1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/Dominators.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Assembly/Writer.h" 72 #include "llvm/Target/TargetData.h" 73 #include "llvm/Transforms/Scalar.h" 74 #include "llvm/Support/CFG.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/GetElementPtrTypeIterator.h" 79 #include "llvm/Support/InstIterator.h" 80 #include "llvm/Support/ManagedStatic.h" 81 #include "llvm/Support/MathExtras.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/ADT/Statistic.h" 84 #include "llvm/ADT/STLExtras.h" 85 #include <ostream> 86 #include <algorithm> 87 #include <cmath> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant derived loop"), 103 cl::init(100)); 104 105 static RegisterPass<ScalarEvolution> 106 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 107 char ScalarEvolution::ID = 0; 108 109 //===----------------------------------------------------------------------===// 110 // SCEV class definitions 111 //===----------------------------------------------------------------------===// 112 113 //===----------------------------------------------------------------------===// 114 // Implementation of the SCEV class. 115 // 116 SCEV::~SCEV() {} 117 void SCEV::dump() const { 118 print(errs()); 119 errs() << '\n'; 120 } 121 122 void SCEV::print(std::ostream &o) const { 123 raw_os_ostream OS(o); 124 print(OS); 125 } 126 127 bool SCEV::isZero() const { 128 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 129 return SC->getValue()->isZero(); 130 return false; 131 } 132 133 134 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 135 SCEVCouldNotCompute::~SCEVCouldNotCompute() {} 136 137 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 138 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 139 return false; 140 } 141 142 const Type *SCEVCouldNotCompute::getType() const { 143 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 144 return 0; 145 } 146 147 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 148 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 149 return false; 150 } 151 152 SCEVHandle SCEVCouldNotCompute:: 153 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 154 const SCEVHandle &Conc, 155 ScalarEvolution &SE) const { 156 return this; 157 } 158 159 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 160 OS << "***COULDNOTCOMPUTE***"; 161 } 162 163 bool SCEVCouldNotCompute::classof(const SCEV *S) { 164 return S->getSCEVType() == scCouldNotCompute; 165 } 166 167 168 // SCEVConstants - Only allow the creation of one SCEVConstant for any 169 // particular value. Don't use a SCEVHandle here, or else the object will 170 // never be deleted! 171 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 172 173 174 SCEVConstant::~SCEVConstant() { 175 SCEVConstants->erase(V); 176 } 177 178 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 179 SCEVConstant *&R = (*SCEVConstants)[V]; 180 if (R == 0) R = new SCEVConstant(V); 181 return R; 182 } 183 184 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 185 return getConstant(ConstantInt::get(Val)); 186 } 187 188 const Type *SCEVConstant::getType() const { return V->getType(); } 189 190 void SCEVConstant::print(raw_ostream &OS) const { 191 WriteAsOperand(OS, V, false); 192 } 193 194 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy, 195 const SCEVHandle &op, const Type *ty) 196 : SCEV(SCEVTy), Op(op), Ty(ty) {} 197 198 SCEVCastExpr::~SCEVCastExpr() {} 199 200 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 201 return Op->dominates(BB, DT); 202 } 203 204 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 205 // particular input. Don't use a SCEVHandle here, or else the object will 206 // never be deleted! 207 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 208 SCEVTruncateExpr*> > SCEVTruncates; 209 210 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 211 : SCEVCastExpr(scTruncate, op, ty) { 212 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 213 (Ty->isInteger() || isa<PointerType>(Ty)) && 214 "Cannot truncate non-integer value!"); 215 } 216 217 SCEVTruncateExpr::~SCEVTruncateExpr() { 218 SCEVTruncates->erase(std::make_pair(Op, Ty)); 219 } 220 221 void SCEVTruncateExpr::print(raw_ostream &OS) const { 222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 223 } 224 225 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 226 // particular input. Don't use a SCEVHandle here, or else the object will never 227 // be deleted! 228 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 229 SCEVZeroExtendExpr*> > SCEVZeroExtends; 230 231 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 232 : SCEVCastExpr(scZeroExtend, op, ty) { 233 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 234 (Ty->isInteger() || isa<PointerType>(Ty)) && 235 "Cannot zero extend non-integer value!"); 236 } 237 238 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 239 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 240 } 241 242 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 243 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 244 } 245 246 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 247 // particular input. Don't use a SCEVHandle here, or else the object will never 248 // be deleted! 249 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 250 SCEVSignExtendExpr*> > SCEVSignExtends; 251 252 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 253 : SCEVCastExpr(scSignExtend, op, ty) { 254 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 255 (Ty->isInteger() || isa<PointerType>(Ty)) && 256 "Cannot sign extend non-integer value!"); 257 } 258 259 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 260 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 261 } 262 263 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 264 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 265 } 266 267 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 268 // particular input. Don't use a SCEVHandle here, or else the object will never 269 // be deleted! 270 static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >, 271 SCEVCommutativeExpr*> > SCEVCommExprs; 272 273 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 274 SCEVCommExprs->erase(std::make_pair(getSCEVType(), 275 std::vector<SCEV*>(Operands.begin(), 276 Operands.end()))); 277 } 278 279 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 280 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 281 const char *OpStr = getOperationStr(); 282 OS << "(" << *Operands[0]; 283 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 284 OS << OpStr << *Operands[i]; 285 OS << ")"; 286 } 287 288 SCEVHandle SCEVCommutativeExpr:: 289 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 290 const SCEVHandle &Conc, 291 ScalarEvolution &SE) const { 292 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 293 SCEVHandle H = 294 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 295 if (H != getOperand(i)) { 296 std::vector<SCEVHandle> NewOps; 297 NewOps.reserve(getNumOperands()); 298 for (unsigned j = 0; j != i; ++j) 299 NewOps.push_back(getOperand(j)); 300 NewOps.push_back(H); 301 for (++i; i != e; ++i) 302 NewOps.push_back(getOperand(i)-> 303 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 304 305 if (isa<SCEVAddExpr>(this)) 306 return SE.getAddExpr(NewOps); 307 else if (isa<SCEVMulExpr>(this)) 308 return SE.getMulExpr(NewOps); 309 else if (isa<SCEVSMaxExpr>(this)) 310 return SE.getSMaxExpr(NewOps); 311 else if (isa<SCEVUMaxExpr>(this)) 312 return SE.getUMaxExpr(NewOps); 313 else 314 assert(0 && "Unknown commutative expr!"); 315 } 316 } 317 return this; 318 } 319 320 bool SCEVCommutativeExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 321 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 322 if (!getOperand(i)->dominates(BB, DT)) 323 return false; 324 } 325 return true; 326 } 327 328 329 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 330 // input. Don't use a SCEVHandle here, or else the object will never be 331 // deleted! 332 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 333 SCEVUDivExpr*> > SCEVUDivs; 334 335 SCEVUDivExpr::~SCEVUDivExpr() { 336 SCEVUDivs->erase(std::make_pair(LHS, RHS)); 337 } 338 339 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 340 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 341 } 342 343 void SCEVUDivExpr::print(raw_ostream &OS) const { 344 OS << "(" << *LHS << " /u " << *RHS << ")"; 345 } 346 347 const Type *SCEVUDivExpr::getType() const { 348 return LHS->getType(); 349 } 350 351 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 352 // particular input. Don't use a SCEVHandle here, or else the object will never 353 // be deleted! 354 static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >, 355 SCEVAddRecExpr*> > SCEVAddRecExprs; 356 357 SCEVAddRecExpr::~SCEVAddRecExpr() { 358 SCEVAddRecExprs->erase(std::make_pair(L, 359 std::vector<SCEV*>(Operands.begin(), 360 Operands.end()))); 361 } 362 363 bool SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 364 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 365 if (!getOperand(i)->dominates(BB, DT)) 366 return false; 367 } 368 return true; 369 } 370 371 372 SCEVHandle SCEVAddRecExpr:: 373 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 374 const SCEVHandle &Conc, 375 ScalarEvolution &SE) const { 376 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 377 SCEVHandle H = 378 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 379 if (H != getOperand(i)) { 380 std::vector<SCEVHandle> NewOps; 381 NewOps.reserve(getNumOperands()); 382 for (unsigned j = 0; j != i; ++j) 383 NewOps.push_back(getOperand(j)); 384 NewOps.push_back(H); 385 for (++i; i != e; ++i) 386 NewOps.push_back(getOperand(i)-> 387 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 388 389 return SE.getAddRecExpr(NewOps, L); 390 } 391 } 392 return this; 393 } 394 395 396 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 397 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 398 // contain L and if the start is invariant. 399 return !QueryLoop->contains(L->getHeader()) && 400 getOperand(0)->isLoopInvariant(QueryLoop); 401 } 402 403 404 void SCEVAddRecExpr::print(raw_ostream &OS) const { 405 OS << "{" << *Operands[0]; 406 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 407 OS << ",+," << *Operands[i]; 408 OS << "}<" << L->getHeader()->getName() + ">"; 409 } 410 411 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 412 // value. Don't use a SCEVHandle here, or else the object will never be 413 // deleted! 414 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 415 416 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 417 418 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 419 // All non-instruction values are loop invariant. All instructions are loop 420 // invariant if they are not contained in the specified loop. 421 if (Instruction *I = dyn_cast<Instruction>(V)) 422 return !L->contains(I->getParent()); 423 return true; 424 } 425 426 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 427 if (Instruction *I = dyn_cast<Instruction>(getValue())) 428 return DT->dominates(I->getParent(), BB); 429 return true; 430 } 431 432 const Type *SCEVUnknown::getType() const { 433 return V->getType(); 434 } 435 436 void SCEVUnknown::print(raw_ostream &OS) const { 437 if (isa<PointerType>(V->getType())) 438 OS << "(ptrtoint " << *V->getType() << " "; 439 WriteAsOperand(OS, V, false); 440 if (isa<PointerType>(V->getType())) 441 OS << " to iPTR)"; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 struct VISIBILITY_HIDDEN SCEVComplexityCompare { 453 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 454 return LHS->getSCEVType() < RHS->getSCEVType(); 455 } 456 }; 457 } 458 459 /// GroupByComplexity - Given a list of SCEV objects, order them by their 460 /// complexity, and group objects of the same complexity together by value. 461 /// When this routine is finished, we know that any duplicates in the vector are 462 /// consecutive and that complexity is monotonically increasing. 463 /// 464 /// Note that we go take special precautions to ensure that we get determinstic 465 /// results from this routine. In other words, we don't want the results of 466 /// this to depend on where the addresses of various SCEV objects happened to 467 /// land in memory. 468 /// 469 static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { 470 if (Ops.size() < 2) return; // Noop 471 if (Ops.size() == 2) { 472 // This is the common case, which also happens to be trivially simple. 473 // Special case it. 474 if (SCEVComplexityCompare()(Ops[1], Ops[0])) 475 std::swap(Ops[0], Ops[1]); 476 return; 477 } 478 479 // Do the rough sort by complexity. 480 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); 481 482 // Now that we are sorted by complexity, group elements of the same 483 // complexity. Note that this is, at worst, N^2, but the vector is likely to 484 // be extremely short in practice. Note that we take this approach because we 485 // do not want to depend on the addresses of the objects we are grouping. 486 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 487 SCEV *S = Ops[i]; 488 unsigned Complexity = S->getSCEVType(); 489 490 // If there are any objects of the same complexity and same value as this 491 // one, group them. 492 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 493 if (Ops[j] == S) { // Found a duplicate. 494 // Move it to immediately after i'th element. 495 std::swap(Ops[i+1], Ops[j]); 496 ++i; // no need to rescan it. 497 if (i == e-2) return; // Done! 498 } 499 } 500 } 501 } 502 503 504 505 //===----------------------------------------------------------------------===// 506 // Simple SCEV method implementations 507 //===----------------------------------------------------------------------===// 508 509 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 510 // Assume, K > 0. 511 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, 512 ScalarEvolution &SE, 513 const Type* ResultTy) { 514 // Handle the simplest case efficiently. 515 if (K == 1) 516 return SE.getTruncateOrZeroExtend(It, ResultTy); 517 518 // We are using the following formula for BC(It, K): 519 // 520 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 521 // 522 // Suppose, W is the bitwidth of the return value. We must be prepared for 523 // overflow. Hence, we must assure that the result of our computation is 524 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 525 // safe in modular arithmetic. 526 // 527 // However, this code doesn't use exactly that formula; the formula it uses 528 // is something like the following, where T is the number of factors of 2 in 529 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 530 // exponentiation: 531 // 532 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 533 // 534 // This formula is trivially equivalent to the previous formula. However, 535 // this formula can be implemented much more efficiently. The trick is that 536 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 537 // arithmetic. To do exact division in modular arithmetic, all we have 538 // to do is multiply by the inverse. Therefore, this step can be done at 539 // width W. 540 // 541 // The next issue is how to safely do the division by 2^T. The way this 542 // is done is by doing the multiplication step at a width of at least W + T 543 // bits. This way, the bottom W+T bits of the product are accurate. Then, 544 // when we perform the division by 2^T (which is equivalent to a right shift 545 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 546 // truncated out after the division by 2^T. 547 // 548 // In comparison to just directly using the first formula, this technique 549 // is much more efficient; using the first formula requires W * K bits, 550 // but this formula less than W + K bits. Also, the first formula requires 551 // a division step, whereas this formula only requires multiplies and shifts. 