }
2840 
2841     if (Ops.size() == 1)
2842       return Ops[0];
2843   }
2844 
2845   // Delay expensive flag strengthening until necessary.
2846   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2847     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
2848   };
2849 
2850   // Limit recursion calls depth.
2851   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2852     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
2853 
2854   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2855     // Don't strengthen flags if we have no new information.
2856     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
2857     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
2858       Mul->setNoWrapFlags(ComputeFlags(Ops));
2859     return S;
2860   }
2861 
2862   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2863     if (Ops.size() == 2) {
2864       // C1*(C2+V) -> C1*C2 + C1*V
2865       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2866         // If any of Add's ops are Adds or Muls with a constant, apply this
2867         // transformation as well.
2868         //
2869         // TODO: There are some cases where this transformation is not
2870         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2871         // this transformation should be narrowed down.
2872         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2873           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2874                                        SCEV::FlagAnyWrap, Depth + 1),
2875                             getMulExpr(LHSC, Add->getOperand(1),
2876                                        SCEV::FlagAnyWrap, Depth + 1),
2877                             SCEV::FlagAnyWrap, Depth + 1);
2878 
2879       if (Ops[0]->isAllOnesValue()) {
2880         // If we have a mul by -1 of an add, try distributing the -1 among the
2881         // add operands.
2882         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2883           SmallVector<const SCEV *, 4> NewOps;
2884           bool AnyFolded = false;
2885           for (const SCEV *AddOp : Add->operands()) {
2886             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2887                                          Depth + 1);
2888             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2889             NewOps.push_back(Mul);
2890           }
2891           if (AnyFolded)
2892             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2893         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2894           // Negation preserves a recurrence's no self-wrap property.
2895           SmallVector<const SCEV *, 4> Operands;
2896           for (const SCEV *AddRecOp : AddRec->operands())
2897             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2898                                           Depth + 1));
2899 
2900           return getAddRecExpr(Operands, AddRec->getLoop(),
2901                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2902         }
2903       }
2904     }
2905   }
2906 
2907   // Skip over the add expression until we get to a multiply.
2908   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2909     ++Idx;
2910 
2911   // If there are mul operands inline them all into this expression.
2912   if (Idx < Ops.size()) {
2913     bool DeletedMul = false;
2914     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2915       if (Ops.size() > MulOpsInlineThreshold)
2916         break;
2917       // If we have an mul, expand the mul operands onto the end of the
2918       // operands list.
2919       Ops.erase(Ops.begin()+Idx);
2920       Ops.append(Mul->op_begin(), Mul->op_end());
2921       DeletedMul = true;
2922     }
2923 
2924     // If we deleted at least one mul, we added operands to the end of the
2925     // list, and they are not necessarily sorted.  Recurse to resort and
2926     // resimplify any operands we just acquired.
2927     if (DeletedMul)
2928       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2929   }
2930 
2931   // If there are any add recurrences in the operands list, see if any other
2932   // added values are loop invariant.  If so, we can fold them into the
2933   // recurrence.
2934   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2935     ++Idx;
2936 
2937   // Scan over all recurrences, trying to fold loop invariants into them.
2938   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2939     // Scan all of the other operands to this mul and add them to the vector
2940     // if they are loop invariant w.r.t. the recurrence.
2941     SmallVector<const SCEV *, 8> LIOps;
2942     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2943     const Loop *AddRecLoop = AddRec->getLoop();
2944     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2945       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2946         LIOps.push_back(Ops[i]);
2947         Ops.erase(Ops.begin()+i);
2948         --i; --e;
2949       }
2950 
2951     // If we found some loop invariants, fold them into the recurrence.
2952     if (!LIOps.empty()) {
2953       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2954       SmallVector<const SCEV *, 4> NewOps;
2955       NewOps.reserve(AddRec->getNumOperands());
2956       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2957       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2958         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2959                                     SCEV::FlagAnyWrap, Depth + 1));
2960 
2961       // Build the new addrec. Propagate the NUW and NSW flags if both the
2962       // outer mul and the inner addrec are guaranteed to have no overflow.
2963       //
2964       // No self-wrap cannot be guaranteed after changing the step size, but
2965       // will be inferred if either NUW or NSW is true.
2966       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
2967       const SCEV *NewRec = getAddRecExpr(
2968           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
2969 
2970       // If all of the other operands were loop invariant, we are done.
2971       if (Ops.size() == 1) return NewRec;
2972 
2973       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2974       for (unsigned i = 0;; ++i)
2975         if (Ops[i] == AddRec) {
2976           Ops[i] = NewRec;
2977           break;
2978         }
2979       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2980     }
2981 
2982     // Okay, if there weren't any loop invariants to be folded, check to see
2983     // if there are multiple AddRec's with the same loop induction variable
2984     // being multiplied together.  If so, we can fold them.
2985 
2986     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2987     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2988     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2989     //   ]]],+,...up to x=2n}.
2990     // Note that the arguments to choose() are always integers with values
2991     // known at compile time, never SCEV objects.
2992     //
2993     // The implementation avoids pointless extra computations when the two
2994     // addrec's are of different length (mathematically, it's equivalent to
2995     // an infinite stream of zeros on the right).
2996     bool OpsModified = false;
2997     for (unsigned OtherIdx = Idx+1;
2998          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2999          ++OtherIdx) {
3000       const SCEVAddRecExpr *OtherAddRec =
3001         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3002       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3003         continue;
3004 
3005       // Limit max number of arguments to avoid creation of unreasonably big
3006       // SCEVAddRecs with very complex operands.
3007       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3008           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3009         continue;
3010 
3011       bool Overflow = false;
3012       Type *Ty = AddRec->getType();
3013       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3014       SmallVector<const SCEV*, 7> AddRecOps;
3015       for (int x = 0, xe = AddRec->getNumOperands() +
3016              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3017         SmallVector <const SCEV *, 7> SumOps;
3018         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3019           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3020           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3021                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3022                z < ze && !Overflow; ++z) {
3023             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3024             uint64_t Coeff;
3025             if (LargerThan64Bits)
3026               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3027             else
3028               Coeff = Coeff1*Coeff2;
3029             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3030             const SCEV *Term1 = AddRec->getOperand(y-z);
3031             const SCEV *Term2 = OtherAddRec->getOperand(z);
3032             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3033                                         SCEV::FlagAnyWrap, Depth + 1));
3034           }
3035         }
3036         if (SumOps.empty())
3037           SumOps.push_back(getZero(Ty));
3038         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3039       }
3040       if (!Overflow) {
3041         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3042                                               SCEV::FlagAnyWrap);
3043         if (Ops.size() == 2) return NewAddRec;
3044         Ops[Idx] = NewAddRec;
3045         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3046         OpsModified = true;
3047         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3048         if (!AddRec)
3049           break;
3050       }
3051     }
3052     if (OpsModified)
3053       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3054 
3055     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3056     // next one.
3057   }
3058 
3059   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3060   // already have one, otherwise create a new one.
3061   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3062 }
3063 
3064 /// Represents an unsigned remainder expression based on unsigned division.
3065 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3066                                          const SCEV *RHS) {
3067   assert(getEffectiveSCEVType(LHS->getType()) ==
3068          getEffectiveSCEVType(RHS->getType()) &&
3069          "SCEVURemExpr operand types don't match!");
3070 
3071   // Short-circuit easy cases
3072   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3073     // If constant is one, the result is trivial
3074     if (RHSC->getValue()->isOne())
3075       return getZero(LHS->getType()); // X urem 1 --> 0
3076 
3077     // If constant is a power of two, fold into a zext(trunc(LHS)).
3078     if (RHSC->getAPInt().isPowerOf2()) {
3079       Type *FullTy = LHS->getType();
3080       Type *TruncTy =
3081           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3082       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3083     }
3084   }
3085 
3086   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3087   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3088   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3089   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3090 }
3091 
3092 /// Get a canonical unsigned division expression, or something simpler if
3093 /// possible.
3094 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3095                                          const SCEV *RHS) {
3096   assert(getEffectiveSCEVType(LHS->getType()) ==
3097          getEffectiveSCEVType(RHS->getType()) &&
3098          "SCEVUDivExpr operand types don't match!");
3099 
3100   FoldingSetNodeID ID;
3101   ID.AddInteger(scUDivExpr);
3102   ID.AddPointer(LHS);
3103   ID.AddPointer(RHS);
3104   void *IP = nullptr;
3105   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3106     return S;
3107 
3108   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3109     if (RHSC->getValue()->isOne())
3110       return LHS;                               // X udiv 1 --> x
3111     // If the denominator is zero, the result of the udiv is undefined. Don't
3112     // try to analyze it, because the resolution chosen here may differ from
3113     // the resolution chosen in other parts of the compiler.
3114     if (!RHSC->getValue()->isZero()) {
3115       // Determine if the division can be folded into the operands of
3116       // its operands.
3117       // TODO: Generalize this to non-constants by using known-bits information.
3118       Type *Ty = LHS->getType();
3119       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3120       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3121       // For non-power-of-two values, effectively round the value up to the
3122       // nearest power of two.
3123       if (!RHSC->getAPInt().isPowerOf2())
3124         ++MaxShiftAmt;
3125       IntegerType *ExtTy =
3126         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3127       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3128         if (const SCEVConstant *Step =
3129             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3130           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3131           const APInt &StepInt = Step->getAPInt();
3132           const APInt &DivInt = RHSC->getAPInt();
3133           if (!StepInt.urem(DivInt) &&
3134               getZeroExtendExpr(AR, ExtTy) ==
3135               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3136                             getZeroExtendExpr(Step, ExtTy),
3137                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3138             SmallVector<const SCEV *, 4> Operands;
3139             for (const SCEV *Op : AR->operands())
3140               Operands.push_back(getUDivExpr(Op, RHS));
3141             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3142           }
3143           /// Get a canonical UDivExpr for a recurrence.
3144           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3145           // We can currently only fold X%N if X is constant.
3146           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3147           if (StartC && !DivInt.urem(StepInt) &&
3148               getZeroExtendExpr(AR, ExtTy) ==
3149               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3150                             getZeroExtendExpr(Step, ExtTy),
3151                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3152             const APInt &StartInt = StartC->getAPInt();
3153             const APInt &StartRem = StartInt.urem(StepInt);
3154             if (StartRem != 0) {
3155               const SCEV *NewLHS =
3156                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3157                                 AR->getLoop(), SCEV::FlagNW);
3158               if (LHS != NewLHS) {
3159                 LHS = NewLHS;
3160 
3161                 // Reset the ID to include the new LHS, and check if it is
3162                 // already cached.
3163                 ID.clear();
3164                 ID.AddInteger(scUDivExpr);
3165                 ID.AddPointer(LHS);
3166                 ID.AddPointer(RHS);
3167                 IP = nullptr;
3168                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3169                   return S;
3170               }
3171             }
3172           }
3173         }
3174       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3175       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3176         SmallVector<const SCEV *, 4> Operands;
3177         for (const SCEV *Op : M->operands())
3178           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3179         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3180           // Find an operand that's safely divisible.
3181           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3182             const SCEV *Op = M->getOperand(i);
3183             const SCEV *Div = getUDivExpr(Op, RHSC);
3184             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3185               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3186                                                       M->op_end());
3187               Operands[i] = Div;
3188               return getMulExpr(Operands);
3189             }
3190           }
3191       }
3192 
3193       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3194       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3195         if (auto *DivisorConstant =
3196                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3197           bool Overflow = false;
3198           APInt NewRHS =
3199               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3200           if (Overflow) {
3201             return getConstant(RHSC->getType(), 0, false);
3202           }
3203           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3204         }
3205       }
3206 
3207       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3208       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3209         SmallVector<const SCEV *, 4> Operands;
3210         for (const SCEV *Op : A->operands())
3211           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3212         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3213           Operands.clear();
3214           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3215             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3216             if (isa<SCEVUDivExpr>(Op) ||
3217                 getMulExpr(Op, RHS) != A->getOperand(i))
3218               break;
3219             Operands.push_back(Op);
3220           }
3221           if (Operands.size() == A->getNumOperands())
3222             return getAddExpr(Operands);
3223         }
3224       }
3225 
3226       // Fold if both operands are constant.
3227       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3228         Constant *LHSCV = LHSC->getValue();
3229         Constant *RHSCV = RHSC->getValue();
3230         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3231                                                                    RHSCV)));
3232       }
3233     }
3234   }
3235 
3236   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3237   // changes). Make sure we get a new one.
3238   IP = nullptr;
3239   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3240   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3241                                              LHS, RHS);
3242   UniqueSCEVs.InsertNode(S, IP);
3243   addToLoopUseLists(S);
3244   return S;
3245 }
3246 
3247 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3248   APInt A = C1->getAPInt().abs();
3249   APInt B = C2->getAPInt().abs();
3250   uint32_t ABW = A.getBitWidth();
3251   uint32_t BBW = B.getBitWidth();
3252 
3253   if (ABW > BBW)
3254     B = B.zext(ABW);
3255   else if (ABW < BBW)
3256     A = A.zext(BBW);
3257 
3258   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3259 }
3260 
3261 /// Get a canonical unsigned division expression, or something simpler if
3262 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3263 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3264 /// it's not exact because the udiv may be clearing bits.
3265 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3266                                               const SCEV *RHS) {
3267   // TODO: we could try to find factors in all sorts of things, but for now we
3268   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3269   // end of this file for inspiration.
3270 
3271   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3272   if (!Mul || !Mul->hasNoUnsignedWrap())
3273     return getUDivExpr(LHS, RHS);
3274 
3275   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3276     // If the mulexpr multiplies by a constant, then that constant must be the
3277     // first element of the mulexpr.
3278     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3279       if (LHSCst == RHSCst) {
3280         SmallVector<const SCEV *, 2> Operands;
3281         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3282         return getMulExpr(Operands);
3283       }
3284 
3285       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3286       // that there's a factor provided by one of the other terms. We need to
3287       // check.
3288       APInt Factor = gcd(LHSCst, RHSCst);
3289       if (!Factor.isIntN(1)) {
3290         LHSCst =
3291             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3292         RHSCst =
3293             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3294         SmallVector<const SCEV *, 2> Operands;
3295         Operands.push_back(LHSCst);
3296         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3297         LHS = getMulExpr(Operands);
3298         RHS = RHSCst;
3299         Mul = dyn_cast<SCEVMulExpr>(LHS);
3300         if (!Mul)
3301           return getUDivExactExpr(LHS, RHS);
3302       }
3303     }
3304   }
3305 
3306   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3307     if (Mul->getOperand(i) == RHS) {
3308       SmallVector<const SCEV *, 2> Operands;
3309       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3310       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3311       return getMulExpr(Operands);
3312     }
3313   }
3314 
3315   return getUDivExpr(LHS, RHS);
3316 }
3317 
3318 /// Get an add recurrence expression for the specified loop.  Simplify the
3319 /// expression as much as possible.
3320 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3321                                            const Loop *L,
3322                                            SCEV::NoWrapFlags Flags) {
3323   SmallVector<const SCEV *, 4> Operands;
3324   Operands.push_back(Start);
3325   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3326     if (StepChrec->getLoop() == L) {
3327       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3328       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3329     }
3330 
3331   Operands.push_back(Step);
3332   return getAddRecExpr(Operands, L, Flags);
3333 }
3334 
3335 /// Get an add recurrence expression for the specified loop.  Simplify the
3336 /// expression as much as possible.
3337 const SCEV *
3338 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3339                                const Loop *L, SCEV::NoWrapFlags Flags) {
3340   if (Operands.size() == 1) return Operands[0];
3341 #ifndef NDEBUG
3342   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3343   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3344     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3345            "SCEVAddRecExpr operand types don't match!");
3346   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3347     assert(isLoopInvariant(Operands[i], L) &&
3348            "SCEVAddRecExpr operand is not loop-invariant!");
3349 #endif
3350 
3351   if (Operands.back()->isZero()) {
3352     Operands.pop_back();
3353     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3354   }
3355 
3356   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3357   // use that information to infer NUW and NSW flags. However, computing a
3358   // BE count requires calling getAddRecExpr, so we may not yet have a
3359   // meaningful BE count at this point (and if we don't, we'd be stuck
3360   // with a SCEVCouldNotCompute as the cached BE count).
3361 
3362   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3363 
3364   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3365   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3366     const Loop *NestedLoop = NestedAR->getLoop();
3367     if (L->contains(NestedLoop)
3368             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3369             : (!NestedLoop->contains(L) &&
3370                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3371       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3372                                                   NestedAR->op_end());
3373       Operands[0] = NestedAR->getStart();
3374       // AddRecs require their operands be loop-invariant with respect to their
3375       // loops. Don't perform this transformation if it would break this
3376       // requirement.
3377       bool AllInvariant = all_of(
3378           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3379 
3380       if (AllInvariant) {
3381         // Create a recurrence for the outer loop with the same step size.
3382         //
3383         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3384         // inner recurrence has the same property.
3385         SCEV::NoWrapFlags OuterFlags =
3386           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3387 
3388         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3389         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3390           return isLoopInvariant(Op, NestedLoop);
3391         });
3392 
3393         if (AllInvariant) {
3394           // Ok, both add recurrences are valid after the transformation.
3395           //
3396           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3397           // the outer recurrence has the same property.
3398           SCEV::NoWrapFlags InnerFlags =
3399             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3400           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3401         }
3402       }
3403       // Reset Operands to its original state.
3404       Operands[0] = NestedAR;
3405     }
3406   }
3407 
3408   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3409   // already have one, otherwise create a new one.
3410   return getOrCreateAddRecExpr(Operands, L, Flags);
3411 }
3412 
3413 const SCEV *
3414 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3415                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3416   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3417   // getSCEV(Base)->getType() has the same address space as Base->getType()
3418   // because SCEV::getType() preserves the address space.
3419   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3420   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3421   // instruction to its SCEV, because the Instruction may be guarded by control
3422   // flow and the no-overflow bits may not be valid for the expression in any
3423   // context. This can be fixed similarly to how these flags are handled for
3424   // adds.
3425   SCEV::NoWrapFlags OffsetWrap =
3426       GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3427 
3428   Type *CurTy = GEP->getType();
3429   bool FirstIter = true;
3430   SmallVector<const SCEV *, 4> Offsets;
3431   for (const SCEV *IndexExpr : IndexExprs) {
3432     // Compute the (potentially symbolic) offset in bytes for this index.
3433     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3434       // For a struct, add the member offset.
3435       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3436       unsigned FieldNo = Index->getZExtValue();
3437       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3438       Offsets.push_back(FieldOffset);
3439 
3440       // Update CurTy to the type of the field at Index.
3441       CurTy = STy->getTypeAtIndex(Index);
3442     } else {
3443       // Update CurTy to its element type.
3444       if (FirstIter) {
3445         assert(isa<PointerType>(CurTy) &&
3446                "The first index of a GEP indexes a pointer");
3447         CurTy = GEP->getSourceElementType();
3448         FirstIter = false;
3449       } else {
3450         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3451       }
3452       // For an array, add the element offset, explicitly scaled.
3453       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3454       // Getelementptr indices are signed.
3455       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3456 
3457       // Multiply the index by the element size to compute the element offset.
3458       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3459       Offsets.push_back(LocalOffset);
3460     }
3461   }
3462 
3463   // Handle degenerate case of GEP without offsets.
3464   if (Offsets.empty())
3465     return BaseExpr;
3466 
3467   // Add the offsets together, assuming nsw if inbounds.
3468   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3469   // Add the base address and the offset. We cannot use the nsw flag, as the
3470   // base address is unsigned. However, if we know that the offset is
3471   // non-negative, we can use nuw.
3472   SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
3473                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3474   return getAddExpr(BaseExpr, Offset, BaseWrap);
3475 }
3476 
3477 std::tuple<SCEV *, FoldingSetNodeID, void *>
3478 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3479                                          ArrayRef<const SCEV *> Ops) {
3480   FoldingSetNodeID ID;
3481   void *IP = nullptr;
3482   ID.AddInteger(SCEVType);
3483   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3484     ID.AddPointer(Ops[i]);
3485   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3486       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3487 }
3488 
3489 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3490   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3491   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3492 }
3493 
3494 const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) {
3495   Type *Ty = Op->getType();
3496   return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty));
3497 }
3498 
3499 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3500                                            SmallVectorImpl<const SCEV *> &Ops) {
3501   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3502   if (Ops.size() == 1) return Ops[0];
3503 #ifndef NDEBUG
3504   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3505   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3506     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3507            "Operand types don't match!");
3508 #endif
3509 
3510   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3511   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3512 
3513   // Sort by complexity, this groups all similar expression types together.
3514   GroupByComplexity(Ops, &LI, DT);
3515 
3516   // Check if we have created the same expression before.
3517   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3518     return S;
3519   }
3520 
3521   // If there are any constants, fold them together.
3522   unsigned Idx = 0;
3523   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3524     ++Idx;
3525     assert(Idx < Ops.size());
3526     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3527       if (Kind == scSMaxExpr)
3528         return APIntOps::smax(LHS, RHS);
3529       else if (Kind == scSMinExpr)
3530         return APIntOps::smin(LHS, RHS);
3531       else if (Kind == scUMaxExpr)
3532         return APIntOps::umax(LHS, RHS);
3533       else if (Kind == scUMinExpr)
3534         return APIntOps::umin(LHS, RHS);
3535       llvm_unreachable("Unknown SCEV min/max opcode");
3536     };
3537 
3538     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3539       // We found two constants, fold them together!
3540       ConstantInt *Fold = ConstantInt::get(
3541           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3542       Ops[0] = getConstant(Fold);
3543       Ops.erase(Ops.begin()+1);  // Erase the folded element
3544       if (Ops.size() == 1) return Ops[0];
3545       LHSC = cast<SCEVConstant>(Ops[0]);
3546     }
3547 
3548     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3549     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3550 
3551     if (IsMax ? IsMinV : IsMaxV) {
3552       // If we are left with a constant minimum(/maximum)-int, strip it off.
3553       Ops.erase(Ops.begin());
3554       --Idx;
3555     } else if (IsMax ? IsMaxV : IsMinV) {
3556       // If we have a max(/min) with a constant maximum(/minimum)-int,
3557       // it will always be the extremum.
3558       return LHSC;
3559     }
3560 
3561     if (Ops.size() == 1) return Ops[0];
3562   }
3563 
3564   // Find the first operation of the same kind
3565   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3566     ++Idx;
3567 
3568   // Check to see if one of the operands is of the same kind. If so, expand its
3569   // operands onto our operand list, and recurse to simplify.
3570   if (Idx < Ops.size()) {
3571     bool DeletedAny = false;
3572     while (Ops[Idx]->getSCEVType() == Kind) {
3573       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3574       Ops.erase(Ops.begin()+Idx);
3575       Ops.append(SMME->op_begin(), SMME->op_end());
3576       DeletedAny = true;
3577     }
3578 
3579     if (DeletedAny)
3580       return getMinMaxExpr(Kind, Ops);
3581   }
3582 
3583   // Okay, check to see if the same value occurs in the operand list twice.  If
3584   // so, delete one.  Since we sorted the list, these values are required to
3585   // be adjacent.
3586   llvm::CmpInst::Predicate GEPred =
3587       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3588   llvm::CmpInst::Predicate LEPred =
3589       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3590   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3591   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3592   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3593     if (Ops[i] == Ops[i + 1] ||
3594         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3595       //  X op Y op Y  -->  X op Y
3596       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3597       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3598       --i;
3599       --e;
3600     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3601                                                Ops[i + 1])) {
3602       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3603       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3604       --i;
3605       --e;
3606     }
3607   }
3608 
3609   if (Ops.size() == 1) return Ops[0];
3610 
3611   assert(!Ops.empty() && "Reduced smax down to nothing!");
3612 
3613   // Okay, it looks like we really DO need an expr.  Check to see if we
3614   // already have one, otherwise create a new one.
3615   const SCEV *ExistingSCEV;
3616   FoldingSetNodeID ID;
3617   void *IP;
3618   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3619   if (ExistingSCEV)
3620     return ExistingSCEV;
3621   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3622   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3623   SCEV *S = new (SCEVAllocator)
3624       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3625 
3626   UniqueSCEVs.InsertNode(S, IP);
3627   addToLoopUseLists(S);
3628   return S;
3629 }
3630 
3631 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3632   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3633   return getSMaxExpr(Ops);
3634 }
3635 
3636 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3637   return getMinMaxExpr(scSMaxExpr, Ops);
3638 }
3639 
3640 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3641   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3642   return getUMaxExpr(Ops);
3643 }
3644 
3645 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3646   return getMinMaxExpr(scUMaxExpr, Ops);
3647 }
3648 
3649 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3650                                          const SCEV *RHS) {
3651   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3652   return getSMinExpr(Ops);
3653 }
3654 
3655 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3656   return getMinMaxExpr(scSMinExpr, Ops);
3657 }
3658 
3659 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3660                                          const SCEV *RHS) {
3661   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3662   return getUMinExpr(Ops);
3663 }
3664 
3665 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3666   return getMinMaxExpr(scUMinExpr, Ops);
3667 }
3668 
3669 const SCEV *
3670 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3671                                              ScalableVectorType *ScalableTy) {
3672   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3673   Constant *One = ConstantInt::get(IntTy, 1);
3674   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3675   // Note that the expression we created is the final expression, we don't
3676   // want to simplify it any further Also, if we call a normal getSCEV(),
3677   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3678   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3679 }
3680 
3681 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3682   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3683     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3684   // We can bypass creating a target-independent constant expression and then
3685   // folding it back into a ConstantInt. This is just a compile-time
3686   // optimization.
3687   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3688 }
3689 
3690 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3691   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3692     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3693   // We can bypass creating a target-independent constant expression and then
3694   // folding it back into a ConstantInt. This is just a compile-time
3695   // optimization.
3696   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3697 }
3698 
3699 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3700                                              StructType *STy,
3701                                              unsigned FieldNo) {
3702   // We can bypass creating a target-independent constant expression and then
3703   // folding it back into a ConstantInt. This is just a compile-time
3704   // optimization.
3705   return getConstant(
3706       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3707 }
3708 
3709 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3710   // Don't attempt to do anything other than create a SCEVUnknown object
3711   // here.  createSCEV only calls getUnknown after checking for all other
3712   // interesting possibilities, and any other code that calls getUnknown
3713   // is doing so in order to hide a value from SCEV canonicalization.
3714 
3715   FoldingSetNodeID ID;
3716   ID.AddInteger(scUnknown);
3717   ID.AddPointer(V);
3718   void *IP = nullptr;
3719   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3720     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3721            "Stale SCEVUnknown in uniquing map!");
3722     return S;
3723   }
3724   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3725                                             FirstUnknown);
3726   FirstUnknown = cast<SCEVUnknown>(S);
3727   UniqueSCEVs.InsertNode(S, IP);
3728   return S;
3729 }
3730 
3731 //===----------------------------------------------------------------------===//
3732 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3733 //
3734 
3735 /// Test if values of the given type are analyzable within the SCEV
3736 /// framework. This primarily includes integer types, and it can optionally
3737 /// include pointer types if the ScalarEvolution class has access to
3738 /// target-specific information.
3739 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3740   // Integers and pointers are always SCEVable.
3741   return Ty->isIntOrPtrTy();
3742 }
3743 
3744 /// Return the size in bits of the specified type, for which isSCEVable must
3745 /// return true.
3746 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3747   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3748   if (Ty->isPointerTy())
3749     return getDataLayout().getIndexTypeSizeInBits(Ty);
3750   return getDataLayout().getTypeSizeInBits(Ty);
3751 }
3752 
3753 /// Return a type with the same bitwidth as the given type and which represents
3754 /// how SCEV will treat the given type, for which isSCEVable must return
3755 /// true. For pointer types, this is the pointer index sized integer type.
3756 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3757   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3758 
3759   if (Ty->isIntegerTy())
3760     return Ty;
3761 
3762   // The only other support type is pointer.
3763   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3764   return getDataLayout().getIndexType(Ty);
3765 }
3766 
3767 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3768   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3769 }
3770 
3771 const SCEV *ScalarEvolution::getCouldNotCompute() {
3772   return CouldNotCompute.get();
3773 }
3774 
3775 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3776   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3777     auto *SU = dyn_cast<SCEVUnknown>(S);
3778     return SU && SU->getValue() == nullptr;
3779   });
3780 
3781   return !ContainsNulls;
3782 }
3783 
3784 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3785   HasRecMapType::iterator I = HasRecMap.find(S);
3786   if (I != HasRecMap.end())
3787     return I->second;
3788 
3789   bool FoundAddRec =
3790       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3791   HasRecMap.insert({S, FoundAddRec});
3792   return FoundAddRec;
3793 }
3794 
3795 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3796 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3797 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3798 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3799   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3800   if (!Add)
3801     return {S, nullptr};
3802 
3803   if (Add->getNumOperands() != 2)
3804     return {S, nullptr};
3805 
3806   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3807   if (!ConstOp)
3808     return {S, nullptr};
3809 
3810   return {Add->getOperand(1), ConstOp->getValue()};
3811 }
3812 
3813 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3814 /// by the value and offset from any ValueOffsetPair in the set.
3815 SetVector<ScalarEvolution::ValueOffsetPair> *
3816 ScalarEvolution::getSCEVValues(const SCEV *S) {
3817   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3818   if (SI == ExprValueMap.end())
3819     return nullptr;
3820 #ifndef NDEBUG
3821   if (VerifySCEVMap) {
3822     // Check there is no dangling Value in the set returned.
3823     for (const auto &VE : SI->second)
3824       assert(ValueExprMap.count(VE.first));
3825   }
3826 #endif
3827   return &SI->second;
3828 }
3829 
3830 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3831 /// cannot be used separately. eraseValueFromMap should be used to remove
3832 /// V from ValueExprMap and ExprValueMap at the same time.
3833 void ScalarEvolution::eraseValueFromMap(Value *V) {
3834   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3835   if (I != ValueExprMap.end()) {
3836     const SCEV *S = I->second;
3837     // Remove {V, 0} from the set of ExprValueMap[S]
3838     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3839       SV->remove({V, nullptr});
3840 
3841     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3842     const SCEV *Stripped;
3843     ConstantInt *Offset;
3844     std::tie(Stripped, Offset) = splitAddExpr(S);
3845     if (Offset != nullptr) {
3846       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3847         SV->remove({V, Offset});
3848     }
3849     ValueExprMap.erase(V);
3850   }
3851 }
3852 
3853 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3854 /// TODO: In reality it is better to check the poison recursively
3855 /// but this is better than nothing.
3856 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3857   if (auto *I = dyn_cast<Instruction>(V)) {
3858     if (isa<OverflowingBinaryOperator>(I)) {
3859       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3860         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3861           return true;
3862         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3863           return true;
3864       }
3865     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3866       return true;
3867   }
3868   return false;
3869 }
3870 
3871 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3872 /// create a new one.
3873 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3874   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3875 
3876   const SCEV *S = getExistingSCEV(V);
3877   if (S == nullptr) {
3878     S = createSCEV(V);
3879     // During PHI resolution, it is possible to create two SCEVs for the same
3880     // V, so it is needed to double check whether V->S is inserted into
3881     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3882     std::pair<ValueExprMapType::iterator, bool> Pair =
3883         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3884     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3885       ExprValueMap[S].insert({V, nullptr});
3886 
3887       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3888       // ExprValueMap.
3889       const SCEV *Stripped = S;
3890       ConstantInt *Offset = nullptr;
3891       std::tie(Stripped, Offset) = splitAddExpr(S);
3892       // If stripped is SCEVUnknown, don't bother to save
3893       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3894       // increase the complexity of the expansion code.
3895       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3896       // because it may generate add/sub instead of GEP in SCEV expansion.
3897       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3898           !isa<GetElementPtrInst>(V))
3899         ExprValueMap[Stripped].insert({V, Offset});
3900     }
3901   }
3902   return S;
3903 }
3904 
3905 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3906   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3907 
3908   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3909   if (I != ValueExprMap.end()) {
3910     const SCEV *S = I->second;
3911     if (checkValidity(S))
3912       return S;
3913     eraseValueFromMap(V);
3914     forgetMemoizedResults(S);
3915   }
3916   return nullptr;
3917 }
3918 
3919 /// Return a SCEV corresponding to -V = -1*V
3920 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3921                                              SCEV::NoWrapFlags Flags) {
3922   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3923     return getConstant(
3924                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3925 
3926   Type *Ty = V->getType();
3927   Ty = getEffectiveSCEVType(Ty);
3928   return getMulExpr(V, getMinusOne(Ty), Flags);
3929 }
3930 
3931 /// If Expr computes ~A, return A else return nullptr
3932 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3933   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3934   if (!Add || Add->getNumOperands() != 2 ||
3935       !Add->getOperand(0)->isAllOnesValue())
3936     return nullptr;
3937 
3938   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3939   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3940       !AddRHS->getOperand(0)->isAllOnesValue())
3941     return nullptr;
3942 
3943   return AddRHS->getOperand(1);
3944 }
3945 
3946 /// Return a SCEV corresponding to ~V = -1-V
3947 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3948   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3949     return getConstant(
3950                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3951 
3952   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3953   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3954     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3955       SmallVector<const SCEV *, 2> MatchedOperands;
3956       for (const SCEV *Operand : MME->operands()) {
3957         const SCEV *Matched = MatchNotExpr(Operand);
3958         if (!Matched)
3959           return (const SCEV *)nullptr;
3960         MatchedOperands.push_back(Matched);
3961       }
3962       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
3963                            MatchedOperands);
3964     };
3965     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3966       return Replaced;
3967   }
3968 
3969   Type *Ty = V->getType();
3970   Ty = getEffectiveSCEVType(Ty);
3971   return getMinusSCEV(getMinusOne(Ty), V);
3972 }
3973 
3974 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3975                                           SCEV::NoWrapFlags Flags,
3976                                           unsigned Depth) {
3977   // Fast path: X - X --> 0.
3978   if (LHS == RHS)
3979     return getZero(LHS->getType());
3980 
3981   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3982   // makes it so that we cannot make much use of NUW.
3983   auto AddFlags = SCEV::FlagAnyWrap;
3984   const bool RHSIsNotMinSigned =
3985       !getSignedRangeMin(RHS).isMinSignedValue();
3986   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3987     // Let M be the minimum representable signed value. Then (-1)*RHS
3988     // signed-wraps if and only if RHS is M. That can happen even for
3989     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3990     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3991     // (-1)*RHS, we need to prove that RHS != M.
3992     //
3993     // If LHS is non-negative and we know that LHS - RHS does not
3994     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3995     // either by proving that RHS > M or that LHS >= 0.
3996     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3997       AddFlags = SCEV::FlagNSW;
3998     }
3999   }
4000 
4001   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4002   // RHS is NSW and LHS >= 0.
4003   //
4004   // The difficulty here is that the NSW flag may have been proven
4005   // relative to a loop that is to be found in a recurrence in LHS and
4006   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4007   // larger scope than intended.
4008   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4009 
4010   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4011 }
4012 
4013 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4014                                                      unsigned Depth) {
4015   Type *SrcTy = V->getType();
4016   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4017          "Cannot truncate or zero extend with non-integer arguments!");
4018   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4019     return V;  // No conversion
4020   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4021     return getTruncateExpr(V, Ty, Depth);
4022   return getZeroExtendExpr(V, Ty, Depth);
4023 }
4024 
4025 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4026                                                      unsigned Depth) {
4027   Type *SrcTy = V->getType();
4028   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4029          "Cannot truncate or zero extend with non-integer arguments!");
4030   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4031     return V;  // No conversion
4032   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4033     return getTruncateExpr(V, Ty, Depth);
4034   return getSignExtendExpr(V, Ty, Depth);
4035 }
4036 
4037 const SCEV *
4038 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4039   Type *SrcTy = V->getType();
4040   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4041          "Cannot noop or zero extend with non-integer arguments!");
4042   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4043          "getNoopOrZeroExtend cannot truncate!");
4044   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4045     return V;  // No conversion
4046   return getZeroExtendExpr(V, Ty);
4047 }
4048 
4049 const SCEV *
4050 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4051   Type *SrcTy = V->getType();
4052   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4053          "Cannot noop or sign extend with non-integer arguments!");
4054   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4055          "getNoopOrSignExtend cannot truncate!");
4056   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4057     return V;  // No conversion
4058   return getSignExtendExpr(V, Ty);
4059 }
4060 
4061 const SCEV *
4062 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4063   Type *SrcTy = V->getType();
4064   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4065          "Cannot noop or any extend with non-integer arguments!");
4066   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4067          "getNoopOrAnyExtend cannot truncate!");
4068   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4069     return V;  // No conversion
4070   return getAnyExtendExpr(V, Ty);
4071 }
4072 
4073 const SCEV *
4074 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4075   Type *SrcTy = V->getType();
4076   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4077          "Cannot truncate or noop with non-integer arguments!");
4078   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4079          "getTruncateOrNoop cannot extend!");
4080   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4081     return V;  // No conversion
4082   return getTruncateExpr(V, Ty);
4083 }
4084 
4085 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4086                                                         const SCEV *RHS) {
4087   const SCEV *PromotedLHS = LHS;
4088   const SCEV *PromotedRHS = RHS;
4089 
4090   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4091     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4092   else
4093     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4094 
4095   return getUMaxExpr(PromotedLHS, PromotedRHS);
4096 }
4097 
4098 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4099                                                         const SCEV *RHS) {
4100   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4101   return getUMinFromMismatchedTypes(Ops);
4102 }
4103 
4104 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4105     SmallVectorImpl<const SCEV *> &Ops) {
4106   assert(!Ops.empty() && "At least one operand must be!");
4107   // Trivial case.
4108   if (Ops.size() == 1)
4109     return Ops[0];
4110 
4111   // Find the max type first.
4112   Type *MaxType = nullptr;
4113   for (auto *S : Ops)
4114     if (MaxType)
4115       MaxType = getWiderType(MaxType, S->getType());
4116     else
4117       MaxType = S->getType();
4118   assert(MaxType && "Failed to find maximum type!");
4119 
4120   // Extend all ops to max type.
4121   SmallVector<const SCEV *, 2> PromotedOps;
4122   for (auto *S : Ops)
4123     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4124 
4125   // Generate umin.
4126   return getUMinExpr(PromotedOps);
4127 }
4128 
4129 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4130   // A pointer operand may evaluate to a nonpointer expression, such as null.
4131   if (!V->getType()->isPointerTy())
4132     return V;
4133 
4134   while (true) {
4135     if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) {
4136       V = Cast->getOperand();
4137     } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4138       const SCEV *PtrOp = nullptr;
4139       for (const SCEV *NAryOp : NAry->operands()) {
4140         if (NAryOp->getType()->isPointerTy()) {
4141           // Cannot find the base of an expression with multiple pointer ops.
4142           if (PtrOp)
4143             return V;
4144           PtrOp = NAryOp;
4145         }
4146       }
4147       if (!PtrOp) // All operands were non-pointer.
4148         return V;
4149       V = PtrOp;
4150     } else // Not something we can look further into.
4151       return V;
4152   }
4153 }
4154 
4155 /// Push users of the given Instruction onto the given Worklist.
4156 static void
4157 PushDefUseChildren(Instruction *I,
4158                    SmallVectorImpl<Instruction *> &Worklist) {
4159   // Push the def-use children onto the Worklist stack.
4160   for (User *U : I->users())
4161     Worklist.push_back(cast<Instruction>(U));
4162 }
4163 
4164 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4165   SmallVector<Instruction *, 16> Worklist;
4166   PushDefUseChildren(PN, Worklist);
4167 
4168   SmallPtrSet<Instruction *, 8> Visited;
4169   Visited.insert(PN);
4170   while (!Worklist.empty()) {
4171     Instruction *I = Worklist.pop_back_val();
4172     if (!Visited.insert(I).second)
4173       continue;
4174 
4175     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4176     if (It != ValueExprMap.end()) {
4177       const SCEV *Old = It->second;
4178 
4179       // Short-circuit the def-use traversal if the symbolic name
4180       // ceases to appear in expressions.
