1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/LoopInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Assembly/Writer.h" 75 #include "llvm/Target/TargetData.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/GetElementPtrTypeIterator.h" 81 #include "llvm/Support/InstIterator.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/ADT/Statistic.h" 85 #include "llvm/ADT/STLExtras.h" 86 #include "llvm/ADT/SmallPtrSet.h" 87 #include <algorithm> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant " 103 "derived loop"), 104 cl::init(100)); 105 106 INITIALIZE_PASS(ScalarEvolution, "scalar-evolution", 107 "Scalar Evolution Analysis", false, true); 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 118 SCEV::~SCEV() {} 119 120 void SCEV::dump() const { 121 print(dbgs()); 122 dbgs() << '\n'; 123 } 124 125 bool SCEV::isZero() const { 126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 127 return SC->getValue()->isZero(); 128 return false; 129 } 130 131 bool SCEV::isOne() const { 132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 133 return SC->getValue()->isOne(); 134 return false; 135 } 136 137 bool SCEV::isAllOnesValue() const { 138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 139 return SC->getValue()->isAllOnesValue(); 140 return false; 141 } 142 143 SCEVCouldNotCompute::SCEVCouldNotCompute() : 144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 145 146 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 148 return false; 149 } 150 151 const Type *SCEVCouldNotCompute::getType() const { 152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 153 return 0; 154 } 155 156 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 158 return false; 159 } 160 161 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const { 162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 163 return false; 164 } 165 166 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 167 OS << "***COULDNOTCOMPUTE***"; 168 } 169 170 bool SCEVCouldNotCompute::classof(const SCEV *S) { 171 return S->getSCEVType() == scCouldNotCompute; 172 } 173 174 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 175 FoldingSetNodeID ID; 176 ID.AddInteger(scConstant); 177 ID.AddPointer(V); 178 void *IP = 0; 179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 181 UniqueSCEVs.InsertNode(S, IP); 182 return S; 183 } 184 185 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 186 return getConstant(ConstantInt::get(getContext(), Val)); 187 } 188 189 const SCEV * 190 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 192 return getConstant(ConstantInt::get(ITy, V, isSigned)); 193 } 194 195 const Type *SCEVConstant::getType() const { return V->getType(); } 196 197 void SCEVConstant::print(raw_ostream &OS) const { 198 WriteAsOperand(OS, V, false); 199 } 200 201 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 202 unsigned SCEVTy, const SCEV *op, const Type *ty) 203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 204 205 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 206 return Op->dominates(BB, DT); 207 } 208 209 bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 210 return Op->properlyDominates(BB, DT); 211 } 212 213 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 214 const SCEV *op, const Type *ty) 215 : SCEVCastExpr(ID, scTruncate, op, ty) { 216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 217 (Ty->isIntegerTy() || Ty->isPointerTy()) && 218 "Cannot truncate non-integer value!"); 219 } 220 221 void SCEVTruncateExpr::print(raw_ostream &OS) const { 222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 223 } 224 225 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 226 const SCEV *op, const Type *ty) 227 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 229 (Ty->isIntegerTy() || Ty->isPointerTy()) && 230 "Cannot zero extend non-integer value!"); 231 } 232 233 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 235 } 236 237 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 238 const SCEV *op, const Type *ty) 239 : SCEVCastExpr(ID, scSignExtend, op, ty) { 240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 241 (Ty->isIntegerTy() || Ty->isPointerTy()) && 242 "Cannot sign extend non-integer value!"); 243 } 244 245 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 247 } 248 249 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 250 const char *OpStr = getOperationStr(); 251 OS << "("; 252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) { 253 OS << **I; 254 if (llvm::next(I) != E) 255 OS << OpStr; 256 } 257 OS << ")"; 258 } 259 260 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 261 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) 262 if (!(*I)->dominates(BB, DT)) 263 return false; 264 return true; 265 } 266 267 bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 268 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) 269 if (!(*I)->properlyDominates(BB, DT)) 270 return false; 271 return true; 272 } 273 274 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 275 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 276 } 277 278 bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 279 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT); 280 } 281 282 void SCEVUDivExpr::print(raw_ostream &OS) const { 283 OS << "(" << *LHS << " /u " << *RHS << ")"; 284 } 285 286 const Type *SCEVUDivExpr::getType() const { 287 // In most cases the types of LHS and RHS will be the same, but in some 288 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 289 // depend on the type for correctness, but handling types carefully can 290 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 291 // a pointer type than the RHS, so use the RHS' type here. 292 return RHS->getType(); 293 } 294 295 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 296 // Add recurrences are never invariant in the function-body (null loop). 297 if (!QueryLoop) 298 return false; 299 300 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. 301 if (QueryLoop->contains(L)) 302 return false; 303 304 // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop. 305 if (L->contains(QueryLoop)) 306 return true; 307 308 // This recurrence is variant w.r.t. QueryLoop if any of its operands 309 // are variant. 310 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 311 if (!getOperand(i)->isLoopInvariant(QueryLoop)) 312 return false; 313 314 // Otherwise it's loop-invariant. 315 return true; 316 } 317 318 bool 319 SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 320 return DT->dominates(L->getHeader(), BB) && 321 SCEVNAryExpr::dominates(BB, DT); 322 } 323 324 bool 325 SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 326 // This uses a "dominates" query instead of "properly dominates" query because 327 // the instruction which produces the addrec's value is a PHI, and a PHI 328 // effectively properly dominates its entire containing block. 329 return DT->dominates(L->getHeader(), BB) && 330 SCEVNAryExpr::properlyDominates(BB, DT); 331 } 332 333 void SCEVAddRecExpr::print(raw_ostream &OS) const { 334 OS << "{" << *Operands[0]; 335 for (unsigned i = 1, e = NumOperands; i != e; ++i) 336 OS << ",+," << *Operands[i]; 337 OS << "}<"; 338 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 339 OS << ">"; 340 } 341 342 void SCEVUnknown::deleted() { 343 // Clear this SCEVUnknown from ValuesAtScopes. 344 SE->ValuesAtScopes.erase(this); 345 346 // Remove this SCEVUnknown from the uniquing map. 347 SE->UniqueSCEVs.RemoveNode(this); 348 349 // Release the value. 350 setValPtr(0); 351 } 352 353 void SCEVUnknown::allUsesReplacedWith(Value *New) { 354 // Clear this SCEVUnknown from ValuesAtScopes. 355 SE->ValuesAtScopes.erase(this); 356 357 // Remove this SCEVUnknown from the uniquing map. 358 SE->UniqueSCEVs.RemoveNode(this); 359 360 // Update this SCEVUnknown to point to the new value. This is needed 361 // because there may still be outstanding SCEVs which still point to 362 // this SCEVUnknown. 363 setValPtr(New); 364 } 365 366 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 367 // All non-instruction values are loop invariant. All instructions are loop 368 // invariant if they are not contained in the specified loop. 369 // Instructions are never considered invariant in the function body 370 // (null loop) because they are defined within the "loop". 371 if (Instruction *I = dyn_cast<Instruction>(getValue())) 372 return L && !L->contains(I); 373 return true; 374 } 375 376 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 377 if (Instruction *I = dyn_cast<Instruction>(getValue())) 378 return DT->dominates(I->getParent(), BB); 379 return true; 380 } 381 382 bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 383 if (Instruction *I = dyn_cast<Instruction>(getValue())) 384 return DT->properlyDominates(I->getParent(), BB); 385 return true; 386 } 387 388 const Type *SCEVUnknown::getType() const { 389 return getValue()->getType(); 390 } 391 392 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { 393 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 394 if (VCE->getOpcode() == Instruction::PtrToInt) 395 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 396 if (CE->getOpcode() == Instruction::GetElementPtr && 397 CE->getOperand(0)->isNullValue() && 398 CE->getNumOperands() == 2) 399 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 400 if (CI->isOne()) { 401 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 402 ->getElementType(); 403 return true; 404 } 405 406 return false; 407 } 408 409 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { 410 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 411 if (VCE->getOpcode() == Instruction::PtrToInt) 412 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 413 if (CE->getOpcode() == Instruction::GetElementPtr && 414 CE->getOperand(0)->isNullValue()) { 415 const Type *Ty = 416 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 417 if (const StructType *STy = dyn_cast<StructType>(Ty)) 418 if (!STy->isPacked() && 419 CE->getNumOperands() == 3 && 420 CE->getOperand(1)->isNullValue()) { 421 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 422 if (CI->isOne() && 423 STy->getNumElements() == 2 && 424 STy->getElementType(0)->isIntegerTy(1)) { 425 AllocTy = STy->getElementType(1); 426 return true; 427 } 428 } 429 } 430 431 return false; 432 } 433 434 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const { 435 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 436 if (VCE->getOpcode() == Instruction::PtrToInt) 437 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 438 if (CE->getOpcode() == Instruction::GetElementPtr && 439 CE->getNumOperands() == 3 && 440 CE->getOperand(0)->isNullValue() && 441 CE->getOperand(1)->isNullValue()) { 442 const Type *Ty = 443 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 444 // Ignore vector types here so that ScalarEvolutionExpander doesn't 445 // emit getelementptrs that index into vectors. 446 if (Ty->isStructTy() || Ty->isArrayTy()) { 447 CTy = Ty; 448 FieldNo = CE->getOperand(2); 449 return true; 450 } 451 } 452 453 return false; 454 } 455 456 void SCEVUnknown::print(raw_ostream &OS) const { 457 const Type *AllocTy; 458 if (isSizeOf(AllocTy)) { 459 OS << "sizeof(" << *AllocTy << ")"; 460 return; 461 } 462 if (isAlignOf(AllocTy)) { 463 OS << "alignof(" << *AllocTy << ")"; 464 return; 465 } 466 467 const Type *CTy; 468 Constant *FieldNo; 469 if (isOffsetOf(CTy, FieldNo)) { 470 OS << "offsetof(" << *CTy << ", "; 471 WriteAsOperand(OS, FieldNo, false); 472 OS << ")"; 473 return; 474 } 475 476 // Otherwise just print it normally. 477 WriteAsOperand(OS, getValue(), false); 478 } 479 480 //===----------------------------------------------------------------------===// 481 // SCEV Utilities 482 //===----------------------------------------------------------------------===// 483 484 namespace { 485 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 486 /// than the complexity of the RHS. This comparator is used to canonicalize 487 /// expressions. 488 class SCEVComplexityCompare { 489 const LoopInfo *const LI; 490 public: 491 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 492 493 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 494 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 495 if (LHS == RHS) 496 return false; 497 498 // Primarily, sort the SCEVs by their getSCEVType(). 499 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 500 if (LType != RType) 501 return LType < RType; 502 503 // Aside from the getSCEVType() ordering, the particular ordering 504 // isn't very important except that it's beneficial to be consistent, 505 // so that (a + b) and (b + a) don't end up as different expressions. 506 507 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 508 // not as complete as it could be. 509 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 510 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 511 const Value *LV = LU->getValue(), *RV = RU->getValue(); 512 513 // Order pointer values after integer values. This helps SCEVExpander 514 // form GEPs. 515 bool LIsPointer = LV->getType()->isPointerTy(), 516 RIsPointer = RV->getType()->isPointerTy(); 517 if (LIsPointer != RIsPointer) 518 return RIsPointer; 519 520 // Compare getValueID values. 521 unsigned LID = LV->getValueID(), 522 RID = RV->getValueID(); 523 if (LID != RID) 524 return LID < RID; 525 526 // Sort arguments by their position. 527 if (const Argument *LA = dyn_cast<Argument>(LV)) { 528 const Argument *RA = cast<Argument>(RV); 529 return LA->getArgNo() < RA->getArgNo(); 530 } 531 532 // For instructions, compare their loop depth, and their opcode. 533 // This is pretty loose. 534 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 535 const Instruction *RInst = cast<Instruction>(RV); 536 537 // Compare loop depths. 538 const BasicBlock *LParent = LInst->getParent(), 539 *RParent = RInst->getParent(); 540 if (LParent != RParent) { 541 unsigned LDepth = LI->getLoopDepth(LParent), 542 RDepth = LI->getLoopDepth(RParent); 543 if (LDepth != RDepth) 544 return LDepth < RDepth; 545 } 546 547 // Compare the number of operands. 548 unsigned LNumOps = LInst->getNumOperands(), 549 RNumOps = RInst->getNumOperands(); 550 if (LNumOps != RNumOps) 551 return LNumOps < RNumOps; 552 } 553 554 return false; 555 } 556 557 // Compare constant values. 558 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 559 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 560 const ConstantInt *LCC = LC->getValue(); 561 const ConstantInt *RCC = RC->getValue(); 562 unsigned LBitWidth = LCC->getBitWidth(), RBitWidth = RCC->getBitWidth(); 563 if (LBitWidth != RBitWidth) 564 return LBitWidth < RBitWidth; 565 return LCC->getValue().ult(RCC->getValue()); 566 } 567 568 // Compare addrec loop depths. 569 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 570 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 571 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 572 if (LLoop != RLoop) { 573 unsigned LDepth = LLoop->getLoopDepth(), 574 RDepth = RLoop->getLoopDepth(); 575 if (LDepth != RDepth) 576 return LDepth < RDepth; 577 } 578 } 579 580 // Lexicographically compare n-ary expressions. 581 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 582 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 583 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 584 for (unsigned i = 0; i != LNumOps; ++i) { 585 if (i >= RNumOps) 586 return false; 587 const SCEV *LOp = LC->getOperand(i), *ROp = RC->getOperand(i); 588 if (operator()(LOp, ROp)) 589 return true; 590 if (operator()(ROp, LOp)) 591 return false; 592 } 593 return LNumOps < RNumOps; 594 } 595 596 // Lexicographically compare udiv expressions. 597 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 598 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 599 const SCEV *LL = LC->getLHS(), *LR = LC->getRHS(), 600 *RL = RC->getLHS(), *RR = RC->getRHS(); 601 if (operator()(LL, RL)) 602 return true; 603 if (operator()(RL, LL)) 604 return false; 605 if (operator()(LR, RR)) 606 return true; 607 if (operator()(RR, LR)) 608 return false; 609 return false; 610 } 611 612 // Compare cast expressions by operand. 613 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 614 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 615 return operator()(LC->getOperand(), RC->getOperand()); 616 } 617 618 llvm_unreachable("Unknown SCEV kind!"); 619 return false; 620 } 621 }; 622 } 623 624 /// GroupByComplexity - Given a list of SCEV objects, order them by their 625 /// complexity, and group objects of the same complexity together by value. 626 /// When this routine is finished, we know that any duplicates in the vector are 627 /// consecutive and that complexity is monotonically increasing. 628 /// 629 /// Note that we go take special precautions to ensure that we get deterministic 630 /// results from this routine. In other words, we don't want the results of 631 /// this to depend on where the addresses of various SCEV objects happened to 632 /// land in memory. 633 /// 634 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 635 LoopInfo *LI) { 636 if (Ops.size() < 2) return; // Noop 637 if (Ops.size() == 2) { 638 // This is the common case, which also happens to be trivially simple. 639 // Special case it. 640 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 641 std::swap(Ops[0], Ops[1]); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 670 671 //===----------------------------------------------------------------------===// 672 // Simple SCEV method implementations 673 //===----------------------------------------------------------------------===// 674 675 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 676 /// Assume, K > 0. 677 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 678 ScalarEvolution &SE, 679 const Type* ResultTy) { 680 // Handle the simplest case efficiently. 681 if (K == 1) 682 return SE.getTruncateOrZeroExtend(It, ResultTy); 683 684 // We are using the following formula for BC(It, K): 685 // 686 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 687 // 688 // Suppose, W is the bitwidth of the return value. We must be prepared for 689 // overflow. Hence, we must assure that the result of our computation is 690 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 691 // safe in modular arithmetic. 692 // 693 // However, this code doesn't use exactly that formula; the formula it uses 694 // is something like the following, where T is the number of factors of 2 in 695 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 696 // exponentiation: 697 // 698 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 699 // 700 // This formula is trivially equivalent to the previous formula. However, 701 // this formula can be implemented much more efficiently. The trick is that 702 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 703 // arithmetic. To do exact division in modular arithmetic, all we have 704 // to do is multiply by the inverse. Therefore, this step can be done at 705 // width W. 706 // 707 // The next issue is how to safely do the division by 2^T. The way this 708 // is done is by doing the multiplication step at a width of at least W + T 709 // bits. This way, the bottom W+T bits of the product are accurate. Then, 710 // when we perform the division by 2^T (which is equivalent to a right shift 711 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 712 // truncated out after the division by 2^T. 713 // 714 // In comparison to just directly using the first formula, this technique 715 // is much more efficient; using the first formula requires W * K bits, 716 // but this formula less than W + K bits. Also, the first formula requires 717 // a division step, whereas this formula only requires multiplies and shifts. 718 // 719 // It doesn't matter whether the subtraction step is done in the calculation 720 // width or the input iteration count's width; if the subtraction overflows, 721 // the result must be zero anyway. We prefer here to do it in the width of 722 // the induction variable because it helps a lot for certain cases; CodeGen 723 // isn't smart enough to ignore the overflow, which leads to much less 724 // efficient code if the width of the subtraction is wider than the native 725 // register width. 726 // 727 // (It's possible to not widen at all by pulling out factors of 2 before 728 // the multiplication; for example, K=2 can be calculated as 729 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 730 // extra arithmetic, so it's not an obvious win, and it gets 731 // much more complicated for K > 3.) 732 733 // Protection from insane SCEVs; this bound is conservative, 734 // but it probably doesn't matter. 735 if (K > 1000) 736 return SE.getCouldNotCompute(); 737 738 unsigned W = SE.getTypeSizeInBits(ResultTy); 739 740 // Calculate K! / 2^T and T; we divide out the factors of two before 741 // multiplying for calculating K! / 2^T to avoid overflow. 742 // Other overflow doesn't matter because we only care about the bottom 743 // W bits of the result. 744 APInt OddFactorial(W, 1); 745 unsigned T = 1; 746 for (unsigned i = 3; i <= K; ++i) { 747 APInt Mult(W, i); 748 unsigned TwoFactors = Mult.countTrailingZeros(); 749 T += TwoFactors; 750 Mult = Mult.lshr(TwoFactors); 751 OddFactorial *= Mult; 752 } 753 754 // We need at least W + T bits for the multiplication step 755 unsigned CalculationBits = W + T; 756 757 // Calculate 2^T, at width T+W. 758 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 759 760 // Calculate the multiplicative inverse of K! / 2^T; 761 // this multiplication factor will perform the exact division by 762 // K! / 2^T. 763 APInt Mod = APInt::getSignedMinValue(W+1); 764 APInt MultiplyFactor = OddFactorial.zext(W+1); 765 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 766 MultiplyFactor = MultiplyFactor.trunc(W); 767 768 // Calculate the product, at width T+W 769 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 770 CalculationBits); 771 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 772 for (unsigned i = 1; i != K; ++i) { 773 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 774 Dividend = SE.getMulExpr(Dividend, 775 SE.getTruncateOrZeroExtend(S, CalculationTy)); 776 } 777 778 // Divide by 2^T 779 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 780 781 // Truncate the result, and divide by K! / 2^T. 782 783 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 784 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 785 } 786 787 /// evaluateAtIteration - Return the value of this chain of recurrences at 788 /// the specified iteration number. We can evaluate this recurrence by 789 /// multiplying each element in the chain by the binomial coefficient 790 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 791 /// 792 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 793 /// 794 /// where BC(It, k) stands for binomial coefficient. 795 /// 796 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 797 ScalarEvolution &SE) const { 798 const SCEV *Result = getStart(); 799 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 800 // The computation is correct in the face of overflow provided that the 801 // multiplication is performed _after_ the evaluation of the binomial 802 // coefficient. 803 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 804 if (isa<SCEVCouldNotCompute>(Coeff)) 805 return Coeff; 806 807 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 808 } 809 return Result; 810 } 811 812 //===----------------------------------------------------------------------===// 813 // SCEV Expression folder implementations 814 //===----------------------------------------------------------------------===// 815 816 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 817 const Type *Ty) { 818 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 819 "This is not a truncating conversion!"); 820 assert(isSCEVable(Ty) && 821 "This is not a conversion to a SCEVable type!"); 822 Ty = getEffectiveSCEVType(Ty); 823 824 FoldingSetNodeID ID; 825 ID.AddInteger(scTruncate); 826 ID.AddPointer(Op); 827 ID.AddPointer(Ty); 828 void *IP = 0; 829 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 830 831 // Fold if the operand is constant. 832 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 833 return getConstant( 834 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 835 getEffectiveSCEVType(Ty)))); 836 837 // trunc(trunc(x)) --> trunc(x) 838 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 839 return getTruncateExpr(ST->getOperand(), Ty); 840 841 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 842 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 843 return getTruncateOrSignExtend(SS->getOperand(), Ty); 844 845 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 846 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 847 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 848 849 // If the input value is a chrec scev, truncate the chrec's operands. 850 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 851 SmallVector<const SCEV *, 4> Operands; 852 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 853 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 854 return getAddRecExpr(Operands, AddRec->getLoop()); 855 } 856 857 // As a special case, fold trunc(undef) to undef. We don't want to 858 // know too much about SCEVUnknowns, but this special case is handy 859 // and harmless. 860 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 861 if (isa<UndefValue>(U->getValue())) 862 return getSCEV(UndefValue::get(Ty)); 863 864 // The cast wasn't folded; create an explicit cast node. We can reuse 865 // the existing insert position since if we get here, we won't have 866 // made any changes which would invalidate it. 867 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 868 Op, Ty); 869 UniqueSCEVs.InsertNode(S, IP); 870 return S; 871 } 872 873 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 874 const Type *Ty) { 875 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 876 "This is not an extending conversion!"); 877 assert(isSCEVable(Ty) && 878 "This is not a conversion to a SCEVable type!"); 879 Ty = getEffectiveSCEVType(Ty); 880 881 // Fold if the operand is constant. 882 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 883 return getConstant( 884 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 885 getEffectiveSCEVType(Ty)))); 886 887 // zext(zext(x)) --> zext(x) 888 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 889 return getZeroExtendExpr(SZ->getOperand(), Ty); 890 891 // Before doing any expensive analysis, check to see if we've already 892 // computed a SCEV for this Op and Ty. 893 FoldingSetNodeID ID; 894 ID.AddInteger(scZeroExtend); 895 ID.AddPointer(Op); 896 ID.AddPointer(Ty); 897 void *IP = 0; 898 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 899 900 // If the input value is a chrec scev, and we can prove that the value 901 // did not overflow the old, smaller, value, we can zero extend all of the 902 // operands (often constants). This allows analysis of something like 903 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 904 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 905 if (AR->isAffine()) { 906 const SCEV *Start = AR->getStart(); 907 const SCEV *Step = AR->getStepRecurrence(*this); 908 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 909 const Loop *L = AR->getLoop(); 910 911 // If we have special knowledge that this addrec won't overflow, 912 // we don't need to do any further analysis. 