552 // 553 // It doesn't matter whether the subtraction step is done in the calculation 554 // width or the input iteration count's width; if the subtraction overflows, 555 // the result must be zero anyway. We prefer here to do it in the width of 556 // the induction variable because it helps a lot for certain cases; CodeGen 557 // isn't smart enough to ignore the overflow, which leads to much less 558 // efficient code if the width of the subtraction is wider than the native 559 // register width. 560 // 561 // (It's possible to not widen at all by pulling out factors of 2 before 562 // the multiplication; for example, K=2 can be calculated as 563 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 564 // extra arithmetic, so it's not an obvious win, and it gets 565 // much more complicated for K > 3.) 566 567 // Protection from insane SCEVs; this bound is conservative, 568 // but it probably doesn't matter. 569 if (K > 1000) 570 return SE.getCouldNotCompute(); 571 572 unsigned W = SE.getTypeSizeInBits(ResultTy); 573 574 // Calculate K! / 2^T and T; we divide out the factors of two before 575 // multiplying for calculating K! / 2^T to avoid overflow. 576 // Other overflow doesn't matter because we only care about the bottom 577 // W bits of the result. 578 APInt OddFactorial(W, 1); 579 unsigned T = 1; 580 for (unsigned i = 3; i <= K; ++i) { 581 APInt Mult(W, i); 582 unsigned TwoFactors = Mult.countTrailingZeros(); 583 T += TwoFactors; 584 Mult = Mult.lshr(TwoFactors); 585 OddFactorial *= Mult; 586 } 587 588 // We need at least W + T bits for the multiplication step 589 unsigned CalculationBits = W + T; 590 591 // Calcuate 2^T, at width T+W. 592 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 593 594 // Calculate the multiplicative inverse of K! / 2^T; 595 // this multiplication factor will perform the exact division by 596 // K! / 2^T. 597 APInt Mod = APInt::getSignedMinValue(W+1); 598 APInt MultiplyFactor = OddFactorial.zext(W+1); 599 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 600 MultiplyFactor = MultiplyFactor.trunc(W); 601 602 // Calculate the product, at width T+W 603 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 604 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 605 for (unsigned i = 1; i != K; ++i) { 606 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 607 Dividend = SE.getMulExpr(Dividend, 608 SE.getTruncateOrZeroExtend(S, CalculationTy)); 609 } 610 611 // Divide by 2^T 612 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 613 614 // Truncate the result, and divide by K! / 2^T. 615 616 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 617 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 618 } 619 620 /// evaluateAtIteration - Return the value of this chain of recurrences at 621 /// the specified iteration number. We can evaluate this recurrence by 622 /// multiplying each element in the chain by the binomial coefficient 623 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 624 /// 625 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 626 /// 627 /// where BC(It, k) stands for binomial coefficient. 628 /// 629 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 630 ScalarEvolution &SE) const { 631 SCEVHandle Result = getStart(); 632 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 633 // The computation is correct in the face of overflow provided that the 634 // multiplication is performed _after_ the evaluation of the binomial 635 // coefficient. 636 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType()); 637 if (isa<SCEVCouldNotCompute>(Coeff)) 638 return Coeff; 639 640 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 641 } 642 return Result; 643 } 644 645 //===----------------------------------------------------------------------===// 646 // SCEV Expression folder implementations 647 //===----------------------------------------------------------------------===// 648 649 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) { 650 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 651 "This is not a truncating conversion!"); 652 653 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 654 return getUnknown( 655 ConstantExpr::getTrunc(SC->getValue(), Ty)); 656 657 // trunc(trunc(x)) --> trunc(x) 658 if (SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 659 return getTruncateExpr(ST->getOperand(), Ty); 660 661 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 662 if (SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 663 return getTruncateOrSignExtend(SS->getOperand(), Ty); 664 665 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 666 if (SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 667 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 668 669 // If the input value is a chrec scev made out of constants, truncate 670 // all of the constants. 671 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 672 std::vector<SCEVHandle> Operands; 673 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 674 // FIXME: This should allow truncation of other expression types! 675 if (isa<SCEVConstant>(AddRec->getOperand(i))) 676 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 677 else 678 break; 679 if (Operands.size() == AddRec->getNumOperands()) 680 return getAddRecExpr(Operands, AddRec->getLoop()); 681 } 682 683 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 684 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 685 return Result; 686 } 687 688 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, 689 const Type *Ty) { 690 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 691 "This is not an extending conversion!"); 692 693 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 694 const Type *IntTy = getEffectiveSCEVType(Ty); 695 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 696 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 697 return getUnknown(C); 698 } 699 700 // zext(zext(x)) --> zext(x) 701 if (SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 702 return getZeroExtendExpr(SZ->getOperand(), Ty); 703 704 // If the input value is a chrec scev, and we can prove that the value 705 // did not overflow the old, smaller, value, we can zero extend all of the 706 // operands (often constants). This allows analysis of something like 707 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 708 if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 709 if (AR->isAffine()) { 710 // Check whether the backedge-taken count is SCEVCouldNotCompute. 711 // Note that this serves two purposes: It filters out loops that are 712 // simply not analyzable, and it covers the case where this code is 713 // being called from within backedge-taken count analysis, such that 714 // attempting to ask for the backedge-taken count would likely result 715 // in infinite recursion. In the later case, the analysis code will 716 // cope with a conservative value, and it will take care to purge 717 // that value once it has finished. 718 SCEVHandle BECount = getBackedgeTakenCount(AR->getLoop()); 719 if (!isa<SCEVCouldNotCompute>(BECount)) { 720 // Manually compute the final value for AR, checking for 721 // overflow at each step. 722 SCEVHandle Start = AR->getStart(); 723 SCEVHandle Step = AR->getStepRecurrence(*this); 724 725 // Check whether the backedge-taken count can be losslessly casted to 726 // the addrec's type. The count is always unsigned. 727 SCEVHandle CastedBECount = 728 getTruncateOrZeroExtend(BECount, Start->getType()); 729 if (BECount == 730 getTruncateOrZeroExtend(CastedBECount, BECount->getType())) { 731 const Type *WideTy = 732 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 733 SCEVHandle ZMul = 734 getMulExpr(CastedBECount, 735 getTruncateOrZeroExtend(Step, Start->getType())); 736 // Check whether Start+Step*BECount has no unsigned overflow. 737 if (getZeroExtendExpr(ZMul, WideTy) == 738 getMulExpr(getZeroExtendExpr(CastedBECount, WideTy), 739 getZeroExtendExpr(Step, WideTy))) { 740 SCEVHandle Add = getAddExpr(Start, ZMul); 741 if (getZeroExtendExpr(Add, WideTy) == 742 getAddExpr(getZeroExtendExpr(Start, WideTy), 743 getZeroExtendExpr(ZMul, WideTy))) 744 // Return the expression with the addrec on the outside. 745 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 746 getZeroExtendExpr(Step, Ty), 747 AR->getLoop()); 748 } 749 750 // Similar to above, only this time treat the step value as signed. 751 // This covers loops that count down. 752 SCEVHandle SMul = 753 getMulExpr(CastedBECount, 754 getTruncateOrSignExtend(Step, Start->getType())); 755 // Check whether Start+Step*BECount has no unsigned overflow. 756 if (getSignExtendExpr(SMul, WideTy) == 757 getMulExpr(getZeroExtendExpr(CastedBECount, WideTy), 758 getSignExtendExpr(Step, WideTy))) { 759 SCEVHandle Add = getAddExpr(Start, SMul); 760 if (getZeroExtendExpr(Add, WideTy) == 761 getAddExpr(getZeroExtendExpr(Start, WideTy), 762 getSignExtendExpr(SMul, WideTy))) 763 // Return the expression with the addrec on the outside. 764 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 765 getSignExtendExpr(Step, Ty), 766 AR->getLoop()); 767 } 768 } 769 } 770 } 771 772 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 773 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 774 return Result; 775 } 776 777 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, 778 const Type *Ty) { 779 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 780 "This is not an extending conversion!"); 781 782 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 783 const Type *IntTy = getEffectiveSCEVType(Ty); 784 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 785 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 786 return getUnknown(C); 787 } 788 789 // sext(sext(x)) --> sext(x) 790 if (SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 791 return getSignExtendExpr(SS->getOperand(), Ty); 792 793 // If the input value is a chrec scev, and we can prove that the value 794 // did not overflow the old, smaller, value, we can sign extend all of the 795 // operands (often constants). This allows analysis of something like 796 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 797 if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 798 if (AR->isAffine()) { 799 // Check whether the backedge-taken count is SCEVCouldNotCompute. 800 // Note that this serves two purposes: It filters out loops that are 801 // simply not analyzable, and it covers the case where this code is 802 // being called from within backedge-taken count analysis, such that 803 // attempting to ask for the backedge-taken count would likely result 804 // in infinite recursion. In the later case, the analysis code will 805 // cope with a conservative value, and it will take care to purge 806 // that value once it has finished. 807 SCEVHandle BECount = getBackedgeTakenCount(AR->getLoop()); 808 if (!isa<SCEVCouldNotCompute>(BECount)) { 809 // Manually compute the final value for AR, checking for 810 // overflow at each step. 811 SCEVHandle Start = AR->getStart(); 812 SCEVHandle Step = AR->getStepRecurrence(*this); 813 814 // Check whether the backedge-taken count can be losslessly casted to 815 // the addrec's type. The count needs to be the same whether sign 816 // extended or zero extended. 817 SCEVHandle CastedBECount = 818 getTruncateOrZeroExtend(BECount, Start->getType()); 819 if (BECount == 820 getTruncateOrZeroExtend(CastedBECount, BECount->getType()) && 821 BECount == 822 getTruncateOrSignExtend(CastedBECount, BECount->getType())) { 823 const Type *WideTy = 824 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 825 SCEVHandle SMul = 826 getMulExpr(CastedBECount, 827 getTruncateOrSignExtend(Step, Start->getType())); 828 // Check whether Start+Step*BECount has no signed overflow. 829 if (getSignExtendExpr(SMul, WideTy) == 830 getMulExpr(getSignExtendExpr(CastedBECount, WideTy), 831 getSignExtendExpr(Step, WideTy))) { 832 SCEVHandle Add = getAddExpr(Start, SMul); 833 if (getSignExtendExpr(Add, WideTy) == 834 getAddExpr(getSignExtendExpr(Start, WideTy), 835 getSignExtendExpr(SMul, WideTy))) 836 // Return the expression with the addrec on the outside. 837 return getAddRecExpr(getSignExtendExpr(Start, Ty), 838 getSignExtendExpr(Step, Ty), 839 AR->getLoop()); 840 } 841 } 842 } 843 } 844 845 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 846 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 847 return Result; 848 } 849 850 // get - Get a canonical add expression, or something simpler if possible. 851 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) { 852 assert(!Ops.empty() && "Cannot get empty add!"); 853 if (Ops.size() == 1) return Ops[0]; 854 855 // Sort by complexity, this groups all similar expression types together. 856 GroupByComplexity(Ops); 857 858 // If there are any constants, fold them together. 859 unsigned Idx = 0; 860 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 861 ++Idx; 862 assert(Idx < Ops.size()); 863 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 864 // We found two constants, fold them together! 865 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 866 RHSC->getValue()->getValue()); 867 Ops[0] = getConstant(Fold); 868 Ops.erase(Ops.begin()+1); // Erase the folded element 869 if (Ops.size() == 1) return Ops[0]; 870 LHSC = cast<SCEVConstant>(Ops[0]); 871 } 872 873 // If we are left with a constant zero being added, strip it off. 874 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 875 Ops.erase(Ops.begin()); 876 --Idx; 877 } 878 } 879 880 if (Ops.size() == 1) return Ops[0]; 881 882 // Okay, check to see if the same value occurs in the operand list twice. If 883 // so, merge them together into an multiply expression. Since we sorted the 884 // list, these values are required to be adjacent. 885 const Type *Ty = Ops[0]->getType(); 886 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 887 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 888 // Found a match, merge the two values into a multiply, and add any 889 // remaining values to the result. 890 SCEVHandle Two = getIntegerSCEV(2, Ty); 891 SCEVHandle Mul = getMulExpr(Ops[i], Two); 892 if (Ops.size() == 2) 893 return Mul; 894 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 895 Ops.push_back(Mul); 896 return getAddExpr(Ops); 897 } 898 899 // Now we know the first non-constant operand. Skip past any cast SCEVs. 900 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 901 ++Idx; 902 903 // If there are add operands they would be next. 904 if (Idx < Ops.size()) { 905 bool DeletedAdd = false; 906 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 907 // If we have an add, expand the add operands onto the end of the operands 908 // list. 909 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 910 Ops.erase(Ops.begin()+Idx); 911 DeletedAdd = true; 912 } 913 914 // If we deleted at least one add, we added operands to the end of the list, 915 // and they are not necessarily sorted. Recurse to resort and resimplify 916 // any operands we just aquired. 