4181       if (Old != SymName && !hasOperand(Old, SymName))
4182         continue;
4183 
4184       // SCEVUnknown for a PHI either means that it has an unrecognized
4185       // structure, it's a PHI that's in the progress of being computed
4186       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4187       // additional loop trip count information isn't going to change anything.
4188       // In the second case, createNodeForPHI will perform the necessary
4189       // updates on its own when it gets to that point. In the third, we do
4190       // want to forget the SCEVUnknown.
4191       if (!isa<PHINode>(I) ||
4192           !isa<SCEVUnknown>(Old) ||
4193           (I != PN && Old == SymName)) {
4194         eraseValueFromMap(It->first);
4195         forgetMemoizedResults(Old);
4196       }
4197     }
4198 
4199     PushDefUseChildren(I, Worklist);
4200   }
4201 }
4202 
4203 namespace {
4204 
4205 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4206 /// expression in case its Loop is L. If it is not L then
4207 /// if IgnoreOtherLoops is true then use AddRec itself
4208 /// otherwise rewrite cannot be done.
4209 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4210 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4211 public:
4212   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4213                              bool IgnoreOtherLoops = true) {
4214     SCEVInitRewriter Rewriter(L, SE);
4215     const SCEV *Result = Rewriter.visit(S);
4216     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4217       return SE.getCouldNotCompute();
4218     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4219                ? SE.getCouldNotCompute()
4220                : Result;
4221   }
4222 
4223   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4224     if (!SE.isLoopInvariant(Expr, L))
4225       SeenLoopVariantSCEVUnknown = true;
4226     return Expr;
4227   }
4228 
4229   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4230     // Only re-write AddRecExprs for this loop.
4231     if (Expr->getLoop() == L)
4232       return Expr->getStart();
4233     SeenOtherLoops = true;
4234     return Expr;
4235   }
4236 
4237   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4238 
4239   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4240 
4241 private:
4242   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4243       : SCEVRewriteVisitor(SE), L(L) {}
4244 
4245   const Loop *L;
4246   bool SeenLoopVariantSCEVUnknown = false;
4247   bool SeenOtherLoops = false;
4248 };
4249 
4250 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4251 /// increment expression in case its Loop is L. If it is not L then
4252 /// use AddRec itself.
4253 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4254 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4255 public:
4256   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4257     SCEVPostIncRewriter Rewriter(L, SE);
4258     const SCEV *Result = Rewriter.visit(S);
4259     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4260         ? SE.getCouldNotCompute()
4261         : Result;
4262   }
4263 
4264   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4265     if (!SE.isLoopInvariant(Expr, L))
4266       SeenLoopVariantSCEVUnknown = true;
4267     return Expr;
4268   }
4269 
4270   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4271     // Only re-write AddRecExprs for this loop.
4272     if (Expr->getLoop() == L)
4273       return Expr->getPostIncExpr(SE);
4274     SeenOtherLoops = true;
4275     return Expr;
4276   }
4277 
4278   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4279 
4280   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4281 
4282 private:
4283   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4284       : SCEVRewriteVisitor(SE), L(L) {}
4285 
4286   const Loop *L;
4287   bool SeenLoopVariantSCEVUnknown = false;
4288   bool SeenOtherLoops = false;
4289 };
4290 
4291 /// This class evaluates the compare condition by matching it against the
4292 /// condition of loop latch. If there is a match we assume a true value
4293 /// for the condition while building SCEV nodes.
4294 class SCEVBackedgeConditionFolder
4295     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4296 public:
4297   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4298                              ScalarEvolution &SE) {
4299     bool IsPosBECond = false;
4300     Value *BECond = nullptr;
4301     if (BasicBlock *Latch = L->getLoopLatch()) {
4302       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4303       if (BI && BI->isConditional()) {
4304         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4305                "Both outgoing branches should not target same header!");
4306         BECond = BI->getCondition();
4307         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4308       } else {
4309         return S;
4310       }
4311     }
4312     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4313     return Rewriter.visit(S);
4314   }
4315 
4316   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4317     const SCEV *Result = Expr;
4318     bool InvariantF = SE.isLoopInvariant(Expr, L);
4319 
4320     if (!InvariantF) {
4321       Instruction *I = cast<Instruction>(Expr->getValue());
4322       switch (I->getOpcode()) {
4323       case Instruction::Select: {
4324         SelectInst *SI = cast<SelectInst>(I);
4325         Optional<const SCEV *> Res =
4326             compareWithBackedgeCondition(SI->getCondition());
4327         if (Res.hasValue()) {
4328           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4329           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4330         }
4331         break;
4332       }
4333       default: {
4334         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4335         if (Res.hasValue())
4336           Result = Res.getValue();
4337         break;
4338       }
4339       }
4340     }
4341     return Result;
4342   }
4343 
4344 private:
4345   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4346                                        bool IsPosBECond, ScalarEvolution &SE)
4347       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4348         IsPositiveBECond(IsPosBECond) {}
4349 
4350   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4351 
4352   const Loop *L;
4353   /// Loop back condition.
4354   Value *BackedgeCond = nullptr;
4355   /// Set to true if loop back is on positive branch condition.
4356   bool IsPositiveBECond;
4357 };
4358 
4359 Optional<const SCEV *>
4360 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4361 
4362   // If value matches the backedge condition for loop latch,
4363   // then return a constant evolution node based on loopback
4364   // branch taken.
4365   if (BackedgeCond == IC)
4366     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4367                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4368   return None;
4369 }
4370 
4371 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4372 public:
4373   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4374                              ScalarEvolution &SE) {
4375     SCEVShiftRewriter Rewriter(L, SE);
4376     const SCEV *Result = Rewriter.visit(S);
4377     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4378   }
4379 
4380   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4381     // Only allow AddRecExprs for this loop.
4382     if (!SE.isLoopInvariant(Expr, L))
4383       Valid = false;
4384     return Expr;
4385   }
4386 
4387   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4388     if (Expr->getLoop() == L && Expr->isAffine())
4389       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4390     Valid = false;
4391     return Expr;
4392   }
4393 
4394   bool isValid() { return Valid; }
4395 
4396 private:
4397   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4398       : SCEVRewriteVisitor(SE), L(L) {}
4399 
4400   const Loop *L;
4401   bool Valid = true;
4402 };
4403 
4404 } // end anonymous namespace
4405 
4406 SCEV::NoWrapFlags
4407 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4408   if (!AR->isAffine())
4409     return SCEV::FlagAnyWrap;
4410 
4411   using OBO = OverflowingBinaryOperator;
4412 
4413   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4414 
4415   if (!AR->hasNoSignedWrap()) {
4416     ConstantRange AddRecRange = getSignedRange(AR);
4417     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4418 
4419     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4420         Instruction::Add, IncRange, OBO::NoSignedWrap);
4421     if (NSWRegion.contains(AddRecRange))
4422       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4423   }
4424 
4425   if (!AR->hasNoUnsignedWrap()) {
4426     ConstantRange AddRecRange = getUnsignedRange(AR);
4427     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4428 
4429     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4430         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4431     if (NUWRegion.contains(AddRecRange))
4432       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4433   }
4434 
4435   return Result;
4436 }
4437 
4438 SCEV::NoWrapFlags
4439 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4440   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4441 
4442   if (AR->hasNoSignedWrap())
4443     return Result;
4444 
4445   if (!AR->isAffine())
4446     return Result;
4447 
4448   const SCEV *Step = AR->getStepRecurrence(*this);
4449   const Loop *L = AR->getLoop();
4450 
4451   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4452   // Note that this serves two purposes: It filters out loops that are
4453   // simply not analyzable, and it covers the case where this code is
4454   // being called from within backedge-taken count analysis, such that
4455   // attempting to ask for the backedge-taken count would likely result
4456   // in infinite recursion. In the later case, the analysis code will
4457   // cope with a conservative value, and it will take care to purge
4458   // that value once it has finished.
4459   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4460 
4461   // Normally, in the cases we can prove no-overflow via a
4462   // backedge guarding condition, we can also compute a backedge
4463   // taken count for the loop.  The exceptions are assumptions and
4464   // guards present in the loop -- SCEV is not great at exploiting
4465   // these to compute max backedge taken counts, but can still use
4466   // these to prove lack of overflow.  Use this fact to avoid
4467   // doing extra work that may not pay off.
4468 
4469   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4470       AC.assumptions().empty())
4471     return Result;
4472 
4473   // If the backedge is guarded by a comparison with the pre-inc  value the
4474   // addrec is safe. Also, if the entry is guarded by a comparison with the
4475   // start value and the backedge is guarded by a comparison with the post-inc
4476   // value, the addrec is safe.
4477   ICmpInst::Predicate Pred;
4478   const SCEV *OverflowLimit =
4479     getSignedOverflowLimitForStep(Step, &Pred, this);
4480   if (OverflowLimit &&
4481       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4482        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4483     Result = setFlags(Result, SCEV::FlagNSW);
4484   }
4485   return Result;
4486 }
4487 SCEV::NoWrapFlags
4488 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4489   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4490 
4491   if (AR->hasNoUnsignedWrap())
4492     return Result;
4493 
4494   if (!AR->isAffine())
4495     return Result;
4496 
4497   const SCEV *Step = AR->getStepRecurrence(*this);
4498   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4499   const Loop *L = AR->getLoop();
4500 
4501   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4502   // Note that this serves two purposes: It filters out loops that are
4503   // simply not analyzable, and it covers the case where this code is
4504   // being called from within backedge-taken count analysis, such that
4505   // attempting to ask for the backedge-taken count would likely result
4506   // in infinite recursion. In the later case, the analysis code will
4507   // cope with a conservative value, and it will take care to purge
4508   // that value once it has finished.
4509   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4510 
4511   // Normally, in the cases we can prove no-overflow via a
4512   // backedge guarding condition, we can also compute a backedge
4513   // taken count for the loop.  The exceptions are assumptions and
4514   // guards present in the loop -- SCEV is not great at exploiting
4515   // these to compute max backedge taken counts, but can still use
4516   // these to prove lack of overflow.  Use this fact to avoid
4517   // doing extra work that may not pay off.
4518 
4519   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4520       AC.assumptions().empty())
4521     return Result;
4522 
4523   // If the backedge is guarded by a comparison with the pre-inc  value the
4524   // addrec is safe. Also, if the entry is guarded by a comparison with the
4525   // start value and the backedge is guarded by a comparison with the post-inc
4526   // value, the addrec is safe.
4527   if (isKnownPositive(Step)) {
4528     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4529                                 getUnsignedRangeMax(Step));
4530     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4531         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4532       Result = setFlags(Result, SCEV::FlagNUW);
4533     }
4534   }
4535 
4536   return Result;
4537 }
4538 
4539 namespace {
4540 
4541 /// Represents an abstract binary operation.  This may exist as a
4542 /// normal instruction or constant expression, or may have been
4543 /// derived from an expression tree.
4544 struct BinaryOp {
4545   unsigned Opcode;
4546   Value *LHS;
4547   Value *RHS;
4548   bool IsNSW = false;
4549   bool IsNUW = false;
4550   bool IsExact = false;
4551 
4552   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4553   /// constant expression.
4554   Operator *Op = nullptr;
4555 
4556   explicit BinaryOp(Operator *Op)
4557       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4558         Op(Op) {
4559     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4560       IsNSW = OBO->hasNoSignedWrap();
4561       IsNUW = OBO->hasNoUnsignedWrap();
4562     }
4563     if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op))
4564       IsExact = PEO->isExact();
4565   }
4566 
4567   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4568                     bool IsNUW = false, bool IsExact = false)
4569       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
4570         IsExact(IsExact) {}
4571 };
4572 
4573 } // end anonymous namespace
4574 
4575 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4576 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4577   auto *Op = dyn_cast<Operator>(V);
4578   if (!Op)
4579     return None;
4580 
4581   // Implementation detail: all the cleverness here should happen without
4582   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4583   // SCEV expressions when possible, and we should not break that.
4584 
4585   switch (Op->getOpcode()) {
4586   case Instruction::Add:
4587   case Instruction::Sub:
4588   case Instruction::Mul:
4589   case Instruction::UDiv:
4590   case Instruction::URem:
4591   case Instruction::And:
4592   case Instruction::Or:
4593   case Instruction::AShr:
4594   case Instruction::Shl:
4595     return BinaryOp(Op);
4596 
4597   case Instruction::Xor:
4598     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4599       // If the RHS of the xor is a signmask, then this is just an add.
4600       // Instcombine turns add of signmask into xor as a strength reduction step.
4601       if (RHSC->getValue().isSignMask())
4602         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4603     return BinaryOp(Op);
4604 
4605   case Instruction::LShr:
4606     // Turn logical shift right of a constant into a unsigned divide.
4607     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4608       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4609 
4610       // If the shift count is not less than the bitwidth, the result of
4611       // the shift is undefined. Don't try to analyze it, because the
4612       // resolution chosen here may differ from the resolution chosen in
4613       // other parts of the compiler.
4614       if (SA->getValue().ult(BitWidth)) {
4615         Constant *X =
4616             ConstantInt::get(SA->getContext(),
4617                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4618         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4619       }
4620     }
4621     return BinaryOp(Op);
4622 
4623   case Instruction::ExtractValue: {
4624     auto *EVI = cast<ExtractValueInst>(Op);
4625     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4626       break;
4627 
4628     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4629     if (!WO)
4630       break;
4631 
4632     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4633     bool Signed = WO->isSigned();
4634     // TODO: Should add nuw/nsw flags for mul as well.
4635     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4636       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4637 
4638     // Now that we know that all uses of the arithmetic-result component of
4639     // CI are guarded by the overflow check, we can go ahead and pretend
4640     // that the arithmetic is non-overflowing.
4641     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4642                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4643   }
4644 
4645   default:
4646     break;
4647   }
4648 
4649   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4650   // semantics as a Sub, return a binary sub expression.
4651   if (auto *II = dyn_cast<IntrinsicInst>(V))
4652     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4653       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4654 
4655   return None;
4656 }
4657 
4658 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4659 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4660 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4661 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4662 /// follows one of the following patterns:
4663 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4664 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4665 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4666 /// we return the type of the truncation operation, and indicate whether the
4667 /// truncated type should be treated as signed/unsigned by setting
4668 /// \p Signed to true/false, respectively.
4669 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4670                                bool &Signed, ScalarEvolution &SE) {
4671   // The case where Op == SymbolicPHI (that is, with no type conversions on
4672   // the way) is handled by the regular add recurrence creating logic and
4673   // would have already been triggered in createAddRecForPHI. Reaching it here
4674   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4675   // because one of the other operands of the SCEVAddExpr updating this PHI is
4676   // not invariant).
4677   //
4678   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4679   // this case predicates that allow us to prove that Op == SymbolicPHI will
4680   // be added.
4681   if (Op == SymbolicPHI)
4682     return nullptr;
4683 
4684   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4685   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4686   if (SourceBits != NewBits)
4687     return nullptr;
4688 
4689   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4690   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4691   if (!SExt && !ZExt)
4692     return nullptr;
4693   const SCEVTruncateExpr *Trunc =
4694       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4695            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4696   if (!Trunc)
4697     return nullptr;
4698   const SCEV *X = Trunc->getOperand();
4699   if (X != SymbolicPHI)
4700     return nullptr;
4701   Signed = SExt != nullptr;
4702   return Trunc->getType();
4703 }
4704 
4705 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4706   if (!PN->getType()->isIntegerTy())
4707     return nullptr;
4708   const Loop *L = LI.getLoopFor(PN->getParent());
4709   if (!L || L->getHeader() != PN->getParent())
4710     return nullptr;
4711   return L;
4712 }
4713 
4714 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4715 // computation that updates the phi follows the following pattern:
4716 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4717 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4718 // If so, try to see if it can be rewritten as an AddRecExpr under some
4719 // Predicates. If successful, return them as a pair. Also cache the results
4720 // of the analysis.
4721 //
4722 // Example usage scenario:
4723 //    Say the Rewriter is called for the following SCEV:
4724 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4725 //    where:
4726 //         %X = phi i64 (%Start, %BEValue)
4727 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4728 //    and call this function with %SymbolicPHI = %X.
4729 //
4730 //    The analysis will find that the value coming around the backedge has
4731 //    the following SCEV:
4732 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4733 //    Upon concluding that this matches the desired pattern, the function
4734 //    will return the pair {NewAddRec, SmallPredsVec} where:
4735 //         NewAddRec = {%Start,+,%Step}
4736 //         SmallPredsVec = {P1, P2, P3} as follows:
4737 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4738 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4739 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4740 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4741 //    under the predicates {P1,P2,P3}.
4742 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4743 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4744 //
4745 // TODO's:
4746 //
4747 // 1) Extend the Induction descriptor to also support inductions that involve
4748 //    casts: When needed (namely, when we are called in the context of the
4749 //    vectorizer induction analysis), a Set of cast instructions will be
4750 //    populated by this method, and provided back to isInductionPHI. This is
4751 //    needed to allow the vectorizer to properly record them to be ignored by
4752 //    the cost model and to avoid vectorizing them (otherwise these casts,
4753 //    which are redundant under the runtime overflow checks, will be
4754 //    vectorized, which can be costly).
4755 //
4756 // 2) Support additional induction/PHISCEV patterns: We also want to support
4757 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4758 //    after the induction update operation (the induction increment):
4759 //
4760 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4761 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4762 //
4763 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4764 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4765 //
4766 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4767 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4768 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4769   SmallVector<const SCEVPredicate *, 3> Predicates;
4770 
4771   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4772   // return an AddRec expression under some predicate.
4773 
4774   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4775   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4776   assert(L && "Expecting an integer loop header phi");
4777 
4778   // The loop may have multiple entrances or multiple exits; we can analyze
4779   // this phi as an addrec if it has a unique entry value and a unique
4780   // backedge value.
4781   Value *BEValueV = nullptr, *StartValueV = nullptr;
4782   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4783     Value *V = PN->getIncomingValue(i);
4784     if (L->contains(PN->getIncomingBlock(i))) {
4785       if (!BEValueV) {
4786         BEValueV = V;
4787       } else if (BEValueV != V) {
4788         BEValueV = nullptr;
4789         break;
4790       }
4791     } else if (!StartValueV) {
4792       StartValueV = V;
4793     } else if (StartValueV != V) {
4794       StartValueV = nullptr;
4795       break;
4796     }
4797   }
4798   if (!BEValueV || !StartValueV)
4799     return None;
4800 
4801   const SCEV *BEValue = getSCEV(BEValueV);
4802 
4803   // If the value coming around the backedge is an add with the symbolic
4804   // value we just inserted, possibly with casts that we can ignore under
4805   // an appropriate runtime guard, then we found a simple induction variable!
4806   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4807   if (!Add)
4808     return None;
4809 
4810   // If there is a single occurrence of the symbolic value, possibly
4811   // casted, replace it with a recurrence.
4812   unsigned FoundIndex = Add->getNumOperands();
4813   Type *TruncTy = nullptr;
4814   bool Signed;
4815   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4816     if ((TruncTy =
4817              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4818       if (FoundIndex == e) {
4819         FoundIndex = i;
4820         break;
4821       }
4822 
4823   if (FoundIndex == Add->getNumOperands())
4824     return None;
4825 
4826   // Create an add with everything but the specified operand.
4827   SmallVector<const SCEV *, 8> Ops;
4828   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4829     if (i != FoundIndex)
4830       Ops.push_back(Add->getOperand(i));
4831   const SCEV *Accum = getAddExpr(Ops);
4832 
4833   // The runtime checks will not be valid if the step amount is
4834   // varying inside the loop.
4835   if (!isLoopInvariant(Accum, L))
4836     return None;
4837 
4838   // *** Part2: Create the predicates
4839 
4840   // Analysis was successful: we have a phi-with-cast pattern for which we
4841   // can return an AddRec expression under the following predicates:
4842   //
4843   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4844   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4845   // P2: An Equal predicate that guarantees that
4846   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4847   // P3: An Equal predicate that guarantees that
4848   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4849   //
4850   // As we next prove, the above predicates guarantee that:
4851   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4852   //
4853   //
4854   // More formally, we want to prove that:
4855   //     Expr(i+1) = Start + (i+1) * Accum
4856   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4857   //
4858   // Given that:
4859   // 1) Expr(0) = Start
4860   // 2) Expr(1) = Start + Accum
4861   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4862   // 3) Induction hypothesis (step i):
4863   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4864   //
4865   // Proof:
4866   //  Expr(i+1) =
4867   //   = Start + (i+1)*Accum
4868   //   = (Start + i*Accum) + Accum
4869   //   = Expr(i) + Accum
4870   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4871   //                                                             :: from step i
4872   //
4873   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4874   //
4875   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4876   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4877   //     + Accum                                                     :: from P3
4878   //
4879   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4880   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4881   //
4882   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4883   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4884   //
4885   // By induction, the same applies to all iterations 1<=i<n:
4886   //
4887 
4888   // Create a truncated addrec for which we will add a no overflow check (P1).
4889   const SCEV *StartVal = getSCEV(StartValueV);
4890   const SCEV *PHISCEV =
4891       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4892                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4893 
4894   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4895   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4896   // will be constant.
4897   //
4898   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4899   // add P1.
4900   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4901     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4902         Signed ? SCEVWrapPredicate::IncrementNSSW
4903                : SCEVWrapPredicate::IncrementNUSW;
4904     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4905     Predicates.push_back(AddRecPred);
4906   }
4907 
4908   // Create the Equal Predicates P2,P3:
4909 
4910   // It is possible that the predicates P2 and/or P3 are computable at
4911   // compile time due to StartVal and/or Accum being constants.
4912   // If either one is, then we can check that now and escape if either P2
4913   // or P3 is false.
4914 
4915   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4916   // for each of StartVal and Accum
4917   auto getExtendedExpr = [&](const SCEV *Expr,
4918                              bool CreateSignExtend) -> const SCEV * {
4919     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4920     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4921     const SCEV *ExtendedExpr =
4922         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4923                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4924     return ExtendedExpr;
4925   };
4926 
4927   // Given:
4928   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4929   //               = getExtendedExpr(Expr)
4930   // Determine whether the predicate P: Expr == ExtendedExpr
4931   // is known to be false at compile time
4932   auto PredIsKnownFalse = [&](const SCEV *Expr,
4933                               const SCEV *ExtendedExpr) -> bool {
4934     return Expr != ExtendedExpr &&
4935            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4936   };
4937 
4938   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4939   if (PredIsKnownFalse(StartVal, StartExtended)) {
4940     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4941     return None;
4942   }
4943 
4944   // The Step is always Signed (because the overflow checks are either
4945   // NSSW or NUSW)
4946   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4947   if (PredIsKnownFalse(Accum, AccumExtended)) {
4948     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4949     return None;
4950   }
4951 
4952   auto AppendPredicate = [&](const SCEV *Expr,
4953                              const SCEV *ExtendedExpr) -> void {
4954     if (Expr != ExtendedExpr &&
4955         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4956       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4957       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4958       Predicates.push_back(Pred);
4959     }
4960   };
4961 
4962   AppendPredicate(StartVal, StartExtended);
4963   AppendPredicate(Accum, AccumExtended);
4964 
4965   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4966   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4967   // into NewAR if it will also add the runtime overflow checks specified in
4968   // Predicates.
4969   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4970 
4971   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4972       std::make_pair(NewAR, Predicates);
4973   // Remember the result of the analysis for this SCEV at this locayyytion.
4974   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4975   return PredRewrite;
4976 }
4977 
4978 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4979 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4980   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4981   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4982   if (!L)
4983     return None;
4984 
4985   // Check to see if we already analyzed this PHI.
4986   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4987   if (I != PredicatedSCEVRewrites.end()) {
4988     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4989         I->second;
4990     // Analysis was done before and failed to create an AddRec:
4991     if (Rewrite.first == SymbolicPHI)
4992       return None;
4993     // Analysis was done before and succeeded to create an AddRec under
4994     // a predicate:
4995     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4996     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4997     return Rewrite;
4998   }
4999 
5000   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5001     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5002 
5003   // Record in the cache that the analysis failed
5004   if (!Rewrite) {
5005     SmallVector<const SCEVPredicate *, 3> Predicates;
5006     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5007     return None;
5008   }
5009 
5010   return Rewrite;
5011 }
5012 
5013 // FIXME: This utility is currently required because the Rewriter currently
5014 // does not rewrite this expression:
5015 // {0, +, (sext ix (trunc iy to ix) to iy)}
5016 // into {0, +, %step},
5017 // even when the following Equal predicate exists:
5018 // "%step == (sext ix (trunc iy to ix) to iy)".
5019 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5020     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5021   if (AR1 == AR2)
5022     return true;
5023 
5024   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5025     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5026         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5027       return false;
5028     return true;
5029   };
5030 
5031   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5032       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5033     return false;
5034   return true;
5035 }
5036 
5037 /// A helper function for createAddRecFromPHI to handle simple cases.
5038 ///
5039 /// This function tries to find an AddRec expression for the simplest (yet most
5040 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5041 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5042 /// technique for finding the AddRec expression.
5043 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5044                                                       Value *BEValueV,
5045                                                       Value *StartValueV) {
5046   const Loop *L = LI.getLoopFor(PN->getParent());
5047   assert(L && L->getHeader() == PN->getParent());
5048   assert(BEValueV && StartValueV);
5049 
5050   auto BO = MatchBinaryOp(BEValueV, DT);
5051   if (!BO)
5052     return nullptr;
5053 
5054   if (BO->Opcode != Instruction::Add)
5055     return nullptr;
5056 
5057   const SCEV *Accum = nullptr;
5058   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5059     Accum = getSCEV(BO->RHS);
5060   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5061     Accum = getSCEV(BO->LHS);
5062 
5063   if (!Accum)
5064     return nullptr;
5065 
5066   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5067   if (BO->IsNUW)
5068     Flags = setFlags(Flags, SCEV::FlagNUW);
5069   if (BO->IsNSW)
5070     Flags = setFlags(Flags, SCEV::FlagNSW);
5071 
5072   const SCEV *StartVal = getSCEV(StartValueV);
5073   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5074 
5075   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5076 
5077   // We can add Flags to the post-inc expression only if we
5078   // know that it is *undefined behavior* for BEValueV to
5079   // overflow.
5080   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5081     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5082       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5083 
5084   return PHISCEV;
5085 }
5086 
5087 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5088   const Loop *L = LI.getLoopFor(PN->getParent());
5089   if (!L || L->getHeader() != PN->getParent())
5090     return nullptr;
5091 
5092   // The loop may have multiple entrances or multiple exits; we can analyze
5093   // this phi as an addrec if it has a unique entry value and a unique
5094   // backedge value.
5095   Value *BEValueV = nullptr, *StartValueV = nullptr;
5096   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5097     Value *V = PN->getIncomingValue(i);
5098     if (L->contains(PN->getIncomingBlock(i))) {
5099       if (!BEValueV) {
5100         BEValueV = V;
5101       } else if (BEValueV != V) {
5102         BEValueV = nullptr;
5103         break;
5104       }
5105     } else if (!StartValueV) {
5106       StartValueV = V;
5107     } else if (StartValueV != V) {
5108       StartValueV = nullptr;
5109       break;
5110     }
5111   }
5112   if (!BEValueV || !StartValueV)
5113     return nullptr;
5114 
5115   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5116          "PHI node already processed?");
5117 
5118   // First, try to find AddRec expression without creating a fictituos symbolic
5119   // value for PN.
5120   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5121     return S;
5122 
5123   // Handle PHI node value symbolically.
5124   const SCEV *SymbolicName = getUnknown(PN);
5125   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5126 
5127   // Using this symbolic name for the PHI, analyze the value coming around
5128   // the back-edge.
5129   const SCEV *BEValue = getSCEV(BEValueV);
5130 
5131   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5132   // has a special value for the first iteration of the loop.
5133 
5134   // If the value coming around the backedge is an add with the symbolic
5135   // value we just inserted, then we found a simple induction variable!
5136   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5137     // If there is a single occurrence of the symbolic value, replace it
5138     // with a recurrence.
5139     unsigned FoundIndex = Add->getNumOperands();
5140     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5141       if (Add->getOperand(i) == SymbolicName)
5142         if (FoundIndex == e) {
5143           FoundIndex = i;
5144           break;
5145         }
5146 
5147     if (FoundIndex != Add->getNumOperands()) {
5148       // Create an add with everything but the specified operand.
5149       SmallVector<const SCEV *, 8> Ops;
5150       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5151         if (i != FoundIndex)
5152           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5153                                                              L, *this));
5154       const SCEV *Accum = getAddExpr(Ops);
5155 
5156       // This is not a valid addrec if the step amount is varying each
5157       // loop iteration, but is not itself an addrec in this loop.
5158       if (isLoopInvariant(Accum, L) ||
5159           (isa<SCEVAddRecExpr>(Accum) &&
5160            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5161         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5162 
5163         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5164           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5165             if (BO->IsNUW)
5166               Flags = setFlags(Flags, SCEV::FlagNUW);
5167             if (BO->IsNSW)
5168               Flags = setFlags(Flags, SCEV::FlagNSW);
5169           }
5170         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5171           // If the increment is an inbounds GEP, then we know the address
5172           // space cannot be wrapped around. We cannot make any guarantee
5173           // about signed or unsigned overflow because pointers are
5174           // unsigned but we may have a negative index from the base
5175           // pointer. We can guarantee that no unsigned wrap occurs if the
5176           // indices form a positive value.
5177           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5178             Flags = setFlags(Flags, SCEV::FlagNW);
5179 
5180             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5181             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5182               Flags = setFlags(Flags, SCEV::FlagNUW);
5183           }
5184 
5185           // We cannot transfer nuw and nsw flags from subtraction
5186           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5187           // for instance.
5188         }
5189 
5190         const SCEV *StartVal = getSCEV(StartValueV);
5191         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5192 
5193         // Okay, for the entire analysis of this edge we assumed the PHI
5194         // to be symbolic.  We now need to go back and purge all of the
5195         // entries for the scalars that use the symbolic expression.
5196         forgetSymbolicName(PN, SymbolicName);
5197         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5198 
5199         // We can add Flags to the post-inc expression only if we
5200         // know that it is *undefined behavior* for BEValueV to
5201         // overflow.
5202         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5203           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5204             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5205 
5206         return PHISCEV;
5207       }
5208     }
5209   } else {
5210     // Otherwise, this could be a loop like this:
5211     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5212     // In this case, j = {1,+,1}  and BEValue is j.
5213     // Because the other in-value of i (0) fits the evolution of BEValue
5214     // i really is an addrec evolution.
5215     //
5216     // We can generalize this saying that i is the shifted value of BEValue
5217     // by one iteration:
5218     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5219     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5220     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5221     if (Shifted != getCouldNotCompute() &&
5222         Start != getCouldNotCompute()) {
5223       const SCEV *StartVal = getSCEV(StartValueV);
5224       if (Start == StartVal) {
5225         // Okay, for the entire analysis of this edge we assumed the PHI
5226         // to be symbolic.  We now need to go back and purge all of the
5227         // entries for the scalars that use the symbolic expression.
5228         forgetSymbolicName(PN, SymbolicName);
5229         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5230         return Shifted;
5231       }
5232     }
5233   }
5234 
5235   // Remove the temporary PHI node SCEV that has been inserted while intending
5236   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5237   // as it will prevent later (possibly simpler) SCEV expressions to be added
5238   // to the ValueExprMap.
5239   eraseValueFromMap(PN);
5240 
5241   return nullptr;
5242 }
5243 
5244 // Checks if the SCEV S is available at BB.  S is considered available at BB
5245 // if S can be materialized at BB without introducing a fault.
5246 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5247                                BasicBlock *BB) {
5248   struct CheckAvailable {
5249     bool TraversalDone = false;
5250     bool Available = true;
5251 
5252     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5253     BasicBlock *BB = nullptr;
5254     DominatorTree &DT;
5255 
5256     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5257       : L(L), BB(BB), DT(DT) {}
5258 
5259     bool setUnavailable() {
5260       TraversalDone = true;
5261       Available = false;
5262       return false;
5263     }
5264 
5265     bool follow(const SCEV *S) {
5266       switch (S->getSCEVType()) {
5267       case scConstant:
5268       case scPtrToInt:
5269       case scTruncate:
5270       case scZeroExtend:
5271       case scSignExtend:
5272       case scAddExpr:
5273       case scMulExpr:
5274       case scUMaxExpr:
5275       case scSMaxExpr:
5276       case scUMinExpr:
5277       case scSMinExpr:
5278         // These expressions are available if their operand(s) is/are.
5279         return true;
5280 
5281       case scAddRecExpr: {
5282         // We allow add recurrences that are on the loop BB is in, or some
5283         // outer loop.  This guarantees availability because the value of the
5284         // add recurrence at BB is simply the "current" value of the induction
5285         // variable.  We can relax this in the future; for instance an add
5286         // recurrence on a sibling dominating loop is also available at BB.
5287         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5288         if (L && (ARLoop == L || ARLoop->contains(L)))
5289           return true;
5290 
5291         return setUnavailable();
5292       }
5293 
5294       case scUnknown: {
5295         // For SCEVUnknown, we check for simple dominance.
5296         const auto *SU = cast<SCEVUnknown>(S);
5297         Value *V = SU->getValue();
5298 
5299         if (isa<Argument>(V))
5300           return false;
5301 
5302         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5303           return false;
5304 
5305         return setUnavailable();
5306       }
5307 
5308       case scUDivExpr:
5309       case scCouldNotCompute:
5310         // We do not try to smart about these at all.
5311         return setUnavailable();
5312       }
5313       llvm_unreachable("Unknown SCEV kind!");
5314     }
5315 
5316     bool isDone() { return TraversalDone; }
5317   };
5318 
5319   CheckAvailable CA(L, BB, DT);
5320   SCEVTraversal<CheckAvailable> ST(CA);
5321 
5322   ST.visitAll(S);
5323   return CA.Available;
5324 }
5325 
5326 // Try to match a control flow sequence that branches out at BI and merges back
5327 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5328 // match.
5329 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5330                           Value *&C, Value *&LHS, Value *&RHS) {
5331   C = BI->getCondition();
5332 
5333   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5334   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5335 
5336   if (!LeftEdge.isSingleEdge())
5337     return false;
5338 
5339   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5340 
5341   Use &LeftUse = Merge->getOperandUse(0);
5342   Use &RightUse = Merge->getOperandUse(1);
5343 
5344   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5345     LHS = LeftUse;
5346     RHS = RightUse;
5347     return true;
5348   }
5349 
5350   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5351     LHS = RightUse;
5352     RHS = LeftUse;
5353     return true;
5354   }
5355 
5356   return false;
5357 }
5358 
5359 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5360   auto IsReachable =
5361       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5362   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5363     const Loop *L = LI.getLoopFor(PN->getParent());
5364 
5365     // We don't want to break LCSSA, even in a SCEV expression tree.
5366     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5367       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5368         return nullptr;
5369 
5370     // Try to match
5371     //
5372     //  br %cond, label %left, label %right
5373     // left:
5374     //  br label %merge
5375     // right:
5376     //  br label %merge
5377     // merge:
5378     //  V = phi [ %x, %left ], [ %y, %right ]
5379     //
5380     // as "select %cond, %x, %y"
5381 
5382     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5383     assert(IDom && "At least the entry block should dominate PN");
5384 
5385     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5386     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5387 
5388     if (BI && BI->isConditional() &&
5389         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5390         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5391         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5392       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5393   }
5394 
5395   return nullptr;
5396 }
5397 
5398 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5399   if (const SCEV *S = createAddRecFromPHI(PN))
5400     return S;
5401 
5402   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5403     return S;
5404 
5405   // If the PHI has a single incoming value, follow that value, unless the
5406   // PHI's incoming blocks are in a different loop, in which case doing so
5407   // risks breaking LCSSA form. Instcombine would normally zap these, but
5408   // it doesn't have DominatorTree information, so it may miss cases.
5409   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5410     if (LI.replacementPreservesLCSSAForm(PN, V))
5411       return getSCEV(V);
5412 
5413   // If it's not a loop phi, we can't handle it yet.
5414   return getUnknown(PN);
5415 }
5416 
5417 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5418                                                       Value *Cond,
5419                                                       Value *TrueVal,
5420                                                       Value *FalseVal) {
5421   // Handle "constant" branch or select. This can occur for instance when a
5422   // loop pass transforms an inner loop and moves on to process the outer loop.
5423   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5424     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5425 
5426   // Try to match some simple smax or umax patterns.
5427   auto *ICI = dyn_cast<ICmpInst>(Cond);
5428   if (!ICI)
5429     return getUnknown(I);
5430 
5431   Value *LHS = ICI->getOperand(0);
5432   Value *RHS = ICI->getOperand(1);
5433 
5434   switch (ICI->getPredicate()) {
5435   case ICmpInst::ICMP_SLT:
5436   case ICmpInst::ICMP_SLE:
5437     std::swap(LHS, RHS);
5438     LLVM_FALLTHROUGH;
5439   case ICmpInst::ICMP_SGT:
5440   case ICmpInst::ICMP_SGE:
5441     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5442     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5443     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5444       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5445       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5446       const SCEV *LA = getSCEV(TrueVal);
5447       const SCEV *RA = getSCEV(FalseVal);
5448       const SCEV *LDiff = getMinusSCEV(LA, LS);
5449       const SCEV *RDiff = getMinusSCEV(RA, RS);
5450       if (LDiff == RDiff)
5451         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5452       LDiff = getMinusSCEV(LA, RS);
5453       RDiff = getMinusSCEV(RA, LS);
5454       if (LDiff == RDiff)
5455         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5456     }
5457     break;
5458   case ICmpInst::ICMP_ULT:
5459   case ICmpInst::ICMP_ULE:
5460     std::swap(LHS, RHS);
5461     LLVM_FALLTHROUGH;
5462   case ICmpInst::ICMP_UGT:
5463   case ICmpInst::ICMP_UGE:
5464     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5465     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5466     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5467       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5468       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5469       const SCEV *LA = getSCEV(TrueVal);
5470       const SCEV *RA = getSCEV(FalseVal);
5471       const SCEV *LDiff = getMinusSCEV(LA, LS);
5472       const SCEV *RDiff = getMinusSCEV(RA, RS);
5473       if (LDiff == RDiff)
5474         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5475       LDiff = getMinusSCEV(LA, RS);
5476       RDiff = getMinusSCEV(RA, LS);
5477       if (LDiff == RDiff)
5478         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5479     }
5480     break;
5481   case ICmpInst::ICMP_NE:
5482     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5483     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5484         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5485       const SCEV *One = getOne(I->getType());
5486       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5487       const SCEV *LA = getSCEV(TrueVal);
5488       const SCEV *RA = getSCEV(FalseVal);
5489       const SCEV *LDiff = getMinusSCEV(LA, LS);
5490       const SCEV *RDiff = getMinusSCEV(RA, One);
5491       if (LDiff == RDiff)
5492         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5493     }
5494     break;
5495   case ICmpInst::ICMP_EQ:
5496     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5497     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5498         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5499       const SCEV *One = getOne(I->getType());
5500       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5501       const SCEV *LA = getSCEV(TrueVal);
5502       const SCEV *RA = getSCEV(FalseVal);
5503       const SCEV *LDiff = getMinusSCEV(LA, One);
5504       const SCEV *RDiff = getMinusSCEV(RA, LS);
5505       if (LDiff == RDiff)
5506         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5507     }
5508     break;
5509   default:
5510     break;
5511   }
5512 
5513   return getUnknown(I);
5514 }
5515 
5516 /// Expand GEP instructions into add and multiply operations. This allows them
5517 /// to be analyzed by regular SCEV code.
5518 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5519   // Don't attempt to analyze GEPs over unsized objects.