913 if (AR->hasNoUnsignedWrap()) 914 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 915 getZeroExtendExpr(Step, Ty), 916 L); 917 918 // Check whether the backedge-taken count is SCEVCouldNotCompute. 919 // Note that this serves two purposes: It filters out loops that are 920 // simply not analyzable, and it covers the case where this code is 921 // being called from within backedge-taken count analysis, such that 922 // attempting to ask for the backedge-taken count would likely result 923 // in infinite recursion. In the later case, the analysis code will 924 // cope with a conservative value, and it will take care to purge 925 // that value once it has finished. 926 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 927 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 928 // Manually compute the final value for AR, checking for 929 // overflow. 930 931 // Check whether the backedge-taken count can be losslessly casted to 932 // the addrec's type. The count is always unsigned. 933 const SCEV *CastedMaxBECount = 934 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 935 const SCEV *RecastedMaxBECount = 936 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 937 if (MaxBECount == RecastedMaxBECount) { 938 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 939 // Check whether Start+Step*MaxBECount has no unsigned overflow. 940 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 941 const SCEV *Add = getAddExpr(Start, ZMul); 942 const SCEV *OperandExtendedAdd = 943 getAddExpr(getZeroExtendExpr(Start, WideTy), 944 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 945 getZeroExtendExpr(Step, WideTy))); 946 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 947 // Return the expression with the addrec on the outside. 948 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 949 getZeroExtendExpr(Step, Ty), 950 L); 951 952 // Similar to above, only this time treat the step value as signed. 953 // This covers loops that count down. 954 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 955 Add = getAddExpr(Start, SMul); 956 OperandExtendedAdd = 957 getAddExpr(getZeroExtendExpr(Start, WideTy), 958 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 959 getSignExtendExpr(Step, WideTy))); 960 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 961 // Return the expression with the addrec on the outside. 962 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 963 getSignExtendExpr(Step, Ty), 964 L); 965 } 966 967 // If the backedge is guarded by a comparison with the pre-inc value 968 // the addrec is safe. Also, if the entry is guarded by a comparison 969 // with the start value and the backedge is guarded by a comparison 970 // with the post-inc value, the addrec is safe. 971 if (isKnownPositive(Step)) { 972 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 973 getUnsignedRange(Step).getUnsignedMax()); 974 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 975 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 976 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 977 AR->getPostIncExpr(*this), N))) 978 // Return the expression with the addrec on the outside. 979 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 980 getZeroExtendExpr(Step, Ty), 981 L); 982 } else if (isKnownNegative(Step)) { 983 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 984 getSignedRange(Step).getSignedMin()); 985 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 986 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 987 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 988 AR->getPostIncExpr(*this), N))) 989 // Return the expression with the addrec on the outside. 990 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 991 getSignExtendExpr(Step, Ty), 992 L); 993 } 994 } 995 } 996 997 // The cast wasn't folded; create an explicit cast node. 998 // Recompute the insert position, as it may have been invalidated. 999 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1000 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1001 Op, Ty); 1002 UniqueSCEVs.InsertNode(S, IP); 1003 return S; 1004 } 1005 1006 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1007 const Type *Ty) { 1008 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1009 "This is not an extending conversion!"); 1010 assert(isSCEVable(Ty) && 1011 "This is not a conversion to a SCEVable type!"); 1012 Ty = getEffectiveSCEVType(Ty); 1013 1014 // Fold if the operand is constant. 1015 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1016 return getConstant( 1017 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 1018 getEffectiveSCEVType(Ty)))); 1019 1020 // sext(sext(x)) --> sext(x) 1021 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1022 return getSignExtendExpr(SS->getOperand(), Ty); 1023 1024 // Before doing any expensive analysis, check to see if we've already 1025 // computed a SCEV for this Op and Ty. 1026 FoldingSetNodeID ID; 1027 ID.AddInteger(scSignExtend); 1028 ID.AddPointer(Op); 1029 ID.AddPointer(Ty); 1030 void *IP = 0; 1031 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1032 1033 // If the input value is a chrec scev, and we can prove that the value 1034 // did not overflow the old, smaller, value, we can sign extend all of the 1035 // operands (often constants). This allows analysis of something like 1036 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1037 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1038 if (AR->isAffine()) { 1039 const SCEV *Start = AR->getStart(); 1040 const SCEV *Step = AR->getStepRecurrence(*this); 1041 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1042 const Loop *L = AR->getLoop(); 1043 1044 // If we have special knowledge that this addrec won't overflow, 1045 // we don't need to do any further analysis. 1046 if (AR->hasNoSignedWrap()) 1047 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1048 getSignExtendExpr(Step, Ty), 1049 L); 1050 1051 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1052 // Note that this serves two purposes: It filters out loops that are 1053 // simply not analyzable, and it covers the case where this code is 1054 // being called from within backedge-taken count analysis, such that 1055 // attempting to ask for the backedge-taken count would likely result 1056 // in infinite recursion. In the later case, the analysis code will 1057 // cope with a conservative value, and it will take care to purge 1058 // that value once it has finished. 1059 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1060 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1061 // Manually compute the final value for AR, checking for 1062 // overflow. 1063 1064 // Check whether the backedge-taken count can be losslessly casted to 1065 // the addrec's type. The count is always unsigned. 1066 const SCEV *CastedMaxBECount = 1067 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1068 const SCEV *RecastedMaxBECount = 1069 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1070 if (MaxBECount == RecastedMaxBECount) { 1071 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1072 // Check whether Start+Step*MaxBECount has no signed overflow. 1073 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1074 const SCEV *Add = getAddExpr(Start, SMul); 1075 const SCEV *OperandExtendedAdd = 1076 getAddExpr(getSignExtendExpr(Start, WideTy), 1077 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1078 getSignExtendExpr(Step, WideTy))); 1079 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1080 // Return the expression with the addrec on the outside. 1081 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1082 getSignExtendExpr(Step, Ty), 1083 L); 1084 1085 // Similar to above, only this time treat the step value as unsigned. 1086 // This covers loops that count up with an unsigned step. 1087 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1088 Add = getAddExpr(Start, UMul); 1089 OperandExtendedAdd = 1090 getAddExpr(getSignExtendExpr(Start, WideTy), 1091 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1092 getZeroExtendExpr(Step, WideTy))); 1093 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1094 // Return the expression with the addrec on the outside. 1095 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1096 getZeroExtendExpr(Step, Ty), 1097 L); 1098 } 1099 1100 // If the backedge is guarded by a comparison with the pre-inc value 1101 // the addrec is safe. Also, if the entry is guarded by a comparison 1102 // with the start value and the backedge is guarded by a comparison 1103 // with the post-inc value, the addrec is safe. 1104 if (isKnownPositive(Step)) { 1105 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1106 getSignedRange(Step).getSignedMax()); 1107 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1108 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1109 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1110 AR->getPostIncExpr(*this), N))) 1111 // Return the expression with the addrec on the outside. 1112 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1113 getSignExtendExpr(Step, Ty), 1114 L); 1115 } else if (isKnownNegative(Step)) { 1116 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1117 getSignedRange(Step).getSignedMin()); 1118 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1119 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1120 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1121 AR->getPostIncExpr(*this), N))) 1122 // Return the expression with the addrec on the outside. 1123 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1124 getSignExtendExpr(Step, Ty), 1125 L); 1126 } 1127 } 1128 } 1129 1130 // The cast wasn't folded; create an explicit cast node. 1131 // Recompute the insert position, as it may have been invalidated. 1132 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1133 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1134 Op, Ty); 1135 UniqueSCEVs.InsertNode(S, IP); 1136 return S; 1137 } 1138 1139 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1140 /// unspecified bits out to the given type. 1141 /// 1142 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1143 const Type *Ty) { 1144 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1145 "This is not an extending conversion!"); 1146 assert(isSCEVable(Ty) && 1147 "This is not a conversion to a SCEVable type!"); 1148 Ty = getEffectiveSCEVType(Ty); 1149 1150 // Sign-extend negative constants. 1151 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1152 if (SC->getValue()->getValue().isNegative()) 1153 return getSignExtendExpr(Op, Ty); 1154 1155 // Peel off a truncate cast. 1156 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1157 const SCEV *NewOp = T->getOperand(); 1158 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1159 return getAnyExtendExpr(NewOp, Ty); 1160 return getTruncateOrNoop(NewOp, Ty); 1161 } 1162 1163 // Next try a zext cast. If the cast is folded, use it. 1164 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1165 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1166 return ZExt; 1167 1168 // Next try a sext cast. If the cast is folded, use it. 1169 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1170 if (!isa<SCEVSignExtendExpr>(SExt)) 1171 return SExt; 1172 1173 // Force the cast to be folded into the operands of an addrec. 1174 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1175 SmallVector<const SCEV *, 4> Ops; 1176 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1177 I != E; ++I) 1178 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1179 return getAddRecExpr(Ops, AR->getLoop()); 1180 } 1181 1182 // As a special case, fold anyext(undef) to undef. We don't want to 1183 // know too much about SCEVUnknowns, but this special case is handy 1184 // and harmless. 1185 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1186 if (isa<UndefValue>(U->getValue())) 1187 return getSCEV(UndefValue::get(Ty)); 1188 1189 // If the expression is obviously signed, use the sext cast value. 1190 if (isa<SCEVSMaxExpr>(Op)) 1191 return SExt; 1192 1193 // Absent any other information, use the zext cast value. 1194 return ZExt; 1195 } 1196 1197 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1198 /// a list of operands to be added under the given scale, update the given 1199 /// map. This is a helper function for getAddRecExpr. As an example of 1200 /// what it does, given a sequence of operands that would form an add 1201 /// expression like this: 1202 /// 1203 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1204 /// 1205 /// where A and B are constants, update the map with these values: 1206 /// 1207 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1208 /// 1209 /// and add 13 + A*B*29 to AccumulatedConstant. 1210 /// This will allow getAddRecExpr to produce this: 1211 /// 1212 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1213 /// 1214 /// This form often exposes folding opportunities that are hidden in 1215 /// the original operand list. 1216 /// 1217 /// Return true iff it appears that any interesting folding opportunities 1218 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1219 /// the common case where no interesting opportunities are present, and 1220 /// is also used as a check to avoid infinite recursion. 1221 /// 1222 static bool 1223 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1224 SmallVector<const SCEV *, 8> &NewOps, 1225 APInt &AccumulatedConstant, 1226 const SCEV *const *Ops, size_t NumOperands, 1227 const APInt &Scale, 1228 ScalarEvolution &SE) { 1229 bool Interesting = false; 1230 1231 // Iterate over the add operands. They are sorted, with constants first. 1232 unsigned i = 0; 1233 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1234 ++i; 1235 // Pull a buried constant out to the outside. 1236 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1237 Interesting = true; 1238 AccumulatedConstant += Scale * C->getValue()->getValue(); 1239 } 1240 1241 // Next comes everything else. We're especially interested in multiplies 1242 // here, but they're in the middle, so just visit the rest with one loop. 1243 for (; i != NumOperands; ++i) { 1244 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1245 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1246 APInt NewScale = 1247 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1248 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1249 // A multiplication of a constant with another add; recurse. 1250 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1251 Interesting |= 1252 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1253 Add->op_begin(), Add->getNumOperands(), 1254 NewScale, SE); 1255 } else { 1256 // A multiplication of a constant with some other value. Update 1257 // the map. 1258 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1259 const SCEV *Key = SE.getMulExpr(MulOps); 1260 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1261 M.insert(std::make_pair(Key, NewScale)); 1262 if (Pair.second) { 1263 NewOps.push_back(Pair.first->first); 1264 } else { 1265 Pair.first->second += NewScale; 1266 // The map already had an entry for this value, which may indicate 1267 // a folding opportunity. 1268 Interesting = true; 1269 } 1270 } 1271 } else { 1272 // An ordinary operand. Update the map. 1273 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1274 M.insert(std::make_pair(Ops[i], Scale)); 1275 if (Pair.second) { 1276 NewOps.push_back(Pair.first->first); 1277 } else { 1278 Pair.first->second += Scale; 1279 // The map already had an entry for this value, which may indicate 1280 // a folding opportunity. 1281 Interesting = true; 1282 } 1283 } 1284 } 1285 1286 return Interesting; 1287 } 1288 1289 namespace { 1290 struct APIntCompare { 1291 bool operator()(const APInt &LHS, const APInt &RHS) const { 1292 return LHS.ult(RHS); 1293 } 1294 }; 1295 } 1296 1297 /// getAddExpr - Get a canonical add expression, or something simpler if 1298 /// possible. 1299 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1300 bool HasNUW, bool HasNSW) { 1301 assert(!Ops.empty() && "Cannot get empty add!"); 1302 if (Ops.size() == 1) return Ops[0]; 1303 #ifndef NDEBUG 1304 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1305 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1306 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1307 "SCEVAddExpr operand types don't match!"); 1308 #endif 1309 1310 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1311 if (!HasNUW && HasNSW) { 1312 bool All = true; 1313 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1314 if (!isKnownNonNegative(Ops[i])) { 1315 All = false; 1316 break; 1317 } 1318 if (All) HasNUW = true; 1319 } 1320 1321 // Sort by complexity, this groups all similar expression types together. 1322 GroupByComplexity(Ops, LI); 1323 1324 // If there are any constants, fold them together. 1325 unsigned Idx = 0; 1326 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1327 ++Idx; 1328 assert(Idx < Ops.size()); 1329 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1330 // We found two constants, fold them together! 1331 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1332 RHSC->getValue()->getValue()); 1333 if (Ops.size() == 2) return Ops[0]; 1334 Ops.erase(Ops.begin()+1); // Erase the folded element 1335 LHSC = cast<SCEVConstant>(Ops[0]); 1336 } 1337 1338 // If we are left with a constant zero being added, strip it off. 1339 if (LHSC->getValue()->isZero()) { 1340 Ops.erase(Ops.begin()); 1341 --Idx; 1342 } 1343 1344 if (Ops.size() == 1) return Ops[0]; 1345 } 1346 1347 // Okay, check to see if the same value occurs in the operand list twice. If 1348 // so, merge them together into an multiply expression. Since we sorted the 1349 // list, these values are required to be adjacent. 1350 const Type *Ty = Ops[0]->getType(); 1351 bool FoundMatch = false; 1352 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1353 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1354 // Found a match, merge the two values into a multiply, and add any 1355 // remaining values to the result. 1356 const SCEV *Two = getConstant(Ty, 2); 1357 const SCEV *Mul = getMulExpr(Two, Ops[i]); 1358 if (Ops.size() == 2) 1359 return Mul; 1360 Ops[i] = Mul; 1361 Ops.erase(Ops.begin()+i+1); 1362 --i; --e; 1363 FoundMatch = true; 1364 } 1365 if (FoundMatch) 1366 return getAddExpr(Ops, HasNUW, HasNSW); 1367 1368 // Check for truncates. If all the operands are truncated from the same 1369 // type, see if factoring out the truncate would permit the result to be 1370 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1371 // if the contents of the resulting outer trunc fold to something simple. 1372 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1373 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1374 const Type *DstType = Trunc->getType(); 1375 const Type *SrcType = Trunc->getOperand()->getType(); 1376 SmallVector<const SCEV *, 8> LargeOps; 1377 bool Ok = true; 1378 // Check all the operands to see if they can be represented in the 1379 // source type of the truncate. 1380 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1381 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1382 if (T->getOperand()->getType() != SrcType) { 1383 Ok = false; 1384 break; 1385 } 1386 LargeOps.push_back(T->getOperand()); 1387 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1388 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1389 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1390 SmallVector<const SCEV *, 8> LargeMulOps; 1391 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1392 if (const SCEVTruncateExpr *T = 1393 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1394 if (T->getOperand()->getType() != SrcType) { 1395 Ok = false; 1396 break; 1397 } 1398 LargeMulOps.push_back(T->getOperand()); 1399 } else if (const SCEVConstant *C = 1400 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1401 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1402 } else { 1403 Ok = false; 1404 break; 1405 } 1406 } 1407 if (Ok) 1408 LargeOps.push_back(getMulExpr(LargeMulOps)); 1409 } else { 1410 Ok = false; 1411 break; 1412 } 1413 } 1414 if (Ok) { 1415 // Evaluate the expression in the larger type. 1416 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW); 1417 // If it folds to something simple, use it. Otherwise, don't. 1418 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1419 return getTruncateExpr(Fold, DstType); 1420 } 1421 } 1422 1423 // Skip past any other cast SCEVs. 1424 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1425 ++Idx; 1426 1427 // If there are add operands they would be next. 1428 if (Idx < Ops.size()) { 1429 bool DeletedAdd = false; 1430 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1431 // If we have an add, expand the add operands onto the end of the operands 1432 // list. 1433 Ops.erase(Ops.begin()+Idx); 1434 Ops.append(Add->op_begin(), Add->op_end()); 1435 DeletedAdd = true; 1436 } 1437 1438 // If we deleted at least one add, we added operands to the end of the list, 1439 // and they are not necessarily sorted. Recurse to resort and resimplify 1440 // any operands we just acquired. 1441 if (DeletedAdd) 1442 return getAddExpr(Ops); 1443 } 1444 1445 // Skip over the add expression until we get to a multiply. 1446 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1447 ++Idx; 1448 1449 // Check to see if there are any folding opportunities present with 1450 // operands multiplied by constant values. 1451 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1452 uint64_t BitWidth = getTypeSizeInBits(Ty); 1453 DenseMap<const SCEV *, APInt> M; 1454 SmallVector<const SCEV *, 8> NewOps; 1455 APInt AccumulatedConstant(BitWidth, 0); 1456 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1457 Ops.data(), Ops.size(), 1458 APInt(BitWidth, 1), *this)) { 1459 // Some interesting folding opportunity is present, so its worthwhile to 1460 // re-generate the operands list. Group the operands by constant scale, 1461 // to avoid multiplying by the same constant scale multiple times. 1462 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1463 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), 1464 E = NewOps.end(); I != E; ++I) 1465 MulOpLists[M.find(*I)->second].push_back(*I); 1466 // Re-generate the operands list. 1467 Ops.clear(); 1468 if (AccumulatedConstant != 0) 1469 Ops.push_back(getConstant(AccumulatedConstant)); 1470 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1471 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1472 if (I->first != 0) 1473 Ops.push_back(getMulExpr(getConstant(I->first), 1474 getAddExpr(I->second))); 1475 if (Ops.empty()) 1476 return getConstant(Ty, 0); 1477 if (Ops.size() == 1) 1478 return Ops[0]; 1479 return getAddExpr(Ops); 1480 } 1481 } 1482 1483 // If we are adding something to a multiply expression, make sure the 1484 // something is not already an operand of the multiply. If so, merge it into 1485 // the multiply. 1486 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1487 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1488 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1489 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1490 if (isa<SCEVConstant>(MulOpSCEV)) 1491 continue; 1492 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1493 if (MulOpSCEV == Ops[AddOp]) { 1494 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1495 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1496 if (Mul->getNumOperands() != 2) { 1497 // If the multiply has more than two operands, we must get the 1498 // Y*Z term. 1499 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1500 MulOps.erase(MulOps.begin()+MulOp); 1501 InnerMul = getMulExpr(MulOps); 1502 } 1503 const SCEV *One = getConstant(Ty, 1); 1504 const SCEV *AddOne = getAddExpr(One, InnerMul); 1505 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1506 if (Ops.size() == 2) return OuterMul; 1507 if (AddOp < Idx) { 1508 Ops.erase(Ops.begin()+AddOp); 1509 Ops.erase(Ops.begin()+Idx-1); 1510 } else { 1511 Ops.erase(Ops.begin()+Idx); 1512 Ops.erase(Ops.begin()+AddOp-1); 1513 } 1514 Ops.push_back(OuterMul); 1515 return getAddExpr(Ops); 1516 } 1517 1518 // Check this multiply against other multiplies being added together. 1519 bool AnyFold = false; 1520 for (unsigned OtherMulIdx = Idx+1; 1521 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1522 ++OtherMulIdx) { 1523 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1524 // If MulOp occurs in OtherMul, we can fold the two multiplies 1525 // together. 1526 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1527 OMulOp != e; ++OMulOp) 1528 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1529 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1530 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1531 if (Mul->getNumOperands() != 2) { 1532 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1533 Mul->op_end()); 1534 MulOps.erase(MulOps.begin()+MulOp); 1535 InnerMul1 = getMulExpr(MulOps); 1536 } 1537 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1538 if (OtherMul->getNumOperands() != 2) { 1539 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1540 OtherMul->op_end()); 1541 MulOps.erase(MulOps.begin()+OMulOp); 1542 InnerMul2 = getMulExpr(MulOps); 1543 } 1544 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1545 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1546 if (Ops.size() == 2) return OuterMul; 1547 Ops[Idx] = OuterMul; 1548 Ops.erase(Ops.begin()+OtherMulIdx); 1549 OtherMulIdx = Idx; 1550 AnyFold = true; 1551 } 1552 } 1553 if (AnyFold) 1554 return getAddExpr(Ops); 1555 } 1556 } 1557 1558 // If there are any add recurrences in the operands list, see if any other 1559 // added values are loop invariant. If so, we can fold them into the 1560 // recurrence. 1561 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1562 ++Idx; 1563 1564 // Scan over all recurrences, trying to fold loop invariants into them. 1565 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1566 // Scan all of the other operands to this add and add them to the vector if 1567 // they are loop invariant w.r.t. the recurrence. 1568 SmallVector<const SCEV *, 8> LIOps; 1569 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1570 const Loop *AddRecLoop = AddRec->getLoop(); 1571 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1572 if (Ops[i]->isLoopInvariant(AddRecLoop)) { 1573 LIOps.push_back(Ops[i]); 1574 Ops.erase(Ops.begin()+i); 1575 --i; --e; 1576 } 1577 1578 // If we found some loop invariants, fold them into the recurrence. 