917 if (DeletedAdd) 918 return getAddExpr(Ops); 919 } 920 921 // Skip over the add expression until we get to a multiply. 922 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 923 ++Idx; 924 925 // If we are adding something to a multiply expression, make sure the 926 // something is not already an operand of the multiply. If so, merge it into 927 // the multiply. 928 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 929 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 930 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 931 SCEV *MulOpSCEV = Mul->getOperand(MulOp); 932 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 933 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { 934 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 935 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 936 if (Mul->getNumOperands() != 2) { 937 // If the multiply has more than two operands, we must get the 938 // Y*Z term. 939 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 940 MulOps.erase(MulOps.begin()+MulOp); 941 InnerMul = getMulExpr(MulOps); 942 } 943 SCEVHandle One = getIntegerSCEV(1, Ty); 944 SCEVHandle AddOne = getAddExpr(InnerMul, One); 945 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 946 if (Ops.size() == 2) return OuterMul; 947 if (AddOp < Idx) { 948 Ops.erase(Ops.begin()+AddOp); 949 Ops.erase(Ops.begin()+Idx-1); 950 } else { 951 Ops.erase(Ops.begin()+Idx); 952 Ops.erase(Ops.begin()+AddOp-1); 953 } 954 Ops.push_back(OuterMul); 955 return getAddExpr(Ops); 956 } 957 958 // Check this multiply against other multiplies being added together. 959 for (unsigned OtherMulIdx = Idx+1; 960 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 961 ++OtherMulIdx) { 962 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 963 // If MulOp occurs in OtherMul, we can fold the two multiplies 964 // together. 965 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 966 OMulOp != e; ++OMulOp) 967 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 968 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 969 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 970 if (Mul->getNumOperands() != 2) { 971 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 972 MulOps.erase(MulOps.begin()+MulOp); 973 InnerMul1 = getMulExpr(MulOps); 974 } 975 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 976 if (OtherMul->getNumOperands() != 2) { 977 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), 978 OtherMul->op_end()); 979 MulOps.erase(MulOps.begin()+OMulOp); 980 InnerMul2 = getMulExpr(MulOps); 981 } 982 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 983 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 984 if (Ops.size() == 2) return OuterMul; 985 Ops.erase(Ops.begin()+Idx); 986 Ops.erase(Ops.begin()+OtherMulIdx-1); 987 Ops.push_back(OuterMul); 988 return getAddExpr(Ops); 989 } 990 } 991 } 992 } 993 994 // If there are any add recurrences in the operands list, see if any other 995 // added values are loop invariant. If so, we can fold them into the 996 // recurrence. 997 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 998 ++Idx; 999 1000 // Scan over all recurrences, trying to fold loop invariants into them. 1001 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1002 // Scan all of the other operands to this add and add them to the vector if 1003 // they are loop invariant w.r.t. the recurrence. 1004 std::vector<SCEVHandle> LIOps; 1005 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1006 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1007 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1008 LIOps.push_back(Ops[i]); 1009 Ops.erase(Ops.begin()+i); 1010 --i; --e; 1011 } 1012 1013 // If we found some loop invariants, fold them into the recurrence. 1014 if (!LIOps.empty()) { 1015 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1016 LIOps.push_back(AddRec->getStart()); 1017 1018 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); 1019 AddRecOps[0] = getAddExpr(LIOps); 1020 1021 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1022 // If all of the other operands were loop invariant, we are done. 1023 if (Ops.size() == 1) return NewRec; 1024 1025 // Otherwise, add the folded AddRec by the non-liv parts. 1026 for (unsigned i = 0;; ++i) 1027 if (Ops[i] == AddRec) { 1028 Ops[i] = NewRec; 1029 break; 1030 } 1031 return getAddExpr(Ops); 1032 } 1033 1034 // Okay, if there weren't any loop invariants to be folded, check to see if 1035 // there are multiple AddRec's with the same loop induction variable being 1036 // added together. If so, we can fold them. 1037 for (unsigned OtherIdx = Idx+1; 1038 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1039 if (OtherIdx != Idx) { 1040 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1041 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1042 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1043 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); 1044 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1045 if (i >= NewOps.size()) { 1046 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1047 OtherAddRec->op_end()); 1048 break; 1049 } 1050 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1051 } 1052 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1053 1054 if (Ops.size() == 2) return NewAddRec; 1055 1056 Ops.erase(Ops.begin()+Idx); 1057 Ops.erase(Ops.begin()+OtherIdx-1); 1058 Ops.push_back(NewAddRec); 1059 return getAddExpr(Ops); 1060 } 1061 } 1062 1063 // Otherwise couldn't fold anything into this recurrence. Move onto the 1064 // next one. 1065 } 1066 1067 // Okay, it looks like we really DO need an add expr. Check to see if we 1068 // already have one, otherwise create a new one. 1069 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1070 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 1071 SCEVOps)]; 1072 if (Result == 0) Result = new SCEVAddExpr(Ops); 1073 return Result; 1074 } 1075 1076 1077 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) { 1078 assert(!Ops.empty() && "Cannot get empty mul!"); 1079 1080 // Sort by complexity, this groups all similar expression types together. 1081 GroupByComplexity(Ops); 1082 1083 // If there are any constants, fold them together. 1084 unsigned Idx = 0; 1085 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1086 1087 // C1*(C2+V) -> C1*C2 + C1*V 1088 if (Ops.size() == 2) 1089 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1090 if (Add->getNumOperands() == 2 && 1091 isa<SCEVConstant>(Add->getOperand(0))) 1092 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1093 getMulExpr(LHSC, Add->getOperand(1))); 1094 1095 1096 ++Idx; 1097 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1098 // We found two constants, fold them together! 1099 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 1100 RHSC->getValue()->getValue()); 1101 Ops[0] = getConstant(Fold); 1102 Ops.erase(Ops.begin()+1); // Erase the folded element 1103 if (Ops.size() == 1) return Ops[0]; 1104 LHSC = cast<SCEVConstant>(Ops[0]); 1105 } 1106 1107 // If we are left with a constant one being multiplied, strip it off. 1108 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1109 Ops.erase(Ops.begin()); 1110 --Idx; 1111 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1112 // If we have a multiply of zero, it will always be zero. 1113 return Ops[0]; 1114 } 1115 } 1116 1117 // Skip over the add expression until we get to a multiply. 1118 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1119 ++Idx; 1120 1121 if (Ops.size() == 1) 1122 return Ops[0]; 1123 1124 // If there are mul operands inline them all into this expression. 1125 if (Idx < Ops.size()) { 1126 bool DeletedMul = false; 1127 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1128 // If we have an mul, expand the mul operands onto the end of the operands 1129 // list. 1130 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1131 Ops.erase(Ops.begin()+Idx); 1132 DeletedMul = true; 1133 } 1134 1135 // If we deleted at least one mul, we added operands to the end of the list, 1136 // and they are not necessarily sorted. Recurse to resort and resimplify 1137 // any operands we just aquired. 1138 if (DeletedMul) 1139 return getMulExpr(Ops); 1140 } 1141 1142 // If there are any add recurrences in the operands list, see if any other 1143 // added values are loop invariant. If so, we can fold them into the 1144 // recurrence. 1145 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1146 ++Idx; 1147 1148 // Scan over all recurrences, trying to fold loop invariants into them. 1149 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1150 // Scan all of the other operands to this mul and add them to the vector if 1151 // they are loop invariant w.r.t. the recurrence. 1152 std::vector<SCEVHandle> LIOps; 1153 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1154 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1155 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1156 LIOps.push_back(Ops[i]); 1157 Ops.erase(Ops.begin()+i); 1158 --i; --e; 1159 } 1160 1161 // If we found some loop invariants, fold them into the recurrence. 1162 if (!LIOps.empty()) { 1163 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1164 std::vector<SCEVHandle> NewOps; 1165 NewOps.reserve(AddRec->getNumOperands()); 1166 if (LIOps.size() == 1) { 1167 SCEV *Scale = LIOps[0]; 1168 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1169 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1170 } else { 1171 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1172 std::vector<SCEVHandle> MulOps(LIOps); 1173 MulOps.push_back(AddRec->getOperand(i)); 1174 NewOps.push_back(getMulExpr(MulOps)); 1175 } 1176 } 1177 1178 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1179 1180 // If all of the other operands were loop invariant, we are done. 1181 if (Ops.size() == 1) return NewRec; 1182 1183 // Otherwise, multiply the folded AddRec by the non-liv parts. 1184 for (unsigned i = 0;; ++i) 1185 if (Ops[i] == AddRec) { 1186 Ops[i] = NewRec; 1187 break; 1188 } 1189 return getMulExpr(Ops); 1190 } 1191 1192 // Okay, if there weren't any loop invariants to be folded, check to see if 1193 // there are multiple AddRec's with the same loop induction variable being 1194 // multiplied together. If so, we can fold them. 1195 for (unsigned OtherIdx = Idx+1; 1196 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1197 if (OtherIdx != Idx) { 1198 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1199 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1200 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1201 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1202 SCEVHandle NewStart = getMulExpr(F->getStart(), 1203 G->getStart()); 1204 SCEVHandle B = F->getStepRecurrence(*this); 1205 SCEVHandle D = G->getStepRecurrence(*this); 1206 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1207 getMulExpr(G, B), 1208 getMulExpr(B, D)); 1209 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1210 F->getLoop()); 1211 if (Ops.size() == 2) return NewAddRec; 1212 1213 Ops.erase(Ops.begin()+Idx); 1214 Ops.erase(Ops.begin()+OtherIdx-1); 1215 Ops.push_back(NewAddRec); 1216 return getMulExpr(Ops); 1217 } 1218 } 1219 1220 // Otherwise couldn't fold anything into this recurrence. Move onto the 1221 // next one. 1222 } 1223 1224 // Okay, it looks like we really DO need an mul expr. Check to see if we 1225 // already have one, otherwise create a new one. 1226 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1227 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1228 SCEVOps)]; 1229 if (Result == 0) 1230 Result = new SCEVMulExpr(Ops); 1231 return Result; 1232 } 1233 1234 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { 1235 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1236 if (RHSC->getValue()->equalsInt(1)) 1237 return LHS; // X udiv 1 --> x 1238 1239 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1240 Constant *LHSCV = LHSC->getValue(); 1241 Constant *RHSCV = RHSC->getValue(); 1242 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1243 } 1244 } 1245 1246 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. 1247 1248 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; 1249 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); 1250 return Result; 1251 } 1252 1253 1254 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1255 /// specified loop. Simplify the expression as much as possible. 1256 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1257 const SCEVHandle &Step, const Loop *L) { 1258 std::vector<SCEVHandle> Operands; 1259 Operands.push_back(Start); 1260 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1261 if (StepChrec->getLoop() == L) { 1262 Operands.insert(Operands.end(), StepChrec->op_begin(), 1263 StepChrec->op_end()); 1264 return getAddRecExpr(Operands, L); 1265 } 1266 1267 Operands.push_back(Step); 1268 return getAddRecExpr(Operands, L); 1269 } 1270 1271 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1272 /// specified loop. Simplify the expression as much as possible. 1273 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands, 1274 const Loop *L) { 1275 if (Operands.size() == 1) return Operands[0]; 1276 1277 if (Operands.back()->isZero()) { 1278 Operands.pop_back(); 1279 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1280 } 1281 1282 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1283 if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1284 const Loop* NestedLoop = NestedAR->getLoop(); 1285 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1286 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(), 1287 NestedAR->op_end()); 1288 SCEVHandle NestedARHandle(NestedAR); 1289 Operands[0] = NestedAR->getStart(); 1290 NestedOperands[0] = getAddRecExpr(Operands, L); 1291 return getAddRecExpr(NestedOperands, NestedLoop); 1292 } 1293 } 1294 1295 SCEVAddRecExpr *&Result = 1296 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), 1297 Operands.end()))]; 1298 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1299 return Result; 1300 } 1301 1302 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, 1303 const SCEVHandle &RHS) { 1304 std::vector<SCEVHandle> Ops; 1305 Ops.push_back(LHS); 1306 Ops.push_back(RHS); 1307 return getSMaxExpr(Ops); 1308 } 1309 1310 SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) { 1311 assert(!Ops.empty() && "Cannot get empty smax!"); 1312 if (Ops.size() == 1) return Ops[0]; 1313 1314 // Sort by complexity, this groups all similar expression types together. 1315 GroupByComplexity(Ops); 1316 1317 // If there are any constants, fold them together. 1318 unsigned Idx = 0; 1319 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1320 ++Idx; 1321 assert(Idx < Ops.size()); 1322 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1323 // We found two constants, fold them together! 1324 ConstantInt *Fold = ConstantInt::get( 1325 APIntOps::smax(LHSC->getValue()->getValue(), 1326 RHSC->getValue()->getValue())); 1327 Ops[0] = getConstant(Fold); 1328 Ops.erase(Ops.begin()+1); // Erase the folded element 1329 if (Ops.size() == 1) return Ops[0]; 1330 LHSC = cast<SCEVConstant>(Ops[0]); 1331 } 1332 1333 // If we are left with a constant -inf, strip it off. 1334 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1335 Ops.erase(Ops.begin()); 1336 --Idx; 1337 } 1338 } 1339 1340 if (Ops.size() == 1) return Ops[0]; 1341 1342 // Find the first SMax 1343 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1344 ++Idx; 1345 1346 // Check to see if one of the operands is an SMax. If so, expand its operands 1347 // onto our operand list, and recurse to simplify. 