5520   if (!GEP->getSourceElementType()->isSized())
5521     return getUnknown(GEP);
5522 
5523   SmallVector<const SCEV *, 4> IndexExprs;
5524   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5525     IndexExprs.push_back(getSCEV(*Index));
5526   return getGEPExpr(GEP, IndexExprs);
5527 }
5528 
5529 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5530   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5531     return C->getAPInt().countTrailingZeros();
5532 
5533   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5534     return GetMinTrailingZeros(I->getOperand());
5535 
5536   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5537     return std::min(GetMinTrailingZeros(T->getOperand()),
5538                     (uint32_t)getTypeSizeInBits(T->getType()));
5539 
5540   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5541     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5542     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5543                ? getTypeSizeInBits(E->getType())
5544                : OpRes;
5545   }
5546 
5547   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5548     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5549     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5550                ? getTypeSizeInBits(E->getType())
5551                : OpRes;
5552   }
5553 
5554   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5555     // The result is the min of all operands results.
5556     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5557     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5558       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5559     return MinOpRes;
5560   }
5561 
5562   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5563     // The result is the sum of all operands results.
5564     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5565     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5566     for (unsigned i = 1, e = M->getNumOperands();
5567          SumOpRes != BitWidth && i != e; ++i)
5568       SumOpRes =
5569           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5570     return SumOpRes;
5571   }
5572 
5573   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5574     // The result is the min of all operands results.
5575     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5576     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5577       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5578     return MinOpRes;
5579   }
5580 
5581   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5582     // The result is the min of all operands results.
5583     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5584     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5585       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5586     return MinOpRes;
5587   }
5588 
5589   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5590     // The result is the min of all operands results.
5591     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5592     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5593       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5594     return MinOpRes;
5595   }
5596 
5597   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5598     // For a SCEVUnknown, ask ValueTracking.
5599     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5600     return Known.countMinTrailingZeros();
5601   }
5602 
5603   // SCEVUDivExpr
5604   return 0;
5605 }
5606 
5607 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5608   auto I = MinTrailingZerosCache.find(S);
5609   if (I != MinTrailingZerosCache.end())
5610     return I->second;
5611 
5612   uint32_t Result = GetMinTrailingZerosImpl(S);
5613   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5614   assert(InsertPair.second && "Should insert a new key");
5615   return InsertPair.first->second;
5616 }
5617 
5618 /// Helper method to assign a range to V from metadata present in the IR.
5619 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5620   if (Instruction *I = dyn_cast<Instruction>(V))
5621     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5622       return getConstantRangeFromMetadata(*MD);
5623 
5624   return None;
5625 }
5626 
5627 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5628                                      SCEV::NoWrapFlags Flags) {
5629   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5630     AddRec->setNoWrapFlags(Flags);
5631     UnsignedRanges.erase(AddRec);
5632     SignedRanges.erase(AddRec);
5633   }
5634 }
5635 
5636 /// Determine the range for a particular SCEV.  If SignHint is
5637 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5638 /// with a "cleaner" unsigned (resp. signed) representation.
5639 const ConstantRange &
5640 ScalarEvolution::getRangeRef(const SCEV *S,
5641                              ScalarEvolution::RangeSignHint SignHint) {
5642   DenseMap<const SCEV *, ConstantRange> &Cache =
5643       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5644                                                        : SignedRanges;
5645   ConstantRange::PreferredRangeType RangeType =
5646       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5647           ? ConstantRange::Unsigned : ConstantRange::Signed;
5648 
5649   // See if we've computed this range already.
5650   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5651   if (I != Cache.end())
5652     return I->second;
5653 
5654   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5655     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5656 
5657   unsigned BitWidth = getTypeSizeInBits(S->getType());
5658   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5659   using OBO = OverflowingBinaryOperator;
5660 
5661   // If the value has known zeros, the maximum value will have those known zeros
5662   // as well.
5663   uint32_t TZ = GetMinTrailingZeros(S);
5664   if (TZ != 0) {
5665     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5666       ConservativeResult =
5667           ConstantRange(APInt::getMinValue(BitWidth),
5668                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5669     else
5670       ConservativeResult = ConstantRange(
5671           APInt::getSignedMinValue(BitWidth),
5672           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5673   }
5674 
5675   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5676     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5677     unsigned WrapType = OBO::AnyWrap;
5678     if (Add->hasNoSignedWrap())
5679       WrapType |= OBO::NoSignedWrap;
5680     if (Add->hasNoUnsignedWrap())
5681       WrapType |= OBO::NoUnsignedWrap;
5682     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5683       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5684                           WrapType, RangeType);
5685     return setRange(Add, SignHint,
5686                     ConservativeResult.intersectWith(X, RangeType));
5687   }
5688 
5689   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5690     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5691     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5692       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5693     return setRange(Mul, SignHint,
5694                     ConservativeResult.intersectWith(X, RangeType));
5695   }
5696 
5697   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5698     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5699     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5700       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5701     return setRange(SMax, SignHint,
5702                     ConservativeResult.intersectWith(X, RangeType));
5703   }
5704 
5705   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5706     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5707     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5708       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5709     return setRange(UMax, SignHint,
5710                     ConservativeResult.intersectWith(X, RangeType));
5711   }
5712 
5713   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5714     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5715     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5716       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5717     return setRange(SMin, SignHint,
5718                     ConservativeResult.intersectWith(X, RangeType));
5719   }
5720 
5721   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5722     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5723     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5724       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5725     return setRange(UMin, SignHint,
5726                     ConservativeResult.intersectWith(X, RangeType));
5727   }
5728 
5729   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5730     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5731     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5732     return setRange(UDiv, SignHint,
5733                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5734   }
5735 
5736   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5737     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5738     return setRange(ZExt, SignHint,
5739                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5740                                                      RangeType));
5741   }
5742 
5743   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5744     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5745     return setRange(SExt, SignHint,
5746                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5747                                                      RangeType));
5748   }
5749 
5750   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
5751     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
5752     return setRange(PtrToInt, SignHint, X);
5753   }
5754 
5755   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5756     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5757     return setRange(Trunc, SignHint,
5758                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5759                                                      RangeType));
5760   }
5761 
5762   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5763     // If there's no unsigned wrap, the value will never be less than its
5764     // initial value.
5765     if (AddRec->hasNoUnsignedWrap()) {
5766       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5767       if (!UnsignedMinValue.isNullValue())
5768         ConservativeResult = ConservativeResult.intersectWith(
5769             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5770     }
5771 
5772     // If there's no signed wrap, and all the operands except initial value have
5773     // the same sign or zero, the value won't ever be:
5774     // 1: smaller than initial value if operands are non negative,
5775     // 2: bigger than initial value if operands are non positive.
5776     // For both cases, value can not cross signed min/max boundary.
5777     if (AddRec->hasNoSignedWrap()) {
5778       bool AllNonNeg = true;
5779       bool AllNonPos = true;
5780       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5781         if (!isKnownNonNegative(AddRec->getOperand(i)))
5782           AllNonNeg = false;
5783         if (!isKnownNonPositive(AddRec->getOperand(i)))
5784           AllNonPos = false;
5785       }
5786       if (AllNonNeg)
5787         ConservativeResult = ConservativeResult.intersectWith(
5788             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5789                                        APInt::getSignedMinValue(BitWidth)),
5790             RangeType);
5791       else if (AllNonPos)
5792         ConservativeResult = ConservativeResult.intersectWith(
5793             ConstantRange::getNonEmpty(
5794                 APInt::getSignedMinValue(BitWidth),
5795                 getSignedRangeMax(AddRec->getStart()) + 1),
5796             RangeType);
5797     }
5798 
5799     // TODO: non-affine addrec
5800     if (AddRec->isAffine()) {
5801       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5802       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5803           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5804         auto RangeFromAffine = getRangeForAffineAR(
5805             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5806             BitWidth);
5807         ConservativeResult =
5808             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5809 
5810         auto RangeFromFactoring = getRangeViaFactoring(
5811             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5812             BitWidth);
5813         ConservativeResult =
5814             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5815       }
5816 
5817       // Now try symbolic BE count and more powerful methods.
5818       if (UseExpensiveRangeSharpening) {
5819         const SCEV *SymbolicMaxBECount =
5820             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
5821         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
5822             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5823             AddRec->hasNoSelfWrap()) {
5824           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
5825               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
5826           ConservativeResult =
5827               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
5828         }
5829       }
5830     }
5831 
5832     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5833   }
5834 
5835   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5836     // Check if the IR explicitly contains !range metadata.
5837     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5838     if (MDRange.hasValue())
5839       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5840                                                             RangeType);
5841 
5842     // Split here to avoid paying the compile-time cost of calling both
5843     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5844     // if needed.
5845     const DataLayout &DL = getDataLayout();
5846     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5847       // For a SCEVUnknown, ask ValueTracking.
5848       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5849       if (Known.getBitWidth() != BitWidth)
5850         Known = Known.zextOrTrunc(BitWidth);
5851       // If Known does not result in full-set, intersect with it.
5852       if (Known.getMinValue() != Known.getMaxValue() + 1)
5853         ConservativeResult = ConservativeResult.intersectWith(
5854             ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5855             RangeType);
5856     } else {
5857       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5858              "generalize as needed!");
5859       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5860       // If the pointer size is larger than the index size type, this can cause
5861       // NS to be larger than BitWidth. So compensate for this.
5862       if (U->getType()->isPointerTy()) {
5863         unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5864         int ptrIdxDiff = ptrSize - BitWidth;
5865         if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5866           NS -= ptrIdxDiff;
5867       }
5868 
5869       if (NS > 1)
5870         ConservativeResult = ConservativeResult.intersectWith(
5871             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5872                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5873             RangeType);
5874     }
5875 
5876     // A range of Phi is a subset of union of all ranges of its input.
5877     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5878       // Make sure that we do not run over cycled Phis.
5879       if (PendingPhiRanges.insert(Phi).second) {
5880         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5881         for (auto &Op : Phi->operands()) {
5882           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5883           RangeFromOps = RangeFromOps.unionWith(OpRange);
5884           // No point to continue if we already have a full set.
5885           if (RangeFromOps.isFullSet())
5886             break;
5887         }
5888         ConservativeResult =
5889             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5890         bool Erased = PendingPhiRanges.erase(Phi);
5891         assert(Erased && "Failed to erase Phi properly?");
5892         (void) Erased;
5893       }
5894     }
5895 
5896     return setRange(U, SignHint, std::move(ConservativeResult));
5897   }
5898 
5899   return setRange(S, SignHint, std::move(ConservativeResult));
5900 }
5901 
5902 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5903 // values that the expression can take. Initially, the expression has a value
5904 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5905 // argument defines if we treat Step as signed or unsigned.
5906 static ConstantRange getRangeForAffineARHelper(APInt Step,
5907                                                const ConstantRange &StartRange,
5908                                                const APInt &MaxBECount,
5909                                                unsigned BitWidth, bool Signed) {
5910   // If either Step or MaxBECount is 0, then the expression won't change, and we
5911   // just need to return the initial range.
5912   if (Step == 0 || MaxBECount == 0)
5913     return StartRange;
5914 
5915   // If we don't know anything about the initial value (i.e. StartRange is
5916   // FullRange), then we don't know anything about the final range either.
5917   // Return FullRange.
5918   if (StartRange.isFullSet())
5919     return ConstantRange::getFull(BitWidth);
5920 
5921   // If Step is signed and negative, then we use its absolute value, but we also
5922   // note that we're moving in the opposite direction.
5923   bool Descending = Signed && Step.isNegative();
5924 
5925   if (Signed)
5926     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5927     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5928     // This equations hold true due to the well-defined wrap-around behavior of
5929     // APInt.
5930     Step = Step.abs();
5931 
5932   // Check if Offset is more than full span of BitWidth. If it is, the
5933   // expression is guaranteed to overflow.
5934   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5935     return ConstantRange::getFull(BitWidth);
5936 
5937   // Offset is by how much the expression can change. Checks above guarantee no
5938   // overflow here.
5939   APInt Offset = Step * MaxBECount;
5940 
5941   // Minimum value of the final range will match the minimal value of StartRange
5942   // if the expression is increasing and will be decreased by Offset otherwise.
5943   // Maximum value of the final range will match the maximal value of StartRange
5944   // if the expression is decreasing and will be increased by Offset otherwise.
5945   APInt StartLower = StartRange.getLower();
5946   APInt StartUpper = StartRange.getUpper() - 1;
5947   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5948                                    : (StartUpper + std::move(Offset));
5949 
5950   // It's possible that the new minimum/maximum value will fall into the initial
5951   // range (due to wrap around). This means that the expression can take any
5952   // value in this bitwidth, and we have to return full range.
5953   if (StartRange.contains(MovedBoundary))
5954     return ConstantRange::getFull(BitWidth);
5955 
5956   APInt NewLower =
5957       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5958   APInt NewUpper =
5959       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5960   NewUpper += 1;
5961 
5962   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5963   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5964 }
5965 
5966 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5967                                                    const SCEV *Step,
5968                                                    const SCEV *MaxBECount,
5969                                                    unsigned BitWidth) {
5970   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5971          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5972          "Precondition!");
5973 
5974   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5975   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5976 
5977   // First, consider step signed.
5978   ConstantRange StartSRange = getSignedRange(Start);
5979   ConstantRange StepSRange = getSignedRange(Step);
5980 
5981   // If Step can be both positive and negative, we need to find ranges for the
5982   // maximum absolute step values in both directions and union them.
5983   ConstantRange SR =
5984       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5985                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5986   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5987                                               StartSRange, MaxBECountValue,
5988                                               BitWidth, /* Signed = */ true));
5989 
5990   // Next, consider step unsigned.
5991   ConstantRange UR = getRangeForAffineARHelper(
5992       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5993       MaxBECountValue, BitWidth, /* Signed = */ false);
5994 
5995   // Finally, intersect signed and unsigned ranges.
5996   return SR.intersectWith(UR, ConstantRange::Smallest);
5997 }
5998 
5999 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6000     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6001     ScalarEvolution::RangeSignHint SignHint) {
6002   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6003   assert(AddRec->hasNoSelfWrap() &&
6004          "This only works for non-self-wrapping AddRecs!");
6005   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6006   const SCEV *Step = AddRec->getStepRecurrence(*this);
6007   // Only deal with constant step to save compile time.
6008   if (!isa<SCEVConstant>(Step))
6009     return ConstantRange::getFull(BitWidth);
6010   // Let's make sure that we can prove that we do not self-wrap during
6011   // MaxBECount iterations. We need this because MaxBECount is a maximum
6012   // iteration count estimate, and we might infer nw from some exit for which we
6013   // do not know max exit count (or any other side reasoning).
6014   // TODO: Turn into assert at some point.
6015   if (getTypeSizeInBits(MaxBECount->getType()) >
6016       getTypeSizeInBits(AddRec->getType()))
6017     return ConstantRange::getFull(BitWidth);
6018   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6019   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6020   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6021   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6022   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6023                                          MaxItersWithoutWrap))
6024     return ConstantRange::getFull(BitWidth);
6025 
6026   ICmpInst::Predicate LEPred =
6027       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6028   ICmpInst::Predicate GEPred =
6029       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6030   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6031 
6032   // We know that there is no self-wrap. Let's take Start and End values and
6033   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6034   // the iteration. They either lie inside the range [Min(Start, End),
6035   // Max(Start, End)] or outside it:
6036   //
6037   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6038   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6039   //
6040   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6041   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6042   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6043   // Start <= End and step is positive, or Start >= End and step is negative.
6044   const SCEV *Start = AddRec->getStart();
6045   ConstantRange StartRange = getRangeRef(Start, SignHint);
6046   ConstantRange EndRange = getRangeRef(End, SignHint);
6047   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6048   // If they already cover full iteration space, we will know nothing useful
6049   // even if we prove what we want to prove.
6050   if (RangeBetween.isFullSet())
6051     return RangeBetween;
6052   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6053   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6054                                : RangeBetween.isWrappedSet();
6055   if (IsWrappedSet)
6056     return ConstantRange::getFull(BitWidth);
6057 
6058   if (isKnownPositive(Step) &&
6059       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6060     return RangeBetween;
6061   else if (isKnownNegative(Step) &&
6062            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6063     return RangeBetween;
6064   return ConstantRange::getFull(BitWidth);
6065 }
6066 
6067 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6068                                                     const SCEV *Step,
6069                                                     const SCEV *MaxBECount,
6070                                                     unsigned BitWidth) {
6071   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6072   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6073 
6074   struct SelectPattern {
6075     Value *Condition = nullptr;
6076     APInt TrueValue;
6077     APInt FalseValue;
6078 
6079     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6080                            const SCEV *S) {
6081       Optional<unsigned> CastOp;
6082       APInt Offset(BitWidth, 0);
6083 
6084       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6085              "Should be!");
6086 
6087       // Peel off a constant offset:
6088       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6089         // In the future we could consider being smarter here and handle
6090         // {Start+Step,+,Step} too.
6091         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6092           return;
6093 
6094         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6095         S = SA->getOperand(1);
6096       }
6097 
6098       // Peel off a cast operation
6099       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6100         CastOp = SCast->getSCEVType();
6101         S = SCast->getOperand();
6102       }
6103 
6104       using namespace llvm::PatternMatch;
6105 
6106       auto *SU = dyn_cast<SCEVUnknown>(S);
6107       const APInt *TrueVal, *FalseVal;
6108       if (!SU ||
6109           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6110                                           m_APInt(FalseVal)))) {
6111         Condition = nullptr;
6112         return;
6113       }
6114 
6115       TrueValue = *TrueVal;
6116       FalseValue = *FalseVal;
6117 
6118       // Re-apply the cast we peeled off earlier
6119       if (CastOp.hasValue())
6120         switch (*CastOp) {
6121         default:
6122           llvm_unreachable("Unknown SCEV cast type!");
6123 
6124         case scTruncate:
6125           TrueValue = TrueValue.trunc(BitWidth);
6126           FalseValue = FalseValue.trunc(BitWidth);
6127           break;
6128         case scZeroExtend:
6129           TrueValue = TrueValue.zext(BitWidth);
6130           FalseValue = FalseValue.zext(BitWidth);
6131           break;
6132         case scSignExtend:
6133           TrueValue = TrueValue.sext(BitWidth);
6134           FalseValue = FalseValue.sext(BitWidth);
6135           break;
6136         }
6137 
6138       // Re-apply the constant offset we peeled off earlier
6139       TrueValue += Offset;
6140       FalseValue += Offset;
6141     }
6142 
6143     bool isRecognized() { return Condition != nullptr; }
6144   };
6145 
6146   SelectPattern StartPattern(*this, BitWidth, Start);
6147   if (!StartPattern.isRecognized())
6148     return ConstantRange::getFull(BitWidth);
6149 
6150   SelectPattern StepPattern(*this, BitWidth, Step);
6151   if (!StepPattern.isRecognized())
6152     return ConstantRange::getFull(BitWidth);
6153 
6154   if (StartPattern.Condition != StepPattern.Condition) {
6155     // We don't handle this case today; but we could, by considering four
6156     // possibilities below instead of two. I'm not sure if there are cases where
6157     // that will help over what getRange already does, though.
6158     return ConstantRange::getFull(BitWidth);
6159   }
6160 
6161   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6162   // construct arbitrary general SCEV expressions here.  This function is called
6163   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6164   // say) can end up caching a suboptimal value.
6165 
6166   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6167   // C2352 and C2512 (otherwise it isn't needed).
6168 
6169   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6170   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6171   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6172   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6173 
6174   ConstantRange TrueRange =
6175       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6176   ConstantRange FalseRange =
6177       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6178 
6179   return TrueRange.unionWith(FalseRange);
6180 }
6181 
6182 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6183   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6184   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6185 
6186   // Return early if there are no flags to propagate to the SCEV.
6187   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6188   if (BinOp->hasNoUnsignedWrap())
6189     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6190   if (BinOp->hasNoSignedWrap())
6191     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6192   if (Flags == SCEV::FlagAnyWrap)
6193     return SCEV::FlagAnyWrap;
6194 
6195   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6196 }
6197 
6198 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6199   // Here we check that I is in the header of the innermost loop containing I,
6200   // since we only deal with instructions in the loop header. The actual loop we
6201   // need to check later will come from an add recurrence, but getting that
6202   // requires computing the SCEV of the operands, which can be expensive. This
6203   // check we can do cheaply to rule out some cases early.
6204   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6205   if (InnermostContainingLoop == nullptr ||
6206       InnermostContainingLoop->getHeader() != I->getParent())
6207     return false;
6208 
6209   // Only proceed if we can prove that I does not yield poison.
6210   if (!programUndefinedIfPoison(I))
6211     return false;
6212 
6213   // At this point we know that if I is executed, then it does not wrap
6214   // according to at least one of NSW or NUW. If I is not executed, then we do
6215   // not know if the calculation that I represents would wrap. Multiple
6216   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6217   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6218   // derived from other instructions that map to the same SCEV. We cannot make
6219   // that guarantee for cases where I is not executed. So we need to find the
6220   // loop that I is considered in relation to and prove that I is executed for
6221   // every iteration of that loop. That implies that the value that I
6222   // calculates does not wrap anywhere in the loop, so then we can apply the
6223   // flags to the SCEV.
6224   //
6225   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6226   // from different loops, so that we know which loop to prove that I is
6227   // executed in.
6228   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6229     // I could be an extractvalue from a call to an overflow intrinsic.
6230     // TODO: We can do better here in some cases.
6231     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6232       return false;
6233     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6234     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6235       bool AllOtherOpsLoopInvariant = true;
6236       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6237            ++OtherOpIndex) {
6238         if (OtherOpIndex != OpIndex) {
6239           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6240           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6241             AllOtherOpsLoopInvariant = false;
6242             break;
6243           }
6244         }
6245       }
6246       if (AllOtherOpsLoopInvariant &&
6247           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6248         return true;
6249     }
6250   }
6251   return false;
6252 }
6253 
6254 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6255   // If we know that \c I can never be poison period, then that's enough.
6256   if (isSCEVExprNeverPoison(I))
6257     return true;
6258 
6259   // For an add recurrence specifically, we assume that infinite loops without
6260   // side effects are undefined behavior, and then reason as follows:
6261   //
6262   // If the add recurrence is poison in any iteration, it is poison on all
6263   // future iterations (since incrementing poison yields poison). If the result
6264   // of the add recurrence is fed into the loop latch condition and the loop
6265   // does not contain any throws or exiting blocks other than the latch, we now
6266   // have the ability to "choose" whether the backedge is taken or not (by
6267   // choosing a sufficiently evil value for the poison feeding into the branch)
6268   // for every iteration including and after the one in which \p I first became
6269   // poison.  There are two possibilities (let's call the iteration in which \p
6270   // I first became poison as K):
6271   //
6272   //  1. In the set of iterations including and after K, the loop body executes
6273   //     no side effects.  In this case executing the backege an infinte number
6274   //     of times will yield undefined behavior.
6275   //
6276   //  2. In the set of iterations including and after K, the loop body executes
6277   //     at least one side effect.  In this case, that specific instance of side
6278   //     effect is control dependent on poison, which also yields undefined
6279   //     behavior.
6280 
6281   auto *ExitingBB = L->getExitingBlock();
6282   auto *LatchBB = L->getLoopLatch();
6283   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6284     return false;
6285 
6286   SmallPtrSet<const Instruction *, 16> Pushed;
6287   SmallVector<const Instruction *, 8> PoisonStack;
6288 
6289   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6290   // things that are known to be poison under that assumption go on the
6291   // PoisonStack.
6292   Pushed.insert(I);
6293   PoisonStack.push_back(I);
6294 
6295   bool LatchControlDependentOnPoison = false;
6296   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6297     const Instruction *Poison = PoisonStack.pop_back_val();
6298 
6299     for (auto *PoisonUser : Poison->users()) {
6300       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6301         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6302           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6303       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6304         assert(BI->isConditional() && "Only possibility!");
6305         if (BI->getParent() == LatchBB) {
6306           LatchControlDependentOnPoison = true;
6307           break;
6308         }
6309       }
6310     }
6311   }
6312 
6313   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6314 }
6315 
6316 ScalarEvolution::LoopProperties
6317 ScalarEvolution::getLoopProperties(const Loop *L) {
6318   using LoopProperties = ScalarEvolution::LoopProperties;
6319 
6320   auto Itr = LoopPropertiesCache.find(L);
6321   if (Itr == LoopPropertiesCache.end()) {
6322     auto HasSideEffects = [](Instruction *I) {
6323       if (auto *SI = dyn_cast<StoreInst>(I))
6324         return !SI->isSimple();
6325 
6326       return I->mayHaveSideEffects();
6327     };
6328 
6329     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6330                          /*HasNoSideEffects*/ true};
6331 
6332     for (auto *BB : L->getBlocks())
6333       for (auto &I : *BB) {
6334         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6335           LP.HasNoAbnormalExits = false;
6336         if (HasSideEffects(&I))
6337           LP.HasNoSideEffects = false;
6338         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6339           break; // We're already as pessimistic as we can get.
6340       }
6341 
6342     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6343     assert(InsertPair.second && "We just checked!");
6344     Itr = InsertPair.first;
6345   }
6346 
6347   return Itr->second;
6348 }
6349 
6350 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6351   if (!isSCEVable(V->getType()))
6352     return getUnknown(V);
6353 
6354   if (Instruction *I = dyn_cast<Instruction>(V)) {
6355     // Don't attempt to analyze instructions in blocks that aren't
6356     // reachable. Such instructions don't matter, and they aren't required
6357     // to obey basic rules for definitions dominating uses which this
6358     // analysis depends on.
6359     if (!DT.isReachableFromEntry(I->getParent()))
6360       return getUnknown(UndefValue::get(V->getType()));
6361   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6362     return getConstant(CI);
6363   else if (isa<ConstantPointerNull>(V))
6364     // FIXME: we shouldn't special-case null pointer constant.
6365     return getZero(V->getType());
6366   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6367     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6368   else if (!isa<ConstantExpr>(V))
6369     return getUnknown(V);
6370 
6371   Operator *U = cast<Operator>(V);
6372   if (auto BO = MatchBinaryOp(U, DT)) {
6373     switch (BO->Opcode) {
6374     case Instruction::Add: {
6375       // The simple thing to do would be to just call getSCEV on both operands
6376       // and call getAddExpr with the result. However if we're looking at a
6377       // bunch of things all added together, this can be quite inefficient,
6378       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6379       // Instead, gather up all the operands and make a single getAddExpr call.
6380       // LLVM IR canonical form means we need only traverse the left operands.
6381       SmallVector<const SCEV *, 4> AddOps;
6382       do {
6383         if (BO->Op) {
6384           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6385             AddOps.push_back(OpSCEV);
6386             break;
6387           }
6388 
6389           // If a NUW or NSW flag can be applied to the SCEV for this
6390           // addition, then compute the SCEV for this addition by itself
6391           // with a separate call to getAddExpr. We need to do that
6392           // instead of pushing the operands of the addition onto AddOps,
6393           // since the flags are only known to apply to this particular
6394           // addition - they may not apply to other additions that can be
6395           // formed with operands from AddOps.
6396           const SCEV *RHS = getSCEV(BO->RHS);
6397           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6398           if (Flags != SCEV::FlagAnyWrap) {
6399             const SCEV *LHS = getSCEV(BO->LHS);
6400             if (BO->Opcode == Instruction::Sub)
6401               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6402             else
6403               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6404             break;
6405           }
6406         }
6407 
6408         if (BO->Opcode == Instruction::Sub)
6409           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6410         else
6411           AddOps.push_back(getSCEV(BO->RHS));
6412 
6413         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6414         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6415                        NewBO->Opcode != Instruction::Sub)) {
6416           AddOps.push_back(getSCEV(BO->LHS));
6417           break;
6418         }
6419         BO = NewBO;
6420       } while (true);
6421 
6422       return getAddExpr(AddOps);
6423     }
6424 
6425     case Instruction::Mul: {
6426       SmallVector<const SCEV *, 4> MulOps;
6427       do {
6428         if (BO->Op) {
6429           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6430             MulOps.push_back(OpSCEV);
6431             break;
6432           }
6433 
6434           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6435           if (Flags != SCEV::FlagAnyWrap) {
6436             MulOps.push_back(
6437                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6438             break;
6439           }
6440         }
6441 
6442         MulOps.push_back(getSCEV(BO->RHS));
6443         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6444         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6445           MulOps.push_back(getSCEV(BO->LHS));
6446           break;
6447         }
6448         BO = NewBO;
6449       } while (true);
6450 
6451       return getMulExpr(MulOps);
6452     }
6453     case Instruction::UDiv:
6454       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6455     case Instruction::URem:
6456       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6457     case Instruction::Sub: {
6458       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6459       if (BO->Op)
6460         Flags = getNoWrapFlagsFromUB(BO->Op);
6461       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6462     }
6463     case Instruction::And:
6464       // For an expression like x&255 that merely masks off the high bits,
6465       // use zext(trunc(x)) as the SCEV expression.
6466       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6467         if (CI->isZero())
6468           return getSCEV(BO->RHS);
6469         if (CI->isMinusOne())
6470           return getSCEV(BO->LHS);
6471         const APInt &A = CI->getValue();
6472 
6473         // Instcombine's ShrinkDemandedConstant may strip bits out of
6474         // constants, obscuring what would otherwise be a low-bits mask.
6475         // Use computeKnownBits to compute what ShrinkDemandedConstant
6476         // knew about to reconstruct a low-bits mask value.
6477         unsigned LZ = A.countLeadingZeros();
6478         unsigned TZ = A.countTrailingZeros();
6479         unsigned BitWidth = A.getBitWidth();
6480         KnownBits Known(BitWidth);
6481         computeKnownBits(BO->LHS, Known, getDataLayout(),
6482                          0, &AC, nullptr, &DT);
6483 
6484         APInt EffectiveMask =
6485             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6486         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6487           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6488           const SCEV *LHS = getSCEV(BO->LHS);
6489           const SCEV *ShiftedLHS = nullptr;
6490           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6491             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6492               // For an expression like (x * 8) & 8, simplify the multiply.
6493               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6494               unsigned GCD = std::min(MulZeros, TZ);
6495               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6496               SmallVector<const SCEV*, 4> MulOps;
6497               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6498               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6499               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6500               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6501             }
6502           }
6503           if (!ShiftedLHS)
6504             ShiftedLHS = getUDivExpr(LHS, MulCount);
6505           return getMulExpr(
6506               getZeroExtendExpr(
6507                   getTruncateExpr(ShiftedLHS,
6508                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6509                   BO->LHS->getType()),
6510               MulCount);
6511         }
6512       }
6513       break;
6514 
6515     case Instruction::Or:
6516       // If the RHS of the Or is a constant, we may have something like:
6517       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6518       // optimizations will transparently handle this case.
6519       //
6520       // In order for this transformation to be safe, the LHS must be of the
6521       // form X*(2^n) and the Or constant must be less than 2^n.
6522       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6523         const SCEV *LHS = getSCEV(BO->LHS);
6524         const APInt &CIVal = CI->getValue();
6525         if (GetMinTrailingZeros(LHS) >=
6526             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6527           // Build a plain add SCEV.
6528           return getAddExpr(LHS, getSCEV(CI),
6529                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6530         }
6531       }
6532       break;
6533 
6534     case Instruction::Xor:
6535       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6536         // If the RHS of xor is -1, then this is a not operation.
6537         if (CI->isMinusOne())
6538           return getNotSCEV(getSCEV(BO->LHS));
6539 
6540         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6541         // This is a variant of the check for xor with -1, and it handles
6542         // the case where instcombine has trimmed non-demanded bits out
6543         // of an xor with -1.
6544         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6545           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6546             if (LBO->getOpcode() == Instruction::And &&
6547                 LCI->getValue() == CI->getValue())
6548               if (const SCEVZeroExtendExpr *Z =
6549                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6550                 Type *UTy = BO->LHS->getType();
6551                 const SCEV *Z0 = Z->getOperand();
6552                 Type *Z0Ty = Z0->getType();
6553                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6554 
6555                 // If C is a low-bits mask, the zero extend is serving to
6556                 // mask off the high bits. Complement the operand and
6557                 // re-apply the zext.
6558                 if (CI->getValue().isMask(Z0TySize))
6559                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6560 
6561                 // If C is a single bit, it may be in the sign-bit position
6562                 // before the zero-extend. In this case, represent the xor
6563                 // using an add, which is equivalent, and re-apply the zext.
6564                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6565                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6566                     Trunc.isSignMask())
6567                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6568                                            UTy);
6569               }
6570       }
6571       break;
6572 
6573     case Instruction::Shl:
6574       // Turn shift left of a constant amount into a multiply.
6575       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6576         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6577 
6578         // If the shift count is not less than the bitwidth, the result of
6579         // the shift is undefined. Don't try to analyze it, because the
6580         // resolution chosen here may differ from the resolution chosen in
6581         // other parts of the compiler.
6582         if (SA->getValue().uge(BitWidth))
6583           break;
6584 
6585         // We can safely preserve the nuw flag in all cases. It's also safe to
6586         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6587         // requires special handling. It can be preserved as long as we're not
6588         // left shifting by bitwidth - 1.
6589         auto Flags = SCEV::FlagAnyWrap;
6590         if (BO->Op) {
6591           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6592           if ((MulFlags & SCEV::FlagNSW) &&
6593               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6594             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6595           if (MulFlags & SCEV::FlagNUW)
6596             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6597         }
6598 
6599         Constant *X = ConstantInt::get(
6600             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6601         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6602       }
6603       break;
6604 
6605     case Instruction::AShr: {
6606       // AShr X, C, where C is a constant.
6607       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6608       if (!CI)
6609         break;
6610 
6611       Type *OuterTy = BO->LHS->getType();
6612       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6613       // If the shift count is not less than the bitwidth, the result of
6614       // the shift is undefined. Don't try to analyze it, because the
6615       // resolution chosen here may differ from the resolution chosen in
6616       // other parts of the compiler.
6617       if (CI->getValue().uge(BitWidth))
6618         break;
6619 
6620       if (CI->isZero())
6621         return getSCEV(BO->LHS); // shift by zero --> noop
6622 
6623       uint64_t AShrAmt = CI->getZExtValue();
6624       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6625 
6626       Operator *L = dyn_cast<Operator>(BO->LHS);
6627       if (L && L->getOpcode() == Instruction::Shl) {
6628         // X = Shl A, n
6629         // Y = AShr X, m
6630         // Both n and m are constant.
6631 
6632         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6633         if (L->getOperand(1) == BO->RHS)
6634           // For a two-shift sext-inreg, i.e. n = m,
6635           // use sext(trunc(x)) as the SCEV expression.
6636           return getSignExtendExpr(
6637               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6638 
6639         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6640         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6641           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6642           if (ShlAmt > AShrAmt) {
6643             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6644             // expression. We already checked that ShlAmt < BitWidth, so
6645             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6646             // ShlAmt - AShrAmt < Amt.
6647             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6648                                             ShlAmt - AShrAmt);
6649             return getSignExtendExpr(
6650                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6651                 getConstant(Mul)), OuterTy);
6652           }
6653         }
6654       }
6655       if (BO->IsExact) {
6656         // Given exact arithmetic in-bounds right-shift by a constant,
6657         // we can lower it into:  (abs(x) EXACT/u (1<<C)) * signum(x)
6658         const SCEV *X = getSCEV(BO->LHS);
6659         const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false);
6660         APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt);
6661         const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult));
6662         return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW);
6663       }
6664       break;
6665     }
6666     }
6667   }
6668 
6669   switch (U->getOpcode()) {
6670   case Instruction::Trunc:
6671     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6672 
6673   case Instruction::ZExt:
6674     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6675 
6676   case Instruction::SExt:
6677     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6678       // The NSW flag of a subtract does not always survive the conversion to
6679       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6680       // more likely to preserve NSW and allow later AddRec optimisations.
6681       //
6682       // NOTE: This is effectively duplicating this logic from getSignExtend:
6683       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6684       // but by that point the NSW information has potentially been lost.
6685       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6686         Type *Ty = U->getType();
6687         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6688         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6689         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6690       }
6691     }
6692     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6693 
6694   case Instruction::BitCast:
6695     // BitCasts are no-op casts so we just eliminate the cast.
6696     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6697       return getSCEV(U->getOperand(0));
6698     break;
6699 
6700   case Instruction::PtrToInt: {
6701     // Pointer to integer cast is straight-forward, so do model it.
6702     Value *Ptr = U->getOperand(0);
6703     const SCEV *Op = getSCEV(Ptr);
6704     Type *DstIntTy = U->getType();
6705     // SCEV doesn't have constant pointer expression type, but it supports
6706     // nullptr constant (and only that one), which is modelled in SCEV as a
6707     // zero integer constant. So just skip the ptrtoint cast for constants.
6708     if (isa<SCEVConstant>(Op))
6709       return getTruncateOrZeroExtend(Op, DstIntTy);
6710     Type *PtrTy = Ptr->getType();
6711     Type *IntPtrTy = getDataLayout().getIntPtrType(PtrTy);
6712     // But only if effective SCEV (integer) type is wide enough to represent
6713     // all possible pointer values.
6714     if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(PtrTy)) !=
6715         getDataLayout().getTypeSizeInBits(IntPtrTy))
6716       return getUnknown(V);
6717     return getPtrToIntExpr(Op, DstIntTy);
6718   }
6719   case Instruction::IntToPtr:
6720     // Just don't deal with inttoptr casts.
6721     return getUnknown(V);
6722 
6723   case Instruction::SDiv:
6724     // If both operands are non-negative, this is just an udiv.
6725     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6726         isKnownNonNegative(getSCEV(U->getOperand(1))))
6727       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6728     break;
6729 
6730   case Instruction::SRem:
6731     // If both operands are non-negative, this is just an urem.
6732     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6733         isKnownNonNegative(getSCEV(U->getOperand(1))))
6734       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6735     break;
6736 
6737   case Instruction::GetElementPtr:
6738     return createNodeForGEP(cast<GEPOperator>(U));
6739 
6740   case Instruction::PHI:
6741     return createNodeForPHI(cast<PHINode>(U));
6742 
6743   case Instruction::Select:
6744     // U can also be a select constant expr, which let fall through.  Since
6745     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6746     // constant expressions cannot have instructions as operands, we'd have
6747     // returned getUnknown for a select constant expressions anyway.
6748     if (isa<Instruction>(U))
6749       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6750                                       U->getOperand(1), U->getOperand(2));
6751     break;
6752 
6753   case Instruction::Call:
6754   case Instruction::Invoke:
6755     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6756       return getSCEV(RV);
6757 
6758     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
6759       switch (II->getIntrinsicID()) {
6760       case Intrinsic::abs:
6761         return getAbsExpr(
6762             getSCEV(II->getArgOperand(0)),
6763             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
6764       case Intrinsic::umax:
6765         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
6766                            getSCEV(II->getArgOperand(1)));
6767       case Intrinsic::umin:
6768         return getUMinExpr(getSCEV(II->getArgOperand(0)),
6769                            getSCEV(II->getArgOperand(1)));
6770       case Intrinsic::smax:
6771         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
6772                            getSCEV(II->getArgOperand(1)));
6773       case Intrinsic::smin:
6774         return getSMinExpr(getSCEV(II->getArgOperand(0)),
6775                            getSCEV(II->getArgOperand(1)));
6776       case Intrinsic::usub_sat: {
6777         const SCEV *X = getSCEV(II->getArgOperand(0));
6778         const SCEV *Y = getSCEV(II->getArgOperand(1));
6779         const SCEV *ClampedY = getUMinExpr(X, Y);
6780         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
6781       }
6782       case Intrinsic::uadd_sat: {
6783         const SCEV *X = getSCEV(II->getArgOperand(0));
6784         const SCEV *Y = getSCEV(II->getArgOperand(1));
6785         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
6786         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
6787       }
6788       case Intrinsic::start_loop_iterations:
6789         // A start_loop_iterations is just equivalent to the first operand for
6790         // SCEV purposes.