1579 if (!LIOps.empty()) { 1580 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1581 LIOps.push_back(AddRec->getStart()); 1582 1583 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1584 AddRec->op_end()); 1585 AddRecOps[0] = getAddExpr(LIOps); 1586 1587 // Build the new addrec. Propagate the NUW and NSW flags if both the 1588 // outer add and the inner addrec are guaranteed to have no overflow. 1589 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, 1590 HasNUW && AddRec->hasNoUnsignedWrap(), 1591 HasNSW && AddRec->hasNoSignedWrap()); 1592 1593 // If all of the other operands were loop invariant, we are done. 1594 if (Ops.size() == 1) return NewRec; 1595 1596 // Otherwise, add the folded AddRec by the non-liv parts. 1597 for (unsigned i = 0;; ++i) 1598 if (Ops[i] == AddRec) { 1599 Ops[i] = NewRec; 1600 break; 1601 } 1602 return getAddExpr(Ops); 1603 } 1604 1605 // Okay, if there weren't any loop invariants to be folded, check to see if 1606 // there are multiple AddRec's with the same loop induction variable being 1607 // added together. If so, we can fold them. 1608 for (unsigned OtherIdx = Idx+1; 1609 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1610 if (OtherIdx != Idx) { 1611 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1612 if (AddRecLoop == OtherAddRec->getLoop()) { 1613 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1614 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), 1615 AddRec->op_end()); 1616 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1617 if (i >= NewOps.size()) { 1618 NewOps.append(OtherAddRec->op_begin()+i, 1619 OtherAddRec->op_end()); 1620 break; 1621 } 1622 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1623 } 1624 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop); 1625 1626 if (Ops.size() == 2) return NewAddRec; 1627 1628 Ops.erase(Ops.begin()+Idx); 1629 Ops.erase(Ops.begin()+OtherIdx-1); 1630 Ops.push_back(NewAddRec); 1631 return getAddExpr(Ops); 1632 } 1633 } 1634 1635 // Otherwise couldn't fold anything into this recurrence. Move onto the 1636 // next one. 1637 } 1638 1639 // Okay, it looks like we really DO need an add expr. Check to see if we 1640 // already have one, otherwise create a new one. 1641 FoldingSetNodeID ID; 1642 ID.AddInteger(scAddExpr); 1643 ID.AddInteger(Ops.size()); 1644 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1645 ID.AddPointer(Ops[i]); 1646 void *IP = 0; 1647 SCEVAddExpr *S = 1648 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1649 if (!S) { 1650 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1651 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1652 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1653 O, Ops.size()); 1654 UniqueSCEVs.InsertNode(S, IP); 1655 } 1656 if (HasNUW) S->setHasNoUnsignedWrap(true); 1657 if (HasNSW) S->setHasNoSignedWrap(true); 1658 return S; 1659 } 1660 1661 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1662 /// possible. 1663 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1664 bool HasNUW, bool HasNSW) { 1665 assert(!Ops.empty() && "Cannot get empty mul!"); 1666 if (Ops.size() == 1) return Ops[0]; 1667 #ifndef NDEBUG 1668 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1669 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1670 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1671 "SCEVMulExpr operand types don't match!"); 1672 #endif 1673 1674 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1675 if (!HasNUW && HasNSW) { 1676 bool All = true; 1677 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1678 if (!isKnownNonNegative(Ops[i])) { 1679 All = false; 1680 break; 1681 } 1682 if (All) HasNUW = true; 1683 } 1684 1685 // Sort by complexity, this groups all similar expression types together. 1686 GroupByComplexity(Ops, LI); 1687 1688 // If there are any constants, fold them together. 1689 unsigned Idx = 0; 1690 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1691 1692 // C1*(C2+V) -> C1*C2 + C1*V 1693 if (Ops.size() == 2) 1694 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1695 if (Add->getNumOperands() == 2 && 1696 isa<SCEVConstant>(Add->getOperand(0))) 1697 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1698 getMulExpr(LHSC, Add->getOperand(1))); 1699 1700 ++Idx; 1701 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1702 // We found two constants, fold them together! 1703 ConstantInt *Fold = ConstantInt::get(getContext(), 1704 LHSC->getValue()->getValue() * 1705 RHSC->getValue()->getValue()); 1706 Ops[0] = getConstant(Fold); 1707 Ops.erase(Ops.begin()+1); // Erase the folded element 1708 if (Ops.size() == 1) return Ops[0]; 1709 LHSC = cast<SCEVConstant>(Ops[0]); 1710 } 1711 1712 // If we are left with a constant one being multiplied, strip it off. 1713 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1714 Ops.erase(Ops.begin()); 1715 --Idx; 1716 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1717 // If we have a multiply of zero, it will always be zero. 1718 return Ops[0]; 1719 } else if (Ops[0]->isAllOnesValue()) { 1720 // If we have a mul by -1 of an add, try distributing the -1 among the 1721 // add operands. 1722 if (Ops.size() == 2) 1723 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1724 SmallVector<const SCEV *, 4> NewOps; 1725 bool AnyFolded = false; 1726 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1727 I != E; ++I) { 1728 const SCEV *Mul = getMulExpr(Ops[0], *I); 1729 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1730 NewOps.push_back(Mul); 1731 } 1732 if (AnyFolded) 1733 return getAddExpr(NewOps); 1734 } 1735 } 1736 1737 if (Ops.size() == 1) 1738 return Ops[0]; 1739 } 1740 1741 // Skip over the add expression until we get to a multiply. 1742 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1743 ++Idx; 1744 1745 // If there are mul operands inline them all into this expression. 1746 if (Idx < Ops.size()) { 1747 bool DeletedMul = false; 1748 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1749 // If we have an mul, expand the mul operands onto the end of the operands 1750 // list. 1751 Ops.erase(Ops.begin()+Idx); 1752 Ops.append(Mul->op_begin(), Mul->op_end()); 1753 DeletedMul = true; 1754 } 1755 1756 // If we deleted at least one mul, we added operands to the end of the list, 1757 // and they are not necessarily sorted. Recurse to resort and resimplify 1758 // any operands we just acquired. 1759 if (DeletedMul) 1760 return getMulExpr(Ops); 1761 } 1762 1763 // If there are any add recurrences in the operands list, see if any other 1764 // added values are loop invariant. If so, we can fold them into the 1765 // recurrence. 1766 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1767 ++Idx; 1768 1769 // Scan over all recurrences, trying to fold loop invariants into them. 1770 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1771 // Scan all of the other operands to this mul and add them to the vector if 1772 // they are loop invariant w.r.t. the recurrence. 1773 SmallVector<const SCEV *, 8> LIOps; 1774 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1775 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1776 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1777 LIOps.push_back(Ops[i]); 1778 Ops.erase(Ops.begin()+i); 1779 --i; --e; 1780 } 1781 1782 // If we found some loop invariants, fold them into the recurrence. 1783 if (!LIOps.empty()) { 1784 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1785 SmallVector<const SCEV *, 4> NewOps; 1786 NewOps.reserve(AddRec->getNumOperands()); 1787 const SCEV *Scale = getMulExpr(LIOps); 1788 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1789 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1790 1791 // Build the new addrec. Propagate the NUW and NSW flags if both the 1792 // outer mul and the inner addrec are guaranteed to have no overflow. 1793 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), 1794 HasNUW && AddRec->hasNoUnsignedWrap(), 1795 HasNSW && AddRec->hasNoSignedWrap()); 1796 1797 // If all of the other operands were loop invariant, we are done. 1798 if (Ops.size() == 1) return NewRec; 1799 1800 // Otherwise, multiply the folded AddRec by the non-liv parts. 1801 for (unsigned i = 0;; ++i) 1802 if (Ops[i] == AddRec) { 1803 Ops[i] = NewRec; 1804 break; 1805 } 1806 return getMulExpr(Ops); 1807 } 1808 1809 // Okay, if there weren't any loop invariants to be folded, check to see if 1810 // there are multiple AddRec's with the same loop induction variable being 1811 // multiplied together. If so, we can fold them. 1812 for (unsigned OtherIdx = Idx+1; 1813 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1814 if (OtherIdx != Idx) { 1815 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1816 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1817 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1818 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1819 const SCEV *NewStart = getMulExpr(F->getStart(), 1820 G->getStart()); 1821 const SCEV *B = F->getStepRecurrence(*this); 1822 const SCEV *D = G->getStepRecurrence(*this); 1823 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1824 getMulExpr(G, B), 1825 getMulExpr(B, D)); 1826 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1827 F->getLoop()); 1828 if (Ops.size() == 2) return NewAddRec; 1829 1830 Ops.erase(Ops.begin()+Idx); 1831 Ops.erase(Ops.begin()+OtherIdx-1); 1832 Ops.push_back(NewAddRec); 1833 return getMulExpr(Ops); 1834 } 1835 } 1836 1837 // Otherwise couldn't fold anything into this recurrence. Move onto the 1838 // next one. 1839 } 1840 1841 // Okay, it looks like we really DO need an mul expr. Check to see if we 1842 // already have one, otherwise create a new one. 1843 FoldingSetNodeID ID; 1844 ID.AddInteger(scMulExpr); 1845 ID.AddInteger(Ops.size()); 1846 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1847 ID.AddPointer(Ops[i]); 1848 void *IP = 0; 1849 SCEVMulExpr *S = 1850 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1851 if (!S) { 1852 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1853 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1854 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 1855 O, Ops.size()); 1856 UniqueSCEVs.InsertNode(S, IP); 1857 } 1858 if (HasNUW) S->setHasNoUnsignedWrap(true); 1859 if (HasNSW) S->setHasNoSignedWrap(true); 1860 return S; 1861 } 1862 1863 /// getUDivExpr - Get a canonical unsigned division expression, or something 1864 /// simpler if possible. 1865 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1866 const SCEV *RHS) { 1867 assert(getEffectiveSCEVType(LHS->getType()) == 1868 getEffectiveSCEVType(RHS->getType()) && 1869 "SCEVUDivExpr operand types don't match!"); 1870 1871 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1872 if (RHSC->getValue()->equalsInt(1)) 1873 return LHS; // X udiv 1 --> x 1874 // If the denominator is zero, the result of the udiv is undefined. Don't 1875 // try to analyze it, because the resolution chosen here may differ from 1876 // the resolution chosen in other parts of the compiler. 1877 if (!RHSC->getValue()->isZero()) { 1878 // Determine if the division can be folded into the operands of 1879 // its operands. 1880 // TODO: Generalize this to non-constants by using known-bits information. 1881 const Type *Ty = LHS->getType(); 1882 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1883 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 1884 // For non-power-of-two values, effectively round the value up to the 1885 // nearest power of two. 1886 if (!RHSC->getValue()->getValue().isPowerOf2()) 1887 ++MaxShiftAmt; 1888 const IntegerType *ExtTy = 1889 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1890 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1891 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1892 if (const SCEVConstant *Step = 1893 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1894 if (!Step->getValue()->getValue() 1895 .urem(RHSC->getValue()->getValue()) && 1896 getZeroExtendExpr(AR, ExtTy) == 1897 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1898 getZeroExtendExpr(Step, ExtTy), 1899 AR->getLoop())) { 1900 SmallVector<const SCEV *, 4> Operands; 1901 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1902 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1903 return getAddRecExpr(Operands, AR->getLoop()); 1904 } 1905 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1906 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1907 SmallVector<const SCEV *, 4> Operands; 1908 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1909 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1910 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1911 // Find an operand that's safely divisible. 1912 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1913 const SCEV *Op = M->getOperand(i); 1914 const SCEV *Div = getUDivExpr(Op, RHSC); 1915 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1916 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 1917 M->op_end()); 1918 Operands[i] = Div; 1919 return getMulExpr(Operands); 1920 } 1921 } 1922 } 1923 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1924 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1925 SmallVector<const SCEV *, 4> Operands; 1926 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1927 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1928 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1929 Operands.clear(); 1930 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1931 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1932 if (isa<SCEVUDivExpr>(Op) || 1933 getMulExpr(Op, RHS) != A->getOperand(i)) 1934 break; 1935 Operands.push_back(Op); 1936 } 1937 if (Operands.size() == A->getNumOperands()) 1938 return getAddExpr(Operands); 1939 } 1940 } 1941 1942 // Fold if both operands are constant. 1943 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1944 Constant *LHSCV = LHSC->getValue(); 1945 Constant *RHSCV = RHSC->getValue(); 1946 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1947 RHSCV))); 1948 } 1949 } 1950 } 1951 1952 FoldingSetNodeID ID; 1953 ID.AddInteger(scUDivExpr); 1954 ID.AddPointer(LHS); 1955 ID.AddPointer(RHS); 1956 void *IP = 0; 1957 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1958 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 1959 LHS, RHS); 1960 UniqueSCEVs.InsertNode(S, IP); 1961 return S; 1962 } 1963 1964 1965 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1966 /// Simplify the expression as much as possible. 1967 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 1968 const SCEV *Step, const Loop *L, 1969 bool HasNUW, bool HasNSW) { 1970 SmallVector<const SCEV *, 4> Operands; 1971 Operands.push_back(Start); 1972 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1973 if (StepChrec->getLoop() == L) { 1974 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 1975 return getAddRecExpr(Operands, L); 1976 } 1977 1978 Operands.push_back(Step); 1979 return getAddRecExpr(Operands, L, HasNUW, HasNSW); 1980 } 1981 1982 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1983 /// Simplify the expression as much as possible. 1984 const SCEV * 1985 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 1986 const Loop *L, 1987 bool HasNUW, bool HasNSW) { 1988 if (Operands.size() == 1) return Operands[0]; 1989 #ifndef NDEBUG 1990 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 1991 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1992 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 1993 "SCEVAddRecExpr operand types don't match!"); 1994 #endif 1995 1996 if (Operands.back()->isZero()) { 1997 Operands.pop_back(); 1998 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X 1999 } 2000 2001 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2002 // use that information to infer NUW and NSW flags. However, computing a 2003 // BE count requires calling getAddRecExpr, so we may not yet have a 2004 // meaningful BE count at this point (and if we don't, we'd be stuck 2005 // with a SCEVCouldNotCompute as the cached BE count). 2006 2007 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 2008 if (!HasNUW && HasNSW) { 2009 bool All = true; 2010 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2011 if (!isKnownNonNegative(Operands[i])) { 2012 All = false; 2013 break; 2014 } 2015 if (All) HasNUW = true; 2016 } 2017 2018 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2019 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2020 const Loop *NestedLoop = NestedAR->getLoop(); 2021 if (L->contains(NestedLoop) ? 2022 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2023 (!NestedLoop->contains(L) && 2024 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2025 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2026 NestedAR->op_end()); 2027 Operands[0] = NestedAR->getStart(); 2028 // AddRecs require their operands be loop-invariant with respect to their 2029 // loops. Don't perform this transformation if it would break this 2030 // requirement. 2031 bool AllInvariant = true; 2032 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2033 if (!Operands[i]->isLoopInvariant(L)) { 2034 AllInvariant = false; 2035 break; 2036 } 2037 if (AllInvariant) { 2038 NestedOperands[0] = getAddRecExpr(Operands, L); 2039 AllInvariant = true; 2040 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2041 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { 2042 AllInvariant = false; 2043 break; 2044 } 2045 if (AllInvariant) 2046 // Ok, both add recurrences are valid after the transformation. 2047 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW); 2048 } 2049 // Reset Operands to its original state. 2050 Operands[0] = NestedAR; 2051 } 2052 } 2053 2054 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2055 // already have one, otherwise create a new one. 2056 FoldingSetNodeID ID; 2057 ID.AddInteger(scAddRecExpr); 2058 ID.AddInteger(Operands.size()); 2059 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2060 ID.AddPointer(Operands[i]); 2061 ID.AddPointer(L); 2062 void *IP = 0; 2063 SCEVAddRecExpr *S = 2064 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2065 if (!S) { 2066 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2067 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2068 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2069 O, Operands.size(), L); 2070 UniqueSCEVs.InsertNode(S, IP); 2071 } 2072 if (HasNUW) S->setHasNoUnsignedWrap(true); 2073 if (HasNSW) S->setHasNoSignedWrap(true); 2074 return S; 2075 } 2076 2077 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2078 const SCEV *RHS) { 2079 SmallVector<const SCEV *, 2> Ops; 2080 Ops.push_back(LHS); 2081 Ops.push_back(RHS); 2082 return getSMaxExpr(Ops); 2083 } 2084 2085 const SCEV * 2086 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2087 assert(!Ops.empty() && "Cannot get empty smax!"); 2088 if (Ops.size() == 1) return Ops[0]; 2089 #ifndef NDEBUG 2090 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2091 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2092 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2093 "SCEVSMaxExpr operand types don't match!"); 2094 #endif 2095 2096 // Sort by complexity, this groups all similar expression types together. 2097 GroupByComplexity(Ops, LI); 2098 2099 // If there are any constants, fold them together. 2100 unsigned Idx = 0; 2101 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2102 ++Idx; 2103 assert(Idx < Ops.size()); 2104 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2105 // We found two constants, fold them together! 2106 ConstantInt *Fold = ConstantInt::get(getContext(), 2107 APIntOps::smax(LHSC->getValue()->getValue(), 2108 RHSC->getValue()->getValue())); 2109 Ops[0] = getConstant(Fold); 2110 Ops.erase(Ops.begin()+1); // Erase the folded element 2111 if (Ops.size() == 1) return Ops[0]; 2112 LHSC = cast<SCEVConstant>(Ops[0]); 2113 } 2114 2115 // If we are left with a constant minimum-int, strip it off. 2116 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2117 Ops.erase(Ops.begin()); 2118 --Idx; 2119 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2120 // If we have an smax with a constant maximum-int, it will always be 2121 // maximum-int. 2122 return Ops[0]; 2123 } 2124 2125 if (Ops.size() == 1) return Ops[0]; 2126 } 2127 2128 // Find the first SMax 2129 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2130 ++Idx; 2131 2132 // Check to see if one of the operands is an SMax. If so, expand its operands 2133 // onto our operand list, and recurse to simplify. 2134 if (Idx < Ops.size()) { 2135 bool DeletedSMax = false; 2136 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2137 Ops.erase(Ops.begin()+Idx); 2138 Ops.append(SMax->op_begin(), SMax->op_end()); 2139 DeletedSMax = true; 2140 } 2141 2142 if (DeletedSMax) 2143 return getSMaxExpr(Ops); 2144 } 2145 2146 // Okay, check to see if the same value occurs in the operand list twice. If 2147 // so, delete one. Since we sorted the list, these values are required to 2148 // be adjacent. 2149 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2150 // X smax Y smax Y --> X smax Y 2151 // X smax Y --> X, if X is always greater than Y 2152 if (Ops[i] == Ops[i+1] || 2153 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2154 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2155 --i; --e; 2156 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2157 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2158 --i; --e; 2159 } 2160 2161 if (Ops.size() == 1) return Ops[0]; 2162 2163 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2164 2165 // Okay, it looks like we really DO need an smax expr. Check to see if we 2166 // already have one, otherwise create a new one. 2167 FoldingSetNodeID ID; 2168 ID.AddInteger(scSMaxExpr); 2169 ID.AddInteger(Ops.size()); 2170 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2171 ID.AddPointer(Ops[i]); 2172 void *IP = 0; 2173 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2174 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2175 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2176 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2177 O, Ops.size()); 2178 UniqueSCEVs.InsertNode(S, IP); 2179 return S; 2180 } 2181 2182 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2183 const SCEV *RHS) { 2184 SmallVector<const SCEV *, 2> Ops; 2185 Ops.push_back(LHS); 2186 Ops.push_back(RHS); 2187 return getUMaxExpr(Ops); 2188 } 2189 2190 const SCEV * 2191 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2192 assert(!Ops.empty() && "Cannot get empty umax!"); 2193 if (Ops.size() == 1) return Ops[0]; 2194 #ifndef NDEBUG 2195 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2196 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2197 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2198 "SCEVUMaxExpr operand types don't match!"); 2199 #endif 2200 2201 // Sort by complexity, this groups all similar expression types together. 2202 GroupByComplexity(Ops, LI); 2203 2204 // If there are any constants, fold them together. 2205 unsigned Idx = 0; 2206 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2207 ++Idx; 2208 assert(Idx < Ops.size()); 2209 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2210 // We found two constants, fold them together! 2211 ConstantInt *Fold = ConstantInt::get(getContext(), 2212 APIntOps::umax(LHSC->getValue()->getValue(), 2213 RHSC->getValue()->getValue())); 2214 Ops[0] = getConstant(Fold); 2215 Ops.erase(Ops.begin()+1); // Erase the folded element 2216 if (Ops.size() == 1) return Ops[0]; 2217 LHSC = cast<SCEVConstant>(Ops[0]); 2218 } 2219 2220 // If we are left with a constant minimum-int, strip it off. 2221 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2222 Ops.erase(Ops.begin()); 2223 --Idx; 2224 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2225 // If we have an umax with a constant maximum-int, it will always be 2226 // maximum-int. 2227 return Ops[0]; 2228 } 2229 2230 if (Ops.size() == 1) return Ops[0]; 2231 } 2232 2233 // Find the first UMax 2234 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2235 ++Idx; 2236 2237 // Check to see if one of the operands is a UMax. If so, expand its operands 2238 // onto our operand list, and recurse to simplify. 2239 if (Idx < Ops.size()) { 2240 bool DeletedUMax = false; 2241 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2242 Ops.erase(Ops.begin()+Idx); 2243 Ops.append(UMax->op_begin(), UMax->op_end()); 2244 DeletedUMax = true; 2245 } 2246 2247 if (DeletedUMax) 2248 return getUMaxExpr(Ops); 2249 } 2250 2251 // Okay, check to see if the same value occurs in the operand list twice. If 2252 // so, delete one. Since we sorted the list, these values are required to 2253 // be adjacent. 2254 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2255 // X umax Y umax Y --> X umax Y 2256 // X umax Y --> X, if X is always greater than Y 2257 if (Ops[i] == Ops[i+1] || 2258 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2259 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2260 --i; --e; 2261 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2262 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2263 --i; --e; 2264 } 2265 2266 if (Ops.size() == 1) return Ops[0]; 2267 2268 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2269 2270 // Okay, it looks like we really DO need a umax expr. Check to see if we 2271 // already have one, otherwise create a new one. 2272 FoldingSetNodeID ID; 2273 ID.AddInteger(scUMaxExpr); 2274 ID.AddInteger(Ops.size()); 2275 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2276 ID.AddPointer(Ops[i]); 2277 void *IP = 0; 2278 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2279 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2280 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2281 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2282 O, Ops.size()); 2283 UniqueSCEVs.InsertNode(S, IP); 2284 return S; 2285 } 2286 2287 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2288 const SCEV *RHS) { 2289 // ~smax(~x, ~y) == smin(x, y). 2290 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2291 } 2292 2293 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2294 const SCEV *RHS) { 2295 // ~umax(~x, ~y) == umin(x, y) 2296 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2297 } 2298 2299 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) { 2300 // If we have TargetData, we can bypass creating a target-independent 2301 // constant expression and then folding it back into a ConstantInt. 2302 // This is just a compile-time optimization. 