1348 if (Idx < Ops.size()) { 1349 bool DeletedSMax = false; 1350 while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1351 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1352 Ops.erase(Ops.begin()+Idx); 1353 DeletedSMax = true; 1354 } 1355 1356 if (DeletedSMax) 1357 return getSMaxExpr(Ops); 1358 } 1359 1360 // Okay, check to see if the same value occurs in the operand list twice. If 1361 // so, delete one. Since we sorted the list, these values are required to 1362 // be adjacent. 1363 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1364 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1365 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1366 --i; --e; 1367 } 1368 1369 if (Ops.size() == 1) return Ops[0]; 1370 1371 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1372 1373 // Okay, it looks like we really DO need an smax expr. Check to see if we 1374 // already have one, otherwise create a new one. 1375 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1376 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, 1377 SCEVOps)]; 1378 if (Result == 0) Result = new SCEVSMaxExpr(Ops); 1379 return Result; 1380 } 1381 1382 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, 1383 const SCEVHandle &RHS) { 1384 std::vector<SCEVHandle> Ops; 1385 Ops.push_back(LHS); 1386 Ops.push_back(RHS); 1387 return getUMaxExpr(Ops); 1388 } 1389 1390 SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) { 1391 assert(!Ops.empty() && "Cannot get empty umax!"); 1392 if (Ops.size() == 1) return Ops[0]; 1393 1394 // Sort by complexity, this groups all similar expression types together. 1395 GroupByComplexity(Ops); 1396 1397 // If there are any constants, fold them together. 1398 unsigned Idx = 0; 1399 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1400 ++Idx; 1401 assert(Idx < Ops.size()); 1402 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1403 // We found two constants, fold them together! 1404 ConstantInt *Fold = ConstantInt::get( 1405 APIntOps::umax(LHSC->getValue()->getValue(), 1406 RHSC->getValue()->getValue())); 1407 Ops[0] = getConstant(Fold); 1408 Ops.erase(Ops.begin()+1); // Erase the folded element 1409 if (Ops.size() == 1) return Ops[0]; 1410 LHSC = cast<SCEVConstant>(Ops[0]); 1411 } 1412 1413 // If we are left with a constant zero, strip it off. 1414 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1415 Ops.erase(Ops.begin()); 1416 --Idx; 1417 } 1418 } 1419 1420 if (Ops.size() == 1) return Ops[0]; 1421 1422 // Find the first UMax 1423 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1424 ++Idx; 1425 1426 // Check to see if one of the operands is a UMax. If so, expand its operands 1427 // onto our operand list, and recurse to simplify. 1428 if (Idx < Ops.size()) { 1429 bool DeletedUMax = false; 1430 while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1431 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1432 Ops.erase(Ops.begin()+Idx); 1433 DeletedUMax = true; 1434 } 1435 1436 if (DeletedUMax) 1437 return getUMaxExpr(Ops); 1438 } 1439 1440 // Okay, check to see if the same value occurs in the operand list twice. If 1441 // so, delete one. Since we sorted the list, these values are required to 1442 // be adjacent. 1443 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1444 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1445 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1446 --i; --e; 1447 } 1448 1449 if (Ops.size() == 1) return Ops[0]; 1450 1451 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1452 1453 // Okay, it looks like we really DO need a umax expr. Check to see if we 1454 // already have one, otherwise create a new one. 1455 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1456 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, 1457 SCEVOps)]; 1458 if (Result == 0) Result = new SCEVUMaxExpr(Ops); 1459 return Result; 1460 } 1461 1462 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1463 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1464 return getConstant(CI); 1465 if (isa<ConstantPointerNull>(V)) 1466 return getIntegerSCEV(0, V->getType()); 1467 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1468 if (Result == 0) Result = new SCEVUnknown(V); 1469 return Result; 1470 } 1471 1472 //===----------------------------------------------------------------------===// 1473 // Basic SCEV Analysis and PHI Idiom Recognition Code 1474 // 1475 1476 /// deleteValueFromRecords - This method should be called by the 1477 /// client before it removes an instruction from the program, to make sure 1478 /// that no dangling references are left around. 1479 void ScalarEvolution::deleteValueFromRecords(Value *V) { 1480 SmallVector<Value *, 16> Worklist; 1481 1482 if (Scalars.erase(V)) { 1483 if (PHINode *PN = dyn_cast<PHINode>(V)) 1484 ConstantEvolutionLoopExitValue.erase(PN); 1485 Worklist.push_back(V); 1486 } 1487 1488 while (!Worklist.empty()) { 1489 Value *VV = Worklist.back(); 1490 Worklist.pop_back(); 1491 1492 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end(); 1493 UI != UE; ++UI) { 1494 Instruction *Inst = cast<Instruction>(*UI); 1495 if (Scalars.erase(Inst)) { 1496 if (PHINode *PN = dyn_cast<PHINode>(VV)) 1497 ConstantEvolutionLoopExitValue.erase(PN); 1498 Worklist.push_back(Inst); 1499 } 1500 } 1501 } 1502 } 1503 1504 /// isSCEVable - Test if values of the given type are analyzable within 1505 /// the SCEV framework. This primarily includes integer types, and it 1506 /// can optionally include pointer types if the ScalarEvolution class 1507 /// has access to target-specific information. 1508 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 1509 // Integers are always SCEVable. 1510 if (Ty->isInteger()) 1511 return true; 1512 1513 // Pointers are SCEVable if TargetData information is available 1514 // to provide pointer size information. 1515 if (isa<PointerType>(Ty)) 1516 return TD != NULL; 1517 1518 // Otherwise it's not SCEVable. 1519 return false; 1520 } 1521 1522 /// getTypeSizeInBits - Return the size in bits of the specified type, 1523 /// for which isSCEVable must return true. 1524 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 1525 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1526 1527 // If we have a TargetData, use it! 1528 if (TD) 1529 return TD->getTypeSizeInBits(Ty); 1530 1531 // Otherwise, we support only integer types. 1532 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!"); 1533 return Ty->getPrimitiveSizeInBits(); 1534 } 1535 1536 /// getEffectiveSCEVType - Return a type with the same bitwidth as 1537 /// the given type and which represents how SCEV will treat the given 1538 /// type, for which isSCEVable must return true. For pointer types, 1539 /// this is the pointer-sized integer type. 1540 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 1541 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1542 1543 if (Ty->isInteger()) 1544 return Ty; 1545 1546 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); 1547 return TD->getIntPtrType(); 1548 } 1549 1550 SCEVHandle ScalarEvolution::getCouldNotCompute() { 1551 return UnknownValue; 1552 } 1553 1554 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1555 /// expression and create a new one. 1556 SCEVHandle ScalarEvolution::getSCEV(Value *V) { 1557 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 1558 1559 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); 1560 if (I != Scalars.end()) return I->second; 1561 SCEVHandle S = createSCEV(V); 1562 Scalars.insert(std::make_pair(V, S)); 1563 return S; 1564 } 1565 1566 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 1567 /// specified signed integer value and return a SCEV for the constant. 1568 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 1569 Ty = getEffectiveSCEVType(Ty); 1570 Constant *C; 1571 if (Val == 0) 1572 C = Constant::getNullValue(Ty); 1573 else if (Ty->isFloatingPoint()) 1574 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 1575 APFloat::IEEEdouble, Val)); 1576 else 1577 C = ConstantInt::get(Ty, Val); 1578 return getUnknown(C); 1579 } 1580 1581 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 1582 /// 1583 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 1584 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 1585 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 1586 1587 const Type *Ty = V->getType(); 1588 Ty = getEffectiveSCEVType(Ty); 1589 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty))); 1590 } 1591 1592 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 1593 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { 1594 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 1595 return getUnknown(ConstantExpr::getNot(VC->getValue())); 1596 1597 const Type *Ty = V->getType(); 1598 Ty = getEffectiveSCEVType(Ty); 1599 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); 1600 return getMinusSCEV(AllOnes, V); 1601 } 1602 1603 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 1604 /// 1605 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 1606 const SCEVHandle &RHS) { 1607 // X - Y --> X + -Y 1608 return getAddExpr(LHS, getNegativeSCEV(RHS)); 1609 } 1610 1611 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 1612 /// input value to the specified type. If the type must be extended, it is zero 1613 /// extended. 1614 SCEVHandle 1615 ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, 1616 const Type *Ty) { 1617 const Type *SrcTy = V->getType(); 1618 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 1619 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 1620 "Cannot truncate or zero extend with non-integer arguments!"); 1621 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 1622 return V; // No conversion 1623 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 1624 return getTruncateExpr(V, Ty); 1625 return getZeroExtendExpr(V, Ty); 1626 } 1627 1628 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 1629 /// input value to the specified type. If the type must be extended, it is sign 1630 /// extended. 1631 SCEVHandle 1632 ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V, 1633 const Type *Ty) { 1634 const Type *SrcTy = V->getType(); 1635 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 1636 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 1637 "Cannot truncate or zero extend with non-integer arguments!"); 1638 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 1639 return V; // No conversion 1640 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 1641 return getTruncateExpr(V, Ty); 1642 return getSignExtendExpr(V, Ty); 1643 } 1644 1645 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 1646 /// the specified instruction and replaces any references to the symbolic value 1647 /// SymName with the specified value. This is used during PHI resolution. 1648 void ScalarEvolution:: 1649 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 1650 const SCEVHandle &NewVal) { 1651 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); 1652 if (SI == Scalars.end()) return; 1653 1654 SCEVHandle NV = 1655 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this); 1656 if (NV == SI->second) return; // No change. 1657 1658 SI->second = NV; // Update the scalars map! 1659 1660 // Any instruction values that use this instruction might also need to be 1661 // updated! 1662 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1663 UI != E; ++UI) 1664 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 1665 } 1666 1667 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 1668 /// a loop header, making it a potential recurrence, or it doesn't. 1669 /// 1670 SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { 1671 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 1672 if (const Loop *L = LI->getLoopFor(PN->getParent())) 1673 if (L->getHeader() == PN->getParent()) { 1674 // If it lives in the loop header, it has two incoming values, one 1675 // from outside the loop, and one from inside. 1676 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1677 unsigned BackEdge = IncomingEdge^1; 1678 1679 // While we are analyzing this PHI node, handle its value symbolically. 1680 SCEVHandle SymbolicName = getUnknown(PN); 1681 assert(Scalars.find(PN) == Scalars.end() && 1682 "PHI node already processed?"); 1683 Scalars.insert(std::make_pair(PN, SymbolicName)); 1684 1685 // Using this symbolic name for the PHI, analyze the value coming around 1686 // the back-edge. 1687 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 1688 1689 // NOTE: If BEValue is loop invariant, we know that the PHI node just 1690 // has a special value for the first iteration of the loop. 1691 1692 // If the value coming around the backedge is an add with the symbolic 1693 // value we just inserted, then we found a simple induction variable! 1694 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 1695 // If there is a single occurrence of the symbolic value, replace it 1696 // with a recurrence. 1697 unsigned FoundIndex = Add->getNumOperands(); 1698 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1699 if (Add->getOperand(i) == SymbolicName) 1700 if (FoundIndex == e) { 1701 FoundIndex = i; 1702 break; 1703 } 1704 1705 if (FoundIndex != Add->getNumOperands()) { 1706 // Create an add with everything but the specified operand. 1707 std::vector<SCEVHandle> Ops; 1708 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1709 if (i != FoundIndex) 1710 Ops.push_back(Add->getOperand(i)); 1711 SCEVHandle Accum = getAddExpr(Ops); 1712 1713 // This is not a valid addrec if the step amount is varying each 1714 // loop iteration, but is not itself an addrec in this loop. 1715 if (Accum->isLoopInvariant(L) || 1716 (isa<SCEVAddRecExpr>(Accum) && 1717 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 1718 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1719 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L); 1720 1721 // Okay, for the entire analysis of this edge we assumed the PHI 1722 // to be symbolic. We now need to go back and update all of the 1723 // entries for the scalars that use the PHI (except for the PHI 1724 // itself) to use the new analyzed value instead of the "symbolic" 1725 // value. 1726 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1727 return PHISCEV; 1728 } 1729 } 1730 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 1731 // Otherwise, this could be a loop like this: 1732 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 1733 // In this case, j = {1,+,1} and BEValue is j. 1734 // Because the other in-value of i (0) fits the evolution of BEValue 1735 // i really is an addrec evolution. 1736 if (AddRec->getLoop() == L && AddRec->isAffine()) { 1737 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1738 1739 // If StartVal = j.start - j.stride, we can use StartVal as the 1740 // initial step of the addrec evolution. 1741 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 1742 AddRec->getOperand(1))) { 1743 SCEVHandle PHISCEV = 1744 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 1745 1746 // Okay, for the entire analysis of this edge we assumed the PHI 1747 // to be symbolic. We now need to go back and update all of the 1748 // entries for the scalars that use the PHI (except for the PHI 1749 // itself) to use the new analyzed value instead of the "symbolic" 1750 // value. 