6791         return getSCEV(II->getArgOperand(0));
6792       default:
6793         break;
6794       }
6795     }
6796     break;
6797   }
6798 
6799   return getUnknown(V);
6800 }
6801 
6802 //===----------------------------------------------------------------------===//
6803 //                   Iteration Count Computation Code
6804 //
6805 
6806 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6807   if (!ExitCount)
6808     return 0;
6809 
6810   ConstantInt *ExitConst = ExitCount->getValue();
6811 
6812   // Guard against huge trip counts.
6813   if (ExitConst->getValue().getActiveBits() > 32)
6814     return 0;
6815 
6816   // In case of integer overflow, this returns 0, which is correct.
6817   return ((unsigned)ExitConst->getZExtValue()) + 1;
6818 }
6819 
6820 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6821   if (BasicBlock *ExitingBB = L->getExitingBlock())
6822     return getSmallConstantTripCount(L, ExitingBB);
6823 
6824   // No trip count information for multiple exits.
6825   return 0;
6826 }
6827 
6828 unsigned
6829 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6830                                            const BasicBlock *ExitingBlock) {
6831   assert(ExitingBlock && "Must pass a non-null exiting block!");
6832   assert(L->isLoopExiting(ExitingBlock) &&
6833          "Exiting block must actually branch out of the loop!");
6834   const SCEVConstant *ExitCount =
6835       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6836   return getConstantTripCount(ExitCount);
6837 }
6838 
6839 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6840   const auto *MaxExitCount =
6841       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6842   return getConstantTripCount(MaxExitCount);
6843 }
6844 
6845 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6846   if (BasicBlock *ExitingBB = L->getExitingBlock())
6847     return getSmallConstantTripMultiple(L, ExitingBB);
6848 
6849   // No trip multiple information for multiple exits.
6850   return 0;
6851 }
6852 
6853 /// Returns the largest constant divisor of the trip count of this loop as a
6854 /// normal unsigned value, if possible. This means that the actual trip count is
6855 /// always a multiple of the returned value (don't forget the trip count could
6856 /// very well be zero as well!).
6857 ///
6858 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6859 /// multiple of a constant (which is also the case if the trip count is simply
6860 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6861 /// if the trip count is very large (>= 2^32).
6862 ///
6863 /// As explained in the comments for getSmallConstantTripCount, this assumes
6864 /// that control exits the loop via ExitingBlock.
6865 unsigned
6866 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6867                                               const BasicBlock *ExitingBlock) {
6868   assert(ExitingBlock && "Must pass a non-null exiting block!");
6869   assert(L->isLoopExiting(ExitingBlock) &&
6870          "Exiting block must actually branch out of the loop!");
6871   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6872   if (ExitCount == getCouldNotCompute())
6873     return 1;
6874 
6875   // Get the trip count from the BE count by adding 1.
6876   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6877 
6878   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6879   if (!TC)
6880     // Attempt to factor more general cases. Returns the greatest power of
6881     // two divisor. If overflow happens, the trip count expression is still
6882     // divisible by the greatest power of 2 divisor returned.
6883     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6884 
6885   ConstantInt *Result = TC->getValue();
6886 
6887   // Guard against huge trip counts (this requires checking
6888   // for zero to handle the case where the trip count == -1 and the
6889   // addition wraps).
6890   if (!Result || Result->getValue().getActiveBits() > 32 ||
6891       Result->getValue().getActiveBits() == 0)
6892     return 1;
6893 
6894   return (unsigned)Result->getZExtValue();
6895 }
6896 
6897 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6898                                           const BasicBlock *ExitingBlock,
6899                                           ExitCountKind Kind) {
6900   switch (Kind) {
6901   case Exact:
6902   case SymbolicMaximum:
6903     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6904   case ConstantMaximum:
6905     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
6906   };
6907   llvm_unreachable("Invalid ExitCountKind!");
6908 }
6909 
6910 const SCEV *
6911 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6912                                                  SCEVUnionPredicate &Preds) {
6913   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6914 }
6915 
6916 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6917                                                    ExitCountKind Kind) {
6918   switch (Kind) {
6919   case Exact:
6920     return getBackedgeTakenInfo(L).getExact(L, this);
6921   case ConstantMaximum:
6922     return getBackedgeTakenInfo(L).getConstantMax(this);
6923   case SymbolicMaximum:
6924     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
6925   };
6926   llvm_unreachable("Invalid ExitCountKind!");
6927 }
6928 
6929 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6930   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
6931 }
6932 
6933 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6934 static void
6935 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6936   BasicBlock *Header = L->getHeader();
6937 
6938   // Push all Loop-header PHIs onto the Worklist stack.
6939   for (PHINode &PN : Header->phis())
6940     Worklist.push_back(&PN);
6941 }
6942 
6943 const ScalarEvolution::BackedgeTakenInfo &
6944 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6945   auto &BTI = getBackedgeTakenInfo(L);
6946   if (BTI.hasFullInfo())
6947     return BTI;
6948 
6949   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6950 
6951   if (!Pair.second)
6952     return Pair.first->second;
6953 
6954   BackedgeTakenInfo Result =
6955       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6956 
6957   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6958 }
6959 
6960 ScalarEvolution::BackedgeTakenInfo &
6961 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6962   // Initially insert an invalid entry for this loop. If the insertion
6963   // succeeds, proceed to actually compute a backedge-taken count and
6964   // update the value. The temporary CouldNotCompute value tells SCEV
6965   // code elsewhere that it shouldn't attempt to request a new
6966   // backedge-taken count, which could result in infinite recursion.
6967   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6968       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6969   if (!Pair.second)
6970     return Pair.first->second;
6971 
6972   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6973   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6974   // must be cleared in this scope.
6975   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6976 
6977   // In product build, there are no usage of statistic.
6978   (void)NumTripCountsComputed;
6979   (void)NumTripCountsNotComputed;
6980 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6981   const SCEV *BEExact = Result.getExact(L, this);
6982   if (BEExact != getCouldNotCompute()) {
6983     assert(isLoopInvariant(BEExact, L) &&
6984            isLoopInvariant(Result.getConstantMax(this), L) &&
6985            "Computed backedge-taken count isn't loop invariant for loop!");
6986     ++NumTripCountsComputed;
6987   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
6988              isa<PHINode>(L->getHeader()->begin())) {
6989     // Only count loops that have phi nodes as not being computable.
6990     ++NumTripCountsNotComputed;
6991   }
6992 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6993 
6994   // Now that we know more about the trip count for this loop, forget any
6995   // existing SCEV values for PHI nodes in this loop since they are only
6996   // conservative estimates made without the benefit of trip count
6997   // information. This is similar to the code in forgetLoop, except that
6998   // it handles SCEVUnknown PHI nodes specially.
6999   if (Result.hasAnyInfo()) {
7000     SmallVector<Instruction *, 16> Worklist;
7001     PushLoopPHIs(L, Worklist);
7002 
7003     SmallPtrSet<Instruction *, 8> Discovered;
7004     while (!Worklist.empty()) {
7005       Instruction *I = Worklist.pop_back_val();
7006 
7007       ValueExprMapType::iterator It =
7008         ValueExprMap.find_as(static_cast<Value *>(I));
7009       if (It != ValueExprMap.end()) {
7010         const SCEV *Old = It->second;
7011 
7012         // SCEVUnknown for a PHI either means that it has an unrecognized
7013         // structure, or it's a PHI that's in the progress of being computed
7014         // by createNodeForPHI.  In the former case, additional loop trip
7015         // count information isn't going to change anything. In the later
7016         // case, createNodeForPHI will perform the necessary updates on its
7017         // own when it gets to that point.
7018         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7019           eraseValueFromMap(It->first);
7020           forgetMemoizedResults(Old);
7021         }
7022         if (PHINode *PN = dyn_cast<PHINode>(I))
7023           ConstantEvolutionLoopExitValue.erase(PN);
7024       }
7025 
7026       // Since we don't need to invalidate anything for correctness and we're
7027       // only invalidating to make SCEV's results more precise, we get to stop
7028       // early to avoid invalidating too much.  This is especially important in
7029       // cases like:
7030       //
7031       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7032       // loop0:
7033       //   %pn0 = phi
7034       //   ...
7035       // loop1:
7036       //   %pn1 = phi
7037       //   ...
7038       //
7039       // where both loop0 and loop1's backedge taken count uses the SCEV
7040       // expression for %v.  If we don't have the early stop below then in cases
7041       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7042       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7043       // count for loop1, effectively nullifying SCEV's trip count cache.
7044       for (auto *U : I->users())
7045         if (auto *I = dyn_cast<Instruction>(U)) {
7046           auto *LoopForUser = LI.getLoopFor(I->getParent());
7047           if (LoopForUser && L->contains(LoopForUser) &&
7048               Discovered.insert(I).second)
7049             Worklist.push_back(I);
7050         }
7051     }
7052   }
7053 
7054   // Re-lookup the insert position, since the call to
7055   // computeBackedgeTakenCount above could result in a
7056   // recusive call to getBackedgeTakenInfo (on a different
7057   // loop), which would invalidate the iterator computed
7058   // earlier.
7059   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7060 }
7061 
7062 void ScalarEvolution::forgetAllLoops() {
7063   // This method is intended to forget all info about loops. It should
7064   // invalidate caches as if the following happened:
7065   // - The trip counts of all loops have changed arbitrarily
7066   // - Every llvm::Value has been updated in place to produce a different
7067   // result.
7068   BackedgeTakenCounts.clear();
7069   PredicatedBackedgeTakenCounts.clear();
7070   LoopPropertiesCache.clear();
7071   ConstantEvolutionLoopExitValue.clear();
7072   ValueExprMap.clear();
7073   ValuesAtScopes.clear();
7074   LoopDispositions.clear();
7075   BlockDispositions.clear();
7076   UnsignedRanges.clear();
7077   SignedRanges.clear();
7078   ExprValueMap.clear();
7079   HasRecMap.clear();
7080   MinTrailingZerosCache.clear();
7081   PredicatedSCEVRewrites.clear();
7082 }
7083 
7084 void ScalarEvolution::forgetLoop(const Loop *L) {
7085   // Drop any stored trip count value.
7086   auto RemoveLoopFromBackedgeMap =
7087       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
7088         auto BTCPos = Map.find(L);
7089         if (BTCPos != Map.end()) {
7090           BTCPos->second.clear();
7091           Map.erase(BTCPos);
7092         }
7093       };
7094 
7095   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7096   SmallVector<Instruction *, 32> Worklist;
7097   SmallPtrSet<Instruction *, 16> Visited;
7098 
7099   // Iterate over all the loops and sub-loops to drop SCEV information.
7100   while (!LoopWorklist.empty()) {
7101     auto *CurrL = LoopWorklist.pop_back_val();
7102 
7103     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
7104     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
7105 
7106     // Drop information about predicated SCEV rewrites for this loop.
7107     for (auto I = PredicatedSCEVRewrites.begin();
7108          I != PredicatedSCEVRewrites.end();) {
7109       std::pair<const SCEV *, const Loop *> Entry = I->first;
7110       if (Entry.second == CurrL)
7111         PredicatedSCEVRewrites.erase(I++);
7112       else
7113         ++I;
7114     }
7115 
7116     auto LoopUsersItr = LoopUsers.find(CurrL);
7117     if (LoopUsersItr != LoopUsers.end()) {
7118       for (auto *S : LoopUsersItr->second)
7119         forgetMemoizedResults(S);
7120       LoopUsers.erase(LoopUsersItr);
7121     }
7122 
7123     // Drop information about expressions based on loop-header PHIs.
7124     PushLoopPHIs(CurrL, Worklist);
7125 
7126     while (!Worklist.empty()) {
7127       Instruction *I = Worklist.pop_back_val();
7128       if (!Visited.insert(I).second)
7129         continue;
7130 
7131       ValueExprMapType::iterator It =
7132           ValueExprMap.find_as(static_cast<Value *>(I));
7133       if (It != ValueExprMap.end()) {
7134         eraseValueFromMap(It->first);
7135         forgetMemoizedResults(It->second);
7136         if (PHINode *PN = dyn_cast<PHINode>(I))
7137           ConstantEvolutionLoopExitValue.erase(PN);
7138       }
7139 
7140       PushDefUseChildren(I, Worklist);
7141     }
7142 
7143     LoopPropertiesCache.erase(CurrL);
7144     // Forget all contained loops too, to avoid dangling entries in the
7145     // ValuesAtScopes map.
7146     LoopWorklist.append(CurrL->begin(), CurrL->end());
7147   }
7148 }
7149 
7150 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7151   while (Loop *Parent = L->getParentLoop())
7152     L = Parent;
7153   forgetLoop(L);
7154 }
7155 
7156 void ScalarEvolution::forgetValue(Value *V) {
7157   Instruction *I = dyn_cast<Instruction>(V);
7158   if (!I) return;
7159 
7160   // Drop information about expressions based on loop-header PHIs.
7161   SmallVector<Instruction *, 16> Worklist;
7162   Worklist.push_back(I);
7163 
7164   SmallPtrSet<Instruction *, 8> Visited;
7165   while (!Worklist.empty()) {
7166     I = Worklist.pop_back_val();
7167     if (!Visited.insert(I).second)
7168       continue;
7169 
7170     ValueExprMapType::iterator It =
7171       ValueExprMap.find_as(static_cast<Value *>(I));
7172     if (It != ValueExprMap.end()) {
7173       eraseValueFromMap(It->first);
7174       forgetMemoizedResults(It->second);
7175       if (PHINode *PN = dyn_cast<PHINode>(I))
7176         ConstantEvolutionLoopExitValue.erase(PN);
7177     }
7178 
7179     PushDefUseChildren(I, Worklist);
7180   }
7181 }
7182 
7183 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7184   LoopDispositions.clear();
7185 }
7186 
7187 /// Get the exact loop backedge taken count considering all loop exits. A
7188 /// computable result can only be returned for loops with all exiting blocks
7189 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7190 /// is never skipped. This is a valid assumption as long as the loop exits via
7191 /// that test. For precise results, it is the caller's responsibility to specify
7192 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7193 const SCEV *
7194 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7195                                              SCEVUnionPredicate *Preds) const {
7196   // If any exits were not computable, the loop is not computable.
7197   if (!isComplete() || ExitNotTaken.empty())
7198     return SE->getCouldNotCompute();
7199 
7200   const BasicBlock *Latch = L->getLoopLatch();
7201   // All exiting blocks we have collected must dominate the only backedge.
7202   if (!Latch)
7203     return SE->getCouldNotCompute();
7204 
7205   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7206   // count is simply a minimum out of all these calculated exit counts.
7207   SmallVector<const SCEV *, 2> Ops;
7208   for (auto &ENT : ExitNotTaken) {
7209     const SCEV *BECount = ENT.ExactNotTaken;
7210     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7211     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7212            "We should only have known counts for exiting blocks that dominate "
7213            "latch!");
7214 
7215     Ops.push_back(BECount);
7216 
7217     if (Preds && !ENT.hasAlwaysTruePredicate())
7218       Preds->add(ENT.Predicate.get());
7219 
7220     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7221            "Predicate should be always true!");
7222   }
7223 
7224   return SE->getUMinFromMismatchedTypes(Ops);
7225 }
7226 
7227 /// Get the exact not taken count for this loop exit.
7228 const SCEV *
7229 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7230                                              ScalarEvolution *SE) const {
7231   for (auto &ENT : ExitNotTaken)
7232     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7233       return ENT.ExactNotTaken;
7234 
7235   return SE->getCouldNotCompute();
7236 }
7237 
7238 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7239     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7240   for (auto &ENT : ExitNotTaken)
7241     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7242       return ENT.MaxNotTaken;
7243 
7244   return SE->getCouldNotCompute();
7245 }
7246 
7247 /// getConstantMax - Get the constant max backedge taken count for the loop.
7248 const SCEV *
7249 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7250   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7251     return !ENT.hasAlwaysTruePredicate();
7252   };
7253 
7254   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7255     return SE->getCouldNotCompute();
7256 
7257   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7258           isa<SCEVConstant>(getConstantMax())) &&
7259          "No point in having a non-constant max backedge taken count!");
7260   return getConstantMax();
7261 }
7262 
7263 const SCEV *
7264 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7265                                                    ScalarEvolution *SE) {
7266   if (!SymbolicMax)
7267     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7268   return SymbolicMax;
7269 }
7270 
7271 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7272     ScalarEvolution *SE) const {
7273   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7274     return !ENT.hasAlwaysTruePredicate();
7275   };
7276   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7277 }
7278 
7279 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
7280                                                     ScalarEvolution *SE) const {
7281   if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() &&
7282       SE->hasOperand(getConstantMax(), S))
7283     return true;
7284 
7285   for (auto &ENT : ExitNotTaken)
7286     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
7287         SE->hasOperand(ENT.ExactNotTaken, S))
7288       return true;
7289 
7290   return false;
7291 }
7292 
7293 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7294     : ExactNotTaken(E), MaxNotTaken(E) {
7295   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7296           isa<SCEVConstant>(MaxNotTaken)) &&
7297          "No point in having a non-constant max backedge taken count!");
7298 }
7299 
7300 ScalarEvolution::ExitLimit::ExitLimit(
7301     const SCEV *E, const SCEV *M, bool MaxOrZero,
7302     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7303     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7304   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7305           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7306          "Exact is not allowed to be less precise than Max");
7307   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7308           isa<SCEVConstant>(MaxNotTaken)) &&
7309          "No point in having a non-constant max backedge taken count!");
7310   for (auto *PredSet : PredSetList)
7311     for (auto *P : *PredSet)
7312       addPredicate(P);
7313 }
7314 
7315 ScalarEvolution::ExitLimit::ExitLimit(
7316     const SCEV *E, const SCEV *M, bool MaxOrZero,
7317     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7318     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7319   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7320           isa<SCEVConstant>(MaxNotTaken)) &&
7321          "No point in having a non-constant max backedge taken count!");
7322 }
7323 
7324 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7325                                       bool MaxOrZero)
7326     : ExitLimit(E, M, MaxOrZero, None) {
7327   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7328           isa<SCEVConstant>(MaxNotTaken)) &&
7329          "No point in having a non-constant max backedge taken count!");
7330 }
7331 
7332 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7333 /// computable exit into a persistent ExitNotTakenInfo array.
7334 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7335     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7336     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7337     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7338   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7339 
7340   ExitNotTaken.reserve(ExitCounts.size());
7341   std::transform(
7342       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7343       [&](const EdgeExitInfo &EEI) {
7344         BasicBlock *ExitBB = EEI.first;
7345         const ExitLimit &EL = EEI.second;
7346         if (EL.Predicates.empty())
7347           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7348                                   nullptr);
7349 
7350         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7351         for (auto *Pred : EL.Predicates)
7352           Predicate->add(Pred);
7353 
7354         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7355                                 std::move(Predicate));
7356       });
7357   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7358           isa<SCEVConstant>(ConstantMax)) &&
7359          "No point in having a non-constant max backedge taken count!");
7360 }
7361 
7362 /// Invalidate this result and free the ExitNotTakenInfo array.
7363 void ScalarEvolution::BackedgeTakenInfo::clear() {
7364   ExitNotTaken.clear();
7365 }
7366 
7367 /// Compute the number of times the backedge of the specified loop will execute.
7368 ScalarEvolution::BackedgeTakenInfo
7369 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7370                                            bool AllowPredicates) {
7371   SmallVector<BasicBlock *, 8> ExitingBlocks;
7372   L->getExitingBlocks(ExitingBlocks);
7373 
7374   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7375 
7376   SmallVector<EdgeExitInfo, 4> ExitCounts;
7377   bool CouldComputeBECount = true;
7378   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7379   const SCEV *MustExitMaxBECount = nullptr;
7380   const SCEV *MayExitMaxBECount = nullptr;
7381   bool MustExitMaxOrZero = false;
7382 
7383   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7384   // and compute maxBECount.
7385   // Do a union of all the predicates here.
7386   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7387     BasicBlock *ExitBB = ExitingBlocks[i];
7388 
7389     // We canonicalize untaken exits to br (constant), ignore them so that
7390     // proving an exit untaken doesn't negatively impact our ability to reason
7391     // about the loop as whole.
7392     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7393       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7394         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7395         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7396           continue;
7397       }
7398 
7399     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7400 
7401     assert((AllowPredicates || EL.Predicates.empty()) &&
7402            "Predicated exit limit when predicates are not allowed!");
7403 
7404     // 1. For each exit that can be computed, add an entry to ExitCounts.
7405     // CouldComputeBECount is true only if all exits can be computed.
7406     if (EL.ExactNotTaken == getCouldNotCompute())
7407       // We couldn't compute an exact value for this exit, so
7408       // we won't be able to compute an exact value for the loop.
7409       CouldComputeBECount = false;
7410     else
7411       ExitCounts.emplace_back(ExitBB, EL);
7412 
7413     // 2. Derive the loop's MaxBECount from each exit's max number of
7414     // non-exiting iterations. Partition the loop exits into two kinds:
7415     // LoopMustExits and LoopMayExits.
7416     //
7417     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7418     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7419     // MaxBECount is the minimum EL.MaxNotTaken of computable
7420     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7421     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7422     // computable EL.MaxNotTaken.
7423     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7424         DT.dominates(ExitBB, Latch)) {
7425       if (!MustExitMaxBECount) {
7426         MustExitMaxBECount = EL.MaxNotTaken;
7427         MustExitMaxOrZero = EL.MaxOrZero;
7428       } else {
7429         MustExitMaxBECount =
7430             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7431       }
7432     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7433       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7434         MayExitMaxBECount = EL.MaxNotTaken;
7435       else {
7436         MayExitMaxBECount =
7437             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7438       }
7439     }
7440   }
7441   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7442     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7443   // The loop backedge will be taken the maximum or zero times if there's
7444   // a single exit that must be taken the maximum or zero times.
7445   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7446   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7447                            MaxBECount, MaxOrZero);
7448 }
7449 
7450 ScalarEvolution::ExitLimit
7451 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7452                                       bool AllowPredicates) {
7453   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7454   // If our exiting block does not dominate the latch, then its connection with
7455   // loop's exit limit may be far from trivial.
7456   const BasicBlock *Latch = L->getLoopLatch();
7457   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7458     return getCouldNotCompute();
7459 
7460   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7461   Instruction *Term = ExitingBlock->getTerminator();
7462   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7463     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7464     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7465     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7466            "It should have one successor in loop and one exit block!");
7467     // Proceed to the next level to examine the exit condition expression.
7468     return computeExitLimitFromCond(
7469         L, BI->getCondition(), ExitIfTrue,
7470         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7471   }
7472 
7473   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7474     // For switch, make sure that there is a single exit from the loop.
7475     BasicBlock *Exit = nullptr;
7476     for (auto *SBB : successors(ExitingBlock))
7477       if (!L->contains(SBB)) {
7478         if (Exit) // Multiple exit successors.
7479           return getCouldNotCompute();
7480         Exit = SBB;
7481       }
7482     assert(Exit && "Exiting block must have at least one exit");
7483     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7484                                                 /*ControlsExit=*/IsOnlyExit);
7485   }
7486 
7487   return getCouldNotCompute();
7488 }
7489 
7490 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7491     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7492     bool ControlsExit, bool AllowPredicates) {
7493   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7494   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7495                                         ControlsExit, AllowPredicates);
7496 }
7497 
7498 Optional<ScalarEvolution::ExitLimit>
7499 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7500                                       bool ExitIfTrue, bool ControlsExit,
7501                                       bool AllowPredicates) {
7502   (void)this->L;
7503   (void)this->ExitIfTrue;
7504   (void)this->AllowPredicates;
7505 
7506   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7507          this->AllowPredicates == AllowPredicates &&
7508          "Variance in assumed invariant key components!");
7509   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7510   if (Itr == TripCountMap.end())
7511     return None;
7512   return Itr->second;
7513 }
7514 
7515 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7516                                              bool ExitIfTrue,
7517                                              bool ControlsExit,
7518                                              bool AllowPredicates,
7519                                              const ExitLimit &EL) {
7520   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7521          this->AllowPredicates == AllowPredicates &&
7522          "Variance in assumed invariant key components!");
7523 
7524   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7525   assert(InsertResult.second && "Expected successful insertion!");
7526   (void)InsertResult;
7527   (void)ExitIfTrue;
7528 }
7529 
7530 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7531     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7532     bool ControlsExit, bool AllowPredicates) {
7533 
7534   if (auto MaybeEL =
7535           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7536     return *MaybeEL;
7537 
7538   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7539                                               ControlsExit, AllowPredicates);
7540   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7541   return EL;
7542 }
7543 
7544 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7545     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7546     bool ControlsExit, bool AllowPredicates) {
7547   // Handle BinOp conditions (And, Or).
7548   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7549           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7550     return *LimitFromBinOp;
7551 
7552   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7553   // Proceed to the next level to examine the icmp.
7554   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7555     ExitLimit EL =
7556         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7557     if (EL.hasFullInfo() || !AllowPredicates)
7558       return EL;
7559 
7560     // Try again, but use SCEV predicates this time.
7561     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7562                                     /*AllowPredicates=*/true);
7563   }
7564 
7565   // Check for a constant condition. These are normally stripped out by
7566   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7567   // preserve the CFG and is temporarily leaving constant conditions
7568   // in place.
7569   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7570     if (ExitIfTrue == !CI->getZExtValue())
7571       // The backedge is always taken.
7572       return getCouldNotCompute();
7573     else
7574       // The backedge is never taken.
7575       return getZero(CI->getType());
7576   }
7577 
7578   // If it's not an integer or pointer comparison then compute it the hard way.
7579   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7580 }
7581 
7582 Optional<ScalarEvolution::ExitLimit>
7583 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7584     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7585     bool ControlsExit, bool AllowPredicates) {
7586   // Check if the controlling expression for this loop is an And or Or.
7587   Value *Op0, *Op1;
7588   bool IsAnd = false;
7589   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
7590     IsAnd = true;
7591   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
7592     IsAnd = false;
7593   else
7594     return None;
7595 
7596   // EitherMayExit is true in these two cases:
7597   //   br (and Op0 Op1), loop, exit
7598   //   br (or  Op0 Op1), exit, loop
7599   bool EitherMayExit = IsAnd ^ ExitIfTrue;
7600   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
7601                                                  ControlsExit && !EitherMayExit,
7602                                                  AllowPredicates);
7603   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
7604                                                  ControlsExit && !EitherMayExit,
7605                                                  AllowPredicates);
7606 
7607   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
7608   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
7609   if (isa<ConstantInt>(Op1))
7610     return Op1 == NeutralElement ? EL0 : EL1;
7611   if (isa<ConstantInt>(Op0))
7612     return Op0 == NeutralElement ? EL1 : EL0;
7613 
7614   const SCEV *BECount = getCouldNotCompute();
7615   const SCEV *MaxBECount = getCouldNotCompute();
7616   if (EitherMayExit) {
7617     // Both conditions must be same for the loop to continue executing.
7618     // Choose the less conservative count.
7619     // If ExitCond is a short-circuit form (select), using
7620     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
7621     // To see the detailed examples, please see
7622     // test/Analysis/ScalarEvolution/exit-count-select.ll
7623     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
7624     if (!PoisonSafe)
7625       // Even if ExitCond is select, we can safely derive BECount using both
7626       // EL0 and EL1 in these cases:
7627       // (1) EL0.ExactNotTaken is non-zero
7628       // (2) EL1.ExactNotTaken is non-poison
7629       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
7630       //     it cannot be umin(0, ..))
7631       // The PoisonSafe assignment below is simplified and the assertion after
7632       // BECount calculation fully guarantees the condition (3).
7633       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
7634                    isa<SCEVConstant>(EL1.ExactNotTaken);
7635     if (EL0.ExactNotTaken != getCouldNotCompute() &&
7636         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
7637       BECount =
7638           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7639 
7640       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
7641       // it should have been simplified to zero (see the condition (3) above)
7642       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
7643              BECount->isZero());
7644     }
7645     if (EL0.MaxNotTaken == getCouldNotCompute())
7646       MaxBECount = EL1.MaxNotTaken;
7647     else if (EL1.MaxNotTaken == getCouldNotCompute())
7648       MaxBECount = EL0.MaxNotTaken;
7649     else
7650       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7651   } else {
7652     // Both conditions must be same at the same time for the loop to exit.
7653     // For now, be conservative.
7654     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7655       BECount = EL0.ExactNotTaken;
7656   }
7657 
7658   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7659   // to be more aggressive when computing BECount than when computing
7660   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7661   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7662   // to not.
7663   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7664       !isa<SCEVCouldNotCompute>(BECount))
7665     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7666 
7667   return ExitLimit(BECount, MaxBECount, false,
7668                    { &EL0.Predicates, &EL1.Predicates });
7669 }
7670 
7671 ScalarEvolution::ExitLimit
7672 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7673                                           ICmpInst *ExitCond,
7674                                           bool ExitIfTrue,
7675                                           bool ControlsExit,
7676                                           bool AllowPredicates) {
7677   // If the condition was exit on true, convert the condition to exit on false
7678   ICmpInst::Predicate Pred;
7679   if (!ExitIfTrue)
7680     Pred = ExitCond->getPredicate();
7681   else
7682     Pred = ExitCond->getInversePredicate();
7683   const ICmpInst::Predicate OriginalPred = Pred;
7684 
7685   // Handle common loops like: for (X = "string"; *X; ++X)
7686   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7687     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7688       ExitLimit ItCnt =
7689         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7690       if (ItCnt.hasAnyInfo())
7691         return ItCnt;
7692     }
7693 
7694   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7695   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7696 
7697   // Try to evaluate any dependencies out of the loop.
7698   LHS = getSCEVAtScope(LHS, L);
7699   RHS = getSCEVAtScope(RHS, L);
7700 
7701   // At this point, we would like to compute how many iterations of the
7702   // loop the predicate will return true for these inputs.
7703   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7704     // If there is a loop-invariant, force it into the RHS.
7705     std::swap(LHS, RHS);
7706     Pred = ICmpInst::getSwappedPredicate(Pred);
7707   }
7708 
7709   // Simplify the operands before analyzing them.
7710   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7711 
7712   // If we have a comparison of a chrec against a constant, try to use value
7713   // ranges to answer this query.
7714   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7715     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7716       if (AddRec->getLoop() == L) {
7717         // Form the constant range.
7718         ConstantRange CompRange =
7719             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7720 
7721         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7722         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7723       }
7724 
7725   switch (Pred) {
7726   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7727     // Convert to: while (X-Y != 0)
7728     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7729                                 AllowPredicates);
7730     if (EL.hasAnyInfo()) return EL;
7731     break;
7732   }
7733   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7734     // Convert to: while (X-Y == 0)
7735     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7736     if (EL.hasAnyInfo()) return EL;
7737     break;
7738   }
7739   case ICmpInst::ICMP_SLT:
7740   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7741     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7742     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7743                                     AllowPredicates);
7744     if (EL.hasAnyInfo()) return EL;
7745     break;
7746   }
7747   case ICmpInst::ICMP_SGT:
7748   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7749     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7750     ExitLimit EL =
7751         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7752                             AllowPredicates);
7753     if (EL.hasAnyInfo()) return EL;
7754     break;
7755   }
7756   default:
7757     break;
7758   }
7759 
7760   auto *ExhaustiveCount =
7761       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7762 
7763   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7764     return ExhaustiveCount;
7765 
7766   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7767                                       ExitCond->getOperand(1), L, OriginalPred);
7768 }
7769 
7770 ScalarEvolution::ExitLimit
7771 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7772                                                       SwitchInst *Switch,
7773                                                       BasicBlock *ExitingBlock,
7774                                                       bool ControlsExit) {
7775   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7776 
7777   // Give up if the exit is the default dest of a switch.
7778   if (Switch->getDefaultDest() == ExitingBlock)
7779     return getCouldNotCompute();
7780 
7781   assert(L->contains(Switch->getDefaultDest()) &&
7782          "Default case must not exit the loop!");
7783   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7784   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7785 
7786   // while (X != Y) --> while (X-Y != 0)
7787   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7788   if (EL.hasAnyInfo())
7789     return EL;
7790 
7791   return getCouldNotCompute();
7792 }
7793 
7794 static ConstantInt *
7795 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7796                                 ScalarEvolution &SE) {
7797   const SCEV *InVal = SE.getConstant(C);
7798   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7799   assert(isa<SCEVConstant>(Val) &&
7800          "Evaluation of SCEV at constant didn't fold correctly?");
7801   return cast<SCEVConstant>(Val)->getValue();
7802 }
7803 
7804 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7805 /// compute the backedge execution count.
7806 ScalarEvolution::ExitLimit
7807 ScalarEvolution::computeLoadConstantCompareExitLimit(
7808   LoadInst *LI,
7809   Constant *RHS,
7810   const Loop *L,
7811   ICmpInst::Predicate predicate) {
7812   if (LI->isVolatile()) return getCouldNotCompute();
7813 
7814   // Check to see if the loaded pointer is a getelementptr of a global.
7815   // TODO: Use SCEV instead of manually grubbing with GEPs.
7816   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7817   if (!GEP) return getCouldNotCompute();
7818 
7819   // Make sure that it is really a constant global we are gepping, with an
7820   // initializer, and make sure the first IDX is really 0.
7821   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7822   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7823       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7824       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7825     return getCouldNotCompute();
7826 
7827   // Okay, we allow one non-constant index into the GEP instruction.
7828   Value *VarIdx = nullptr;
7829   std::vector<Constant*> Indexes;
7830   unsigned VarIdxNum = 0;
7831   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7832     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7833       Indexes.push_back(CI);
7834     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7835       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7836       VarIdx = GEP->getOperand(i);
7837       VarIdxNum = i-2;
7838       Indexes.push_back(nullptr);
7839     }
7840 
7841   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7842   if (!VarIdx)
7843     return getCouldNotCompute();
7844 
7845   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7846   // Check to see if X is a loop variant variable value now.
7847   const SCEV *Idx = getSCEV(VarIdx);
7848   Idx = getSCEVAtScope(Idx, L);
7849 
7850   // We can only recognize very limited forms of loop index expressions, in
7851   // particular, only affine AddRec's like {C1,+,C2}.
7852   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7853   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7854       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7855       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7856     return getCouldNotCompute();
7857 
7858   unsigned MaxSteps = MaxBruteForceIterations;
7859   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7860     ConstantInt *ItCst = ConstantInt::get(
7861                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7862     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7863 
7864     // Form the GEP offset.
7865     Indexes[VarIdxNum] = Val;
7866 
7867     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7868                                                          Indexes);
7869     if (!Result) break;  // Cannot compute!
7870 
7871     // Evaluate the condition for this iteration.
7872     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7873     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7874     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7875       ++NumArrayLenItCounts;
7876       return getConstant(ItCst);   // Found terminating iteration!
7877     }
7878   }
7879   return getCouldNotCompute();
7880 }
7881 
7882 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7883     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7884   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7885   if (!RHS)
7886     return getCouldNotCompute();
7887 
7888   const BasicBlock *Latch = L->getLoopLatch();
7889   if (!Latch)
7890     return getCouldNotCompute();
7891 
7892   const BasicBlock *Predecessor = L->getLoopPredecessor();
7893   if (!Predecessor)
7894     return getCouldNotCompute();
7895 
7896   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7897   // Return LHS in OutLHS and shift_opt in OutOpCode.
7898   auto MatchPositiveShift =
7899       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7900 
7901     using namespace PatternMatch;
7902 
7903     ConstantInt *ShiftAmt;
7904     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7905       OutOpCode = Instruction::LShr;
7906     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7907       OutOpCode = Instruction::AShr;
7908     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7909       OutOpCode = Instruction::Shl;
7910     else
7911       return false;
7912 
7913     return ShiftAmt->getValue().isStrictlyPositive();
7914   };
7915 
7916   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7917   //
7918   // loop:
7919   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7920   //   %iv.shifted = lshr i32 %iv, <positive constant>
7921   //
7922   // Return true on a successful match.  Return the corresponding PHI node (%iv
7923   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7924   auto MatchShiftRecurrence =
7925       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7926     Optional<Instruction::BinaryOps> PostShiftOpCode;
7927 
7928     {
7929       Instruction::BinaryOps OpC;
7930       Value *V;
7931 
7932       // If we encounter a shift instruction, "peel off" the shift operation,
7933       // and remember that we did so.  Later when we inspect %iv's backedge
7934       // value, we will make sure that the backedge value uses the same
7935       // operation.
7936       //
7937       // Note: the peeled shift operation does not have to be the same
7938       // instruction as the one feeding into the PHI's backedge value.  We only
7939       // really care about it being the same *kind* of shift instruction --
7940       // that's all that is required for our later inferences to hold.
7941       if (MatchPositiveShift(LHS, V, OpC)) {
7942         PostShiftOpCode = OpC;
7943         LHS = V;
7944       }
7945     }
7946 
7947     PNOut = dyn_cast<PHINode>(LHS);
7948     if (!PNOut || PNOut->getParent() != L->getHeader())
7949       return false;
7950 
7951     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7952     Value *OpLHS;
7953 
7954     return
7955         // The backedge value for the PHI node must be a shift by a positive
7956         // amount
7957         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7958 
7959         // of the PHI node itself
7960         OpLHS == PNOut &&
7961 
7962         // and the kind of shift should be match the kind of shift we peeled
7963         // off, if any.
7964         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7965   };
7966 
7967   PHINode *PN;
7968   Instruction::BinaryOps OpCode;
7969   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7970     return getCouldNotCompute();
7971 
7972   const DataLayout &DL = getDataLayout();
7973 
7974   // The key rationale for this optimization is that for some kinds of shift
7975   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7976   // within a finite number of iterations.  If the condition guarding the
7977   // backedge (in the sense that the backedge is taken if the condition is true)
7978   // is false for the value the shift recurrence stabilizes to, then we know
7979   // that the backedge is taken only a finite number of times.
7980 
7981   ConstantInt *StableValue = nullptr;
7982   switch (OpCode) {
7983   default:
7984     llvm_unreachable("Impossible case!");
7985 
7986   case Instruction::AShr: {
7987     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7988     // bitwidth(K) iterations.
7989     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7990     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7991                                        Predecessor->getTerminator(), &DT);
7992     auto *Ty = cast<IntegerType>(RHS->getType());
7993     if (Known.isNonNegative())
7994       StableValue = ConstantInt::get(Ty, 0);
7995     else if (Known.isNegative())
7996       StableValue = ConstantInt::get(Ty, -1, true);
7997     else
7998       return getCouldNotCompute();
7999 
8000     break;
8001   }
8002   case Instruction::LShr:
8003   case Instruction::Shl:
8004     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8005     // stabilize to 0 in at most bitwidth(K) iterations.
8006     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8007     break;
8008   }
8009 
8010   auto *Result =
8011       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8012   assert(Result->getType()->isIntegerTy(1) &&
8013          "Otherwise cannot be an operand to a branch instruction");
8014 
8015   if (Result->isZeroValue()) {
8016     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8017     const SCEV *UpperBound =
8018         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8019     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8020   }
8021 
8022   return getCouldNotCompute();
8023 }
8024 
8025 /// Return true if we can constant fold an instruction of the specified type,
8026 /// assuming that all operands were constants.
8027 static bool CanConstantFold(const Instruction *I) {
8028   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8029       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8030       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8031     return true;
8032 
8033   if (const CallInst *CI = dyn_cast<CallInst>(I))
8034     if (const Function *F = CI->getCalledFunction())
8035       return canConstantFoldCallTo(CI, F);
8036   return false;
8037 }
8038 
8039 /// Determine whether this instruction can constant evolve within this loop
8040 /// assuming its operands can all constant evolve.
8041 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8042   // An instruction outside of the loop can't be derived from a loop PHI.
8043   if (!L->contains(I)) return false;
8044 
8045   if (isa<PHINode>(I)) {
8046     // We don't currently keep track of the control flow needed to evaluate
8047     // PHIs, so we cannot handle PHIs inside of loops.
8048     return L->getHeader() == I->getParent();
8049   }
8050 
8051   // If we won't be able to constant fold this expression even if the operands
8052   // are constants, bail early.