2303 if (TD) 2304 return getConstant(TD->getIntPtrType(getContext()), 2305 TD->getTypeAllocSize(AllocTy)); 2306 2307 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2308 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2309 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2310 C = Folded; 2311 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2312 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2313 } 2314 2315 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) { 2316 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2317 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2318 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2319 C = Folded; 2320 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2321 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2322 } 2323 2324 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy, 2325 unsigned FieldNo) { 2326 // If we have TargetData, we can bypass creating a target-independent 2327 // constant expression and then folding it back into a ConstantInt. 2328 // This is just a compile-time optimization. 2329 if (TD) 2330 return getConstant(TD->getIntPtrType(getContext()), 2331 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2332 2333 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2334 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2335 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2336 C = Folded; 2337 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2338 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2339 } 2340 2341 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy, 2342 Constant *FieldNo) { 2343 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2344 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2345 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2346 C = Folded; 2347 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2348 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2349 } 2350 2351 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2352 // Don't attempt to do anything other than create a SCEVUnknown object 2353 // here. createSCEV only calls getUnknown after checking for all other 2354 // interesting possibilities, and any other code that calls getUnknown 2355 // is doing so in order to hide a value from SCEV canonicalization. 2356 2357 FoldingSetNodeID ID; 2358 ID.AddInteger(scUnknown); 2359 ID.AddPointer(V); 2360 void *IP = 0; 2361 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2362 assert(cast<SCEVUnknown>(S)->getValue() == V && 2363 "Stale SCEVUnknown in uniquing map!"); 2364 return S; 2365 } 2366 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2367 FirstUnknown); 2368 FirstUnknown = cast<SCEVUnknown>(S); 2369 UniqueSCEVs.InsertNode(S, IP); 2370 return S; 2371 } 2372 2373 //===----------------------------------------------------------------------===// 2374 // Basic SCEV Analysis and PHI Idiom Recognition Code 2375 // 2376 2377 /// isSCEVable - Test if values of the given type are analyzable within 2378 /// the SCEV framework. This primarily includes integer types, and it 2379 /// can optionally include pointer types if the ScalarEvolution class 2380 /// has access to target-specific information. 2381 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2382 // Integers and pointers are always SCEVable. 2383 return Ty->isIntegerTy() || Ty->isPointerTy(); 2384 } 2385 2386 /// getTypeSizeInBits - Return the size in bits of the specified type, 2387 /// for which isSCEVable must return true. 2388 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2389 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2390 2391 // If we have a TargetData, use it! 2392 if (TD) 2393 return TD->getTypeSizeInBits(Ty); 2394 2395 // Integer types have fixed sizes. 2396 if (Ty->isIntegerTy()) 2397 return Ty->getPrimitiveSizeInBits(); 2398 2399 // The only other support type is pointer. Without TargetData, conservatively 2400 // assume pointers are 64-bit. 2401 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2402 return 64; 2403 } 2404 2405 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2406 /// the given type and which represents how SCEV will treat the given 2407 /// type, for which isSCEVable must return true. For pointer types, 2408 /// this is the pointer-sized integer type. 2409 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2410 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2411 2412 if (Ty->isIntegerTy()) 2413 return Ty; 2414 2415 // The only other support type is pointer. 2416 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2417 if (TD) return TD->getIntPtrType(getContext()); 2418 2419 // Without TargetData, conservatively assume pointers are 64-bit. 2420 return Type::getInt64Ty(getContext()); 2421 } 2422 2423 const SCEV *ScalarEvolution::getCouldNotCompute() { 2424 return &CouldNotCompute; 2425 } 2426 2427 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2428 /// expression and create a new one. 2429 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2430 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2431 2432 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); 2433 if (I != Scalars.end()) return I->second; 2434 const SCEV *S = createSCEV(V); 2435 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2436 return S; 2437 } 2438 2439 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2440 /// 2441 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2442 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2443 return getConstant( 2444 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2445 2446 const Type *Ty = V->getType(); 2447 Ty = getEffectiveSCEVType(Ty); 2448 return getMulExpr(V, 2449 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2450 } 2451 2452 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2453 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2454 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2455 return getConstant( 2456 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2457 2458 const Type *Ty = V->getType(); 2459 Ty = getEffectiveSCEVType(Ty); 2460 const SCEV *AllOnes = 2461 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2462 return getMinusSCEV(AllOnes, V); 2463 } 2464 2465 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2466 /// 2467 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2468 const SCEV *RHS) { 2469 // Fast path: X - X --> 0. 2470 if (LHS == RHS) 2471 return getConstant(LHS->getType(), 0); 2472 2473 // X - Y --> X + -Y 2474 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2475 } 2476 2477 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2478 /// input value to the specified type. If the type must be extended, it is zero 2479 /// extended. 2480 const SCEV * 2481 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, 2482 const Type *Ty) { 2483 const Type *SrcTy = V->getType(); 2484 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2485 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2486 "Cannot truncate or zero extend with non-integer arguments!"); 2487 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2488 return V; // No conversion 2489 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2490 return getTruncateExpr(V, Ty); 2491 return getZeroExtendExpr(V, Ty); 2492 } 2493 2494 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2495 /// input value to the specified type. If the type must be extended, it is sign 2496 /// extended. 2497 const SCEV * 2498 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2499 const Type *Ty) { 2500 const Type *SrcTy = V->getType(); 2501 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2502 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2503 "Cannot truncate or zero extend with non-integer arguments!"); 2504 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2505 return V; // No conversion 2506 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2507 return getTruncateExpr(V, Ty); 2508 return getSignExtendExpr(V, Ty); 2509 } 2510 2511 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2512 /// input value to the specified type. If the type must be extended, it is zero 2513 /// extended. The conversion must not be narrowing. 2514 const SCEV * 2515 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2516 const Type *SrcTy = V->getType(); 2517 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2518 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2519 "Cannot noop or zero extend with non-integer arguments!"); 2520 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2521 "getNoopOrZeroExtend cannot truncate!"); 2522 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2523 return V; // No conversion 2524 return getZeroExtendExpr(V, Ty); 2525 } 2526 2527 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2528 /// input value to the specified type. If the type must be extended, it is sign 2529 /// extended. The conversion must not be narrowing. 2530 const SCEV * 2531 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2532 const Type *SrcTy = V->getType(); 2533 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2534 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2535 "Cannot noop or sign extend with non-integer arguments!"); 2536 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2537 "getNoopOrSignExtend cannot truncate!"); 2538 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2539 return V; // No conversion 2540 return getSignExtendExpr(V, Ty); 2541 } 2542 2543 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2544 /// the input value to the specified type. If the type must be extended, 2545 /// it is extended with unspecified bits. The conversion must not be 2546 /// narrowing. 2547 const SCEV * 2548 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2549 const Type *SrcTy = V->getType(); 2550 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2551 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2552 "Cannot noop or any extend with non-integer arguments!"); 2553 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2554 "getNoopOrAnyExtend cannot truncate!"); 2555 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2556 return V; // No conversion 2557 return getAnyExtendExpr(V, Ty); 2558 } 2559 2560 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2561 /// input value to the specified type. The conversion must not be widening. 2562 const SCEV * 2563 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2564 const Type *SrcTy = V->getType(); 2565 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2566 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2567 "Cannot truncate or noop with non-integer arguments!"); 2568 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2569 "getTruncateOrNoop cannot extend!"); 2570 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2571 return V; // No conversion 2572 return getTruncateExpr(V, Ty); 2573 } 2574 2575 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2576 /// the types using zero-extension, and then perform a umax operation 2577 /// with them. 2578 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2579 const SCEV *RHS) { 2580 const SCEV *PromotedLHS = LHS; 2581 const SCEV *PromotedRHS = RHS; 2582 2583 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2584 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2585 else 2586 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2587 2588 return getUMaxExpr(PromotedLHS, PromotedRHS); 2589 } 2590 2591 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2592 /// the types using zero-extension, and then perform a umin operation 2593 /// with them. 2594 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2595 const SCEV *RHS) { 2596 const SCEV *PromotedLHS = LHS; 2597 const SCEV *PromotedRHS = RHS; 2598 2599 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2600 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2601 else 2602 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2603 2604 return getUMinExpr(PromotedLHS, PromotedRHS); 2605 } 2606 2607 /// PushDefUseChildren - Push users of the given Instruction 2608 /// onto the given Worklist. 2609 static void 2610 PushDefUseChildren(Instruction *I, 2611 SmallVectorImpl<Instruction *> &Worklist) { 2612 // Push the def-use children onto the Worklist stack. 2613 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2614 UI != UE; ++UI) 2615 Worklist.push_back(cast<Instruction>(*UI)); 2616 } 2617 2618 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2619 /// instructions that depend on the given instruction and removes them from 2620 /// the Scalars map if they reference SymName. This is used during PHI 2621 /// resolution. 2622 void 2623 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2624 SmallVector<Instruction *, 16> Worklist; 2625 PushDefUseChildren(PN, Worklist); 2626 2627 SmallPtrSet<Instruction *, 8> Visited; 2628 Visited.insert(PN); 2629 while (!Worklist.empty()) { 2630 Instruction *I = Worklist.pop_back_val(); 2631 if (!Visited.insert(I)) continue; 2632 2633 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 2634 Scalars.find(static_cast<Value *>(I)); 2635 if (It != Scalars.end()) { 2636 // Short-circuit the def-use traversal if the symbolic name 2637 // ceases to appear in expressions. 2638 if (It->second != SymName && !It->second->hasOperand(SymName)) 2639 continue; 2640 2641 // SCEVUnknown for a PHI either means that it has an unrecognized 2642 // structure, it's a PHI that's in the progress of being computed 2643 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2644 // additional loop trip count information isn't going to change anything. 2645 // In the second case, createNodeForPHI will perform the necessary 2646 // updates on its own when it gets to that point. In the third, we do 2647 // want to forget the SCEVUnknown. 2648 if (!isa<PHINode>(I) || 2649 !isa<SCEVUnknown>(It->second) || 2650 (I != PN && It->second == SymName)) { 2651 ValuesAtScopes.erase(It->second); 2652 Scalars.erase(It); 2653 } 2654 } 2655 2656 PushDefUseChildren(I, Worklist); 2657 } 2658 } 2659 2660 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2661 /// a loop header, making it a potential recurrence, or it doesn't. 2662 /// 2663 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2664 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2665 if (L->getHeader() == PN->getParent()) { 2666 // The loop may have multiple entrances or multiple exits; we can analyze 2667 // this phi as an addrec if it has a unique entry value and a unique 2668 // backedge value. 2669 Value *BEValueV = 0, *StartValueV = 0; 2670 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2671 Value *V = PN->getIncomingValue(i); 2672 if (L->contains(PN->getIncomingBlock(i))) { 2673 if (!BEValueV) { 2674 BEValueV = V; 2675 } else if (BEValueV != V) { 2676 BEValueV = 0; 2677 break; 2678 } 2679 } else if (!StartValueV) { 2680 StartValueV = V; 2681 } else if (StartValueV != V) { 2682 StartValueV = 0; 2683 break; 2684 } 2685 } 2686 if (BEValueV && StartValueV) { 2687 // While we are analyzing this PHI node, handle its value symbolically. 2688 const SCEV *SymbolicName = getUnknown(PN); 2689 assert(Scalars.find(PN) == Scalars.end() && 2690 "PHI node already processed?"); 2691 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2692 2693 // Using this symbolic name for the PHI, analyze the value coming around 2694 // the back-edge. 2695 const SCEV *BEValue = getSCEV(BEValueV); 2696 2697 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2698 // has a special value for the first iteration of the loop. 2699 2700 // If the value coming around the backedge is an add with the symbolic 2701 // value we just inserted, then we found a simple induction variable! 2702 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2703 // If there is a single occurrence of the symbolic value, replace it 2704 // with a recurrence. 2705 unsigned FoundIndex = Add->getNumOperands(); 2706 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2707 if (Add->getOperand(i) == SymbolicName) 2708 if (FoundIndex == e) { 2709 FoundIndex = i; 2710 break; 2711 } 2712 2713 if (FoundIndex != Add->getNumOperands()) { 2714 // Create an add with everything but the specified operand. 2715 SmallVector<const SCEV *, 8> Ops; 2716 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2717 if (i != FoundIndex) 2718 Ops.push_back(Add->getOperand(i)); 2719 const SCEV *Accum = getAddExpr(Ops); 2720 2721 // This is not a valid addrec if the step amount is varying each 2722 // loop iteration, but is not itself an addrec in this loop. 2723 if (Accum->isLoopInvariant(L) || 2724 (isa<SCEVAddRecExpr>(Accum) && 2725 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2726 bool HasNUW = false; 2727 bool HasNSW = false; 2728 2729 // If the increment doesn't overflow, then neither the addrec nor 2730 // the post-increment will overflow. 2731 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2732 if (OBO->hasNoUnsignedWrap()) 2733 HasNUW = true; 2734 if (OBO->hasNoSignedWrap()) 2735 HasNSW = true; 2736 } 2737 2738 const SCEV *StartVal = getSCEV(StartValueV); 2739 const SCEV *PHISCEV = 2740 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW); 2741 2742 // Since the no-wrap flags are on the increment, they apply to the 2743 // post-incremented value as well. 2744 if (Accum->isLoopInvariant(L)) 2745 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2746 Accum, L, HasNUW, HasNSW); 2747 2748 // Okay, for the entire analysis of this edge we assumed the PHI 2749 // to be symbolic. We now need to go back and purge all of the 2750 // entries for the scalars that use the symbolic expression. 2751 ForgetSymbolicName(PN, SymbolicName); 2752 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2753 return PHISCEV; 2754 } 2755 } 2756 } else if (const SCEVAddRecExpr *AddRec = 2757 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2758 // Otherwise, this could be a loop like this: 2759 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2760 // In this case, j = {1,+,1} and BEValue is j. 2761 // Because the other in-value of i (0) fits the evolution of BEValue 2762 // i really is an addrec evolution. 2763 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2764 const SCEV *StartVal = getSCEV(StartValueV); 2765 2766 // If StartVal = j.start - j.stride, we can use StartVal as the 2767 // initial step of the addrec evolution. 2768 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2769 AddRec->getOperand(1))) { 2770 const SCEV *PHISCEV = 2771 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2772 2773 // Okay, for the entire analysis of this edge we assumed the PHI 2774 // to be symbolic. We now need to go back and purge all of the 2775 // entries for the scalars that use the symbolic expression. 2776 ForgetSymbolicName(PN, SymbolicName); 2777 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2778 return PHISCEV; 2779 } 2780 } 2781 } 2782 } 2783 } 2784 2785 // If the PHI has a single incoming value, follow that value, unless the 2786 // PHI's incoming blocks are in a different loop, in which case doing so 2787 // risks breaking LCSSA form. Instcombine would normally zap these, but 2788 // it doesn't have DominatorTree information, so it may miss cases. 2789 if (Value *V = PN->hasConstantValue(DT)) { 2790 bool AllSameLoop = true; 2791 Loop *PNLoop = LI->getLoopFor(PN->getParent()); 2792 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2793 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) { 2794 AllSameLoop = false; 2795 break; 2796 } 2797 if (AllSameLoop) 2798 return getSCEV(V); 2799 } 2800 2801 // If it's not a loop phi, we can't handle it yet. 2802 return getUnknown(PN); 2803 } 2804 2805 /// createNodeForGEP - Expand GEP instructions into add and multiply 2806 /// operations. This allows them to be analyzed by regular SCEV code. 2807 /// 2808 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 2809 2810 // Don't blindly transfer the inbounds flag from the GEP instruction to the 2811 // Add expression, because the Instruction may be guarded by control flow 2812 // and the no-overflow bits may not be valid for the expression in any 2813 // context. 2814 2815 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2816 Value *Base = GEP->getOperand(0); 2817 // Don't attempt to analyze GEPs over unsized objects. 2818 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2819 return getUnknown(GEP); 2820 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2821 gep_type_iterator GTI = gep_type_begin(GEP); 2822 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 2823 E = GEP->op_end(); 2824 I != E; ++I) { 2825 Value *Index = *I; 2826 // Compute the (potentially symbolic) offset in bytes for this index. 2827 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2828 // For a struct, add the member offset. 2829 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2830 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 2831 2832 // Add the field offset to the running total offset. 2833 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2834 } else { 2835 // For an array, add the element offset, explicitly scaled. 2836 const SCEV *ElementSize = getSizeOfExpr(*GTI); 2837 const SCEV *IndexS = getSCEV(Index); 2838 // Getelementptr indices are signed. 2839 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 2840 2841 // Multiply the index by the element size to compute the element offset. 2842 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize); 2843 2844 // Add the element offset to the running total offset. 2845 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2846 } 2847 } 2848 2849 // Get the SCEV for the GEP base. 2850 const SCEV *BaseS = getSCEV(Base); 2851 2852 // Add the total offset from all the GEP indices to the base. 2853 return getAddExpr(BaseS, TotalOffset); 2854 } 2855 2856 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2857 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2858 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2859 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2860 uint32_t 2861 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2862 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2863 return C->getValue()->getValue().countTrailingZeros(); 2864 2865 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2866 return std::min(GetMinTrailingZeros(T->getOperand()), 2867 (uint32_t)getTypeSizeInBits(T->getType())); 2868 2869 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2870 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2871 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2872 getTypeSizeInBits(E->getType()) : OpRes; 2873 } 2874 2875 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2876 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2877 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2878 getTypeSizeInBits(E->getType()) : OpRes; 2879 } 2880 2881 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2882 // The result is the min of all operands results. 2883 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2884 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2885 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2886 return MinOpRes; 2887 } 2888 2889 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2890 // The result is the sum of all operands results. 2891 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2892 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2893 for (unsigned i = 1, e = M->getNumOperands(); 2894 SumOpRes != BitWidth && i != e; ++i) 2895 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2896 BitWidth); 2897 return SumOpRes; 2898 } 2899 2900 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2901 // The result is the min of all operands results. 2902 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2903 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2904 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2905 return MinOpRes; 2906 } 2907 2908 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2909 // The result is the min of all operands results. 2910 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2911 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2912 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2913 return MinOpRes; 2914 } 2915 2916 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2917 // The result is the min of all operands results. 2918 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2919 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2920 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2921 return MinOpRes; 2922 } 2923 2924 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2925 // For a SCEVUnknown, ask ValueTracking. 2926 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2927 APInt Mask = APInt::getAllOnesValue(BitWidth); 2928 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2929 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2930 return Zeros.countTrailingOnes(); 2931 } 2932 2933 // SCEVUDivExpr 2934 return 0; 2935 } 2936 2937 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2938 /// 2939 ConstantRange 2940 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2941 2942 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2943 return ConstantRange(C->getValue()->getValue()); 2944 2945 unsigned BitWidth = getTypeSizeInBits(S->getType()); 2946 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 2947 2948 // If the value has known zeros, the maximum unsigned value will have those 2949 // known zeros as well. 2950 uint32_t TZ = GetMinTrailingZeros(S); 2951 if (TZ != 0) 2952 ConservativeResult = 2953 ConstantRange(APInt::getMinValue(BitWidth), 2954 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 2955 2956 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2957 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 2958 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2959 X = X.add(getUnsignedRange(Add->getOperand(i))); 2960 return ConservativeResult.intersectWith(X); 2961 } 2962 2963 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2964 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 2965 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2966 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 2967 return ConservativeResult.intersectWith(X); 2968 } 2969 2970 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2971 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 2972 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2973 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 2974 return ConservativeResult.intersectWith(X); 2975 } 2976 2977 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2978 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 2979 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2980 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 2981 return ConservativeResult.intersectWith(X); 2982 } 2983 2984 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2985 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 2986 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 2987 return ConservativeResult.intersectWith(X.udiv(Y)); 2988 } 2989 2990 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2991 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 2992 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 2993 } 2994 2995 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2996 ConstantRange X = getUnsignedRange(SExt->getOperand()); 2997 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 2998 } 2999 3000 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3001 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3002 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 3003 } 3004 3005 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3006 // If there's no unsigned wrap, the value will never be less than its 3007 // initial value. 