1751 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1752 return PHISCEV; 1753 } 1754 } 1755 } 1756 1757 return SymbolicName; 1758 } 1759 1760 // If it's not a loop phi, we can't handle it yet. 1761 return getUnknown(PN); 1762 } 1763 1764 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 1765 /// guaranteed to end in (at every loop iteration). It is, at the same time, 1766 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 1767 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 1768 static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) { 1769 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 1770 return C->getValue()->getValue().countTrailingZeros(); 1771 1772 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 1773 return std::min(GetMinTrailingZeros(T->getOperand(), SE), 1774 (uint32_t)SE.getTypeSizeInBits(T->getType())); 1775 1776 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 1777 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE); 1778 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ? 1779 SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes; 1780 } 1781 1782 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 1783 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE); 1784 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ? 1785 SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes; 1786 } 1787 1788 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 1789 // The result is the min of all operands results. 1790 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE); 1791 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1792 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE)); 1793 return MinOpRes; 1794 } 1795 1796 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 1797 // The result is the sum of all operands results. 1798 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 1799 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType()); 1800 for (unsigned i = 1, e = M->getNumOperands(); 1801 SumOpRes != BitWidth && i != e; ++i) 1802 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE), 1803 BitWidth); 1804 return SumOpRes; 1805 } 1806 1807 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 1808 // The result is the min of all operands results. 1809 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE); 1810 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1811 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE)); 1812 return MinOpRes; 1813 } 1814 1815 if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 1816 // The result is the min of all operands results. 1817 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 1818 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 1819 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE)); 1820 return MinOpRes; 1821 } 1822 1823 if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 1824 // The result is the min of all operands results. 1825 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 1826 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 1827 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE)); 1828 return MinOpRes; 1829 } 1830 1831 // SCEVUDivExpr, SCEVUnknown 1832 return 0; 1833 } 1834 1835 /// createSCEV - We know that there is no SCEV for the specified value. 1836 /// Analyze the expression. 1837 /// 1838 SCEVHandle ScalarEvolution::createSCEV(Value *V) { 1839 if (!isSCEVable(V->getType())) 1840 return getUnknown(V); 1841 1842 unsigned Opcode = Instruction::UserOp1; 1843 if (Instruction *I = dyn_cast<Instruction>(V)) 1844 Opcode = I->getOpcode(); 1845 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 1846 Opcode = CE->getOpcode(); 1847 else 1848 return getUnknown(V); 1849 1850 User *U = cast<User>(V); 1851 switch (Opcode) { 1852 case Instruction::Add: 1853 return getAddExpr(getSCEV(U->getOperand(0)), 1854 getSCEV(U->getOperand(1))); 1855 case Instruction::Mul: 1856 return getMulExpr(getSCEV(U->getOperand(0)), 1857 getSCEV(U->getOperand(1))); 1858 case Instruction::UDiv: 1859 return getUDivExpr(getSCEV(U->getOperand(0)), 1860 getSCEV(U->getOperand(1))); 1861 case Instruction::Sub: 1862 return getMinusSCEV(getSCEV(U->getOperand(0)), 1863 getSCEV(U->getOperand(1))); 1864 case Instruction::And: 1865 // For an expression like x&255 that merely masks off the high bits, 1866 // use zext(trunc(x)) as the SCEV expression. 1867 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1868 if (CI->isNullValue()) 1869 return getSCEV(U->getOperand(1)); 1870 if (CI->isAllOnesValue()) 1871 return getSCEV(U->getOperand(0)); 1872 const APInt &A = CI->getValue(); 1873 unsigned Ones = A.countTrailingOnes(); 1874 if (APIntOps::isMask(Ones, A)) 1875 return 1876 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 1877 IntegerType::get(Ones)), 1878 U->getType()); 1879 } 1880 break; 1881 case Instruction::Or: 1882 // If the RHS of the Or is a constant, we may have something like: 1883 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 1884 // optimizations will transparently handle this case. 1885 // 1886 // In order for this transformation to be safe, the LHS must be of the 1887 // form X*(2^n) and the Or constant must be less than 2^n. 1888 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1889 SCEVHandle LHS = getSCEV(U->getOperand(0)); 1890 const APInt &CIVal = CI->getValue(); 1891 if (GetMinTrailingZeros(LHS, *this) >= 1892 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 1893 return getAddExpr(LHS, getSCEV(U->getOperand(1))); 1894 } 1895 break; 1896 case Instruction::Xor: 1897 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1898 // If the RHS of the xor is a signbit, then this is just an add. 1899 // Instcombine turns add of signbit into xor as a strength reduction step. 1900 if (CI->getValue().isSignBit()) 1901 return getAddExpr(getSCEV(U->getOperand(0)), 1902 getSCEV(U->getOperand(1))); 1903 1904 // If the RHS of xor is -1, then this is a not operation. 1905 else if (CI->isAllOnesValue()) 1906 return getNotSCEV(getSCEV(U->getOperand(0))); 1907 } 1908 break; 1909 1910 case Instruction::Shl: 1911 // Turn shift left of a constant amount into a multiply. 1912 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 1913 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1914 Constant *X = ConstantInt::get( 1915 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1916 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 1917 } 1918 break; 1919 1920 case Instruction::LShr: 1921 // Turn logical shift right of a constant into a unsigned divide. 1922 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 1923 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1924 Constant *X = ConstantInt::get( 1925 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1926 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 1927 } 1928 break; 1929 1930 case Instruction::AShr: 1931 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 1932 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 1933 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 1934 if (L->getOpcode() == Instruction::Shl && 1935 L->getOperand(1) == U->getOperand(1)) { 1936 unsigned BitWidth = getTypeSizeInBits(U->getType()); 1937 uint64_t Amt = BitWidth - CI->getZExtValue(); 1938 if (Amt == BitWidth) 1939 return getSCEV(L->getOperand(0)); // shift by zero --> noop 1940 if (Amt > BitWidth) 1941 return getIntegerSCEV(0, U->getType()); // value is undefined 1942 return 1943 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 1944 IntegerType::get(Amt)), 1945 U->getType()); 1946 } 1947 break; 1948 1949 case Instruction::Trunc: 1950 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 1951 1952 case Instruction::ZExt: 1953 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 1954 1955 case Instruction::SExt: 1956 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 1957 1958 case Instruction::BitCast: 1959 // BitCasts are no-op casts so we just eliminate the cast. 1960 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 1961 return getSCEV(U->getOperand(0)); 1962 break; 1963 1964 case Instruction::IntToPtr: 1965 if (!TD) break; // Without TD we can't analyze pointers. 1966 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 1967 TD->getIntPtrType()); 1968 1969 case Instruction::PtrToInt: 1970 if (!TD) break; // Without TD we can't analyze pointers. 1971 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 1972 U->getType()); 1973 1974 case Instruction::GetElementPtr: { 1975 if (!TD) break; // Without TD we can't analyze pointers. 1976 const Type *IntPtrTy = TD->getIntPtrType(); 1977 Value *Base = U->getOperand(0); 1978 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy); 1979 gep_type_iterator GTI = gep_type_begin(U); 1980 for (GetElementPtrInst::op_iterator I = next(U->op_begin()), 1981 E = U->op_end(); 1982 I != E; ++I) { 1983 Value *Index = *I; 1984 // Compute the (potentially symbolic) offset in bytes for this index. 1985 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 1986 // For a struct, add the member offset. 1987 const StructLayout &SL = *TD->getStructLayout(STy); 1988 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 1989 uint64_t Offset = SL.getElementOffset(FieldNo); 1990 TotalOffset = getAddExpr(TotalOffset, 1991 getIntegerSCEV(Offset, IntPtrTy)); 1992 } else { 1993 // For an array, add the element offset, explicitly scaled. 1994 SCEVHandle LocalOffset = getSCEV(Index); 1995 if (!isa<PointerType>(LocalOffset->getType())) 1996 // Getelementptr indicies are signed. 1997 LocalOffset = getTruncateOrSignExtend(LocalOffset, 1998 IntPtrTy); 1999 LocalOffset = 2000 getMulExpr(LocalOffset, 2001 getIntegerSCEV(TD->getTypePaddedSize(*GTI), 2002 IntPtrTy)); 2003 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2004 } 2005 } 2006 return getAddExpr(getSCEV(Base), TotalOffset); 2007 } 2008 2009 case Instruction::PHI: 2010 return createNodeForPHI(cast<PHINode>(U)); 2011 2012 case Instruction::Select: 2013 // This could be a smax or umax that was lowered earlier. 2014 // Try to recover it. 2015 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 2016 Value *LHS = ICI->getOperand(0); 2017 Value *RHS = ICI->getOperand(1); 2018 switch (ICI->getPredicate()) { 2019 case ICmpInst::ICMP_SLT: 2020 case ICmpInst::ICMP_SLE: 2021 std::swap(LHS, RHS); 2022 // fall through 2023 case ICmpInst::ICMP_SGT: 2024 case ICmpInst::ICMP_SGE: 2025 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2026 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2027 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2028 // ~smax(~x, ~y) == smin(x, y). 2029 return getNotSCEV(getSMaxExpr( 2030 getNotSCEV(getSCEV(LHS)), 2031 getNotSCEV(getSCEV(RHS)))); 2032 break; 2033 case ICmpInst::ICMP_ULT: 2034 case ICmpInst::ICMP_ULE: 2035 std::swap(LHS, RHS); 2036 // fall through 2037 case ICmpInst::ICMP_UGT: 2038 case ICmpInst::ICMP_UGE: 2039 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2040 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2041 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2042 // ~umax(~x, ~y) == umin(x, y) 2043 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)), 2044 getNotSCEV(getSCEV(RHS)))); 2045 break; 2046 default: 2047 break; 2048 } 2049 } 2050 2051 default: // We cannot analyze this expression. 2052 break; 2053 } 2054 2055 return getUnknown(V); 2056 } 2057 2058 2059 2060 //===----------------------------------------------------------------------===// 2061 // Iteration Count Computation Code 2062 // 2063 2064 /// getBackedgeTakenCount - If the specified loop has a predictable 2065 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 2066 /// object. The backedge-taken count is the number of times the loop header 2067 /// will be branched to from within the loop. This is one less than the 2068 /// trip count of the loop, since it doesn't count the first iteration, 2069 /// when the header is branched to from outside the loop. 2070 /// 2071 /// Note that it is not valid to call this method on a loop without a 2072 /// loop-invariant backedge-taken count (see 2073 /// hasLoopInvariantBackedgeTakenCount). 2074 /// 2075 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 2076 // Initially insert a CouldNotCompute for this loop. If the insertion 2077 // succeeds, procede to actually compute a backedge-taken count and 2078 // update the value. The temporary CouldNotCompute value tells SCEV 2079 // code elsewhere that it shouldn't attempt to request a new 2080 // backedge-taken count, which could result in infinite recursion. 2081 std::pair<std::map<const Loop*, SCEVHandle>::iterator, bool> Pair = 2082 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 2083 if (Pair.second) { 2084 SCEVHandle ItCount = ComputeBackedgeTakenCount(L); 2085 if (ItCount != UnknownValue) { 2086 assert(ItCount->isLoopInvariant(L) && 2087 "Computed trip count isn't loop invariant for loop!"); 2088 ++NumTripCountsComputed; 2089 2090 // Now that we know the trip count for this loop, forget any 2091 // existing SCEV values for PHI nodes in this loop since they 2092 // are only conservative estimates made without the benefit 2093 // of trip count information. 2094 for (BasicBlock::iterator I = L->getHeader()->begin(); 2095 PHINode *PN = dyn_cast<PHINode>(I); ++I) 2096 deleteValueFromRecords(PN); 2097 2098 // Update the value in the map. 2099 Pair.first->second = ItCount; 2100 } else if (isa<PHINode>(L->getHeader()->begin())) { 2101 // Only count loops that have phi nodes as not being computable. 2102 ++NumTripCountsNotComputed; 2103 } 2104 } 2105 return Pair.first->second; 2106 } 2107 2108 /// forgetLoopBackedgeTakenCount - This method should be called by the 2109 /// client when it has changed a loop in a way that may effect 2110 /// ScalarEvolution's ability to compute a trip count, or if the loop 2111 /// is deleted. 2112 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 2113 BackedgeTakenCounts.erase(L); 2114 } 2115 2116 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 2117 /// of the specified loop will execute. 2118 SCEVHandle ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 2119 // If the loop has a non-one exit block count, we can't analyze it. 2120 SmallVector<BasicBlock*, 8> ExitBlocks; 2121 L->getExitBlocks(ExitBlocks); 2122 if (ExitBlocks.size() != 1) return UnknownValue; 2123 2124 // Okay, there is one exit block. Try to find the condition that causes the 2125 // loop to be exited. 2126 BasicBlock *ExitBlock = ExitBlocks[0]; 2127 2128 BasicBlock *ExitingBlock = 0; 2129 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); 2130 PI != E; ++PI) 2131 if (L->contains(*PI)) { 2132 if (ExitingBlock == 0) 2133 ExitingBlock = *PI; 2134 else 2135 return UnknownValue; // More than one block exiting! 