8053   return CanConstantFold(I);
8054 }
8055 
8056 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8057 /// recursing through each instruction operand until reaching a loop header phi.
8058 static PHINode *
8059 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8060                                DenseMap<Instruction *, PHINode *> &PHIMap,
8061                                unsigned Depth) {
8062   if (Depth > MaxConstantEvolvingDepth)
8063     return nullptr;
8064 
8065   // Otherwise, we can evaluate this instruction if all of its operands are
8066   // constant or derived from a PHI node themselves.
8067   PHINode *PHI = nullptr;
8068   for (Value *Op : UseInst->operands()) {
8069     if (isa<Constant>(Op)) continue;
8070 
8071     Instruction *OpInst = dyn_cast<Instruction>(Op);
8072     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8073 
8074     PHINode *P = dyn_cast<PHINode>(OpInst);
8075     if (!P)
8076       // If this operand is already visited, reuse the prior result.
8077       // We may have P != PHI if this is the deepest point at which the
8078       // inconsistent paths meet.
8079       P = PHIMap.lookup(OpInst);
8080     if (!P) {
8081       // Recurse and memoize the results, whether a phi is found or not.
8082       // This recursive call invalidates pointers into PHIMap.
8083       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8084       PHIMap[OpInst] = P;
8085     }
8086     if (!P)
8087       return nullptr;  // Not evolving from PHI
8088     if (PHI && PHI != P)
8089       return nullptr;  // Evolving from multiple different PHIs.
8090     PHI = P;
8091   }
8092   // This is a expression evolving from a constant PHI!
8093   return PHI;
8094 }
8095 
8096 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8097 /// in the loop that V is derived from.  We allow arbitrary operations along the
8098 /// way, but the operands of an operation must either be constants or a value
8099 /// derived from a constant PHI.  If this expression does not fit with these
8100 /// constraints, return null.
8101 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8102   Instruction *I = dyn_cast<Instruction>(V);
8103   if (!I || !canConstantEvolve(I, L)) return nullptr;
8104 
8105   if (PHINode *PN = dyn_cast<PHINode>(I))
8106     return PN;
8107 
8108   // Record non-constant instructions contained by the loop.
8109   DenseMap<Instruction *, PHINode *> PHIMap;
8110   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8111 }
8112 
8113 /// EvaluateExpression - Given an expression that passes the
8114 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8115 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8116 /// reason, return null.
8117 static Constant *EvaluateExpression(Value *V, const Loop *L,
8118                                     DenseMap<Instruction *, Constant *> &Vals,
8119                                     const DataLayout &DL,
8120                                     const TargetLibraryInfo *TLI) {
8121   // Convenient constant check, but redundant for recursive calls.
8122   if (Constant *C = dyn_cast<Constant>(V)) return C;
8123   Instruction *I = dyn_cast<Instruction>(V);
8124   if (!I) return nullptr;
8125 
8126   if (Constant *C = Vals.lookup(I)) return C;
8127 
8128   // An instruction inside the loop depends on a value outside the loop that we
8129   // weren't given a mapping for, or a value such as a call inside the loop.
8130   if (!canConstantEvolve(I, L)) return nullptr;
8131 
8132   // An unmapped PHI can be due to a branch or another loop inside this loop,
8133   // or due to this not being the initial iteration through a loop where we
8134   // couldn't compute the evolution of this particular PHI last time.
8135   if (isa<PHINode>(I)) return nullptr;
8136 
8137   std::vector<Constant*> Operands(I->getNumOperands());
8138 
8139   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8140     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8141     if (!Operand) {
8142       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8143       if (!Operands[i]) return nullptr;
8144       continue;
8145     }
8146     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8147     Vals[Operand] = C;
8148     if (!C) return nullptr;
8149     Operands[i] = C;
8150   }
8151 
8152   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8153     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8154                                            Operands[1], DL, TLI);
8155   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8156     if (!LI->isVolatile())
8157       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8158   }
8159   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8160 }
8161 
8162 
8163 // If every incoming value to PN except the one for BB is a specific Constant,
8164 // return that, else return nullptr.
8165 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8166   Constant *IncomingVal = nullptr;
8167 
8168   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8169     if (PN->getIncomingBlock(i) == BB)
8170       continue;
8171 
8172     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8173     if (!CurrentVal)
8174       return nullptr;
8175 
8176     if (IncomingVal != CurrentVal) {
8177       if (IncomingVal)
8178         return nullptr;
8179       IncomingVal = CurrentVal;
8180     }
8181   }
8182 
8183   return IncomingVal;
8184 }
8185 
8186 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8187 /// in the header of its containing loop, we know the loop executes a
8188 /// constant number of times, and the PHI node is just a recurrence
8189 /// involving constants, fold it.
8190 Constant *
8191 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8192                                                    const APInt &BEs,
8193                                                    const Loop *L) {
8194   auto I = ConstantEvolutionLoopExitValue.find(PN);
8195   if (I != ConstantEvolutionLoopExitValue.end())
8196     return I->second;
8197 
8198   if (BEs.ugt(MaxBruteForceIterations))
8199     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8200 
8201   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8202 
8203   DenseMap<Instruction *, Constant *> CurrentIterVals;
8204   BasicBlock *Header = L->getHeader();
8205   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8206 
8207   BasicBlock *Latch = L->getLoopLatch();
8208   if (!Latch)
8209     return nullptr;
8210 
8211   for (PHINode &PHI : Header->phis()) {
8212     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8213       CurrentIterVals[&PHI] = StartCST;
8214   }
8215   if (!CurrentIterVals.count(PN))
8216     return RetVal = nullptr;
8217 
8218   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8219 
8220   // Execute the loop symbolically to determine the exit value.
8221   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8222          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8223 
8224   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8225   unsigned IterationNum = 0;
8226   const DataLayout &DL = getDataLayout();
8227   for (; ; ++IterationNum) {
8228     if (IterationNum == NumIterations)
8229       return RetVal = CurrentIterVals[PN];  // Got exit value!
8230 
8231     // Compute the value of the PHIs for the next iteration.
8232     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8233     DenseMap<Instruction *, Constant *> NextIterVals;
8234     Constant *NextPHI =
8235         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8236     if (!NextPHI)
8237       return nullptr;        // Couldn't evaluate!
8238     NextIterVals[PN] = NextPHI;
8239 
8240     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8241 
8242     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8243     // cease to be able to evaluate one of them or if they stop evolving,
8244     // because that doesn't necessarily prevent us from computing PN.
8245     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8246     for (const auto &I : CurrentIterVals) {
8247       PHINode *PHI = dyn_cast<PHINode>(I.first);
8248       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8249       PHIsToCompute.emplace_back(PHI, I.second);
8250     }
8251     // We use two distinct loops because EvaluateExpression may invalidate any
8252     // iterators into CurrentIterVals.
8253     for (const auto &I : PHIsToCompute) {
8254       PHINode *PHI = I.first;
8255       Constant *&NextPHI = NextIterVals[PHI];
8256       if (!NextPHI) {   // Not already computed.
8257         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8258         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8259       }
8260       if (NextPHI != I.second)
8261         StoppedEvolving = false;
8262     }
8263 
8264     // If all entries in CurrentIterVals == NextIterVals then we can stop
8265     // iterating, the loop can't continue to change.
8266     if (StoppedEvolving)
8267       return RetVal = CurrentIterVals[PN];
8268 
8269     CurrentIterVals.swap(NextIterVals);
8270   }
8271 }
8272 
8273 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8274                                                           Value *Cond,
8275                                                           bool ExitWhen) {
8276   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8277   if (!PN) return getCouldNotCompute();
8278 
8279   // If the loop is canonicalized, the PHI will have exactly two entries.
8280   // That's the only form we support here.
8281   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8282 
8283   DenseMap<Instruction *, Constant *> CurrentIterVals;
8284   BasicBlock *Header = L->getHeader();
8285   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8286 
8287   BasicBlock *Latch = L->getLoopLatch();
8288   assert(Latch && "Should follow from NumIncomingValues == 2!");
8289 
8290   for (PHINode &PHI : Header->phis()) {
8291     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8292       CurrentIterVals[&PHI] = StartCST;
8293   }
8294   if (!CurrentIterVals.count(PN))
8295     return getCouldNotCompute();
8296 
8297   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8298   // the loop symbolically to determine when the condition gets a value of
8299   // "ExitWhen".
8300   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8301   const DataLayout &DL = getDataLayout();
8302   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8303     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8304         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8305 
8306     // Couldn't symbolically evaluate.
8307     if (!CondVal) return getCouldNotCompute();
8308 
8309     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8310       ++NumBruteForceTripCountsComputed;
8311       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8312     }
8313 
8314     // Update all the PHI nodes for the next iteration.
8315     DenseMap<Instruction *, Constant *> NextIterVals;
8316 
8317     // Create a list of which PHIs we need to compute. We want to do this before
8318     // calling EvaluateExpression on them because that may invalidate iterators
8319     // into CurrentIterVals.
8320     SmallVector<PHINode *, 8> PHIsToCompute;
8321     for (const auto &I : CurrentIterVals) {
8322       PHINode *PHI = dyn_cast<PHINode>(I.first);
8323       if (!PHI || PHI->getParent() != Header) continue;
8324       PHIsToCompute.push_back(PHI);
8325     }
8326     for (PHINode *PHI : PHIsToCompute) {
8327       Constant *&NextPHI = NextIterVals[PHI];
8328       if (NextPHI) continue;    // Already computed!
8329 
8330       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8331       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8332     }
8333     CurrentIterVals.swap(NextIterVals);
8334   }
8335 
8336   // Too many iterations were needed to evaluate.
8337   return getCouldNotCompute();
8338 }
8339 
8340 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8341   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8342       ValuesAtScopes[V];
8343   // Check to see if we've folded this expression at this loop before.
8344   for (auto &LS : Values)
8345     if (LS.first == L)
8346       return LS.second ? LS.second : V;
8347 
8348   Values.emplace_back(L, nullptr);
8349 
8350   // Otherwise compute it.
8351   const SCEV *C = computeSCEVAtScope(V, L);
8352   for (auto &LS : reverse(ValuesAtScopes[V]))
8353     if (LS.first == L) {
8354       LS.second = C;
8355       break;
8356     }
8357   return C;
8358 }
8359 
8360 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8361 /// will return Constants for objects which aren't represented by a
8362 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8363 /// Returns NULL if the SCEV isn't representable as a Constant.
8364 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8365   switch (V->getSCEVType()) {
8366   case scCouldNotCompute:
8367   case scAddRecExpr:
8368     return nullptr;
8369   case scConstant:
8370     return cast<SCEVConstant>(V)->getValue();
8371   case scUnknown:
8372     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8373   case scSignExtend: {
8374     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8375     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8376       return ConstantExpr::getSExt(CastOp, SS->getType());
8377     return nullptr;
8378   }
8379   case scZeroExtend: {
8380     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8381     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8382       return ConstantExpr::getZExt(CastOp, SZ->getType());
8383     return nullptr;
8384   }
8385   case scPtrToInt: {
8386     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8387     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8388       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8389 
8390     return nullptr;
8391   }
8392   case scTruncate: {
8393     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8394     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8395       return ConstantExpr::getTrunc(CastOp, ST->getType());
8396     return nullptr;
8397   }
8398   case scAddExpr: {
8399     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8400     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8401       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8402         unsigned AS = PTy->getAddressSpace();
8403         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8404         C = ConstantExpr::getBitCast(C, DestPtrTy);
8405       }
8406       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8407         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8408         if (!C2)
8409           return nullptr;
8410 
8411         // First pointer!
8412         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8413           unsigned AS = C2->getType()->getPointerAddressSpace();
8414           std::swap(C, C2);
8415           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8416           // The offsets have been converted to bytes.  We can add bytes to an
8417           // i8* by GEP with the byte count in the first index.
8418           C = ConstantExpr::getBitCast(C, DestPtrTy);
8419         }
8420 
8421         // Don't bother trying to sum two pointers. We probably can't
8422         // statically compute a load that results from it anyway.
8423         if (C2->getType()->isPointerTy())
8424           return nullptr;
8425 
8426         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8427           if (PTy->getElementType()->isStructTy())
8428             C2 = ConstantExpr::getIntegerCast(
8429                 C2, Type::getInt32Ty(C->getContext()), true);
8430           C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8431         } else
8432           C = ConstantExpr::getAdd(C, C2);
8433       }
8434       return C;
8435     }
8436     return nullptr;
8437   }
8438   case scMulExpr: {
8439     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8440     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8441       // Don't bother with pointers at all.
8442       if (C->getType()->isPointerTy())
8443         return nullptr;
8444       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8445         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8446         if (!C2 || C2->getType()->isPointerTy())
8447           return nullptr;
8448         C = ConstantExpr::getMul(C, C2);
8449       }
8450       return C;
8451     }
8452     return nullptr;
8453   }
8454   case scUDivExpr: {
8455     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8456     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8457       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8458         if (LHS->getType() == RHS->getType())
8459           return ConstantExpr::getUDiv(LHS, RHS);
8460     return nullptr;
8461   }
8462   case scSMaxExpr:
8463   case scUMaxExpr:
8464   case scSMinExpr:
8465   case scUMinExpr:
8466     return nullptr; // TODO: smax, umax, smin, umax.
8467   }
8468   llvm_unreachable("Unknown SCEV kind!");
8469 }
8470 
8471 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8472   if (isa<SCEVConstant>(V)) return V;
8473 
8474   // If this instruction is evolved from a constant-evolving PHI, compute the
8475   // exit value from the loop without using SCEVs.
8476   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8477     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8478       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8479         const Loop *CurrLoop = this->LI[I->getParent()];
8480         // Looking for loop exit value.
8481         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8482             PN->getParent() == CurrLoop->getHeader()) {
8483           // Okay, there is no closed form solution for the PHI node.  Check
8484           // to see if the loop that contains it has a known backedge-taken
8485           // count.  If so, we may be able to force computation of the exit
8486           // value.
8487           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8488           // This trivial case can show up in some degenerate cases where
8489           // the incoming IR has not yet been fully simplified.
8490           if (BackedgeTakenCount->isZero()) {
8491             Value *InitValue = nullptr;
8492             bool MultipleInitValues = false;
8493             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8494               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8495                 if (!InitValue)
8496                   InitValue = PN->getIncomingValue(i);
8497                 else if (InitValue != PN->getIncomingValue(i)) {
8498                   MultipleInitValues = true;
8499                   break;
8500                 }
8501               }
8502             }
8503             if (!MultipleInitValues && InitValue)
8504               return getSCEV(InitValue);
8505           }
8506           // Do we have a loop invariant value flowing around the backedge
8507           // for a loop which must execute the backedge?
8508           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8509               isKnownPositive(BackedgeTakenCount) &&
8510               PN->getNumIncomingValues() == 2) {
8511 
8512             unsigned InLoopPred =
8513                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8514             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8515             if (CurrLoop->isLoopInvariant(BackedgeVal))
8516               return getSCEV(BackedgeVal);
8517           }
8518           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8519             // Okay, we know how many times the containing loop executes.  If
8520             // this is a constant evolving PHI node, get the final value at
8521             // the specified iteration number.
8522             Constant *RV = getConstantEvolutionLoopExitValue(
8523                 PN, BTCC->getAPInt(), CurrLoop);
8524             if (RV) return getSCEV(RV);
8525           }
8526         }
8527 
8528         // If there is a single-input Phi, evaluate it at our scope. If we can
8529         // prove that this replacement does not break LCSSA form, use new value.
8530         if (PN->getNumOperands() == 1) {
8531           const SCEV *Input = getSCEV(PN->getOperand(0));
8532           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8533           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8534           // for the simplest case just support constants.
8535           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8536         }
8537       }
8538 
8539       // Okay, this is an expression that we cannot symbolically evaluate
8540       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8541       // the arguments into constants, and if so, try to constant propagate the
8542       // result.  This is particularly useful for computing loop exit values.
8543       if (CanConstantFold(I)) {
8544         SmallVector<Constant *, 4> Operands;
8545         bool MadeImprovement = false;
8546         for (Value *Op : I->operands()) {
8547           if (Constant *C = dyn_cast<Constant>(Op)) {
8548             Operands.push_back(C);
8549             continue;
8550           }
8551 
8552           // If any of the operands is non-constant and if they are
8553           // non-integer and non-pointer, don't even try to analyze them
8554           // with scev techniques.
8555           if (!isSCEVable(Op->getType()))
8556             return V;
8557 
8558           const SCEV *OrigV = getSCEV(Op);
8559           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8560           MadeImprovement |= OrigV != OpV;
8561 
8562           Constant *C = BuildConstantFromSCEV(OpV);
8563           if (!C) return V;
8564           if (C->getType() != Op->getType())
8565             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8566                                                               Op->getType(),
8567                                                               false),
8568                                       C, Op->getType());
8569           Operands.push_back(C);
8570         }
8571 
8572         // Check to see if getSCEVAtScope actually made an improvement.
8573         if (MadeImprovement) {
8574           Constant *C = nullptr;
8575           const DataLayout &DL = getDataLayout();
8576           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8577             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8578                                                 Operands[1], DL, &TLI);
8579           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8580             if (!Load->isVolatile())
8581               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8582                                                DL);
8583           } else
8584             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8585           if (!C) return V;
8586           return getSCEV(C);
8587         }
8588       }
8589     }
8590 
8591     // This is some other type of SCEVUnknown, just return it.
8592     return V;
8593   }
8594 
8595   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8596     // Avoid performing the look-up in the common case where the specified
8597     // expression has no loop-variant portions.
8598     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8599       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8600       if (OpAtScope != Comm->getOperand(i)) {
8601         // Okay, at least one of these operands is loop variant but might be
8602         // foldable.  Build a new instance of the folded commutative expression.
8603         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8604                                             Comm->op_begin()+i);
8605         NewOps.push_back(OpAtScope);
8606 
8607         for (++i; i != e; ++i) {
8608           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8609           NewOps.push_back(OpAtScope);
8610         }
8611         if (isa<SCEVAddExpr>(Comm))
8612           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8613         if (isa<SCEVMulExpr>(Comm))
8614           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8615         if (isa<SCEVMinMaxExpr>(Comm))
8616           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8617         llvm_unreachable("Unknown commutative SCEV type!");
8618       }
8619     }
8620     // If we got here, all operands are loop invariant.
8621     return Comm;
8622   }
8623 
8624   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8625     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8626     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8627     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8628       return Div;   // must be loop invariant
8629     return getUDivExpr(LHS, RHS);
8630   }
8631 
8632   // If this is a loop recurrence for a loop that does not contain L, then we
8633   // are dealing with the final value computed by the loop.
8634   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8635     // First, attempt to evaluate each operand.
8636     // Avoid performing the look-up in the common case where the specified
8637     // expression has no loop-variant portions.
8638     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8639       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8640       if (OpAtScope == AddRec->getOperand(i))
8641         continue;
8642 
8643       // Okay, at least one of these operands is loop variant but might be
8644       // foldable.  Build a new instance of the folded commutative expression.
8645       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8646                                           AddRec->op_begin()+i);
8647       NewOps.push_back(OpAtScope);
8648       for (++i; i != e; ++i)
8649         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8650 
8651       const SCEV *FoldedRec =
8652         getAddRecExpr(NewOps, AddRec->getLoop(),
8653                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8654       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8655       // The addrec may be folded to a nonrecurrence, for example, if the
8656       // induction variable is multiplied by zero after constant folding. Go
8657       // ahead and return the folded value.
8658       if (!AddRec)
8659         return FoldedRec;
8660       break;
8661     }
8662 
8663     // If the scope is outside the addrec's loop, evaluate it by using the
8664     // loop exit value of the addrec.
8665     if (!AddRec->getLoop()->contains(L)) {
8666       // To evaluate this recurrence, we need to know how many times the AddRec
8667       // loop iterates.  Compute this now.
8668       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8669       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8670 
8671       // Then, evaluate the AddRec.
8672       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8673     }
8674 
8675     return AddRec;
8676   }
8677 
8678   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8679     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8680     if (Op == Cast->getOperand())
8681       return Cast;  // must be loop invariant
8682     return getZeroExtendExpr(Op, Cast->getType());
8683   }
8684 
8685   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8686     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8687     if (Op == Cast->getOperand())
8688       return Cast;  // must be loop invariant
8689     return getSignExtendExpr(Op, Cast->getType());
8690   }
8691 
8692   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8693     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8694     if (Op == Cast->getOperand())
8695       return Cast;  // must be loop invariant
8696     return getTruncateExpr(Op, Cast->getType());
8697   }
8698 
8699   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
8700     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8701     if (Op == Cast->getOperand())
8702       return Cast; // must be loop invariant
8703     return getPtrToIntExpr(Op, Cast->getType());
8704   }
8705 
8706   llvm_unreachable("Unknown SCEV type!");
8707 }
8708 
8709 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8710   return getSCEVAtScope(getSCEV(V), L);
8711 }
8712 
8713 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8714   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8715     return stripInjectiveFunctions(ZExt->getOperand());
8716   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8717     return stripInjectiveFunctions(SExt->getOperand());
8718   return S;
8719 }
8720 
8721 /// Finds the minimum unsigned root of the following equation:
8722 ///
8723 ///     A * X = B (mod N)
8724 ///
8725 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8726 /// A and B isn't important.
8727 ///
8728 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8729 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8730                                                ScalarEvolution &SE) {
8731   uint32_t BW = A.getBitWidth();
8732   assert(BW == SE.getTypeSizeInBits(B->getType()));
8733   assert(A != 0 && "A must be non-zero.");
8734 
8735   // 1. D = gcd(A, N)
8736   //
8737   // The gcd of A and N may have only one prime factor: 2. The number of
8738   // trailing zeros in A is its multiplicity
8739   uint32_t Mult2 = A.countTrailingZeros();
8740   // D = 2^Mult2
8741 
8742   // 2. Check if B is divisible by D.
8743   //
8744   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8745   // is not less than multiplicity of this prime factor for D.
8746   if (SE.GetMinTrailingZeros(B) < Mult2)
8747     return SE.getCouldNotCompute();
8748 
8749   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8750   // modulo (N / D).
8751   //
8752   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8753   // (N / D) in general. The inverse itself always fits into BW bits, though,
8754   // so we immediately truncate it.
8755   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8756   APInt Mod(BW + 1, 0);
8757   Mod.setBit(BW - Mult2);  // Mod = N / D
8758   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8759 
8760   // 4. Compute the minimum unsigned root of the equation:
8761   // I * (B / D) mod (N / D)
8762   // To simplify the computation, we factor out the divide by D:
8763   // (I * B mod N) / D
8764   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8765   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8766 }
8767 
8768 /// For a given quadratic addrec, generate coefficients of the corresponding
8769 /// quadratic equation, multiplied by a common value to ensure that they are
8770 /// integers.
8771 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8772 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8773 /// were multiplied by, and BitWidth is the bit width of the original addrec
8774 /// coefficients.
8775 /// This function returns None if the addrec coefficients are not compile-
8776 /// time constants.
8777 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8778 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8779   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8780   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8781   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8782   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8783   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8784                     << *AddRec << '\n');
8785 
8786   // We currently can only solve this if the coefficients are constants.
8787   if (!LC || !MC || !NC) {
8788     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8789     return None;
8790   }
8791 
8792   APInt L = LC->getAPInt();
8793   APInt M = MC->getAPInt();
8794   APInt N = NC->getAPInt();
8795   assert(!N.isNullValue() && "This is not a quadratic addrec");
8796 
8797   unsigned BitWidth = LC->getAPInt().getBitWidth();
8798   unsigned NewWidth = BitWidth + 1;
8799   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8800                     << BitWidth << '\n');
8801   // The sign-extension (as opposed to a zero-extension) here matches the
8802   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8803   N = N.sext(NewWidth);
8804   M = M.sext(NewWidth);
8805   L = L.sext(NewWidth);
8806 
8807   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8808   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8809   //   L+M, L+2M+N, L+3M+3N, ...
8810   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8811   //
8812   // The equation Acc = 0 is then
8813   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8814   // In a quadratic form it becomes:
8815   //   N n^2 + (2M-N) n + 2L = 0.
8816 
8817   APInt A = N;
8818   APInt B = 2 * M - A;
8819   APInt C = 2 * L;
8820   APInt T = APInt(NewWidth, 2);
8821   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8822                     << "x + " << C << ", coeff bw: " << NewWidth
8823                     << ", multiplied by " << T << '\n');
8824   return std::make_tuple(A, B, C, T, BitWidth);
8825 }
8826 
8827 /// Helper function to compare optional APInts:
8828 /// (a) if X and Y both exist, return min(X, Y),
8829 /// (b) if neither X nor Y exist, return None,
8830 /// (c) if exactly one of X and Y exists, return that value.
8831 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8832   if (X.hasValue() && Y.hasValue()) {
8833     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8834     APInt XW = X->sextOrSelf(W);
8835     APInt YW = Y->sextOrSelf(W);
8836     return XW.slt(YW) ? *X : *Y;
8837   }
8838   if (!X.hasValue() && !Y.hasValue())
8839     return None;
8840   return X.hasValue() ? *X : *Y;
8841 }
8842 
8843 /// Helper function to truncate an optional APInt to a given BitWidth.
8844 /// When solving addrec-related equations, it is preferable to return a value
8845 /// that has the same bit width as the original addrec's coefficients. If the
8846 /// solution fits in the original bit width, truncate it (except for i1).
8847 /// Returning a value of a different bit width may inhibit some optimizations.
8848 ///
8849 /// In general, a solution to a quadratic equation generated from an addrec
8850 /// may require BW+1 bits, where BW is the bit width of the addrec's
8851 /// coefficients. The reason is that the coefficients of the quadratic
8852 /// equation are BW+1 bits wide (to avoid truncation when converting from
8853 /// the addrec to the equation).
8854 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8855   if (!X.hasValue())
8856     return None;
8857   unsigned W = X->getBitWidth();
8858   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8859     return X->trunc(BitWidth);
8860   return X;
8861 }
8862 
8863 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8864 /// iterations. The values L, M, N are assumed to be signed, and they
8865 /// should all have the same bit widths.
8866 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8867 /// where BW is the bit width of the addrec's coefficients.
8868 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8869 /// returned as such, otherwise the bit width of the returned value may
8870 /// be greater than BW.
8871 ///
8872 /// This function returns None if
8873 /// (a) the addrec coefficients are not constant, or
8874 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8875 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8876 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8877 static Optional<APInt>
8878 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8879   APInt A, B, C, M;
8880   unsigned BitWidth;
8881   auto T = GetQuadraticEquation(AddRec);
8882   if (!T.hasValue())
8883     return None;
8884 
8885   std::tie(A, B, C, M, BitWidth) = *T;
8886   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8887   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8888   if (!X.hasValue())
8889     return None;
8890 
8891   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8892   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8893   if (!V->isZero())
8894     return None;
8895 
8896   return TruncIfPossible(X, BitWidth);
8897 }
8898 
8899 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8900 /// iterations. The values M, N are assumed to be signed, and they
8901 /// should all have the same bit widths.
8902 /// Find the least n such that c(n) does not belong to the given range,
8903 /// while c(n-1) does.
8904 ///
8905 /// This function returns None if
8906 /// (a) the addrec coefficients are not constant, or
8907 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8908 ///     bounds of the range.
8909 static Optional<APInt>
8910 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8911                           const ConstantRange &Range, ScalarEvolution &SE) {
8912   assert(AddRec->getOperand(0)->isZero() &&
8913          "Starting value of addrec should be 0");
8914   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8915                     << Range << ", addrec " << *AddRec << '\n');
8916   // This case is handled in getNumIterationsInRange. Here we can assume that
8917   // we start in the range.
8918   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8919          "Addrec's initial value should be in range");
8920 
8921   APInt A, B, C, M;
8922   unsigned BitWidth;
8923   auto T = GetQuadraticEquation(AddRec);
8924   if (!T.hasValue())
8925     return None;
8926 
8927   // Be careful about the return value: there can be two reasons for not
8928   // returning an actual number. First, if no solutions to the equations
8929   // were found, and second, if the solutions don't leave the given range.
8930   // The first case means that the actual solution is "unknown", the second
8931   // means that it's known, but not valid. If the solution is unknown, we
8932   // cannot make any conclusions.
8933   // Return a pair: the optional solution and a flag indicating if the
8934   // solution was found.
8935   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8936     // Solve for signed overflow and unsigned overflow, pick the lower
8937     // solution.
8938     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8939                       << Bound << " (before multiplying by " << M << ")\n");
8940     Bound *= M; // The quadratic equation multiplier.
8941 
8942     Optional<APInt> SO = None;
8943     if (BitWidth > 1) {
8944       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8945                            "signed overflow\n");
8946       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8947     }
8948     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8949                          "unsigned overflow\n");
8950     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8951                                                               BitWidth+1);
8952 
8953     auto LeavesRange = [&] (const APInt &X) {
8954       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8955       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8956       if (Range.contains(V0->getValue()))
8957         return false;
8958       // X should be at least 1, so X-1 is non-negative.
8959       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8960       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8961       if (Range.contains(V1->getValue()))
8962         return true;
8963       return false;
8964     };
8965 
8966     // If SolveQuadraticEquationWrap returns None, it means that there can
8967     // be a solution, but the function failed to find it. We cannot treat it
8968     // as "no solution".
8969     if (!SO.hasValue() || !UO.hasValue())
8970       return { None, false };
8971 
8972     // Check the smaller value first to see if it leaves the range.
8973     // At this point, both SO and UO must have values.
8974     Optional<APInt> Min = MinOptional(SO, UO);
8975     if (LeavesRange(*Min))
8976       return { Min, true };
8977     Optional<APInt> Max = Min == SO ? UO : SO;
8978     if (LeavesRange(*Max))
8979       return { Max, true };
8980 
8981     // Solutions were found, but were eliminated, hence the "true".
8982     return { None, true };
8983   };
8984 
8985   std::tie(A, B, C, M, BitWidth) = *T;
8986   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8987   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8988   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8989   auto SL = SolveForBoundary(Lower);
8990   auto SU = SolveForBoundary(Upper);
8991   // If any of the solutions was unknown, no meaninigful conclusions can
8992   // be made.
8993   if (!SL.second || !SU.second)
8994     return None;
8995 
8996   // Claim: The correct solution is not some value between Min and Max.
8997   //
8998   // Justification: Assuming that Min and Max are different values, one of
8999   // them is when the first signed overflow happens, the other is when the
9000   // first unsigned overflow happens. Crossing the range boundary is only
9001   // possible via an overflow (treating 0 as a special case of it, modeling
9002   // an overflow as crossing k*2^W for some k).
9003   //
9004   // The interesting case here is when Min was eliminated as an invalid
9005   // solution, but Max was not. The argument is that if there was another
9006   // overflow between Min and Max, it would also have been eliminated if
9007   // it was considered.
9008   //
9009   // For a given boundary, it is possible to have two overflows of the same
9010   // type (signed/unsigned) without having the other type in between: this
9011   // can happen when the vertex of the parabola is between the iterations
9012   // corresponding to the overflows. This is only possible when the two
9013   // overflows cross k*2^W for the same k. In such case, if the second one
9014   // left the range (and was the first one to do so), the first overflow
9015   // would have to enter the range, which would mean that either we had left
9016   // the range before or that we started outside of it. Both of these cases
9017   // are contradictions.
9018   //
9019   // Claim: In the case where SolveForBoundary returns None, the correct
9020   // solution is not some value between the Max for this boundary and the
9021   // Min of the other boundary.
9022   //
9023   // Justification: Assume that we had such Max_A and Min_B corresponding
9024   // to range boundaries A and B and such that Max_A < Min_B. If there was
9025   // a solution between Max_A and Min_B, it would have to be caused by an
9026   // overflow corresponding to either A or B. It cannot correspond to B,
9027   // since Min_B is the first occurrence of such an overflow. If it
9028   // corresponded to A, it would have to be either a signed or an unsigned
9029   // overflow that is larger than both eliminated overflows for A. But
9030   // between the eliminated overflows and this overflow, the values would
9031   // cover the entire value space, thus crossing the other boundary, which
9032   // is a contradiction.
9033 
9034   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9035 }
9036 
9037 ScalarEvolution::ExitLimit
9038 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9039                               bool AllowPredicates) {
9040 
9041   // This is only used for loops with a "x != y" exit test. The exit condition
9042   // is now expressed as a single expression, V = x-y. So the exit test is
9043   // effectively V != 0.  We know and take advantage of the fact that this
9044   // expression only being used in a comparison by zero context.
9045 
9046   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9047   // If the value is a constant
9048   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9049     // If the value is already zero, the branch will execute zero times.
9050     if (C->getValue()->isZero()) return C;
9051     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9052   }
9053 
9054   const SCEVAddRecExpr *AddRec =
9055       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9056 
9057   if (!AddRec && AllowPredicates)
9058     // Try to make this an AddRec using runtime tests, in the first X
9059     // iterations of this loop, where X is the SCEV expression found by the
9060     // algorithm below.
9061     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9062 
9063   if (!AddRec || AddRec->getLoop() != L)
9064     return getCouldNotCompute();
9065 
9066   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9067   // the quadratic equation to solve it.
9068   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9069     // We can only use this value if the chrec ends up with an exact zero
9070     // value at this index.  When solving for "X*X != 5", for example, we
9071     // should not accept a root of 2.
9072     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9073       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9074       return ExitLimit(R, R, false, Predicates);
9075     }
9076     return getCouldNotCompute();
9077   }
9078 
9079   // Otherwise we can only handle this if it is affine.
9080   if (!AddRec->isAffine())
9081     return getCouldNotCompute();
9082 
9083   // If this is an affine expression, the execution count of this branch is
9084   // the minimum unsigned root of the following equation:
9085   //
9086   //     Start + Step*N = 0 (mod 2^BW)
9087   //
9088   // equivalent to:
9089   //
9090   //             Step*N = -Start (mod 2^BW)
9091   //
9092   // where BW is the common bit width of Start and Step.
9093 
9094   // Get the initial value for the loop.
9095   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9096   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9097 
9098   // For now we handle only constant steps.
9099   //
9100   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9101   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9102   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9103   // We have not yet seen any such cases.
9104   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9105   if (!StepC || StepC->getValue()->isZero())
9106     return getCouldNotCompute();
9107 
9108   // For positive steps (counting up until unsigned overflow):
9109   //   N = -Start/Step (as unsigned)
9110   // For negative steps (counting down to zero):
9111   //   N = Start/-Step
9112   // First compute the unsigned distance from zero in the direction of Step.
9113   bool CountDown = StepC->getAPInt().isNegative();
9114   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9115 
9116   // Handle unitary steps, which cannot wraparound.
9117   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9118   //   N = Distance (as unsigned)
9119   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9120     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9121     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9122     if (MaxBECountBase.ult(MaxBECount))
9123       MaxBECount = MaxBECountBase;
9124 
9125     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9126     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9127     // case, and see if we can improve the bound.
9128     //
9129     // Explicitly handling this here is necessary because getUnsignedRange
9130     // isn't context-sensitive; it doesn't know that we only care about the
9131     // range inside the loop.
9132     const SCEV *Zero = getZero(Distance->getType());
9133     const SCEV *One = getOne(Distance->getType());
9134     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9135     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9136       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9137       // as "unsigned_max(Distance + 1) - 1".
9138       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9139       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9140     }
9141     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9142   }
9143 
9144   // If the condition controls loop exit (the loop exits only if the expression
9145   // is true) and the addition is no-wrap we can use unsigned divide to
9146   // compute the backedge count.  In this case, the step may not divide the
9147   // distance, but we don't care because if the condition is "missed" the loop
9148   // will have undefined behavior due to wrapping.
9149   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9150       loopHasNoAbnormalExits(AddRec->getLoop())) {
9151     const SCEV *Exact =
9152         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9153     const SCEV *Max =
9154         Exact == getCouldNotCompute()
9155             ? Exact
9156             : getConstant(getUnsignedRangeMax(Exact));
9157     return ExitLimit(Exact, Max, false, Predicates);
9158   }
9159 
9160   // Solve the general equation.
9161   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9162                                                getNegativeSCEV(Start), *this);
9163   const SCEV *M = E == getCouldNotCompute()
9164                       ? E
9165                       : getConstant(getUnsignedRangeMax(E));
9166   return ExitLimit(E, M, false, Predicates);
9167 }
9168 
9169 ScalarEvolution::ExitLimit
9170 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9171   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9172   // handle them yet except for the trivial case.  This could be expanded in the
9173   // future as needed.
9174 
9175   // If the value is a constant, check to see if it is known to be non-zero
9176   // already.  If so, the backedge will execute zero times.
9177   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9178     if (!C->getValue()->isZero())
9179       return getZero(C->getType());
9180     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9181   }
9182 
9183   // We could implement others, but I really doubt anyone writes loops like
9184   // this, and if they did, they would already be constant folded.
9185   return getCouldNotCompute();
9186 }
9187 
9188 std::pair<const BasicBlock *, const BasicBlock *>
9189 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9190     const {
9191   // If the block has a unique predecessor, then there is no path from the
9192   // predecessor to the block that does not go through the direct edge
9193   // from the predecessor to the block.
9194   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9195     return {Pred, BB};
9196 
9197   // A loop's header is defined to be a block that dominates the loop.
9198   // If the header has a unique predecessor outside the loop, it must be
9199   // a block that has exactly one successor that can reach the loop.
9200   if (const Loop *L = LI.getLoopFor(BB))
9201     return {L->getLoopPredecessor(), L->getHeader()};
9202 
9203   return {nullptr, nullptr};
9204 }
9205 
9206 /// SCEV structural equivalence is usually sufficient for testing whether two
9207 /// expressions are equal, however for the purposes of looking for a condition
9208 /// guarding a loop, it can be useful to be a little more general, since a
9209 /// front-end may have replicated the controlling expression.
9210 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9211   // Quick check to see if they are the same SCEV.
9212   if (A == B) return true;
9213 
9214   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9215     // Not all instructions that are "identical" compute the same value.  For
9216     // instance, two distinct alloca instructions allocating the same type are
9217     // identical and do not read memory; but compute distinct values.
9218     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9219   };
9220 
9221   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9222   // two different instructions with the same value. Check for this case.
9223   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9224     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9225       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9226         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9227           if (ComputesEqualValues(AI, BI))
9228             return true;
9229 
9230   // Otherwise assume they may have a different value.
9231   return false;
9232 }
9233 
9234 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9235                                            const SCEV *&LHS, const SCEV *&RHS,
9236                                            unsigned Depth) {
9237   bool Changed = false;
9238   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9239   // '0 != 0'.
9240   auto TrivialCase = [&](bool TriviallyTrue) {
9241     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9242     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9243     return true;
9244   };
9245   // If we hit the max recursion limit bail out.
9246   if (Depth >= 3)
9247     return false;
9248 
9249   // Canonicalize a constant to the right side.
9250   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9251     // Check for both operands constant.
9252     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9253       if (ConstantExpr::getICmp(Pred,
9254                                 LHSC->getValue(),
9255                                 RHSC->getValue())->isNullValue())
9256         return TrivialCase(false);
9257       else
9258         return TrivialCase(true);
9259     }
9260     // Otherwise swap the operands to put the constant on the right.
9261     std::swap(LHS, RHS);
9262     Pred = ICmpInst::getSwappedPredicate(Pred);
9263     Changed = true;
9264   }
9265 
9266   // If we're comparing an addrec with a value which is loop-invariant in the
9267   // addrec's loop, put the addrec on the left. Also make a dominance check,
9268   // as both operands could be addrecs loop-invariant in each other's loop.
9269   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9270     const Loop *L = AR->getLoop();
9271     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9272       std::swap(LHS, RHS);
9273       Pred = ICmpInst::getSwappedPredicate(Pred);
9274       Changed = true;
9275     }
9276   }
9277 
9278   // If there's a constant operand, canonicalize comparisons with boundary
9279   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9280   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9281     const APInt &RA = RC->getAPInt();
9282 
9283     bool SimplifiedByConstantRange = false;
9284 
9285     if (!ICmpInst::isEquality(Pred)) {
9286       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9287       if (ExactCR.isFullSet())
9288         return TrivialCase(true);
9289       else if (ExactCR.isEmptySet())
9290         return TrivialCase(false);
9291 
9292       APInt NewRHS;
9293       CmpInst::Predicate NewPred;
9294       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9295           ICmpInst::isEquality(NewPred)) {
9296         // We were able to convert an inequality to an equality.