3008 if (AddRec->hasNoUnsignedWrap()) 3009 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3010 if (!C->getValue()->isZero()) 3011 ConservativeResult = 3012 ConservativeResult.intersectWith( 3013 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3014 3015 // TODO: non-affine addrec 3016 if (AddRec->isAffine()) { 3017 const Type *Ty = AddRec->getType(); 3018 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3019 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3020 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3021 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3022 3023 const SCEV *Start = AddRec->getStart(); 3024 const SCEV *Step = AddRec->getStepRecurrence(*this); 3025 3026 ConstantRange StartRange = getUnsignedRange(Start); 3027 ConstantRange StepRange = getSignedRange(Step); 3028 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3029 ConstantRange EndRange = 3030 StartRange.add(MaxBECountRange.multiply(StepRange)); 3031 3032 // Check for overflow. This must be done with ConstantRange arithmetic 3033 // because we could be called from within the ScalarEvolution overflow 3034 // checking code. 3035 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3036 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3037 ConstantRange ExtMaxBECountRange = 3038 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3039 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3040 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3041 ExtEndRange) 3042 return ConservativeResult; 3043 3044 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3045 EndRange.getUnsignedMin()); 3046 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3047 EndRange.getUnsignedMax()); 3048 if (Min.isMinValue() && Max.isMaxValue()) 3049 return ConservativeResult; 3050 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3051 } 3052 } 3053 3054 return ConservativeResult; 3055 } 3056 3057 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3058 // For a SCEVUnknown, ask ValueTracking. 3059 APInt Mask = APInt::getAllOnesValue(BitWidth); 3060 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3061 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3062 if (Ones == ~Zeros + 1) 3063 return ConservativeResult; 3064 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 3065 } 3066 3067 return ConservativeResult; 3068 } 3069 3070 /// getSignedRange - Determine the signed range for a particular SCEV. 3071 /// 3072 ConstantRange 3073 ScalarEvolution::getSignedRange(const SCEV *S) { 3074 3075 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3076 return ConstantRange(C->getValue()->getValue()); 3077 3078 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3079 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3080 3081 // If the value has known zeros, the maximum signed value will have those 3082 // known zeros as well. 3083 uint32_t TZ = GetMinTrailingZeros(S); 3084 if (TZ != 0) 3085 ConservativeResult = 3086 ConstantRange(APInt::getSignedMinValue(BitWidth), 3087 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3088 3089 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3090 ConstantRange X = getSignedRange(Add->getOperand(0)); 3091 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3092 X = X.add(getSignedRange(Add->getOperand(i))); 3093 return ConservativeResult.intersectWith(X); 3094 } 3095 3096 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3097 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3098 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3099 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3100 return ConservativeResult.intersectWith(X); 3101 } 3102 3103 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3104 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3105 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3106 X = X.smax(getSignedRange(SMax->getOperand(i))); 3107 return ConservativeResult.intersectWith(X); 3108 } 3109 3110 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3111 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3112 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3113 X = X.umax(getSignedRange(UMax->getOperand(i))); 3114 return ConservativeResult.intersectWith(X); 3115 } 3116 3117 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3118 ConstantRange X = getSignedRange(UDiv->getLHS()); 3119 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3120 return ConservativeResult.intersectWith(X.udiv(Y)); 3121 } 3122 3123 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3124 ConstantRange X = getSignedRange(ZExt->getOperand()); 3125 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 3126 } 3127 3128 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3129 ConstantRange X = getSignedRange(SExt->getOperand()); 3130 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 3131 } 3132 3133 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3134 ConstantRange X = getSignedRange(Trunc->getOperand()); 3135 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 3136 } 3137 3138 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3139 // If there's no signed wrap, and all the operands have the same sign or 3140 // zero, the value won't ever change sign. 3141 if (AddRec->hasNoSignedWrap()) { 3142 bool AllNonNeg = true; 3143 bool AllNonPos = true; 3144 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3145 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3146 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3147 } 3148 if (AllNonNeg) 3149 ConservativeResult = ConservativeResult.intersectWith( 3150 ConstantRange(APInt(BitWidth, 0), 3151 APInt::getSignedMinValue(BitWidth))); 3152 else if (AllNonPos) 3153 ConservativeResult = ConservativeResult.intersectWith( 3154 ConstantRange(APInt::getSignedMinValue(BitWidth), 3155 APInt(BitWidth, 1))); 3156 } 3157 3158 // TODO: non-affine addrec 3159 if (AddRec->isAffine()) { 3160 const Type *Ty = AddRec->getType(); 3161 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3162 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3163 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3164 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3165 3166 const SCEV *Start = AddRec->getStart(); 3167 const SCEV *Step = AddRec->getStepRecurrence(*this); 3168 3169 ConstantRange StartRange = getSignedRange(Start); 3170 ConstantRange StepRange = getSignedRange(Step); 3171 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3172 ConstantRange EndRange = 3173 StartRange.add(MaxBECountRange.multiply(StepRange)); 3174 3175 // Check for overflow. This must be done with ConstantRange arithmetic 3176 // because we could be called from within the ScalarEvolution overflow 3177 // checking code. 3178 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3179 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3180 ConstantRange ExtMaxBECountRange = 3181 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3182 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3183 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3184 ExtEndRange) 3185 return ConservativeResult; 3186 3187 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3188 EndRange.getSignedMin()); 3189 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3190 EndRange.getSignedMax()); 3191 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3192 return ConservativeResult; 3193 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3194 } 3195 } 3196 3197 return ConservativeResult; 3198 } 3199 3200 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3201 // For a SCEVUnknown, ask ValueTracking. 3202 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3203 return ConservativeResult; 3204 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3205 if (NS == 1) 3206 return ConservativeResult; 3207 return ConservativeResult.intersectWith( 3208 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3209 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)); 3210 } 3211 3212 return ConservativeResult; 3213 } 3214 3215 /// createSCEV - We know that there is no SCEV for the specified value. 3216 /// Analyze the expression. 3217 /// 3218 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3219 if (!isSCEVable(V->getType())) 3220 return getUnknown(V); 3221 3222 unsigned Opcode = Instruction::UserOp1; 3223 if (Instruction *I = dyn_cast<Instruction>(V)) { 3224 Opcode = I->getOpcode(); 3225 3226 // Don't attempt to analyze instructions in blocks that aren't 3227 // reachable. Such instructions don't matter, and they aren't required 3228 // to obey basic rules for definitions dominating uses which this 3229 // analysis depends on. 3230 if (!DT->isReachableFromEntry(I->getParent())) 3231 return getUnknown(V); 3232 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3233 Opcode = CE->getOpcode(); 3234 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3235 return getConstant(CI); 3236 else if (isa<ConstantPointerNull>(V)) 3237 return getConstant(V->getType(), 0); 3238 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3239 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3240 else 3241 return getUnknown(V); 3242 3243 Operator *U = cast<Operator>(V); 3244 switch (Opcode) { 3245 case Instruction::Add: { 3246 // The simple thing to do would be to just call getSCEV on both operands 3247 // and call getAddExpr with the result. However if we're looking at a 3248 // bunch of things all added together, this can be quite inefficient, 3249 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3250 // Instead, gather up all the operands and make a single getAddExpr call. 3251 // LLVM IR canonical form means we need only traverse the left operands. 3252 SmallVector<const SCEV *, 4> AddOps; 3253 AddOps.push_back(getSCEV(U->getOperand(1))); 3254 for (Value *Op = U->getOperand(0); 3255 Op->getValueID() == Instruction::Add + Value::InstructionVal; 3256 Op = U->getOperand(0)) { 3257 U = cast<Operator>(Op); 3258 AddOps.push_back(getSCEV(U->getOperand(1))); 3259 } 3260 AddOps.push_back(getSCEV(U->getOperand(0))); 3261 return getAddExpr(AddOps); 3262 } 3263 case Instruction::Mul: { 3264 // See the Add code above. 3265 SmallVector<const SCEV *, 4> MulOps; 3266 MulOps.push_back(getSCEV(U->getOperand(1))); 3267 for (Value *Op = U->getOperand(0); 3268 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3269 Op = U->getOperand(0)) { 3270 U = cast<Operator>(Op); 3271 MulOps.push_back(getSCEV(U->getOperand(1))); 3272 } 3273 MulOps.push_back(getSCEV(U->getOperand(0))); 3274 return getMulExpr(MulOps); 3275 } 3276 case Instruction::UDiv: 3277 return getUDivExpr(getSCEV(U->getOperand(0)), 3278 getSCEV(U->getOperand(1))); 3279 case Instruction::Sub: 3280 return getMinusSCEV(getSCEV(U->getOperand(0)), 3281 getSCEV(U->getOperand(1))); 3282 case Instruction::And: 3283 // For an expression like x&255 that merely masks off the high bits, 3284 // use zext(trunc(x)) as the SCEV expression. 3285 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3286 if (CI->isNullValue()) 3287 return getSCEV(U->getOperand(1)); 3288 if (CI->isAllOnesValue()) 3289 return getSCEV(U->getOperand(0)); 3290 const APInt &A = CI->getValue(); 3291 3292 // Instcombine's ShrinkDemandedConstant may strip bits out of 3293 // constants, obscuring what would otherwise be a low-bits mask. 3294 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3295 // knew about to reconstruct a low-bits mask value. 3296 unsigned LZ = A.countLeadingZeros(); 3297 unsigned BitWidth = A.getBitWidth(); 3298 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3299 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3300 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3301 3302 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3303 3304 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3305 return 3306 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3307 IntegerType::get(getContext(), BitWidth - LZ)), 3308 U->getType()); 3309 } 3310 break; 3311 3312 case Instruction::Or: 3313 // If the RHS of the Or is a constant, we may have something like: 3314 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3315 // optimizations will transparently handle this case. 3316 // 3317 // In order for this transformation to be safe, the LHS must be of the 3318 // form X*(2^n) and the Or constant must be less than 2^n. 3319 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3320 const SCEV *LHS = getSCEV(U->getOperand(0)); 3321 const APInt &CIVal = CI->getValue(); 3322 if (GetMinTrailingZeros(LHS) >= 3323 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3324 // Build a plain add SCEV. 3325 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3326 // If the LHS of the add was an addrec and it has no-wrap flags, 3327 // transfer the no-wrap flags, since an or won't introduce a wrap. 3328 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3329 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3330 if (OldAR->hasNoUnsignedWrap()) 3331 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true); 3332 if (OldAR->hasNoSignedWrap()) 3333 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true); 3334 } 3335 return S; 3336 } 3337 } 3338 break; 3339 case Instruction::Xor: 3340 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3341 // If the RHS of the xor is a signbit, then this is just an add. 3342 // Instcombine turns add of signbit into xor as a strength reduction step. 3343 if (CI->getValue().isSignBit()) 3344 return getAddExpr(getSCEV(U->getOperand(0)), 3345 getSCEV(U->getOperand(1))); 3346 3347 // If the RHS of xor is -1, then this is a not operation. 3348 if (CI->isAllOnesValue()) 3349 return getNotSCEV(getSCEV(U->getOperand(0))); 3350 3351 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3352 // This is a variant of the check for xor with -1, and it handles 3353 // the case where instcombine has trimmed non-demanded bits out 3354 // of an xor with -1. 3355 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3356 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3357 if (BO->getOpcode() == Instruction::And && 3358 LCI->getValue() == CI->getValue()) 3359 if (const SCEVZeroExtendExpr *Z = 3360 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3361 const Type *UTy = U->getType(); 3362 const SCEV *Z0 = Z->getOperand(); 3363 const Type *Z0Ty = Z0->getType(); 3364 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3365 3366 // If C is a low-bits mask, the zero extend is serving to 3367 // mask off the high bits. Complement the operand and 3368 // re-apply the zext. 3369 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3370 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3371 3372 // If C is a single bit, it may be in the sign-bit position 3373 // before the zero-extend. In this case, represent the xor 3374 // using an add, which is equivalent, and re-apply the zext. 3375 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 3376 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3377 Trunc.isSignBit()) 3378 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3379 UTy); 3380 } 3381 } 3382 break; 3383 3384 case Instruction::Shl: 3385 // Turn shift left of a constant amount into a multiply. 3386 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3387 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3388 3389 // If the shift count is not less than the bitwidth, the result of 3390 // the shift is undefined. Don't try to analyze it, because the 3391 // resolution chosen here may differ from the resolution chosen in 3392 // other parts of the compiler. 3393 if (SA->getValue().uge(BitWidth)) 3394 break; 3395 3396 Constant *X = ConstantInt::get(getContext(), 3397 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3398 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3399 } 3400 break; 3401 3402 case Instruction::LShr: 3403 // Turn logical shift right of a constant into a unsigned divide. 3404 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3405 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3406 3407 // If the shift count is not less than the bitwidth, the result of 3408 // the shift is undefined. Don't try to analyze it, because the 3409 // resolution chosen here may differ from the resolution chosen in 3410 // other parts of the compiler. 3411 if (SA->getValue().uge(BitWidth)) 3412 break; 3413 3414 Constant *X = ConstantInt::get(getContext(), 3415 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3416 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3417 } 3418 break; 3419 3420 case Instruction::AShr: 3421 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3422 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3423 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3424 if (L->getOpcode() == Instruction::Shl && 3425 L->getOperand(1) == U->getOperand(1)) { 3426 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3427 3428 // If the shift count is not less than the bitwidth, the result of 3429 // the shift is undefined. Don't try to analyze it, because the 3430 // resolution chosen here may differ from the resolution chosen in 3431 // other parts of the compiler. 3432 if (CI->getValue().uge(BitWidth)) 3433 break; 3434 3435 uint64_t Amt = BitWidth - CI->getZExtValue(); 3436 if (Amt == BitWidth) 3437 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3438 return 3439 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3440 IntegerType::get(getContext(), 3441 Amt)), 3442 U->getType()); 3443 } 3444 break; 3445 3446 case Instruction::Trunc: 3447 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3448 3449 case Instruction::ZExt: 3450 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3451 3452 case Instruction::SExt: 3453 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3454 3455 case Instruction::BitCast: 3456 // BitCasts are no-op casts so we just eliminate the cast. 3457 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3458 return getSCEV(U->getOperand(0)); 3459 break; 3460 3461 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3462 // lead to pointer expressions which cannot safely be expanded to GEPs, 3463 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3464 // simplifying integer expressions. 3465 3466 case Instruction::GetElementPtr: 3467 return createNodeForGEP(cast<GEPOperator>(U)); 3468 3469 case Instruction::PHI: 3470 return createNodeForPHI(cast<PHINode>(U)); 3471 3472 case Instruction::Select: 3473 // This could be a smax or umax that was lowered earlier. 3474 // Try to recover it. 3475 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3476 Value *LHS = ICI->getOperand(0); 3477 Value *RHS = ICI->getOperand(1); 3478 switch (ICI->getPredicate()) { 3479 case ICmpInst::ICMP_SLT: 3480 case ICmpInst::ICMP_SLE: 3481 std::swap(LHS, RHS); 3482 // fall through 3483 case ICmpInst::ICMP_SGT: 3484 case ICmpInst::ICMP_SGE: 3485 // a >s b ? a+x : b+x -> smax(a, b)+x 3486 // a >s b ? b+x : a+x -> smin(a, b)+x 3487 if (LHS->getType() == U->getType()) { 3488 const SCEV *LS = getSCEV(LHS); 3489 const SCEV *RS = getSCEV(RHS); 3490 const SCEV *LA = getSCEV(U->getOperand(1)); 3491 const SCEV *RA = getSCEV(U->getOperand(2)); 3492 const SCEV *LDiff = getMinusSCEV(LA, LS); 3493 const SCEV *RDiff = getMinusSCEV(RA, RS); 3494 if (LDiff == RDiff) 3495 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3496 LDiff = getMinusSCEV(LA, RS); 3497 RDiff = getMinusSCEV(RA, LS); 3498 if (LDiff == RDiff) 3499 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3500 } 3501 break; 3502 case ICmpInst::ICMP_ULT: 3503 case ICmpInst::ICMP_ULE: 3504 std::swap(LHS, RHS); 3505 // fall through 3506 case ICmpInst::ICMP_UGT: 3507 case ICmpInst::ICMP_UGE: 3508 // a >u b ? a+x : b+x -> umax(a, b)+x 3509 // a >u b ? b+x : a+x -> umin(a, b)+x 3510 if (LHS->getType() == U->getType()) { 3511 const SCEV *LS = getSCEV(LHS); 3512 const SCEV *RS = getSCEV(RHS); 3513 const SCEV *LA = getSCEV(U->getOperand(1)); 3514 const SCEV *RA = getSCEV(U->getOperand(2)); 3515 const SCEV *LDiff = getMinusSCEV(LA, LS); 3516 const SCEV *RDiff = getMinusSCEV(RA, RS); 3517 if (LDiff == RDiff) 3518 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3519 LDiff = getMinusSCEV(LA, RS); 3520 RDiff = getMinusSCEV(RA, LS); 3521 if (LDiff == RDiff) 3522 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3523 } 3524 break; 3525 case ICmpInst::ICMP_NE: 3526 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3527 if (LHS->getType() == U->getType() && 3528 isa<ConstantInt>(RHS) && 3529 cast<ConstantInt>(RHS)->isZero()) { 3530 const SCEV *One = getConstant(LHS->getType(), 1); 3531 const SCEV *LS = getSCEV(LHS); 3532 const SCEV *LA = getSCEV(U->getOperand(1)); 3533 const SCEV *RA = getSCEV(U->getOperand(2)); 3534 const SCEV *LDiff = getMinusSCEV(LA, LS); 3535 const SCEV *RDiff = getMinusSCEV(RA, One); 3536 if (LDiff == RDiff) 3537 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3538 } 3539 break; 3540 case ICmpInst::ICMP_EQ: 3541 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3542 if (LHS->getType() == U->getType() && 3543 isa<ConstantInt>(RHS) && 3544 cast<ConstantInt>(RHS)->isZero()) { 3545 const SCEV *One = getConstant(LHS->getType(), 1); 3546 const SCEV *LS = getSCEV(LHS); 3547 const SCEV *LA = getSCEV(U->getOperand(1)); 3548 const SCEV *RA = getSCEV(U->getOperand(2)); 3549 const SCEV *LDiff = getMinusSCEV(LA, One); 3550 const SCEV *RDiff = getMinusSCEV(RA, LS); 3551 if (LDiff == RDiff) 3552 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3553 } 3554 break; 3555 default: 3556 break; 3557 } 3558 } 3559 3560 default: // We cannot analyze this expression. 3561 break; 3562 } 3563 3564 return getUnknown(V); 3565 } 3566 3567 3568 3569 //===----------------------------------------------------------------------===// 3570 // Iteration Count Computation Code 3571 // 3572 3573 /// getBackedgeTakenCount - If the specified loop has a predictable 3574 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3575 /// object. The backedge-taken count is the number of times the loop header 3576 /// will be branched to from within the loop. This is one less than the 3577 /// trip count of the loop, since it doesn't count the first iteration, 3578 /// when the header is branched to from outside the loop. 3579 /// 3580 /// Note that it is not valid to call this method on a loop without a 3581 /// loop-invariant backedge-taken count (see 3582 /// hasLoopInvariantBackedgeTakenCount). 3583 /// 3584 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3585 return getBackedgeTakenInfo(L).Exact; 3586 } 3587 3588 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3589 /// return the least SCEV value that is known never to be less than the 3590 /// actual backedge taken count. 3591 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3592 return getBackedgeTakenInfo(L).Max; 3593 } 3594 3595 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3596 /// onto the given Worklist. 3597 static void 3598 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3599 BasicBlock *Header = L->getHeader(); 3600 3601 // Push all Loop-header PHIs onto the Worklist stack. 3602 for (BasicBlock::iterator I = Header->begin(); 3603 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3604 Worklist.push_back(PN); 3605 } 3606 3607 const ScalarEvolution::BackedgeTakenInfo & 3608 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3609 // Initially insert a CouldNotCompute for this loop. If the insertion 3610 // succeeds, proceed to actually compute a backedge-taken count and 3611 // update the value. The temporary CouldNotCompute value tells SCEV 3612 // code elsewhere that it shouldn't attempt to request a new 3613 // backedge-taken count, which could result in infinite recursion. 3614 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3615 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3616 if (Pair.second) { 3617 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L); 3618 if (BECount.Exact != getCouldNotCompute()) { 3619 assert(BECount.Exact->isLoopInvariant(L) && 3620 BECount.Max->isLoopInvariant(L) && 3621 "Computed backedge-taken count isn't loop invariant for loop!"); 3622 ++NumTripCountsComputed; 3623 3624 // Update the value in the map. 3625 Pair.first->second = BECount; 3626 } else { 3627 if (BECount.Max != getCouldNotCompute()) 3628 // Update the value in the map. 3629 Pair.first->second = BECount; 3630 if (isa<PHINode>(L->getHeader()->begin())) 3631 // Only count loops that have phi nodes as not being computable. 3632 ++NumTripCountsNotComputed; 3633 } 3634 3635 // Now that we know more about the trip count for this loop, forget any 3636 // existing SCEV values for PHI nodes in this loop since they are only 3637 // conservative estimates made without the benefit of trip count 3638 // information. This is similar to the code in forgetLoop, except that 3639 // it handles SCEVUnknown PHI nodes specially. 3640 if (BECount.hasAnyInfo()) { 3641 SmallVector<Instruction *, 16> Worklist; 3642 PushLoopPHIs(L, Worklist); 3643 3644 SmallPtrSet<Instruction *, 8> Visited; 3645 while (!Worklist.empty()) { 3646 Instruction *I = Worklist.pop_back_val(); 3647 if (!Visited.insert(I)) continue; 3648 3649 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3650 Scalars.find(static_cast<Value *>(I)); 3651 if (It != Scalars.end()) { 3652 // SCEVUnknown for a PHI either means that it has an unrecognized 3653 // structure, or it's a PHI that's in the progress of being computed 3654 // by createNodeForPHI. In the former case, additional loop trip 3655 // count information isn't going to change anything. In the later 3656 // case, createNodeForPHI will perform the necessary updates on its 3657 // own when it gets to that point. 3658 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { 3659 ValuesAtScopes.erase(It->second); 3660 Scalars.erase(It); 3661 } 3662 if (PHINode *PN = dyn_cast<PHINode>(I)) 3663 ConstantEvolutionLoopExitValue.erase(PN); 3664 } 3665 3666 PushDefUseChildren(I, Worklist); 3667 } 3668 } 3669 } 3670 return Pair.first->second; 3671 } 3672 3673 /// forgetLoop - This method should be called by the client when it has 3674 /// changed a loop in a way that may effect ScalarEvolution's ability to 3675 /// compute a trip count, or if the loop is deleted. 3676 void ScalarEvolution::forgetLoop(const Loop *L) { 3677 // Drop any stored trip count value. 