2136 } 2137 assert(ExitingBlock && "No exits from loop, something is broken!"); 2138 2139 // Okay, we've computed the exiting block. See what condition causes us to 2140 // exit. 2141 // 2142 // FIXME: we should be able to handle switch instructions (with a single exit) 2143 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2144 if (ExitBr == 0) return UnknownValue; 2145 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 2146 2147 // At this point, we know we have a conditional branch that determines whether 2148 // the loop is exited. However, we don't know if the branch is executed each 2149 // time through the loop. If not, then the execution count of the branch will 2150 // not be equal to the trip count of the loop. 2151 // 2152 // Currently we check for this by checking to see if the Exit branch goes to 2153 // the loop header. If so, we know it will always execute the same number of 2154 // times as the loop. We also handle the case where the exit block *is* the 2155 // loop header. This is common for un-rotated loops. More extensive analysis 2156 // could be done to handle more cases here. 2157 if (ExitBr->getSuccessor(0) != L->getHeader() && 2158 ExitBr->getSuccessor(1) != L->getHeader() && 2159 ExitBr->getParent() != L->getHeader()) 2160 return UnknownValue; 2161 2162 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 2163 2164 // If it's not an integer comparison then compute it the hard way. 2165 // Note that ICmpInst deals with pointer comparisons too so we must check 2166 // the type of the operand. 2167 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType())) 2168 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(), 2169 ExitBr->getSuccessor(0) == ExitBlock); 2170 2171 // If the condition was exit on true, convert the condition to exit on false 2172 ICmpInst::Predicate Cond; 2173 if (ExitBr->getSuccessor(1) == ExitBlock) 2174 Cond = ExitCond->getPredicate(); 2175 else 2176 Cond = ExitCond->getInversePredicate(); 2177 2178 // Handle common loops like: for (X = "string"; *X; ++X) 2179 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 2180 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 2181 SCEVHandle ItCnt = 2182 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 2183 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 2184 } 2185 2186 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 2187 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 2188 2189 // Try to evaluate any dependencies out of the loop. 2190 SCEVHandle Tmp = getSCEVAtScope(LHS, L); 2191 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; 2192 Tmp = getSCEVAtScope(RHS, L); 2193 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; 2194 2195 // At this point, we would like to compute how many iterations of the 2196 // loop the predicate will return true for these inputs. 2197 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 2198 // If there is a loop-invariant, force it into the RHS. 2199 std::swap(LHS, RHS); 2200 Cond = ICmpInst::getSwappedPredicate(Cond); 2201 } 2202 2203 // If we have a comparison of a chrec against a constant, try to use value 2204 // ranges to answer this query. 2205 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 2206 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 2207 if (AddRec->getLoop() == L) { 2208 // Form the comparison range using the constant of the correct type so 2209 // that the ConstantRange class knows to do a signed or unsigned 2210 // comparison. 2211 ConstantInt *CompVal = RHSC->getValue(); 2212 const Type *RealTy = ExitCond->getOperand(0)->getType(); 2213 CompVal = dyn_cast<ConstantInt>( 2214 ConstantExpr::getBitCast(CompVal, RealTy)); 2215 if (CompVal) { 2216 // Form the constant range. 2217 ConstantRange CompRange( 2218 ICmpInst::makeConstantRange(Cond, CompVal->getValue())); 2219 2220 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this); 2221 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 2222 } 2223 } 2224 2225 switch (Cond) { 2226 case ICmpInst::ICMP_NE: { // while (X != Y) 2227 // Convert to: while (X-Y != 0) 2228 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); 2229 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2230 break; 2231 } 2232 case ICmpInst::ICMP_EQ: { 2233 // Convert to: while (X-Y == 0) // while (X == Y) 2234 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 2235 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2236 break; 2237 } 2238 case ICmpInst::ICMP_SLT: { 2239 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true); 2240 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2241 break; 2242 } 2243 case ICmpInst::ICMP_SGT: { 2244 SCEVHandle TC = HowManyLessThans(getNotSCEV(LHS), 2245 getNotSCEV(RHS), L, true); 2246 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2247 break; 2248 } 2249 case ICmpInst::ICMP_ULT: { 2250 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false); 2251 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2252 break; 2253 } 2254 case ICmpInst::ICMP_UGT: { 2255 SCEVHandle TC = HowManyLessThans(getNotSCEV(LHS), 2256 getNotSCEV(RHS), L, false); 2257 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2258 break; 2259 } 2260 default: 2261 #if 0 2262 errs() << "ComputeBackedgeTakenCount "; 2263 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 2264 errs() << "[unsigned] "; 2265 errs() << *LHS << " " 2266 << Instruction::getOpcodeName(Instruction::ICmp) 2267 << " " << *RHS << "\n"; 2268 #endif 2269 break; 2270 } 2271 return 2272 ComputeBackedgeTakenCountExhaustively(L, ExitCond, 2273 ExitBr->getSuccessor(0) == ExitBlock); 2274 } 2275 2276 static ConstantInt * 2277 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 2278 ScalarEvolution &SE) { 2279 SCEVHandle InVal = SE.getConstant(C); 2280 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 2281 assert(isa<SCEVConstant>(Val) && 2282 "Evaluation of SCEV at constant didn't fold correctly?"); 2283 return cast<SCEVConstant>(Val)->getValue(); 2284 } 2285 2286 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 2287 /// and a GEP expression (missing the pointer index) indexing into it, return 2288 /// the addressed element of the initializer or null if the index expression is 2289 /// invalid. 2290 static Constant * 2291 GetAddressedElementFromGlobal(GlobalVariable *GV, 2292 const std::vector<ConstantInt*> &Indices) { 2293 Constant *Init = GV->getInitializer(); 2294 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 2295 uint64_t Idx = Indices[i]->getZExtValue(); 2296 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2297 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 2298 Init = cast<Constant>(CS->getOperand(Idx)); 2299 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2300 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 2301 Init = cast<Constant>(CA->getOperand(Idx)); 2302 } else if (isa<ConstantAggregateZero>(Init)) { 2303 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2304 assert(Idx < STy->getNumElements() && "Bad struct index!"); 2305 Init = Constant::getNullValue(STy->getElementType(Idx)); 2306 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 2307 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 2308 Init = Constant::getNullValue(ATy->getElementType()); 2309 } else { 2310 assert(0 && "Unknown constant aggregate type!"); 2311 } 2312 return 0; 2313 } else { 2314 return 0; // Unknown initializer type 2315 } 2316 } 2317 return Init; 2318 } 2319 2320 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 2321 /// 'icmp op load X, cst', try to see if we can compute the backedge 2322 /// execution count. 2323 SCEVHandle ScalarEvolution:: 2324 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, 2325 const Loop *L, 2326 ICmpInst::Predicate predicate) { 2327 if (LI->isVolatile()) return UnknownValue; 2328 2329 // Check to see if the loaded pointer is a getelementptr of a global. 2330 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 2331 if (!GEP) return UnknownValue; 2332 2333 // Make sure that it is really a constant global we are gepping, with an 2334 // initializer, and make sure the first IDX is really 0. 2335 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 2336 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 2337 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 2338 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 2339 return UnknownValue; 2340 2341 // Okay, we allow one non-constant index into the GEP instruction. 2342 Value *VarIdx = 0; 2343 std::vector<ConstantInt*> Indexes; 2344 unsigned VarIdxNum = 0; 2345 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 2346 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 2347 Indexes.push_back(CI); 2348 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 2349 if (VarIdx) return UnknownValue; // Multiple non-constant idx's. 2350 VarIdx = GEP->getOperand(i); 2351 VarIdxNum = i-2; 2352 Indexes.push_back(0); 2353 } 2354 2355 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 2356 // Check to see if X is a loop variant variable value now. 2357 SCEVHandle Idx = getSCEV(VarIdx); 2358 SCEVHandle Tmp = getSCEVAtScope(Idx, L); 2359 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; 2360 2361 // We can only recognize very limited forms of loop index expressions, in 2362 // particular, only affine AddRec's like {C1,+,C2}. 2363 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 2364 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 2365 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 2366 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 2367 return UnknownValue; 2368 2369 unsigned MaxSteps = MaxBruteForceIterations; 2370 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 2371 ConstantInt *ItCst = 2372 ConstantInt::get(IdxExpr->getType(), IterationNum); 2373 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 2374 2375 // Form the GEP offset. 2376 Indexes[VarIdxNum] = Val; 2377 2378 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 2379 if (Result == 0) break; // Cannot compute! 2380 2381 // Evaluate the condition for this iteration. 2382 Result = ConstantExpr::getICmp(predicate, Result, RHS); 2383 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 2384 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 2385 #if 0 2386 errs() << "\n***\n*** Computed loop count " << *ItCst 2387 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 2388 << "***\n"; 2389 #endif 2390 ++NumArrayLenItCounts; 2391 return getConstant(ItCst); // Found terminating iteration! 2392 } 2393 } 2394 return UnknownValue; 2395 } 2396 2397 2398 /// CanConstantFold - Return true if we can constant fold an instruction of the 2399 /// specified type, assuming that all operands were constants. 2400 static bool CanConstantFold(const Instruction *I) { 2401 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 2402 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 2403 return true; 2404 2405 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2406 if (const Function *F = CI->getCalledFunction()) 2407 return canConstantFoldCallTo(F); 2408 return false; 2409 } 2410 2411 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 2412 /// in the loop that V is derived from. We allow arbitrary operations along the 2413 /// way, but the operands of an operation must either be constants or a value 2414 /// derived from a constant PHI. If this expression does not fit with these 2415 /// constraints, return null. 2416 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 2417 // If this is not an instruction, or if this is an instruction outside of the 2418 // loop, it can't be derived from a loop PHI. 2419 Instruction *I = dyn_cast<Instruction>(V); 2420 if (I == 0 || !L->contains(I->getParent())) return 0; 2421 2422 if (PHINode *PN = dyn_cast<PHINode>(I)) { 2423 if (L->getHeader() == I->getParent()) 2424 return PN; 2425 else 2426 // We don't currently keep track of the control flow needed to evaluate 2427 // PHIs, so we cannot handle PHIs inside of loops. 2428 return 0; 2429 } 2430 2431 // If we won't be able to constant fold this expression even if the operands 2432 // are constants, return early. 2433 if (!CanConstantFold(I)) return 0; 2434 2435 // Otherwise, we can evaluate this instruction if all of its operands are 2436 // constant or derived from a PHI node themselves. 2437 PHINode *PHI = 0; 2438 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 2439 if (!(isa<Constant>(I->getOperand(Op)) || 2440 isa<GlobalValue>(I->getOperand(Op)))) { 2441 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 2442 if (P == 0) return 0; // Not evolving from PHI 2443 if (PHI == 0) 2444 PHI = P; 2445 else if (PHI != P) 2446 return 0; // Evolving from multiple different PHIs. 2447 } 2448 2449 // This is a expression evolving from a constant PHI! 2450 return PHI; 2451 } 2452 2453 /// EvaluateExpression - Given an expression that passes the 2454 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 2455 /// in the loop has the value PHIVal. If we can't fold this expression for some 2456 /// reason, return null. 2457 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 2458 if (isa<PHINode>(V)) return PHIVal; 2459 if (Constant *C = dyn_cast<Constant>(V)) return C; 2460 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 2461 Instruction *I = cast<Instruction>(V); 2462 2463 std::vector<Constant*> Operands; 2464 Operands.resize(I->getNumOperands()); 2465 2466 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2467 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 2468 if (Operands[i] == 0) return 0; 2469 } 2470 2471 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2472 return ConstantFoldCompareInstOperands(CI->getPredicate(), 2473 &Operands[0], Operands.size()); 2474 else 2475 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2476 &Operands[0], Operands.size()); 2477 } 2478 2479 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 2480 /// in the header of its containing loop, we know the loop executes a 2481 /// constant number of times, and the PHI node is just a recurrence 2482 /// involving constants, fold it. 2483 Constant *ScalarEvolution:: 2484 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){ 2485 std::map<PHINode*, Constant*>::iterator I = 2486 ConstantEvolutionLoopExitValue.find(PN); 2487 if (I != ConstantEvolutionLoopExitValue.end()) 2488 return I->second; 2489 2490 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 2491 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 2492 2493 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 2494 2495 // Since the loop is canonicalized, the PHI node must have two entries. One 2496 // entry must be a constant (coming in from outside of the loop), and the 2497 // second must be derived from the same PHI. 2498 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2499 Constant *StartCST = 2500 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2501 if (StartCST == 0) 2502 return RetVal = 0; // Must be a constant. 2503 2504 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2505 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2506 if (PN2 != PN) 2507 return RetVal = 0; // Not derived from same PHI. 2508 2509 // Execute the loop symbolically to determine the exit value. 2510 if (BEs.getActiveBits() >= 32) 2511 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 2512 2513 unsigned NumIterations = BEs.getZExtValue(); // must be in range 2514 unsigned IterationNum = 0; 2515 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 2516 if (IterationNum == NumIterations) 2517 return RetVal = PHIVal; // Got exit value! 2518 2519 // Compute the value of the PHI node for the next iteration. 2520 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2521 if (NextPHI == PHIVal) 2522 return RetVal = NextPHI; // Stopped evolving! 2523 if (NextPHI == 0) 2524 return 0; // Couldn't evaluate! 2525 PHIVal = NextPHI; 2526 } 2527 } 2528 2529 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a 2530 /// constant number of times (the condition evolves only from constants), 2531 /// try to evaluate a few iterations of the loop until we get the exit 2532 /// condition gets a value of ExitWhen (true or false). If we cannot 2533 /// evaluate the trip count of the loop, return UnknownValue. 