9297         Pred = NewPred;
9298         RHS = getConstant(NewRHS);
9299         Changed = SimplifiedByConstantRange = true;
9300       }
9301     }
9302 
9303     if (!SimplifiedByConstantRange) {
9304       switch (Pred) {
9305       default:
9306         break;
9307       case ICmpInst::ICMP_EQ:
9308       case ICmpInst::ICMP_NE:
9309         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9310         if (!RA)
9311           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9312             if (const SCEVMulExpr *ME =
9313                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9314               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9315                   ME->getOperand(0)->isAllOnesValue()) {
9316                 RHS = AE->getOperand(1);
9317                 LHS = ME->getOperand(1);
9318                 Changed = true;
9319               }
9320         break;
9321 
9322 
9323         // The "Should have been caught earlier!" messages refer to the fact
9324         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9325         // should have fired on the corresponding cases, and canonicalized the
9326         // check to trivial case.
9327 
9328       case ICmpInst::ICMP_UGE:
9329         assert(!RA.isMinValue() && "Should have been caught earlier!");
9330         Pred = ICmpInst::ICMP_UGT;
9331         RHS = getConstant(RA - 1);
9332         Changed = true;
9333         break;
9334       case ICmpInst::ICMP_ULE:
9335         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9336         Pred = ICmpInst::ICMP_ULT;
9337         RHS = getConstant(RA + 1);
9338         Changed = true;
9339         break;
9340       case ICmpInst::ICMP_SGE:
9341         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9342         Pred = ICmpInst::ICMP_SGT;
9343         RHS = getConstant(RA - 1);
9344         Changed = true;
9345         break;
9346       case ICmpInst::ICMP_SLE:
9347         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9348         Pred = ICmpInst::ICMP_SLT;
9349         RHS = getConstant(RA + 1);
9350         Changed = true;
9351         break;
9352       }
9353     }
9354   }
9355 
9356   // Check for obvious equality.
9357   if (HasSameValue(LHS, RHS)) {
9358     if (ICmpInst::isTrueWhenEqual(Pred))
9359       return TrivialCase(true);
9360     if (ICmpInst::isFalseWhenEqual(Pred))
9361       return TrivialCase(false);
9362   }
9363 
9364   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9365   // adding or subtracting 1 from one of the operands.
9366   switch (Pred) {
9367   case ICmpInst::ICMP_SLE:
9368     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9369       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9370                        SCEV::FlagNSW);
9371       Pred = ICmpInst::ICMP_SLT;
9372       Changed = true;
9373     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9374       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9375                        SCEV::FlagNSW);
9376       Pred = ICmpInst::ICMP_SLT;
9377       Changed = true;
9378     }
9379     break;
9380   case ICmpInst::ICMP_SGE:
9381     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9382       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9383                        SCEV::FlagNSW);
9384       Pred = ICmpInst::ICMP_SGT;
9385       Changed = true;
9386     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9387       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9388                        SCEV::FlagNSW);
9389       Pred = ICmpInst::ICMP_SGT;
9390       Changed = true;
9391     }
9392     break;
9393   case ICmpInst::ICMP_ULE:
9394     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9395       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9396                        SCEV::FlagNUW);
9397       Pred = ICmpInst::ICMP_ULT;
9398       Changed = true;
9399     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9400       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9401       Pred = ICmpInst::ICMP_ULT;
9402       Changed = true;
9403     }
9404     break;
9405   case ICmpInst::ICMP_UGE:
9406     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9407       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9408       Pred = ICmpInst::ICMP_UGT;
9409       Changed = true;
9410     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9411       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9412                        SCEV::FlagNUW);
9413       Pred = ICmpInst::ICMP_UGT;
9414       Changed = true;
9415     }
9416     break;
9417   default:
9418     break;
9419   }
9420 
9421   // TODO: More simplifications are possible here.
9422 
9423   // Recursively simplify until we either hit a recursion limit or nothing
9424   // changes.
9425   if (Changed)
9426     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9427 
9428   return Changed;
9429 }
9430 
9431 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9432   return getSignedRangeMax(S).isNegative();
9433 }
9434 
9435 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9436   return getSignedRangeMin(S).isStrictlyPositive();
9437 }
9438 
9439 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9440   return !getSignedRangeMin(S).isNegative();
9441 }
9442 
9443 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9444   return !getSignedRangeMax(S).isStrictlyPositive();
9445 }
9446 
9447 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9448   return isKnownNegative(S) || isKnownPositive(S);
9449 }
9450 
9451 std::pair<const SCEV *, const SCEV *>
9452 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9453   // Compute SCEV on entry of loop L.
9454   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9455   if (Start == getCouldNotCompute())
9456     return { Start, Start };
9457   // Compute post increment SCEV for loop L.
9458   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9459   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9460   return { Start, PostInc };
9461 }
9462 
9463 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9464                                           const SCEV *LHS, const SCEV *RHS) {
9465   // First collect all loops.
9466   SmallPtrSet<const Loop *, 8> LoopsUsed;
9467   getUsedLoops(LHS, LoopsUsed);
9468   getUsedLoops(RHS, LoopsUsed);
9469 
9470   if (LoopsUsed.empty())
9471     return false;
9472 
9473   // Domination relationship must be a linear order on collected loops.
9474 #ifndef NDEBUG
9475   for (auto *L1 : LoopsUsed)
9476     for (auto *L2 : LoopsUsed)
9477       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9478               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9479              "Domination relationship is not a linear order");
9480 #endif
9481 
9482   const Loop *MDL =
9483       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9484                         [&](const Loop *L1, const Loop *L2) {
9485          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9486        });
9487 
9488   // Get init and post increment value for LHS.
9489   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9490   // if LHS contains unknown non-invariant SCEV then bail out.
9491   if (SplitLHS.first == getCouldNotCompute())
9492     return false;
9493   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9494   // Get init and post increment value for RHS.
9495   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9496   // if RHS contains unknown non-invariant SCEV then bail out.
9497   if (SplitRHS.first == getCouldNotCompute())
9498     return false;
9499   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9500   // It is possible that init SCEV contains an invariant load but it does
9501   // not dominate MDL and is not available at MDL loop entry, so we should
9502   // check it here.
9503   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9504       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9505     return false;
9506 
9507   // It seems backedge guard check is faster than entry one so in some cases
9508   // it can speed up whole estimation by short circuit
9509   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9510                                      SplitRHS.second) &&
9511          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9512 }
9513 
9514 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9515                                        const SCEV *LHS, const SCEV *RHS) {
9516   // Canonicalize the inputs first.
9517   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9518 
9519   if (isKnownViaInduction(Pred, LHS, RHS))
9520     return true;
9521 
9522   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9523     return true;
9524 
9525   // Otherwise see what can be done with some simple reasoning.
9526   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9527 }
9528 
9529 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9530                                          const SCEV *LHS, const SCEV *RHS,
9531                                          const Instruction *Context) {
9532   // TODO: Analyze guards and assumes from Context's block.
9533   return isKnownPredicate(Pred, LHS, RHS) ||
9534          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9535 }
9536 
9537 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9538                                               const SCEVAddRecExpr *LHS,
9539                                               const SCEV *RHS) {
9540   const Loop *L = LHS->getLoop();
9541   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9542          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9543 }
9544 
9545 Optional<ScalarEvolution::MonotonicPredicateType>
9546 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9547                                            ICmpInst::Predicate Pred) {
9548   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9549 
9550 #ifndef NDEBUG
9551   // Verify an invariant: inverting the predicate should turn a monotonically
9552   // increasing change to a monotonically decreasing one, and vice versa.
9553   if (Result) {
9554     auto ResultSwapped =
9555         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9556 
9557     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9558     assert(ResultSwapped.getValue() != Result.getValue() &&
9559            "monotonicity should flip as we flip the predicate");
9560   }
9561 #endif
9562 
9563   return Result;
9564 }
9565 
9566 Optional<ScalarEvolution::MonotonicPredicateType>
9567 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9568                                                ICmpInst::Predicate Pred) {
9569   // A zero step value for LHS means the induction variable is essentially a
9570   // loop invariant value. We don't really depend on the predicate actually
9571   // flipping from false to true (for increasing predicates, and the other way
9572   // around for decreasing predicates), all we care about is that *if* the
9573   // predicate changes then it only changes from false to true.
9574   //
9575   // A zero step value in itself is not very useful, but there may be places
9576   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9577   // as general as possible.
9578 
9579   // Only handle LE/LT/GE/GT predicates.
9580   if (!ICmpInst::isRelational(Pred))
9581     return None;
9582 
9583   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9584   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9585          "Should be greater or less!");
9586 
9587   // Check that AR does not wrap.
9588   if (ICmpInst::isUnsigned(Pred)) {
9589     if (!LHS->hasNoUnsignedWrap())
9590       return None;
9591     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9592   } else {
9593     assert(ICmpInst::isSigned(Pred) &&
9594            "Relational predicate is either signed or unsigned!");
9595     if (!LHS->hasNoSignedWrap())
9596       return None;
9597 
9598     const SCEV *Step = LHS->getStepRecurrence(*this);
9599 
9600     if (isKnownNonNegative(Step))
9601       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9602 
9603     if (isKnownNonPositive(Step))
9604       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9605 
9606     return None;
9607   }
9608 }
9609 
9610 Optional<ScalarEvolution::LoopInvariantPredicate>
9611 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
9612                                            const SCEV *LHS, const SCEV *RHS,
9613                                            const Loop *L) {
9614 
9615   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9616   if (!isLoopInvariant(RHS, L)) {
9617     if (!isLoopInvariant(LHS, L))
9618       return None;
9619 
9620     std::swap(LHS, RHS);
9621     Pred = ICmpInst::getSwappedPredicate(Pred);
9622   }
9623 
9624   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9625   if (!ArLHS || ArLHS->getLoop() != L)
9626     return None;
9627 
9628   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
9629   if (!MonotonicType)
9630     return None;
9631   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9632   // true as the loop iterates, and the backedge is control dependent on
9633   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9634   //
9635   //   * if the predicate was false in the first iteration then the predicate
9636   //     is never evaluated again, since the loop exits without taking the
9637   //     backedge.
9638   //   * if the predicate was true in the first iteration then it will
9639   //     continue to be true for all future iterations since it is
9640   //     monotonically increasing.
9641   //
9642   // For both the above possibilities, we can replace the loop varying
9643   // predicate with its value on the first iteration of the loop (which is
9644   // loop invariant).
9645   //
9646   // A similar reasoning applies for a monotonically decreasing predicate, by
9647   // replacing true with false and false with true in the above two bullets.
9648   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
9649   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9650 
9651   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9652     return None;
9653 
9654   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
9655 }
9656 
9657 Optional<ScalarEvolution::LoopInvariantPredicate>
9658 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
9659     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9660     const Instruction *Context, const SCEV *MaxIter) {
9661   // Try to prove the following set of facts:
9662   // - The predicate is monotonic in the iteration space.
9663   // - If the check does not fail on the 1st iteration:
9664   //   - No overflow will happen during first MaxIter iterations;
9665   //   - It will not fail on the MaxIter'th iteration.
9666   // If the check does fail on the 1st iteration, we leave the loop and no
9667   // other checks matter.
9668 
9669   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9670   if (!isLoopInvariant(RHS, L)) {
9671     if (!isLoopInvariant(LHS, L))
9672       return None;
9673 
9674     std::swap(LHS, RHS);
9675     Pred = ICmpInst::getSwappedPredicate(Pred);
9676   }
9677 
9678   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
9679   if (!AR || AR->getLoop() != L)
9680     return None;
9681 
9682   // The predicate must be relational (i.e. <, <=, >=, >).
9683   if (!ICmpInst::isRelational(Pred))
9684     return None;
9685 
9686   // TODO: Support steps other than +/- 1.
9687   const SCEV *Step = AR->getStepRecurrence(*this);
9688   auto *One = getOne(Step->getType());
9689   auto *MinusOne = getNegativeSCEV(One);
9690   if (Step != One && Step != MinusOne)
9691     return None;
9692 
9693   // Type mismatch here means that MaxIter is potentially larger than max
9694   // unsigned value in start type, which mean we cannot prove no wrap for the
9695   // indvar.
9696   if (AR->getType() != MaxIter->getType())
9697     return None;
9698 
9699   // Value of IV on suggested last iteration.
9700   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
9701   // Does it still meet the requirement?
9702   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
9703     return None;
9704   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
9705   // not exceed max unsigned value of this type), this effectively proves
9706   // that there is no wrap during the iteration. To prove that there is no
9707   // signed/unsigned wrap, we need to check that
9708   // Start <= Last for step = 1 or Start >= Last for step = -1.
9709   ICmpInst::Predicate NoOverflowPred =
9710       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
9711   if (Step == MinusOne)
9712     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
9713   const SCEV *Start = AR->getStart();
9714   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context))
9715     return None;
9716 
9717   // Everything is fine.
9718   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
9719 }
9720 
9721 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9722     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9723   if (HasSameValue(LHS, RHS))
9724     return ICmpInst::isTrueWhenEqual(Pred);
9725 
9726   // This code is split out from isKnownPredicate because it is called from
9727   // within isLoopEntryGuardedByCond.
9728 
9729   auto CheckRanges =
9730       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9731     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9732         .contains(RangeLHS);
9733   };
9734 
9735   // The check at the top of the function catches the case where the values are
9736   // known to be equal.
9737   if (Pred == CmpInst::ICMP_EQ)
9738     return false;
9739 
9740   if (Pred == CmpInst::ICMP_NE)
9741     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9742            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9743            isKnownNonZero(getMinusSCEV(LHS, RHS));
9744 
9745   if (CmpInst::isSigned(Pred))
9746     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9747 
9748   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9749 }
9750 
9751 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9752                                                     const SCEV *LHS,
9753                                                     const SCEV *RHS) {
9754   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9755   // Return Y via OutY.
9756   auto MatchBinaryAddToConst =
9757       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9758              SCEV::NoWrapFlags ExpectedFlags) {
9759     const SCEV *NonConstOp, *ConstOp;
9760     SCEV::NoWrapFlags FlagsPresent;
9761 
9762     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9763         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9764       return false;
9765 
9766     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9767     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9768   };
9769 
9770   APInt C;
9771 
9772   switch (Pred) {
9773   default:
9774     break;
9775 
9776   case ICmpInst::ICMP_SGE:
9777     std::swap(LHS, RHS);
9778     LLVM_FALLTHROUGH;
9779   case ICmpInst::ICMP_SLE:
9780     // X s<= (X + C)<nsw> if C >= 0
9781     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9782       return true;
9783 
9784     // (X + C)<nsw> s<= X if C <= 0
9785     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9786         !C.isStrictlyPositive())
9787       return true;
9788     break;
9789 
9790   case ICmpInst::ICMP_SGT:
9791     std::swap(LHS, RHS);
9792     LLVM_FALLTHROUGH;
9793   case ICmpInst::ICMP_SLT:
9794     // X s< (X + C)<nsw> if C > 0
9795     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9796         C.isStrictlyPositive())
9797       return true;
9798 
9799     // (X + C)<nsw> s< X if C < 0
9800     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9801       return true;
9802     break;
9803 
9804   case ICmpInst::ICMP_UGE:
9805     std::swap(LHS, RHS);
9806     LLVM_FALLTHROUGH;
9807   case ICmpInst::ICMP_ULE:
9808     // X u<= (X + C)<nuw> for any C
9809     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW))
9810       return true;
9811     break;
9812 
9813   case ICmpInst::ICMP_UGT:
9814     std::swap(LHS, RHS);
9815     LLVM_FALLTHROUGH;
9816   case ICmpInst::ICMP_ULT:
9817     // X u< (X + C)<nuw> if C != 0
9818     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue())
9819       return true;
9820     break;
9821   }
9822 
9823   return false;
9824 }
9825 
9826 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9827                                                    const SCEV *LHS,
9828                                                    const SCEV *RHS) {
9829   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9830     return false;
9831 
9832   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9833   // the stack can result in exponential time complexity.
9834   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9835 
9836   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9837   //
9838   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9839   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9840   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9841   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9842   // use isKnownPredicate later if needed.
9843   return isKnownNonNegative(RHS) &&
9844          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9845          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9846 }
9847 
9848 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
9849                                         ICmpInst::Predicate Pred,
9850                                         const SCEV *LHS, const SCEV *RHS) {
9851   // No need to even try if we know the module has no guards.
9852   if (!HasGuards)
9853     return false;
9854 
9855   return any_of(*BB, [&](const Instruction &I) {
9856     using namespace llvm::PatternMatch;
9857 
9858     Value *Condition;
9859     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9860                          m_Value(Condition))) &&
9861            isImpliedCond(Pred, LHS, RHS, Condition, false);
9862   });
9863 }
9864 
9865 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9866 /// protected by a conditional between LHS and RHS.  This is used to
9867 /// to eliminate casts.
9868 bool
9869 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9870                                              ICmpInst::Predicate Pred,
9871                                              const SCEV *LHS, const SCEV *RHS) {
9872   // Interpret a null as meaning no loop, where there is obviously no guard
9873   // (interprocedural conditions notwithstanding).
9874   if (!L) return true;
9875 
9876   if (VerifyIR)
9877     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9878            "This cannot be done on broken IR!");
9879 
9880 
9881   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9882     return true;
9883 
9884   BasicBlock *Latch = L->getLoopLatch();
9885   if (!Latch)
9886     return false;
9887 
9888   BranchInst *LoopContinuePredicate =
9889     dyn_cast<BranchInst>(Latch->getTerminator());
9890   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9891       isImpliedCond(Pred, LHS, RHS,
9892                     LoopContinuePredicate->getCondition(),
9893                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9894     return true;
9895 
9896   // We don't want more than one activation of the following loops on the stack
9897   // -- that can lead to O(n!) time complexity.
9898   if (WalkingBEDominatingConds)
9899     return false;
9900 
9901   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9902 
9903   // See if we can exploit a trip count to prove the predicate.
9904   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9905   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9906   if (LatchBECount != getCouldNotCompute()) {
9907     // We know that Latch branches back to the loop header exactly
9908     // LatchBECount times.  This means the backdege condition at Latch is
9909     // equivalent to  "{0,+,1} u< LatchBECount".
9910     Type *Ty = LatchBECount->getType();
9911     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9912     const SCEV *LoopCounter =
9913       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9914     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9915                       LatchBECount))
9916       return true;
9917   }
9918 
9919   // Check conditions due to any @llvm.assume intrinsics.
9920   for (auto &AssumeVH : AC.assumptions()) {
9921     if (!AssumeVH)
9922       continue;
9923     auto *CI = cast<CallInst>(AssumeVH);
9924     if (!DT.dominates(CI, Latch->getTerminator()))
9925       continue;
9926 
9927     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9928       return true;
9929   }
9930 
9931   // If the loop is not reachable from the entry block, we risk running into an
9932   // infinite loop as we walk up into the dom tree.  These loops do not matter
9933   // anyway, so we just return a conservative answer when we see them.
9934   if (!DT.isReachableFromEntry(L->getHeader()))
9935     return false;
9936 
9937   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9938     return true;
9939 
9940   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9941        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9942     assert(DTN && "should reach the loop header before reaching the root!");
9943 
9944     BasicBlock *BB = DTN->getBlock();
9945     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9946       return true;
9947 
9948     BasicBlock *PBB = BB->getSinglePredecessor();
9949     if (!PBB)
9950       continue;
9951 
9952     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9953     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9954       continue;
9955 
9956     Value *Condition = ContinuePredicate->getCondition();
9957 
9958     // If we have an edge `E` within the loop body that dominates the only
9959     // latch, the condition guarding `E` also guards the backedge.  This
9960     // reasoning works only for loops with a single latch.
9961 
9962     BasicBlockEdge DominatingEdge(PBB, BB);
9963     if (DominatingEdge.isSingleEdge()) {
9964       // We're constructively (and conservatively) enumerating edges within the
9965       // loop body that dominate the latch.  The dominator tree better agree
9966       // with us on this:
9967       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9968 
9969       if (isImpliedCond(Pred, LHS, RHS, Condition,
9970                         BB != ContinuePredicate->getSuccessor(0)))
9971         return true;
9972     }
9973   }
9974 
9975   return false;
9976 }
9977 
9978 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
9979                                                      ICmpInst::Predicate Pred,
9980                                                      const SCEV *LHS,
9981                                                      const SCEV *RHS) {
9982   if (VerifyIR)
9983     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
9984            "This cannot be done on broken IR!");
9985 
9986   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9987     return true;
9988 
9989   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9990   // the facts (a >= b && a != b) separately. A typical situation is when the
9991   // non-strict comparison is known from ranges and non-equality is known from
9992   // dominating predicates. If we are proving strict comparison, we always try
9993   // to prove non-equality and non-strict comparison separately.
9994   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9995   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9996   bool ProvedNonStrictComparison = false;
9997   bool ProvedNonEquality = false;
9998 
9999   if (ProvingStrictComparison) {
10000     ProvedNonStrictComparison =
10001         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
10002     ProvedNonEquality =
10003         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
10004     if (ProvedNonStrictComparison && ProvedNonEquality)
10005       return true;
10006   }
10007 
10008   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10009   auto ProveViaGuard = [&](const BasicBlock *Block) {
10010     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10011       return true;
10012     if (ProvingStrictComparison) {
10013       if (!ProvedNonStrictComparison)
10014         ProvedNonStrictComparison =
10015             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
10016       if (!ProvedNonEquality)
10017         ProvedNonEquality =
10018             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
10019       if (ProvedNonStrictComparison && ProvedNonEquality)
10020         return true;
10021     }
10022     return false;
10023   };
10024 
10025   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10026   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10027     const Instruction *Context = &BB->front();
10028     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
10029       return true;
10030     if (ProvingStrictComparison) {
10031       if (!ProvedNonStrictComparison)
10032         ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS,
10033                                                   Condition, Inverse, Context);
10034       if (!ProvedNonEquality)
10035         ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS,
10036                                           Condition, Inverse, Context);
10037       if (ProvedNonStrictComparison && ProvedNonEquality)
10038         return true;
10039     }
10040     return false;
10041   };
10042 
10043   // Starting at the block's predecessor, climb up the predecessor chain, as long
10044   // as there are predecessors that can be found that have unique successors
10045   // leading to the original block.
10046   const Loop *ContainingLoop = LI.getLoopFor(BB);
10047   const BasicBlock *PredBB;
10048   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10049     PredBB = ContainingLoop->getLoopPredecessor();
10050   else
10051     PredBB = BB->getSinglePredecessor();
10052   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10053        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10054     if (ProveViaGuard(Pair.first))
10055       return true;
10056 
10057     const BranchInst *LoopEntryPredicate =
10058         dyn_cast<BranchInst>(Pair.first->getTerminator());
10059     if (!LoopEntryPredicate ||
10060         LoopEntryPredicate->isUnconditional())
10061       continue;
10062 
10063     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10064                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10065       return true;
10066   }
10067 
10068   // Check conditions due to any @llvm.assume intrinsics.
10069   for (auto &AssumeVH : AC.assumptions()) {
10070     if (!AssumeVH)
10071       continue;
10072     auto *CI = cast<CallInst>(AssumeVH);
10073     if (!DT.dominates(CI, BB))
10074       continue;
10075 
10076     if (ProveViaCond(CI->getArgOperand(0), false))
10077       return true;
10078   }
10079 
10080   return false;
10081 }
10082 
10083 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10084                                                ICmpInst::Predicate Pred,
10085                                                const SCEV *LHS,
10086                                                const SCEV *RHS) {
10087   // Interpret a null as meaning no loop, where there is obviously no guard
10088   // (interprocedural conditions notwithstanding).
10089   if (!L)
10090     return false;
10091 
10092   // Both LHS and RHS must be available at loop entry.
10093   assert(isAvailableAtLoopEntry(LHS, L) &&
10094          "LHS is not available at Loop Entry");
10095   assert(isAvailableAtLoopEntry(RHS, L) &&
10096          "RHS is not available at Loop Entry");
10097   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10098 }
10099 
10100 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10101                                     const SCEV *RHS,
10102                                     const Value *FoundCondValue, bool Inverse,
10103                                     const Instruction *Context) {
10104   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10105     return false;
10106 
10107   auto ClearOnExit =
10108       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10109 
10110   // Recursively handle And and Or conditions.
10111   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
10112     if (BO->getOpcode() == Instruction::And) {
10113       if (!Inverse)
10114         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
10115                              Context) ||
10116                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
10117                              Context);
10118     } else if (BO->getOpcode() == Instruction::Or) {
10119       if (Inverse)
10120         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
10121                              Context) ||
10122                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
10123                              Context);
10124     }
10125   }
10126 
10127   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10128   if (!ICI) return false;
10129 
10130   // Now that we found a conditional branch that dominates the loop or controls
10131   // the loop latch. Check to see if it is the comparison we are looking for.
10132   ICmpInst::Predicate FoundPred;
10133   if (Inverse)
10134     FoundPred = ICI->getInversePredicate();
10135   else
10136     FoundPred = ICI->getPredicate();
10137 
10138   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10139   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10140 
10141   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
10142 }
10143 
10144 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10145                                     const SCEV *RHS,
10146                                     ICmpInst::Predicate FoundPred,
10147                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10148                                     const Instruction *Context) {
10149   // Balance the types.
10150   if (getTypeSizeInBits(LHS->getType()) <
10151       getTypeSizeInBits(FoundLHS->getType())) {
10152     // For unsigned and equality predicates, try to prove that both found
10153     // operands fit into narrow unsigned range. If so, try to prove facts in
10154     // narrow types.
10155     if (!CmpInst::isSigned(FoundPred)) {
10156       auto *NarrowType = LHS->getType();
10157       auto *WideType = FoundLHS->getType();
10158       auto BitWidth = getTypeSizeInBits(NarrowType);
10159       const SCEV *MaxValue = getZeroExtendExpr(
10160           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10161       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10162           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10163         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10164         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10165         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10166                                        TruncFoundRHS, Context))
10167           return true;
10168       }
10169     }
10170 
10171     if (CmpInst::isSigned(Pred)) {
10172       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10173       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10174     } else {
10175       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10176       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10177     }
10178   } else if (getTypeSizeInBits(LHS->getType()) >
10179       getTypeSizeInBits(FoundLHS->getType())) {
10180     if (CmpInst::isSigned(FoundPred)) {
10181       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10182       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10183     } else {
10184       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10185       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10186     }
10187   }
10188   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10189                                     FoundRHS, Context);
10190 }
10191 
10192 bool ScalarEvolution::isImpliedCondBalancedTypes(
10193     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10194     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10195     const Instruction *Context) {
10196   assert(getTypeSizeInBits(LHS->getType()) ==
10197              getTypeSizeInBits(FoundLHS->getType()) &&
10198          "Types should be balanced!");
10199   // Canonicalize the query to match the way instcombine will have
10200   // canonicalized the comparison.
10201   if (SimplifyICmpOperands(Pred, LHS, RHS))
10202     if (LHS == RHS)
10203       return CmpInst::isTrueWhenEqual(Pred);
10204   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10205     if (FoundLHS == FoundRHS)
10206       return CmpInst::isFalseWhenEqual(FoundPred);
10207 
10208   // Check to see if we can make the LHS or RHS match.
10209   if (LHS == FoundRHS || RHS == FoundLHS) {
10210     if (isa<SCEVConstant>(RHS)) {
10211       std::swap(FoundLHS, FoundRHS);
10212       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10213     } else {
10214       std::swap(LHS, RHS);
10215       Pred = ICmpInst::getSwappedPredicate(Pred);
10216     }
10217   }
10218 
10219   // Check whether the found predicate is the same as the desired predicate.
10220   if (FoundPred == Pred)
10221     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10222 
10223   // Check whether swapping the found predicate makes it the same as the
10224   // desired predicate.
10225   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10226     if (isa<SCEVConstant>(RHS))
10227       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
10228     else
10229       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS,
10230                                    LHS, FoundLHS, FoundRHS, Context);
10231   }
10232 
10233   // Unsigned comparison is the same as signed comparison when both the operands
10234   // are non-negative.
10235   if (CmpInst::isUnsigned(FoundPred) &&
10236       CmpInst::getSignedPredicate(FoundPred) == Pred &&
10237       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
10238     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10239 
10240   // Check if we can make progress by sharpening ranges.
10241   if (FoundPred == ICmpInst::ICMP_NE &&
10242       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10243 
10244     const SCEVConstant *C = nullptr;
10245     const SCEV *V = nullptr;
10246 
10247     if (isa<SCEVConstant>(FoundLHS)) {
10248       C = cast<SCEVConstant>(FoundLHS);
10249       V = FoundRHS;
10250     } else {
10251       C = cast<SCEVConstant>(FoundRHS);
10252       V = FoundLHS;
10253     }
10254 
10255     // The guarding predicate tells us that C != V. If the known range
10256     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10257     // range we consider has to correspond to same signedness as the
10258     // predicate we're interested in folding.
10259 
10260     APInt Min = ICmpInst::isSigned(Pred) ?
10261         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10262 
10263     if (Min == C->getAPInt()) {
10264       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10265       // This is true even if (Min + 1) wraps around -- in case of
10266       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10267 
10268       APInt SharperMin = Min + 1;
10269 
10270       switch (Pred) {
10271         case ICmpInst::ICMP_SGE:
10272         case ICmpInst::ICMP_UGE:
10273           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10274           // RHS, we're done.
10275           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10276                                     Context))
10277             return true;
10278           LLVM_FALLTHROUGH;
10279 
10280         case ICmpInst::ICMP_SGT:
10281         case ICmpInst::ICMP_UGT:
10282           // We know from the range information that (V `Pred` Min ||
10283           // V == Min).  We know from the guarding condition that !(V
10284           // == Min).  This gives us
10285           //
10286           //       V `Pred` Min || V == Min && !(V == Min)
10287           //   =>  V `Pred` Min
10288           //
10289           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10290 
10291           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
10292                                     Context))
10293             return true;
10294           break;
10295 
10296         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10297         case ICmpInst::ICMP_SLE:
10298         case ICmpInst::ICMP_ULE:
10299           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10300                                     LHS, V, getConstant(SharperMin), Context))
10301             return true;
10302           LLVM_FALLTHROUGH;
10303 
10304         case ICmpInst::ICMP_SLT:
10305         case ICmpInst::ICMP_ULT:
10306           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10307                                     LHS, V, getConstant(Min), Context))
10308             return true;
10309           break;
10310 
10311         default:
10312           // No change
10313           break;
10314       }
10315     }
10316   }
10317 
10318   // Check whether the actual condition is beyond sufficient.
10319   if (FoundPred == ICmpInst::ICMP_EQ)
10320     if (ICmpInst::isTrueWhenEqual(Pred))
10321       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
10322         return true;
10323   if (Pred == ICmpInst::ICMP_NE)
10324     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10325       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
10326                                 Context))
10327         return true;
10328 
10329   // Otherwise assume the worst.
10330   return false;
10331 }
10332 
10333 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10334                                      const SCEV *&L, const SCEV *&R,
10335                                      SCEV::NoWrapFlags &Flags) {
10336   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10337   if (!AE || AE->getNumOperands() != 2)
10338     return false;
10339 
10340   L = AE->getOperand(0);
10341   R = AE->getOperand(1);
10342   Flags = AE->getNoWrapFlags();
10343   return true;
10344 }
10345 
10346 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10347                                                            const SCEV *Less) {
10348   // We avoid subtracting expressions here because this function is usually
10349   // fairly deep in the call stack (i.e. is called many times).
10350 
10351   // X - X = 0.
10352   if (More == Less)
10353     return APInt(getTypeSizeInBits(More->getType()), 0);
10354 
10355   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10356     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10357     const auto *MAR = cast<SCEVAddRecExpr>(More);
10358 
10359     if (LAR->getLoop() != MAR->getLoop())
10360       return None;
10361 
10362     // We look at affine expressions only; not for correctness but to keep
10363     // getStepRecurrence cheap.
10364     if (!LAR->isAffine() || !MAR->isAffine())
10365       return None;
10366 
10367     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10368       return None;
10369 
10370     Less = LAR->getStart();
10371     More = MAR->getStart();
10372 
10373     // fall through
10374   }
10375 
10376   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10377     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10378     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10379     return M - L;
10380   }
10381 
10382   SCEV::NoWrapFlags Flags;
10383   const SCEV *LLess = nullptr, *RLess = nullptr;
10384   const SCEV *LMore = nullptr, *RMore = nullptr;
10385   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10386   // Compare (X + C1) vs X.
10387   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10388     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10389       if (RLess == More)
10390         return -(C1->getAPInt());
10391 
10392   // Compare X vs (X + C2).
10393   if (splitBinaryAdd(More, LMore, RMore, Flags))
10394     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10395       if (RMore == Less)
10396         return C2->getAPInt();
10397 
10398   // Compare (X + C1) vs (X + C2).
10399   if (C1 && C2 && RLess == RMore)
10400     return C2->getAPInt() - C1->getAPInt();
10401 
10402   return None;
10403 }
10404 
10405 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10406     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10407     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
10408   // Try to recognize the following pattern:
10409   //
10410   //   FoundRHS = ...
10411   // ...
10412   // loop:
10413   //   FoundLHS = {Start,+,W}
10414   // context_bb: // Basic block from the same loop
10415   //   known(Pred, FoundLHS, FoundRHS)
10416   //
10417   // If some predicate is known in the context of a loop, it is also known on
10418   // each iteration of this loop, including the first iteration. Therefore, in
10419   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10420   // prove the original pred using this fact.
10421   if (!Context)
10422     return false;
10423   const BasicBlock *ContextBB = Context->getParent();
10424   // Make sure AR varies in the context block.
10425   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10426     const Loop *L = AR->getLoop();
10427     // Make sure that context belongs to the loop and executes on 1st iteration
10428     // (if it ever executes at all).
10429     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10430       return false;
10431     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10432       return false;
10433     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10434   }
10435 
10436   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10437     const Loop *L = AR->getLoop();
10438     // Make sure that context belongs to the loop and executes on 1st iteration
10439     // (if it ever executes at all).
10440     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10441       return false;
10442     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10443       return false;
10444     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10445   }
10446 
10447   return false;
10448 }
10449 
10450 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10451     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10452     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10453   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10454     return false;
10455 
10456   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10457   if (!AddRecLHS)
10458     return false;
10459 
10460   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10461   if (!AddRecFoundLHS)
10462     return false;
10463 
10464   // We'd like to let SCEV reason about control dependencies, so we constrain
10465   // both the inequalities to be about add recurrences on the same loop.  This
10466   // way we can use isLoopEntryGuardedByCond later.
10467 
10468   const Loop *L = AddRecFoundLHS->getLoop();
10469   if (L != AddRecLHS->getLoop())
10470     return false;
10471 
10472   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10473   //
10474   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10475   //                                                                  ... (2)
10476   //
10477   // Informal proof for (2), assuming (1) [*]:
10478   //
10479   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10480   //
10481   // Then
10482   //
10483   //       FoundLHS s< FoundRHS s< INT_MIN - C
10484   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10485   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10486   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10487   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10488   // <=>  FoundLHS + C s< FoundRHS + C
10489   //
10490   // [*]: (1) can be proved by ruling out overflow.
10491   //
10492   // [**]: This can be proved by analyzing all the four possibilities:
10493   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10494   //    (A s>= 0, B s>= 0).
10495   //
10496   // Note:
10497   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10498   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10499   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10500   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10501   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10502   // C)".
10503 
10504   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10505   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10506   if (!LDiff || !RDiff || *LDiff != *RDiff)
10507     return false;
10508 
10509   if (LDiff->isMinValue())
10510     return true;
10511 
10512   APInt FoundRHSLimit;
10513 
10514   if (Pred == CmpInst::ICMP_ULT) {
10515     FoundRHSLimit = -(*RDiff);
10516   } else {
10517     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10518     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10519   }
10520 
10521   // Try to prove (1) or (2), as needed.
10522   return isAvailableAtLoopEntry(FoundRHS, L) &&
10523          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10524                                   getConstant(FoundRHSLimit));
10525 }
10526 
10527 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10528                                         const SCEV *LHS, const SCEV *RHS,
10529                                         const SCEV *FoundLHS,
10530                                         const SCEV *FoundRHS, unsigned Depth) {
10531   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10532 
10533   auto ClearOnExit = make_scope_exit([&]() {
10534     if (LPhi) {
10535       bool Erased = PendingMerges.erase(LPhi);
10536       assert(Erased && "Failed to erase LPhi!");
10537       (void)Erased;
10538     }
10539     if (RPhi) {
10540       bool Erased = PendingMerges.erase(RPhi);
10541       assert(Erased && "Failed to erase RPhi!");
10542       (void)Erased;
10543     }
10544   });
10545 
10546   // Find respective Phis and check that they are not being pending.
10547   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10548     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10549       if (!PendingMerges.insert(Phi).second)
10550         return false;
10551       LPhi = Phi;
10552     }
10553   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10554     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10555       // If we detect a loop of Phi nodes being processed by this method, for
10556       // example:
10557       //
10558       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10559       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10560       //
10561       // we don't want to deal with a case that complex, so return conservative
10562       // answer false.
10563       if (!PendingMerges.insert(Phi).second)
10564         return false;
10565       RPhi = Phi;
10566     }
10567 
10568   // If none of LHS, RHS is a Phi, nothing to do here.
10569   if (!LPhi && !RPhi)
10570     return false;
10571 
10572   // If there is a SCEVUnknown Phi we are interested in, make it left.
10573   if (!LPhi) {
10574     std::swap(LHS, RHS);
10575     std::swap(FoundLHS, FoundRHS);
10576     std::swap(LPhi, RPhi);
10577     Pred = ICmpInst::getSwappedPredicate(Pred);
10578   }
10579 
10580   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10581   const BasicBlock *LBB = LPhi->getParent();
10582   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10583 
10584   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10585     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10586            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10587            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10588   };
10589 
10590   if (RPhi && RPhi->getParent() == LBB) {
10591     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10592     // If we compare two Phis from the same block, and for each entry block
10593     // the predicate is true for incoming values from this block, then the
10594     // predicate is also true for the Phis.
10595     for (const BasicBlock *IncBB : predecessors(LBB)) {
10596       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10597       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10598       if (!ProvedEasily(L, R))
10599         return false;
10600     }
10601   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10602     // Case two: RHS is also a Phi from the same basic block, and it is an
10603     // AddRec. It means that there is a loop which has both AddRec and Unknown
10604     // PHIs, for it we can compare incoming values of AddRec from above the loop
10605     // and latch with their respective incoming values of LPhi.
10606     // TODO: Generalize to handle loops with many inputs in a header.
10607     if (LPhi->getNumIncomingValues() != 2) return false;
10608 
10609     auto *RLoop = RAR->getLoop();
10610     auto *Predecessor = RLoop->getLoopPredecessor();
10611     assert(Predecessor && "Loop with AddRec with no predecessor?");
10612     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10613     if (!ProvedEasily(L1, RAR->getStart()))
10614       return false;
10615     auto *Latch = RLoop->getLoopLatch();
10616     assert(Latch && "Loop with AddRec with no latch?");
10617     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10618     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10619       return false;
10620   } else {
10621     // In all other cases go over inputs of LHS and compare each of them to RHS,
10622     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10623     // At this point RHS is either a non-Phi, or it is a Phi from some block
10624     // different from LBB.
10625     for (const BasicBlock *IncBB : predecessors(LBB)) {
10626       // Check that RHS is available in this block.