3678 BackedgeTakenCounts.erase(L); 3679 3680 // Drop information about expressions based on loop-header PHIs. 3681 SmallVector<Instruction *, 16> Worklist; 3682 PushLoopPHIs(L, Worklist); 3683 3684 SmallPtrSet<Instruction *, 8> Visited; 3685 while (!Worklist.empty()) { 3686 Instruction *I = Worklist.pop_back_val(); 3687 if (!Visited.insert(I)) continue; 3688 3689 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3690 Scalars.find(static_cast<Value *>(I)); 3691 if (It != Scalars.end()) { 3692 ValuesAtScopes.erase(It->second); 3693 Scalars.erase(It); 3694 if (PHINode *PN = dyn_cast<PHINode>(I)) 3695 ConstantEvolutionLoopExitValue.erase(PN); 3696 } 3697 3698 PushDefUseChildren(I, Worklist); 3699 } 3700 } 3701 3702 /// forgetValue - This method should be called by the client when it has 3703 /// changed a value in a way that may effect its value, or which may 3704 /// disconnect it from a def-use chain linking it to a loop. 3705 void ScalarEvolution::forgetValue(Value *V) { 3706 Instruction *I = dyn_cast<Instruction>(V); 3707 if (!I) return; 3708 3709 // Drop information about expressions based on loop-header PHIs. 3710 SmallVector<Instruction *, 16> Worklist; 3711 Worklist.push_back(I); 3712 3713 SmallPtrSet<Instruction *, 8> Visited; 3714 while (!Worklist.empty()) { 3715 I = Worklist.pop_back_val(); 3716 if (!Visited.insert(I)) continue; 3717 3718 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3719 Scalars.find(static_cast<Value *>(I)); 3720 if (It != Scalars.end()) { 3721 ValuesAtScopes.erase(It->second); 3722 Scalars.erase(It); 3723 if (PHINode *PN = dyn_cast<PHINode>(I)) 3724 ConstantEvolutionLoopExitValue.erase(PN); 3725 } 3726 3727 PushDefUseChildren(I, Worklist); 3728 } 3729 } 3730 3731 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3732 /// of the specified loop will execute. 3733 ScalarEvolution::BackedgeTakenInfo 3734 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3735 SmallVector<BasicBlock *, 8> ExitingBlocks; 3736 L->getExitingBlocks(ExitingBlocks); 3737 3738 // Examine all exits and pick the most conservative values. 3739 const SCEV *BECount = getCouldNotCompute(); 3740 const SCEV *MaxBECount = getCouldNotCompute(); 3741 bool CouldNotComputeBECount = false; 3742 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3743 BackedgeTakenInfo NewBTI = 3744 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3745 3746 if (NewBTI.Exact == getCouldNotCompute()) { 3747 // We couldn't compute an exact value for this exit, so 3748 // we won't be able to compute an exact value for the loop. 3749 CouldNotComputeBECount = true; 3750 BECount = getCouldNotCompute(); 3751 } else if (!CouldNotComputeBECount) { 3752 if (BECount == getCouldNotCompute()) 3753 BECount = NewBTI.Exact; 3754 else 3755 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3756 } 3757 if (MaxBECount == getCouldNotCompute()) 3758 MaxBECount = NewBTI.Max; 3759 else if (NewBTI.Max != getCouldNotCompute()) 3760 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3761 } 3762 3763 return BackedgeTakenInfo(BECount, MaxBECount); 3764 } 3765 3766 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3767 /// of the specified loop will execute if it exits via the specified block. 3768 ScalarEvolution::BackedgeTakenInfo 3769 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3770 BasicBlock *ExitingBlock) { 3771 3772 // Okay, we've chosen an exiting block. See what condition causes us to 3773 // exit at this block. 3774 // 3775 // FIXME: we should be able to handle switch instructions (with a single exit) 3776 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3777 if (ExitBr == 0) return getCouldNotCompute(); 3778 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3779 3780 // At this point, we know we have a conditional branch that determines whether 3781 // the loop is exited. However, we don't know if the branch is executed each 3782 // time through the loop. If not, then the execution count of the branch will 3783 // not be equal to the trip count of the loop. 3784 // 3785 // Currently we check for this by checking to see if the Exit branch goes to 3786 // the loop header. If so, we know it will always execute the same number of 3787 // times as the loop. We also handle the case where the exit block *is* the 3788 // loop header. This is common for un-rotated loops. 3789 // 3790 // If both of those tests fail, walk up the unique predecessor chain to the 3791 // header, stopping if there is an edge that doesn't exit the loop. If the 3792 // header is reached, the execution count of the branch will be equal to the 3793 // trip count of the loop. 3794 // 3795 // More extensive analysis could be done to handle more cases here. 3796 // 3797 if (ExitBr->getSuccessor(0) != L->getHeader() && 3798 ExitBr->getSuccessor(1) != L->getHeader() && 3799 ExitBr->getParent() != L->getHeader()) { 3800 // The simple checks failed, try climbing the unique predecessor chain 3801 // up to the header. 3802 bool Ok = false; 3803 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3804 BasicBlock *Pred = BB->getUniquePredecessor(); 3805 if (!Pred) 3806 return getCouldNotCompute(); 3807 TerminatorInst *PredTerm = Pred->getTerminator(); 3808 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3809 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3810 if (PredSucc == BB) 3811 continue; 3812 // If the predecessor has a successor that isn't BB and isn't 3813 // outside the loop, assume the worst. 3814 if (L->contains(PredSucc)) 3815 return getCouldNotCompute(); 3816 } 3817 if (Pred == L->getHeader()) { 3818 Ok = true; 3819 break; 3820 } 3821 BB = Pred; 3822 } 3823 if (!Ok) 3824 return getCouldNotCompute(); 3825 } 3826 3827 // Proceed to the next level to examine the exit condition expression. 3828 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3829 ExitBr->getSuccessor(0), 3830 ExitBr->getSuccessor(1)); 3831 } 3832 3833 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3834 /// backedge of the specified loop will execute if its exit condition 3835 /// were a conditional branch of ExitCond, TBB, and FBB. 3836 ScalarEvolution::BackedgeTakenInfo 3837 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3838 Value *ExitCond, 3839 BasicBlock *TBB, 3840 BasicBlock *FBB) { 3841 // Check if the controlling expression for this loop is an And or Or. 3842 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3843 if (BO->getOpcode() == Instruction::And) { 3844 // Recurse on the operands of the and. 3845 BackedgeTakenInfo BTI0 = 3846 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3847 BackedgeTakenInfo BTI1 = 3848 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3849 const SCEV *BECount = getCouldNotCompute(); 3850 const SCEV *MaxBECount = getCouldNotCompute(); 3851 if (L->contains(TBB)) { 3852 // Both conditions must be true for the loop to continue executing. 3853 // Choose the less conservative count. 3854 if (BTI0.Exact == getCouldNotCompute() || 3855 BTI1.Exact == getCouldNotCompute()) 3856 BECount = getCouldNotCompute(); 3857 else 3858 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3859 if (BTI0.Max == getCouldNotCompute()) 3860 MaxBECount = BTI1.Max; 3861 else if (BTI1.Max == getCouldNotCompute()) 3862 MaxBECount = BTI0.Max; 3863 else 3864 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3865 } else { 3866 // Both conditions must be true at the same time for the loop to exit. 3867 // For now, be conservative. 3868 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3869 if (BTI0.Max == BTI1.Max) 3870 MaxBECount = BTI0.Max; 3871 if (BTI0.Exact == BTI1.Exact) 3872 BECount = BTI0.Exact; 3873 } 3874 3875 return BackedgeTakenInfo(BECount, MaxBECount); 3876 } 3877 if (BO->getOpcode() == Instruction::Or) { 3878 // Recurse on the operands of the or. 3879 BackedgeTakenInfo BTI0 = 3880 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3881 BackedgeTakenInfo BTI1 = 3882 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3883 const SCEV *BECount = getCouldNotCompute(); 3884 const SCEV *MaxBECount = getCouldNotCompute(); 3885 if (L->contains(FBB)) { 3886 // Both conditions must be false for the loop to continue executing. 3887 // Choose the less conservative count. 3888 if (BTI0.Exact == getCouldNotCompute() || 3889 BTI1.Exact == getCouldNotCompute()) 3890 BECount = getCouldNotCompute(); 3891 else 3892 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3893 if (BTI0.Max == getCouldNotCompute()) 3894 MaxBECount = BTI1.Max; 3895 else if (BTI1.Max == getCouldNotCompute()) 3896 MaxBECount = BTI0.Max; 3897 else 3898 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3899 } else { 3900 // Both conditions must be false at the same time for the loop to exit. 3901 // For now, be conservative. 3902 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3903 if (BTI0.Max == BTI1.Max) 3904 MaxBECount = BTI0.Max; 3905 if (BTI0.Exact == BTI1.Exact) 3906 BECount = BTI0.Exact; 3907 } 3908 3909 return BackedgeTakenInfo(BECount, MaxBECount); 3910 } 3911 } 3912 3913 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3914 // Proceed to the next level to examine the icmp. 3915 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3916 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3917 3918 // Check for a constant condition. These are normally stripped out by 3919 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 3920 // preserve the CFG and is temporarily leaving constant conditions 3921 // in place. 3922 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 3923 if (L->contains(FBB) == !CI->getZExtValue()) 3924 // The backedge is always taken. 3925 return getCouldNotCompute(); 3926 else 3927 // The backedge is never taken. 3928 return getConstant(CI->getType(), 0); 3929 } 3930 3931 // If it's not an integer or pointer comparison then compute it the hard way. 3932 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3933 } 3934 3935 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3936 /// backedge of the specified loop will execute if its exit condition 3937 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3938 ScalarEvolution::BackedgeTakenInfo 3939 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3940 ICmpInst *ExitCond, 3941 BasicBlock *TBB, 3942 BasicBlock *FBB) { 3943 3944 // If the condition was exit on true, convert the condition to exit on false 3945 ICmpInst::Predicate Cond; 3946 if (!L->contains(FBB)) 3947 Cond = ExitCond->getPredicate(); 3948 else 3949 Cond = ExitCond->getInversePredicate(); 3950 3951 // Handle common loops like: for (X = "string"; *X; ++X) 3952 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3953 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3954 BackedgeTakenInfo ItCnt = 3955 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3956 if (ItCnt.hasAnyInfo()) 3957 return ItCnt; 3958 } 3959 3960 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 3961 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 3962 3963 // Try to evaluate any dependencies out of the loop. 3964 LHS = getSCEVAtScope(LHS, L); 3965 RHS = getSCEVAtScope(RHS, L); 3966 3967 // At this point, we would like to compute how many iterations of the 3968 // loop the predicate will return true for these inputs. 3969 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3970 // If there is a loop-invariant, force it into the RHS. 3971 std::swap(LHS, RHS); 3972 Cond = ICmpInst::getSwappedPredicate(Cond); 3973 } 3974 3975 // Simplify the operands before analyzing them. 3976 (void)SimplifyICmpOperands(Cond, LHS, RHS); 3977 3978 // If we have a comparison of a chrec against a constant, try to use value 3979 // ranges to answer this query. 3980 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3981 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3982 if (AddRec->getLoop() == L) { 3983 // Form the constant range. 3984 ConstantRange CompRange( 3985 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3986 3987 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3988 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3989 } 3990 3991 switch (Cond) { 3992 case ICmpInst::ICMP_NE: { // while (X != Y) 3993 // Convert to: while (X-Y != 0) 3994 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3995 if (BTI.hasAnyInfo()) return BTI; 3996 break; 3997 } 3998 case ICmpInst::ICMP_EQ: { // while (X == Y) 3999 // Convert to: while (X-Y == 0) 4000 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4001 if (BTI.hasAnyInfo()) return BTI; 4002 break; 4003 } 4004 case ICmpInst::ICMP_SLT: { 4005 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 4006 if (BTI.hasAnyInfo()) return BTI; 4007 break; 4008 } 4009 case ICmpInst::ICMP_SGT: { 4010 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4011 getNotSCEV(RHS), L, true); 4012 if (BTI.hasAnyInfo()) return BTI; 4013 break; 4014 } 4015 case ICmpInst::ICMP_ULT: { 4016 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 4017 if (BTI.hasAnyInfo()) return BTI; 4018 break; 4019 } 4020 case ICmpInst::ICMP_UGT: { 4021 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4022 getNotSCEV(RHS), L, false); 4023 if (BTI.hasAnyInfo()) return BTI; 4024 break; 4025 } 4026 default: 4027 #if 0 4028 dbgs() << "ComputeBackedgeTakenCount "; 4029 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4030 dbgs() << "[unsigned] "; 4031 dbgs() << *LHS << " " 4032 << Instruction::getOpcodeName(Instruction::ICmp) 4033 << " " << *RHS << "\n"; 4034 #endif 4035 break; 4036 } 4037 return 4038 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 4039 } 4040 4041 static ConstantInt * 4042 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4043 ScalarEvolution &SE) { 4044 const SCEV *InVal = SE.getConstant(C); 4045 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4046 assert(isa<SCEVConstant>(Val) && 4047 "Evaluation of SCEV at constant didn't fold correctly?"); 4048 return cast<SCEVConstant>(Val)->getValue(); 4049 } 4050 4051 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 4052 /// and a GEP expression (missing the pointer index) indexing into it, return 4053 /// the addressed element of the initializer or null if the index expression is 4054 /// invalid. 4055 static Constant * 4056 GetAddressedElementFromGlobal(GlobalVariable *GV, 4057 const std::vector<ConstantInt*> &Indices) { 4058 Constant *Init = GV->getInitializer(); 4059 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 4060 uint64_t Idx = Indices[i]->getZExtValue(); 4061 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 4062 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 4063 Init = cast<Constant>(CS->getOperand(Idx)); 4064 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4065 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4066 Init = cast<Constant>(CA->getOperand(Idx)); 4067 } else if (isa<ConstantAggregateZero>(Init)) { 4068 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 4069 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4070 Init = Constant::getNullValue(STy->getElementType(Idx)); 4071 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4072 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4073 Init = Constant::getNullValue(ATy->getElementType()); 4074 } else { 4075 llvm_unreachable("Unknown constant aggregate type!"); 4076 } 4077 return 0; 4078 } else { 4079 return 0; // Unknown initializer type 4080 } 4081 } 4082 return Init; 4083 } 4084 4085 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 4086 /// 'icmp op load X, cst', try to see if we can compute the backedge 4087 /// execution count. 4088 ScalarEvolution::BackedgeTakenInfo 4089 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 4090 LoadInst *LI, 4091 Constant *RHS, 4092 const Loop *L, 4093 ICmpInst::Predicate predicate) { 4094 if (LI->isVolatile()) return getCouldNotCompute(); 4095 4096 // Check to see if the loaded pointer is a getelementptr of a global. 4097 // TODO: Use SCEV instead of manually grubbing with GEPs. 4098 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4099 if (!GEP) return getCouldNotCompute(); 4100 4101 // Make sure that it is really a constant global we are gepping, with an 4102 // initializer, and make sure the first IDX is really 0. 4103 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4104 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4105 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4106 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4107 return getCouldNotCompute(); 4108 4109 // Okay, we allow one non-constant index into the GEP instruction. 4110 Value *VarIdx = 0; 4111 std::vector<ConstantInt*> Indexes; 4112 unsigned VarIdxNum = 0; 4113 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4114 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4115 Indexes.push_back(CI); 4116 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4117 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4118 VarIdx = GEP->getOperand(i); 4119 VarIdxNum = i-2; 4120 Indexes.push_back(0); 4121 } 4122 4123 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4124 // Check to see if X is a loop variant variable value now. 4125 const SCEV *Idx = getSCEV(VarIdx); 4126 Idx = getSCEVAtScope(Idx, L); 4127 4128 // We can only recognize very limited forms of loop index expressions, in 4129 // particular, only affine AddRec's like {C1,+,C2}. 4130 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4131 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 4132 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4133 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4134 return getCouldNotCompute(); 4135 4136 unsigned MaxSteps = MaxBruteForceIterations; 4137 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4138 ConstantInt *ItCst = ConstantInt::get( 4139 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4140 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4141 4142 // Form the GEP offset. 4143 Indexes[VarIdxNum] = Val; 4144 4145 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4146 if (Result == 0) break; // Cannot compute! 4147 4148 // Evaluate the condition for this iteration. 4149 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4150 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4151 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4152 #if 0 4153 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4154 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4155 << "***\n"; 4156 #endif 4157 ++NumArrayLenItCounts; 4158 return getConstant(ItCst); // Found terminating iteration! 4159 } 4160 } 4161 return getCouldNotCompute(); 4162 } 4163 4164 4165 /// CanConstantFold - Return true if we can constant fold an instruction of the 4166 /// specified type, assuming that all operands were constants. 4167 static bool CanConstantFold(const Instruction *I) { 4168 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4169 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4170 return true; 4171 4172 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4173 if (const Function *F = CI->getCalledFunction()) 4174 return canConstantFoldCallTo(F); 4175 return false; 4176 } 4177 4178 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4179 /// in the loop that V is derived from. We allow arbitrary operations along the 4180 /// way, but the operands of an operation must either be constants or a value 4181 /// derived from a constant PHI. If this expression does not fit with these 4182 /// constraints, return null. 4183 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4184 // If this is not an instruction, or if this is an instruction outside of the 4185 // loop, it can't be derived from a loop PHI. 4186 Instruction *I = dyn_cast<Instruction>(V); 4187 if (I == 0 || !L->contains(I)) return 0; 4188 4189 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4190 if (L->getHeader() == I->getParent()) 4191 return PN; 4192 else 4193 // We don't currently keep track of the control flow needed to evaluate 4194 // PHIs, so we cannot handle PHIs inside of loops. 4195 return 0; 4196 } 4197 4198 // If we won't be able to constant fold this expression even if the operands 4199 // are constants, return early. 4200 if (!CanConstantFold(I)) return 0; 4201 4202 // Otherwise, we can evaluate this instruction if all of its operands are 4203 // constant or derived from a PHI node themselves. 4204 PHINode *PHI = 0; 4205 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4206 if (!isa<Constant>(I->getOperand(Op))) { 4207 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4208 if (P == 0) return 0; // Not evolving from PHI 4209 if (PHI == 0) 4210 PHI = P; 4211 else if (PHI != P) 4212 return 0; // Evolving from multiple different PHIs. 4213 } 4214 4215 // This is a expression evolving from a constant PHI! 4216 return PHI; 4217 } 4218 4219 /// EvaluateExpression - Given an expression that passes the 4220 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4221 /// in the loop has the value PHIVal. If we can't fold this expression for some 4222 /// reason, return null. 4223 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4224 const TargetData *TD) { 4225 if (isa<PHINode>(V)) return PHIVal; 4226 if (Constant *C = dyn_cast<Constant>(V)) return C; 4227 Instruction *I = cast<Instruction>(V); 4228 4229 std::vector<Constant*> Operands(I->getNumOperands()); 4230 4231 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4232 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4233 if (Operands[i] == 0) return 0; 4234 } 4235 4236 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4237 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4238 Operands[1], TD); 4239 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4240 &Operands[0], Operands.size(), TD); 4241 } 4242 4243 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4244 /// in the header of its containing loop, we know the loop executes a 4245 /// constant number of times, and the PHI node is just a recurrence 4246 /// involving constants, fold it. 4247 Constant * 4248 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4249 const APInt &BEs, 4250 const Loop *L) { 4251 std::map<PHINode*, Constant*>::iterator I = 4252 ConstantEvolutionLoopExitValue.find(PN); 4253 if (I != ConstantEvolutionLoopExitValue.end()) 4254 return I->second; 4255 4256 if (BEs.ugt(MaxBruteForceIterations)) 4257 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4258 4259 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4260 4261 // Since the loop is canonicalized, the PHI node must have two entries. One 4262 // entry must be a constant (coming in from outside of the loop), and the 4263 // second must be derived from the same PHI. 4264 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4265 Constant *StartCST = 4266 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4267 if (StartCST == 0) 4268 return RetVal = 0; // Must be a constant. 4269 4270 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4271 if (getConstantEvolvingPHI(BEValue, L) != PN && 4272 !isa<Constant>(BEValue)) 4273 return RetVal = 0; // Not derived from same PHI. 4274 4275 // Execute the loop symbolically to determine the exit value. 4276 if (BEs.getActiveBits() >= 32) 4277 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4278 4279 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4280 unsigned IterationNum = 0; 4281 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4282 if (IterationNum == NumIterations) 4283 return RetVal = PHIVal; // Got exit value! 4284 4285 // Compute the value of the PHI node for the next iteration. 4286 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4287 if (NextPHI == PHIVal) 4288 return RetVal = NextPHI; // Stopped evolving! 4289 if (NextPHI == 0) 4290 return 0; // Couldn't evaluate! 4291 PHIVal = NextPHI; 4292 } 4293 } 4294 4295 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 4296 /// constant number of times (the condition evolves only from constants), 4297 /// try to evaluate a few iterations of the loop until we get the exit 4298 /// condition gets a value of ExitWhen (true or false). If we cannot 4299 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4300 const SCEV * 4301 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 4302 Value *Cond, 4303 bool ExitWhen) { 4304 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4305 if (PN == 0) return getCouldNotCompute(); 4306 4307 // If the loop is canonicalized, the PHI will have exactly two entries. 4308 // That's the only form we support here. 4309 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4310 4311 // One entry must be a constant (coming in from outside of the loop), and the 4312 // second must be derived from the same PHI. 4313 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4314 Constant *StartCST = 4315 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4316 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4317 4318 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4319 if (getConstantEvolvingPHI(BEValue, L) != PN && 4320 !isa<Constant>(BEValue)) 4321 return getCouldNotCompute(); // Not derived from same PHI. 4322 4323 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4324 // the loop symbolically to determine when the condition gets a value of 4325 // "ExitWhen". 4326 unsigned IterationNum = 0; 4327 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4328 for (Constant *PHIVal = StartCST; 4329 IterationNum != MaxIterations; ++IterationNum) { 4330 ConstantInt *CondVal = 4331 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4332 4333 // Couldn't symbolically evaluate. 4334 if (!CondVal) return getCouldNotCompute(); 4335 4336 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4337 ++NumBruteForceTripCountsComputed; 4338 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4339 } 4340 4341 // Compute the value of the PHI node for the next iteration. 4342 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4343 if (NextPHI == 0 || NextPHI == PHIVal) 4344 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4345 PHIVal = NextPHI; 4346 } 4347 4348 // Too many iterations were needed to evaluate. 4349 return getCouldNotCompute(); 4350 } 4351 4352 /// getSCEVAtScope - Return a SCEV expression for the specified value 4353 /// at the specified scope in the program. The L value specifies a loop 4354 /// nest to evaluate the expression at, where null is the top-level or a 4355 /// specified loop is immediately inside of the loop. 4356 /// 4357 /// This method can be used to compute the exit value for a variable defined 4358 /// in a loop by querying what the value will hold in the parent loop. 4359 /// 4360 /// In the case that a relevant loop exit value cannot be computed, the 4361 /// original value V is returned. 4362 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4363 // Check to see if we've folded this expression at this loop before. 4364 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4365 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4366 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4367 if (!Pair.second) 4368 return Pair.first->second ? Pair.first->second : V; 4369 4370 // Otherwise compute it. 4371 const SCEV *C = computeSCEVAtScope(V, L); 4372 ValuesAtScopes[V][L] = C; 4373 return C; 4374 } 4375 4376 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4377 if (isa<SCEVConstant>(V)) return V; 4378 4379 // If this instruction is evolved from a constant-evolving PHI, compute the 4380 // exit value from the loop without using SCEVs. 