2534 SCEVHandle ScalarEvolution:: 2535 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 2536 PHINode *PN = getConstantEvolvingPHI(Cond, L); 2537 if (PN == 0) return UnknownValue; 2538 2539 // Since the loop is canonicalized, the PHI node must have two entries. One 2540 // entry must be a constant (coming in from outside of the loop), and the 2541 // second must be derived from the same PHI. 2542 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2543 Constant *StartCST = 2544 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2545 if (StartCST == 0) return UnknownValue; // Must be a constant. 2546 2547 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2548 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2549 if (PN2 != PN) return UnknownValue; // Not derived from same PHI. 2550 2551 // Okay, we find a PHI node that defines the trip count of this loop. Execute 2552 // the loop symbolically to determine when the condition gets a value of 2553 // "ExitWhen". 2554 unsigned IterationNum = 0; 2555 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 2556 for (Constant *PHIVal = StartCST; 2557 IterationNum != MaxIterations; ++IterationNum) { 2558 ConstantInt *CondVal = 2559 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 2560 2561 // Couldn't symbolically evaluate. 2562 if (!CondVal) return UnknownValue; 2563 2564 if (CondVal->getValue() == uint64_t(ExitWhen)) { 2565 ConstantEvolutionLoopExitValue[PN] = PHIVal; 2566 ++NumBruteForceTripCountsComputed; 2567 return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum)); 2568 } 2569 2570 // Compute the value of the PHI node for the next iteration. 2571 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2572 if (NextPHI == 0 || NextPHI == PHIVal) 2573 return UnknownValue; // Couldn't evaluate or not making progress... 2574 PHIVal = NextPHI; 2575 } 2576 2577 // Too many iterations were needed to evaluate. 2578 return UnknownValue; 2579 } 2580 2581 /// getSCEVAtScope - Compute the value of the specified expression within the 2582 /// indicated loop (which may be null to indicate in no loop). If the 2583 /// expression cannot be evaluated, return UnknownValue. 2584 SCEVHandle ScalarEvolution::getSCEVAtScope(SCEV *V, const Loop *L) { 2585 // FIXME: this should be turned into a virtual method on SCEV! 2586 2587 if (isa<SCEVConstant>(V)) return V; 2588 2589 // If this instruction is evolved from a constant-evolving PHI, compute the 2590 // exit value from the loop without using SCEVs. 2591 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 2592 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 2593 const Loop *LI = (*this->LI)[I->getParent()]; 2594 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 2595 if (PHINode *PN = dyn_cast<PHINode>(I)) 2596 if (PN->getParent() == LI->getHeader()) { 2597 // Okay, there is no closed form solution for the PHI node. Check 2598 // to see if the loop that contains it has a known backedge-taken 2599 // count. If so, we may be able to force computation of the exit 2600 // value. 2601 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI); 2602 if (SCEVConstant *BTCC = 2603 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 2604 // Okay, we know how many times the containing loop executes. If 2605 // this is a constant evolving PHI node, get the final value at 2606 // the specified iteration number. 2607 Constant *RV = getConstantEvolutionLoopExitValue(PN, 2608 BTCC->getValue()->getValue(), 2609 LI); 2610 if (RV) return getUnknown(RV); 2611 } 2612 } 2613 2614 // Okay, this is an expression that we cannot symbolically evaluate 2615 // into a SCEV. Check to see if it's possible to symbolically evaluate 2616 // the arguments into constants, and if so, try to constant propagate the 2617 // result. This is particularly useful for computing loop exit values. 2618 if (CanConstantFold(I)) { 2619 std::vector<Constant*> Operands; 2620 Operands.reserve(I->getNumOperands()); 2621 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2622 Value *Op = I->getOperand(i); 2623 if (Constant *C = dyn_cast<Constant>(Op)) { 2624 Operands.push_back(C); 2625 } else { 2626 // If any of the operands is non-constant and if they are 2627 // non-integer and non-pointer, don't even try to analyze them 2628 // with scev techniques. 2629 if (!isa<IntegerType>(Op->getType()) && 2630 !isa<PointerType>(Op->getType())) 2631 return V; 2632 2633 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 2634 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 2635 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(), 2636 Op->getType(), 2637 false)); 2638 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 2639 if (Constant *C = dyn_cast<Constant>(SU->getValue())) 2640 Operands.push_back(ConstantExpr::getIntegerCast(C, 2641 Op->getType(), 2642 false)); 2643 else 2644 return V; 2645 } else { 2646 return V; 2647 } 2648 } 2649 } 2650 2651 Constant *C; 2652 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2653 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 2654 &Operands[0], Operands.size()); 2655 else 2656 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2657 &Operands[0], Operands.size()); 2658 return getUnknown(C); 2659 } 2660 } 2661 2662 // This is some other type of SCEVUnknown, just return it. 2663 return V; 2664 } 2665 2666 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 2667 // Avoid performing the look-up in the common case where the specified 2668 // expression has no loop-variant portions. 2669 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 2670 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2671 if (OpAtScope != Comm->getOperand(i)) { 2672 if (OpAtScope == UnknownValue) return UnknownValue; 2673 // Okay, at least one of these operands is loop variant but might be 2674 // foldable. Build a new instance of the folded commutative expression. 2675 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); 2676 NewOps.push_back(OpAtScope); 2677 2678 for (++i; i != e; ++i) { 2679 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2680 if (OpAtScope == UnknownValue) return UnknownValue; 2681 NewOps.push_back(OpAtScope); 2682 } 2683 if (isa<SCEVAddExpr>(Comm)) 2684 return getAddExpr(NewOps); 2685 if (isa<SCEVMulExpr>(Comm)) 2686 return getMulExpr(NewOps); 2687 if (isa<SCEVSMaxExpr>(Comm)) 2688 return getSMaxExpr(NewOps); 2689 if (isa<SCEVUMaxExpr>(Comm)) 2690 return getUMaxExpr(NewOps); 2691 assert(0 && "Unknown commutative SCEV type!"); 2692 } 2693 } 2694 // If we got here, all operands are loop invariant. 2695 return Comm; 2696 } 2697 2698 if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 2699 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 2700 if (LHS == UnknownValue) return LHS; 2701 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 2702 if (RHS == UnknownValue) return RHS; 2703 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 2704 return Div; // must be loop invariant 2705 return getUDivExpr(LHS, RHS); 2706 } 2707 2708 // If this is a loop recurrence for a loop that does not contain L, then we 2709 // are dealing with the final value computed by the loop. 2710 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 2711 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 2712 // To evaluate this recurrence, we need to know how many times the AddRec 2713 // loop iterates. Compute this now. 2714 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 2715 if (BackedgeTakenCount == UnknownValue) return UnknownValue; 2716 2717 // Then, evaluate the AddRec. 2718 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 2719 } 2720 return UnknownValue; 2721 } 2722 2723 //assert(0 && "Unknown SCEV type!"); 2724 return UnknownValue; 2725 } 2726 2727 /// getSCEVAtScope - Return a SCEV expression handle for the specified value 2728 /// at the specified scope in the program. The L value specifies a loop 2729 /// nest to evaluate the expression at, where null is the top-level or a 2730 /// specified loop is immediately inside of the loop. 2731 /// 2732 /// This method can be used to compute the exit value for a variable defined 2733 /// in a loop by querying what the value will hold in the parent loop. 2734 /// 2735 /// If this value is not computable at this scope, a SCEVCouldNotCompute 2736 /// object is returned. 2737 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 2738 return getSCEVAtScope(getSCEV(V), L); 2739 } 2740 2741 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 2742 /// following equation: 2743 /// 2744 /// A * X = B (mod N) 2745 /// 2746 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 2747 /// A and B isn't important. 2748 /// 2749 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 2750 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 2751 ScalarEvolution &SE) { 2752 uint32_t BW = A.getBitWidth(); 2753 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 2754 assert(A != 0 && "A must be non-zero."); 2755 2756 // 1. D = gcd(A, N) 2757 // 2758 // The gcd of A and N may have only one prime factor: 2. The number of 2759 // trailing zeros in A is its multiplicity 2760 uint32_t Mult2 = A.countTrailingZeros(); 2761 // D = 2^Mult2 2762 2763 // 2. Check if B is divisible by D. 2764 // 2765 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 2766 // is not less than multiplicity of this prime factor for D. 2767 if (B.countTrailingZeros() < Mult2) 2768 return SE.getCouldNotCompute(); 2769 2770 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 2771 // modulo (N / D). 2772 // 2773 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 2774 // bit width during computations. 2775 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 2776 APInt Mod(BW + 1, 0); 2777 Mod.set(BW - Mult2); // Mod = N / D 2778 APInt I = AD.multiplicativeInverse(Mod); 2779 2780 // 4. Compute the minimum unsigned root of the equation: 2781 // I * (B / D) mod (N / D) 2782 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 2783 2784 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 2785 // bits. 2786 return SE.getConstant(Result.trunc(BW)); 2787 } 2788 2789 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 2790 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 2791 /// might be the same) or two SCEVCouldNotCompute objects. 2792 /// 2793 static std::pair<SCEVHandle,SCEVHandle> 2794 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 2795 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 2796 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 2797 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 2798 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 2799 2800 // We currently can only solve this if the coefficients are constants. 2801 if (!LC || !MC || !NC) { 2802 SCEV *CNC = SE.getCouldNotCompute(); 2803 return std::make_pair(CNC, CNC); 2804 } 2805 2806 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 2807 const APInt &L = LC->getValue()->getValue(); 2808 const APInt &M = MC->getValue()->getValue(); 2809 const APInt &N = NC->getValue()->getValue(); 2810 APInt Two(BitWidth, 2); 2811 APInt Four(BitWidth, 4); 2812 2813 { 2814 using namespace APIntOps; 2815 const APInt& C = L; 2816 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 2817 // The B coefficient is M-N/2 2818 APInt B(M); 2819 B -= sdiv(N,Two); 2820 2821 // The A coefficient is N/2 2822 APInt A(N.sdiv(Two)); 2823 2824 // Compute the B^2-4ac term. 2825 APInt SqrtTerm(B); 2826 SqrtTerm *= B; 2827 SqrtTerm -= Four * (A * C); 2828 2829 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 2830 // integer value or else APInt::sqrt() will assert. 2831 APInt SqrtVal(SqrtTerm.sqrt()); 2832 2833 // Compute the two solutions for the quadratic formula. 2834 // The divisions must be performed as signed divisions. 2835 APInt NegB(-B); 2836 APInt TwoA( A << 1 ); 2837 if (TwoA.isMinValue()) { 2838 SCEV *CNC = SE.getCouldNotCompute(); 2839 return std::make_pair(CNC, CNC); 2840 } 2841 2842 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 2843 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 2844 2845 return std::make_pair(SE.getConstant(Solution1), 2846 SE.getConstant(Solution2)); 2847 } // end APIntOps namespace 2848 } 2849 2850 /// HowFarToZero - Return the number of times a backedge comparing the specified 2851 /// value to zero will execute. If not computable, return UnknownValue 2852 SCEVHandle ScalarEvolution::HowFarToZero(SCEV *V, const Loop *L) { 2853 // If the value is a constant 2854 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2855 // If the value is already zero, the branch will execute zero times. 2856 if (C->getValue()->isZero()) return C; 2857 return UnknownValue; // Otherwise it will loop infinitely. 2858 } 2859 2860 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 2861 if (!AddRec || AddRec->getLoop() != L) 2862 return UnknownValue; 2863 2864 if (AddRec->isAffine()) { 2865 // If this is an affine expression, the execution count of this branch is 2866 // the minimum unsigned root of the following equation: 2867 // 2868 // Start + Step*N = 0 (mod 2^BW) 2869 // 2870 // equivalent to: 2871 // 2872 // Step*N = -Start (mod 2^BW) 2873 // 2874 // where BW is the common bit width of Start and Step. 2875 2876 // Get the initial value for the loop. 2877 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 2878 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; 2879 2880 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 2881 2882 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 2883 // For now we handle only constant steps. 2884 2885 // First, handle unitary steps. 2886 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 2887 return getNegativeSCEV(Start); // N = -Start (as unsigned) 2888 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 2889 return Start; // N = Start (as unsigned) 2890 2891 // Then, try to solve the above equation provided that Start is constant. 2892 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 2893 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 2894 -StartC->getValue()->getValue(), 2895 *this); 2896 } 2897 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 2898 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 2899 // the quadratic equation to solve it. 2900 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, 2901 *this); 2902 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2903 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2904 if (R1) { 2905 #if 0 2906 errs() << "HFTZ: " << *V << " - sol#1: " << *R1 2907 << " sol#2: " << *R2 << "\n"; 2908 #endif 2909 // Pick the smallest positive root value. 2910 if (ConstantInt *CB = 2911 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2912 R1->getValue(), R2->getValue()))) { 2913 if (CB->getZExtValue() == false) 2914 std::swap(R1, R2); // R1 is the minimum root now. 2915 2916 // We can only use this value if the chrec ends up with an exact zero 2917 // value at this index. When solving for "X*X != 5", for example, we 2918 // should not accept a root of 2. 2919 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this); 2920 if (Val->isZero()) 2921 return R1; // We found a quadratic root! 2922 } 2923 } 2924 } 2925 2926 return UnknownValue; 2927 } 2928 2929 /// HowFarToNonZero - Return the number of times a backedge checking the 2930 /// specified value for nonzero will execute. If not computable, return 2931 /// UnknownValue 2932 SCEVHandle ScalarEvolution::HowFarToNonZero(SCEV *V, const Loop *L) { 2933 // Loops that look like: while (X == 0) are very strange indeed. We don't 2934 // handle them yet except for the trivial case. This could be expanded in the 2935 // future as needed. 