10627       if (!dominates(RHS, IncBB))
10628         return false;
10629       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10630       if (!ProvedEasily(L, RHS))
10631         return false;
10632     }
10633   }
10634   return true;
10635 }
10636 
10637 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10638                                             const SCEV *LHS, const SCEV *RHS,
10639                                             const SCEV *FoundLHS,
10640                                             const SCEV *FoundRHS,
10641                                             const Instruction *Context) {
10642   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10643     return true;
10644 
10645   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10646     return true;
10647 
10648   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
10649                                           Context))
10650     return true;
10651 
10652   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10653                                      FoundLHS, FoundRHS) ||
10654          // ~x < ~y --> x > y
10655          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10656                                      getNotSCEV(FoundRHS),
10657                                      getNotSCEV(FoundLHS));
10658 }
10659 
10660 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10661 template <typename MinMaxExprType>
10662 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10663                                  const SCEV *Candidate) {
10664   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10665   if (!MinMaxExpr)
10666     return false;
10667 
10668   return is_contained(MinMaxExpr->operands(), Candidate);
10669 }
10670 
10671 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10672                                            ICmpInst::Predicate Pred,
10673                                            const SCEV *LHS, const SCEV *RHS) {
10674   // If both sides are affine addrecs for the same loop, with equal
10675   // steps, and we know the recurrences don't wrap, then we only
10676   // need to check the predicate on the starting values.
10677 
10678   if (!ICmpInst::isRelational(Pred))
10679     return false;
10680 
10681   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10682   if (!LAR)
10683     return false;
10684   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10685   if (!RAR)
10686     return false;
10687   if (LAR->getLoop() != RAR->getLoop())
10688     return false;
10689   if (!LAR->isAffine() || !RAR->isAffine())
10690     return false;
10691 
10692   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10693     return false;
10694 
10695   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10696                          SCEV::FlagNSW : SCEV::FlagNUW;
10697   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10698     return false;
10699 
10700   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10701 }
10702 
10703 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10704 /// expression?
10705 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10706                                         ICmpInst::Predicate Pred,
10707                                         const SCEV *LHS, const SCEV *RHS) {
10708   switch (Pred) {
10709   default:
10710     return false;
10711 
10712   case ICmpInst::ICMP_SGE:
10713     std::swap(LHS, RHS);
10714     LLVM_FALLTHROUGH;
10715   case ICmpInst::ICMP_SLE:
10716     return
10717         // min(A, ...) <= A
10718         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10719         // A <= max(A, ...)
10720         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10721 
10722   case ICmpInst::ICMP_UGE:
10723     std::swap(LHS, RHS);
10724     LLVM_FALLTHROUGH;
10725   case ICmpInst::ICMP_ULE:
10726     return
10727         // min(A, ...) <= A
10728         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10729         // A <= max(A, ...)
10730         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10731   }
10732 
10733   llvm_unreachable("covered switch fell through?!");
10734 }
10735 
10736 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10737                                              const SCEV *LHS, const SCEV *RHS,
10738                                              const SCEV *FoundLHS,
10739                                              const SCEV *FoundRHS,
10740                                              unsigned Depth) {
10741   assert(getTypeSizeInBits(LHS->getType()) ==
10742              getTypeSizeInBits(RHS->getType()) &&
10743          "LHS and RHS have different sizes?");
10744   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10745              getTypeSizeInBits(FoundRHS->getType()) &&
10746          "FoundLHS and FoundRHS have different sizes?");
10747   // We want to avoid hurting the compile time with analysis of too big trees.
10748   if (Depth > MaxSCEVOperationsImplicationDepth)
10749     return false;
10750 
10751   // We only want to work with GT comparison so far.
10752   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
10753     Pred = CmpInst::getSwappedPredicate(Pred);
10754     std::swap(LHS, RHS);
10755     std::swap(FoundLHS, FoundRHS);
10756   }
10757 
10758   // For unsigned, try to reduce it to corresponding signed comparison.
10759   if (Pred == ICmpInst::ICMP_UGT)
10760     // We can replace unsigned predicate with its signed counterpart if all
10761     // involved values are non-negative.
10762     // TODO: We could have better support for unsigned.
10763     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
10764       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
10765       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
10766       // use this fact to prove that LHS and RHS are non-negative.
10767       const SCEV *MinusOne = getMinusOne(LHS->getType());
10768       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
10769                                 FoundRHS) &&
10770           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
10771                                 FoundRHS))
10772         Pred = ICmpInst::ICMP_SGT;
10773     }
10774 
10775   if (Pred != ICmpInst::ICMP_SGT)
10776     return false;
10777 
10778   auto GetOpFromSExt = [&](const SCEV *S) {
10779     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10780       return Ext->getOperand();
10781     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10782     // the constant in some cases.
10783     return S;
10784   };
10785 
10786   // Acquire values from extensions.
10787   auto *OrigLHS = LHS;
10788   auto *OrigFoundLHS = FoundLHS;
10789   LHS = GetOpFromSExt(LHS);
10790   FoundLHS = GetOpFromSExt(FoundLHS);
10791 
10792   // Is the SGT predicate can be proved trivially or using the found context.
10793   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10794     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10795            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10796                                   FoundRHS, Depth + 1);
10797   };
10798 
10799   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10800     // We want to avoid creation of any new non-constant SCEV. Since we are
10801     // going to compare the operands to RHS, we should be certain that we don't
10802     // need any size extensions for this. So let's decline all cases when the
10803     // sizes of types of LHS and RHS do not match.
10804     // TODO: Maybe try to get RHS from sext to catch more cases?
10805     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10806       return false;
10807 
10808     // Should not overflow.
10809     if (!LHSAddExpr->hasNoSignedWrap())
10810       return false;
10811 
10812     auto *LL = LHSAddExpr->getOperand(0);
10813     auto *LR = LHSAddExpr->getOperand(1);
10814     auto *MinusOne = getMinusOne(RHS->getType());
10815 
10816     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10817     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10818       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10819     };
10820     // Try to prove the following rule:
10821     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10822     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10823     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10824       return true;
10825   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10826     Value *LL, *LR;
10827     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10828 
10829     using namespace llvm::PatternMatch;
10830 
10831     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10832       // Rules for division.
10833       // We are going to perform some comparisons with Denominator and its
10834       // derivative expressions. In general case, creating a SCEV for it may
10835       // lead to a complex analysis of the entire graph, and in particular it
10836       // can request trip count recalculation for the same loop. This would
10837       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10838       // this, we only want to create SCEVs that are constants in this section.
10839       // So we bail if Denominator is not a constant.
10840       if (!isa<ConstantInt>(LR))
10841         return false;
10842 
10843       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10844 
10845       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10846       // then a SCEV for the numerator already exists and matches with FoundLHS.
10847       auto *Numerator = getExistingSCEV(LL);
10848       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10849         return false;
10850 
10851       // Make sure that the numerator matches with FoundLHS and the denominator
10852       // is positive.
10853       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10854         return false;
10855 
10856       auto *DTy = Denominator->getType();
10857       auto *FRHSTy = FoundRHS->getType();
10858       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10859         // One of types is a pointer and another one is not. We cannot extend
10860         // them properly to a wider type, so let us just reject this case.
10861         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10862         // to avoid this check.
10863         return false;
10864 
10865       // Given that:
10866       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10867       auto *WTy = getWiderType(DTy, FRHSTy);
10868       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10869       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10870 
10871       // Try to prove the following rule:
10872       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10873       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10874       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10875       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10876       if (isKnownNonPositive(RHS) &&
10877           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10878         return true;
10879 
10880       // Try to prove the following rule:
10881       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10882       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10883       // If we divide it by Denominator > 2, then:
10884       // 1. If FoundLHS is negative, then the result is 0.
10885       // 2. If FoundLHS is non-negative, then the result is non-negative.
10886       // Anyways, the result is non-negative.
10887       auto *MinusOne = getMinusOne(WTy);
10888       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10889       if (isKnownNegative(RHS) &&
10890           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10891         return true;
10892     }
10893   }
10894 
10895   // If our expression contained SCEVUnknown Phis, and we split it down and now
10896   // need to prove something for them, try to prove the predicate for every
10897   // possible incoming values of those Phis.
10898   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10899     return true;
10900 
10901   return false;
10902 }
10903 
10904 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10905                                         const SCEV *LHS, const SCEV *RHS) {
10906   // zext x u<= sext x, sext x s<= zext x
10907   switch (Pred) {
10908   case ICmpInst::ICMP_SGE:
10909     std::swap(LHS, RHS);
10910     LLVM_FALLTHROUGH;
10911   case ICmpInst::ICMP_SLE: {
10912     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
10913     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10914     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10915     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10916       return true;
10917     break;
10918   }
10919   case ICmpInst::ICMP_UGE:
10920     std::swap(LHS, RHS);
10921     LLVM_FALLTHROUGH;
10922   case ICmpInst::ICMP_ULE: {
10923     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
10924     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10925     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10926     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10927       return true;
10928     break;
10929   }
10930   default:
10931     break;
10932   };
10933   return false;
10934 }
10935 
10936 bool
10937 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10938                                            const SCEV *LHS, const SCEV *RHS) {
10939   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10940          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10941          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10942          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10943          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10944 }
10945 
10946 bool
10947 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10948                                              const SCEV *LHS, const SCEV *RHS,
10949                                              const SCEV *FoundLHS,
10950                                              const SCEV *FoundRHS) {
10951   switch (Pred) {
10952   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10953   case ICmpInst::ICMP_EQ:
10954   case ICmpInst::ICMP_NE:
10955     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10956       return true;
10957     break;
10958   case ICmpInst::ICMP_SLT:
10959   case ICmpInst::ICMP_SLE:
10960     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10961         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10962       return true;
10963     break;
10964   case ICmpInst::ICMP_SGT:
10965   case ICmpInst::ICMP_SGE:
10966     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10967         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10968       return true;
10969     break;
10970   case ICmpInst::ICMP_ULT:
10971   case ICmpInst::ICMP_ULE:
10972     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10973         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10974       return true;
10975     break;
10976   case ICmpInst::ICMP_UGT:
10977   case ICmpInst::ICMP_UGE:
10978     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10979         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10980       return true;
10981     break;
10982   }
10983 
10984   // Maybe it can be proved via operations?
10985   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10986     return true;
10987 
10988   return false;
10989 }
10990 
10991 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10992                                                      const SCEV *LHS,
10993                                                      const SCEV *RHS,
10994                                                      const SCEV *FoundLHS,
10995                                                      const SCEV *FoundRHS) {
10996   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10997     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10998     // reduce the compile time impact of this optimization.
10999     return false;
11000 
11001   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11002   if (!Addend)
11003     return false;
11004 
11005   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11006 
11007   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11008   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11009   ConstantRange FoundLHSRange =
11010       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
11011 
11012   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11013   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11014 
11015   // We can also compute the range of values for `LHS` that satisfy the
11016   // consequent, "`LHS` `Pred` `RHS`":
11017   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11018   ConstantRange SatisfyingLHSRange =
11019       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
11020 
11021   // The antecedent implies the consequent if every value of `LHS` that
11022   // satisfies the antecedent also satisfies the consequent.
11023   return SatisfyingLHSRange.contains(LHSRange);
11024 }
11025 
11026 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11027                                          bool IsSigned, bool NoWrap) {
11028   assert(isKnownPositive(Stride) && "Positive stride expected!");
11029 
11030   if (NoWrap) return false;
11031 
11032   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11033   const SCEV *One = getOne(Stride->getType());
11034 
11035   if (IsSigned) {
11036     APInt MaxRHS = getSignedRangeMax(RHS);
11037     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11038     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11039 
11040     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11041     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11042   }
11043 
11044   APInt MaxRHS = getUnsignedRangeMax(RHS);
11045   APInt MaxValue = APInt::getMaxValue(BitWidth);
11046   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11047 
11048   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11049   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11050 }
11051 
11052 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11053                                          bool IsSigned, bool NoWrap) {
11054   if (NoWrap) return false;
11055 
11056   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11057   const SCEV *One = getOne(Stride->getType());
11058 
11059   if (IsSigned) {
11060     APInt MinRHS = getSignedRangeMin(RHS);
11061     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11062     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11063 
11064     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11065     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11066   }
11067 
11068   APInt MinRHS = getUnsignedRangeMin(RHS);
11069   APInt MinValue = APInt::getMinValue(BitWidth);
11070   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11071 
11072   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11073   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11074 }
11075 
11076 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
11077                                             bool Equality) {
11078   const SCEV *One = getOne(Step->getType());
11079   Delta = Equality ? getAddExpr(Delta, Step)
11080                    : getAddExpr(Delta, getMinusSCEV(Step, One));
11081   return getUDivExpr(Delta, Step);
11082 }
11083 
11084 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11085                                                     const SCEV *Stride,
11086                                                     const SCEV *End,
11087                                                     unsigned BitWidth,
11088                                                     bool IsSigned) {
11089 
11090   assert(!isKnownNonPositive(Stride) &&
11091          "Stride is expected strictly positive!");
11092   // Calculate the maximum backedge count based on the range of values
11093   // permitted by Start, End, and Stride.
11094   const SCEV *MaxBECount;
11095   APInt MinStart =
11096       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11097 
11098   APInt StrideForMaxBECount =
11099       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11100 
11101   // We already know that the stride is positive, so we paper over conservatism
11102   // in our range computation by forcing StrideForMaxBECount to be at least one.
11103   // In theory this is unnecessary, but we expect MaxBECount to be a
11104   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
11105   // is nothing to constant fold it to).
11106   APInt One(BitWidth, 1, IsSigned);
11107   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
11108 
11109   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11110                             : APInt::getMaxValue(BitWidth);
11111   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11112 
11113   // Although End can be a MAX expression we estimate MaxEnd considering only
11114   // the case End = RHS of the loop termination condition. This is safe because
11115   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11116   // taken count.
11117   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11118                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11119 
11120   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
11121                               getConstant(StrideForMaxBECount) /* Step */,
11122                               false /* Equality */);
11123 
11124   return MaxBECount;
11125 }
11126 
11127 ScalarEvolution::ExitLimit
11128 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11129                                   const Loop *L, bool IsSigned,
11130                                   bool ControlsExit, bool AllowPredicates) {
11131   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11132 
11133   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11134   bool PredicatedIV = false;
11135 
11136   if (!IV && AllowPredicates) {
11137     // Try to make this an AddRec using runtime tests, in the first X
11138     // iterations of this loop, where X is the SCEV expression found by the
11139     // algorithm below.
11140     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11141     PredicatedIV = true;
11142   }
11143 
11144   // Avoid weird loops
11145   if (!IV || IV->getLoop() != L || !IV->isAffine())
11146     return getCouldNotCompute();
11147 
11148   bool NoWrap = ControlsExit &&
11149                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11150 
11151   const SCEV *Stride = IV->getStepRecurrence(*this);
11152 
11153   bool PositiveStride = isKnownPositive(Stride);
11154 
11155   // Avoid negative or zero stride values.
11156   if (!PositiveStride) {
11157     // We can compute the correct backedge taken count for loops with unknown
11158     // strides if we can prove that the loop is not an infinite loop with side
11159     // effects. Here's the loop structure we are trying to handle -
11160     //
11161     // i = start
11162     // do {
11163     //   A[i] = i;
11164     //   i += s;
11165     // } while (i < end);
11166     //
11167     // The backedge taken count for such loops is evaluated as -
11168     // (max(end, start + stride) - start - 1) /u stride
11169     //
11170     // The additional preconditions that we need to check to prove correctness
11171     // of the above formula is as follows -
11172     //
11173     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11174     //    NoWrap flag).
11175     // b) loop is single exit with no side effects.
11176     //
11177     //
11178     // Precondition a) implies that if the stride is negative, this is a single
11179     // trip loop. The backedge taken count formula reduces to zero in this case.
11180     //
11181     // Precondition b) implies that the unknown stride cannot be zero otherwise
11182     // we have UB.
11183     //
11184     // The positive stride case is the same as isKnownPositive(Stride) returning
11185     // true (original behavior of the function).
11186     //
11187     // We want to make sure that the stride is truly unknown as there are edge
11188     // cases where ScalarEvolution propagates no wrap flags to the
11189     // post-increment/decrement IV even though the increment/decrement operation
11190     // itself is wrapping. The computed backedge taken count may be wrong in
11191     // such cases. This is prevented by checking that the stride is not known to
11192     // be either positive or non-positive. For example, no wrap flags are
11193     // propagated to the post-increment IV of this loop with a trip count of 2 -
11194     //
11195     // unsigned char i;
11196     // for(i=127; i<128; i+=129)
11197     //   A[i] = i;
11198     //
11199     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
11200         !loopHasNoSideEffects(L))
11201       return getCouldNotCompute();
11202   } else if (!Stride->isOne() &&
11203              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
11204     // Avoid proven overflow cases: this will ensure that the backedge taken
11205     // count will not generate any unsigned overflow. Relaxed no-overflow
11206     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11207     // undefined behaviors like the case of C language.
11208     return getCouldNotCompute();
11209 
11210   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
11211                                       : ICmpInst::ICMP_ULT;
11212   const SCEV *Start = IV->getStart();
11213   const SCEV *End = RHS;
11214   // When the RHS is not invariant, we do not know the end bound of the loop and
11215   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11216   // calculate the MaxBECount, given the start, stride and max value for the end
11217   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11218   // checked above).
11219   if (!isLoopInvariant(RHS, L)) {
11220     const SCEV *MaxBECount = computeMaxBECountForLT(
11221         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11222     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11223                      false /*MaxOrZero*/, Predicates);
11224   }
11225   // If the backedge is taken at least once, then it will be taken
11226   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
11227   // is the LHS value of the less-than comparison the first time it is evaluated
11228   // and End is the RHS.
11229   const SCEV *BECountIfBackedgeTaken =
11230     computeBECount(getMinusSCEV(End, Start), Stride, false);
11231   // If the loop entry is guarded by the result of the backedge test of the
11232   // first loop iteration, then we know the backedge will be taken at least
11233   // once and so the backedge taken count is as above. If not then we use the
11234   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
11235   // as if the backedge is taken at least once max(End,Start) is End and so the
11236   // result is as above, and if not max(End,Start) is Start so we get a backedge
11237   // count of zero.
11238   const SCEV *BECount;
11239   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
11240     BECount = BECountIfBackedgeTaken;
11241   else {
11242     // If we know that RHS >= Start in the context of loop, then we know that
11243     // max(RHS, Start) = RHS at this point.
11244     if (isLoopEntryGuardedByCond(
11245             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start))
11246       End = RHS;
11247     else
11248       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11249     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
11250   }
11251 
11252   const SCEV *MaxBECount;
11253   bool MaxOrZero = false;
11254   if (isa<SCEVConstant>(BECount))
11255     MaxBECount = BECount;
11256   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11257     // If we know exactly how many times the backedge will be taken if it's
11258     // taken at least once, then the backedge count will either be that or
11259     // zero.
11260     MaxBECount = BECountIfBackedgeTaken;
11261     MaxOrZero = true;
11262   } else {
11263     MaxBECount = computeMaxBECountForLT(
11264         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11265   }
11266 
11267   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
11268       !isa<SCEVCouldNotCompute>(BECount))
11269     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
11270 
11271   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
11272 }
11273 
11274 ScalarEvolution::ExitLimit
11275 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
11276                                      const Loop *L, bool IsSigned,
11277                                      bool ControlsExit, bool AllowPredicates) {
11278   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11279   // We handle only IV > Invariant
11280   if (!isLoopInvariant(RHS, L))
11281     return getCouldNotCompute();
11282 
11283   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11284   if (!IV && AllowPredicates)
11285     // Try to make this an AddRec using runtime tests, in the first X
11286     // iterations of this loop, where X is the SCEV expression found by the
11287     // algorithm below.
11288     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11289 
11290   // Avoid weird loops
11291   if (!IV || IV->getLoop() != L || !IV->isAffine())
11292     return getCouldNotCompute();
11293 
11294   bool NoWrap = ControlsExit &&
11295                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11296 
11297   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
11298 
11299   // Avoid negative or zero stride values
11300   if (!isKnownPositive(Stride))
11301     return getCouldNotCompute();
11302 
11303   // Avoid proven overflow cases: this will ensure that the backedge taken count
11304   // will not generate any unsigned overflow. Relaxed no-overflow conditions
11305   // exploit NoWrapFlags, allowing to optimize in presence of undefined
11306   // behaviors like the case of C language.
11307   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
11308     return getCouldNotCompute();
11309 
11310   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
11311                                       : ICmpInst::ICMP_UGT;
11312 
11313   const SCEV *Start = IV->getStart();
11314   const SCEV *End = RHS;
11315   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
11316     // If we know that Start >= RHS in the context of loop, then we know that
11317     // min(RHS, Start) = RHS at this point.
11318     if (isLoopEntryGuardedByCond(
11319             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
11320       End = RHS;
11321     else
11322       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
11323   }
11324 
11325   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
11326 
11327   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
11328                             : getUnsignedRangeMax(Start);
11329 
11330   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
11331                              : getUnsignedRangeMin(Stride);
11332 
11333   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
11334   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
11335                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
11336 
11337   // Although End can be a MIN expression we estimate MinEnd considering only
11338   // the case End = RHS. This is safe because in the other case (Start - End)
11339   // is zero, leading to a zero maximum backedge taken count.
11340   APInt MinEnd =
11341     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
11342              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
11343 
11344   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
11345                                ? BECount
11346                                : computeBECount(getConstant(MaxStart - MinEnd),
11347                                                 getConstant(MinStride), false);
11348 
11349   if (isa<SCEVCouldNotCompute>(MaxBECount))
11350     MaxBECount = BECount;
11351 
11352   return ExitLimit(BECount, MaxBECount, false, Predicates);
11353 }
11354 
11355 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
11356                                                     ScalarEvolution &SE) const {
11357   if (Range.isFullSet())  // Infinite loop.
11358     return SE.getCouldNotCompute();
11359 
11360   // If the start is a non-zero constant, shift the range to simplify things.
11361   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
11362     if (!SC->getValue()->isZero()) {
11363       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
11364       Operands[0] = SE.getZero(SC->getType());
11365       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
11366                                              getNoWrapFlags(FlagNW));
11367       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
11368         return ShiftedAddRec->getNumIterationsInRange(
11369             Range.subtract(SC->getAPInt()), SE);
11370       // This is strange and shouldn't happen.
11371       return SE.getCouldNotCompute();
11372     }
11373 
11374   // The only time we can solve this is when we have all constant indices.
11375   // Otherwise, we cannot determine the overflow conditions.
11376   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
11377     return SE.getCouldNotCompute();
11378 
11379   // Okay at this point we know that all elements of the chrec are constants and
11380   // that the start element is zero.
11381 
11382   // First check to see if the range contains zero.  If not, the first
11383   // iteration exits.
11384   unsigned BitWidth = SE.getTypeSizeInBits(getType());
11385   if (!Range.contains(APInt(BitWidth, 0)))
11386     return SE.getZero(getType());
11387 
11388   if (isAffine()) {
11389     // If this is an affine expression then we have this situation:
11390     //   Solve {0,+,A} in Range  ===  Ax in Range
11391 
11392     // We know that zero is in the range.  If A is positive then we know that
11393     // the upper value of the range must be the first possible exit value.
11394     // If A is negative then the lower of the range is the last possible loop
11395     // value.  Also note that we already checked for a full range.
11396     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
11397     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
11398 
11399     // The exit value should be (End+A)/A.
11400     APInt ExitVal = (End + A).udiv(A);
11401     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
11402 
11403     // Evaluate at the exit value.  If we really did fall out of the valid
11404     // range, then we computed our trip count, otherwise wrap around or other
11405     // things must have happened.
11406     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
11407     if (Range.contains(Val->getValue()))
11408       return SE.getCouldNotCompute();  // Something strange happened
11409 
11410     // Ensure that the previous value is in the range.  This is a sanity check.
11411     assert(Range.contains(
11412            EvaluateConstantChrecAtConstant(this,
11413            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
11414            "Linear scev computation is off in a bad way!");
11415     return SE.getConstant(ExitValue);
11416   }
11417 
11418   if (isQuadratic()) {
11419     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
11420       return SE.getConstant(S.getValue());
11421   }
11422 
11423   return SE.getCouldNotCompute();
11424 }
11425 
11426 const SCEVAddRecExpr *
11427 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
11428   assert(getNumOperands() > 1 && "AddRec with zero step?");
11429   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
11430   // but in this case we cannot guarantee that the value returned will be an
11431   // AddRec because SCEV does not have a fixed point where it stops
11432   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
11433   // may happen if we reach arithmetic depth limit while simplifying. So we
11434   // construct the returned value explicitly.
11435   SmallVector<const SCEV *, 3> Ops;
11436   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
11437   // (this + Step) is {A+B,+,B+C,+...,+,N}.
11438   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
11439     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
11440   // We know that the last operand is not a constant zero (otherwise it would
11441   // have been popped out earlier). This guarantees us that if the result has
11442   // the same last operand, then it will also not be popped out, meaning that
11443   // the returned value will be an AddRec.
11444   const SCEV *Last = getOperand(getNumOperands() - 1);
11445   assert(!Last->isZero() && "Recurrency with zero step?");
11446   Ops.push_back(Last);
11447   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
11448                                                SCEV::FlagAnyWrap));
11449 }
11450 
11451 // Return true when S contains at least an undef value.
11452 static inline bool containsUndefs(const SCEV *S) {
11453   return SCEVExprContains(S, [](const SCEV *S) {
11454     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
11455       return isa<UndefValue>(SU->getValue());
11456     return false;
11457   });
11458 }
11459 
11460 namespace {
11461 
11462 // Collect all steps of SCEV expressions.
11463 struct SCEVCollectStrides {
11464   ScalarEvolution &SE;
11465   SmallVectorImpl<const SCEV *> &Strides;
11466 
11467   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
11468       : SE(SE), Strides(S) {}
11469 
11470   bool follow(const SCEV *S) {
11471     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
11472       Strides.push_back(AR->getStepRecurrence(SE));
11473     return true;
11474   }
11475 
11476   bool isDone() const { return false; }
11477 };
11478 
11479 // Collect all SCEVUnknown and SCEVMulExpr expressions.
11480 struct SCEVCollectTerms {
11481   SmallVectorImpl<const SCEV *> &Terms;
11482 
11483   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
11484 
11485   bool follow(const SCEV *S) {
11486     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
11487         isa<SCEVSignExtendExpr>(S)) {
11488       if (!containsUndefs(S))
11489         Terms.push_back(S);
11490 
11491       // Stop recursion: once we collected a term, do not walk its operands.
11492       return false;
11493     }
11494 
11495     // Keep looking.
11496     return true;
11497   }
11498 
11499   bool isDone() const { return false; }
11500 };
11501 
11502 // Check if a SCEV contains an AddRecExpr.
11503 struct SCEVHasAddRec {
11504   bool &ContainsAddRec;
11505 
11506   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
11507     ContainsAddRec = false;
11508   }
11509 
11510   bool follow(const SCEV *S) {
11511     if (isa<SCEVAddRecExpr>(S)) {
11512       ContainsAddRec = true;
11513 
11514       // Stop recursion: once we collected a term, do not walk its operands.
11515       return false;
11516     }
11517 
11518     // Keep looking.
11519     return true;
11520   }
11521 
11522   bool isDone() const { return false; }
11523 };
11524 
11525 // Find factors that are multiplied with an expression that (possibly as a
11526 // subexpression) contains an AddRecExpr. In the expression:
11527 //
11528 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
11529 //
11530 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11531 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11532 // parameters as they form a product with an induction variable.
11533 //
11534 // This collector expects all array size parameters to be in the same MulExpr.
11535 // It might be necessary to later add support for collecting parameters that are
11536 // spread over different nested MulExpr.
11537 struct SCEVCollectAddRecMultiplies {
11538   SmallVectorImpl<const SCEV *> &Terms;
11539   ScalarEvolution &SE;
11540 
11541   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11542       : Terms(T), SE(SE) {}
11543 
11544   bool follow(const SCEV *S) {
11545     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11546       bool HasAddRec = false;
11547       SmallVector<const SCEV *, 0> Operands;
11548       for (auto Op : Mul->operands()) {
11549         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11550         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11551           Operands.push_back(Op);
11552         } else if (Unknown) {
11553           HasAddRec = true;
11554         } else {
11555           bool ContainsAddRec = false;
11556           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11557           visitAll(Op, ContiansAddRec);
11558           HasAddRec |= ContainsAddRec;
11559         }
11560       }
11561       if (Operands.size() == 0)
11562         return true;
11563 
11564       if (!HasAddRec)
11565         return false;
11566 
11567       Terms.push_back(SE.getMulExpr(Operands));
11568       // Stop recursion: once we collected a term, do not walk its operands.
11569       return false;
11570     }
11571 
11572     // Keep looking.
11573     return true;
11574   }
11575 
11576   bool isDone() const { return false; }
11577 };
11578 
11579 } // end anonymous namespace
11580 
11581 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11582 /// two places:
11583 ///   1) The strides of AddRec expressions.
11584 ///   2) Unknowns that are multiplied with AddRec expressions.
11585 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11586     SmallVectorImpl<const SCEV *> &Terms) {
11587   SmallVector<const SCEV *, 4> Strides;
11588   SCEVCollectStrides StrideCollector(*this, Strides);
11589   visitAll(Expr, StrideCollector);
11590 
11591   LLVM_DEBUG({
11592     dbgs() << "Strides:\n";
11593     for (const SCEV *S : Strides)
11594       dbgs() << *S << "\n";
11595   });
11596 
11597   for (const SCEV *S : Strides) {
11598     SCEVCollectTerms TermCollector(Terms);
11599     visitAll(S, TermCollector);
11600   }
11601 
11602   LLVM_DEBUG({
11603     dbgs() << "Terms:\n";
11604     for (const SCEV *T : Terms)
11605       dbgs() << *T << "\n";
11606   });
11607 
11608   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11609   visitAll(Expr, MulCollector);
11610 }
11611 
11612 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11613                                    SmallVectorImpl<const SCEV *> &Terms,
11614                                    SmallVectorImpl<const SCEV *> &Sizes) {
11615   int Last = Terms.size() - 1;
11616   const SCEV *Step = Terms[Last];
11617 
11618   // End of recursion.
11619   if (Last == 0) {
11620     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11621       SmallVector<const SCEV *, 2> Qs;
11622       for (const SCEV *Op : M->operands())
11623         if (!isa<SCEVConstant>(Op))
11624           Qs.push_back(Op);
11625 
11626       Step = SE.getMulExpr(Qs);
11627     }
11628 
11629     Sizes.push_back(Step);
11630     return true;
11631   }
11632 
11633   for (const SCEV *&Term : Terms) {
11634     // Normalize the terms before the next call to findArrayDimensionsRec.
11635     const SCEV *Q, *R;
11636     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11637 
11638     // Bail out when GCD does not evenly divide one of the terms.
11639     if (!R->isZero())
11640       return false;
11641 
11642     Term = Q;
11643   }
11644 
11645   // Remove all SCEVConstants.
11646   erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); });
11647 
11648   if (Terms.size() > 0)
11649     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11650       return false;
11651 
11652   Sizes.push_back(Step);
11653   return true;
11654 }
11655 
11656 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11657 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11658   for (const SCEV *T : Terms)
11659     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
11660       return true;
11661 
11662   return false;
11663 }
11664 
11665 // Return the number of product terms in S.
11666 static inline int numberOfTerms(const SCEV *S) {
11667   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11668     return Expr->getNumOperands();
11669   return 1;
11670 }
11671 
11672 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11673   if (isa<SCEVConstant>(T))
11674     return nullptr;
11675 
11676   if (isa<SCEVUnknown>(T))
11677     return T;
11678 
11679   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11680     SmallVector<const SCEV *, 2> Factors;
11681     for (const SCEV *Op : M->operands())
11682       if (!isa<SCEVConstant>(Op))
11683         Factors.push_back(Op);
11684 
11685     return SE.getMulExpr(Factors);
11686   }
11687 
11688   return T;
11689 }
11690 
11691 /// Return the size of an element read or written by Inst.
11692 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11693   Type *Ty;
11694   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11695     Ty = Store->getValueOperand()->getType();
11696   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11697     Ty = Load->getType();
11698   else
11699     return nullptr;
11700 
11701   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11702   return getSizeOfExpr(ETy, Ty);
11703 }
11704 
11705 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11706                                           SmallVectorImpl<const SCEV *> &Sizes,
11707                                           const SCEV *ElementSize) {
11708   if (Terms.size() < 1 || !ElementSize)
11709     return;
11710 
11711   // Early return when Terms do not contain parameters: we do not delinearize
11712   // non parametric SCEVs.
11713   if (!containsParameters(Terms))
11714     return;
11715 
11716   LLVM_DEBUG({
11717     dbgs() << "Terms:\n";
11718     for (const SCEV *T : Terms)
11719       dbgs() << *T << "\n";
11720   });
11721 
11722   // Remove duplicates.
11723   array_pod_sort(Terms.begin(), Terms.end());
11724   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11725 
11726   // Put larger terms first.
11727   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11728     return numberOfTerms(LHS) > numberOfTerms(RHS);
11729   });
11730 
11731   // Try to divide all terms by the element size. If term is not divisible by
11732   // element size, proceed with the original term.
11733   for (const SCEV *&Term : Terms) {
11734     const SCEV *Q, *R;
11735     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11736     if (!Q->isZero())
11737       Term = Q;
11738   }
11739 
11740   SmallVector<const SCEV *, 4> NewTerms;
11741 
11742   // Remove constant factors.
11743   for (const SCEV *T : Terms)
11744     if (const SCEV *NewT = removeConstantFactors(*this, T))
11745       NewTerms.push_back(NewT);
11746 
11747   LLVM_DEBUG({
11748     dbgs() << "Terms after sorting:\n";
11749     for (const SCEV *T : NewTerms)
11750       dbgs() << *T << "\n";
11751   });
11752 
11753   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11754     Sizes.clear();
11755     return;
11756   }
11757 
11758   // The last element to be pushed into Sizes is the size of an element.
11759   Sizes.push_back(ElementSize);
11760 
11761   LLVM_DEBUG({
11762     dbgs() << "Sizes:\n";
11763     for (const SCEV *S : Sizes)
11764       dbgs() << *S << "\n";
11765   });
11766 }
11767 
11768 void ScalarEvolution::computeAccessFunctions(
11769     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11770     SmallVectorImpl<const SCEV *> &Sizes) {
11771   // Early exit in case this SCEV is not an affine multivariate function.
11772   if (Sizes.empty())
11773     return;
11774 
11775   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11776     if (!AR->isAffine())
11777       return;
11778 
11779   const SCEV *Res = Expr;
11780   int Last = Sizes.size() - 1;
11781   for (int i = Last; i >= 0; i--) {
11782     const SCEV *Q, *R;
11783     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11784 
11785     LLVM_DEBUG({
11786       dbgs() << "Res: " << *Res << "\n";
11787       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11788       dbgs() << "Res divided by Sizes[i]:\n";
11789       dbgs() << "Quotient: " << *Q << "\n";
11790       dbgs() << "Remainder: " << *R << "\n";
11791     });
11792 
11793     Res = Q;
11794 
11795     // Do not record the last subscript corresponding to the size of elements in
11796     // the array.
11797     if (i == Last) {
11798 
11799       // Bail out if the remainder is too complex.
11800       if (isa<SCEVAddRecExpr>(R)) {
11801         Subscripts.clear();
11802         Sizes.clear();
11803         return;
11804       }
11805 
11806       continue;
11807     }
11808 
11809     // Record the access function for the current subscript.
11810     Subscripts.push_back(R);
11811   }
11812 
11813   // Also push in last position the remainder of the last division: it will be
11814   // the access function of the innermost dimension.
11815   Subscripts.push_back(Res);
11816 
11817   std::reverse(Subscripts.begin(), Subscripts.end());
11818 
11819   LLVM_DEBUG({
11820     dbgs() << "Subscripts:\n";
11821     for (const SCEV *S : Subscripts)
11822       dbgs() << *S << "\n";
11823   });
11824 }
11825 
11826 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11827 /// sizes of an array access. Returns the remainder of the delinearization that
11828 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11829 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11830 /// expressions in the stride and base of a SCEV corresponding to the
11831 /// computation of a GCD (greatest common divisor) of base and stride.  When
11832 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11833 ///
11834 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11835 ///
11836 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11837 ///
11838 ///    for (long i = 0; i < n; i++)
11839 ///      for (long j = 0; j < m; j++)
11840 ///        for (long k = 0; k < o; k++)
11841 ///          A[i][j][k] = 1.0;
11842 ///  }
11843 ///
11844 /// the delinearization input is the following AddRec SCEV:
11845 ///
11846 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11847 ///
11848 /// From this SCEV, we are able to say that the base offset of the access is %A
11849 /// because it appears as an offset that does not divide any of the strides in
11850 /// the loops:
11851 ///
11852 ///  CHECK: Base offset: %A
11853 ///
11854 /// and then SCEV->delinearize determines the size of some of the dimensions of
11855 /// the array as these are the multiples by which the strides are happening:
11856 ///
11857 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11858 ///
11859 /// Note that the outermost dimension remains of UnknownSize because there are
11860 /// no strides that would help identifying the size of the last dimension: when
11861 /// the array has been statically allocated, one could compute the size of that
11862 /// dimension by dividing the overall size of the array by the size of the known
11863 /// dimensions: %m * %o * 8.
11864 ///
11865 /// Finally delinearize provides the access functions for the array reference
11866 /// that does correspond to A[i][j][k] of the above C testcase:
11867 ///
11868 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11869 ///
11870 /// The testcases are checking the output of a function pass:
11871 /// DelinearizationPass that walks through all loads and stores of a function
11872 /// asking for the SCEV of the memory access with respect to all enclosing
11873 /// loops, calling SCEV->delinearize on that and printing the results.
11874 void ScalarEvolution::delinearize(const SCEV *Expr,
11875                                  SmallVectorImpl<const SCEV *> &Subscripts,
11876                                  SmallVectorImpl<const SCEV *> &Sizes,
11877                                  const SCEV *ElementSize) {
11878   // First step: collect parametric terms.
11879   SmallVector<const SCEV *, 4> Terms;
11880   collectParametricTerms(Expr, Terms);
11881 
11882   if (Terms.empty())
11883     return;
11884 
11885   // Second step: find subscript sizes.
11886   findArrayDimensions(Terms, Sizes, ElementSize);
11887 
11888   if (Sizes.empty())
11889     return;
11890 
11891   // Third step: compute the access functions for each subscript.
11892   computeAccessFunctions(Expr, Subscripts, Sizes);
11893 
11894   if (Subscripts.empty())
11895     return;
11896 
11897   LLVM_DEBUG({
11898     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11899     dbgs() << "ArrayDecl[UnknownSize]";
11900     for (const SCEV *S : Sizes)
11901       dbgs() << "[" << *S << "]";
11902 
11903     dbgs() << "\nArrayRef";
11904     for (const SCEV *S : Subscripts)
11905       dbgs() << "[" << *S << "]";
11906     dbgs() << "\n";
11907   });
11908 }
11909 
11910 bool ScalarEvolution::getIndexExpressionsFromGEP(
11911     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
11912     SmallVectorImpl<int> &Sizes) {
11913   assert(Subscripts.empty() && Sizes.empty() &&
11914          "Expected output lists to be empty on entry to this function.");
11915   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
11916   Type *Ty = GEP->getPointerOperandType();
11917   bool DroppedFirstDim = false;
11918   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
11919     const SCEV *Expr = getSCEV(GEP->getOperand(i));
11920     if (i == 1) {
11921       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
11922         Ty = PtrTy->getElementType();
11923       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
11924         Ty = ArrayTy->getElementType();
11925       } else {
11926         Subscripts.clear();
11927         Sizes.clear();
11928         return false;
11929       }
11930       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
11931         if (Const->getValue()->isZero()) {
11932           DroppedFirstDim = true;
11933           continue;
11934         }
11935       Subscripts.push_back(Expr);
11936       continue;
11937     }
11938 
11939     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
11940     if (!ArrayTy) {
11941       Subscripts.clear();
11942       Sizes.clear();
11943       return false;
11944     }
11945 
11946     Subscripts.push_back(Expr);
11947     if (!(DroppedFirstDim && i == 2))
11948       Sizes.push_back(ArrayTy->getNumElements());
11949 
11950     Ty = ArrayTy->getElementType();
11951   }
11952   return !Subscripts.empty();
11953 }
11954 
11955 //===----------------------------------------------------------------------===//
11956 //                   SCEVCallbackVH Class Implementation
11957 //===----------------------------------------------------------------------===//
11958 
11959 void ScalarEvolution::SCEVCallbackVH::deleted() {
11960   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11961   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11962     SE->ConstantEvolutionLoopExitValue.erase(PN);
11963   SE->eraseValueFromMap(getValPtr());
11964   // this now dangles!