4381 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4382 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4383 const Loop *LI = (*this->LI)[I->getParent()]; 4384 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4385 if (PHINode *PN = dyn_cast<PHINode>(I)) 4386 if (PN->getParent() == LI->getHeader()) { 4387 // Okay, there is no closed form solution for the PHI node. Check 4388 // to see if the loop that contains it has a known backedge-taken 4389 // count. If so, we may be able to force computation of the exit 4390 // value. 4391 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4392 if (const SCEVConstant *BTCC = 4393 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4394 // Okay, we know how many times the containing loop executes. If 4395 // this is a constant evolving PHI node, get the final value at 4396 // the specified iteration number. 4397 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4398 BTCC->getValue()->getValue(), 4399 LI); 4400 if (RV) return getSCEV(RV); 4401 } 4402 } 4403 4404 // Okay, this is an expression that we cannot symbolically evaluate 4405 // into a SCEV. Check to see if it's possible to symbolically evaluate 4406 // the arguments into constants, and if so, try to constant propagate the 4407 // result. This is particularly useful for computing loop exit values. 4408 if (CanConstantFold(I)) { 4409 SmallVector<Constant *, 4> Operands; 4410 bool MadeImprovement = false; 4411 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4412 Value *Op = I->getOperand(i); 4413 if (Constant *C = dyn_cast<Constant>(Op)) { 4414 Operands.push_back(C); 4415 continue; 4416 } 4417 4418 // If any of the operands is non-constant and if they are 4419 // non-integer and non-pointer, don't even try to analyze them 4420 // with scev techniques. 4421 if (!isSCEVable(Op->getType())) 4422 return V; 4423 4424 const SCEV *OrigV = getSCEV(Op); 4425 const SCEV *OpV = getSCEVAtScope(OrigV, L); 4426 MadeImprovement |= OrigV != OpV; 4427 4428 Constant *C = 0; 4429 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 4430 C = SC->getValue(); 4431 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) 4432 C = dyn_cast<Constant>(SU->getValue()); 4433 if (!C) return V; 4434 if (C->getType() != Op->getType()) 4435 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4436 Op->getType(), 4437 false), 4438 C, Op->getType()); 4439 Operands.push_back(C); 4440 } 4441 4442 // Check to see if getSCEVAtScope actually made an improvement. 4443 if (MadeImprovement) { 4444 Constant *C = 0; 4445 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4446 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4447 Operands[0], Operands[1], TD); 4448 else 4449 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4450 &Operands[0], Operands.size(), TD); 4451 if (!C) return V; 4452 return getSCEV(C); 4453 } 4454 } 4455 } 4456 4457 // This is some other type of SCEVUnknown, just return it. 4458 return V; 4459 } 4460 4461 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4462 // Avoid performing the look-up in the common case where the specified 4463 // expression has no loop-variant portions. 4464 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4465 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4466 if (OpAtScope != Comm->getOperand(i)) { 4467 // Okay, at least one of these operands is loop variant but might be 4468 // foldable. Build a new instance of the folded commutative expression. 4469 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4470 Comm->op_begin()+i); 4471 NewOps.push_back(OpAtScope); 4472 4473 for (++i; i != e; ++i) { 4474 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4475 NewOps.push_back(OpAtScope); 4476 } 4477 if (isa<SCEVAddExpr>(Comm)) 4478 return getAddExpr(NewOps); 4479 if (isa<SCEVMulExpr>(Comm)) 4480 return getMulExpr(NewOps); 4481 if (isa<SCEVSMaxExpr>(Comm)) 4482 return getSMaxExpr(NewOps); 4483 if (isa<SCEVUMaxExpr>(Comm)) 4484 return getUMaxExpr(NewOps); 4485 llvm_unreachable("Unknown commutative SCEV type!"); 4486 } 4487 } 4488 // If we got here, all operands are loop invariant. 4489 return Comm; 4490 } 4491 4492 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4493 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4494 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4495 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4496 return Div; // must be loop invariant 4497 return getUDivExpr(LHS, RHS); 4498 } 4499 4500 // If this is a loop recurrence for a loop that does not contain L, then we 4501 // are dealing with the final value computed by the loop. 4502 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4503 // First, attempt to evaluate each operand. 4504 // Avoid performing the look-up in the common case where the specified 4505 // expression has no loop-variant portions. 4506 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4507 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 4508 if (OpAtScope == AddRec->getOperand(i)) 4509 continue; 4510 4511 // Okay, at least one of these operands is loop variant but might be 4512 // foldable. Build a new instance of the folded commutative expression. 4513 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 4514 AddRec->op_begin()+i); 4515 NewOps.push_back(OpAtScope); 4516 for (++i; i != e; ++i) 4517 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 4518 4519 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop())); 4520 break; 4521 } 4522 4523 // If the scope is outside the addrec's loop, evaluate it by using the 4524 // loop exit value of the addrec. 4525 if (!AddRec->getLoop()->contains(L)) { 4526 // To evaluate this recurrence, we need to know how many times the AddRec 4527 // loop iterates. Compute this now. 4528 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4529 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4530 4531 // Then, evaluate the AddRec. 4532 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4533 } 4534 4535 return AddRec; 4536 } 4537 4538 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4539 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4540 if (Op == Cast->getOperand()) 4541 return Cast; // must be loop invariant 4542 return getZeroExtendExpr(Op, Cast->getType()); 4543 } 4544 4545 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4546 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4547 if (Op == Cast->getOperand()) 4548 return Cast; // must be loop invariant 4549 return getSignExtendExpr(Op, Cast->getType()); 4550 } 4551 4552 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4553 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4554 if (Op == Cast->getOperand()) 4555 return Cast; // must be loop invariant 4556 return getTruncateExpr(Op, Cast->getType()); 4557 } 4558 4559 llvm_unreachable("Unknown SCEV type!"); 4560 return 0; 4561 } 4562 4563 /// getSCEVAtScope - This is a convenience function which does 4564 /// getSCEVAtScope(getSCEV(V), L). 4565 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4566 return getSCEVAtScope(getSCEV(V), L); 4567 } 4568 4569 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4570 /// following equation: 4571 /// 4572 /// A * X = B (mod N) 4573 /// 4574 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4575 /// A and B isn't important. 4576 /// 4577 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4578 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4579 ScalarEvolution &SE) { 4580 uint32_t BW = A.getBitWidth(); 4581 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4582 assert(A != 0 && "A must be non-zero."); 4583 4584 // 1. D = gcd(A, N) 4585 // 4586 // The gcd of A and N may have only one prime factor: 2. The number of 4587 // trailing zeros in A is its multiplicity 4588 uint32_t Mult2 = A.countTrailingZeros(); 4589 // D = 2^Mult2 4590 4591 // 2. Check if B is divisible by D. 4592 // 4593 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4594 // is not less than multiplicity of this prime factor for D. 4595 if (B.countTrailingZeros() < Mult2) 4596 return SE.getCouldNotCompute(); 4597 4598 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4599 // modulo (N / D). 4600 // 4601 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4602 // bit width during computations. 4603 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4604 APInt Mod(BW + 1, 0); 4605 Mod.set(BW - Mult2); // Mod = N / D 4606 APInt I = AD.multiplicativeInverse(Mod); 4607 4608 // 4. Compute the minimum unsigned root of the equation: 4609 // I * (B / D) mod (N / D) 4610 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4611 4612 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4613 // bits. 4614 return SE.getConstant(Result.trunc(BW)); 4615 } 4616 4617 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4618 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4619 /// might be the same) or two SCEVCouldNotCompute objects. 4620 /// 4621 static std::pair<const SCEV *,const SCEV *> 4622 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4623 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4624 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4625 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4626 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4627 4628 // We currently can only solve this if the coefficients are constants. 4629 if (!LC || !MC || !NC) { 4630 const SCEV *CNC = SE.getCouldNotCompute(); 4631 return std::make_pair(CNC, CNC); 4632 } 4633 4634 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4635 const APInt &L = LC->getValue()->getValue(); 4636 const APInt &M = MC->getValue()->getValue(); 4637 const APInt &N = NC->getValue()->getValue(); 4638 APInt Two(BitWidth, 2); 4639 APInt Four(BitWidth, 4); 4640 4641 { 4642 using namespace APIntOps; 4643 const APInt& C = L; 4644 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4645 // The B coefficient is M-N/2 4646 APInt B(M); 4647 B -= sdiv(N,Two); 4648 4649 // The A coefficient is N/2 4650 APInt A(N.sdiv(Two)); 4651 4652 // Compute the B^2-4ac term. 4653 APInt SqrtTerm(B); 4654 SqrtTerm *= B; 4655 SqrtTerm -= Four * (A * C); 4656 4657 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4658 // integer value or else APInt::sqrt() will assert. 4659 APInt SqrtVal(SqrtTerm.sqrt()); 4660 4661 // Compute the two solutions for the quadratic formula. 4662 // The divisions must be performed as signed divisions. 4663 APInt NegB(-B); 4664 APInt TwoA( A << 1 ); 4665 if (TwoA.isMinValue()) { 4666 const SCEV *CNC = SE.getCouldNotCompute(); 4667 return std::make_pair(CNC, CNC); 4668 } 4669 4670 LLVMContext &Context = SE.getContext(); 4671 4672 ConstantInt *Solution1 = 4673 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4674 ConstantInt *Solution2 = 4675 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4676 4677 return std::make_pair(SE.getConstant(Solution1), 4678 SE.getConstant(Solution2)); 4679 } // end APIntOps namespace 4680 } 4681 4682 /// HowFarToZero - Return the number of times a backedge comparing the specified 4683 /// value to zero will execute. If not computable, return CouldNotCompute. 4684 ScalarEvolution::BackedgeTakenInfo 4685 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4686 // If the value is a constant 4687 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4688 // If the value is already zero, the branch will execute zero times. 4689 if (C->getValue()->isZero()) return C; 4690 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4691 } 4692 4693 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4694 if (!AddRec || AddRec->getLoop() != L) 4695 return getCouldNotCompute(); 4696 4697 if (AddRec->isAffine()) { 4698 // If this is an affine expression, the execution count of this branch is 4699 // the minimum unsigned root of the following equation: 4700 // 4701 // Start + Step*N = 0 (mod 2^BW) 4702 // 4703 // equivalent to: 4704 // 4705 // Step*N = -Start (mod 2^BW) 4706 // 4707 // where BW is the common bit width of Start and Step. 4708 4709 // Get the initial value for the loop. 4710 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 4711 L->getParentLoop()); 4712 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 4713 L->getParentLoop()); 4714 4715 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 4716 // For now we handle only constant steps. 4717 4718 // First, handle unitary steps. 4719 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4720 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4721 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4722 return Start; // N = Start (as unsigned) 4723 4724 // Then, try to solve the above equation provided that Start is constant. 4725 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4726 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4727 -StartC->getValue()->getValue(), 4728 *this); 4729 } 4730 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 4731 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4732 // the quadratic equation to solve it. 4733 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, 4734 *this); 4735 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4736 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4737 if (R1) { 4738 #if 0 4739 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 4740 << " sol#2: " << *R2 << "\n"; 4741 #endif 4742 // Pick the smallest positive root value. 4743 if (ConstantInt *CB = 4744 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4745 R1->getValue(), R2->getValue()))) { 4746 if (CB->getZExtValue() == false) 4747 std::swap(R1, R2); // R1 is the minimum root now. 4748 4749 // We can only use this value if the chrec ends up with an exact zero 4750 // value at this index. When solving for "X*X != 5", for example, we 4751 // should not accept a root of 2. 4752 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4753 if (Val->isZero()) 4754 return R1; // We found a quadratic root! 4755 } 4756 } 4757 } 4758 4759 return getCouldNotCompute(); 4760 } 4761 4762 /// HowFarToNonZero - Return the number of times a backedge checking the 4763 /// specified value for nonzero will execute. If not computable, return 4764 /// CouldNotCompute 4765 ScalarEvolution::BackedgeTakenInfo 4766 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4767 // Loops that look like: while (X == 0) are very strange indeed. We don't 4768 // handle them yet except for the trivial case. This could be expanded in the 4769 // future as needed. 4770 4771 // If the value is a constant, check to see if it is known to be non-zero 4772 // already. If so, the backedge will execute zero times. 4773 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4774 if (!C->getValue()->isNullValue()) 4775 return getConstant(C->getType(), 0); 4776 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4777 } 4778 4779 // We could implement others, but I really doubt anyone writes loops like 4780 // this, and if they did, they would already be constant folded. 4781 return getCouldNotCompute(); 4782 } 4783 4784 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4785 /// (which may not be an immediate predecessor) which has exactly one 4786 /// successor from which BB is reachable, or null if no such block is 4787 /// found. 4788 /// 4789 std::pair<BasicBlock *, BasicBlock *> 4790 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4791 // If the block has a unique predecessor, then there is no path from the 4792 // predecessor to the block that does not go through the direct edge 4793 // from the predecessor to the block. 4794 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4795 return std::make_pair(Pred, BB); 4796 4797 // A loop's header is defined to be a block that dominates the loop. 4798 // If the header has a unique predecessor outside the loop, it must be 4799 // a block that has exactly one successor that can reach the loop. 4800 if (Loop *L = LI->getLoopFor(BB)) 4801 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 4802 4803 return std::pair<BasicBlock *, BasicBlock *>(); 4804 } 4805 4806 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4807 /// testing whether two expressions are equal, however for the purposes of 4808 /// looking for a condition guarding a loop, it can be useful to be a little 4809 /// more general, since a front-end may have replicated the controlling 4810 /// expression. 4811 /// 4812 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4813 // Quick check to see if they are the same SCEV. 4814 if (A == B) return true; 4815 4816 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4817 // two different instructions with the same value. Check for this case. 4818 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4819 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4820 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4821 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4822 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 4823 return true; 4824 4825 // Otherwise assume they may have a different value. 4826 return false; 4827 } 4828 4829 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 4830 /// predicate Pred. Return true iff any changes were made. 4831 /// 4832 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 4833 const SCEV *&LHS, const SCEV *&RHS) { 4834 bool Changed = false; 4835 4836 // Canonicalize a constant to the right side. 4837 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 4838 // Check for both operands constant. 4839 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 4840 if (ConstantExpr::getICmp(Pred, 4841 LHSC->getValue(), 4842 RHSC->getValue())->isNullValue()) 4843 goto trivially_false; 4844 else 4845 goto trivially_true; 4846 } 4847 // Otherwise swap the operands to put the constant on the right. 4848 std::swap(LHS, RHS); 4849 Pred = ICmpInst::getSwappedPredicate(Pred); 4850 Changed = true; 4851 } 4852 4853 // If we're comparing an addrec with a value which is loop-invariant in the 4854 // addrec's loop, put the addrec on the left. Also make a dominance check, 4855 // as both operands could be addrecs loop-invariant in each other's loop. 4856 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 4857 const Loop *L = AR->getLoop(); 4858 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) { 4859 std::swap(LHS, RHS); 4860 Pred = ICmpInst::getSwappedPredicate(Pred); 4861 Changed = true; 4862 } 4863 } 4864 4865 // If there's a constant operand, canonicalize comparisons with boundary 4866 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 4867 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 4868 const APInt &RA = RC->getValue()->getValue(); 4869 switch (Pred) { 4870 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4871 case ICmpInst::ICMP_EQ: 4872 case ICmpInst::ICMP_NE: 4873 break; 4874 case ICmpInst::ICMP_UGE: 4875 if ((RA - 1).isMinValue()) { 4876 Pred = ICmpInst::ICMP_NE; 4877 RHS = getConstant(RA - 1); 4878 Changed = true; 4879 break; 4880 } 4881 if (RA.isMaxValue()) { 4882 Pred = ICmpInst::ICMP_EQ; 4883 Changed = true; 4884 break; 4885 } 4886 if (RA.isMinValue()) goto trivially_true; 4887 4888 Pred = ICmpInst::ICMP_UGT; 4889 RHS = getConstant(RA - 1); 4890 Changed = true; 4891 break; 4892 case ICmpInst::ICMP_ULE: 4893 if ((RA + 1).isMaxValue()) { 4894 Pred = ICmpInst::ICMP_NE; 4895 RHS = getConstant(RA + 1); 4896 Changed = true; 4897 break; 4898 } 4899 if (RA.isMinValue()) { 4900 Pred = ICmpInst::ICMP_EQ; 4901 Changed = true; 4902 break; 4903 } 4904 if (RA.isMaxValue()) goto trivially_true; 4905 4906 Pred = ICmpInst::ICMP_ULT; 4907 RHS = getConstant(RA + 1); 4908 Changed = true; 4909 break; 4910 case ICmpInst::ICMP_SGE: 4911 if ((RA - 1).isMinSignedValue()) { 4912 Pred = ICmpInst::ICMP_NE; 4913 RHS = getConstant(RA - 1); 4914 Changed = true; 4915 break; 4916 } 4917 if (RA.isMaxSignedValue()) { 4918 Pred = ICmpInst::ICMP_EQ; 4919 Changed = true; 4920 break; 4921 } 4922 if (RA.isMinSignedValue()) goto trivially_true; 4923 4924 Pred = ICmpInst::ICMP_SGT; 4925 RHS = getConstant(RA - 1); 4926 Changed = true; 4927 break; 4928 case ICmpInst::ICMP_SLE: 4929 if ((RA + 1).isMaxSignedValue()) { 4930 Pred = ICmpInst::ICMP_NE; 4931 RHS = getConstant(RA + 1); 4932 Changed = true; 4933 break; 4934 } 4935 if (RA.isMinSignedValue()) { 4936 Pred = ICmpInst::ICMP_EQ; 4937 Changed = true; 4938 break; 4939 } 4940 if (RA.isMaxSignedValue()) goto trivially_true; 4941 4942 Pred = ICmpInst::ICMP_SLT; 4943 RHS = getConstant(RA + 1); 4944 Changed = true; 4945 break; 4946 case ICmpInst::ICMP_UGT: 4947 if (RA.isMinValue()) { 4948 Pred = ICmpInst::ICMP_NE; 4949 Changed = true; 4950 break; 4951 } 4952 if ((RA + 1).isMaxValue()) { 4953 Pred = ICmpInst::ICMP_EQ; 4954 RHS = getConstant(RA + 1); 4955 Changed = true; 4956 break; 4957 } 4958 if (RA.isMaxValue()) goto trivially_false; 4959 break; 4960 case ICmpInst::ICMP_ULT: 4961 if (RA.isMaxValue()) { 4962 Pred = ICmpInst::ICMP_NE; 4963 Changed = true; 4964 break; 4965 } 4966 if ((RA - 1).isMinValue()) { 4967 Pred = ICmpInst::ICMP_EQ; 4968 RHS = getConstant(RA - 1); 4969 Changed = true; 4970 break; 4971 } 4972 if (RA.isMinValue()) goto trivially_false; 4973 break; 4974 case ICmpInst::ICMP_SGT: 4975 if (RA.isMinSignedValue()) { 4976 Pred = ICmpInst::ICMP_NE; 4977 Changed = true; 4978 break; 4979 } 4980 if ((RA + 1).isMaxSignedValue()) { 4981 Pred = ICmpInst::ICMP_EQ; 4982 RHS = getConstant(RA + 1); 4983 Changed = true; 4984 break; 4985 } 4986 if (RA.isMaxSignedValue()) goto trivially_false; 4987 break; 4988 case ICmpInst::ICMP_SLT: 4989 if (RA.isMaxSignedValue()) { 4990 Pred = ICmpInst::ICMP_NE; 4991 Changed = true; 4992 break; 4993 } 4994 if ((RA - 1).isMinSignedValue()) { 4995 Pred = ICmpInst::ICMP_EQ; 4996 RHS = getConstant(RA - 1); 4997 Changed = true; 4998 break; 4999 } 5000 if (RA.isMinSignedValue()) goto trivially_false; 5001 break; 5002 } 5003 } 5004 5005 // Check for obvious equality. 5006 if (HasSameValue(LHS, RHS)) { 5007 if (ICmpInst::isTrueWhenEqual(Pred)) 5008 goto trivially_true; 5009 if (ICmpInst::isFalseWhenEqual(Pred)) 5010 goto trivially_false; 5011 } 5012 5013 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5014 // adding or subtracting 1 from one of the operands. 5015 switch (Pred) { 5016 case ICmpInst::ICMP_SLE: 5017 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5018 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5019 /*HasNUW=*/false, /*HasNSW=*/true); 5020 Pred = ICmpInst::ICMP_SLT; 5021 Changed = true; 5022 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5023 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5024 /*HasNUW=*/false, /*HasNSW=*/true); 5025 Pred = ICmpInst::ICMP_SLT; 5026 Changed = true; 5027 } 5028 break; 5029 case ICmpInst::ICMP_SGE: 5030 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5031 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5032 /*HasNUW=*/false, /*HasNSW=*/true); 5033 Pred = ICmpInst::ICMP_SGT; 5034 Changed = true; 5035 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5036 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5037 /*HasNUW=*/false, /*HasNSW=*/true); 5038 Pred = ICmpInst::ICMP_SGT; 5039 Changed = true; 5040 } 5041 break; 5042 case ICmpInst::ICMP_ULE: 5043 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5044 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5045 /*HasNUW=*/true, /*HasNSW=*/false); 5046 Pred = ICmpInst::ICMP_ULT; 5047 Changed = true; 5048 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5049 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5050 /*HasNUW=*/true, /*HasNSW=*/false); 5051 Pred = ICmpInst::ICMP_ULT; 5052 Changed = true; 5053 } 5054 break; 5055 case ICmpInst::ICMP_UGE: 5056 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5057 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5058 /*HasNUW=*/true, /*HasNSW=*/false); 5059 Pred = ICmpInst::ICMP_UGT; 5060 Changed = true; 5061 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5062 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5063 /*HasNUW=*/true, /*HasNSW=*/false); 5064 Pred = ICmpInst::ICMP_UGT; 5065 Changed = true; 5066 } 5067 break; 5068 default: 5069 break; 5070 } 5071 5072 // TODO: More simplifications are possible here. 5073 5074 return Changed; 5075 5076 trivially_true: 5077 // Return 0 == 0. 5078 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5079 Pred = ICmpInst::ICMP_EQ; 5080 return true; 5081 5082 trivially_false: 5083 // Return 0 != 0. 5084 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5085 Pred = ICmpInst::ICMP_NE; 5086 return true; 5087 } 5088 5089 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5090 return getSignedRange(S).getSignedMax().isNegative(); 5091 } 5092 5093 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5094 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5095 } 5096 5097 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5098 return !getSignedRange(S).getSignedMin().isNegative(); 5099 } 5100 5101 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5102 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5103 } 5104 5105 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5106 return isKnownNegative(S) || isKnownPositive(S); 5107 } 5108 5109 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5110 const SCEV *LHS, const SCEV *RHS) { 5111 // Canonicalize the inputs first. 5112 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5113 5114 // If LHS or RHS is an addrec, check to see if the condition is true in 5115 // every iteration of the loop. 5116 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5117 if (isLoopEntryGuardedByCond( 5118 AR->getLoop(), Pred, AR->getStart(), RHS) && 5119 isLoopBackedgeGuardedByCond( 5120 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5121 return true; 5122 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5123 if (isLoopEntryGuardedByCond( 5124 AR->getLoop(), Pred, LHS, AR->getStart()) && 5125 isLoopBackedgeGuardedByCond( 5126 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5127 return true; 5128 5129 // Otherwise see what can be done with known constant ranges. 5130 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5131 } 5132 5133 bool 5134 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5135 const SCEV *LHS, const SCEV *RHS) { 5136 if (HasSameValue(LHS, RHS)) 5137 return ICmpInst::isTrueWhenEqual(Pred); 5138 5139 // This code is split out from isKnownPredicate because it is called from 5140 // within isLoopEntryGuardedByCond. 