2936 2937 // If the value is a constant, check to see if it is known to be non-zero 2938 // already. If so, the backedge will execute zero times. 2939 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2940 if (!C->getValue()->isNullValue()) 2941 return getIntegerSCEV(0, C->getType()); 2942 return UnknownValue; // Otherwise it will loop infinitely. 2943 } 2944 2945 // We could implement others, but I really doubt anyone writes loops like 2946 // this, and if they did, they would already be constant folded. 2947 return UnknownValue; 2948 } 2949 2950 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 2951 /// (which may not be an immediate predecessor) which has exactly one 2952 /// successor from which BB is reachable, or null if no such block is 2953 /// found. 2954 /// 2955 BasicBlock * 2956 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 2957 // If the block has a unique predecessor, the predecessor must have 2958 // no other successors from which BB is reachable. 2959 if (BasicBlock *Pred = BB->getSinglePredecessor()) 2960 return Pred; 2961 2962 // A loop's header is defined to be a block that dominates the loop. 2963 // If the loop has a preheader, it must be a block that has exactly 2964 // one successor that can reach BB. This is slightly more strict 2965 // than necessary, but works if critical edges are split. 2966 if (Loop *L = LI->getLoopFor(BB)) 2967 return L->getLoopPreheader(); 2968 2969 return 0; 2970 } 2971 2972 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 2973 /// a conditional between LHS and RHS. 2974 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, 2975 ICmpInst::Predicate Pred, 2976 SCEV *LHS, SCEV *RHS) { 2977 BasicBlock *Preheader = L->getLoopPreheader(); 2978 BasicBlock *PreheaderDest = L->getHeader(); 2979 2980 // Starting at the preheader, climb up the predecessor chain, as long as 2981 // there are predecessors that can be found that have unique successors 2982 // leading to the original header. 2983 for (; Preheader; 2984 PreheaderDest = Preheader, 2985 Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) { 2986 2987 BranchInst *LoopEntryPredicate = 2988 dyn_cast<BranchInst>(Preheader->getTerminator()); 2989 if (!LoopEntryPredicate || 2990 LoopEntryPredicate->isUnconditional()) 2991 continue; 2992 2993 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 2994 if (!ICI) continue; 2995 2996 // Now that we found a conditional branch that dominates the loop, check to 2997 // see if it is the comparison we are looking for. 2998 Value *PreCondLHS = ICI->getOperand(0); 2999 Value *PreCondRHS = ICI->getOperand(1); 3000 ICmpInst::Predicate Cond; 3001 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) 3002 Cond = ICI->getPredicate(); 3003 else 3004 Cond = ICI->getInversePredicate(); 3005 3006 if (Cond == Pred) 3007 ; // An exact match. 3008 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) 3009 ; // The actual condition is beyond sufficient. 3010 else 3011 // Check a few special cases. 3012 switch (Cond) { 3013 case ICmpInst::ICMP_UGT: 3014 if (Pred == ICmpInst::ICMP_ULT) { 3015 std::swap(PreCondLHS, PreCondRHS); 3016 Cond = ICmpInst::ICMP_ULT; 3017 break; 3018 } 3019 continue; 3020 case ICmpInst::ICMP_SGT: 3021 if (Pred == ICmpInst::ICMP_SLT) { 3022 std::swap(PreCondLHS, PreCondRHS); 3023 Cond = ICmpInst::ICMP_SLT; 3024 break; 3025 } 3026 continue; 3027 case ICmpInst::ICMP_NE: 3028 // Expressions like (x >u 0) are often canonicalized to (x != 0), 3029 // so check for this case by checking if the NE is comparing against 3030 // a minimum or maximum constant. 3031 if (!ICmpInst::isTrueWhenEqual(Pred)) 3032 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { 3033 const APInt &A = CI->getValue(); 3034 switch (Pred) { 3035 case ICmpInst::ICMP_SLT: 3036 if (A.isMaxSignedValue()) break; 3037 continue; 3038 case ICmpInst::ICMP_SGT: 3039 if (A.isMinSignedValue()) break; 3040 continue; 3041 case ICmpInst::ICMP_ULT: 3042 if (A.isMaxValue()) break; 3043 continue; 3044 case ICmpInst::ICMP_UGT: 3045 if (A.isMinValue()) break; 3046 continue; 3047 default: 3048 continue; 3049 } 3050 Cond = ICmpInst::ICMP_NE; 3051 // NE is symmetric but the original comparison may not be. Swap 3052 // the operands if necessary so that they match below. 3053 if (isa<SCEVConstant>(LHS)) 3054 std::swap(PreCondLHS, PreCondRHS); 3055 break; 3056 } 3057 continue; 3058 default: 3059 // We weren't able to reconcile the condition. 3060 continue; 3061 } 3062 3063 if (!PreCondLHS->getType()->isInteger()) continue; 3064 3065 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); 3066 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); 3067 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) || 3068 (LHS == getNotSCEV(PreCondRHSSCEV) && 3069 RHS == getNotSCEV(PreCondLHSSCEV))) 3070 return true; 3071 } 3072 3073 return false; 3074 } 3075 3076 /// HowManyLessThans - Return the number of times a backedge containing the 3077 /// specified less-than comparison will execute. If not computable, return 3078 /// UnknownValue. 3079 SCEVHandle ScalarEvolution:: 3080 HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) { 3081 // Only handle: "ADDREC < LoopInvariant". 3082 if (!RHS->isLoopInvariant(L)) return UnknownValue; 3083 3084 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 3085 if (!AddRec || AddRec->getLoop() != L) 3086 return UnknownValue; 3087 3088 if (AddRec->isAffine()) { 3089 // FORNOW: We only support unit strides. 3090 SCEVHandle One = getIntegerSCEV(1, RHS->getType()); 3091 if (AddRec->getOperand(1) != One) 3092 return UnknownValue; 3093 3094 // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant 3095 // m. So, we count the number of iterations in which {n,+,1} < m is true. 3096 // Note that we cannot simply return max(m-n,0) because it's not safe to 3097 // treat m-n as signed nor unsigned due to overflow possibility. 3098 3099 // First, we get the value of the LHS in the first iteration: n 3100 SCEVHandle Start = AddRec->getOperand(0); 3101 3102 if (isLoopGuardedByCond(L, 3103 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 3104 getMinusSCEV(AddRec->getOperand(0), One), RHS)) { 3105 // Since we know that the condition is true in order to enter the loop, 3106 // we know that it will run exactly m-n times. 3107 return getMinusSCEV(RHS, Start); 3108 } else { 3109 // Then, we get the value of the LHS in the first iteration in which the 3110 // above condition doesn't hold. This equals to max(m,n). 3111 SCEVHandle End = isSigned ? getSMaxExpr(RHS, Start) 3112 : getUMaxExpr(RHS, Start); 3113 3114 // Finally, we subtract these two values to get the number of times the 3115 // backedge is executed: max(m,n)-n. 3116 return getMinusSCEV(End, Start); 3117 } 3118 } 3119 3120 return UnknownValue; 3121 } 3122 3123 /// getNumIterationsInRange - Return the number of iterations of this loop that 3124 /// produce values in the specified constant range. Another way of looking at 3125 /// this is that it returns the first iteration number where the value is not in 3126 /// the condition, thus computing the exit count. If the iteration count can't 3127 /// be computed, an instance of SCEVCouldNotCompute is returned. 3128 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 3129 ScalarEvolution &SE) const { 3130 if (Range.isFullSet()) // Infinite loop. 3131 return SE.getCouldNotCompute(); 3132 3133 // If the start is a non-zero constant, shift the range to simplify things. 3134 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 3135 if (!SC->getValue()->isZero()) { 3136 std::vector<SCEVHandle> Operands(op_begin(), op_end()); 3137 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 3138 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 3139 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 3140 return ShiftedAddRec->getNumIterationsInRange( 3141 Range.subtract(SC->getValue()->getValue()), SE); 3142 // This is strange and shouldn't happen. 3143 return SE.getCouldNotCompute(); 3144 } 3145 3146 // The only time we can solve this is when we have all constant indices. 3147 // Otherwise, we cannot determine the overflow conditions. 3148 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 3149 if (!isa<SCEVConstant>(getOperand(i))) 3150 return SE.getCouldNotCompute(); 3151 3152 3153 // Okay at this point we know that all elements of the chrec are constants and 3154 // that the start element is zero. 3155 3156 // First check to see if the range contains zero. If not, the first 3157 // iteration exits. 3158 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 3159 if (!Range.contains(APInt(BitWidth, 0))) 3160 return SE.getConstant(ConstantInt::get(getType(),0)); 3161 3162 if (isAffine()) { 3163 // If this is an affine expression then we have this situation: 3164 // Solve {0,+,A} in Range === Ax in Range 3165 3166 // We know that zero is in the range. If A is positive then we know that 3167 // the upper value of the range must be the first possible exit value. 3168 // If A is negative then the lower of the range is the last possible loop 3169 // value. Also note that we already checked for a full range. 3170 APInt One(BitWidth,1); 3171 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 3172 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 3173 3174 // The exit value should be (End+A)/A. 3175 APInt ExitVal = (End + A).udiv(A); 3176 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 3177 3178 // Evaluate at the exit value. If we really did fall out of the valid 3179 // range, then we computed our trip count, otherwise wrap around or other 3180 // things must have happened. 3181 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 3182 if (Range.contains(Val->getValue())) 3183 return SE.getCouldNotCompute(); // Something strange happened 3184 3185 // Ensure that the previous value is in the range. This is a sanity check. 3186 assert(Range.contains( 3187 EvaluateConstantChrecAtConstant(this, 3188 ConstantInt::get(ExitVal - One), SE)->getValue()) && 3189 "Linear scev computation is off in a bad way!"); 3190 return SE.getConstant(ExitValue); 3191 } else if (isQuadratic()) { 3192 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 3193 // quadratic equation to solve it. To do this, we must frame our problem in 3194 // terms of figuring out when zero is crossed, instead of when 3195 // Range.getUpper() is crossed. 3196 std::vector<SCEVHandle> NewOps(op_begin(), op_end()); 3197 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 3198 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 3199 3200 // Next, solve the constructed addrec 3201 std::pair<SCEVHandle,SCEVHandle> Roots = 3202 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 3203 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3204 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3205 if (R1) { 3206 // Pick the smallest positive root value. 3207 if (ConstantInt *CB = 3208 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3209 R1->getValue(), R2->getValue()))) { 3210 if (CB->getZExtValue() == false) 3211 std::swap(R1, R2); // R1 is the minimum root now. 3212 3213 // Make sure the root is not off by one. The returned iteration should 3214 // not be in the range, but the previous one should be. When solving 3215 // for "X*X < 5", for example, we should not return a root of 2. 3216 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 3217 R1->getValue(), 3218 SE); 3219 if (Range.contains(R1Val->getValue())) { 3220 // The next iteration must be out of the range... 3221 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 3222 3223 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3224 if (!Range.contains(R1Val->getValue())) 3225 return SE.getConstant(NextVal); 3226 return SE.getCouldNotCompute(); // Something strange happened 3227 } 3228 3229 // If R1 was not in the range, then it is a good return value. Make 3230 // sure that R1-1 WAS in the range though, just in case. 3231 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 3232 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3233 if (Range.contains(R1Val->getValue())) 3234 return R1; 3235 return SE.getCouldNotCompute(); // Something strange happened 3236 } 3237 } 3238 } 3239 3240 return SE.getCouldNotCompute(); 3241 } 3242 3243 3244 3245 //===----------------------------------------------------------------------===// 3246 // ScalarEvolution Class Implementation 3247 //===----------------------------------------------------------------------===// 3248 3249 ScalarEvolution::ScalarEvolution() 3250 : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) { 3251 } 3252 3253 bool ScalarEvolution::runOnFunction(Function &F) { 3254 this->F = &F; 3255 LI = &getAnalysis<LoopInfo>(); 3256 TD = getAnalysisIfAvailable<TargetData>(); 3257 return false; 3258 } 3259 3260 void ScalarEvolution::releaseMemory() { 3261 Scalars.clear(); 3262 BackedgeTakenCounts.clear(); 3263 ConstantEvolutionLoopExitValue.clear(); 3264 } 3265 3266 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 3267 AU.setPreservesAll(); 3268 AU.addRequiredTransitive<LoopInfo>(); 3269 } 3270 3271 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 3272 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 3273 } 3274 3275 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 3276 const Loop *L) { 3277 // Print all inner loops first 3278 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3279 PrintLoopInfo(OS, SE, *I); 3280 3281 OS << "Loop " << L->getHeader()->getName() << ": "; 3282 3283 SmallVector<BasicBlock*, 8> ExitBlocks; 3284 L->getExitBlocks(ExitBlocks); 3285 if (ExitBlocks.size() != 1) 3286 OS << "<multiple exits> "; 3287 3288 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 3289 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 3290 } else { 3291 OS << "Unpredictable backedge-taken count. "; 3292 } 3293 3294 OS << "\n"; 3295 } 3296 3297 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { 3298 // ScalarEvolution's implementaiton of the print method is to print 3299 // out SCEV values of all instructions that are interesting. Doing 3300 // this potentially causes it to create new SCEV objects though, 3301 // which technically conflicts with the const qualifier. This isn't 3302 // observable from outside the class though (the hasSCEV function 3303 // notwithstanding), so casting away the const isn't dangerous. 3304 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); 3305 3306 OS << "Classifying expressions for: " << F->getName() << "\n"; 3307 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 3308 if (I->getType()->isInteger()) { 3309 OS << *I; 3310 OS << " --> "; 3311 SCEVHandle SV = SE.getSCEV(&*I); 3312 SV->print(OS); 3313 OS << "\t\t"; 3314 3315 if (const Loop *L = LI->getLoopFor((*I).getParent())) { 3316 OS << "Exits: "; 3317 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop()); 3318 if (isa<SCEVCouldNotCompute>(ExitValue)) { 3319 OS << "<<Unknown>>"; 3320 } else { 3321 OS << *ExitValue; 3322 } 3323 } 3324 3325 3326 OS << "\n"; 3327 } 3328 3329 OS << "Determining loop execution counts for: " << F->getName() << "\n"; 3330 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 3331 PrintLoopInfo(OS, &SE, *I); 3332 } 3333 3334 void ScalarEvolution::print(std::ostream &o, const Module *M) const { 3335 raw_os_ostream OS(o); 3336 print(OS, M); 3337 } 3338