11965 }
11966 
11967 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11968   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11969 
11970   // Forget all the expressions associated with users of the old value,
11971   // so that future queries will recompute the expressions using the new
11972   // value.
11973   Value *Old = getValPtr();
11974   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11975   SmallPtrSet<User *, 8> Visited;
11976   while (!Worklist.empty()) {
11977     User *U = Worklist.pop_back_val();
11978     // Deleting the Old value will cause this to dangle. Postpone
11979     // that until everything else is done.
11980     if (U == Old)
11981       continue;
11982     if (!Visited.insert(U).second)
11983       continue;
11984     if (PHINode *PN = dyn_cast<PHINode>(U))
11985       SE->ConstantEvolutionLoopExitValue.erase(PN);
11986     SE->eraseValueFromMap(U);
11987     llvm::append_range(Worklist, U->users());
11988   }
11989   // Delete the Old value.
11990   if (PHINode *PN = dyn_cast<PHINode>(Old))
11991     SE->ConstantEvolutionLoopExitValue.erase(PN);
11992   SE->eraseValueFromMap(Old);
11993   // this now dangles!
11994 }
11995 
11996 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11997   : CallbackVH(V), SE(se) {}
11998 
11999 //===----------------------------------------------------------------------===//
12000 //                   ScalarEvolution Class Implementation
12001 //===----------------------------------------------------------------------===//
12002 
12003 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12004                                  AssumptionCache &AC, DominatorTree &DT,
12005                                  LoopInfo &LI)
12006     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12007       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12008       LoopDispositions(64), BlockDispositions(64) {
12009   // To use guards for proving predicates, we need to scan every instruction in
12010   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12011   // time if the IR does not actually contain any calls to
12012   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12013   //
12014   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12015   // to _add_ guards to the module when there weren't any before, and wants
12016   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12017   // efficient in lieu of being smart in that rather obscure case.
12018 
12019   auto *GuardDecl = F.getParent()->getFunction(
12020       Intrinsic::getName(Intrinsic::experimental_guard));
12021   HasGuards = GuardDecl && !GuardDecl->use_empty();
12022 }
12023 
12024 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12025     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12026       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12027       ValueExprMap(std::move(Arg.ValueExprMap)),
12028       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12029       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12030       PendingMerges(std::move(Arg.PendingMerges)),
12031       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12032       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12033       PredicatedBackedgeTakenCounts(
12034           std::move(Arg.PredicatedBackedgeTakenCounts)),
12035       ConstantEvolutionLoopExitValue(
12036           std::move(Arg.ConstantEvolutionLoopExitValue)),
12037       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12038       LoopDispositions(std::move(Arg.LoopDispositions)),
12039       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12040       BlockDispositions(std::move(Arg.BlockDispositions)),
12041       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12042       SignedRanges(std::move(Arg.SignedRanges)),
12043       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12044       UniquePreds(std::move(Arg.UniquePreds)),
12045       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12046       LoopUsers(std::move(Arg.LoopUsers)),
12047       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12048       FirstUnknown(Arg.FirstUnknown) {
12049   Arg.FirstUnknown = nullptr;
12050 }
12051 
12052 ScalarEvolution::~ScalarEvolution() {
12053   // Iterate through all the SCEVUnknown instances and call their
12054   // destructors, so that they release their references to their values.
12055   for (SCEVUnknown *U = FirstUnknown; U;) {
12056     SCEVUnknown *Tmp = U;
12057     U = U->Next;
12058     Tmp->~SCEVUnknown();
12059   }
12060   FirstUnknown = nullptr;
12061 
12062   ExprValueMap.clear();
12063   ValueExprMap.clear();
12064   HasRecMap.clear();
12065 
12066   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
12067   // that a loop had multiple computable exits.
12068   for (auto &BTCI : BackedgeTakenCounts)
12069     BTCI.second.clear();
12070   for (auto &BTCI : PredicatedBackedgeTakenCounts)
12071     BTCI.second.clear();
12072 
12073   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12074   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12075   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12076   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12077   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12078 }
12079 
12080 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12081   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12082 }
12083 
12084 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12085                           const Loop *L) {
12086   // Print all inner loops first
12087   for (Loop *I : *L)
12088     PrintLoopInfo(OS, SE, I);
12089 
12090   OS << "Loop ";
12091   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12092   OS << ": ";
12093 
12094   SmallVector<BasicBlock *, 8> ExitingBlocks;
12095   L->getExitingBlocks(ExitingBlocks);
12096   if (ExitingBlocks.size() != 1)
12097     OS << "<multiple exits> ";
12098 
12099   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12100     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12101   else
12102     OS << "Unpredictable backedge-taken count.\n";
12103 
12104   if (ExitingBlocks.size() > 1)
12105     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12106       OS << "  exit count for " << ExitingBlock->getName() << ": "
12107          << *SE->getExitCount(L, ExitingBlock) << "\n";
12108     }
12109 
12110   OS << "Loop ";
12111   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12112   OS << ": ";
12113 
12114   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12115     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12116     if (SE->isBackedgeTakenCountMaxOrZero(L))
12117       OS << ", actual taken count either this or zero.";
12118   } else {
12119     OS << "Unpredictable max backedge-taken count. ";
12120   }
12121 
12122   OS << "\n"
12123         "Loop ";
12124   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12125   OS << ": ";
12126 
12127   SCEVUnionPredicate Pred;
12128   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12129   if (!isa<SCEVCouldNotCompute>(PBT)) {
12130     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12131     OS << " Predicates:\n";
12132     Pred.print(OS, 4);
12133   } else {
12134     OS << "Unpredictable predicated backedge-taken count. ";
12135   }
12136   OS << "\n";
12137 
12138   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12139     OS << "Loop ";
12140     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12141     OS << ": ";
12142     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12143   }
12144 }
12145 
12146 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12147   switch (LD) {
12148   case ScalarEvolution::LoopVariant:
12149     return "Variant";
12150   case ScalarEvolution::LoopInvariant:
12151     return "Invariant";
12152   case ScalarEvolution::LoopComputable:
12153     return "Computable";
12154   }
12155   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12156 }
12157 
12158 void ScalarEvolution::print(raw_ostream &OS) const {
12159   // ScalarEvolution's implementation of the print method is to print
12160   // out SCEV values of all instructions that are interesting. Doing
12161   // this potentially causes it to create new SCEV objects though,
12162   // which technically conflicts with the const qualifier. This isn't
12163   // observable from outside the class though, so casting away the
12164   // const isn't dangerous.
12165   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12166 
12167   if (ClassifyExpressions) {
12168     OS << "Classifying expressions for: ";
12169     F.printAsOperand(OS, /*PrintType=*/false);
12170     OS << "\n";
12171     for (Instruction &I : instructions(F))
12172       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12173         OS << I << '\n';
12174         OS << "  -->  ";
12175         const SCEV *SV = SE.getSCEV(&I);
12176         SV->print(OS);
12177         if (!isa<SCEVCouldNotCompute>(SV)) {
12178           OS << " U: ";
12179           SE.getUnsignedRange(SV).print(OS);
12180           OS << " S: ";
12181           SE.getSignedRange(SV).print(OS);
12182         }
12183 
12184         const Loop *L = LI.getLoopFor(I.getParent());
12185 
12186         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12187         if (AtUse != SV) {
12188           OS << "  -->  ";
12189           AtUse->print(OS);
12190           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12191             OS << " U: ";
12192             SE.getUnsignedRange(AtUse).print(OS);
12193             OS << " S: ";
12194             SE.getSignedRange(AtUse).print(OS);
12195           }
12196         }
12197 
12198         if (L) {
12199           OS << "\t\t" "Exits: ";
12200           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12201           if (!SE.isLoopInvariant(ExitValue, L)) {
12202             OS << "<<Unknown>>";
12203           } else {
12204             OS << *ExitValue;
12205           }
12206 
12207           bool First = true;
12208           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12209             if (First) {
12210               OS << "\t\t" "LoopDispositions: { ";
12211               First = false;
12212             } else {
12213               OS << ", ";
12214             }
12215 
12216             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12217             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12218           }
12219 
12220           for (auto *InnerL : depth_first(L)) {
12221             if (InnerL == L)
12222               continue;
12223             if (First) {
12224               OS << "\t\t" "LoopDispositions: { ";
12225               First = false;
12226             } else {
12227               OS << ", ";
12228             }
12229 
12230             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12231             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12232           }
12233 
12234           OS << " }";
12235         }
12236 
12237         OS << "\n";
12238       }
12239   }
12240 
12241   OS << "Determining loop execution counts for: ";
12242   F.printAsOperand(OS, /*PrintType=*/false);
12243   OS << "\n";
12244   for (Loop *I : LI)
12245     PrintLoopInfo(OS, &SE, I);
12246 }
12247 
12248 ScalarEvolution::LoopDisposition
12249 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12250   auto &Values = LoopDispositions[S];
12251   for (auto &V : Values) {
12252     if (V.getPointer() == L)
12253       return V.getInt();
12254   }
12255   Values.emplace_back(L, LoopVariant);
12256   LoopDisposition D = computeLoopDisposition(S, L);
12257   auto &Values2 = LoopDispositions[S];
12258   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12259     if (V.getPointer() == L) {
12260       V.setInt(D);
12261       break;
12262     }
12263   }
12264   return D;
12265 }
12266 
12267 ScalarEvolution::LoopDisposition
12268 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12269   switch (S->getSCEVType()) {
12270   case scConstant:
12271     return LoopInvariant;
12272   case scPtrToInt:
12273   case scTruncate:
12274   case scZeroExtend:
12275   case scSignExtend:
12276     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12277   case scAddRecExpr: {
12278     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12279 
12280     // If L is the addrec's loop, it's computable.
12281     if (AR->getLoop() == L)
12282       return LoopComputable;
12283 
12284     // Add recurrences are never invariant in the function-body (null loop).
12285     if (!L)
12286       return LoopVariant;
12287 
12288     // Everything that is not defined at loop entry is variant.
12289     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12290       return LoopVariant;
12291     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12292            " dominate the contained loop's header?");
12293 
12294     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12295     if (AR->getLoop()->contains(L))
12296       return LoopInvariant;
12297 
12298     // This recurrence is variant w.r.t. L if any of its operands
12299     // are variant.
12300     for (auto *Op : AR->operands())
12301       if (!isLoopInvariant(Op, L))
12302         return LoopVariant;
12303 
12304     // Otherwise it's loop-invariant.
12305     return LoopInvariant;
12306   }
12307   case scAddExpr:
12308   case scMulExpr:
12309   case scUMaxExpr:
12310   case scSMaxExpr:
12311   case scUMinExpr:
12312   case scSMinExpr: {
12313     bool HasVarying = false;
12314     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12315       LoopDisposition D = getLoopDisposition(Op, L);
12316       if (D == LoopVariant)
12317         return LoopVariant;
12318       if (D == LoopComputable)
12319         HasVarying = true;
12320     }
12321     return HasVarying ? LoopComputable : LoopInvariant;
12322   }
12323   case scUDivExpr: {
12324     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12325     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12326     if (LD == LoopVariant)
12327       return LoopVariant;
12328     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12329     if (RD == LoopVariant)
12330       return LoopVariant;
12331     return (LD == LoopInvariant && RD == LoopInvariant) ?
12332            LoopInvariant : LoopComputable;
12333   }
12334   case scUnknown:
12335     // All non-instruction values are loop invariant.  All instructions are loop
12336     // invariant if they are not contained in the specified loop.
12337     // Instructions are never considered invariant in the function body
12338     // (null loop) because they are defined within the "loop".
12339     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12340       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12341     return LoopInvariant;
12342   case scCouldNotCompute:
12343     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12344   }
12345   llvm_unreachable("Unknown SCEV kind!");
12346 }
12347 
12348 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12349   return getLoopDisposition(S, L) == LoopInvariant;
12350 }
12351 
12352 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12353   return getLoopDisposition(S, L) == LoopComputable;
12354 }
12355 
12356 ScalarEvolution::BlockDisposition
12357 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12358   auto &Values = BlockDispositions[S];
12359   for (auto &V : Values) {
12360     if (V.getPointer() == BB)
12361       return V.getInt();
12362   }
12363   Values.emplace_back(BB, DoesNotDominateBlock);
12364   BlockDisposition D = computeBlockDisposition(S, BB);
12365   auto &Values2 = BlockDispositions[S];
12366   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12367     if (V.getPointer() == BB) {
12368       V.setInt(D);
12369       break;
12370     }
12371   }
12372   return D;
12373 }
12374 
12375 ScalarEvolution::BlockDisposition
12376 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12377   switch (S->getSCEVType()) {
12378   case scConstant:
12379     return ProperlyDominatesBlock;
12380   case scPtrToInt:
12381   case scTruncate:
12382   case scZeroExtend:
12383   case scSignExtend:
12384     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12385   case scAddRecExpr: {
12386     // This uses a "dominates" query instead of "properly dominates" query
12387     // to test for proper dominance too, because the instruction which
12388     // produces the addrec's value is a PHI, and a PHI effectively properly
12389     // dominates its entire containing block.
12390     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12391     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12392       return DoesNotDominateBlock;
12393 
12394     // Fall through into SCEVNAryExpr handling.
12395     LLVM_FALLTHROUGH;
12396   }
12397   case scAddExpr:
12398   case scMulExpr:
12399   case scUMaxExpr:
12400   case scSMaxExpr:
12401   case scUMinExpr:
12402   case scSMinExpr: {
12403     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12404     bool Proper = true;
12405     for (const SCEV *NAryOp : NAry->operands()) {
12406       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12407       if (D == DoesNotDominateBlock)
12408         return DoesNotDominateBlock;
12409       if (D == DominatesBlock)
12410         Proper = false;
12411     }
12412     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12413   }
12414   case scUDivExpr: {
12415     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12416     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12417     BlockDisposition LD = getBlockDisposition(LHS, BB);
12418     if (LD == DoesNotDominateBlock)
12419       return DoesNotDominateBlock;
12420     BlockDisposition RD = getBlockDisposition(RHS, BB);
12421     if (RD == DoesNotDominateBlock)
12422       return DoesNotDominateBlock;
12423     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12424       ProperlyDominatesBlock : DominatesBlock;
12425   }
12426   case scUnknown:
12427     if (Instruction *I =
12428           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12429       if (I->getParent() == BB)
12430         return DominatesBlock;
12431       if (DT.properlyDominates(I->getParent(), BB))
12432         return ProperlyDominatesBlock;
12433       return DoesNotDominateBlock;
12434     }
12435     return ProperlyDominatesBlock;
12436   case scCouldNotCompute:
12437     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12438   }
12439   llvm_unreachable("Unknown SCEV kind!");
12440 }
12441 
12442 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12443   return getBlockDisposition(S, BB) >= DominatesBlock;
12444 }
12445 
12446 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12447   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12448 }
12449 
12450 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12451   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12452 }
12453 
12454 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
12455   auto IsS = [&](const SCEV *X) { return S == X; };
12456   auto ContainsS = [&](const SCEV *X) {
12457     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
12458   };
12459   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
12460 }
12461 
12462 void
12463 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12464   ValuesAtScopes.erase(S);
12465   LoopDispositions.erase(S);
12466   BlockDispositions.erase(S);
12467   UnsignedRanges.erase(S);
12468   SignedRanges.erase(S);
12469   ExprValueMap.erase(S);
12470   HasRecMap.erase(S);
12471   MinTrailingZerosCache.erase(S);
12472 
12473   for (auto I = PredicatedSCEVRewrites.begin();
12474        I != PredicatedSCEVRewrites.end();) {
12475     std::pair<const SCEV *, const Loop *> Entry = I->first;
12476     if (Entry.first == S)
12477       PredicatedSCEVRewrites.erase(I++);
12478     else
12479       ++I;
12480   }
12481 
12482   auto RemoveSCEVFromBackedgeMap =
12483       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12484         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12485           BackedgeTakenInfo &BEInfo = I->second;
12486           if (BEInfo.hasOperand(S, this)) {
12487             BEInfo.clear();
12488             Map.erase(I++);
12489           } else
12490             ++I;
12491         }
12492       };
12493 
12494   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12495   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12496 }
12497 
12498 void
12499 ScalarEvolution::getUsedLoops(const SCEV *S,
12500                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12501   struct FindUsedLoops {
12502     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12503         : LoopsUsed(LoopsUsed) {}
12504     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12505     bool follow(const SCEV *S) {
12506       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12507         LoopsUsed.insert(AR->getLoop());
12508       return true;
12509     }
12510 
12511     bool isDone() const { return false; }
12512   };
12513 
12514   FindUsedLoops F(LoopsUsed);
12515   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12516 }
12517 
12518 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12519   SmallPtrSet<const Loop *, 8> LoopsUsed;
12520   getUsedLoops(S, LoopsUsed);
12521   for (auto *L : LoopsUsed)
12522     LoopUsers[L].push_back(S);
12523 }
12524 
12525 void ScalarEvolution::verify() const {
12526   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12527   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12528 
12529   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12530 
12531   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12532   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12533     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12534 
12535     const SCEV *visitConstant(const SCEVConstant *Constant) {
12536       return SE.getConstant(Constant->getAPInt());
12537     }
12538 
12539     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12540       return SE.getUnknown(Expr->getValue());
12541     }
12542 
12543     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12544       return SE.getCouldNotCompute();
12545     }
12546   };
12547 
12548   SCEVMapper SCM(SE2);
12549 
12550   while (!LoopStack.empty()) {
12551     auto *L = LoopStack.pop_back_val();
12552     llvm::append_range(LoopStack, *L);
12553 
12554     auto *CurBECount = SCM.visit(
12555         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12556     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12557 
12558     if (CurBECount == SE2.getCouldNotCompute() ||
12559         NewBECount == SE2.getCouldNotCompute()) {
12560       // NB! This situation is legal, but is very suspicious -- whatever pass
12561       // change the loop to make a trip count go from could not compute to
12562       // computable or vice-versa *should have* invalidated SCEV.  However, we
12563       // choose not to assert here (for now) since we don't want false
12564       // positives.
12565       continue;
12566     }
12567 
12568     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12569       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12570       // not propagate undef aggressively).  This means we can (and do) fail
12571       // verification in cases where a transform makes the trip count of a loop
12572       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12573       // both cases the loop iterates "undef" times, but SCEV thinks we
12574       // increased the trip count of the loop by 1 incorrectly.
12575       continue;
12576     }
12577 
12578     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12579         SE.getTypeSizeInBits(NewBECount->getType()))
12580       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12581     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12582              SE.getTypeSizeInBits(NewBECount->getType()))
12583       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12584 
12585     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12586 
12587     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12588     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12589       dbgs() << "Trip Count for " << *L << " Changed!\n";
12590       dbgs() << "Old: " << *CurBECount << "\n";
12591       dbgs() << "New: " << *NewBECount << "\n";
12592       dbgs() << "Delta: " << *Delta << "\n";
12593       std::abort();
12594     }
12595   }
12596 
12597   // Collect all valid loops currently in LoopInfo.
12598   SmallPtrSet<Loop *, 32> ValidLoops;
12599   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12600   while (!Worklist.empty()) {
12601     Loop *L = Worklist.pop_back_val();
12602     if (ValidLoops.contains(L))
12603       continue;
12604     ValidLoops.insert(L);
12605     Worklist.append(L->begin(), L->end());
12606   }
12607   // Check for SCEV expressions referencing invalid/deleted loops.
12608   for (auto &KV : ValueExprMap) {
12609     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12610     if (!AR)
12611       continue;
12612     assert(ValidLoops.contains(AR->getLoop()) &&
12613            "AddRec references invalid loop");
12614   }
12615 }
12616 
12617 bool ScalarEvolution::invalidate(
12618     Function &F, const PreservedAnalyses &PA,
12619     FunctionAnalysisManager::Invalidator &Inv) {
12620   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12621   // of its dependencies is invalidated.
12622   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12623   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12624          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12625          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12626          Inv.invalidate<LoopAnalysis>(F, PA);
12627 }
12628 
12629 AnalysisKey ScalarEvolutionAnalysis::Key;
12630 
12631 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12632                                              FunctionAnalysisManager &AM) {
12633   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12634                          AM.getResult<AssumptionAnalysis>(F),
12635                          AM.getResult<DominatorTreeAnalysis>(F),
12636                          AM.getResult<LoopAnalysis>(F));
12637 }
12638 
12639 PreservedAnalyses
12640 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12641   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12642   return PreservedAnalyses::all();
12643 }
12644 
12645 PreservedAnalyses
12646 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12647   // For compatibility with opt's -analyze feature under legacy pass manager
12648   // which was not ported to NPM. This keeps tests using
12649   // update_analyze_test_checks.py working.
12650   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12651      << F.getName() << "':\n";
12652   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12653   return PreservedAnalyses::all();
12654 }
12655 
12656 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12657                       "Scalar Evolution Analysis", false, true)
12658 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12659 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12660 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12661 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12662 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12663                     "Scalar Evolution Analysis", false, true)
12664 
12665 char ScalarEvolutionWrapperPass::ID = 0;
12666 
12667 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12668   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12669 }
12670 
12671 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12672   SE.reset(new ScalarEvolution(
12673       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12674       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12675       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12676       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12677   return false;
12678 }
12679 
12680 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12681 
12682 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12683   SE->print(OS);
12684 }
12685 
12686 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12687   if (!VerifySCEV)
12688     return;
12689 
12690   SE->verify();
12691 }
12692 
12693 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12694   AU.setPreservesAll();
12695   AU.addRequiredTransitive<AssumptionCacheTracker>();
12696   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12697   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12698   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12699 }
12700 
12701 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12702                                                         const SCEV *RHS) {
12703   FoldingSetNodeID ID;
12704   assert(LHS->getType() == RHS->getType() &&
12705          "Type mismatch between LHS and RHS");
12706   // Unique this node based on the arguments
12707   ID.AddInteger(SCEVPredicate::P_Equal);
12708   ID.AddPointer(LHS);
12709   ID.AddPointer(RHS);
12710   void *IP = nullptr;
12711   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12712     return S;
12713   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12714       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12715   UniquePreds.InsertNode(Eq, IP);
12716   return Eq;
12717 }
12718 
12719 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12720     const SCEVAddRecExpr *AR,
12721     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12722   FoldingSetNodeID ID;
12723   // Unique this node based on the arguments
12724   ID.AddInteger(SCEVPredicate::P_Wrap);
12725   ID.AddPointer(AR);
12726   ID.AddInteger(AddedFlags);
12727   void *IP = nullptr;
12728   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12729     return S;
12730   auto *OF = new (SCEVAllocator)
12731       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12732   UniquePreds.InsertNode(OF, IP);
12733   return OF;
12734 }
12735 
12736 namespace {
12737 
12738 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12739 public:
12740 
12741   /// Rewrites \p S in the context of a loop L and the SCEV predication
12742   /// infrastructure.
12743   ///
12744   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12745   /// equivalences present in \p Pred.
12746   ///
12747   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12748   /// \p NewPreds such that the result will be an AddRecExpr.
12749   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12750                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12751                              SCEVUnionPredicate *Pred) {
12752     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12753     return Rewriter.visit(S);
12754   }
12755 
12756   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12757     if (Pred) {
12758       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12759       for (auto *Pred : ExprPreds)
12760         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12761           if (IPred->getLHS() == Expr)
12762             return IPred->getRHS();
12763     }
12764     return convertToAddRecWithPreds(Expr);
12765   }
12766 
12767   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12768     const SCEV *Operand = visit(Expr->getOperand());
12769     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12770     if (AR && AR->getLoop() == L && AR->isAffine()) {
12771       // This couldn't be folded because the operand didn't have the nuw
12772       // flag. Add the nusw flag as an assumption that we could make.
12773       const SCEV *Step = AR->getStepRecurrence(SE);
12774       Type *Ty = Expr->getType();
12775       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12776         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12777                                 SE.getSignExtendExpr(Step, Ty), L,
12778                                 AR->getNoWrapFlags());
12779     }
12780     return SE.getZeroExtendExpr(Operand, Expr->getType());
12781   }
12782 
12783   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12784     const SCEV *Operand = visit(Expr->getOperand());
12785     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12786     if (AR && AR->getLoop() == L && AR->isAffine()) {
12787       // This couldn't be folded because the operand didn't have the nsw
12788       // flag. Add the nssw flag as an assumption that we could make.
12789       const SCEV *Step = AR->getStepRecurrence(SE);
12790       Type *Ty = Expr->getType();
12791       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12792         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12793                                 SE.getSignExtendExpr(Step, Ty), L,
12794                                 AR->getNoWrapFlags());
12795     }
12796     return SE.getSignExtendExpr(Operand, Expr->getType());
12797   }
12798 
12799 private:
12800   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12801                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12802                         SCEVUnionPredicate *Pred)
12803       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12804 
12805   bool addOverflowAssumption(const SCEVPredicate *P) {
12806     if (!NewPreds) {
12807       // Check if we've already made this assumption.
12808       return Pred && Pred->implies(P);
12809     }
12810     NewPreds->insert(P);
12811     return true;
12812   }
12813 
12814   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12815                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12816     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12817     return addOverflowAssumption(A);
12818   }
12819 
12820   // If \p Expr represents a PHINode, we try to see if it can be represented
12821   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12822   // to add this predicate as a runtime overflow check, we return the AddRec.
12823   // If \p Expr does not meet these conditions (is not a PHI node, or we
12824   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12825   // return \p Expr.
12826   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12827     if (!isa<PHINode>(Expr->getValue()))
12828       return Expr;
12829     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12830     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12831     if (!PredicatedRewrite)
12832       return Expr;
12833     for (auto *P : PredicatedRewrite->second){
12834       // Wrap predicates from outer loops are not supported.
12835       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12836         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12837         if (L != AR->getLoop())
12838           return Expr;
12839       }
12840       if (!addOverflowAssumption(P))
12841         return Expr;
12842     }
12843     return PredicatedRewrite->first;
12844   }
12845 
12846   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12847   SCEVUnionPredicate *Pred;
12848   const Loop *L;
12849 };
12850 
12851 } // end anonymous namespace
12852 
12853 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12854                                                    SCEVUnionPredicate &Preds) {
12855   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12856 }
12857 
12858 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12859     const SCEV *S, const Loop *L,
12860     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12861   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12862   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12863   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12864 
12865   if (!AddRec)
12866     return nullptr;
12867 
12868   // Since the transformation was successful, we can now transfer the SCEV
12869   // predicates.
12870   for (auto *P : TransformPreds)
12871     Preds.insert(P);
12872 
12873   return AddRec;
12874 }
12875 
12876 /// SCEV predicates
12877 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12878                              SCEVPredicateKind Kind)
12879     : FastID(ID), Kind(Kind) {}
12880 
12881 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12882                                        const SCEV *LHS, const SCEV *RHS)
12883     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12884   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12885   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12886 }
12887 
12888 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12889   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12890 
12891   if (!Op)
12892     return false;
12893 
12894   return Op->LHS == LHS && Op->RHS == RHS;
12895 }
12896 
12897 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12898 
12899 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12900 
12901 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12902   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12903 }
12904 
12905 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12906                                      const SCEVAddRecExpr *AR,
12907                                      IncrementWrapFlags Flags)
12908     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12909 
12910 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12911 
12912 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12913   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12914 
12915   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12916 }
12917 
12918 bool SCEVWrapPredicate::isAlwaysTrue() const {
12919   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12920   IncrementWrapFlags IFlags = Flags;
12921 
12922   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12923     IFlags = clearFlags(IFlags, IncrementNSSW);
12924 
12925   return IFlags == IncrementAnyWrap;
12926 }
12927 
12928 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12929   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12930   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12931     OS << "<nusw>";
12932   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12933     OS << "<nssw>";
12934   OS << "\n";
12935 }
12936 
12937 SCEVWrapPredicate::IncrementWrapFlags
12938 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12939                                    ScalarEvolution &SE) {
12940   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12941   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12942 
12943   // We can safely transfer the NSW flag as NSSW.
12944   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12945     ImpliedFlags = IncrementNSSW;
12946 
12947   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12948     // If the increment is positive, the SCEV NUW flag will also imply the
12949     // WrapPredicate NUSW flag.
12950     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12951       if (Step->getValue()->getValue().isNonNegative())
12952         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12953   }
12954 
12955   return ImpliedFlags;
12956 }
12957 
12958 /// Union predicates don't get cached so create a dummy set ID for it.
12959 SCEVUnionPredicate::SCEVUnionPredicate()
12960     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12961 
12962 bool SCEVUnionPredicate::isAlwaysTrue() const {
12963   return all_of(Preds,
12964                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12965 }
12966 
12967 ArrayRef<const SCEVPredicate *>
12968 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12969   auto I = SCEVToPreds.find(Expr);
12970   if (I == SCEVToPreds.end())
12971     return ArrayRef<const SCEVPredicate *>();
12972   return I->second;
12973 }
12974 
12975 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12976   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12977     return all_of(Set->Preds,
12978                   [this](const SCEVPredicate *I) { return this->implies(I); });
12979 
12980   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12981   if (ScevPredsIt == SCEVToPreds.end())
12982     return false;
12983   auto &SCEVPreds = ScevPredsIt->second;
12984 
12985   return any_of(SCEVPreds,
12986                 [N](const SCEVPredicate *I) { return I->implies(N); });
12987 }
12988 
12989 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12990 
12991 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12992   for (auto Pred : Preds)
12993     Pred->print(OS, Depth);
12994 }
12995 
12996 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12997   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12998     for (auto Pred : Set->Preds)
12999       add(Pred);
13000     return;
13001   }
13002 
13003   if (implies(N))
13004     return;
13005 
13006   const SCEV *Key = N->getExpr();
13007   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13008                 " associated expression!");
13009 
13010   SCEVToPreds[Key].push_back(N);
13011   Preds.push_back(N);
13012 }
13013 
13014 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13015                                                      Loop &L)
13016     : SE(SE), L(L) {}
13017 
13018 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13019   const SCEV *Expr = SE.getSCEV(V);
13020   RewriteEntry &Entry = RewriteMap[Expr];
13021 
13022   // If we already have an entry and the version matches, return it.
13023   if (Entry.second && Generation == Entry.first)
13024     return Entry.second;
13025 
13026   // We found an entry but it's stale. Rewrite the stale entry
13027   // according to the current predicate.
13028   if (Entry.second)
13029     Expr = Entry.second;
13030 
13031   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13032   Entry = {Generation, NewSCEV};
13033 
13034   return NewSCEV;
13035 }
13036 
13037 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13038   if (!BackedgeCount) {
13039     SCEVUnionPredicate BackedgePred;
13040     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13041     addPredicate(BackedgePred);
13042   }
13043   return BackedgeCount;
13044 }
13045 
13046 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13047   if (Preds.implies(&Pred))
13048     return;
13049   Preds.add(&Pred);
13050   updateGeneration();
13051 }
13052 
13053 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13054   return Preds;
13055 }
13056 
13057 void PredicatedScalarEvolution::updateGeneration() {
13058   // If the generation number wrapped recompute everything.
13059   if (++Generation == 0) {
13060     for (auto &II : RewriteMap) {
13061       const SCEV *Rewritten = II.second.second;
13062       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13063     }
13064   }
13065 }
13066 
13067 void PredicatedScalarEvolution::setNoOverflow(
13068     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13069   const SCEV *Expr = getSCEV(V);
13070   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13071 
13072   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13073 
13074   // Clear the statically implied flags.
13075   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13076   addPredicate(*SE.getWrapPredicate(AR, Flags));
13077 
13078   auto II = FlagsMap.insert({V, Flags});
13079   if (!II.second)
13080     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13081 }
13082 
13083 bool PredicatedScalarEvolution::hasNoOverflow(
13084     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13085   const SCEV *Expr = getSCEV(V);
13086   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13087 
13088   Flags = SCEVWrapPredicate::clearFlags(
13089       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13090 
13091   auto II = FlagsMap.find(V);
13092 
13093   if (II != FlagsMap.end())
13094     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13095 
13096   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13097 }
13098 
13099 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13100   const SCEV *Expr = this->getSCEV(V);
13101   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13102   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13103 
13104   if (!New)
13105     return nullptr;
13106 
13107   for (auto *P : NewPreds)
13108     Preds.add(P);
13109 
13110   updateGeneration();
13111   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13112   return New;
13113 }
13114 
13115 PredicatedScalarEvolution::PredicatedScalarEvolution(
13116     const PredicatedScalarEvolution &Init)
13117     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13118       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13119   for (auto I : Init.FlagsMap)
13120     FlagsMap.insert(I);
13121 }
13122 
13123 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13124   // For each block.
13125   for (auto *BB : L.getBlocks())
13126     for (auto &I : *BB) {
13127       if (!SE.isSCEVable(I.getType()))
13128         continue;
13129 
13130       auto *Expr = SE.getSCEV(&I);
13131       auto II = RewriteMap.find(Expr);
13132 
13133       if (II == RewriteMap.end())
13134         continue;
13135 
13136       // Don't print things that are not interesting.
13137       if (II->second.second == Expr)
13138         continue;
13139 
13140       OS.indent(Depth) << "[PSE]" << I << ":\n";
13141       OS.indent(Depth + 2) << *Expr << "\n";
13142       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13143     }
13144 }
13145 
13146 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13147 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13148 // for URem with constant power-of-2 second operands.
13149 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13150 // 4, A / B becomes X / 8).
13151 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13152                                 const SCEV *&RHS) {
13153   // Try to match 'zext (trunc A to iB) to iY', which is used
13154   // for URem with constant power-of-2 second operands. Make sure the size of
13155   // the operand A matches the size of the whole expressions.
13156   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13157     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13158       LHS = Trunc->getOperand();
13159       if (LHS->getType() != Expr->getType())
13160         LHS = getZeroExtendExpr(LHS, Expr->getType());
13161       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13162                         << getTypeSizeInBits(Trunc->getType()));
13163       return true;
13164     }
13165   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13166   if (Add == nullptr || Add->getNumOperands() != 2)
13167     return false;
13168 
13169   const SCEV *A = Add->getOperand(1);
13170   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13171 
13172   if (Mul == nullptr)
13173     return false;
13174 
13175   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13176     // (SomeExpr + (-(SomeExpr / B) * B)).
13177     if (Expr == getURemExpr(A, B)) {
13178       LHS = A;
13179       RHS = B;
13180       return true;
13181     }
13182     return false;
13183   };
13184 
13185   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13186   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13187     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13188            MatchURemWithDivisor(Mul->getOperand(2));
13189 
13190   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13191   if (Mul->getNumOperands() == 2)
13192     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13193            MatchURemWithDivisor(Mul->getOperand(0)) ||
13194            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13195            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13196   return false;
13197 }
13198 
13199 const SCEV *
13200 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13201   SmallVector<BasicBlock*, 16> ExitingBlocks;
13202   L->getExitingBlocks(ExitingBlocks);
13203 
13204   // Form an expression for the maximum exit count possible for this loop. We
13205   // merge the max and exact information to approximate a version of
13206   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13207   SmallVector<const SCEV*, 4> ExitCounts;
13208   for (BasicBlock *ExitingBB : ExitingBlocks) {
13209     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13210     if (isa<SCEVCouldNotCompute>(ExitCount))
13211       ExitCount = getExitCount(L, ExitingBB,
13212                                   ScalarEvolution::ConstantMaximum);
13213     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13214       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13215              "We should only have known counts for exiting blocks that "
13216              "dominate latch!");
13217       ExitCounts.push_back(ExitCount);
13218     }
13219   }
13220   if (ExitCounts.empty())
13221     return getCouldNotCompute();
13222   return getUMinFromMismatchedTypes(ExitCounts);
13223 }
13224 
13225 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13226 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13227 /// we cannot guarantee that the replacement is loop invariant in the loop of
13228 /// the AddRec.
13229 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13230   ValueToSCEVMapTy &Map;
13231 
13232 public:
13233   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13234       : SCEVRewriteVisitor(SE), Map(M) {}
13235 
13236   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13237 
13238   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13239     auto I = Map.find(Expr->getValue());
13240     if (I == Map.end())
13241       return Expr;
13242     return I->second;
13243   }
13244 };
13245 
13246 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13247   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13248                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13249     if (!isa<SCEVUnknown>(LHS)) {
13250       std::swap(LHS, RHS);
13251       Predicate = CmpInst::getSwappedPredicate(Predicate);
13252     }
13253 
13254     // For now, limit to conditions that provide information about unknown
13255     // expressions.
13256     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13257     if (!LHSUnknown)
13258       return;
13259 
13260     // TODO: use information from more predicates.
13261     switch (Predicate) {
13262     case CmpInst::ICMP_ULT: {
13263       if (!containsAddRecurrence(RHS)) {
13264         const SCEV *Base = LHS;
13265         auto I = RewriteMap.find(LHSUnknown->getValue());
13266         if (I != RewriteMap.end())
13267           Base = I->second;
13268 
13269         RewriteMap[LHSUnknown->getValue()] =
13270             getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType())));
13271       }
13272       break;
13273     }
13274     case CmpInst::ICMP_ULE: {
13275       if (!containsAddRecurrence(RHS)) {
13276         const SCEV *Base = LHS;
13277         auto I = RewriteMap.find(LHSUnknown->getValue());
13278         if (I != RewriteMap.end())
13279           Base = I->second;
13280         RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS);
13281       }
13282       break;
13283     }
13284     case CmpInst::ICMP_EQ:
13285       if (isa<SCEVConstant>(RHS))
13286         RewriteMap[LHSUnknown->getValue()] = RHS;
13287       break;
13288     case CmpInst::ICMP_NE:
13289       if (isa<SCEVConstant>(RHS) &&
13290           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13291         RewriteMap[LHSUnknown->getValue()] =
13292             getUMaxExpr(LHS, getOne(RHS->getType()));
13293       break;
13294     default:
13295       break;
13296     }
13297   };
13298   // Starting at the loop predecessor, climb up the predecessor chain, as long
13299   // as there are predecessors that can be found that have unique successors
13300   // leading to the original header.
13301   // TODO: share this logic with isLoopEntryGuardedByCond.
13302   ValueToSCEVMapTy RewriteMap;
13303   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13304            L->getLoopPredecessor(), L->getHeader());
13305        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13306 
13307     const BranchInst *LoopEntryPredicate =
13308         dyn_cast<BranchInst>(Pair.first->getTerminator());
13309     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13310       continue;
13311 
13312     // TODO: use information from more complex conditions, e.g. AND expressions.
13313     auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
13314     if (!Cmp)
13315       continue;
13316 
13317     auto Predicate = Cmp->getPredicate();
13318     if (LoopEntryPredicate->getSuccessor(1) == Pair.second)
13319       Predicate = CmpInst::getInversePredicate(Predicate);
13320     CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13321                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13322   }
13323 
13324   // Also collect information from assumptions dominating the loop.
13325   for (auto &AssumeVH : AC.assumptions()) {
13326     if (!AssumeVH)
13327       continue;
13328     auto *AssumeI = cast<CallInst>(AssumeVH);
13329     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13330     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13331       continue;
13332     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13333                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13334   }
13335 
13336   if (RewriteMap.empty())
13337     return Expr;
13338   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13339   return Rewriter.visit(Expr);
13340 }
13341