5141 switch (Pred) { 5142 default: 5143 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5144 break; 5145 case ICmpInst::ICMP_SGT: 5146 Pred = ICmpInst::ICMP_SLT; 5147 std::swap(LHS, RHS); 5148 case ICmpInst::ICMP_SLT: { 5149 ConstantRange LHSRange = getSignedRange(LHS); 5150 ConstantRange RHSRange = getSignedRange(RHS); 5151 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5152 return true; 5153 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5154 return false; 5155 break; 5156 } 5157 case ICmpInst::ICMP_SGE: 5158 Pred = ICmpInst::ICMP_SLE; 5159 std::swap(LHS, RHS); 5160 case ICmpInst::ICMP_SLE: { 5161 ConstantRange LHSRange = getSignedRange(LHS); 5162 ConstantRange RHSRange = getSignedRange(RHS); 5163 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5164 return true; 5165 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5166 return false; 5167 break; 5168 } 5169 case ICmpInst::ICMP_UGT: 5170 Pred = ICmpInst::ICMP_ULT; 5171 std::swap(LHS, RHS); 5172 case ICmpInst::ICMP_ULT: { 5173 ConstantRange LHSRange = getUnsignedRange(LHS); 5174 ConstantRange RHSRange = getUnsignedRange(RHS); 5175 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5176 return true; 5177 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5178 return false; 5179 break; 5180 } 5181 case ICmpInst::ICMP_UGE: 5182 Pred = ICmpInst::ICMP_ULE; 5183 std::swap(LHS, RHS); 5184 case ICmpInst::ICMP_ULE: { 5185 ConstantRange LHSRange = getUnsignedRange(LHS); 5186 ConstantRange RHSRange = getUnsignedRange(RHS); 5187 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5188 return true; 5189 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5190 return false; 5191 break; 5192 } 5193 case ICmpInst::ICMP_NE: { 5194 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5195 return true; 5196 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5197 return true; 5198 5199 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5200 if (isKnownNonZero(Diff)) 5201 return true; 5202 break; 5203 } 5204 case ICmpInst::ICMP_EQ: 5205 // The check at the top of the function catches the case where 5206 // the values are known to be equal. 5207 break; 5208 } 5209 return false; 5210 } 5211 5212 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5213 /// protected by a conditional between LHS and RHS. This is used to 5214 /// to eliminate casts. 5215 bool 5216 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5217 ICmpInst::Predicate Pred, 5218 const SCEV *LHS, const SCEV *RHS) { 5219 // Interpret a null as meaning no loop, where there is obviously no guard 5220 // (interprocedural conditions notwithstanding). 5221 if (!L) return true; 5222 5223 BasicBlock *Latch = L->getLoopLatch(); 5224 if (!Latch) 5225 return false; 5226 5227 BranchInst *LoopContinuePredicate = 5228 dyn_cast<BranchInst>(Latch->getTerminator()); 5229 if (!LoopContinuePredicate || 5230 LoopContinuePredicate->isUnconditional()) 5231 return false; 5232 5233 return isImpliedCond(Pred, LHS, RHS, 5234 LoopContinuePredicate->getCondition(), 5235 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5236 } 5237 5238 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5239 /// by a conditional between LHS and RHS. This is used to help avoid max 5240 /// expressions in loop trip counts, and to eliminate casts. 5241 bool 5242 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5243 ICmpInst::Predicate Pred, 5244 const SCEV *LHS, const SCEV *RHS) { 5245 // Interpret a null as meaning no loop, where there is obviously no guard 5246 // (interprocedural conditions notwithstanding). 5247 if (!L) return false; 5248 5249 // Starting at the loop predecessor, climb up the predecessor chain, as long 5250 // as there are predecessors that can be found that have unique successors 5251 // leading to the original header. 5252 for (std::pair<BasicBlock *, BasicBlock *> 5253 Pair(L->getLoopPredecessor(), L->getHeader()); 5254 Pair.first; 5255 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5256 5257 BranchInst *LoopEntryPredicate = 5258 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5259 if (!LoopEntryPredicate || 5260 LoopEntryPredicate->isUnconditional()) 5261 continue; 5262 5263 if (isImpliedCond(Pred, LHS, RHS, 5264 LoopEntryPredicate->getCondition(), 5265 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5266 return true; 5267 } 5268 5269 return false; 5270 } 5271 5272 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5273 /// and RHS is true whenever the given Cond value evaluates to true. 5274 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 5275 const SCEV *LHS, const SCEV *RHS, 5276 Value *FoundCondValue, 5277 bool Inverse) { 5278 // Recursively handle And and Or conditions. 5279 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 5280 if (BO->getOpcode() == Instruction::And) { 5281 if (!Inverse) 5282 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5283 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5284 } else if (BO->getOpcode() == Instruction::Or) { 5285 if (Inverse) 5286 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5287 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5288 } 5289 } 5290 5291 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 5292 if (!ICI) return false; 5293 5294 // Bail if the ICmp's operands' types are wider than the needed type 5295 // before attempting to call getSCEV on them. This avoids infinite 5296 // recursion, since the analysis of widening casts can require loop 5297 // exit condition information for overflow checking, which would 5298 // lead back here. 5299 if (getTypeSizeInBits(LHS->getType()) < 5300 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5301 return false; 5302 5303 // Now that we found a conditional branch that dominates the loop, check to 5304 // see if it is the comparison we are looking for. 5305 ICmpInst::Predicate FoundPred; 5306 if (Inverse) 5307 FoundPred = ICI->getInversePredicate(); 5308 else 5309 FoundPred = ICI->getPredicate(); 5310 5311 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5312 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5313 5314 // Balance the types. The case where FoundLHS' type is wider than 5315 // LHS' type is checked for above. 5316 if (getTypeSizeInBits(LHS->getType()) > 5317 getTypeSizeInBits(FoundLHS->getType())) { 5318 if (CmpInst::isSigned(Pred)) { 5319 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5320 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5321 } else { 5322 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5323 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5324 } 5325 } 5326 5327 // Canonicalize the query to match the way instcombine will have 5328 // canonicalized the comparison. 5329 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5330 if (LHS == RHS) 5331 return CmpInst::isTrueWhenEqual(Pred); 5332 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5333 if (FoundLHS == FoundRHS) 5334 return CmpInst::isFalseWhenEqual(Pred); 5335 5336 // Check to see if we can make the LHS or RHS match. 5337 if (LHS == FoundRHS || RHS == FoundLHS) { 5338 if (isa<SCEVConstant>(RHS)) { 5339 std::swap(FoundLHS, FoundRHS); 5340 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5341 } else { 5342 std::swap(LHS, RHS); 5343 Pred = ICmpInst::getSwappedPredicate(Pred); 5344 } 5345 } 5346 5347 // Check whether the found predicate is the same as the desired predicate. 5348 if (FoundPred == Pred) 5349 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5350 5351 // Check whether swapping the found predicate makes it the same as the 5352 // desired predicate. 5353 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5354 if (isa<SCEVConstant>(RHS)) 5355 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5356 else 5357 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5358 RHS, LHS, FoundLHS, FoundRHS); 5359 } 5360 5361 // Check whether the actual condition is beyond sufficient. 5362 if (FoundPred == ICmpInst::ICMP_EQ) 5363 if (ICmpInst::isTrueWhenEqual(Pred)) 5364 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5365 return true; 5366 if (Pred == ICmpInst::ICMP_NE) 5367 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5368 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5369 return true; 5370 5371 // Otherwise assume the worst. 5372 return false; 5373 } 5374 5375 /// isImpliedCondOperands - Test whether the condition described by Pred, 5376 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5377 /// and FoundRHS is true. 5378 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5379 const SCEV *LHS, const SCEV *RHS, 5380 const SCEV *FoundLHS, 5381 const SCEV *FoundRHS) { 5382 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5383 FoundLHS, FoundRHS) || 5384 // ~x < ~y --> x > y 5385 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5386 getNotSCEV(FoundRHS), 5387 getNotSCEV(FoundLHS)); 5388 } 5389 5390 /// isImpliedCondOperandsHelper - Test whether the condition described by 5391 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5392 /// FoundLHS, and FoundRHS is true. 5393 bool 5394 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5395 const SCEV *LHS, const SCEV *RHS, 5396 const SCEV *FoundLHS, 5397 const SCEV *FoundRHS) { 5398 switch (Pred) { 5399 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5400 case ICmpInst::ICMP_EQ: 5401 case ICmpInst::ICMP_NE: 5402 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5403 return true; 5404 break; 5405 case ICmpInst::ICMP_SLT: 5406 case ICmpInst::ICMP_SLE: 5407 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5408 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5409 return true; 5410 break; 5411 case ICmpInst::ICMP_SGT: 5412 case ICmpInst::ICMP_SGE: 5413 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5414 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5415 return true; 5416 break; 5417 case ICmpInst::ICMP_ULT: 5418 case ICmpInst::ICMP_ULE: 5419 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5420 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5421 return true; 5422 break; 5423 case ICmpInst::ICMP_UGT: 5424 case ICmpInst::ICMP_UGE: 5425 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5426 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5427 return true; 5428 break; 5429 } 5430 5431 return false; 5432 } 5433 5434 /// getBECount - Subtract the end and start values and divide by the step, 5435 /// rounding up, to get the number of times the backedge is executed. Return 5436 /// CouldNotCompute if an intermediate computation overflows. 5437 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5438 const SCEV *End, 5439 const SCEV *Step, 5440 bool NoWrap) { 5441 assert(!isKnownNegative(Step) && 5442 "This code doesn't handle negative strides yet!"); 5443 5444 const Type *Ty = Start->getType(); 5445 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5446 const SCEV *Diff = getMinusSCEV(End, Start); 5447 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5448 5449 // Add an adjustment to the difference between End and Start so that 5450 // the division will effectively round up. 5451 const SCEV *Add = getAddExpr(Diff, RoundUp); 5452 5453 if (!NoWrap) { 5454 // Check Add for unsigned overflow. 5455 // TODO: More sophisticated things could be done here. 5456 const Type *WideTy = IntegerType::get(getContext(), 5457 getTypeSizeInBits(Ty) + 1); 5458 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5459 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5460 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5461 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5462 return getCouldNotCompute(); 5463 } 5464 5465 return getUDivExpr(Add, Step); 5466 } 5467 5468 /// HowManyLessThans - Return the number of times a backedge containing the 5469 /// specified less-than comparison will execute. If not computable, return 5470 /// CouldNotCompute. 5471 ScalarEvolution::BackedgeTakenInfo 5472 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5473 const Loop *L, bool isSigned) { 5474 // Only handle: "ADDREC < LoopInvariant". 5475 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); 5476 5477 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5478 if (!AddRec || AddRec->getLoop() != L) 5479 return getCouldNotCompute(); 5480 5481 // Check to see if we have a flag which makes analysis easy. 5482 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() : 5483 AddRec->hasNoUnsignedWrap(); 5484 5485 if (AddRec->isAffine()) { 5486 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5487 const SCEV *Step = AddRec->getStepRecurrence(*this); 5488 5489 if (Step->isZero()) 5490 return getCouldNotCompute(); 5491 if (Step->isOne()) { 5492 // With unit stride, the iteration never steps past the limit value. 5493 } else if (isKnownPositive(Step)) { 5494 // Test whether a positive iteration can step past the limit 5495 // value and past the maximum value for its type in a single step. 5496 // Note that it's not sufficient to check NoWrap here, because even 5497 // though the value after a wrap is undefined, it's not undefined 5498 // behavior, so if wrap does occur, the loop could either terminate or 5499 // loop infinitely, but in either case, the loop is guaranteed to 5500 // iterate at least until the iteration where the wrapping occurs. 5501 const SCEV *One = getConstant(Step->getType(), 1); 5502 if (isSigned) { 5503 APInt Max = APInt::getSignedMaxValue(BitWidth); 5504 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5505 .slt(getSignedRange(RHS).getSignedMax())) 5506 return getCouldNotCompute(); 5507 } else { 5508 APInt Max = APInt::getMaxValue(BitWidth); 5509 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5510 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5511 return getCouldNotCompute(); 5512 } 5513 } else 5514 // TODO: Handle negative strides here and below. 5515 return getCouldNotCompute(); 5516 5517 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5518 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5519 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5520 // treat m-n as signed nor unsigned due to overflow possibility. 5521 5522 // First, we get the value of the LHS in the first iteration: n 5523 const SCEV *Start = AddRec->getOperand(0); 5524 5525 // Determine the minimum constant start value. 5526 const SCEV *MinStart = getConstant(isSigned ? 5527 getSignedRange(Start).getSignedMin() : 5528 getUnsignedRange(Start).getUnsignedMin()); 5529 5530 // If we know that the condition is true in order to enter the loop, 5531 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5532 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5533 // the division must round up. 5534 const SCEV *End = RHS; 5535 if (!isLoopEntryGuardedByCond(L, 5536 isSigned ? ICmpInst::ICMP_SLT : 5537 ICmpInst::ICMP_ULT, 5538 getMinusSCEV(Start, Step), RHS)) 5539 End = isSigned ? getSMaxExpr(RHS, Start) 5540 : getUMaxExpr(RHS, Start); 5541 5542 // Determine the maximum constant end value. 5543 const SCEV *MaxEnd = getConstant(isSigned ? 5544 getSignedRange(End).getSignedMax() : 5545 getUnsignedRange(End).getUnsignedMax()); 5546 5547 // If MaxEnd is within a step of the maximum integer value in its type, 5548 // adjust it down to the minimum value which would produce the same effect. 5549 // This allows the subsequent ceiling division of (N+(step-1))/step to 5550 // compute the correct value. 5551 const SCEV *StepMinusOne = getMinusSCEV(Step, 5552 getConstant(Step->getType(), 1)); 5553 MaxEnd = isSigned ? 5554 getSMinExpr(MaxEnd, 5555 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5556 StepMinusOne)) : 5557 getUMinExpr(MaxEnd, 5558 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5559 StepMinusOne)); 5560 5561 // Finally, we subtract these two values and divide, rounding up, to get 5562 // the number of times the backedge is executed. 5563 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5564 5565 // The maximum backedge count is similar, except using the minimum start 5566 // value and the maximum end value. 5567 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap); 5568 5569 return BackedgeTakenInfo(BECount, MaxBECount); 5570 } 5571 5572 return getCouldNotCompute(); 5573 } 5574 5575 /// getNumIterationsInRange - Return the number of iterations of this loop that 5576 /// produce values in the specified constant range. Another way of looking at 5577 /// this is that it returns the first iteration number where the value is not in 5578 /// the condition, thus computing the exit count. If the iteration count can't 5579 /// be computed, an instance of SCEVCouldNotCompute is returned. 5580 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5581 ScalarEvolution &SE) const { 5582 if (Range.isFullSet()) // Infinite loop. 5583 return SE.getCouldNotCompute(); 5584 5585 // If the start is a non-zero constant, shift the range to simplify things. 5586 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5587 if (!SC->getValue()->isZero()) { 5588 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5589 Operands[0] = SE.getConstant(SC->getType(), 0); 5590 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 5591 if (const SCEVAddRecExpr *ShiftedAddRec = 5592 dyn_cast<SCEVAddRecExpr>(Shifted)) 5593 return ShiftedAddRec->getNumIterationsInRange( 5594 Range.subtract(SC->getValue()->getValue()), SE); 5595 // This is strange and shouldn't happen. 5596 return SE.getCouldNotCompute(); 5597 } 5598 5599 // The only time we can solve this is when we have all constant indices. 5600 // Otherwise, we cannot determine the overflow conditions. 5601 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 5602 if (!isa<SCEVConstant>(getOperand(i))) 5603 return SE.getCouldNotCompute(); 5604 5605 5606 // Okay at this point we know that all elements of the chrec are constants and 5607 // that the start element is zero. 5608 5609 // First check to see if the range contains zero. If not, the first 5610 // iteration exits. 5611 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 5612 if (!Range.contains(APInt(BitWidth, 0))) 5613 return SE.getConstant(getType(), 0); 5614 5615 if (isAffine()) { 5616 // If this is an affine expression then we have this situation: 5617 // Solve {0,+,A} in Range === Ax in Range 5618 5619 // We know that zero is in the range. If A is positive then we know that 5620 // the upper value of the range must be the first possible exit value. 5621 // If A is negative then the lower of the range is the last possible loop 5622 // value. Also note that we already checked for a full range. 5623 APInt One(BitWidth,1); 5624 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 5625 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 5626 5627 // The exit value should be (End+A)/A. 5628 APInt ExitVal = (End + A).udiv(A); 5629 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 5630 5631 // Evaluate at the exit value. If we really did fall out of the valid 5632 // range, then we computed our trip count, otherwise wrap around or other 5633 // things must have happened. 5634 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 5635 if (Range.contains(Val->getValue())) 5636 return SE.getCouldNotCompute(); // Something strange happened 5637 5638 // Ensure that the previous value is in the range. This is a sanity check. 5639 assert(Range.contains( 5640 EvaluateConstantChrecAtConstant(this, 5641 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 5642 "Linear scev computation is off in a bad way!"); 5643 return SE.getConstant(ExitValue); 5644 } else if (isQuadratic()) { 5645 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 5646 // quadratic equation to solve it. To do this, we must frame our problem in 5647 // terms of figuring out when zero is crossed, instead of when 5648 // Range.getUpper() is crossed. 5649 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 5650 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 5651 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 5652 5653 // Next, solve the constructed addrec 5654 std::pair<const SCEV *,const SCEV *> Roots = 5655 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 5656 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5657 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5658 if (R1) { 5659 // Pick the smallest positive root value. 5660 if (ConstantInt *CB = 5661 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 5662 R1->getValue(), R2->getValue()))) { 5663 if (CB->getZExtValue() == false) 5664 std::swap(R1, R2); // R1 is the minimum root now. 5665 5666 // Make sure the root is not off by one. The returned iteration should 5667 // not be in the range, but the previous one should be. When solving 5668 // for "X*X < 5", for example, we should not return a root of 2. 5669 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5670 R1->getValue(), 5671 SE); 5672 if (Range.contains(R1Val->getValue())) { 5673 // The next iteration must be out of the range... 5674 ConstantInt *NextVal = 5675 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5676 5677 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5678 if (!Range.contains(R1Val->getValue())) 5679 return SE.getConstant(NextVal); 5680 return SE.getCouldNotCompute(); // Something strange happened 5681 } 5682 5683 // If R1 was not in the range, then it is a good return value. Make 5684 // sure that R1-1 WAS in the range though, just in case. 5685 ConstantInt *NextVal = 5686 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5687 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5688 if (Range.contains(R1Val->getValue())) 5689 return R1; 5690 return SE.getCouldNotCompute(); // Something strange happened 5691 } 5692 } 5693 } 5694 5695 return SE.getCouldNotCompute(); 5696 } 5697 5698 5699 5700 //===----------------------------------------------------------------------===// 5701 // SCEVCallbackVH Class Implementation 5702 //===----------------------------------------------------------------------===// 5703 5704 void ScalarEvolution::SCEVCallbackVH::deleted() { 5705 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5706 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5707 SE->ConstantEvolutionLoopExitValue.erase(PN); 5708 SE->Scalars.erase(getValPtr()); 5709 // this now dangles! 5710 } 5711 5712 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 5713 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5714 5715 // Forget all the expressions associated with users of the old value, 5716 // so that future queries will recompute the expressions using the new 5717 // value. 5718 Value *Old = getValPtr(); 5719 SmallVector<User *, 16> Worklist; 5720 SmallPtrSet<User *, 8> Visited; 5721 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5722 UI != UE; ++UI) 5723 Worklist.push_back(*UI); 5724 while (!Worklist.empty()) { 5725 User *U = Worklist.pop_back_val(); 5726 // Deleting the Old value will cause this to dangle. Postpone 5727 // that until everything else is done. 5728 if (U == Old) 5729 continue; 5730 if (!Visited.insert(U)) 5731 continue; 5732 if (PHINode *PN = dyn_cast<PHINode>(U)) 5733 SE->ConstantEvolutionLoopExitValue.erase(PN); 5734 SE->Scalars.erase(U); 5735 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5736 UI != UE; ++UI) 5737 Worklist.push_back(*UI); 5738 } 5739 // Delete the Old value. 5740 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5741 SE->ConstantEvolutionLoopExitValue.erase(PN); 5742 SE->Scalars.erase(Old); 5743 // this now dangles! 5744 } 5745 5746 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5747 : CallbackVH(V), SE(se) {} 5748 5749 //===----------------------------------------------------------------------===// 5750 // ScalarEvolution Class Implementation 5751 //===----------------------------------------------------------------------===// 5752 5753 ScalarEvolution::ScalarEvolution() 5754 : FunctionPass(ID), FirstUnknown(0) { 5755 } 5756 5757 bool ScalarEvolution::runOnFunction(Function &F) { 5758 this->F = &F; 5759 LI = &getAnalysis<LoopInfo>(); 5760 TD = getAnalysisIfAvailable<TargetData>(); 5761 DT = &getAnalysis<DominatorTree>(); 5762 return false; 5763 } 5764 5765 void ScalarEvolution::releaseMemory() { 5766 // Iterate through all the SCEVUnknown instances and call their 5767 // destructors, so that they release their references to their values. 5768 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 5769 U->~SCEVUnknown(); 5770 FirstUnknown = 0; 5771 5772 Scalars.clear(); 5773 BackedgeTakenCounts.clear(); 5774 ConstantEvolutionLoopExitValue.clear(); 5775 ValuesAtScopes.clear(); 5776 UniqueSCEVs.clear(); 5777 SCEVAllocator.Reset(); 5778 } 5779 5780 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5781 AU.setPreservesAll(); 5782 AU.addRequiredTransitive<LoopInfo>(); 5783 AU.addRequiredTransitive<DominatorTree>(); 5784 } 5785 5786 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5787 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5788 } 5789 5790 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5791 const Loop *L) { 5792 // Print all inner loops first 5793 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5794 PrintLoopInfo(OS, SE, *I); 5795 5796 OS << "Loop "; 5797 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5798 OS << ": "; 5799 5800 SmallVector<BasicBlock *, 8> ExitBlocks; 5801 L->getExitBlocks(ExitBlocks); 5802 if (ExitBlocks.size() != 1) 5803 OS << "<multiple exits> "; 5804 5805 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5806 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5807 } else { 5808 OS << "Unpredictable backedge-taken count. "; 5809 } 5810 5811 OS << "\n" 5812 "Loop "; 5813 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5814 OS << ": "; 5815 5816 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5817 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5818 } else { 5819 OS << "Unpredictable max backedge-taken count. "; 5820 } 5821 5822 OS << "\n"; 5823 } 5824 5825 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 5826 // ScalarEvolution's implementation of the print method is to print 5827 // out SCEV values of all instructions that are interesting. Doing 5828 // this potentially causes it to create new SCEV objects though, 5829 // which technically conflicts with the const qualifier. This isn't 5830 // observable from outside the class though, so casting away the 5831 // const isn't dangerous. 5832 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 5833 5834 OS << "Classifying expressions for: "; 5835 WriteAsOperand(OS, F, /*PrintType=*/false); 5836 OS << "\n"; 5837 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 5838 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 5839 OS << *I << '\n'; 5840 OS << " --> "; 5841 const SCEV *SV = SE.getSCEV(&*I); 5842 SV->print(OS); 5843 5844 const Loop *L = LI->getLoopFor((*I).getParent()); 5845 5846 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 5847 if (AtUse != SV) { 5848 OS << " --> "; 5849 AtUse->print(OS); 5850 } 5851 5852 if (L) { 5853 OS << "\t\t" "Exits: "; 5854 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 5855 if (!ExitValue->isLoopInvariant(L)) { 5856 OS << "<<Unknown>>"; 5857 } else { 5858 OS << *ExitValue; 5859 } 5860 } 5861 5862 OS << "\n"; 5863 } 5864 5865 OS << "Determining loop execution counts for: "; 5866 WriteAsOperand(OS, F, /*PrintType=*/false); 5867 OS << "\n"; 5868 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 5869 PrintLoopInfo(OS, &SE, *I); 5870 } 5871 5872